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To highlight the strength of our approach, we give examples of computations of Fourier
transforms of tempered distributions that do not correspond to integrable or square integrable
functions. The most striking one is a formula for the Fourier transform of functions on Hd that
are independent of the vertical variable, an open question, to the best of our knowledge.

Résumé. — Dans cet article, on s’intéresse à l’extension de la transformation de Fourier
sur le groupe de Heisenberg Hd, aux distributions tempérées. Notre but est de donner au
lecteur un cadre adapté à l’étude de l’analyse de Fourier et des EDP sur Hd.

Comme dans Rn, il s’agit en premier lieu de montrer que la transformation de Fourier est un
isomorphisme sur l’espace de Schwartz, puis d’étendre sa définition par dualité aux distributions
tempérées. Pour ce faire, on définit la transformée de Fourier d’une fonction intégrable comme
étant une fonction uniformément continue sur l’ensemble H̃d = Nd × Nd × R \ {0}, qui peut
être complété en un ensemble H̃d pour une distance adéquate. Ce point de vue donne une
caractérisation simple de l’image de l’espace de Schwartz sur Hd par la transformation de
Fourier, permettant ainsi d’étendre sa définition à l’ensemble des distributions tempérées.

Pour illustrer la puissance de notre approche, on donne quelques exemples de calculs explicites
de transformées de Fourier de fonctions ou distributions tempérées qui ne correspondent pas
à des fonctions intégrables ou de carrés intégrables. Le plus spectaculaire est l’obtention d’une
formule explicite pour la transformée de Fourier de fonctions régulières indépendantes de la
variable verticale. Pour répondre à cette question de façon simple, avoir pris le soin de le
compléter au préalable l’espace des fréquences H̃d s’avère fondamental.

1. Introduction

The present work aims at extending Fourier analysis on the Heisenberg group to
tempered distributions. It is by now very classical that in the case of a commutative
group, the Fourier transform is a function on the group of characters. In the Euclidean
space Rn the group of characters may be identified with the dual space (Rn)? of Rn

through the map ξ 7→ ei〈ξ,· 〉, where 〈ξ, · 〉 designate the value of the one-form ξ when
applied to elements of Rn, and the Fourier transform of an integrable function f
may be seen as the function on (Rn)?, defined by

(1.1) F(f)(ξ) = f̂(ξ) def=
∫
Rn
e−i〈ξ,x〉f(x) dx.

A fundamental fact of the distribution theory on Rn is that the Fourier transform
is a bi-continuous isomorphism on the Schwartz space S(Rn) – the set of smooth
functions whose derivatives decay at infinity faster than any power. Hence, one
can define the transposed Fourier transform tF on the so-called set of tempered
distributions S ′(Rn), that is the topological dual of S(Rn) (see e.g. [Rud62, Sch98]
for a self-contained presentation). As the whole distribution theory on Rn is based on
identifying locally integrable functions with linear forms by means of the Lebesgue
integral, one can look for a more direct relationship between tF and F , by considering
the following bilinear form on S(Rn)× S(Rn):

(1.2) BR(f, φ) def=
∫
T ?Rn

f(x)e−i〈ξ,x〉φ(ξ) dx dξ,

where the cotangent bundle T ?Rn of Rn is identified with Rn × (Rn)?. This allows
to identify tF|S((Rn)?) with F|S(Rn), and it is thus natural to define the extension of
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Fourier transform on the Heisenberg group 3

F on S ′(Rn) to be tF , that is,

(1.3) ∀ (T, φ) ∈ S ′(Rn)× S(Rn) , 〈FT, φ〉S′(Rn)×S(Rn)
def= 〈T,Fφ〉S′(Rn)×S(Rn).

We aim at implementing that procedure on the Heisenberg group Hd. As in the
Euclidean case, to achieve our goal, it is fundamental to have a handy characterization
of the range of the Schwartz space on Hd by the Fourier transform. The first attempt
in that direction goes back to the pioneering works by D. Geller in [Gel77, Gel80] (see
also [ADBR13, Far10, LT14] and the references therein). However, the description
of F(S(Hd)) that is given therein relies on complicated asymptotic series, so that
whether it allows to extend the Fourier transform to tempered distribution is unclear.
We here aim at presenting a rather elementary description of F(S(Hd)) that

is based on the approach that we developed recently in[BCD]. Our motivation is
threefold. First, our approach enables us to recover easily different classical but
highly nontrivial results like the fact that the fundamental solution of the heat flow
or kernels of multipliers of the form a(−∆H) with a ∈ S(R), belong to S(Hd). Second,
we are able to compute explicitly the Fourier transform of a number of functions
which are not integrable like, for instance, that of functions that are independent of
the vertical variable. Third, having a complete description of both F(S(Hd)) and
F(S ′(Hd)) gives us a solid basis to tackle more complicated Fourier analysis issues,
with applications to Partial Differential Equations.
At this stage of the paper, we have to recall the definitions of the Heisenberg

group Hd and of the Fourier transform on Hd, and a few basic properties. We shall
define Hd to be the set T ?Rd × R equipped with the product law

w · w′ def= (Y + Y ′, s+ s′ + 2σ(Y, Y ′)) = (y + y′, η + η′, s+ s′ + 2〈η, y′〉 − 2〈η′, y〉)
where w = (Y, s) = (y, η, s) and w′ = (Y ′, s′) = (y′, η′, s′) are generic elements
of Hd. In the above definition, the notation 〈 · , · 〉 designates the duality bracket
between (Rd)? and Rd and σ is the canonical symplectic form on R2d, seen as T ?Rd.
This gives Hd the structure of a non commutative group for which w−1 = −w. The
reader will find more details in the books [BFKG12, FH84, FR14, Fol89, FS82, Ste93,
Tay86, Tha98] and in the references therein.
In accordance with the above product formula, one can define the set of the

dilations on the Heisenberg group to be the family of operators (δa)a>0 given by

(1.4) δa(w) = δa(Y, s) def= (aY, a2s).
Note that dilations commute with the product law on Hd, that is δa(w · w′) =
δa(w) · δa(w′). Furthermore, as the determinant of δa (seen as an automorphism of
R2d+1) is a2d+2, the homogeneous dimension of Hd is N def= 2d+ 2.
The Heisenberg group is endowed with a smooth left invariant Haar measure,

which, in the coordinate system (y, η, s) is just the Lebesgue measure on R2d+1. The
corresponding Lebesgue spaces Lp(Hd) are thus the sets of measurable functions
f : Hd → C such that

