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1. Introduction

1.1. Everything in a toy model

Consider the simplest hyperbolic initial boundary value problem (IBVP)
∂tu+ ∂xu(x, t) = 0, (x, t) ∈ (R+)2

u(x, 0) = u0(x),
u(0, t) = g(t)

When (u0, g) ∈ L2(R+)2, the solution is piecewise defined: u(x, t) = u0(x − t) for
x− t ⩾ 0, g(t− x) for x− t < 0, it belongs to CtL

2.
It is well known that the smoothness of (u0, g) is not enough to ensure the smooth-

ness of u, compatibility conditions are required: for k ∈ N, u ∈ ∩k
j=0C

j
tH

k−j if and
only if

(u0, g) ∈
(
Hk
)2

and ∀ j ⩽ k − 1, u(j)
0 (0) = (−1)jg(j)(0).

These compatibility relations are trivial here due to the solution formula, but are
more generally derived considering u (and its derivatives) at the corner x = t = 0,
and writing ∂αu|x=0|t=0 = ∂αu|t=0|x=0. A basic rule of thumb being that for some
regularity to hold, any compatibility condition that makes sense should be true.

For fractional regularity, not much changes except in the notoriously pathological
case s ≡ 1/2[Z]. Indeed even if there is no trace in H1/2(R+), the gluing of two
functions in H1/2(R+) is not H1/2(R). The simplest way to see this is to consider
the map f ∈ L2(R) → f(·) − f(−·) ∈ L2(R+). It is continuous L2(R) → L2(R+)
and H1(R) → H1

0 (R+) hence H1/2(R) → [L2(R+), H1
0 (R+)]1/2 by interpolation.

The interpolated space is the famous Lions–Magenes space H
1/2
00 (R+), and it is

different (algebraically and topologically) from H1/2(R+): by interpolation of Hardy’s
inequality, any function f ∈ H

1/2
00 (R+) must satisfy
∫
R+

f 2(x)
x

dx < ∞,

this is obviously not the case for functions merely inH1/2(R+) (pick for example 1/(1+
x2)), see Section 2 for more details on these spaces.

For the regularity of solutions of the BVP, this adds a “global” compatibility
condition

u ∈ CtH
1/2(R+) ⇔ (u0, g) ∈ H1/2(R+) and

∫
R+

|g(x) − u0(x)|2
x

dx < ∞.

Our aim here is to extend these observations for general hyperbolic boundary value
problems.
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Sharp regularity for hyperbolic BVP 1351

1.2. Settings and results

Let Ω be a smooth open set of Rd, we consider first order boundary value problems
of the form

(1.1)


Lu :=

(
∂t −∑d

j=1 Aj∂j

)
u = 0, (x, t) ∈ Ω × R+

t ,

Bu|∂Ω = g, (x, t) ∈ ∂Ω × R+
t ,

u|t=0 = u0, x ∈ Ω.
The index t in R+

t has no meaning except to emphasize the time variable. The Aj’s
are q× q matrices depending smoothly on (x, t), B is a smooth b× q matrix, b is the
number of boundary conditions.

For data (u0, g, f) ∈ L2(Ω) × L2(∂Ω × R+
t ) × L2(R+

t × Ω), the well-posedness of
such hyperbolic BVP has been obtained in a large variety of settings, that we will
only shortly mention. After the pioneering results of Friedrichs [Fri58] for symmetric
dissipative systems, Kreiss [Kre70] proved the well-posedness of the BVP with zero
initial data in the strictly hyperbolic case (∑Ajξj has only real eigenvalues of
algebraic multiplicity one) under the now standard Kreiss–Lopatinskii condition on B.
In Kreiss’s framework, the case of L2 initial data was then tackled by Rauch [Rau72].
Well-posedness of BVP hyperbolic with constant multiplicities was later obtained
by Métivier [Mét00] (zero initial data), the author then proved well-posedness with
L2 initial data [Aud11]. A further generalization was obtained by Métivier [Mét17]
for a new class of hyperbolic operators, larger than the constant multiplicities ones.
He also gave a new proof, both more general and simpler, of well-posedness with L2

initial data.
For more references and results, in particular for characteristic BVP (that we do

not consider here) the reader may refer to the book [BGS07].
Let n be a normal on ∂Ω, the problem (1.1) is said to be noncharacteristic

when ∑
Ajnj is invertible on ∂Ω. For non characteristic boundary value prob-

lems, the main reference on the smoothness of solutions is the classical paper
of Rauch and Massey [RM74], where, under no specific assumption (except of
course well-posedness), the authors prove that the solution of (1.1) belongs to
∩k

j=0C
j
t (R+

t , H
k−j(Ω)) when (u0, g, f) ∈ Hk(Ω) × Hk+1/2(∂Ω × R+

t ) × Hk(Ω × R+
t )

and satisfy natural compatibility conditions that we describe now. For concise-
ness, when there is no ambiguity we will usually denote Hk instead of Hk(X),
X = Ω, ∂Ω × R+

t ,Ω × R+
t .

We denote A = ∑
Aj∂j and define inductively vj the formal value of (∂j

tu)|t=0 by

v0 = u0, vj+1 =
(
∂j

t ∂tu
)

|t=0 = ∂j
t (Au+ f)|t=0

=
j∑

l=0

(
j

l

)(
∂l

tA|t=0
)
vj−l + ∂j

t f |t=0.
(1.2)

The first order compatibility condition isBv0|∂Ω = g|t=0 and the generic compatibility
condition of order j is

(1.3) Compatibility at order j : ∂j−1
t g|t=0 =

j−1∑
l=0

(
j − 1
l

)
(∂l

tB)vj−1−l|∂Ω.
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1352 C. AUDIARD

Note that (1.3) makes sense as soon as (u0, g, f) ∈ (Hs)3, s > j − 1/2. If the
smoothness of the data is j− 1/2, j ∈ N∗, we define a special compatibility condition
: when Ω = Rd−1 × R+, denote x = (x′, xd); the condition is Compatibility at order
j − 1/2:

(1.4) ∂j−1
t g(x′, t) −

j−1∑
l=0

(
j − 1
l

)
(∂l

tB)vj−1−l(x′, t)
 ∈ H

1/2
00

(
Rd−1 × (R+)

)
.

For general smooth Ω, (1.4) is defined similarly through local maps and a partition of
unity: near the boundary Ω is diffeomorphic to (a part of) Rd−1 ×R+ thanks to some
map Φ, one simply requires (1.4) to stand for g(Φ(x′, 0), t), (vl ◦ Φ(x′, t))0⩽ l⩽ j−1.

Note that due to Hardy’s inequality, the jth condition implies the condition of
order j − 1/2.

Definition 1.1. — For 0 ⩽ s < 1/2, no compatibility conditions are required,
we say that any data in (Hs)3 satisfy the compatibility conditions of order s.

If s = k+θ, −1/2 < θ < 1/2, k ∈ N∗, θ ̸= 1/2, we say that data (u0, g, f) ∈ (Hs)3

satisfy the compatibility conditions at order s when (1.3) is satisfied for 1 ⩽ j ⩽ k.
If s = k − 1/2, the compatibility conditions are satisfied at order s when (1.3) is

true for 1 ⩽ j ⩽ k − 1 and (1.4) is true for j = k.

