
Annales Henri Lebesgue
6 (2023) 1479-1522

JÉRÉMI DARDÉ

ARMAND KOENIG

JULIEN ROYER

NULL-CONTROLLABILITY
PROPERTIES OF THE
GENERALIZED TWO-DIMENSIONAL
BAOUENDI–GRUSHIN EQUATION
WITH NON-RECTANGULAR
CONTROL SETS
PROPRIÉTÉS DE CONTRÔLABILITÉ À
ZÉRO DE L’ÉQUATION DE
BAOUENDI–GRUSHIN GÉNÉRALISÉE
BIDIMENSIONNELLE AVEC DOMAINES DE
CONTRÔLE NON RECTANGULAIRES

Keywords: null-controllability, observability, degenerate parabolic equations, resolvant estimates.
2020 Mathematics Subject Classification: 35K65, 93B05, 47B28, 47A10.
DOI: https://doi.org/10.5802/ahl.193
(*) This work has been partially supported by the ANR LabEx CIMI (under grant ANR-11-LABX-
0040) within the French State Programme “Investissements d’Avenir”.

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.193


1480 J. DARDÉ, A. KOENIG & J. ROYER

Abstract. — We consider the null-controllability problem for the generalized Baouendi–
Grushin equation (∂t − ∂2

x − q(x)2∂2
y)f = 1ωu on a rectangular domain. Sharp controllability

results already exist when the control domain ω is a vertical strip, or when q(x) = x. In this
article, we provide upper and lower bounds for the minimal time of null-controllability for
general q and non-rectangular control region ω. In some geometries for ω, the upper bound
and the lower bound are equal, in which case, we know the exact value of the minimal time of
null-controllability.

Our proof relies on several tools: known results when ω is a vertical strip and cutoff argu-
ments for the upper bound of the minimal time of null-controllability; spectral analysis of the
Schrödinger operator −∂2

x + ν2q(x)2 when Re(ν) > 0, pseudo-differential-type operators on
polynomials and Runge’s theorem for the lower bound.

Résumé. — Nous considérons le problème de la contrôlabilité à zéro de l’équation de
Baouendi–Grushin généralisée (∂t − ∂2

x − q(x)2∂2
y)f = 1ωu sur un domaine rectangulaire. On

connaît déjà des résultats précis de contrôlabilité lorsque le domaine de contrôle ω est une
bande verticale, ou lorsque q(x) = x. Dans cet article, nous démontrons des bornes supérieures
et inférieures du temps minimal de contrôlabilité à zéro, pour une classe générale de potentiels q
et de domaines de contrôle ω possiblement non rectangulaires. Pour certaines zones de contrôle,
la borne supérieure et la borne inférieure coïncident, auquel cas nous connaissons la valeur
exacte du temps minimal de contrôlabilité à zéro.

Notre démonstration s’appuie sur plusieurs outils. Pour la borne supérieure du temps minimal
de contrôlabilité, nous utilisons des résultats connus lorsque ω est une bande verticale et des
arguments de troncature. Pour la borne inférieure, nous utilisons une analyse spectrale de
l’opérateur de Schrödinger −∂2

x + ν2q(x)2 lorsque Re(ν) > 0, des opérateurs de type pseudo-
différentiel sur les polynômes et le théorème de Runge.

1. Introduction and statements of the main results

1.1. The Baouendi–Grushin equation

In this article, we study some controllability properties of the two-dimensional
generalized Baouendi–Grushin equation.

Let L−, L+ be positive, and I = (−L−, L+). Let q ∈ C0(I) such that q(0) = 0 and
q(x) ̸= 0 for all x ∈ I \ {0}. We denote by T the one-dimensional torus R/2πZ. For
T > 0, f0 ∈ L2(I × T) and F ∈ L2((0, T );L2(I × T)) we consider the generalized
Baouendi–Grushin equation

(1.1)


(
∂t − ∂2

x − q(x)2∂2
y

)
f(t, x, y) = F (t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T

f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f(0, x, y) = f0, x ∈ I, y ∈ T.

Note that, because q(0) = 0, the equation degenerates on the vertical axis {0}× T.
Nevertheless, the equation is well posed. Precisely, the Friedrichs extension (see
[Hel13, Section 4.3]) of the operator

f ∈ C∞
c (I × T) 7→ −∂2

xf − q(x)2∂2
yf,

generates an analytic semigroup, which allows to define a solution of the generalized
Baouendi–Grushin equation (1.1) in the sense of semigroups [Bre11]. In our case,
this solution is smooth in the following sense:
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Null-controllability of the Baouendi–Grushin equation 1481

Proposition 1.1. — For any source term F ∈ L2((0, T );L2(I × T)) and any
initial condition f0 ∈ L2(I × T), there exists a unique f ∈ C0([0, T ];L2(I × T)) ∩
L2((0, T );V ) solution of the generalized Baouendi–Grushin equation (1.1), with

V =
{
f ∈ L2(I × T), ∂xf ∈ L2(I × T), q ∂yf ∈ L2(I × T)

}
.

This result is proved in [BCG14] in the case q(x) = |x|γ with γ > 0. The proof is
easily generalized to our case of interest.

1.2. Control problem for the Baouendi–Grushin equation

Our study focuses on internal null-controllability of the Baouendi–Grushin equa-
tion. More precisely, let ω ⊂ I×T be a non-empty open set and u ∈ L2((0, T ); L2(ω)).
The controlled Baouendi–Grushin equation reads

(1.2)


(∂t − ∂2

x − q(x)2∂2
y)f(t, x, y) = 1ωu(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T,

f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f(0, x, y) = f0, x ∈ I, y ∈ T,

where f is the state of the system, and 1ωu is the control supported in ω.
Definition 1.2 (Null-controllability). — Let T > 0. The Baouendi–Grushin

equation (1.2) is said to be null-controllable on ω in time T if, for any initial condition
f0 ∈ L2(I×T), there exists u ∈ L2((0, T );L2(ω)) such that the solution f of eq. (1.2)
satisfies f(T, ·, ·) = 0 in I × T.

It is known that, contrary to usual non-degenerate parabolic equations like the heat
equation, due to the degeneracy of q on {0} × T, the null-controllability properties
of (1.2) strongly depend on the control set ω and the time horizon T . More precisely,
for certain control sets ω, there is no time T > 0 such that eq. (1.2) is null-controllable,
whereas for other control sets ω a minimal time of null-controllability appears. We
refer to the bibliographical comments, Section 1.4 below, for a detailed description
of the known results on the subject.

In the present paper, we aim to give precise null-controllability results for equa-
tion (1.2), for a large class of control sets ω and a large class of functions q.

1.3. Main results

We are interested in the case where the equation is degenerate on {x = 0}. Thus,
we assume that q(x) = 0 only when x = 0, and we assume without loss of generality
that q′(0) > 0.

Before presenting the main results of our study, we introduce the so-called Agmon
distance of a point x ∈ I to the origin, defined by:(1)

(1.3) dAgm : x ∈ I 7→
∫ x

0
q(s) ds.

This quantity appears naturally in the computation of the minimal time of null-
controllability for the generalized Baouendi–Grushin equation.
(1) It corresponds to the usual definition of the Agmon distance given for example in [DS99, Eq. (6.3)],
with V = q2 and E = 0.
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1482 J. DARDÉ, A. KOENIG & J. ROYER

1.3.1. Lack of null-controllability in small time for a class of control sets ω

Our main result is a negative result of null-controllability for small times. We show
that if the control set ω stays at positive distance from a horizontal segment of the
form (a, b) × {y0}, with −L− ⩽ a < 0 < b ⩽ L+ and y0 ∈ T, then equation (1.2) is
not null-controllable on ω for time T smaller than a precisely given critical time.

To properly state the result, we need to introduce a modified version of the Agmon
distance. We set δ(x) = dAgm(x) for x ∈ I, and δ(−L−) = δ(L+) = +∞.

Theorem 1.3. — Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and
q(x) ̸= 0 whenever x ̸= 0. Let ω be an open subset of I ×T. Assume that there exist
a ∈ [−L−, 0), b ∈ (0, L+] and y0 ∈ T such that

distance
(
(a, b) × {y0}, ω

)
> 0.

(See Figure 1.1.) Then, the generalized Baouendi–Grushin equation (1.2) is not
null-controllable on ω in time T such that

T <
1

q′(0) min (δ(a), δ(b)) .

ω

y0

a
x

y

Figure 1.1. In green, an example of a domain ω with, in thick black, an example
of a horizontal segment that stays at positive distance of ω. In this example,
Theorem 1.3 implies that the generalised Baouendi–Grushin equation is not null-
controllable in time T < dAgm(a).

This theorem is a generalization of [DK20, Theorem 3.3], where the result is proved
for I symmetric with respect to the origin and, more restrictively, for q(x) = x. A
key step in our proof of Theorem 1.3 is the study of spectral properties of the family
of operators defined on L2(I) by

(1.4) Pν : − ∂2
x + ν2q(x)2, Dom(Pν) = H2(I) ∩H1

0 (I).

Because of technical reasons, we have to consider Pν for every Re(ν) > 0, which
makes Pν non self-adjoint.

In the previous article [DK20], the corresponding results were obtained using
explicit solutions of particular ordinary differential equations. These explicit formulae
are not available in our general setting.
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In our case, we obtain a localization of an eigenvalue of Pν , as well as precise
Agmon type estimates for an associated eigenfunction,(2) uniformly in ν = |ν|eiθ

with |ν| large enough and 0 ⩽ |θ| ⩽ θ0 for some θ0 ∈ [0, π/2). To that end, we
compare Pν with the non-selfadjoint harmonic oscillator Hq′(0)ν := −∂2

x + (q′(0)ν)2x2.
Theorem 1.3 is proved in Section 3, with the spectral analysis done in Section 4.

Note that [HSS05] contains closely related spectral asymptotics. However, we
cannot apply them directly since our domain has a boundary and we need uniform
estimates with respect to the parameter ν.

1.3.2. Precise critical time of null-controllability for a class of control sets ω

With Theorem 1.3 we can deduce in some settings the critical time for the null-
controllability of (1.2).

We first mention a natural adaptation of [DK20, Theorem 3.1]. It was actually
claimed in [DK20, Remark 3.2], but the statement was imprecise if q is not odd. We
take the opportunity to correct the statement:

Theorem 1.4. — Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0.

Let ω be an open subset of I × T. Assume that there exists a closed path γ =
(γx, γy) ∈ C0(T; ω) such that {−L−} × T and {L+} × T are included in different
connected components of (I × T) \ γ(T) (see Figure 1.2).

The generalized Baouendi–Grushin equation (1.2) is null-controllable on ω in time
T such that

T >
1

q′(0) max
T

dAgm(γx).

minT(γx) maxT(γx)
x

y

ω
γ

Figure 1.2. In green, an example of a domain ω, with, in blue, a corresponding
path γ that satisfies the hypotheses of Theorem 1.4.

Remark 1.5. — In this theorem, we can replace the hypothesis “{−L−} × T and
{L+} ×T are included in different connected components of (I ×T) \ γ(T)” by “γ is
not homotopic to a constant path”. These two conditions are essentially equivalent.
We discuss this in Propositions B.2, B.3 and Remark B.4.

(2) For ν ∈ R∗
+, we localize the smallest eigenvalue of Pν , and for ν complex, we localize its analytic

continuation.
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Theorem 1.4 is proved in Section 2. Combining Theorems 1.3 and 1.4, we obtain
the following result which gives the precise critical time of null-controllability of the
generalized Baouendi–Grushin for a large class of control sets ω and functions q:

Theorem 1.6. — Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0.

Let γ1, γ2 ∈ C0(T; I) such that for every y ∈ T, γ1(y) < γ2(y). Let ω = {(x, y) ∈
I × T : γ1(y) < x < γ2(y)} (see Figure 1.3) and(3)

T∗ := 1
q′(0) max

(
dAgm

(
−max

T

(
γ−

2

))
, dAgm

(
max

T

(
γ+

1

)))
.

Then the generalized Baouendi–Grushin equation (1.2) is null-controllable on ω in
any time T > T∗, but it is not null-controllable on ω in time T < T∗.

This theorem is proved in Section 5.

ω

γ1
γ2

− maxT(γ−
2 ) maxT(γ+

1 )
x

y

Figure 1.3. In green, an example of a domain ω that satisfies the hypotheses of
Theorem 1.6.

1.3.3. Comments

Before proceeding further, we make some additional comments on our results.
• The assumptions regarding the function q in Theorem 1.3 are slightly more

general than in Theorem 1.4. They seem also more natural in the context
of our study. Therefore, we conjecture that Theorem 1.4 holds for functions
q ∈ C3(I) satisfying

q(0) = 0, q′(0) > 0, q(x) ̸= 0 for all x ∈ I.

But up to our knowledge, this is still an open question.
• There are still numerous geometrical configurations not included in Theo-

rem 1.6. Nevertheless, in many situations, Theorems 1.4 and 1.3 give informa-
tion about null-controllability properties. As an example, in the geometrical
configuration described in Figure 1.4, combining Theorems 1.4 and 1.3, we
obtain the existence of a critical time

T∗ ∈
(

dAgm(−a)
q′(0) ,

dAgm(−b)
q′(0)

)

(3)When f is a real valued function, we denote f+ = max(f, 0) and f− = max(−f, 0) its positive
and negative part respectively.
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such that the Baouendi–Grushin equation is null-controllable on ω in time
T > T∗, and is not null-controllable on ω in time T < T∗.