‖f‖Lp(Hd)
def=
(∫

Hd
|f(w)|p dw

) 1
p

<∞, if 1 6 p <∞,

with the standard modification if p =∞.
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The convolution product of any two integrable functions f and g is given by

f ? g(w) def=
∫
Hd
f(w · v−1)g(v) dv =

∫
Hd
f(v)g(v−1 · w) dv.

As in the Euclidean case, the convolution product is an associative binary operation
on the set of integrable functions. Even though it is no longer commutative, the
following Young inequalities hold true:

‖f ? g‖Lr 6 ‖f‖Lp‖g‖Lq , whenever 1 6 p, q, r 6∞ and 1
r

= 1
p

+ 1
q
− 1.

The Schwartz space S(Hd) corresponds to the Schwartz space S(R2d+1) (an equiva-
lent definition involving the Heisenberg structure will be provided in Appendix A.3).
As the Heisenberg group is noncommutative, defining the Fourier transform of

integrable functions on Hd, by a formula similar to (1.1) is no longer relevant. One
has to use a more elaborate family of irreducible representations of Hd, all of them
being unitary equivalent (see e.g. [Tay86, Chapter 2]) to the Schrödinger representa-
tion (Uλ)λ∈R\{0} which is the family of group homomorphisms w 7→ Uλ

w between Hd

and the unitary group U(L2(Rd)) of L2(Rd) defined for all w = (y, η, s) in Hd and u
in L2(Rd) by

Uλ
wu(x) def= e−iλ(s+2〈η,x−y〉)u(x− 2y).

The standard definition of the Fourier transform then reads as follows.

Definition 1.1. — For f in L1(Hd) and λ in R \ {0}, we define

FH(f)(λ) def=
∫
Hd
f(w)Uλ

w dw.

The function FH(f) which takes values in the space of bounded operators on L2(Rd)
is, by definition, the Fourier transform of f .

An obvious drawback of Definition 1.1 is that FHf is not a complex valued function
on some “frequency space”, but a much more complicated object. Consequently, one
can hardly expect to have a simple characterization of the range of the Schwartz space
by FH, allowing for our extending the Fourier transform to tempered distributions.
To overcome that difficulty, we proposed in our recent paper[BCD] an alternative
(equivalent) definition that makes the Fourier transform of any integrable function on
Hd, a continuous function on another (explicit) set Ĥd endowed with some distance d̂.
Before giving our definition, we need to introduce some notation. Let us first

recall that the Lie algebra of left invariant vector fields on Hd, that is vector fields
commuting with any left translation τw(w′) def= w ·w′, is spanned by the vector fields

(1.5) S
def= ∂s , Xj

def= ∂yj + 2ηj∂s and Ξj
def= ∂ηj − 2yj∂s , 1 6 j 6 d.

The sublaplacian associated to the vector fields (Xj)16j6d and (Ξj)16j6d is defined
by

(1.6) ∆H
def=

d∑
j=1

(X 2
j + Ξ2

j),
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and may be rewritten in terms of the usual derivatives as follows:

∆Hf(Y, s) = ∆Y f(Y, s) + 4
d∑
j=1

(ηj∂yj − yj∂ηj)∂sf(Y, s) + 4|Y |2∂2
sf(Y, s).

The sublaplacian plays a fundamental role in the Fourier theory of the Heisenberg
group. The starting point is the following relation that holds true for all functions f
in the Schwartz space (see e.g.[Hue76, Olv74]):

(1.7) FH(∆Hf)(λ) = 4FH(f)(λ) ◦∆λ
osc with ∆λ

oscu(x) def=
d∑
j=1

∂2
ju(x)−λ2|x|2u(x).

In order to take advantage of the spectral structure of the harmonic oscillator,
we introduce the corresponding eigenvectors, that is the family of Hermite func-
tions (Hn)n∈Nd defined by

Hn
def=
( 1

2|n|n!

) 1
2
CnH0 with Cn def=

d∏
j=1

C
nj
j and H0(x) def= π−

d
2 e−

|x|2
2 ,

where Cj def= −∂j + Mj stands for the creation operator with respect to the j-th
variable and Mj is the multiplication operator defined by Mju(x) def= xju(x).
As usual, for any multi-index n in Nd, n! def= n1! ... nd! and |n| def= n1 + ... + nd

stands for the length of n (not to be confused with the Euclidean norm that we shall
sometimes denote in the same way for elements of Rd).
Recall that (Hn)n∈Nd is an orthonormal basis of L2(Rd), and that we have

(−∂2
j +M2

j )Hn = (2nj + 1)Hn and thus −∆1
oscHn = (2|n|+ d)Hn.

For λ in R \ {0}, we finally introduce the rescaled Hermite function Hn,λ(x) def=
|λ| d4Hn(|λ| 12x). It is obvious that (Hn,λ)n∈Nd is still an orthonormal basis of L2(Rd)
and that

(1.8) (−∂2
j +λ2M2

j )Hn,λ = (2nj +1)|λ|Hn,λ and −∆λ
oscHn,λ = (2|n|+d)|λ|Hn,λ.