A strong L2 solution of (1.1) is a function u ∈ CtL
2 such that there exists a

sequence un of smooth solutions of (1.1) with data (u0,n, gn, fn) that converge to
(u0, g, f) in L2, and for any T > 0, ∥u− un∥C([0,T ],L2) → 0.

Assumptions 1.2. — We need the smoothness of Ω and the well-posedness
of (1.1):

(1) ∂Ω is a smooth hypersurface with normal n, parametrized by local maps
(ϕj(y′))1⩽ j ⩽ J , y′ ∈ Rd−1, and φj(y′, yd) := ϕj(y′) + ydn(ϕj(y′)) are local
diffeomorphisms Vj → Uj, with φj((Rd−1 ×R+∗)∩Vj) ⊂ Ω, and ∪J

j=1Uj ⊃ ∂Ω.
We do not assume that the Uj are bounded sets, but Dφj, Dφ

−1
j must be

uniformly bounded, and d(Ω \ ∪Im(φj), ∂Ω) > 0.
(2) The boundary is uniformly not characteristic, in the sense that ∑Ajnj is

invertible on ∂Ω, and the inverse is uniformly bounded.
(3) For data (u0, g, f) ∈ (L2)3, there exists a unique strong L2 solution(1) to (1.1)

that satisfies the semi-group estimate for γ large enough

(1.5) ∥e−γ·u∥C([0,t],L2(Ω)) + |e−γ·u|∂Ω|L2(∂Ω×[0,t])

≲ ∥u0∥L2(Ω) + |e−γ·g|L2(∂Ω×[0,T ]) +
∥e−γ·f∥L2([0,t]×Ω)√

γ
.

We use the convention that norms inside the domain are denoted ∥ · ∥ while
norms on the boundary are denoted | · |.

(1)This assumption can be somehow weakened, as it is classical that in this framework, weak
solutions are actually strong, see [LP60].
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We point out that a consequence of the semi-group estimate is the resolvent
estimate: for γ large enough (larger than for (1.5))

(1.6) γ∥e−γtu∥2
L2(Ω×R+

t ) + |e−γtu|∂Ω|2
L2(∂Ω×R+

t )

≲

(
∥u0∥2

L2(Ω) + |e−γtg|2
L2(∂Ω×R+

t ) + ∥e−γtf∥2
L2

γ

)
.

This is readily obtained by squaring (1.5) for some fixed γ0, multiplication by
e−2(γ−γ0)t, γ > γ0 and integration in t. Higher regularity versions of the resolvent
and the semi-group estimates are a bit more delicate to state. We define weighted
Sobolev spaces Hs

γ in Section 2, the weighted resolvent estimate is then

(1.7) γ∥u∥2
Hs

γ
+ |u|∂Ω|2Hs

γ
≲ ∥u0∥2

Hs(Ω) + |g|2Hs
γ

+
∥f∥2

Hs
γ

γ
.

The main point of this estimate is that the γ factor allows to absorb commutators
in a priori estimates. Moreover, it implies the following (simpler to read) estimate

(1.8) ∥e−γtu∥2
Hs(Ω×R+) + |e−γtu|∂Ω|2Hs(∂Ω×R+)

≲ ∥u0∥2
Hs(Ω) + |e−γtg|2Hs(∂Ω×R+) + ∥e−γtf∥2

Hs(Ω×R+).

We shall not need something as precise for the semi-group estimate: let s = k+θ, k ∈
N, 0 < θ < 1, θ ̸= 1/2, then

(1.9)
k∑

j=0

∥∥∥e−γt∂j
tu
∥∥∥2

C(R+
t ,Hk−j+θ(Ω)) +

∣∣∣e−γtu|∂Ω

∣∣∣2
Hs(Ω×R+

t )

≲ ∥u0∥2
Hs(Ω) + |e−γtg|2Hs(∂Ω×Rt) +

∥∥∥e−γtf
∥∥∥2

Hs
.

Both estimates should be modified when s = k + 1/2, k ∈ N: it is necessary to add
in the right hand side the H1/2

00 norm of ∂k
t g −∑k

0

(
k
l

)
(∂l

tB)vk−1−l, see page 1366 for
details. This is the (implicit) convention that we use in Theorem 1.4, we refer to the
proof for more details.

An interesting related feature is that the constant in ≲ can not be uniform in θ,
it blows up as θ → 1/2 and estimates (1.7), (1.9) are actually not true for θ = 1/2.

We can now state more precisely the regularity result of Rauch and Massey:

Theorem 1.3 ([RM74]). — For any k ∈ N, if (u0, g, f) ∈ Hk(Ω) ×Hk+1/2(∂Ω ×
R+

t ) × Hk(Ω × R+
t ) satisfy the compatibility condition up to order k, the solution

of (1.1) belongs to ∩k
j=0C

j
tH

k−j.

The only suboptimal part of the theorem is the regularity assumption on g. This is
due to the fact that the theorem is deduced from the homogeneous case g = 0 with a
lifting argument. It was already pointed out at the time by the authors that it could
be improved (without proof), but quite unfortunately the result that remained in the
literature is the suboptimal one, see for example the reference book [BGS07], and in
somewhat different settings the lecture notes [Mét01] or the interesting discussion
in the introduction of [IL21], where optimal results are obtained in dimension 1 and
an integer index of regularity.
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1354 C. AUDIARD

Our result is that the same property holds with boundary data in Hk instead of
Hk+1/2, moreover we allow k to be any nonnegative real number rather than an
integer.

Theorem 1.4. — Let s = k+ θ ∈ R+, k ∈ N, 0 ⩽ θ < 1. If (u0, g, f) ∈ Hs(Ω) ×
Hs(∂Ω × R+

t ) ×Hs(Ω × R+
t ) satisfy the compatibility condition up to order s, the

solution of (1.1) belongs for any T > 0 to Hs(Ω× [0, T ])∩ (∩k
j=0C

j([0, T ], Hs−j(Ω))),
and satisfies estimate (1.7) and (1.9) for γ large enough.

The proof when s is an integer is quite similar to the original argument of Rauch
and Massey. Actually the fact that we handle directly nonzero boundary data leads
to some slight simplifications due to the fact that it allows to avoid a reduction to the
case where B is constant. The fractional case is essentially an interpolation argument,
however it is not trivial due to the presence of the compatibility conditions. For
example, in the model case described earlier instead of interpolating [L2 × L2, H1 ×
H1]θ one must identify [L2 × L2, {(u0, g) ∈ H1(R+) ×H1(R+) : u0(0) = g(0)}]θ.