ω

−a−b

Figure 1.4. In this configuration, we obtain lower and upper bounds of the critical
time of null-controllability

In the two geometrical configurations presented in Figure 1.5, Theorem 1.3
implies that the Baouendi–Grushin equation is not null-controllable on ω in
time T < dAgm(a)/q′(0). Note that in these two configurations, the question
of the null-controllability of (1.2) in ω for some time T large enough is still
open.

ω

ω

−a
ω

ω

−a

Figure 1.5. In these configurations, we obtain a lower bound on the critical time
of null-controllability.

• These results are stated for the generalized Baouendi–Grushin equation posed
on I×T. They can be adapted to the equation posed on I×(0, π) with Dirichlet
boundary conditions, with very similar proofs. We refer to Appendix A for
details on the statements and the corresponding proofs.

1.4. Bibliographical comments

1.4.1. On the Baouendi–Grushin equation

The study of controllability properties of system (1.2) began with the pioneering
work [BCG14], where the authors study the null-controllability of the equation

(1.5)
{ (

∂t − ∂2
x − |x|2γ∂2

y

)
f = 1ωu, t ∈ (0, T ), x ∈ (−1, 1), y ∈ T,

f(t, x, y) = 0, t ∈ (0, T ), x = ±1, y ∈ T.
They prove that in the case γ ∈ (0, 1) (weak degeneracy), the Baouendi–Grushin
equation (1.2) is null-controllable for any control set ω and any time T > 0, whereas
in the case γ > 1 (strong degeneracy), it is not null-controllable for any control set ω
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1486 J. DARDÉ, A. KOENIG & J. ROYER

and any time T > 0, except if ω contains {0} ×T in which case it is null-controllable
in any positive time T .

More surprisingly, in the case γ = 1, which corresponds to the Baouendi–Grushin
equation (1.2) with q(x) = x, and for ω = (a, b) × T, with 0 < a < b, there
exists a critical time T∗ ⩾ a2

2 such that the Baouendi–Grushin equation (1.2) is
null-controllable on ω in time T , for every T > T∗, and is not null controllable on
ω in time T , for every T < T∗. It is also proved that if γ = 1 and ω contains the
vertical line {0} × T, equation (1.5) is null controllable in any time T > 0. Such a
minimal time of null-controllability would not be surprising for equations with finite
speed of propagation, such as the wave equation [BLR92], but the Baouendi–Grushin
equation has a infinite speed of propagation.

Many works followed, trying to characterize precisely the critical time T∗, and to
generalize the result to different geometrical settings and different functions q. The
first exact characterization of T∗ is given in [BMM15] in the case q(x) = x and with
two symmetric vertical strips as control set, that is ω = (−1,−a) × (a, 1), a ∈ (0, 1).
Using the transmutation method and sideways energy estimates, the authors prove
that eq. (1.2) is null-controllable in ω in any time T > a2

2 , and is not null-controllable
in ω in any time T < a2

2 .
When ω is a vertical strip of the form (a, b) × T, with a > 0, as in [BCG14], the

precise value of the critical time T∗ was obtained independently in the works [ABM21,
BDE20, LL23]. More precisely, in [ABM21], using new estimates for biorthogonal
sequences to real exponentials and the moments method, the authors prove that in
the case q(x) = x, the critical time is a2

2 . In [BDE20], with a function q satisfying
the assumptions of Theorem 1.6, the authors use a Carleman strategy to obtain that
eq. (1.2) is null controllable on ω in any time T > T∗, and not null-controllable on
ω in any time T < T∗, with

T∗ = dAgm(a)
q′(0) .

Very recently, this result was obtained in [LL23] using the moments method, with a
stronger smoothness assumption on q (see [LL23, Remark 1.12 and Proposition 1.13]).

All the strategies developed in [ABM21, BCG14, BDE20, BMM15], although very
different, rely on a Fourier expansion of system (1.2) with respect to the y-variable
and the study of the obtained family of one dimensional parabolic equations in the
variables t, x. As a consequence, the control set ω has to contain a vertical strip,
which seems to be an important restriction of the proposed methods.

Nevertheless, in [DK20], the authors generalize the positive null-controllability
results obtained in [BDE20] to a large class of control sets: in the setting of The-
orem 1.6 and with the additional assumptions that I is symmetric and q is odd,
system (1.2) is null controllable in any time T > T∗, with

T∗ = 1
q′(0) max

(
dAgm(− max(γ−

2 )), dAgm(max(γ+
1 ))

)
.

In the specific case q(x) = x, they also prove that if there exist a, b ∈ I, a < 0 < b, and
y0 ∈ T such that distance((a, b) × {y0} ∩ω) > 0, then (1.2) is not null-controllable in
time T < min(a2, b2)/2, whereas if there is y0 ∈ T such that distance(I×{y0}∩ω) > 0,
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then (1.2) is not null controllable on ω in any positive time T . Theorem 1.6 is the
generalization of this result to a wider class of functions q.

To end this overview on controllability issues for the parabolic Baouendi–Grushin
equation, we point out that partial controllability results are known in some mul-
tidimensional configurations [BDE20] while precise results are known for cascade
systems of two-dimensional Baouendi–Grushin equations with one control, in the
case q(x) = x [ABM21].

1.4.2. Some related problems

Let us briefly mention the literature on related problems, in several directions: other
degenerate parabolic equations, minimal time of null controllability for parabolic
systems, and other type of degenerate equations.

Since the pioneering works [FR71, Yeg63] on the null-controllability of the one-
dimensional heat equation, the null-controllability of non-degenerate parabolic equa-
tions has been extensively studied. The null-controllability of degenerate parabolic
equations is a more recent subject of study. The case of a degeneracy at the boundary
of the domain is now well-understood [CMV16] (see also the references therein).

When the degeneracy occurs in the domain, we lack for the moment a general
theory, and equations are studied case by case. The two-dimensional Baouendi–
Grushin equations is arguably the simplest and best understood equation of that type.
Very similar results, including a minimal time of null-controllability for quadratic
degeneracy, have been observed for the heat equation on the Heisenberg group [BC17,
BDE20], and the Kolmogorov equation [Bea14, BHHR15, BZ09, DR21, Koe20].

The related problem of approximate controllability for degenerate parabolic equa-
tions has been studied in a somewhat general framework [LL22].

A minimal time of null-controllability might also appear for the heat equation
with punctual control [Dol73] and for systems of parabolic equations, degenerate or
not [AKBGBT16, BBM20].

Finally, let us mention than the subelliptic wave equation is not controllable [Let23],
and that the Grushin–Schrödinger equation has a minimal time of controllabil-
ity [BS22, FKL21, LS23].
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2. Null-controllability in large time

In this section, we prove Theorem 1.4. The idea of the proof is to use known
controllability results for equation (1.2) when the control set is a vertical strip com-
bined with a cutoff argument. More precisely, we recall the following result [BDE20,
Theorem 1.4].(4)

Proposition 2.1. — Assume that q satisfies the assumptions of Theorem 1.4.
Let ω = (a, b) × T, with −L− ⩽ a < b ⩽ L+. Then

• if 0 < a, the Baouendi–Grushin equation is null-controllable on ω in time
T > dAgm(a)/q′(0),

• if b < 0, the Baouendi–Grushin equation is null-controllable on ω in time
T > dAgm(b)/q′(0),

• if a < 0 < b, the Baouendi–Grushin equation is null-controllable on ω in time
T > 0.

Proof of Theorem 1.4. — We set ω− = (−L−,minT (γx))×T and ω+ = (maxT(γx),
L+) × T (see Figure 2.1).

minT(γx) maxT(γx)
x

y

ω
γ

ω− ω+

Figure 2.1. Definition of ω− (red) and ω+ (blue).

Proposition 2.1 implies that the Baouendi–Grushin equation is null-controllable
either on ω− or on ω+ in any time T such that

T >
1

q′(0) max
(

dAgm

(
min
T

(γx)
)
, dAgm

(
max

T
(γx)

))
.

That is, for any initial condition f0 ∈ L2(I ×T), there exist u− ∈ L2((0, T ); L2(ω−))
and u+ ∈ L2((0, T ); L2(ω+)) such that f− and f+ solutions of

(
∂t − ∂2

x − q(x)2∂2
y

)
f±(t, x, y) = 1ω±u±(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T,

f±(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f±(0, x, y) = f0(x, y), x ∈ I, y ∈ T,

satisfy f±(T, ·, ·) = 0 in I × T.
By definition of γ, ω+ and ω− are included in two distinct connected components

of (I × T) \ γ(T). As a consequence, we can construct χ ∈ C∞(I × T) such that

(4)The reference [BDE20] states the result with a control on the boundary. But cutoff arguments
allow to construct controls on vertical strips from boundary controls, as in [DK20, Appendix A].
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χ ≡ 1 in ω− \ ω, χ ≡ 0 in ω+ \ ω and supp(∇χ) ⊂ ω (see Proposition B.1). Define
f = (1 − χ)f− + χf+. It is easily verified that f satisfies



(
∂t − ∂2

x − q(x)2∂2
y

)
f(t, x, y) = 1ωu(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T,

f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f(0, x, y) = f0(x, y), x ∈ I, y ∈ T,
f(T, x, y) = 0, x ∈ I, y ∈ T,

with a source term u ∈ L2((0, T ); L2(ω)). □

3. Lack of null-controllability

In this section, we prove the following case of Theorem 1.3.

Theorem 3.1. — Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and
q(x) ̸= 0 whenever x ̸= 0. Let ω be an open subset of I ×T. Assume that there exist
a ∈ (−L−, 0) and y0 ∈ T such that

distance
(
(a, L+) × {y0}, ω

)
> 0.

Then, the generalized Baouendi–Grushin equation (1.2) is not null-controllable on ω
in time T < dAgm(a)/q′(0).

Remark 3.2. — By changing x in −x, I in −I and q in −q, this theorem im-
plies that if b ∈ (0, L+) and if distance((−L−, b) × {y0}, ω) > 0, then the gen-
eralized Baouendi–Grushin equation (1.2) is not null-controllable on ω in time
T < dAgm(b)/q′(0).

To completely prove Theorem 1.3, there are two more cases:
• distance((a, b) × {y0}, ω) > 0 with −L− < a < 0 < b < L+, lack of null-

controllability in time T < min(dAgm(a), dAgm(b))/q′(0),
• distance((−L−, L+) × {y0}, ω) > 0, lack of null-controllability in any time
T > 0.

The proofs of these cases are minor modifications of the one of Theorem 3.1. We
mention in footnotes the most important modifications and leave the details to the
reader.

Under the hypotheses of this theorem, there exists a closed interval W0 that is a
neighborhood of y0 and such that ω ∩ ([a, L+) ×W0) = ∅ (see Figure 3.1). To prove
Theorem 3.1, we assume without loss of generality that ω is the complement of the
rectangle [a, L+) ×W0:

(3.1) ω = (I × T) \
(
[a, L+) ×W0

)
.
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ω

y0

a
x

y

Figure 3.1. In green, the domain ω. If a horizontal segment stays at positive
distance from ω, it can be thickened into a rectangle that is disjoint from ω.

3.1. Observability inequality

Using standard duality arguments [Cor07, Theorem 2.44], the null-controllability
of the generalized Baouendi–Grushin equation (1.2) is equivalent to the following
observability inequality: there exists C > 0 such that for every g0 ∈ L2(I × T), the
solution g of

(3.2)


(
∂t − ∂2

x − q(x)2∂2
y

)
g(t, x, y) = 0, t ∈ (0, T ), x ∈ I, y ∈ T,

g(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
g(0, x, y) = g0(x, y) (x, y) ∈ I × T,

satisfies
(3.3) ∥g(T, ·, ·)∥2

L2(I×T) ⩽ C∥g∥2
L2((0,T )×ω).

To prove Theorem 3.1, we proceed in two steps: we prove that the observability
inequality (3.3) implies an inequality on polynomials, and then we disprove this new
inequality.(5)

3.2. Model case

We start with a model equation, that we study to showcase the main ideas of
the proof of Theorem 3.1 without some of the more technical aspects. Consider the
Baouendi–Grushin equation on R × T:

(3.4)
(
∂t − ∂2

x − x2∂2
y

)
g(t, x, y) = 0.

Let ω ⊂ R × T be open. We say that the Baouendi–Grushin equation (3.4) is
observable on ω in time T > 0 if there exists C > 0 such that for all g solution
of (3.4), the following observability inequality holds:

(3.5) ∥g(T, ·, ·)∥2
L2(R×T) ⩽ C∥g∥2

L2((0,T )×ω).

We prove the following theorem.

(5)Actually, we could reformulate this proof to directly construct a counterexample to the observ-
ability inequality (3.3).
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Theorem 3.3. — Let a > 0, W0 ⊂ T a closed interval with non-empty interior
and
(3.6) ω = (R × T) \ ([−a, a] ×W0).
Let T > 0 such that

T <
a2

2 .

The Baouendi–Grushin equation (3.4) is not observable on ω in time T .

Before going into the proof, let us examine some solutions of the Baouendi–Grushin
equation that are concentrated around x = 0. Taking the nth Fourier coefficient in y
of g, which we will denote by ĝ(t, x, n), we get

(3.7)
(
∂t − ∂2

x + n2x2
)
ĝ(t, x, n) = 0.