Our alternative definition of the Fourier transform on Hd then reads as follows:

Definition 1.2. — Let H̃d def= N2d × R \ {0}, and denote by ŵ = (n,m, λ) a
generic point of H̃d. For f in L1(Hd), we define the map FHf (also denoted by f̂H)
to be

FHf :

 H̃d −→ C
ŵ 7−→ (FH(f)(λ)Hm,λ|Hn,λ)L2 .

To underline the similarity between that definition and the classical one in Rn, one
may further compute (FH(f)(λ)Hm,λ|Hn,λ)L2 . One can observe that, after a change of
variable, the Fourier transform recasts in terms of the mean value of f modulated by
some oscillatory functions which are closely related to Wigner transforms of Hermite
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functions, namely

FHf(ŵ) =
∫
Hd
eisλW(ŵ, Y ) f(Y, s) dY ds(1.9)

with W(ŵ, Y ) def=
∫
Rd
e2iλ〈η,z〉Hn,λ(y + z)Hm,λ(−y + z) dz.(1.10)

With this new point of view, Formula (1.7) recasts as follows:
FH(∆Hf)(ŵ) = −4|λ|(2|m|+ d)f̂H(ŵ).

Furthermore, if we endow the set H̃d with the measure dŵ defined by the relation∫
H̃d
θ(ŵ) dŵ def=

∑
(n,m)∈N2d

∫
R
θ(n,m, λ)|λ|ddλ,

then the classical inversion formula and Fourier–Plancherel theorem become:
Theorem 1.3. — Let f be a function in S(Hd). Then we have the inversion

formula

(1.11) f(w) = 2d−1

πd+1

∫
H̃d
eisλW(ŵ, Y )f̂H(ŵ) dŵ for any w in Hd,

and the Fourier transform FH can be extended to a bicontinuous isomorphism be-
tween the spaces L2(Hd) and L2(H̃d), that satisfies

(1.12) ‖f̂H‖2
L2(H̃d) = πd+1

2d−1 ‖f‖
2
L2(Hd).

Finally, for any couple (f, g) of integrable functions, the following convolution identity
holds true:

(1.13) FH(f ? g)(n,m, λ) = (f̂H · ĝH)(n,m, λ)

with (f̂H · ĝH)(n,m, λ) def=
∑
`∈Nd

f̂H(n, `, λ)ĝH(`,m, λ).

For the reader’s convenience, we shall present a proof of Theorem 1.3 in the
appendix.

2. Main results

As already mentioned, our final goal is to extend the Fourier transform to tempered
distributions on Hd. If we follow the standard approach of the Euclidean setting that
is described by (1.2) and (1.3), then the main difficulty is to get a description of
the range S(H̃d) of S(Hd) by FH that allows to find out some bilinear form BH for
identifying tFH with FH.
Here, we first present results pertaining to the characterization of the set S(H̃d),

then exhibit a large class of functions of S(H̃d) that, in particular, contains the
Fourier transform of the heat kernel. Third, we go to examples of tempered distri-
butions on the frequency set H̃d and, finally, to computations of Fourier transform
of tempered distributions (with a special attention to functions independent of the
vertical variable).
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To characterize FH(S(Hd)), we first have to keep in mind that, as in the Euclidean
setting, we expect the Fourier transform to change the regularity of functions on Hd

to decay of the Fourier transform. This is achieved in the following lemma that has
been proved in [BCD].

Lemma 2.1. — For any integer p, there exist an integer Np and a positive constant
Cp such that for all ŵ in H̃d and all f in S(Hd), we have

(2.1) (1 + |λ|(|n|+ |m|+ d) + |n−m|)p |f̂H(n,m, λ)| 6 Cp‖f‖Np,S ,

where ‖ · ‖N,S denotes the classical family of semi-norms of S(R2d+1), namely

‖f‖N,S
def= sup
|α|6N

∥∥∥(1 + |Y |2 + s2)N/2 ∂αY,sf
∥∥∥
L∞

.

The second property we expect to have is that the Fourier transform changes
decay into regularity. As in the Euclidean case, this is closely related to how it
acts on weight functions: we expect FH to transform multiplication by a (suitable)
weight function into a derivative operator on H̃d. So far however, we lack a notion
of differentiation on H̃d that could fit the scope. This is the aim of the following
definition (see also Proposition A.3 in Appendix):

Definition 2.2. — For any function θ : H̃d → C we define

(2.2) ∆̂θ(ŵ) def= − 1
2|λ|(|n+m|+ d)θ(ŵ)

+ 1
2|λ|

d∑
j=1

(√
(nj + 1)(mj + 1) θ(ŵ+

j ) +√njmj θ(ŵ−j )
)

and, if in addition θ is differentiable with respect to λ,

(2.3) D̂λθ(ŵ) def= dθ
dλ(ŵ) + d

2λθ(ŵ)

+ 1
2λ

d∑
j=1

(√
njmj θ(ŵ−j )−

√
(nj+1)(mj+1) θ(ŵ+

j )
)
,

where ŵ±j
def= (n±δj,m±δj, λ) and δj denotes the element of Nd with all components

equal to 0 except the j-th which has value 1.

The notation in the above definition is justified by the following lemma that will
be proved in Subsection 3.2.

Lemma 2.3. — Let M2 and M0 be the multiplication operators defined on S(Hd)
by

(2.4) (M2f)(Y, s) def= |Y |2f(Y, s) and M0f(Y, s) def= −isf(Y, s).