The literature on such problems is not very rich. Another related problem is the
interpolation of Sobolev spaces with boundary conditions, that are in some sense
between Hs and Hs

0 . This issue appeared quite long ago for elliptic equations on non
smooth domains or parabolic problems, see e.g. the last section of [Gri67], [LM68b,
Sections 14-17 of Chapter 4] (where most of the identification problems were left
open), or the more recent (and much more involved) book [Ama19], in particular
VIII.2.5. Due to the highly technical flavour of this last reference (anisotropic Besov
spaces are studied), degenerate cases (in our settings s ∈ N+1/2) are not considered.
The Schrödinger equation on a domain and related interpolation problems were also
studied by the author in [Aud19], where the natural spaces for the boundary data
are Bourgain spaces.

1.3. Plan of the article

Section 2 is devoted to notations and a brief reminder on interpolation. The proof
of Theorem 1.4 is then organized in three sections : in Section 3 we recall a standard
smoothness result for the pure boundary value problem posed for t ∈ R, due to
Tartakov. For completeness, we include a sketch of proof that follows an argument
of the (unfortunately depleted) book [CP81]. Theorem 1.4 in the case s integer is
proved in Section 4. An important point is a basic lifting lemma which proves to be
also useful for the general case. In Section 5, smoothness is first proved for 0 ⩽ s ⩽ 1
with an interpolation argument, then for any s with a non trivial differentiation
argument.

2. Notations and basic results
2.1. Basic notations

Proofs are often reduced to the case Ω = Rd−1 × R+. In such settings, we denote
the variable x = (x′, xd) x′ ∈ Rd−1. The variables x′, t are called tangential, while xd

is the normal variable.
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Partial differential operators acting on functions of (x, t) are written as ∂α, α ∈
Nd+1, by convention αd+1 is the order of differentiation in time. A multi-index, or a
differential operator, is said to be tangential when αd = 0.

We denote [L1, L2] = L1L2 − L2L1 the commutator between two linear operators.

2.2. Sobolev spaces

Ω is assumed to be a smooth open set as in the assumption 1 page 1352. The
Sobolev spaces Hs(Ω), are defined when s is an integer asu ∈ L2 : ∥u∥2

Hs =
∑

|α|⩽ s

∫
Ω

|∂αu|2dx < ∞

 .
When s is not an integer, they are defined by (complex) interpolation, Hs =
[L2, Hk]s/k for any integer k larger than s. This definition does not depend on k.

The Sobolev spaces for functions defined on Ω × R+
t are defined in the same way,

Sobolev spaces on the manifold ∂Ω (or ∂Ω × [0, T ]) are defined thanks to local
charts(2) .
Hs

0(Ω) is the closure of C∞
c (Ω) for the Hs(Ω) norm. We do have [L2, H1

0 ]s = Hs
0 for

0 < s < 1, except for s = 1/2, where H1/2
0 = H1/2 and [L2, H1

0 ]1/2 = H
1/2
00 is different

algebraically and topologically from H1/2. It is a Banach space endowed with the
norm

∥u∥2
H

1/2
00

= ∥u∥2
H1/2 +

∫
Ω

|u(x)|2
d(x) dx,

where d is the distance to ∂Ω (see [LM68a]). An essential fact, regularly used in the
article, is that if X0, X1 are Banach spaces, an operator T : X0 → L2, X1 → H1

0
maps [X0, X1]1/2 to H1/2

00 . For example, u ∈ Hs(Rd) → u(x′, xd) − u(x′,−xd) maps
H1/2(Rd) to H1/2

00 (Rd−1 × R+).
The weighted Sobolev spaces Hs

γ are defined as follows :

Definition 2.1. — When s is a nonnegative integer we define Hs
γ(Ω × R+

t ) as
the set of functions in L2 such that the following norm is finite

∥u∥Hs
γ

=
∑

|α|⩽ s

∥∥∥e−γt∂αu
∥∥∥

L2
.

When s is not an integer, Hs
γ is defined by complex interpolation : if k is an integer

larger than s, Hs
γ = [L2

γ, H
k
γ ]s/k.

Hs
γ(∂Ω × R+

t ) is defined similarly.

When s is an integer, it is a straightforward consequence of Leibniz formula
∂j

t (e−γtu) = ∑(
j
i

)
(−γ)ie−γt∂j−i

t u that the Hs
γ norm is equivalent to ∥e−γtu∥Hs ,

though with constants that depend on γ, hence the Hs
γ spaces coincide algebraically

and topologically with the set of functions such that e−γtu ∈ Hs.
(2) Most references, e.g. [LM68a, Chapter 1], assume the boundedness of Ω, but everything works
similarly in our settings.
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2.3. Traces

Sobolev spaces on ∂Ω are defined with local maps. The trace operator is a contin-
uous surjective morphism: Hs(Ω) → ∏

k < s−1/2 H
s−1/2−k(∂Ω),

u →
(
∂k

nu|∂Ω
)

k < s−1/2
,

where ∂n is the normal derivative on ∂Ω.
For functions defined in Hs(Ω × R+∗), the trace operator on ∂Ω × R+∗ and Ω × {0}
is more subtle, the map

(2.1)


Hs

(
Ω × R+∗

t

)
→
(∏

k < s−1/2 H
s−1/2−k

(
∂Ω × R+∗

t

))
×
(∏

k < s−1/2 H
s−1/2−k (Ω × {0})

)
,

u →
(
∂k

nu|∂Ω×R+∗ , ∂k
t u|Ω×{0}

)
k < s−1/2

,

is continuous but not surjective: if s /∈ N, local compatibility conditions between
(gk, vk) ∈ (∏Hs−1/2−k(∂Ω × R+∗

t )) × (∏Hs−1/2−k(Ω × {0})) are required as follows
(see [LM68b])
(2.2) ∀ k + j < s− 1, ∂j

t gk|t=0 = ∂k
nvj|∂Ω.

In the case s = 1, and Ω = Rd−1 × R+∗, surjectivity requires the global compatibility
condition
(2.3) v0(x′, t) − g0(x′, t) ∈ H

1/2
00 (∂Ω).

This condition extends to smooth Ω, see the short comment after (1.4).
Provided such compatibility conditions are added, the trace map is a surjection

and has a right inverse, this very well known fact will be proved later in the article
in some basic cases where it is needed with more precise estimates.

3. Regularity for the pure boundary value problem

Consider the boundary value problem

(3.1)


Lu = f, (x, t) ∈ Ω × R+

t

Bu|∂Ω = g,
u|t=0 = 0.

When g, f can be smoothly extended by 0 for t < 0, the smoothness of u is well
known [CP81, Tar72]. The classical proof is done by first studying the pure boundary
value problem posed on t ∈ R, the case t ∈ R+ is then deduced by an extension by 0
for t < 0. We give here a minor variation of this argument that directly tackles (3.1).