Thus, the Baouendi–Grushin equation is transformed into a family of parabolic equa-
tions (∂t +Hn)gn = 0, where Hn is the harmonic oscillator −∂2

x +n2x2. The spectral
properties of the harmonic oscillator are well-known (see, e.g., [Hel13, § 1.3] or Ap-
pendix C), and in particular the first eigenvalue is |n| with associated eigenfunction
φn(x) = (|n|/π)1/4e−|n|x2/2. Thus, if (an)n > 0 is a complex-valued sequence with only
a finite number of nonzero terms, the function g defined by

(3.8) g(t, x, y) :=
∑
n > 0

aneiny−nx2/2−nt

is a solution of the Baouendi–Grushin equation (3.4). We will look for a counterex-
ample of the observability inequality (3.5) in this class of functions.

This solution can be written as g(t, x, y) = gpol(eiy−t−x2/2) with

(3.9) gpol(z) :=
∑
n > 0

anz
n.

We will use the fact that g is a polynomial in z = eiy−t−x2/2 to rewrite the observability
inequality we want to disprove as an inequality on polynomials. More precisely, we
have the following estimate.

U
W0

e−a2/2

Figure 3.2. The domain U .
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Lemma 3.4. — Assume that the observability inequality for the Baouendi–
Grushin equation (3.5) holds. Let U ⊂ C be defined by (see Figure 3.2)

U = D
(
0, e−a2/2

)
∪ {z ∈ C : |z| < 1, arg(z) /∈ W0} .

Then, there exists C > 0 such that for every polynomial p ∈ C[X],

∥p∥L2(D(0,e−T )) ⩽ C∥p∥L∞(U).

Proof. —

Step 1: Observability inequality. Let p(z) = ∑
n⩾ 0 anz

n a polynomial and set gpol(z) =
zp(z) = ∑

n > 0 an−1z
n. The discussion above shows that g defined by

g(t, x, y) = gpol
(
eiy−t−x2/2

)
is a solution of the Baouendi–Grushin equation (3.4). The observability inequality
on this class of functions reads

(3.10)
∫
R×T

|g(T, x, y)|2 dx dy ⩽ C
∫

[0,T ]×ω

∣∣∣gpol
(
eiy−t−x2/2

)∣∣∣2 dt dx dy.

Step 2: Left-hand side of the observability inequality (3.10). Since the functions
ψn : (x, y) 7→ einy−nx2/2 are orthogonal in L2(R × T), the left-hand side can be
rewritten as∫

R×T
|g(T, x, y)|2 dx dy =

∫
R×T

∣∣∣∣∣∑
n > 0

an−1e−nTψn(x, y)
∣∣∣∣∣
2

dx dy

=
∑
n > 0

|an−1|2e−2nT ∥ψn∥2
L2(R×T)

=
∑
n > 0

2π3/2
√
n

|an−1|2e−2nT .

Elementary computations in polar coordinates prove that the functions z 7→ zn are
orthogonal in L2(D(0, R),m), where m is the Lebesgue measure on C ≃ R2, and
that for R > 0

∥zn∥2
L2(D(0,R),m) = πR2n+2

n+ 1 .

Thus,

∥p∥2
L2(D(0,e−T )) =

∑
n⩾ 0

π

n+ 1 |an|2e−2(n+1)T

⩽
∑
n > 0

π√
n

|an−1|2e−2nT

= 1
2
√
π

∫
R×T

|g(T, x, y)|2 dx dy.

(3.11)
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Step 3: Right-hand side of the observability inequality (3.10). We write the right-
hand side of the observability inequality by making the change of variables (x, z) =
(x, e−t+iy−x2/2). We have dx dm(z) = |z|2 dt dx dy. Thus, if we denote by Ω ⊂ R × C
the image of (0, T ) × ω by this change of variables, we have∫

(0,T )×ω

∣∣∣gpol
(
e−t+iy−x2/2

)∣∣∣2 dt dx dy =
∫

Ω
|gpol(z)|2 |z|−2 dx dm(z)

=
∫

Ω
|p(z)|2 dx dm(z).

(3.12)

By definition, Ω = ⋃
x ∈R({x} × Dx), where

Dx =
{
e−t+iy−x2/2, t ∈ (0, T ), (x, y) ∈ ω

}
.

We claim that for every 0 < t < T and x ∈ R, Dx ⊂ U (this is the reason we
defined U this way). Indeed, if −a < x < a, and (x, y) ∈ ω, then, by definition of
ω as the complement of [−a, a] × W0 (eq. (3.6)), we necessarily have y /∈ W0. It
follows that e−t+iy−x2/2 ∈ U . In the case x /∈ [−a, a], we have x2/2 > a2/2. Then,
|e−t+iy−x2/2| < e−a2/2. It follows again that e−t+iy−x2/2 ∈ U . Thus, using Hölder
inequality in eq. (3.12),∫

(0,T )×ω

∣∣∣gpol
(
e−t+iy−x2/2

)∣∣∣2 dt dx dy

=
∫

x ∈R

∫
Dx

|p(z)|2 dm(z) dx ⩽
∫

x ∈R
m(Dx)∥p∥2

L∞(U) dx.

Since Dx ⊂ D(0, e−x2/2), m(Dx) ⩽ πe−x2 . Hence

(3.13)
∫

(0,T )×ω

∣∣∣gpol
(
e−t+iy−x2/2

)∣∣∣2 dt dx dy ⩽ π3/2∥p∥2
L∞(U).

Now, plugging the lower-bound of the left-hand side (3.11) and the upper bound
of the right-hand side (3.13) into the observability inequality (3.10), we obtain a
constant C > 0 such that

∥p∥2
L2(D(0,e−T )) ⩽ C∥p∥2

L∞(U). □

Proof of Theorem 3.3. — To disprove the inequality, we only have to disprove
the inequality on polynomials given by the previous Lemma 3.4. If T < a2/2, the
disk D(0, e−T ) is not included in U (see Figure 3.3). For instance, if y1 ∈ W̊0 and
ε > 0 is small enough, z0 = eiy1−T −ε is not in U . In fact, the half-line z0[1,+∞)
stays at positive distance from U (see Figure 3.3). Then, according to Runge’s
theorem [Rud86, Theorem 13.9], there exists a sequence of polynomials (pk) that
converges uniformly on every compact of C \ z0[1,+∞) to z 7→ (z − z0)−1.

Since U is a compact subset of C \ z0[1,+∞), the sequence pk is uniformly
bounded on U , i.e., supk ∥pk∥L∞(U) < +∞. Recall that z0 ∈ D(0, e−T ), which im-
plies that ∥(z − z0)−1∥L2(D(0,e−T )) = +∞. Thanks to Fatou’s lemma, this proves that
∥pk∥L2(D(0,e−T )) → +∞ as k → +∞.

We have proved that (pk) is a counterexample to the inequality of Lemma 3.4,
which concludes the proof of Theorem 3.3. □
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U

D(0, e−T )

z0

Figure 3.3. When the disk D(0, e−T ) (in red) is not included in U , we can find
holomorphic functions that are small in U but arbitrarily large in D(0, e−T ). For
instance, we can construct with Runge’s theorem a sequence of polynomials that
converges to z 7→ (z − z0)−1 away from the blue line.

3.3. From the model case to the generalized Baouendi–Grushin equation

Now, our goal is to adapt the strategy used in the model case to the generalized
Baouendi–Grushin equation (1.2). In the generalized Baouendi–Grushin equation, if
we take the nth Fourier coefficient in y of g, we get

(3.14)
(
∂t − ∂2

x + n2q(x)2
)
ĝ(t, x, n) = 0.

Recall that for n ⩾ 0, Pn is the unbounded operator −∂2
x + n2q2 on L2(I) with

Dirichlet boundary conditions. We will denote by λn the first eigenvalue of Pn and
by φn a corresponding eigenfunction. Notice that φn is not required to be normalized
in L2(I). Then, we will look for a counterexample of the observability inequality (3.3)
with solutions of the generalized Baouendi–Grushin equation (3.2) of the form

(3.15) g(t, x, y) :=
∑
n⩾ 0

anφn(x)einy−λnt.

Heuristically, this should work because we expect the eigenfunction φn to be localized
around x = 0 as n → +∞, in which case the operator −∂2

x + n2q2 looks like
−∂2

x + n2q′(0)2x2, and the eigenvalue and eigenfunction look like λn ≈ nq′(0) and
φn(x) ≈ n1/4e−nq′(0)x2/2. So the solutions g defined above look like the solutions used
to treat the model case (eq. (3.8)), up to a factor q′(0).

In fact, a better approximation of φn would be the so-called WKB approximation(6)

(6)We write here the first term in the WKB expansion of eigenfunctions, and only in dimension 1,
because it is enough for our purposes. But such a construction can be refined with more terms and
in higher dimension [DS99, Chapter 3 & Chapter 6, Theorem A.3].

Also, in the differential equation that defines c0, we divide by d′
Agm(x), which is equal to 0 at

x = 0. But the numerator is also 0 at x = 0, and simple Taylor expansions at x = 0 prove that the
quotient appearing in the differential equation for c0 is actually well-defined at x = 0.
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φn(x) ≈ n1/4c0(x)e−n dAgm(x),

c′
0(x) =

q′(0) − d′′
Agm(x)

2 d′
Agm(x) c0(x),

c0(0) = 1.

(3.16)

Thus, we have

(3.17) g(t, x, y) ≈ c0(x)
∑

n

anen(iy−q′(0)t−dAgm(x)),

i.e., g can almost be written as g(t, x, y) ≈ c0(x)gpol(einy−tq′(0)−dAgm(x)), where gpol is
the polynomial

gpol(z) :=
∑

n

anz
n.

Let us write this in an exact way. Consider φ̃n(x) := n1/4e−nq′(0)x2/2 and let Πn be
the spectral projection associated to the first eigenvalue λn of Pn. We define(7)

(3.18) φn := Πnφ̃n.

We will see later that φn ̸= 0, at least if n is large enough. Let ε ∈ (0, 1), that we
need for technical reason, and that we will later choose close to 0. We define γt,x(n)
by
(3.19) γt,x(n− 1) := e−t(λn−q′(0)n)φn(x)en dAgm(x)(1−ε).

The shift of n in the definition is linked to the fact that we will consider p(z) =
gpol(z)/z, as we did in the model case. Then, the solution g defined in eq. (3.15) can
be written as
(3.20) g(t, x, y) =

∑
n

anγt,x(n− 1)en(iy−q′(0)t−(1−ε) dAgm(x)).

In some sense, this formula tells us that g can be written as “pseudo-differential-type”
operator applied to the “model solution” gpol(eiy−q′(0)t−(1−ε) dAgm(x)). To successfully
adapt the strategy used for the model Baouendi–Grushin equation, we need some
continuity estimates for these “pseudo-differential-type” operators. We claim that
the following estimate holds.

Lemma 3.5. — Let T > 0 and ε > 0. Define γt,x as in eq. (3.19). Let γt,x(z∂z) be
the operator on polynomials defined by

γt,x(z∂z)
(∑

anz
n
)

=
∑

γt,x(n)anz
n.

Let X be a compact subset of C. Let V be an open neighborhood of X that is
star-shaped with respect to 0. There exist C > 0 and N ∈ N such that for every
polynomial p ∈ C[X] with a zero of order N at 0 and for every 0 < t < T and x ∈ I,

∥γt,x(z∂z)(p)∥L∞(X) ⩽ C∥p∥L∞(V ).

(7)We could also have chosen φ̃n to be the WKB expansion defined previously, which would be a
better approximation of the eigenfunction. But since we are projecting on the actual eigenfunction
afterwards, this is not necessary.

TOME 6 (2023)



1496 J. DARDÉ, A. KOENIG & J. ROYER

V

U

r = e−(1−ε) dAgm(a)

Figure 3.4. The domains U and V .

As γt,x(n) is related to the eigenvalues and eigenfunctions of Pn, proving this
lemma requires a spectral analysis of this operator. What is more surprising is that
we actually need a spectral analysis of Pν when ν is not necessarily real, meaning
we have to do some nonselfadjoint spectral analysis. We will prove Lemma 3.5 in
Section 4.3 with the spectral analysis done in the rest of Section 4 and a general
estimate on operators on polynomials [Koe17, Theorem 18].

We will also use the relatively elementary bounds on λn and ∥φn∥L2(I) given by
the following proposition:

Proposition 3.6. — In the limit n → +∞, λn = nq′(0) + o(n). Moreover, there
exist c > 0 and N ⩾ 0 such that for every n ⩾ N , ∥φn∥L2(I) ⩾ c.

This proposition is standard (see, e.g., [DS99, Theorem 4.23 & Eq. (4.20)]), never-
theless, for the reader convenience, we provide a proof in Section 4.2.

With these two estimates, we prove the following version of Lemma 3.4 adapted
for the generalized Baouendi–Grushin equation.

Lemma 3.7. — Assume that the observability inequality (3.3) for the generalized
Baouendi–Grushin equation holds. Let ε > 0 and let U ⊂ C be defined by (see
Figure 3.4)(8)

U = D
(
0, e−(1−ε) dAgm(a)

)
∪ {z ∈ C : |z| < 1, arg(z) /∈ W0}.

Let V be a neighborhood of U that is star-shaped with respect to 0. Then, there exist
C > 0 and N ∈ N such that for every polynomial p ∈ C[X] with a zero of order N
at 0, we have

∥p∥L2(D(0,e−q′(0)T (1+ε))) ⩽ C∥p∥L∞(V ).