Then for all f in S(Hd), the following two relations hold true on H̃d:

FHM
2f = −∆̂FHf and FH(M0f) = D̂λFHf.
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The third aspect of regularity for functions in FH(S(Hd)) we have to underline is
the link between their values for positive λ and negative λ. This link is crucial in
the computation of M0F−1

H which is done in the proof of the inversion theorem in
the Schwartz space S(Hd). That property has no equivalent in the Euclidean setting,
and is described in the following lemma:

Lemma 2.4. — Let us consider on S(Hd) the operator P defined by

(2.5) P(f)(Y, s) def= 1
2

∫ s

−∞
(f(Y, s′)− f(Y,−s′)) ds′.

Then, P maps continuously S(Hd) to S(Hd) and, for any f in S(Hd) and ŵ in H̃d,
we have 2iFH(Pf) = Σ̂0(FHf) with

(2.6) Σ̂0(θ)(ŵ) def= θ(n,m, λ)− (−1)|n+m|θ(m,n,−λ)
λ

.

Technically, the above weird relation stems from the fact that the function W
fulfills:
(2.7) ∀ (n,m, λ, Y ) ∈ H̃d × T ?Rd , W(n,m, λ, Y ) = (−1)|n+m|W(m,n,−λ, Y ).
Note that, since the left-hand side of (2.6) belongs to the space FH(S(Hd)) that is
the natural candidate for being S(H̃d), we need to prescribe in addition to the decay
properties pointed out in Lemmas 2.1 and 2.3 some condition involving Σ̂0. This
motivates the following definition.

Definition 2.5. — We define S(H̃d) to be the set of functions θ on H̃d such that:
• for any (n,m) in N2d, the map λ 7−→ θ(n,m, λ) is smooth on R \ {0},
• for any non negative integer N , the functions ∆̂Nθ, D̂Nλ θ and Σ̂0D̂Nλ θ decay
faster than any power of d̂0(ŵ) def= |λ|(|n+m|+ d) + |m− n|.

We equip S(H̃d) with the family of semi-norms

‖θ‖
N,N ′,S(H̃d)

def= sup
ŵ∈Ĥd

(
1 + d̂0(ŵ)

)N (
|∆̂N ′θ(ŵ)|+ |D̂N ′λ θ(ŵ)|+ |Σ̂0D̂N

′

λ θ(ŵ)|
)
.

Clearly, the above definition of semi-norms guarantees that there exist an integerK
and a positive real number C so that the following inequality holds true:
(2.8) ‖θ‖

L1(H̃d) 6 C‖θ‖
K,0,S(H̃d).

More importantly, we have the following isomorphism theorem.

Theorem 2.6. — The Fourier transform FH is a bicontinuous isomorphism be-
tween S(Hd) and S(H̃d), and the inverse map is given by

(2.9) F̃Hθ(w) def= 2d−1

πd+1

∫
H̃d
eisλW(ŵ, Y )θ(ŵ) dŵ.

We shall discover throughout the paper that the definition of S(H̃d) encodes a
number of nontrivial hidden informations that are consequences of the sub-ellipticity
of ∆H. For instance, the stability of S(H̃d) by the multiplication law defined in (1.13)
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is a consequence of the stability of S(Hd) by convolution and of Theorem 2.6. Another
hidden information is the behavior of functions of S(H̃d) when λ tends to 0.
Keeping the decay inequality (2.1) in mind, we endow the set H̃d with the distance:

d̂(ŵ, ŵ′) def= |λ(n+m)− λ′(n′ +m′)|1 + |(n−m)− (n′ −m′)|+ d|λ− λ′|,

where | · |1 denotes the Manhattan norm `1 on Rd.
With this choice, the Fourier transform of any function of S(Hd) (and even of any

integrable function on Hd) is uniformly continuous on H̃d, and can thus be extended
by continuity on the completion Ĥd of H̃d, as explained in greater details in the
following statement that has been proved in [BCD]:

Theorem 2.7. — The completion of (H̃d, d̂) is the metric space (Ĥd, d̂) where

Ĥd def= H̃d ∪ Ĥd
0 with Ĥd

0
def= Rd

∓ × Zd and Rd
∓

def= (R−)d ∪ (R+)d

and the extended distance (still denoted by d̂) is given for all ŵ = (n,m, λ) and ŵ′ =
(n′,m′, λ′) in H̃d, and for all (ẋ, k) and (ẋ′, k′) in Ĥd

0 by

d̂(ŵ, ŵ′) = |λ(n+m)− λ′(n′ +m′)|1 + |(m− n)− (m′ − n′)|+ d|λ− λ′|,

d̂ (ŵ, (ẋ, k)) = d̂ ((ẋ, k), ŵ) def= |λ(n+m)− ẋ|1 + |m− n− k|+ d|λ|,
d̂ ((ẋ, k), (ẋ′, k′)) = |ẋ− ẋ′|1 + |k − k′|.

The Fourier transform f̂H of any integrable function on Hd may be extended
continuously to the whole set Ĥd. Still denoting by f̂H (or FHf) that extension, the
linear map FH : f 7→ f̂H is continuous from the space L1(Hd) to the space C0(Ĥd) of
continuous functions on Ĥd tending to 0 at infinity.

The above theorem prompts us to consider the space S(Ĥd) of functions on Ĥd

which are continuous extensions of elements of S(H̃d), endowed with the semi-norms
‖ · ‖

N,N ′,S(H̃d). Those semi-norms will be denoted by ‖ · ‖
N,N ′,S(Ĥd) in all that follows.

Note that for any function θ in S(Ĥd), having ŵ tend to (ẋ, k) in (2.6) yields

θ(ẋ, k) = (−1)|k|θ(−ẋ,−k).