Proposition 3.1. — Let k ∈ N. If the extension of f and g by 0 for t < 0
belongs to Hk, then for γ large enough the solution of (3.1) satisfies estimate (1.7)
with u0 = 0, s = k, in particular, (e−γtu, e−γtu|∂Ω) ∈ Hk(Ω × R+

t ) ×Hk(∂Ω × R+
t ),

and u ∈ Hk(Ω × [0, T ]) for any 0 < T < ∞.
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Proof. — The classical plan is to straighten the boundary through local maps,
then use a tangential regularization. It is done by induction on k, it suffices to prove
the final step where we assume u ∈ Hk−1(Rd × R+

t ) and prove u ∈ Hk.
We fix local maps φj as in Assumption 1. Let (ψj)0⩽ j ⩽ J be a partition of unity

associated to Ω ∪ (∪jIm(φj)).
We denote the new variable y = (y′, yd), uj = (ψje

−γtu) ◦ φj, and u0 = ψ0u, Lj =
∂t + γ +∑

i

(∑
k Ak(Dyφj)−1

ik (y)
)
∂yi

. For 1 ⩽ j ⩽ J , uj satisfies

(3.2)


Ljuj + ([ψj, L]e−γtu) ◦ φj = e−γt(ψjf) ◦ φj

:= fj, (y′, yd, t) ∈ Rd−1 × R+ × R+
t ,

B(φj(y′, 0))uj(y′, 0, t) = e−γt(ψjg)(φj(y′, 0), t) := gj.

This is still a non characteristic BVP, indeed Dφj(y′, 0) = ( Dy′ ϕj n ), the last column
n is a vector orthogonal to the previous columns hence (Dφ)−1 is of the form ( A

nt ), in
particular the matrix in factor of ∂yd

is ∑k Aknk, which is invertible by assumption.
For simplicity we still denote B for B ◦ φj(·, 0).
The regularization procedure was introduced by Hörmander [Hör66]: for v ∈

L2(Rp), p ⩾ 1, define

∥v∥2
Hs,δ(Rp) =

∫
Rp

|v̂(ξ)|2 (1 + |ξ|2)s+1

1 + |δξ|2
dξ −→δ → 0 ∥v∥2

Hs+1 .

Let ρ ∈ C∞
c (Rp), such that |ρ̂(ξ)| ≲ |ξ|m, m > k and ρ̂ does not cancel on a

neighborhood outside 0 (for example take m > k even, ρ0 ∈ C∞
c with

∫
Rp ρ0 dx ̸= 0

and set ρ = ∆m/2(ρ0)). Define ρε = ρ(·/ε)/εp. It is an exercise in calculus that for
0 ⩽ s ⩽ k − 1, an equivalent norm to ∥ · ∥Hs,δ -uniformly in δ- is

(3.3) ∥v∥L2 +
(∫ 1

0
∥v ∗ ρε∥2

L2
1

ε2(s+1)(1 + δ2/ε2)
dε

ε

)1/2

∼ ∥v∥Hs,δ(Rp).

Friedrich’s lemma can be generalized in such settings: for P a first order differential
operator with smooth coefficients

(3.4)
∫ 1

0
∥[P, ρε∗]v∥2

L2
1

ε2(s+1)(1 + δ2/ε2)
dε

ε
≲ ∥v∥2

Hs,δ .

For details, we refer to [CP81, Chapter 2, Section 6].
We shall use tangential mollifiers ρε(x′, t) for the functions uj, 1 ⩽ j ⩽ J , and full

mollifiers ρε(x, t) for u0 in the following way : u0 is extended by 0 outside Ω, for ε
small enough, ρε ∗ u0 is supported in Ω × Rt, we choose such ε.

Everything in (3.2) is extended by 0 for t < 0. Note that due to the assumptions
on f, g, the extensions of (fj, gj) are still in Hk. We apply ρε∗ to (3.2) for 1 ⩽ j ⩽ J :

(3.5)
{
Ljρε ∗ uj = ρε ∗ fj − ρε ∗ [ψj, Lj] e−γtu ◦ φj − [ρε∗, Lj] e−γtuj,
B (ρε ∗ uj) |yd=0 = ρε ∗ gj − [ρε∗, B]uj|yd=0 .

We have ρε ∗ uj ∈ L2(R+
yd
, H∞(Rd−1 × R+

t )), its H1 regularity is deduced from the
boundary being non characteristic with the following standard argument: the right
hand side of the first equation in (3.5) is in L2(Rd−1 × R+ × R+

t ), hence
(3.6) ∂yd

(ρεuj) = T (ρε ∗ uj) +Rj,
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with T a tangential differential operator and Rj ∈ L2. This implies ρε ∗uj ∈ H1, and
we can use the resolvent estimate (1.6):

γ ∥ρε ∗ uj∥2
L2 + |ρε ∗ uj|2L2

≲
|ρε ∗ fj∥2

L2 + ∥ρε ∗ [ψj, Lj] e−γtu ◦ φj∥2
L2 + ∥[ρε∗, Lj]uj∥2

L2

γ

+ |ρε ∗ gj − [ρε∗, B]uj|2L2 .

Multiplying by ε−2k−1 (1 + (δ/ε)2)−1, integrating in ε and using Friedrich’s lemma (in-
equality (3.4)) with s = k − 1, we have

(3.7) γ∥uj∥2
L2Hk−1,δ + |uj|2Hk−1,δ ≲

∥fj∥2
Hk + ∥[ψj, Lj] e−γtu ◦ φj∥2

L2Hk−1,δ

γ
+ ∥gj∥2

Hk .

The commutator [ψj, Lj] is the multiplication by a smooth matrix θj, note that
since ψj only depends of the space variables, [ψj, ∂t] = [ψj, γ] = 0, in particular is
independent of γ. Due to the special structure of the local maps, φ−1

i ◦ φj has the
form (φi,j(y′), yd) hence

θje
−γtu ◦ φj =

J∑
1
ψiθjui(φi,j(y′), yd) + θju0 ◦ φj.

Thanks to composition rules (in Hs,δ, again see [CP81]),
∥∥∥[ψj, Lj] e−γtu ◦ φj

∥∥∥
L2Hk−1,δ

≲
J∑

i=1
∥ui∥L2Hk−1,δ + ∥u0∥Hk−1,δ

For γ large enough, this can be absorbed in (the sum over j of) the left-hand side
of (3.7):

(3.8)
J∑

j=1
γ∥uj∥2

L2Hk−1,δ + |uj|2Hk−1,δ ≲
∑J

1 ∥fj∥2
Hk + ∥u0∥2

Hk−1,δ

γ
+

J∑
1

|gj|2Hk .

It seems “moral” that noncharacteristicity should imply the same bound for ∥uj∥Hk−1,δ ,
however the Hk−1,δ norm is a non local norm for functions defined on Rd ×Rt, hence
such an assertion is not clear. Instead we first obtain interior estimates with similar,
simpler computations

(3.9) γ∥u0∥2
Hk−1,δ

≲
∥f0∥2

Hk +
∥∥∥e−γtψ̃0u

∥∥∥2

Hk−1,δ

γ
, supp(ψ̃0) ⊂ Ω, ψ̃0 ≡ 1 on supp(ψ0).

Decomposing again ψ̃0u = ∑J
j=0 ψ̃0ψju, and following the same lines that led to (3.8),

(3.10)
J∑

j=1
γ
∥∥∥ψ̃0ψju ◦ φj

∥∥∥2

L2Hk−1,δ
≲
∑J

1 ∥fj∥2
Hk + ∥u0∥2

Hk−1,δ

γ
+

J∑
1

|gj|2Hk .
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A simple consequence of the definition of the Hs,δ(Ryd
× Rd−1 × Rt) spaces is that

for any tangential differential operator D of order 1 and s ⩾ 1

(3.11) ∥Dv∥Hs−2,δ ≲
1
C

∥v∥Hs−1,δ + C∥v∥L2(Ryd
,Hs−1,δ(Rt×Rd−1)).