(8) In the variant of Theorem 3.1 where distance((a, b) × {y0}, ω) > 0 mentioned in Remark 3.2, we
have to add D(0, e−(1−ε) dAgm(b)) to U . In the variant where distance(I × {y0}, ω) > 0, U is only
the pacman {z ∈ C : arg(z) /∈ W0}. Their proofs are minor adaptations and are left to the reader.
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Proof. — The proof mostly follows the one of Lemma 3.4, but with the error
term γt,x which will be handled by Lemma 3.5. Let N > 0 as in Lemma 3.5 and
Proposition 3.6. Let p(z) = ∑

n⩾N anz
n a polynomial and gpol(z) = zp(z). The

discussion above shows that g defined by

g(t, x, y) =
∑

n > N

an−1φn(x)e−λnt+iny

=
∑

n > N

an−1γt,x(n− 1)en(iy−q′(0)t−(1−ε) dAgm(x))(3.21)

is a solution of the Baouendi–Grushin equation (3.2).

Step 1: Left-hand side of the observability inequality (3.3). Since the functions
ψn : (x, y) 7→ φn(x)einy are orthogonal, the left-hand side can we rewritten as

∫
I×T

|g(T, x, y)|2 dx dy =
∫

I×T

∣∣∣∣∣∣
∑

n⩾N

an−1e−λnTψn(x, y)

∣∣∣∣∣∣
2

dx dy

=
∑

n⩾N

|an−1|2e−2λnT ∥ψn∥2
L2(I×T),

using the lower bounds on ∥φn∥L2(I) given by Proposition 3.6, we get ∥ψn∥L2(I×T) ⩾
c > 0 for n ⩾ N . Thus,∫

I×T
|g(T, x, y)|2 dx dy ⩾ c

∑
n⩾N

|an−1|2e−2λnT .

Now, thanks to the asymptotics for λn given by Proposition 3.6, there exists Cε > 0
such that λn ⩽ nq′(0)(1 + ε) + Cε. Thus,∫

I×T
|g(T, x, y)|2 dx dy ⩾ ce−2T Cε

∑
n⩾N

|an−1|2e−2nq′(0)T (1+ε).

As in the proof of Lemma 3.4, we denote by m the Lebesgue measure on C ≃ R2,
the functions z 7→ zn are orthogonal on L2(D(0, R),m) and ∥zn∥2

L2(D(0,R),m) =
πR2n+2/(n+ 1). Thus,

∥p∥2
L2(D(0,e−q′(0)T (1+ε))) =

∑
n⩾N

π

n+ 1 |an|2e−2(n+1)q′(0)T (1+ε)

⩽
∑

n>N

π|an−1|2e−2nq′(0)T (1+ε)

⩽ C
∫

I×T
|g(T, x, y)|2 dx dy.

(3.22)

Step 2: Right-hand side of the observability inequality (3.3). We make the analogous
change of variables as in the model case, but adapted to our case, i.e., (x, z) =
(x, e−q′(0)t+iy−(1−ε) dAgm(x)). We have dx dm(z) = q′(0)|z|2 dt dx dy. Thus, if we denote
by Ω ⊂ I × C the image of (0, T ) × ω by this change of variables, which is a subset
of I ×D(0, 1), we have
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(3.23)
∫

(0,T )×ω
|g(t, x, y)|2 dt dx dy

= 1
q′(0)

∫
Ω

∣∣∣∣∣ ∑
n > N

an−1γt,x(n− 1)zn

∣∣∣∣∣
2

|z|−2 dx dm(z)

= 1
q′(0)

∫
Ω

|γt,x(z∂z)(p)(z)|2 dx dm(z).

We keep for simplicity the notation γt,x but of course t is now a function of (x, z).
As in the model case, if (x, z) ∈ Ω, then z ∈ U . Indeed, let (x, z) ∈ Ω, i.e., z =
e−t+iy−dAgm(x)(1−ε) with (x, y) ∈ ω. If a ⩽ x < L+, then, by definition of ω as the
complement of [a, L+) × W0 (eq. (3.1)), we necessarily have y /∈ W0. It follows
that z ∈ U . In the case x < a < 0, since dAgm is decreasing on [−L−, 0], we have
|z| = e−t−dAgm(x)(1−ε) < e− dAgm(a)(1−ε). It follows again that z ∈ U . Thus,∫

(0,T )×ω
|g(t, x, y)|2 dt dx dy ⩽ C sup

(t,x) ∈ (0,T )×I

∥γt,x(z∂z)(p)∥2
L∞(U).

Now, we use the operator estimate of Lemma 3.5, which gives

(3.24)
∫

(0,T )×ω
|g(t, x, y)|2 dt dx dy ⩽ C∥p∥2

L∞(V ).

Step 3: Conclusion. Now, plugging the lower-bound of the left-hand side (3.22) and
the upper bound of the right-hand side (3.24) into the observability inequality (3.3),
we get

∥p∥2
L2(D(0,e−q′(0)T (1+ε))) ⩽ C∥p∥2

L∞(V ). □

V

D(0, e−q′(0)T (1+ε))

z0

Figure 3.5. When the disk D(0, e−q′(0)T (1+ε)) (in red) is not included in U ,
we can find holomorphic functions that are small in U but arbitrarily big in
D(0, e−q′(0)T (1+ε)). For instance, we can construct with Runge’s theorem a se-
quence of polynomials that converges to z 7→ zN+1(z − z0)−1 away from the blue
line.

ANNALES HENRI LEBESGUE



Null-controllability of the Baouendi–Grushin equation 1499

Proof of Theorem 3.1. — As in the model case, we end the proof of non-null
controllability by disproving the inequality on polynomials given by the previous
Lemma 3.7. If

q′(0)T (1 + ε) < dAgm(a)(1 − ε),
the disk D(0, e−q′(0)T (1+ε)) is not included(9) in U , and we can chose a compact neigh-
borhood V of U that is star-shaped with respect to 0 and such that D(0, e−T (1+ε)) is
not included in V (see Figure 3.5). Choose some z0 ∈ D(0, e−q′(0)T (1+ε)) that is not in
V . Since V is star-shaped with respect to 0, the half-line z0[1,+∞) stays at positive
distance from V . Then, according to Runge’s theorem [Rud86, Theorem 13.9], there
exists a sequence of polynomials (p̃k)k that converges uniformly on every compact
of C \ z0[1,+∞) to z 7→ (z − z0)−1.

Set pk(z) := zN+1p̃k. We prove that (pk) is a counterexample to the inequality
of Lemma 3.7 with the same method as in the model case. Since V is a compact
subset of C\z0[1,+∞), pk stays uniformly bounded on V , i.e., supk ∥pk∥L∞(V ) < +∞.
But z0 ∈ D(0, e−q′(0)T (1+ε))), and therefore ∥zN+1(z− z0)−1∥L2(D(0,e−q′(0)T (1+ε))) = +∞.
Thanks to Fatou’s lemma, this proves that ∥pk∥L2(D(0,e−q′(0)T (1+ε))) → +∞ as k →
+∞.

We have proved that the inequality of Lemma 3.7 does not hold, which implies that
the observability inequality (3.3) does not hold either, which in turn implies that
the generalized Baouendi–Grushin equation is not null-controllable. This holds for
any ε > 0 and any T such that (1 + ε)q′(0)T < dAgm(a)(1 − ε). Thus, the generalized
Baouendi–Grushin equation is not null controllable if T < dAgm(a)/q′(0). □

4. Spectral Analysis

As explained in Section 3.3, we need some spectral properties on the operator Pν =
−∂2

x +ν2q(x)2 with Dirichlet boundary conditions on I (defined precisely in eq. (1.4)).
We start with an asymptotic of the first eigenvalue, and in following subsection, we
prove some Agmon-type upper bound for the associated eigenfunctions.

For θ0 ∈ [0, π
2 ), we set

(4.1) Σθ0 := {ν ∈ C : |ν| ⩾ 1, |arg(ν)| ⩽ θ0} .

4.1. The first eigenvalue and corresponding spectral projection

For β ∈ C with Re(β) > 0, we denote by Hβ the non-selfadjoint harmonic oscillator
−∂2

x + β2x2 on R. We refer to Appendix C for the precise definition and properties
of Hβ.

In this paragraph we prove that the operator Pν has an eigenvalue close to the
eigenvalue q′(0)ν of the model operator Hq′(0)ν , and that the corresponding spectral
(9) In the variant of Theorem 3.1 where distance((a, b)×{y0}, ω) > 0 mentioned in Remark 3.2, taking
into account Footnote 8, the condition becomes q′(0)T (1+ε) < min(dAgm(a), dAgm(b))(1−ε). In the
variant where distance(I × {y0}, ω) > 0, again taking into account Footnote 8, D(0, e−q′(0)T (1+ε))
is never included in U .
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projection is also a perturbation of the spectral projection of Hq′(0)ν . See Proposi-
tion 4.2.

For this we first prove that the resolvent of Pν is a perturbation of the resolvent of
Hq′(0)ν , in the sense that the difference between these two resolvents is smaller than
the resolvent of Hq′(0)ν .

Notice that the resolvents of Pν and Hq′(0)ν are not defined on the same space.
We denote by 1I the operator that maps a function v ∈ L2(I) to its extension by
0 on R. Then 1∗

I is the operator which maps u ∈ L2(R) to its restriction on I:
1∗

Iu = u|I ∈ L2(I).

Proposition 4.1. — Let θ0 ∈ [0, π
2 ). Let γ > 0 and ε > 0. For ν ∈ Σθ0 we set

(see eq. (C.2))

Z̃ν = Zq′(0)ν,ε,γ

=
{
z ∈ C : |z| ⩽ γq′(0) |ν| , distance(z, σ(Hq′(0)ν)) ⩾ εq′(0) |ν|

}
.

(4.2)

Then there exists ν0 ⩾ 1 such that for ν ∈ Σθ0 with |ν| ⩾ ν0 and z ∈ Z̃ν we have
z ∈ ρ(Pν), and

sup
z ∈ Z̃ν

∥∥∥(Pν − z)−1 − 1∗
I(Hq′(0)ν − z)−11I

∥∥∥
L(L2(I))

= o
|ν|→+∞
ν ∈ Σθ0

(
1

|ν|

)
.

Proof. — For ν ∈ Σθ0 and z ∈ Z̃ν we set

Rν(z) = 1∗
I

(
Hq′(0)ν − z

)−1
1I ∈ L

(
L2(I)

)
.

Let
ρ ∈

]1
3 ,

1
2

[
.

We consider a cut-off function χ ∈ C∞
0 (R, [0, 1]) supported in [-2,2] and equal to 1

on [-1,1]. Then for ν ∈ Σθ0 and x ∈ Ī we set

χν(x) = χ (|ν|ρ x) .

Step 1: Approximation close to x = 0. We first prove that if |ν| is large enough then
Rν(z)χν(Pν − z) − χν extends to a bounded operator on L2(I) for all z ∈ Z̃ν , and

(4.3) sup
z ∈ Z̃ν

∥Rν(z)χν(Pν − z) − χν∥L(L2(I)) −−−−−→
|ν|→+∞

0.

Here and everywhere below it is implicitly understood that ν always belongs to Σθ0 .
Let u ∈ Dom(Pν). We have χνu ∈ Dom(Pν) and, if |ν| is large enough, 1Iχνu

belongs to Dom(Hq′(0)ν). For x ∈ Ī we set

r(x) = q(x)2 − q′(0)2x2,

so that, for |ν| large enough,

Rν(z)(Pν − z)χνu = χνu+ ν2Rν(z)rχνu.
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The commutator [χν , Pν ] of χν and Pν is equal to [χν , Pν ] = [∂2
x, χν ] = χ′′

ν + 2χ′
ν∂x,

hence
Rν(z)χν(Pν − z)u = Rν(z)(Pν − z)χνu+Rν(z)[χν , Pν ]u

= χνu+ ν2Rν(z)rχνu+Rν(z)χ′′
νu+ 2Rν(z) (χ′

νu)′
.

(4.4)

By the resolvent estimate (C.3), we have

(4.5) ∀ ν ∈ Σθ0 , ∀ z ∈ Z̃ν ,
∥∥∥∥(Hq′(0)ν − z

)−1
∥∥∥∥

L(L2(R))
⩽

C

|ν|
.

Since |r(x)χν(x)| ≲ |ν|−3ρ, this gives∥∥∥ν2Rν(z)rχν

∥∥∥
L(L2(I))

≲ |ν|2−1−3ρ −−−−−→
|ν|→+∞

0.

Similarly,

∥Rν(z)χ′′
ν∥L(L2(I)) ≲ |ν|2ρ−1 −−−−−→

|ν|→+∞
0.

Considering the last term in eq. (4.4), we have for v ∈ L2(R)

(4.6)
∥∥∥∥∂x

(
Hq′(0)ν̄ − z̄

)−1
v
∥∥∥∥2

L2(R)
+ ν̄2q′(0)2

∥∥∥∥x (Hq′(0)ν̄ − z̄
)−1

v
∥∥∥∥2

L2(R)

=
〈
Hq′(0)ν̄

(
Hq′(0)ν̄ − z̄

)−1
v,
(
Hq′(0)ν̄ − z̄

)−1
v
〉

L2(R)

=
〈
v,
(
Hq′(0)ν̄ − z̄

)−1
v
〉

L2(R)
+ z̄

∥∥∥∥(Hq′(0)ν̄ − z̄
)−1

v
∥∥∥∥2

L2(R)
.

We multiply by eiθ and take the real part. This gives, uniformly in ν ∈ Σθ0 and
z ∈ Z̃ν ,

(4.7)
∥∥∥∥∂x

(
Hq′(0)ν̄ − z̄

)−1
∥∥∥∥2

L(L2(R))
≲

1
|ν|

and
∥∥∥∥x (Hq′(0)ν̄ − z̄

)−1
∥∥∥∥2

L(L2(R))
≲

1
|ν|3

.