As regards convolution, we obtain, after passing to the limit in (1.13), the following
noteworthy formula, valid for any two functions f and g in L1(Hd):

(2.10) FH(f ? g)Ĥd0 = (FHf)Ĥd0
Ĥd0· (FHg)Ĥd0

with (θ1
Ĥd0· θ2)(ẋ, k) def=

∑
k′∈Zd

θ1(ẋ, k′) θ2(ẋ, k − k′).

Let us underline that the above product law (2.10) is commutative even though
convolution of functions on the Heisenberg group is not (see (1.13)).
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The next question is how to extend the measure dŵ to Ĥd. In fact, we have for
any positive real numbers R and ε,∫

Ĥd
1{|λ| |n+m|+|m−n|6R}1|λ|6ε dŵ =

∫ ε

−ε

(∑
n,m

1{|λ| |n+m|+|m−n|6R}

)
|λ|d dλ

6 CR2dε.

Therefore, it is natural to extend dŵ by 0 on Ĥd
0. With this convention, keeping

the same notation for the extended measure, we have for all continuous compactly
supported function θ on Ĥd,∫

Ĥd
θ(ŵ) dŵ def=

∫
H̃d
θ(ŵ) dŵ.

At this stage of the paper, pointing out non-trivial examples of functions in S(Ĥd)
is highly informative. To this end, we introduce the set S+

d of smooth functions f
on [0,∞[d × Zd × R such that for any integer p, we have

sup
(x1,...,xd,k,λ)∈[0,∞[d×Zd×R

|α|6p

(1 + x1 + ...+ xd + |k|)p
∣∣∣∂αx,λf(x1, . . . , xd, k, λ)

∣∣∣ <∞.
As may be easily checked by the reader, the space S+

d is stable under derivation and
multiplication by polynomial functions of (x, k).
Theorem 2.8. — Let f be a function in S+

d . Let us define for ŵ = (n,m, λ)
in H̃d,

Θf (ŵ) def= f (|λ|R(n,m),m− n, λ) with R(n,m) def= (nj +mj + 1)16j6d.

If f is supported in [0,∞[d × {0} × R, or if f is supported in [r0,∞[d × Zd × R for
some positive real number r0, and satisfies
(2.11) f(x,−k,−λ) = (−1)|k|f(x, k, λ) for all k ∈ Zd, λ > 0 and x > 0,
then Θf belongs to S(Ĥd).
A particularly striking consequence of Theorem 2.8 is that it provides a trivial proof

of Hulanicki’s theorem in [Hul84] and of the fact that the fundamental solution of the
heat equation in Hd for the sublaplacian belongs to S(Hd) (a nontrivial result that
is usually deduced from the explicit formula established by B. Gaveau in [Gav77]).
Corollary 2.9. — For any function a in S(R), there exists a function ha

in S(Hd) such that
∀ f ∈ S(Hd), a(−∆H)f = f ? ha.

In particular, the function h such that, for all u0 in L1(Hd) and t > 0, the map

u : t 7−→ u0 ? ht with ht(y, η, s) def= 1
td+1h

(
y√
t
,
η√
t
,
s

t

)
fulfills

∂tu−∆Hu = 0 in ]0,+∞[×Hd and lim
t→0+

u(t) = u0 in L1(Hd),

belongs to S(Hd).
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Proof. — Let us focus on the second result, proving the first one being similar.
Then applying the Fourier transform with respect to the Heisenberg variable gives
that u must fulfill
(2.12) ûH(t, n,m, λ) = e−4t|λ|(2|m|+d)û0(n,m, λ).
At the same time, we have u(t) = u0 ? ht. Hence, combining the convolution for-
mula (1.13) and identity (2.12), we gather that

ĥH(ŵ) = e−4|λ|(2|n|+d)1{n=m}.

Then applying Theorem 2.8 to the function e−4(x1+...+xd)1{k=0} ensures that ĥH
belongs to S(Ĥd), and the inversion theorem 2.6 eventually implies that h is in
S(Hd). �

Before explaining how to extend the Fourier transform to tempered distributions,
let us specify what a tempered distribution on Ĥd is.

Definition 2.10. — Tempered distributions on Ĥd are elements of the set S ′(Ĥd)
of continuous linear forms on the Fréchet space S(Ĥd).

Convergence of tempered distributions is defined in the standard way: we say that
a sequence (Tn)n∈N of S ′(Ĥd) converges to a tempered distribution T if

∀ θ ∈ S(Ĥd) , lim
n→∞
〈Tn, θ〉S′(Ĥd)×S(Ĥd) = 〈T , θ〉S′(Ĥd)×S(Ĥd).

A first class of examples of tempered distributions on Ĥd is given by “functions
with moderate growth”:

Definition 2.11. — We denote by L1
M(Ĥd) the set of functions on Ĥd with

moderate growth, that is the set of locally integrable functions f on Ĥd such that
there exists an integer p satisfying∫

Ĥd
(1 + |λ|(n+m|+ d) + |n−m|)−p|f(ŵ)|dŵ <∞.

As in the Euclidean setting, functions in L1
M(Ĥd) may be identified with tempered

distributions:

Theorem 2.12. — Let us consider ι be the map defined by

ι :

 L1
M(Ĥd) −→ S ′(Ĥd)
ψ 7−→ ι(ψ) :

[
θ 7→

∫
Ĥd ψ(ŵ)θ(ŵ) dŵ

]
.

Then ι is a one-to-one linear map.
Moreover, if p is an integer such that the map

(n,m, λ) 7−→ (1 + |λ|(n+m|+ d) + |n−m|)−pf(n,m, λ)
belongs to L1(Ĥd), then we have

(2.13) |〈ι(f), θ〉| 6
∥∥∥(1 + |λ|(n+m|+ d) + |n−m|)−pf

∥∥∥
L1(Ĥd)

‖θ‖
p,0,S(Ĥd).