Now for j ⩾ 1, each function ψ̃0ψju ◦φj is compactly supported in Rd−1 ×R+∗ ×Rt,
its extension by zero to yd < 0 is smooth, and on its support Lj is (uniformly) non
characteristic, hence we can use an argument similar to the one for the H1 regularity
for ρε ∗ uj (see (3.6)) combined with estimate (3.11) to deduce

(3.12)
J∑

j=1
γ
∥∥∥ψ̃0ψju ◦ φj

∥∥∥2

Hk−1,δ
≲

∥fj∥2
Hk + ∥u0∥2

Hk−1,δ

γ
+

J∑
1

|gj|2Hk + γ∥u∥2
Hk−1

γ
.

Note that the term γ∥e−γtu∥2
Hk−1

γ
is present due to the factor γ in the definition

of Lj. Thanks to the induction assumption, this lower order term is bounded by
∥g∥2

Hk−1
γ

+ ∥f∥2
Hk−1

γ
. Putting together (3.8), (3.9), (3.12) we have(

J∑
1

∥uj∥2
L2Hk−1,δ + ∥u0∥2

Hk−1,δ

)
+

J∑
1

|uj|2Hk−1,δ ≲
∥∥∥e−γtf

∥∥∥2

Hk
+ |e−γtg|2Hk .

Letting δ → 0 we have uj ∈ L2Hk, 1 ⩽ j ⩽ J and u0 ∈ Hk. Normal regularity
is finally gained thanks to the uniform non characteristicity. Estimate (1.7) is then
easily obtained by differentiation (which can now be done) and use of the L2 resolvent
estimate (1.6). □

4. Smoothness of the IBVP: the integer case

We assume in this section that (u0, g, f) ∈ (Hk)3 satisfy the compatibility condi-
tions (1.3) up to order k, and we prove Theorem 1.4 in these settings.

To prove that u ∈ ∩k
j=0C

j
tH

k−j, the strategy is to use the regularity for the pure
boundary value problem by subtracting an approximate solution (actually a Taylor
expansion at t = 0) to u. For technical reasons, it is necessary to use much more
regular data that satisfy compatibility conditions to higher order. The construction
of such data requires the following lifting lemma that is also used in the next section.

Lemma 4.1. — For m ∈ N, there exists a lifting map Rm : Hs(∂Ω) → Hm+s+1/2

(∂Ω × Rt), continuous for any s > 0 such that
(4.1) ∂m

t Rmg|t=0 = g, ∂j
tRmg|t=0 = 0, j < m+ s, j ̸= m,

and for r < m+ 1/2, |∥Rm|∥L2→Hr << 1 is arbitrarily small.

Proof. — Up to the use of local maps, the problem is reduced to ∂Ω = Rd−1, and
to construct a lifting valued in Hm+s+1/2(Rd−1 × Rt). The variables are denoted
(x′, t).

We choose χ ∈ C∞
c (R) such that χ(k)(0) = 0, k ≠ m, χ(m)(0) = 1. We use the

Fourier transform on Rd−1 × Rt and denote ξ the dual variable of x′, τ the dual
variable of t, and λ is a large parameter to fix later:
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R̂mg = χ̂(τ/(λ⟨ξ⟩))
(λ⟨ξ⟩)m+1 ĝ(ξ),

equivalently Fx′ (Rm(g)(ξ, t)) = χ(λt⟨ξ⟩)
λm⟨ξ⟩m

ĝ(ξ), ⟨ξ⟩ =
√

1 + |ξ|2.

The trace relations (4.1) are obvious from the second formula. The Hm+s+1/2 norm
is easily bounded

∥Rmg∥2
Hm+s+1/2(Rd) =

∫ |χ̂(τ/(λ⟨ξ⟩))|2 |ĝ(ξ)|2
(λ⟨ξ⟩)2(m+1)

(
⟨ξ⟩2 + τ 2

)m+s+1/2
dξdτ

=
∫ |χ̂(τ)|2 |ĝ(ξ)|2

(λ⟨ξ⟩)2(m+1)

(
⟨ξ⟩2

(
1 + λ2τ 2

))m+s+1/2
dξλ⟨ξ⟩dτ

⩽
∫

|ĝ(ξ)|2 ⟨ξ⟩2s
∫

|χ̂(τ)|2 (1 + λ2τ 2)m+s+1/2

λ2m+1 dτ dξ.

≲ λ2s∥g∥2
Hs .

With the same computation

∥Rmg∥2
Hr ⩽

∫ |ĝ|2

⟨ξ⟩2(m−r)+1

∫ |χ̂(τ)|2 (1 + λ2τ 2)r

λ2m+1 dτ dξ ≲
∥g∥2

L2

λ2(m−r)+1 .

It is therefore sufficient to choose λ large enough to ensure the smallness of
∥Rm∥L2 → Hr . □

Lemma 4.2 (Construction of smooth compatible data). — Let k ⩾ 0, (u0, g, f) ∈
(Hk)3 satisfying the compatibility conditions up to order k. For any m > k, there
exists (u0,n, gn, fn) ∈ (H∞)3 satisfying the compatibility conditions up to order m,
and such that

∥(u0, g, f) − (u0,n, gn, fn)∥(Hk)3 → 0.

Proof. — By density of smooth functions, there exists a sequence (u0,n, gn, fn) ∈
(H∞)3 converging to (u0, g, f) in (Hk)3. We denote vj,n the corresponding functions
in (1.2). For j ⩾ 1 the “compatibility error” is defined as

εj,n := ∂j−1
t gn|t=0 −

j−1∑
l=0

(
j

l

)(
∂l

tB
)
vj−1−l,n|∂Ω.

Due to the compatibility conditions and continuity of traces we have
∀ 1 ⩽ j ⩽ k, ∥εj,n∥Hk−j+1/2 −→n 0.

As a consequence, given a lifting operator Rj−1 as in Lemma 4.1, ∥Rj−1εj,n∥Hk →n 0.
For k < j ⩽ m, εj,n is not small in any Sobolev space, nevertheless from Lemma 4.1
there exists a lifting Rj−1,n such that ∥Rj−1,nεj,n∥Hk ⩽ 1/n. We then define

g̃n := gn −
m∑

j=1
Rj−1,n(εj,n).

This choice ensures that compatibility conditions are satisfied by (u0,n, g̃n, fn) up to
order m and ∥g̃n − g∥Hk → 0. □
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4.1. Proof of Theorem 1.4 (integer case)

Proof. — We follow the notations of Lemma 4.2; vj,n are smooth functions defined
by (1.2) for smooth data (u0,n, gn, fn). We define the approximate solution

uapp,n(x, t) =
m−1∑
j=0

tj

j!vj,n(x)χ(t), χ ∈ C∞
c (R+), χ ≡ 1 near 0.