Taking the adjoint in the first inequality gives, for |ν| large enough,

∥Rν(z)∂x (χ′
νu)∥L2(I) ⩽

∥∥∥∥(Hq′(0)ν − z
)−1

∂x (1Iχ
′
νu)

∥∥∥∥
L2(R)

≲ |ν|−
1
2 ∥1Iχ

′
νu∥L2(R)

≲ |ν|ρ− 1
2 ∥u∥L2(I) ,

and eq. (4.3) follows.

Step 2: Approximation away from x = 0. There exists c0 ∈ (0, 1] such that for all
x ∈ I we have

|q(x)| ⩾ c0 |x| .
On L2(I) we consider the operator

P̃ ν = Pν + ν21[−|ν|−ρ,|ν|−ρ],
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with domain Dom(P̃ ν) = H2(I) ∩H1
0 (I). It has compact resolvent, so its spectrum

consists of eigenvalues. We have q(x)2 + 1[−|ν|−ρ,|ν|−ρ] ⩾ c2
0 |ν|−2ρ on I. Then, for

u ∈ Dom(P̃ ν) and z ∈ Z̃ν ,

Re
(
e−iθ

〈(
P̃ ν − z

)
u, u

〉)
⩾
(
cos(θ)c2

0 |ν|2−2ρ − γq′(0) |ν|
)

∥u∥2
L2(I) .

Thus, when |ν| is so large that γq′(0) |ν| ⩽ cos(θ0)c2
0 |ν|2−2ρ /2 we have Z̃ν ⊂ ρ(P̃ ν)

and, for z ∈ Z̃ν ,

(4.8)
∥∥∥∥(P̃ ν − z

)−1
∥∥∥∥

L(L2(I))
⩽

2 |ν|2ρ−2

cos(θ)c2
0
.

Then we have(
P̃ ν − z

)−1
(1 − χν)(Pν − z)u

=
(
P̃ ν − z

)−1
(1 − χν)

(
P̃ ν − z

)
u

=
(
P̃ ν − z

)−1 (
P̃ ν − z

)
(1 − χν)u+

(
P̃ ν − z

)−1 [
1 − χν , P̃ ν

]
u

= (1 − χν)u− 2
(
P̃ ν − z

)−1
(χ′

νu)′ +
(
P̃ ν − z

)−1
χ′′

νu.

As above we estimate∥∥∥∥(P̃ ν − z
)−1

χ′′
ν

∥∥∥∥
L(L2(I))

≲ |ν|4ρ−2 −−−−−→
|ν|→+∞

0

and ∥∥∥∥(P̃ ν − z
)−1

(χ′
νu)′

∥∥∥∥
L2(I)

≲ |ν|ρ−1 ∥χ′
νu∥L2(I) ≲ |ν|2ρ−1 ∥u∥L2(I) .

This proves that

(4.9) sup
z ∈ Z̃ν

∥∥∥∥(P̃ ν − z
)−1

(1 − χν)(Pν − z) − (1 − χν)
∥∥∥∥

L(L2(I))
−−−−−→
|ν|→+∞

0.

Step 3: Conclusion. For ν ∈ Σθ0 and z ∈ Z̃ν we set

Qν(z) = Rν(z)χν +
(
P̃ ν − z

)−1
(1 − χν).

We have for u ∈ Dom(Pν)
∥Qν(z)(Pν − z)u− u∥L2(I) ⩽ ∥Rν(z)χν(Pν − z)u− χνu∥L2(I)

+
∥∥∥∥(P̃ ν − z

)−1
(1 − χν)(Pν − z)u− (1 − χν)u

∥∥∥∥
L2(I)

,

hence by eq. (4.3) and eq. (4.9) we obtain
∥Qν(z)(Pν − z)u− u∥L2(I) = o

|ν|→+∞
(1) ∥u∥L2(I) .

This proves that for |ν| large enough, we can extend the operator Qν(z)(Pν − z) =
1 + (Qν(z)(Pν − z) − 1) to a bounded operator on L2(I), which is invertible with
inverse bounded uniformly in ν, and
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(4.10)
∥∥∥∥(Qν(z)(Pν − z)

)−1
− 1

∥∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞

0.

In particular, (Pν − z) is injective. Since it has compact resolvent, it is boundedly
invertible, and

(Pν − z)−1 =
(
Qν(z)(Pν − z)

)−1
Qν(z).

We get

(4.11)

(Pν − z)−1 −Rν(z) =
(
Qν(z)(Pν − z)

)−1 (
P̃ ν − z

)−1
(1 − χν)

−
(
Qν(z)(Pν − z)

)−1
Rν(z)(1 − χν)

+
((
Qν(z)(Pν − z)

)−1
− 1

)
Rν(z).

We prove that each term of the right-hand side is of size O(|ν|−1). For the first term
we use eq. (4.8). For the third we use eq. (4.10) and eq. (4.5). Finally, for the second
term we observe that on supp(1 − χν) we have |x| ≳ |ν|−ρ so for u ∈ L2(I) we have
by the second inequality of eq. (4.7)∥∥∥(1 − χν)1∗

I

(
Hq′(0)ν̄ − z̄

)−1
1Iu

∥∥∥2

L2(I)
≲ |ν|2ρ

∥∥∥x (Hq′(0)ν̄ − z̄
)−1

1Iu
∥∥∥2

L2(R)

≲ |ν|2ρ−3 ∥u∥2
L2(I) .

Taking the adjoint gives∥∥∥1∗
I

(
Hq′(0)ν − z

)−1
1I(1 − χν)

∥∥∥
L(L2(I))

= o
ν→+∞

(
1

|ν|

)
,

and the conclusion follows from eq. (4.11). □

Proposition 4.2. — Let θ0 ∈ [0, π
2 ). There exists νθ0 ⩾ 0 such that for ν ∈

Σθ0 with |ν| ⩾ νθ0 the operator Pν has a unique eigenvalue λν which satisfies
|λν − q′(0)ν| ⩽ q′(0) |ν|. Moreover, λν is algebraically simple and

|λν − q′(0)ν| = o
|ν|→+∞
ν ∈ Σθ0

(|ν|) .

If we denote by Πν ∈ L(L2(I)) the associated spectral projection, and by ΠH
q′(0)ν ∈

L(L2(R)) the spectral projection associated to the eigenvalue q′(0)ν of Hq′(0)ν , then∥∥∥Πν − 1∗
IΠH

q′(0)ν1I

∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞
ν ∈ Σθ0

0.

Proof. — We recall that for ν ∈ Σθ0 we have

ΠH
q′(0)ν = 1

2iπ

∫
|z−q′(0)ν|=q′(0)|ν|

(Hq′(0)ν − z)−1 dz.

Let ν0 be given by Proposition 4.1 for ε = 1 and γ = 5
2 . If |ν| ⩾ ν0 we can set

Bν = 1
2iπ

∫
|z−q′(0)ν|=q′(0)|ν|

(Pν − z)−1 dz.
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This is a projection of L2(I) whose range is the sum of the generalized eigenspaces
of Pν corresponding to the eigenvalues in the disk D(q′(0)ν, q′(0) |ν|). In particular
the dimension of Ran(Bν) does not depend on ν ∈ Σθ0 and is finite. We denote by
m this dimension and prove that m = 1 by computing the trace Tr(Bν) of Bν .

By Proposition 4.1 we have∥∥∥Bν − 1∗
IΠH

q′(0)ν1I

∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞
ν ∈ Σθ0

0.

Let Fν be a subspace of L2(I) of dimension m + 1 which contains Ran(Bν) and
1∗

Iφ
H
q′(0)ν . We consider an orthonormal basis (e0,ν , . . . , em,ν) of Fν . Then∣∣∣Tr

(
Bν − 1∗

IΠH
q′(0)ν1I

)∣∣∣ ⩽ m∑
j=0

∣∣∣〈(Bν − 1∗
IΠH

q′(0)ν1I

)
ej,ν , ej,ν

〉∣∣∣
⩽ (m+ 1)

∥∥∥Bν − 1∗
IΠH

q′(0)ν1I

∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞
ν ∈ Σθ0

0.

Moreover, according to eq. (C.2), we have

Tr
(
1∗

IΠH
q′(0)ν1I

)
−−−−→
|ν|→∞
ν ∈ Σθ0

1.

Thus,
Rank(Bν) = Tr(Bν) −−−−→

|ν|→∞
ν ∈ Σθ0

1,

and hence m = 1. This means that for ν ∈ Σθ0 large enough the operator Pν

has a unique eigenvalue λν in the disk D(q′(0)ν, q′(0) |ν|), and this eigenvalue is
algebraically simple.

It remains to prove the estimate on λν . For this we reproduce the same argument
with any ε ∈]0, 1]. Then, given ε ∈]0, 1], there exists νε ⩾ νθ0 such that the projection

Bν,ε = 1
2iπ

∫
|z−q′(0)ν|=εq′(0)|ν|

(Pν − z)−1 dz

is well defined and has rank 1. This implies that λν belongs to D(q′(0)ν, εq′(0) |ν|)
when |ν| ⩾ νε and concludes the proof. □

4.2. Agmon Estimates of Eigenfunctions

Proposition 4.3. — Let ν ∈ C such that Re(ν) > 0. Let λ be an eigenvalue of
Pν with associated eigenfunction φ. Set

µ :=
Re

(
e−i arg(ν)λ

)
cos(arg(ν)) .

Let κ ∈ C2(I;R) and w := eνκφ. The following Agmon equality holds:

∥w′∥2
L2(I) +

∫
I

(
|ν|2

(
q(x)2 − κ′2(x)

)
− µ

)
|w(x)|2 dx = 0.
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Proof. — Let ν = |ν|eiθ. The proof follows the usual Agmon’s equality strategy.
We have φ = e−νκw. Thus, using Leibniz’ formula,

(Pν − λ)φ = −
(
e−νκ

)′′
w − 2

(
e−νκ

)′
w′ − e−νκw′′ +

(
ν2q2 − λ

)
e−νκw

=
(
−w′′ + 2νκ′w′ +

(
−ν2κ′2 + νκ′′ + ν2q2 − λ

)
w
)

e−νκ.

Since (Pν − λν)φ = 0,

(4.12) −w′′ + 2νκ′w′ +
(
−ν2κ′2 + νκ′′ + ν2q2 − λ

)
w = 0.

Multiplying by e−iθw, integrating and taking the real part, we get

0 = − Re
∫

I
e−iθw′′w︸ ︷︷ ︸
I1

+ |ν| Re
∫

I

(
2κ′w′w + κ′′|w|2

)
︸ ︷︷ ︸

I2

+
∫

I

(
cos(θ)|ν|2

(
q2 − κ′2

)
− Re

(
e−iθλ

))
|w|2︸ ︷︷ ︸

I3

.

Integrating by parts in I1, we have I1 = cos(θ)∥w′∥2
L2(I). Considering I2, we get

I2 = |ν|
∫

I

(
κ′|w|2

)′
= 0.

Thus,

0 = I1 + I3 = cos(θ)∥w′∥2
L2(I) +

∫
I

(
cos(θ)|ν|2

(
q2 − κ′2

)
− Re

(
e−iθλ

))
|w|2,

which is the claimed estimate multiplied by cos(θ). □

We will use Proposition 4.3 with κ = (1 − ε) dAgm, where dAgm defined in eq. (1.3).
Up to this point, we assumed φ to be an eigenfunction of Pν , but we did not specified
which one, neither how it is normalized. We do this in the following definition, which
is the natural extension of the definition of φn when n ∈ N (eq. (3.18)). For Re(ν) > 0
that satisfies the hypotheses of Proposition 4.2, let φ̃ν ∈ L2(I) be defined by

φ̃ν(x) := ν1/4e−q′(0)νx2/2,

and
(4.13) φν := Πν(φ̃ν),
where Πν is the spectral projection for Pν associated with λν , as defined in Proposi-
tion 4.2.

Proposition 4.4. — Let φν as in eq. (4.13). Let θ0 ∈
[
0, π

2

)
. There exists C > 0

such that for every ν ∈ Σθ0 with |ν| > ν0,
∥φ̃ν∥L2(I) ⩽ C,

∥φν∥L2(I) ⩽ C.
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Proof. —

Step 1: Estimation on φ̃ν. Since φ̃ν is a restriction of ν1/4e−νq′(0)x2/2 on R, we have

(4.14) ∥φ̃ν∥2
L2(I) ⩽ |ν|1/2

∫
R

e−2(ν)q′(0)x2/2 dx =

√√√√ π|ν|
q′(0) Re(ν) ⩽

√
π

q′(0) cos(θ0)
.

Step 2: Estimation on φν. Using the notations of Proposition 4.2, we have

(4.15) ∥φν∥L2(I) ⩽
( ∥∥∥1∗

IΠH
q′(0)ν1I

∥∥∥
L(L2(I))

+
∥∥∥Πν − 1∗

IΠH
q′(0)ν1I

∥∥∥
L(L2(I))

)
∥φ̃ν∥L2(I).

Moreover, according to Proposition 4.2, for |ν| large enough in Σθ0 ,∥∥∥Πν − 1∗
IΠH

q′(0)ν1I

∥∥∥
L(L2(I))

⩽ 1.

Since the left-hand side is continuous in ν, we have that for |ν| > ν0 and ν ∈ Σθ0 ,∥∥∥Πν − 1∗
IΠH

q′(0)ν1I

∥∥∥
L(L2(I))

⩽ C.

