Degenerations of SL(2,) representations and Lyapunov exponents
Annales Henri Lebesgue, Volume 2 (2019), pp. 515-565.

Metadata

Abstract

We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2,), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on 1 ().


References

[ACS83] Avron, Joseph; Craig, Walter; Simon, Barry Large coupling behaviour of the Lyapunov exponent for tight binding one-dimensional random systems, J. Phys. A, Math. Gen., Volume 16 (1983) no. 7, pp. 209-211 | DOI | MR | Zbl

[Alp87] Alperin, Roger C. An elementary account of Selberg’s lemma, Enseign. Math., Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl

[Bea95] Beardon, Alan F. The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR

[Ber90] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, x+169 pages | MR | Zbl

[Ber09] Berkovich, Vladimir G. A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 49-67 | DOI | MR | Zbl

[BJ17] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[BL85] Bougerol, Philippe; Lacroix, Jean Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985, xii+283 pages | DOI | MR | Zbl

[BNV17] Bocker-Neto, Carlos; Viana, Marcelo Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 5, pp. 1413-1442 | DOI | MR | Zbl

[BR10] Baker, Matthew; Rumely, Robert Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR | Zbl

[CM87] Culler, Marc; Morgan, John W. Group actions on R-trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | MR | Zbl

[CS83] Culler, Marc; Shalen, Peter B. Varieties of group representations and splittings of 3-manifolds, Ann. Math., Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl

[DD12] Deroin, Bertrand; Dujardin, Romain Random walks, Kleinian groups, and bifurcation currents, Invent. Math., Volume 190 (2012) no. 1, pp. 57-118 | DOI | MR | Zbl

[DD15] Deroin, Bertrand; Dujardin, Romain Lyapunov exponents for surface group representations, Commun. Math. Phys., Volume 340 (2015) no. 2, pp. 433-469 | DOI | MR | Zbl

[DeM03] DeMarco, Laura Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl

[DeM16] DeMarco, Laura Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl

[DF16] DeMarco, Laura; Faber, Xander Degenerations of complex dynamical systems II: analytic and algebraic stability, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1669-1699 (With an appendix by Jan Kiwi) | DOI | MR | Zbl

[DMF14] De Marco, Laura; Faber, Xander Degenerations of complex dynamical systems, Forum Math. Sigma, Volume 2 (2014), e6, 36 pages | DOI | MR | Zbl

[Fan18] Fantini, Lorenzo Normalized Berkovich spaces and surface singularities, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 7815-7859 | DOI | MR | Zbl

[Fav19] Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space. (2019) (to appear in J. Inst. Math. Jussieu) | DOI

[FJ04] Favre, Charles; Jonsson, Mattias The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004, xiv+234 pages | DOI | MR | Zbl

[FK83] Furstenberg, Harry; Kifer, Yuri Random matrix products and measures on projective spaces, Isr. J. Math., Volume 46 (1983) no. 1-2, pp. 12-32 | DOI | MR | Zbl

[Fur63] Furstenberg, Harry Noncommuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl

[Fur02] Furman, Alex Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 931-1014 | DOI | MR | Zbl

[GR85] Guivarc’h, Yves; Raugi, Albert Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985) no. 2, pp. 187-242 | DOI | MR | Zbl

[Gui90] Guivarc’h, Yves Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | MR | Zbl

[Jon15] Jonsson, Mattias Dynamics of Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | DOI | MR | Zbl

[Kap09] Kapovich, Michael Hyperbolic manifolds and discrete groups, Modern Birkhäuser Classics, Birkhäuser, 2009, xxviii+467 pages (Reprint of the 2001 edition) | DOI | MR | Zbl

[LP89] Le Page, Émile Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 2, pp. 109-142 | Numdam | MR | Zbl

[MT18] Maher, Joseph; Tiozzo, Giulio Random walks on weakly hyperbolic groups, J. Reine Angew. Math., Volume 742 (2018), pp. 187-239 | DOI | MR | Zbl

[Ota15] Otal, Jean-Pierre Compactification of spaces of representations after Culler, Morgan and Shalen, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 367-413 | DOI | MR | Zbl

[Poi13] Poineau, Jérôme Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | MR | Zbl

[Tem15] Temkin, Michael Introduction to Berkovich analytic spaces, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 3-66 | DOI | MR | Zbl

[YW15] Yang, Jinghua; Wang, Yuefei On p-adic Möbius maps (2015) (https://arxiv.org/abs/1512.01305)