We solve then 
Lwn = fn − Luapp,n,
wn|t=0 = 0,
Bwn = gn −Buapp,n,

By construction, the data (0, gn −Buapp,n, fn − Luapp,n) are smooth and it is easily
seen that ∂j

t (gn −Buapp,n) = 0, ∂j
t (fn − Luapp,n) = 0, j ⩽ k + 1 provided m ⩾ k + 4.

Hence according to Proposition 3.1, the solution wn belongs to Hk+2, this implies
by Sobolev embedding wn ∈ ∩k+1

j=0C
j
tH

k+1−j. Therefore un := wn + uapp,n is also in
∩k+1

j=0C
j
tH

k+1−j, and it is a solution of (1.1) with data (u0,n, gn, fn).
Using a differentiation argument similar to the proof of Proposition 3.1, but much

simpler since no regularization is needed, we see that un satisfies (1.9):
k∑

j=0

∥∥∥∂j
t

(
e−γtun

)∥∥∥
C(R+,Hk−j(Ω)) +

∣∣∣e−γtun

∣∣∣
∂Ω

|Hk

≲
(

∥u0,n∥Hk(Ω) +
∣∣∣e−γtgn

∣∣∣
Hk(∂Ω×Rt

+
∥∥∥e−γtfn

∥∥∥
Hk

)
,

as well as (1.7). The same estimates, applied to up − uq, (p, q) ∈ N2, show that (un)
is a Cauchy sequence in ∩k

j=0C
j
tH

k−j, but since (un) converges (in L2) to the solution
u of (1.1) with data (u0, g, f), this ensures that u ∈ ∩k

j=0C
j
tH

k−j. The estimate (1.7)
is then an elementary differentiation argument : tangential regularity is obtained
directly by differentiation (which is now legal) and use of the L2 estimate, while
normal regularity uses the non characteristicity.

□

5. Regularity for positive s

For ease of presentation, we only detail the case Ω = Rd−1 × R+. The general case
can be obtained by using a partition of unity as in the previous section.

In this section, we follow the (non standard) convention that Hs
0 is H1/2

00 if s = 1/2.
Under such settings, we can assume that Ad is invertible and A−1

d is uniformly
bounded. Furthermore since B : Rq → Rb has maximal rank b, there exists a smooth
basis of KerB (as a smooth vector bundle over the contractible space Rd−1 × R+

t )
that we denote (k1, · · · kq−b). A basis (vj)1⩽ j ⩽ b of (KerB)⊥ is then obtained easily:

B̃ =


B
kt

1
...

kt
q−b

 is an isomorphism Rq → Rq, we can choose vj = B̃−1(ej), 1 ⩽ j ⩽ b.
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We remind that compatibility conditions of order s = k + θ, k ∈ N∗, 0 < θ < 1 are
defined as follows:

(1) If θ < 1/2, then compatibility conditions (1.3) up to order k are satisfied.
(2) If θ > 1/2, then compatibility conditions (1.3) up to order k + 1 are satisfied.
(3) If θ = 1/2, compatibility conditions up to order k are satisfied and

∫
Rd−1

∣∣∣∣∣∣∂k−1
t g(x′, xd) −

k−1∑
j=0

(
k − 1
j

)(
∂j

tB
)

(Ak−1−ju0 +Bk−1−jf |t=0) |(x′, xd)

∣∣∣∣∣∣
2

dxd

xd

< ∞.

5.1. The case 0 < s < 1

We define X0 = L2(Ω) × L2
(
∂Ω × R+

t

)
,

X1 =
{
(u0, g) ∈ H1(Ω) ×H1

(
∂Ω × R+

t

)
: Bu0|∂Ω = g|t=0

}
×H1

From the previous section, the map (u0, g, f) → u solution of (1.1) is continuous

X0 × L2 → CtL
2 and

X1 ×H1
(
Ω × R+

t

)
→ CtH

1 ∩ C1
t L

2.

Let us define for 0 ⩽ θ ⩽ 1

Xθ =
{

(u0, g) ∈
(
Hθ
)2

: the compatibility condition of order θ is satisfied
}
,

(note that compatibility conditions of order less than 3/2 do not involve f).
Both the semi-group estimate (1.9) and the resolvent estimate (1.7) follow from

an interpolation argument if we can prove that

(5.1) Xθ = [X0, X1]θ.

More precisely, since the resolvent estimate implies for s = 0, 1

γ∥u∥2
L2

γ
+ ∥u|∂Ω∥2

L2
γ
≲
∥∥∥(u0, e

−γtg
)∥∥∥2

X0
+

∥f∥2
L2

γ

γ

γ∥u∥2
H1

γ
+ ∥u|∂Ω∥2

H1
γ
≲ C(γ)

∥∥∥(u0, e
−γtg

)∥∥∥2

X1
+

∥f∥2
H1

γ

γ
,

the interpolation identity (5.1) implies

(5.2) γ∥u∥2
Hθ

γ
+ ∥u|∂Ω∥2

Hθ
γ
≲ C ′(γ)

∥∥∥(u0, e
−γtg

)∥∥∥2

Xθ

+
∥f∥2

Hθ
γ

γ
.

(a better estimate would require to use weighted Xθ spaces, a course that we chose
not to follow).
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5.2. Proof of (5.1)

Proof. — Consider the map (x ∈ Ω → u0(x)) → (x ∈ Ω → B̃(x′, xd)u0(x)
:= ũ0(x)). Since B̃ is smooth and invertible for any (x′, xd) ∈ Rd−1 × R+, the
map is an isomorphism (Hs(Ω))q → (Hs(Ω))q, and the compatibility condition of
first order can be rewritten
Bu0|∂Ω = g|t=0 ⇔ BB̃−1B̃u0|∂Ω = g|t=0 ⇔

(
Ib 0

)
ũ0|∂Ω = g|t=0, with ũ0 = B̃u0,

Ib is the identity matrix of size b. Similarly the compatibility condition of order 1/2
is ( Ib 0 )ũ0(x) − g(x′, xd) ∈ H

1/2
00 (Rd−1 × R+)

This transformation “diagonalizes” (5.1) in the following sense : set for 0 ⩽ θ ⩽ 1

Yθ =



{
(u0, g) ∈ Hθ ×Hθ : u0|xd=0 = g|t=0

}
if θ > 1/2,{

(u0, g) ∈ Hθ ×Hθ :
∫
Rd−1×R+

|u0(x′, xd) − g(x′, xd)|2

xd

dx < ∞
}

if θ = 1/2,

Hθ(Ω) ×Hθ(∂Ω × Rt), if θ < 1/2,
where u0 and g are now scalar functions. We are reduced to prove[

L2 × L2, H1 ×H1
]

θ
= Hθ ×Hθ, [Y0, Y1]θ = Yθ.

By definition [L2, H1]θ = Hθ, so the first equality is trivial. In the second case,
surprisingly, we were not able to find results in the literature except in the simplest
case θ < 1/2, which is in [LM68b, Section 14]. □

Lemma 5.1. — For θ < 1/2, [Y0, Y1]θ = Yθ.