Finally, according to Proposition C.1, ∥ΠH
q′(0)ν∥L(L2) stays bounded for ν ∈ Σθ0 , thus∥∥∥1∗

IΠH
q′(0)ν1I

∥∥∥
L(L2(I))

+
∥∥∥Πν − 1∗

IΠH
q′(0)ν1I

∥∥∥
L(L2(I))

⩽ C.

Plugging this fact into eq. (4.15) and combined with the fact that ∥φ̃ν∥L2(I) is
bounded (eq. (4.14)), we get the claimed estimate. □

Corollary 4.5. — Let φν as in eq. (4.13). Let θ0 ∈ [0, π
2 ) and ε ∈ (0, 1). There

exists C > 0 such that for every ν ∈ Σθ0 ,∫
I

∣∣∣φν(x)eν(1−ε) dAgm(x)
∣∣∣2 dx ⩽ C|ν|,∥∥∥φνeν(1−ε) dAgm(x)
∥∥∥

L∞(I)
⩽ C|ν|.

Proof. — Let wν(x) := φν(x)eν(1−ε) dAgm(x). According to the Agmon equality of
Proposition 4.3 with φ = φν and λ = λν , and denoting the corresponding µ by µν ,
we have

(4.16) ∥w′
ν∥2

L2(I) +
∫

I

(
|ν|2q(x)2

(
1 − (1 − ε)2

)
− µν

)
|wν(x)|2 dx = 0.

Step 1: First inequality. Let K > 0. We claim that if x ∈ I, ν ∈ Σθ0 and |ν| dAgm(x)
> K, then |ν|2q(x)2 > cK|ν| for some c depending on q, but not on x ∈ I, ν ∈ Σθ0

nor K.
Indeed, routine computations show that in the limit x → 0, q(x)2 ∼ q′(0)2x2

and dAgm(x) ∼ q′(0)x2/2. Thus, q(x)2/ dAgm(x) → 2q′(0) as x → 0. Moreover, we
assumed that for every x ̸= 0, q(x) ̸= 0, thus for every x ̸= 0, q(x)2/ dAgm(x) ̸= 0.
This proves the claim.

Thus, if K is large enough, then for every x ∈ I such that dAgm(x)|ν| > K

|ν|2q(x)2
(
1 − (1 − ε)2

)
− µν ⩾ c|ν|,
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where we used the fact that µν ∼ q′(0)|ν|/ cos(arg(ν)) because λν = q′(0)ν + o(ν).
Then, splitting the integral in the Agmon equality (4.16) into a part for |ν| dAgm(x)
< K and |ν| dAgm(x) > K, we get

c|ν|∥wν∥2
L2(|ν| dAgm(x) > K) ⩽

∫
|ν| dAgm(x) < K

(
µν − |ν|2q(x)2

(
1 − (1 − ε)2

) )
|wν(x)|2 dx

⩽ C|ν|2∥wν∥2
L2(|ν| dAgm(x) < K).

We rewrite this as
∥wν∥2

L2(|ν| dAgm(x) > K) ⩽ C|ν|∥wν∥2
L2(|ν| dAgm(x) < K).

Adding ∥wν∥2
L2(|ν| dAgm(x)<K) on each side, this proves that

∥wν∥2
L2(I) ⩽ C|ν|∥wν∥2

L2(|ν| dAgm(x) < K).

Using the definition of wν , we see that for |ν| dAgm(x) < K, |wν(x)| ⩽ eK |φν(x)|.
Thus, using also the property ∥φν∥L2(I) ⩽ C (Proposition 4.4)

∥wν∥2
L2(I) ⩽ C|ν|∥φν∥2

L2(|ν| dAgm(x) < K) ⩽ C|ν|.

Step 2: Second inequality. We again use Agmon’s equality (4.16) to get
∥w′

ν∥2
L2(I) ⩽ µν∥wν∥2

L2(I) ⩽ C|ν|∥wν∥2
L2(I) ⩽ C|ν|2.

The claimed estimate then follows from Sobolev’s embedding of H1(I) into L∞(I).
□

We also prove the lower bound of Proposition 3.6 for φn when n ⩾ 0 is large
enough.(10)

Proof of Proposition 3.6. — The part about λn was already proved in Proposi-
tion 4.2. By definition of φn, we have

φn = Πnφ̃n = 1∗
IΠH

q′(0)n1Iφ̃n +
(
Πn − 1∗

IΠH
q′(0)n1I

)
φ̃n.

According to Proposition 4.2, we have
Πn − 1∗

IΠH
q′(0)n1I −−−−→

n→+∞
0.

Moreover, denoting by φH
β,1(x) = (Re(β)/π)1/4e−βx2/2 the first eigenvector of Hβ, we

have for β > 0, ΠH
β = ⟨φH

β,1, ·⟩φH
β,1. Thus,

〈
φH

q′(0)n,1,1
∗
Iφ̃n

〉
=

√
n

(
q′(0)
π

)1/4 ∫
I

e−nq′(0)x2 dx.

The integral above is on I, but if we integrate on R instead, we only add a small
error term. Thus,〈

φH
q′(0)n,1,1

∗
Iφ̃n

〉
=
(

π

q′(0)

)1/4

+ o
n→+∞

(1).

(10)This theorem actually holds if ν ranges over Σθ0 by using the expression of ΠH
β . We don’t need

this, so we refrain from doing so.

TOME 6 (2023)



1508 J. DARDÉ, A. KOENIG & J. ROYER

Hence,

φn =
(

π

q′(0)

)1/4

1∗
Iφ

H
q′(0)n,1 + o

n→+∞

(
∥φ̃n∥L2(I) + 1

)
.

Since ∥φ̃n∥L2(I) is bounded (Proposition 4.4) and since ∥1∗
Iφ

H
q′(0)n,1∥L2(I) = 1 + o(1)

(thanks to similar computations as above), this proves the claimed lower bound. □

4.3. Estimate for some pseudo-differential type operators on polynomials

In this section, we use the spectral analysis of the operator Pν to deduce the
operator estimate of Lemma 3.5. In order to do that, we need some definitions and
theorems about a general class of operators on polynomials. The following comes
from [Koe17, Definition 9 & Theorem 18].

Definition 4.6. — Let Ω be an open subset of C. Assume that there exists
(rθ)0⩽ θ < π/2 with rθ ⩾ 0 such that ⋃0⩽ θ < π/2 Σθ \D(0, rθ) ⊂ Ω (see Figure 4.1).

We denote by S(Ω) the set of functions γ holomorphic on Ω that have sub-
exponential growth on each Σθ ∩ Ω, i.e., for each θ ∈ [0, π/2) and δ > 0, we have

pθ,δ(γ) := sup
ν ∈ Σθ∩Ω

∣∣∣γ(z)e−δ|ν|
∣∣∣ < +∞.

We endow S(Ω) with the topology defined by the seminorms pθ,δ for all θ ∈ [0, π/2)
and δ > 0.

Σθ \D(0, rθ)

rθ

θ

Figure 4.1. An example of a set Σθ \D(0, rθ) ⊂ Ω. The angle θ is allowed to be
arbitrarily close to π/2, but then, the radius rθ of the disk we avoid may blow
up arbitrarily fast. For the Ω we will consider, the corresponding rθ does blow
up when θ → π/2 (at least, we cannot exclude that it blows up).

For the next theorem, if U is an open subset of C, we denote the set of bounded
holomorphic functions on U that have a zero of order n0 at 0 by O∞

n0(U). We endow
O∞

n0(U) with the L∞-norm.
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Theorem 4.7. — Let Ω ⊂ C as in Definition 4.6 and set n0 = min{n ∈ N :
[n,+∞) ⊂ Ω}. Let γ in S(Ω) and γ(z∂z) be the operator on polynomials with a zero
of order n0 at 0, defined by:

γ(z∂z)
 ∑

n⩾n0

anz
n

 =
∑

n⩾n0

γ(n)anz
n.

Let U be a bounded open subset of C. Let V be a neighborhood of U that is star
shaped with respect to 0. Then there exists C > 0 such that for all polynomials p
with a zero of order n0 at 0,

∥γ(z∂z)(p)∥L∞(U) ⩽ C∥p∥L∞(V ).

Moreover, the constant C above can be chosen continuously in γ ∈ S(Ω): the map
γ ∈ S(Ω) 7→ γ(z∂z) is continuous from S(Ω) to L(O∞

n0(V ), O∞
n0(U)).

Remark 4.8. — While the operator γ(z∂z) is initially defined only on polynomials
with a zero of order n0 at 0 (which is enough for our purposes), the continuity
inequality of Theorem 4.7 allows us to extend γ(z∂z) by continuity on the closure
of the polynomials (with a zero of order n0 at 0) for the L∞(V ) norm. If V is star-
shaped with respect to 0, it is simply connected. If in addition it is bounded, Runge’s
theorem [Rud86, Theorem 13.9] implies that this closure is all bounded holomorphic
functions on V with a zero of order n0 at 0: γ(z∂z) is a linear continuous operator
on O∞

n0(V ).

We now have all the pieces needed to prove Lemma 3.5.
Proof of Lemma 3.5. — Let θ0 ∈ [0, π

2 ). According to Proposition 4.2 there exists
rθ0 such that if |ν| > rθ0 and |arg(ν)| < θ0, then there exists a unique eigenvalue
λν of Pν close to q′(0)ν. Moreover, this eigenvalue is algebraically and geometrically
simple.

Set Ω = ⋃
θ0 ∈ [0,π/2) Σθ0 \D(0, rθ0). Notice that by definition, Ω satisfies the property

of Definition 4.6. For 0 < t < T , x ∈ I and ν ∈ Ω, we define

γ̃t,x(ν) := e−t(λν−q′(0)ν)φν(x)eν dAgm(x)(1−ε),

and

(4.17) γt,x(ν) = γ̃t,x(ν + 1)

which is the natural extension of the definition of γt,x(n) when n ∈ N.

Step 1: The family (γ̃t,x)0 < t <T, x ∈ I is a bounded family(11) of S(Ω). According to
Proposition 4.2, λν is algebraically simple on Ω. Thus, according to analytic pertur-
bation theory (see, e.g., [Kat95, Chapter VII, § 1]), λν and the associated spectral
projection are holomorphic in ν ∈ Ω. Since φν = Πν(ν1/4e−νq′(0)x2/2), φν is holomor-
phic in ν ∈ Ω. We conclude that γ̃t,x(ν) is holomorphic in ν ∈ Ω.

(11) Let us recall that if E is locally convex vector space whose topology is generated by a family
(pι)ι of seminorms, a subset X of E is bounded if and only if for every ι, the set {pι(x), x ∈ X} is
a bounded subset of R.
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We still have to prove that (γ̃t,x)0 < t < T, x ∈ I is a bounded family of S(Ω). Let us
set

ηt(ν) := e−t(λν−q′(0)ν),

ζx(ν) := φν(x)eν dAgm(x)(1−ε),

and prove that both of the families (ηt)0 < t < T and (ζx)x ∈ I are bounded in S(Ω). It
is easy to see that (γ1, γ2) ∈ (S(Ω))2 7→ γ1γ2 ∈ S(Ω) is bounded, so this will prove
the claim.

Let θ0 ∈ [0, π
2 ) and δ > 0. According to Proposition 4.2, we have in the limit

|ν| → +∞, ν ∈ Σθ0 , λν − νq′(0) = o(ν). Thus, for ν large enough in Σθ0 ,∣∣∣ηt(ν)e−δ|ν|
∣∣∣ =

∣∣∣eto(|ν|)−δ|ν|
∣∣∣ < eT Cθ0,δ .

Thus, (ηt)0 < t < T is a bounded family of S(Ω).
Similarly, according to Corollary 4.5, we have for any x ∈ I, and ν large enough

in Σθ0 , ∣∣∣ζx(ν)e−δ|ν|
∣∣∣ ⩽ C.

This proves that (ζx)x ∈ I is a bounded family of S(Ω).

Step 2: The family (γt,x)0 < t < T, x ∈ I is a bounded family of S(Ω). According to the
definition of Ω as a union of domains that look like the one of Figure 4.1, Ω is
stable by ν 7→ ν + 1. Then, the map γ ∈ S 7→ γ(· + 1) ∈ S is well-defined and
continuous. Thus, according to the first step and the definition of γ (eq. 4.17), the
family (γt,x)0 < t < T, x ∈ I is indeed a bounded family of S(Ω).

Step 3: Conclusion. Let n0 = min{n ∈ N : [n,+∞) ⊂ Ω}.(12) Let U be a bounded
open neighborhood of X such that U ⊂ V . Then, the sets U and V satisfy the hy-
potheses of Theorem 4.7. Recall that linear continuous mappings between topological
vector spaces maps every bounded subset to a bounded subset [Rud91, Theorem 1.32].
Hence, according to Theorem 4.7, the family of operators (γt,x(z∂z))0 < t < T, x ∈ I is
bounded in L(O∞

n0(V ), O∞
n0(U)). Thus, there exists C > 0 such that for every poly-

nomials p with a zero of order n0 at 0, and for every x ∈ I and 0 < t < T ,

∥γt,x(z∂z)(p)∥L∞(U) ⩽ C∥p∥L∞(V ). □

(12) In fact, we can be more precise in the construction of Ω and ensure that R+ ⊂ Ω, in which case
n0 = 0. Indeed, the spectral theory of compact operators proves that for every ν ∈ C, the spectrum
of Pν is a discrete sequence of eigenvalues. The uniqueness of the solution of Cauchy problems for
ODEs proves that when ν > 0, these eigenvalues are actually geometrically and algebraically simple.
Finally, perturbation theory proves that the first eigenvalue is holomorphic on the neighborhood
of R+. We do not need this, so we do not detail this.
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5. Critical time of null-controllability for some domains

In this section, we prove Theorem 1.6.
Proof of Theorem 1.6. — Set a− = − max(γ−

2 ) and a+ = max(γ+
1 ). Denote by

y− ∈ T and y+ ∈ T points where these maxima are reached.
Step 1: Lower bound of the minimal time. For this step, we only have to treat the
case T∗ > 0. In this case, either a− < 0 or a+ > 0. If a− < 0, for any a− < a < 0, the
segment [a, L+] × {y−} stays at positive distance of ω, and thanks to Theorem 3.1,
the generalized Baouendi–Grushin equation (3.2) is not null-controllable on ω in
time T < dAgm(a)/q′(0). Similarly, if a+ > 0, for any 0 < a < a+, the segment
[−L−, a] × {y+} stays at positive distance from ω, and the generalized Baouendi–
Grushin equation is not null-controllable in time T < dAgm(a)/q′(0).