The following proposition that will be proved in Section 5 provides examples of
functions in L1

M(Ĥd).
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Proposition 2.13. — Let γ < d + 1. Then the set L1
M(Ĥd) contains the func-

tion fγ defined by

fγ(n,m, λ) def= (|λ|(2|m|+ d))−γ δn,m, (n,m, λ) ∈ H̃d.

Remark 2.14. — The above proposition is no longer true for γ = d+ 1. If we look
at the quantity |λ|(2|n|+ d) in Ĥd as an equivalent of |ξ|2 for Rd, then it means that
the homogeneous dimension of Ĥd is 2d+ 2, as for Hd.
Obviously, any Dirac mass on Ĥd is a tempered distribution. Let us also note that

because
|θ(n, n, λ)| 6 (1 + |λ|(2|n|+ d))−d−2 ‖θ‖

d+2,0,S(Ĥd),

the linear form

(2.14) I :
{
S(Ĥd) −→ C
θ 7−→ ∑

n∈Nd
∫
R θ(n, n, λ) |λ|ddλ

is a tempered distribution on Ĥd.
We now want to exhibit tempered distributions on Ĥd which are not functions or

measures. The following proposition states that the analogue on Ĥd of finite part
distributions on Rn, are indeed in S ′(Ĥd).
Proposition 2.15. — Let γ be in the interval ]d+ 1, d+ 3/2[ and denote by 0̂

the element (0, 0) of Ĥd
0. Then for any function θ in S(Ĥd), the function defined a.e.

on Ĥd by

(n,m, λ) 7−→ δn,m

(
θ(n, n, λ) + θ(n, n,−λ)− 2θ(0̂)

|λ|γ(2|n|+ d)γ

)
,

is integrable. Furthermore, the linear form defined by〈
Pf
(

1
|λ|γ(2|n|+ d)γ

)
, θ

〉
def= 1

2

∫
Ĥd

(
θ(n, n, λ) + θ(n, n,−λ)− 2θ(0̂)

|λ|γ(2|n|+ d)γ

)
δn,m dŵ

is in S ′(Ĥd), and its restriction to H̃d is the function fγ that has been defined above,
that is, for any θ in S(Ĥd) such that θ(n, n, λ) = 0 for small enough |λ|(2|n|+ d), we
have 〈

Pf
(

1
|λ|γ(2|n|+ d)γ

)
, θ

〉
=
∫
Ĥd
fγ(ŵ) θ(ŵ) dŵ.

Another interesting example of tempered distribution on Ĥd is the measure µĤd0
defined in Lemma 3.1 of [BCD]. In our setting, that result recasts as follows:
Proposition 2.16. — Let the measure µĤd0

be defined for all function θ in S(Ĥd),
by

〈µĤd0
, θ〉 =

∫
Ĥd0
θ(ẋ, k) dµĤd0

(ẋ, k) def= 2−d
∑
k∈Zd

(∫
(R−)d

θ(ẋ, k) dẋ+
∫

(R+)d
θ(ẋ, k) dẋ

)
.

Then µĤd0
belongs to S ′(Ĥd), and for any function ψ in S(R) with integral 1 we have

lim
ε→0

1
ε
ψ

(
λ

ε

)
= µĤd0

in S ′(Ĥd).
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Let us finally explain how Formulae (1.2) and (1.3) may be adapted so as to extend
the Fourier transform on Hd to tempered distributions. We introduce:

BH :
{
S(Hd)× S(Ĥd) −→ C

(f, θ) 7−→
∫
Hd×Ĥd f(Y, s) eisλW(ŵ, Y ) θ(ŵ) dw dŵ

and tFH :
{
S(Ĥd) −→ S(Hd)
θ 7−→

∫
Ĥd e

isλW(ŵ, Y ) θ(ŵ) dŵ.

Since, for any θ in S(Ĥd) and w = (y, η, s) in Hd, we have

(2.15) (tFHθ)(y, η, s) = πd+1

2d−1 (F−1
H θ)(y,−η,−s).

Theorem 2.6 ensures that tFH is a continuous isomorphism between S(Ĥd) and S(Hd).
Now, we observe that for any f in S(Hd) and θ in S(Ĥd), we have

BH(f, θ) =
∫
Hd
f(w)(tFHθ)(w) dw =

∫
Ĥd

(FHf)(ŵ)θ(ŵ) dŵ.

This prompts us to extend FH on S ′(Hd) by

〈FHT, θ〉S′(Ĥd)×S(Ĥd)
def= 〈T, tFHθ〉S′(Hd)×S(Hd) for all θ ∈ S(Ĥd).

A direct consequence of this definition is the following statement:

Proposition 2.17. — The map FH defined just above is continuous and one-to-
one from S ′(Hd) onto S ′(Ĥd). Furthermore, its restriction to L1(Hd) coincides with
Definition 1.2.

Just to compare with the Euclidean case, let us give some examples of simple
computations of Fourier transform of tempered distributions on Hd.

Proposition 2.18. — We have

FH(δ0) = I and FH(1) = πd+1

2d−1 δ0̂,

where I is defined by (2.14) and 0̂ is the element of Ĥd
0 corresponding to ẋ = 0 and

k = 0.

Let us emphasize, that without completing the frequency set H̃d, it would not be
even possible to state the second result of the above proposition. The same happens
in the following statement when computing the Fourier transform of a function
independent of the vertical variable.

Theorem 2.19. — We have for any integrable function g on T ?Rd,

FH(g ⊗ 1) = (GHg)µĤd0
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where GHg is defined by

GHg :
{

Ĥd
0 −→ C

(ẋ, k) 7−→
∫
T ?Rd Kd(ẋ, k, Y )g(Y ) dY

with Kd(ẋ, k, Y ) =
d⊗
j=1
K(ẋj, kj, Yj)

and K(ẋ, k, y, η) def= 1
2π

∫ π

−π
e
i

(
2|ẋ|

1
2 (y sin z+η sgn(ẋ) cos z)+kz

)
dz.