Proof. — The following inclusions are clear :H1
0 ×H1

0 ⊂ Y1 ⊂ H1(Ω)×H1(∂Ω×R+).
On the other hand, for θ < 1/2 we have [L2, H1

0 ]θ = Hθ ([LM68a, Chapter 1
Section 11]), and we can conclude

Hθ ×Hθ =
[
L2 × L2, H1

0 ×H1
0

]
θ

⊂ [Y0, Y1]θ ⊂
[
L2 × L2, H1 ×H1

]
θ

= Hθ ×Hθ.

□

Lemma 5.2. — For 0 < θ ⩽ 1, there exists a universal (independent of θ) opera-
tor R

R : Yθ → Hθ+1/2(Ω × R+), ∀ 0 < θ ⩽ 1.

Proof. — This is a result due to Grisvard [Gri67], for completeness we include a
simple proof. Given (u0, g) ∈ (Hθ)2, from Lemma 4.1 there exists an operator Rb :
g → Rb(g) ∈ Hθ+1/2 which is independent of θ. By construction, Rbg|t=0 − u0 ∈ Hθ

0 .
If θ = 1/2, we also notice

Rbg(x′, y, 0) − u0(x′, xd) = Rbg(x′, xd, 0) − g(x′, xd)︸ ︷︷ ︸
H

1/2
00 by interpolation

+ g(x′, xd) − u0(x′, xd)︸ ︷︷ ︸
H

1/2
00 by assumption

.

If there exists an universal lifting R0 : Hθ
0 (Ω) → {u ∈ Hθ+1/2(Ω×R+)| u|∂Ω = 0}, R

can be defined as R(u0, g) = Rbg+R0(u0 −Rbg|t=0) so we focus on the construction
of R0.
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For u0 ∈ Hθ
0 (H1/2

00 for θ = 1/2), we extend it as an odd function of xd, I(u0)
defined on Rd. The map I : Hθ

0 (Rd−1 × R+) → Hθ(Rd) is continuous as it is clearly
the case for θ = 0, 1. Define now

̂RI(I(u0))(ξ, δ) = χ(⟨ξ⟩t)Î(u0)(ξ),
where χ is as in Lemma 4.1. According to the proof of Lemma 4.1, RI ◦ I : Hθ →
Hθ+1/2(Rd×R+) is continuous, moreover by construction RI ◦I(u0) is an odd function
of xd, therefore necessarily RI ◦ I(u0)|xd=0 = 0. Thus by taking the restriction on
Rd−1 × R+

xd
× R+

t , R0 := RI ◦ I solves the problem. □

Proposition 5.3. — For 0 < θ < 1, [Y0, Y1]θ = Yθ.
Proof. — On one hand, the map (u0, g) → u0(x′, xd) − g(x′, xd) is continuous

Yi → H i
0 for i = 0, 1, therefore by interpolation it is continuous [Y0, Y1]θ → Hθ

0 . This
gives the first inclusion
(5.3) [Y0, Y1]θ ⊂ Yθ.

On the other hand, from Lions–Peetre reiteration theorem, for any 0 < s, θ < 1
[[Y0, Y1]s, Y1]θ = [Y0, Y1]θ+s(1−θ).

If we have for some s < 1/2, [Ys, Y1]θ ⊃ Yθ+s(1−θ) for any 0 < θ < 1, then by
reiteration this implies [Y0, Y1]θ = Yθ for θ > s. On the other hand, the case θ ⩽ s is
contained in Lemma 5.1.

For any 0 < r < 1 we define the map
u ∈ Hr+1/2

(
Ω × R+

t

)
→ Tr(u) = (u|t=0, u|xd=0) .

It is easily seen that Tr is continuous H3/2 → Y1 and H1/2+s → Ys for 0 < s < 1/2.
As it is well known that [Hs+1/2, H3/2]θ = H1/2+θ+(1−θ)s, we deduce by interpolation

Tr : H1/2+(1−θ)s+θ =
[
Hs+1/2, H3/2

]
θ

→ [Ys, Y1]θ is continuous.
We observe now that the lifting R from Lemma 5.2 is a right inverse for Tr: for fixed
0 < s < 1/2 and any 0 < θ < 1, we have Tr ◦ R = Id : Yθ+s(1−θ) → Yθ+s(1−θ). Since
R maps Yθ+s(1−θ) to Hs(1−θ)+θ+1/2, this implies

Yθ+s(1−θ) ⊂ [Ys, Y1]θ,
which was the required converse inclusion. □

5.3. The case s > 1

We denote s = k + θ, 0 ⩽ θ < 1. According to the integer case, we already have
u ∈ ∩Ck−jHj. For any tangential multi-index α of order k (that is, αd = 0, |α| = k),
∂αu satisfies

(5.4)


L(∂αu) = ∂αf + [L, ∂α]u,
B∂αu|∂Ω = ∂αg + [B, ∂α]u|∂Ω,
∂αu|t=0 = Lα(u0) + L′

α(f)|t=0.

where Lα, L
′
α are differential operators of respective order α, α − 1. Regularity will

again be obtained by regularization of the data, we distinguish three cases:
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5.3.1. The case 0 < θ < 1/2

With the same argument as in the integer case (note that the condition θ < 1/2
allows to use Lemma 4.1), there exists regularized data (u0,n, gn, fn) ∈ (Hk+1)3,
converging to (u0, g, f) in (Hk)3 that satisfy the compatibility conditions up to order
k+1. The corresponding solution un belongs to ∩k+1

0 Cj
tH

k+1−j so that we may apply
the resolvent estimate (1.7) to ∂αun with s = θ, combined with basic trace estimates
and the commutator estimate ∥[∂α, L]un∥Hθ

γ
≲ ∥un∥Hs

γ
:

(5.5) γ∥∂αun∥2
Hθ

γ
≲ ∥u0,n∥2

Hs + ∥gn∥2
Hs

γ
+

∥fn∥2
Hs

γ
+ ∥un∥2

Hs
γ

γ
.

Due to the boundary being non characteristic, we deduce as for the integer case
(note that the fractional regularity gained here includes conormal regularity) for γ
large enough only depending on s, that we have the resolvent estimate

γ∥un∥2
Hs

γ
≲ ∥u0,n∥2

Hs + ∥gn∥2
Hs

γ
+

∥fn∥2
Hs

γ

γ
.

With the resolvent estimate available, the semi group estimate is now an immediate
consequence of the case 0 < s < 1 applied to (5.4):∥∥∥e−γt∂αun

∥∥∥2

CtHθ
≲ ∥u0,n∥2

Hs(Ω) + ∥fn∥2
Hs

γ([0,T ]×Ω) + ∥[∂α, L]un∥2
Hθ

γ(Ω×[0,T ]) + ∥gn∥2
Hs

γ

≲ ∥u0,n∥2
Hs(Ω) + ∥fn∥Hs

γ([0,T ]×Ω) + ∥gn∥2
Hs

γ
.

Normal regularity is obtained thanks to the boundary being non characteristic as
in (3.6).