This holds for any a− < a < 0 and 0 < a < a+, thus the generalized Baouendi–
Grushin equation (3.2) is not null-controllable in time T < T∗.
Step 2: Upper bound of the minimal time. Let ε > 0 small enough so that γ2 −γ1 > ε.
Let γ̃1 = max(γ1, a− − ε) and γ̃2 = min(γ2, a+ + ε). By using the information
γ2 − γ1 > ε, a− ⩽ γ2, γ1 ⩽ a+ and by looking at the different cases, we readily get
γ̃2 − γ̃1 ⩾ ε. Then, we define the path

γ = (γx, γy) : s ∈ T 7→
(
γ̃1(s) + γ̃2(s)

2 , s

)
.

This path satisfies γ1 + ε/2 ⩽ γx ⩽ γ2 − ε/2, hence γ(T) ⊂ ω. Moreover, we see that
it satisfies the hypotheses of Theorem 1.4, because the connected components of
(I × T) \ γ(T) are {(x, y) : x < γx(y)} and {(x, y) : x > γx(y)}. Moreover, this path
satisfies

a− − ε

2 ⩽ γx ⩽ a+ + ε

2 .

Thus, Theorem 1.4 implies that the generalized Baouendi–Grushin equation (3.2) is
null-controllable in time T > max(dAgm(a+ + ε/2), dAgm(a− − ε/2))/q′(0). As this
holds for every ε > 0 small enough, the result follows. □

Appendix A. Baouendi–Grushin equation on I × (0, π)

In the article, we stated and proved results on the Baouendi–Grushin posed on
I × T. These results have a version for the Baouendi–Grushin equation posed on
I × (0, π):

(A.1)



(
∂t − ∂2

x − q(x)2∂2
y

)
f(t, x, y) = 1ωu(t, x, y),
t ∈ (0, T ), x ∈ I, y ∈ (0, π)

f(t, x, y) = 0, t ∈ (0, T ), (x, y) ∈ ∂(I × (0, π)),
f(0, x, y) = f0, x ∈ I, y ∈ (0, π).

Here, we precisely state them and explain what are the differences, if any, in their
proofs. The precise definition of the operator, especially its domain, is again the
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ω

γ
γ1

γ2

a− a+

y−

y+
x

y

Figure 5.1. In green, the domain ω. At y = y−, the function γ−
2 takes its maxi-

mum a−. Then, the interval (a−, L+) × {y−} is disjoint from ω. So, the Grushin
equation is not null-controllable in time T < dAgm(a−)/q′(0). Similarly, the in-
terval (−L−, a+) × {y+} is disjoint from ω. So, the Grushin equation is not
null-controllable in time T < dAgm(a+)/q′(0). Also, if we take a path γ (here in
blue) that is close to the boundary of ω around y = y− and y = y+, then, we
can apply Theorem 1.4, and the Grushin equation is null-controllable in time
T > max(dAgm(a−), dAgm(a+))/q′(0).

Friedrichs’ extension. That it generates an analytic semigroup is again proved with
Hille–Yosida’s theorem. We again refer to [BCG14, Bre11, Hel13] for the details.

The adaptation of the positive controllability result is:

Theorem A.1. — Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0.

Let ω be an open subset of I × [0, π]. Assume that there exists γ = (γx, γy) ∈
C0([0, 1], I × [0, π]) such that γ((0, 1)) ⊂ ω, γy(0) = 0 and γy(1) = π.

The generalized Baouendi–Grushin equation (A.1) is null-controllable on ω in time
T such that

T >
1

q′(0) max
(

dAgm

(
min
T

(γx)
)
, dAgm

(
max

T
(γx)

))
.

The proof is mostly the same, the only small difference being the construction
of the cutoff function, which is done thanks to Proposition B.5 and the natural
adaptation of Proposition B.1.

The adaptation of the negative result Theorem 1.3 is straightforward. We use the
same notation δ as in Theorem 1.3:

Theorem A.2. — Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and
q(x) ̸= 0 whenever x ̸= 0. Let ω be an open subset of I × (0, π). Assume that there
exist a ∈ [−L−, 0), b ∈ (0, L+] and y0 ∈ (0, π) such that

distance
(
(a, b) × {y0}, ω

)
> 0.

Then, the generalized Baouendi–Grushin equation (A.1) is not null-controllable on
ω in time T such that

T <
1

q′(0) min (δ(a), δ(b)) .

We prove this theorem with the following lemma:
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Lemma A.3. — Let T > 0 and let ω be an open subset of I × (0, π). Denote by
S(ω) the symmetric of ω with respect to {y = 0}. Let λn and φn as in eq. (3.18).

Assume that the generalized Baouendi–Grushin equation with Dirichlet boundary
conditions (A.1) is null controllable on ω in time T , then for every complex sequence
(an) with a finite number of nonzero terms,

∑
n⩾ 0

|an|2∥φn∥2
L2(I)e−2λnT ⩽ C

∫
[0,T ]×(ω∪S(ω))

∣∣∣∣∣∣
∑
n⩾ 0

anφn(x)einy−λnt

∣∣∣∣∣∣
2

dt dx dy.

Sketch of the proof. — This lemma is proved by testing the associated observ-
ability inequality on the function g(t, x, y) = ∑

n⩾ 0 anφn(x) sin(ny)e−λnt, and writ-
ing sin(ny) = (einy − e−iny)/(2i). Thus, with g̃(t, x, y) = ∑

n⩾ 0 anφn(x)einy−λnt,
g(t, x, y) = (g̃(t, x, y) − g̃(t, x,−y))/(2i), the right-hand side of the observability
inequality satisfies

∥g∥2
L2([0,T ]×ω) ⩽

1
2
(
∥g̃∥2

L2([0,T ]×ω) + ∥g̃∥2
L2([0,T ]×S(ω))

)
.

The right-hand side of this inequality is the right-hand side of the claimed estimate.
□

Theorem A.2 is then proved by remarking that we already disproved such an
inequality in Section 3.3.

Appendix B. Existence of the cutoff function and homotopy

We begin with the construction of the cutoff function used in the proof of Theo-
rem 1.4.

Proposition B.1. — Let a < b and let ω be an open subset of (a, b) × T.
Assume that there exists a closed path γ = (γx, γy) ∈ C0(T; ω) such that {a} × T
and {b} × T are included in different connected components of ([a, b] × T) \ γ(T).
Let ω− = [a,min γx] × T and ω+ = [max γx, b] × T. There exists a function χ ∈
C∞([a, b] × T) such that:

• χ = 0 on ω+ \ ω;
• χ = 1 on ω− \ ω;
• supp(∇χ) ⊂ ω.

Proof of Proposition B.1. —
Step 1: Defining χ. Let ε > 0 small enough so that distance(γ(T), {a, b} × T) > ε
and such that for any z ∈ γ(T), B(z, ε) ⊂ ω. We set

ω0 := {z ∈ [a, b] × T : distance(z, γ(T)) < ε} .
Let ρ ∈ C∞

c (B(0, ε/2)) with
∫

B(0,ε/2) ρ(z) dz = 1. Consider Ω the connected compo-
nent of {a} × T in (R × T) \ γ(T). Set χ = ρ ∗ 1Ω (initially defined on R × T and
then restricted on [a, b] × T).
Step 2: supp(∇χ) ⊂ ω0. According to the definition of Ω, 1Ω is locally constant
outside of γ(T). This implies that χ is locally constant around each z such that
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distance(z, γ(T)) > ε/2. Hence supp(∇χ) ⊂ {z : distance(z, γ(T)) ⩽ ε/2}. Accord-
ing to our choice of ε, this proves the claim that supp(∇χ) ⊂ ω0 ⊂ ω.
Step 3: Value of χ on ω− \ ω. According to the definition of χ and the fact that
distance({a} × T, γ(T)) > ε, for any y0 ∈ T, χ(a, y0) = 1. Moreover, ω− \ ω0 is
connected (according to the definition of ω−, we can connect every (x, y) ∈ ω− \ ω0
to the left boundary {a} ×T with the horizontal segment [a, x] × {y}). According to
the previous step, χ is locally constant outside ω0. Hence, χ is constant in ω− \ ω0.
Step 4: Value of χ on ω+ \ ω. According to the definition of χ and the hypothesis,
χ = 0 on {b} × T. The rest of this step is a copy-paste of the previous step. □

Now, we justify Remark 1.5, with the following two propositions:

Proposition B.2. — Let a < b and let γ ∈ C0(T, (a, b) × T) be a closed path
that is not homotopic to a constant path. Then {a} × T and {b} × T are included
in different connected components of ([a, b] × T) \ γ(T).

Proof. — Assume that for some y0, y1 ∈ T, there exists a continuous path c1 in
(I × T) \ γ(T) from (a, y0) to (b, y1). Since I × T is Hausdorff, we may assume that
c1 is simple. We can also assume that c1 touches the boundaries {a, b} × T only at
the start and end.

Now, consider the universal cover [a, b] × R of [a, b] × T. Consider c̃1 a lift of c1
to [a, b] × T, that starts at (a, ỹ0) and ends at (b, ỹ1). Let c2 the simple closed loop
formed by concatenating c1, the vertical segment {b} × [ỹ1, ỹ1 + 2π], the reverse of
the path c̃1 + (0, 2π), and finally the vertical segment {a} × [ỹ0, ỹ0 + 2π] from top
to bottom (see Figure B.1).

x

y
c1

y0
y1 x

y
c2

ỹ0

ỹ1

x

y

Figure B.1. Illustration of the path c2 defined in the proof of Proposition B.2.

If we see this path c2 as a path on R2, according to Jordan’s theorem, R2 \ c2
has two path-connected components, one of them bounded. Let us denote by Ω1
this bounded component, which, according to Jordan–Schoenflies’ theorem, is simply
connected. One of the lift of γ lies in Ω1, let us call it γ̃. But γ is not homotopic to
a constant path, which contradicts the simple connectedness of Ω1. □

Proposition B.3. — Let ω be a connected open subset of [a, b] × T such that
{a}×T and {b}×T are included in different connected components of ([a, b]×T)\ω.
Let ω̃ a connected open subset of [a, b] × T such that ω ⊂ ω̃.

ANNALES HENRI LEBESGUE



Null-controllability of the Baouendi–Grushin equation 1515

There exists a closed path γ ∈ C0(T, ω̃) that is not homotopic in [a, b] × T to a
constant path.

Remark B.4. — Let γ be a closed path in (a, b) × T such that {a} × T and
{b} × T are included in different connected components of ([a, b] × T) \ γ(T). It is
possible this path γ is homotopic to a constant path, but Proposition B.3 applied
with ω := {z : distance(z, γ(T)) < ε} and ω̃ := {z : distance(z, γ(T)) < 2ε} tells us
that for any ε > 0 there exists a path γ̃ that stays at distance at most 2ε from γ(T)
and that is not homotopic to a constant path.

Proof. — The proof uses some basic tools of algebraic topology, in particular van
Kampen’s theorem (see for instance Hatcher’s “Algebraic Topology” [Hat02, § 0.1,
§ 1.1–1.2]).

Let C− be the connected component of {a} × T in ([a, b] × T) \ ω. Set

(B.1) A− := C− ∪ ω̃, A+ :=
(
([a, b] × T) \ C−

)
∪ ω̃.

Step 1: Every connected component C of ([a, b]×T)\ω is closed and satisfies ∂C ⊂ ω̃.
Here, ∂C is the boundary of C as a subset of [a, b] × T.

Indeed, connected components of a topological space X are closed in X, hence C
is closed in ([a, b] × T) \ ω, which is itself closed in [a, b] × T.

If x ∈ ∂C is such that x /∈ ∂ω, then there exists ε > 0 such that B(x, ε) ⊂
([a, b] × T) \ ω. But then, B(x, ε) is included in the connected component of x, i.e.,
C. By contradiction, we see that every x ∈ ∂C is in ∂ω ⊂ ω̃.
Step 2: A+ and A− are open and connected. We begin with the openness of A−. If
x ∈ A−, there are three cases:

• If x is in the interior of C−, it is in the interior of A− by definition.
• If x is in ω̃, since ω̃ is open, x is also in the interior of A−.
• If x ∈ ∂C−, according to Step 1, x ∈ ω̃ which implies that x is in the interior

of A−.
The subset A+ is open because it is the union of the open subsets ([a, b] × T) \ C−
and ω̃.