The rest of the paper unfolds as follows. In Section 3, we prove Lemmas 2.3 and 2.4,
and then Theorem 2.6. In Section 4, we establish Theorem 2.8. In Section 5, we study
in full details the examples of tempered distributions on Ĥd given in Propositions 2.13–
2.15, and Theorem 2.12. In Section 6, we prove Proposition 2.18 and Theorem 2.19.
Further remarks as well as proofs within our setting of known results are postponed
in the appendix.

3. The range of the Schwartz class by the Fourier transform

The present sectionaims at giving a handy characterization of the range of S(Hd)
by the Fourier transform. Our Ariadne thread throughout will be that we expect that,
for the action of FH, regularity implies decay and decay implies regularity. The answer
to the first issue has been given in Lemma 2.1 (proved in [BCD]). Here we shall
concentrate on the second issue, in connection with the definition of differentiation
for functions on H̃d, given in (2.2) and (2.3). To complete our analysis of the space
FH(S(Hd)), we will have to get some information on the behavior of elements of
FH(S(Hd)) for λ going to 0 (that is in the neighborhood of the set Ĥd

0). This is
Lemma 2.4 that points out an extra and fundamental relationship between positive
and negative λ’s for functions of FH(S(Hd)).
A great deal of our program will be achieved by describing the action of the weight

function M2 and of the differentiation operator ∂λ onW . This is the goal of the next
paragraph.

3.1. Some properties for Wigner transform of Hermite functions

The following lemma describes the action of the weight function M2 on W .

Lemma 3.1. — For all ŵ in H̃d and Y in T ?Rd, we have

|Y |2W(ŵ, Y ) = −∆̂W( · , Y )(ŵ)

where Operator ∆̂ has been defined in (2.2).
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Proof. — From the definition of W and integrations by parts, we get

|Y |2W(ŵ, Y ) =
∫
Rd

(
|y|2 − 1

4λ2 ∆z

) (
e2iλ〈η,z〉

)
Hn,λ(y + z)Hm,λ(−y + z) dz

=
∫
Rd
e2iλ〈η,z〉|λ|

d
2I(ŵ, y, z) dz

with I(ŵ, y, z) def=
(
|y|2 − 1

4λ2 ∆z

) (
Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

)
.

From Leibniz’s rule, the chain rule and the following identity:

4|y|2 = |y + z|2 + |y − z|2 + 2(y + z) · (y − z),

we get

I(ŵ, y, z) = − 1
4λ2

(
(∆z − λ2|y + z|2)Hn(|λ| 12 (y + z))

)
Hm(|λ| 12 (−y + z))

− 1
4λ2

(
(∆z − λ2|y − z|2)Hm(|λ| 12 (−y + z))

)
Hn(|λ| 12 (y + z))

− 1
2|λ|

d∑
j=1

(∂jHn)(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))

− 1
2(z + y) · (z − y)Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z)).

Using (1.8), we end up with

I(ŵ, y, z) = 1
2|λ|(|n+m|+ d)Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

− 1
2|λ|

d∑
j=1

{
(∂jHn)(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))

+(MjHn)(|λ| 12 (y + z))(MjHm)(|λ| 12 (−y + z))
}
.

Then, taking advantage of (A.4), we get Identity (2.2). �

The purpose of the following lemma is to investigate the action of ∂λ on W .

Lemma 3.2. — We have, for all ŵ in H̃d and Y ∈ T ?Rd, the following formula:

(3.1) ∂λW(ŵ, Y ) = D̂λW(ŵ, Y )

where, for θ : H̃d → C, we denoted

D̂λθ(ŵ) def= − d

2λθ(ŵ) + 1
2λ

d∑
j=1

{√
(nj + 1)(mj + 1) θ(ŵ+

j )−√njmj θ(ŵ−j )
}
.
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Proof. — Let us write that

∂λW(ŵ, Y ) =
∫
Rd

d
dλ

(
|λ|

d
2 e2iλ〈η,z〉Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

)
dz

= d

2λW(ŵ, Y ) +W1(ŵ, Y ) +W2(ŵ, Y )

with W1(ŵ, Y ) def=
∫
Rd

2i〈η, z〉e2iλ〈η,z〉|λ|
d
2Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z)) dz

and W2(ŵ, Y ) def=
∫
Rd
e2iλ〈η,z〉|λ|

d
2

d
dλ

(
Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

)
dz.

As we have

2i〈η, z〉e2iλ〈η,z〉 = 1
λ

d∑
j=1

zj∂zje
2iλ〈η,z〉,

an integration by parts gives

W1(ŵ, Y ) = −d
λ
W(ŵ, Y )

− 1
λ

d∑
j=1

∫
Rd
e2iλ〈η,z〉|λ|

d
2 zj∂zj

(
Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

)
dz.

Now, let us compute

J (ŵ, y, z) def=
 d

dλ −
1
λ

d∑
j=1

zj∂zj

(Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))
)
.

From the chain rule we get

J (ŵ, y, z) = |λ|
1
2

2λ

d∑
j=1

{
(yj + zj)Hm(|λ| 12 (−y + z))(∂jHn)(|λ| 12 (y + z))

+ (−yj + zj)Hn(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))

− 2zjHm(|λ| 12 (−y + z))(∂jHn)(|λ| 12 (y + z))

− 2zjHn(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))
}
.