Letting n → ∞, we deduce that e−γtu is in Hs(R+ × Ω) ∩ (∩k
j=0C

j(R+, Hs−j(Ω))
and satisfies the semi group estimate and the resolvent estimate.

5.3.2. The case 1/2 < θ < 1

This can be done with exactly the same argument. Actually, the construction of
regularized data (u0,n, gn, fn) ∈ (Hk+1)3 that satisfy compatibility conditions up to
order k + 1 and converging to (u0, g, f) in (Hs)3 is even simpler. Indeed (u0, g, f)
satisfy compatibility conditions up to order k+1, hence any regularization of (u0, g, f)
satisfies

∀ 1 ⩽ j ⩽ k + 1,

∥∥∥∥∥∥∥∥∥∥∥
∂j−1

t gn|t=0 −
k−1∑
l=0

(
j

l

)(
∂l

tB
)
vj−1−l,n|∂Ω︸ ︷︷ ︸

:=εj,n

∥∥∥∥∥∥∥∥∥∥∥
Hs−j+1/2

−→n 0,

and it suffices to modify gn as gn − δn where δn is a function in Hk+1(∂Ω ×R+
t ) that

satisfies for 1 ⩽ j ⩽ k + 1, ∂j−1
t δn|t=0 = εj,n
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5.3.3. The case θ = 1/2

When s = k + 1/2, the compatibility conditions are satisfied in particular up to
order k. From the previous study, we have e−γtu ∈ (∩k

j=0C
j
tH

k+θ−j) ∩Hk+θ for any
θ < 1/2, with the estimate∥∥∥e−γtu

∥∥∥(∩k
j=0Cj

t Hj+θ−j) +
∥∥∥e−γtu

∥∥∥
Hk+θ

⩽ C(θ)∥(u0, g, f)∥(Hs)3 .

Of course this is not enough to conclude, but the estimate can be sharpened: apply
estimate (5.2) to (5.4) for θ < 1 and any tangential multi-index α ∈ Nd, |α| = k,
this reads

γ ∥∂αu∥2
Hθ

γ
≲
∥∥∥(Lαu0 + L′

αf |t=0, e
−γt (∂αg + [B, ∂α]u|∂Ω)

)∥∥∥2

Xθ

+
∥f∥2

Hk+θ
γ

+ ∥u∥2
Hk+θ

γ

γ
.

Recall that the compatibility conditions at order j are

∀ 1 ⩽ j ⩽ k, ∂j−1
t g|t=0 −

j−1∑
l=0

(
j

l

)(
∂l

tB
)
vj−1−l|∂Ω = 0,

and at order k + 1/2

∂k
t g(x′, t) −

(
k∑

l=0

(
k

l

)(
∂l

tB
)
vk−1−l(x′, t)

)
∈ H

1/2
00

(
Rd−1 × (R+)

)
.

As a consequence, for any j ⩽ k + 1 and any β ∈ Nd−1, |β| = k + 1 − j,

(5.6) ∂β
x′∂

j−1
t g(x′, t) − ∂β

x′

j−1∑
l=0

(
j − 1
l

)(
∂l

tB
)
vj−1−l(x′, t) ∈ H

1/2
00

(
Rd−1 × R+

)
.

Furthermore, e−γtu ∈ Hk(Ω × R+
t ), hence for any multi-index of order k − 1

(5.7)
∥∥∥e−γt∂αu|xd=0 − e−γt∂αu|t=0

∥∥∥
H

1/2
00 (Rd−1×R+) ≲

∥∥∥e−γtu
∥∥∥

Hk(Rd−1×(R+)2) .

Now to make (5.4) more explicit, let us write ∂α = ∂j
t ∂

β
x′ , β ∈ Nd−1, |β| = k − j.

Then ∂αu|t=0 = ∂β
x′vj ∈ H1/2(Rd−1 × R+), the compatibility condition of order 1/2

for (5.4) is thus

e−γt (∂αg + [B, ∂α]u|∂Ω) −B∂β
x′vj ∈ H

1/2
00

(
Rd−1 × R+

)
.

With basic computations, we now check that it is implied by (5.6),(5.7):

e−γt (∂αg + [B, ∂α]u|∂Ω) −B∂β
x′vj
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= e−γt

∂αg − ∂β
x′

j∑
l=0

(
j

l

)(
∂l

tB
)
∂j−l

t u|∂Ω

+ e−γtB∂αu|∂Ω −B∂β
x′vj

= e−γt∂αg − ∂β
x′

j∑
1

(
j

l

)(
∂l

tB
)
vj−l −B∂β

x′vj − ∂β
x′

j∑
l=1

(
j

l

)(
∂l

tB
)(
e−γt∂j−l

t u|∂Ω − vj−l

)
− ∂β

x′

(
Be−γt∂j

tu|∂Ω
)

+ e−γtB∂αu|∂Ω

= e−γt

∂αg − ∂β
x′

j∑
l=0

(
j

l

)(
∂l

tB
)
vj−l

− ∂β
x′

j∑
l=1

(
j

l

)(
∂l

tB
) (
e−γt∂j−l

t u|∂Ω − vj−l

)
+
[
B, ∂β

x′

]
e−γt∂j

tu|∂Ω −
[
B, ∂β

x′

]
vj.

For j ⩽ k, due to the compatibility condition (5.6), in the last equality, the first term
in the first line is in H

1/2
00 . The H1/2

00 norm of the second term is easily controlled by
writing

e−γt∂j−l
t u|∂Ω − vj−l = e−γt

(
∂j−l

t u|∂Ω − vj−l

)
+
(
1 − e−γt

)
vj−l,

the first term can be bounded thanks to (5.7) while for the second one we simply
use (1 − e−γt)/t ≲ 1. The same argument is used for the second line. We deduce that
for θ < 1/2, α tangential, |α| ⩽ k

γ ∥∂αu∥2
Hθ

γ(Ω×R+
t )

≲ C(γ)

∥(u0, g, f)∥(Hk+1/2)3 +
∥∥∥∥∥g −

k∑
0

(
k

l

)(
∂l

tB
)
vk−1−l

∥∥∥∥∥
H

1/2
00 (Rd−1×R+)


+

∥u∥2
Hk+θ

γ

γ
.

Using that the boundary is non characteristic, we recover

γ∥u∥2
Hk+θ

γ (Ω×R+
t ) ≲ ∥(u0, g, f)∥(Hk+1/2)3 +

∥∥∥∥∥g −
k∑
0

(
k

l

)
(∂l

tB)vk−1−l

∥∥∥∥∥
H

1/2
00 (Rd−1×R+)

.

This estimate is uniform in θ < 1/2, we deduce that the same estimate holds for
θ = 1/2. Finally we deduce that the semi group estimate is true with the same
argument as for the end of the case 0 < θ < 1/2 : consider the problem (5.4), since
the commutator [L, ∂α]u belongs to H1/2, the semi group estimate of the case s = 1/2
can be applied to bound ∥∂αu∥CtH1/2 , α any tangential multi-index of order k, the
normal regularity follows from the usual argument.

This ends the proof of Theorem 1.4.
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