Since A− is the union of two connected subset that have a non-empty intersection
(we saw in Step 1 that ∂C− ⊂ C− ∩ ω̃), A− is connected. Finally, A+ is connected
because it is the union of the connected subset ω̃ and of the connected components
of [a, b] × T \ ω other than C−, which all have a non-empty intersection with ω̃.
Step 3: Conclusion using van Kampen’s theorem. If α is a closed path in a topological
space X, we will denote its homotopy class by [α]X . We will denote the fundamental
group of X by π1(X). We will denote by p− (respectively p+) the canonical injection
of π1(A−) (respectively π1(A+)) into the free product π1(A−) ∗ π1(A+).

According to van Kampen’s theorem [Hat02, Theorem 1.20], the map k : π1(A−) ∗
π1(A+) → π1([a, b] × T) defined by

[α]A± ∈ π1(A±) 7→ [α][a,b]×T ∈ π1([a, b] × T)

is surjective. Moreover, its kernel is generated by p+([α]A+)p−([α]A−)−1 for all closed
paths α in A− ∩ A+ = ω̃.
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If we denote the closed path s ∈ T 7→ (a, s) ∈ [a, b] × T (respectively s 7→ (b, s))
by β− (respectively β+), the definition of k implies that

k
(
p−
(
[β−]A−

))
= [β−][a,b]×T = [β+][a,b]×T = k

(
p+
(
[β+]A+

))
.

Thus, ξ := p−([β−]A−)p+([β+]A+)−1 ∈ ker(k). According to the previous discussion,
ξ is a product of terms of the form p±([αk]A±)p∓([αk]A∓)−1 for a finite number of
paths αk in ω̃. Reducing the word ξ in the free product π1(A−) ∗ π1(A+), ξ can be
written in the form

(B.2) p−
(
[β−]A−

)
p+
(
[β+]A+

)−1
= ξ = p±

(
[α̃1]A±

)
p∓
(
[α̃2]A∓

)
p±
(
[α̃3]A±

)
· · ·

where none of the terms in the right-hand side are the neutral element of π1(A±).
Since the left-hand side is already a reduced word, by definition of the free product
of groups, the two words on the left and right-hand side of this equality are the same.
Thus there are exactly two factors in the right-hand side of eq. (B.2) and

[β−]A− = [α̃1]A− , [β+]−1
A+ = [α̃2]A+ .

The first equality tells us that α̃1 is homotopic in A− to β−. Since α̃1 is in ω̃ and since
β− is not homotopic to a constant path in [a, b] ×T, this proves the proposition. □

To end this appendix, we mention that Proposition B.2 has a variant when the
domain is (a, b) × [0, π] instead of (a, b) × T:

Proposition B.5. — Let a < b and let γ = (γx, γy) ∈ C0([0, 1], (a, b) × [0, π]) be
a closed path such that γy(0) = 0 and γy(1) = π. Then {a} × [0, π] and {b} × [0, π]
are included in different connected components of [a, b] × [0, π] \ (γ([0, 1])).

The proof also uses Jordan’s theorem, but in a simpler way than Proposition B.2,
and is left to the reader.

Appendix C. Non-selfadjoint harmonic oscillators

Let β ∈ C with Re(β) > 0. We discuss in this appendix the basic properties of the
non-selfadjoint harmonic oscillator (or Davies operator) defined on L2(R) by

(C.1) Hβ = −∂2
x + β2x2.

More precisely, we set

Dom(Hβ) =
{
u ∈ L2(R) : −∂2

xu+ β2x2u ∈ L2(R)
}
,

where −∂2
xu+β2x2u is understood in the sense of distributions, and we define Hβ by

eq. (C.1) on Dom(Hβ). This defines an unbounded operator on L2(R). When β = 1
we recover the usual harmonic oscillator.

The spectral properties of the Davies operator has been studied (see, among
others, [Dav07, § 14.5], [Hel13, § 14.4], [KSTV15], and the references therein), and
the properties stated in this appendix are standard, at least in spirit. Nevertheless,
for the reader convenience, we collect and prove the properties needed in our study.
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Proposition C.1. — Let β ∈ C with Re(β) > 0.
(i) The operator Hβ is closed and has compact resolvent.
(ii) The adjoint of Hβ is H∗

β = Hβ̄.
(iii) The spectrum of Hβ is given by the sequence of (geometrically and alge-

braically) simple eigenvalues (λH
β,k)k ∈N∗ where

λH
β,k = (2k − 1)β.

An eigenfunction associated to λH
β,k is given by

φH
β,k(x) = hk−1

(√
βx
)

e−βx2/2, where hk−1(x) = (−1)k−1ex2
∂k−1

x

(
e−x2)

is the (k − 1)th Hermite polynomial.
(iv) For γ > 0 and ε > 0 we set

(C.2) Zβ,ε,γ := {z ∈ C : |z| ⩽ γ |β| , distance(z, σ(Hβ)) ⩾ ε |β|} .
Let θ0 ∈ [0, π

2 ). There exists C > 0 such that if β ∈ Σθ0 (see eq. (4.1)) then
for z ∈ Zβ,ε,γ we have

(C.3)
∥∥∥ (Hβ − z)−1

∥∥∥
L(L2(R))

⩽
C

|β|
.

(v) We denote by ΠH
β the spectral projection of Hβ associated to the eigenvalue

λH
β,1 = β. Then we have (note the β instead of β in the first argument of the

inner products)

(C.4) ΠH
β u =

〈
φH

β̄,1, u
〉

〈
φH

β̄,1, φ
H
β,1

〉φH
β,1.

and

(C.5)
∥∥∥ΠH

β

∥∥∥
L(L2(R))

=

√√√√ |β|
Re(β) = 1√

cos(arg(β))
.

Proof. —
Step 1: Hβ has compact resolvent. The closedness of Hβ is clear. Let θ = arg(β) ∈
(−π

2 ,
π
2 ). For u ∈ Dom(Hβ) we have

(C.6)
〈
e−iθHβu, u

〉
L2(R)

= e−iθ ∥u′∥2
L2(R) + |β|2 eiθ ∥xu∥2

L2(R) ,

so the numerical range of e−iθHβ is included in Σθ. In particular, (e−iθHβ + 1) is
injective. Now let

B1(R) =
{
u ∈ H1(R) : xu ∈ L2(R)

}
.

This is a Hilbert space for the natural norm
∥u∥2

B1(R) = ∥u∥2
H1(R) + ∥xu∥2

L2(R) .

For u, v ∈ B1(R) we set
Qβ(u, v) = e−iθ ⟨u′, v′⟩L2(R) + |β|2 eiθ ⟨xu, xv⟩L2(R) + ⟨u, v⟩L2(R) .
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Let f ∈ L2(R). By the Lax–Milgram Theorem, there exists a unique u ∈ B1(R) such
that Qβ(u, v) = ⟨f, v⟩L2(R) for all v ∈ B1(R). In the sense of distributions we have
e−iθ(−u′′ + β2x2u) + u = f ∈ L2(R), so u ∈ Dom(Hβ) and (e−iθHβ + 1)u = f . This
proves that −eiθ belongs to the resolvent set of Hβ.

Finally, taking the real part of eq. (C.6) gives for u ∈ Dom(Hβ)

∥u′∥2
L2(R) + |β|2 ∥xu∥2

L2(R) ⩽
Re

〈
e−iθHβu, u

〉
cos(θ) ⩽

1
2 cos(θ)

(
∥Hβu∥2

L2(R) + ∥u∥2
L2(R)

)
.

We deduce that Dom(Hβ) is compactly embedded in L2(R). Since Hβ has nonempty
resolvent set, it has compact resolvent. In particular, its spectrum consists of isolated
eigenvalues of finite multiplicities.
Step 2: Computation of (Hβ)∗. Let v ∈ Dom(Hβ̄). For u ∈ Dom(Hβ) we have
⟨Hβu, v⟩ = ⟨u,Hβ̄v⟩, so Dom(Hβ̄) ⊂ Dom(H∗

β) and H∗
β = Hβ̄ on Dom(Hβ̄). Now let

v ∈ Dom(H∗
β) and f = H∗

βv. Then v ∈ L2(R) and in the sense of distributions we have
−v′′ + β̄2x2v = f ∈ L2(R), so v ∈ Dom(Hβ̄). This proves that Dom(H∗

β) ⊂ Dom(Hβ̄),
and hence H∗

β = Hβ̄.
Step 3: Eigenvalues and eigenfunctions of Hβ, completeness of the eigenfunctions.
For k ∈ N∗ we have φH

β,k ∈ Dom(Hβ) and it is classical computation that for β = 1,
(see, e.g., [Hel13, §1.3])

H1φ
H
1,k = λH

1,kφ
H
1,k.

Noticing that φH
β,k(x) = φ1,k(

√
βx), routine computations using the scaling x′ =

√
βx

show that
Hβφ

H
β,k = λH

β,kφ
H
β,k.

Then λH
β,k is an eigenvalue of Hβ and φH

β,k is a corresponding eigenfunction.
Let u ∈ span(φH

β,k)⊥
k ∈N∗ . For all polynomial p we have

∫
R u(x)p(

√
βx)e−βx2/2 dx = 0.

For ξ ∈ R we set F (ξ) =
∫
R eixξu(x)e−βx2/2 dx. Then F is analytic and F (n)(0) = 0 for

all n ∈ N. This implies that u(x) = 0 for almost all x ∈ R, so the family (φH
β,k)k ∈N∗

is complete.
Step 4: Resolvent estimate. The map

(θ, ζ) 7→
(
Heiθ − eiθζ

)−1

is continuous and hence bounded on the compact [−θ0, θ0]×Z1,ε,γ , so eq. (C.3) holds
if |β| = 1.

For ρ > 0 we consider on L2(R) the unitary operator Θρ such that for u ∈ L2(R)
and x ∈ R we have

(Θρu)(x) = ρ
1
2u(ρx).

We observe that
Θ−1

|β|
1
2
HβΘ

|β|
1
2

= |β|H β
|β|
,

so for z ∈ Zβ,ε,γ we have∥∥∥(Hβ − z)−1
∥∥∥

L(L2(R))
= 1

|β|

∥∥∥∥∥∥
(
H β

|β|
− z

|β|

)−1
∥∥∥∥∥∥

L(L2(R))

.
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Since |β|−1 Zβ,ε,γ = Zβ/|β|,ε,γ, we deduce eq. (C.3) in the general case.

Step 5: Spectral projection. In the integral ⟨φH
β,k
, φH

β,1⟩ =
∫
R hk−1(

√
βx)e−βx2 dx, we

make the change of variables and integration path x′ =
√
βx, which can be justified

thanks to the gaussian decay of the integrand, and we find
〈
φH

β,k
, φH

β,1

〉
= 1√

β

∫
R
hk−1(x)e−x2 dx = 1√

β

〈
φH

1,k, φ
H
1,1

〉
.

Since the functions (φH
1,k) are eigenfunctions of the self-adjoint operator H1 associated

to different eigenvalues, we have ⟨φH
1,k, φ

H
1,1⟩ = 0 for k ̸= 1. Since ⟨φH

1,1, φ
H
1,1⟩ =

√
π,

we finally have

(C.7)
〈
φH

β,k
, φH

β,1

〉
=


√
π

β
if k = 1

0 if k ̸= 1.

Thus, we can define

Π̃βu =

〈
φH

β̄,1, u
〉

〈
φH

β̄,1, φ
H
β,1

〉φH
β,1.

Then, for k ∈ N∗

Π̃βφ
H
β,k =

{
φH

β,1 if k = 1
0 if k ̸= 1.

According to Step 3, the family (φH
β,k)k is complete, hence, by density, Π̃β is indeed

the spectral projection ΠH
β .

Since φH
β,1(x) = e−βx2/2, we can compute

∥∥∥φH
β,1

∥∥∥2

L2(R)
=
∥∥∥φH

β̄,1

∥∥∥2

L2(R)
=
√

π

Re(β) ,

and eq. (C.5) follows with eq. (C.7). □

Corollary C.2. — Let ΠH
β as in Proposition C.1. Let I ⊂ R be an open interval

that contains 0. Let θ0 ∈ [0, π/2). Then

Tr
(
1∗

IΠH
β1I

)
−−−−−−−→

|β|→∞
|arg(β)|⩽ θ0

1.

Proof. — The reader who is not familiar with the trace of operators in infinite
dimensional space may read, for instance, [Kat95, Chapter 10, §1.3–1.4]. We have
Tr(1∗

IΠH
β1I) = Tr(1I1

∗
IΠH

β ). Let (ψk)k be an orthonormal basis of L2(R) such that
ψ1 = ∥1I1

∗
Iφ

H
β,1∥−11I1

∗
Iφ

H
β,1. Then,
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1520 J. DARDÉ, A. KOENIG & J. ROYER

Tr
(
1I1

∗
1ΠH

β

)
=
∑

k

〈
1I1

∗
IΠH

βψk, ψk

〉
=
〈
1I1

∗
IΠH

βψ1, ψ1
〉

=
∥∥∥1I1

∗
Iφ

H
β,1

∥∥∥−2
〈
φH

β̄,1,1I1
∗
Iφ

H
β,1

〉
〈
φH

β̄,1, φ
H
β,1

〉 〈
φH

β,1,1I1
∗
Iφ

H
β,1

〉

=

〈
φH

β̄,1,1I1
∗
Iφ

H
β,1

〉
〈
φH

β̄,1, φ
H
β,1

〉 =
∫

I φ
H
β,1(x)2 dx∫

R φ
H
β,1(x)2 dx

(note the β instead of β in the first argument of the inner products). Since 0 ∈ I,
the saddle point method proves that the right-hand side tends to 1 as |β| → ∞ and
|arg(β)| ⩽ θ0. □
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