This gives

J (ŵ, y, z) = − 1
2λ

d∑
j=1

{
(∂jHn)(|λ| 12 (y + z))|λ| 12 (−yj + zj)Hm(|λ| 12 (−y + z))

+ |λ| 12 (yj + zj)Hn(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))
}
,

which writes

J (ŵ, y, z) = − 1
2λ

d∑
j=1

{
(∂jHn)(|λ| 12 (y + z))(MjHm)(|λ| 12 (−y + z))

+ (MjHn)(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))
}
.

Using Relations (A.4) completes the proof of the Lemma. �
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3.2. Decay provides regularity

Granted with Lemmas 3.1 and 3.2, it is now easy to establish Lemma 2.3. Indeed,
according to (1.9), we have

(FHM
2f)(ŵ) =

∫
Hd
e−isλf(Y, s)|Y |2W(ŵ, Y ) dY ds.

Therefore, Lemma 3.1 implies that

(FHM
2f)(ŵ) = 1

2|λ|(|n+m|+ d)
∫
Hd
f(Y, s)e−isλW(ŵ, Y ) dY ds

− 1
2|λ|

d∑
j=1

{√
(nj + 1)(mj + 1)

∫
Hd
f(Y, s)e−isλW(ŵ+

j , Y ) dY ds

+√njmj

∫
Hd
f(Y, s)e−isλW(ŵ−j , Y ) dY ds

}
.

By the definition of the Fourier transform and of ∆̂, this gives FHM
2f = −∆̂FHf .

To establish the second part of the lemma, we start from (1.9) and get

FH(M0f)(ŵ) =
∫
Hd

d
dλ

(
e−isλ

)
f(Y, s)W(ŵ, Y ) dY ds

= d
dλ(FHf)(ŵ)−

∫
Hd
e−isλf(Y, s) d

dλ
(
W(ŵ, Y )

)
dY ds.

Rewriting the last term according to Formula (3.1), we discover that

(FHM0f)(ŵ) = d
dλ(FHf)(ŵ)− D̂λFHf(ŵ).

By the definition of the Fourier transform, this concludes the proof of Lemma 2.3.
On the one hand, Lemmas 2.1 and 2.3 guarantee that decay in the physical space

provides regularity in the Fourier space, and that regularity gives decay. On the other
hand, the relations we established so far do not give much insight on the behavior of
the Fourier transform near Ĥd

0 even though we know from Theorem 2.7 that in the
case of an integrable function, it has to be uniformly continuous up to λ = 0. Getting
more information on the behavior of the Fourier transform of functions in S(Hd) in
a neighborhood of Ĥd

0 is what we want to do now with the proof of Lemma 2.4.
Proof of Lemma 2.4. — Since the partial Fourier transform Fs with respect to

the vertical variable is a bounded isomorphism on S(R2d+1), it suffices to establish
that FsP is a bounded operator on S(R2d+1). Now, fix some function f in S(Hd),
and observe that

∂sPf(Y, s) = 1
2 (f(Y, s)− f(Y,−s)) .

Taking the Fourier transform with respect to the variable s gives

(3.2) iλFs(Pf)(Y, λ) = 1
2 (Fsf(Y, λ)−Fsf(Y,−λ)) .
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Let us consider a function χ in S(R) with value 1 near 0 and let us write

iFs(Pf)(Y, λ)

= 1− χ(λ)
2λ (Fsf(Y, λ)−Fsf(Y,−λ)) + χ(λ)

∫ 1

0
(∂λFsf)(Y,−λ+ 2tλ) dt.

The two terms on the right-hand side define bounded operators on S(R2d+1). Hence,
the operator FsP is bounded on S(R2d+1) and thus, so does P .
Note that in the case of a function g in S(Hd), Formula (1.9) may be alternately

written:

FHg(ŵ) =
∫
T ?Rd
Fsg(Y, λ)W(ŵ, Y ) dY for all ŵ = (n,m, λ) in H̃d.

Relations (2.7) and (3.2) guarantee that

2iλFH(Pf)(ŵ) =
∫
T ?Rd

2iλFs(Pf)(Y, λ)W(ŵ, Y ) dY

=
∫
T ?Rd

(Fsf(Y, λ)−Fsf(Y,−λ))W(ŵ, Y ) dY

=
∫
T ?Rd
Fsf(Y, λ)W(ŵ, Y ) dY

− (−1)|n+m|
∫
T ?Rd
Fsf(Y,−λ)W(m,n,−λ, Y ) dY

= FHf(n,m, λ)− (−1)|n+m|FHf(m,n,−λ),

which completes the proof of Lemma 2.4. �

3.3. Proof of the inversion theorem in the Schwartz space

The aim of this section is to prove Theorem 2.6. To this end, let us first note that
from Inequality (2.1) and Lemmas 2.3 and 2.4, we gather that FH maps S(Hd) to
S(Ĥd) continuously. In addition, (2.8) guarantees that all elements of S(Ĥd) are in
L1(Ĥd) ∩ L2(Ĥd).
Hence Theorem 1.3 ensures that FH : S(Hd) → S(Ĥd) is one-to-one, and that

the inverse map has to be the functional F̃H defined in (2.9). Therefore, there only
remains to prove that F̃H maps S(Ĥd) to S(Hd). To this end, it is convenient to
introduce the semi-norms defined by:

(3.3) ‖f‖2
K,S(Hd)

def= ‖f‖2
L2(Hd)+‖MK

H f‖2
L2(Hd)+‖∆K

H f‖2
L2(Hd) with MH

def= M2 +M0

which are equivalent to the classical ones defined in Lemma 2.1 (see Proposition A.2).
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Let us compute M2F̃Hθ(Y, s). According to Lemma 3.1, we have for all ŵ =
(n,m, λ) in H̃d,∑

(n,m)∈N2d

θ(ŵ)|Y |2W(ŵ, Y )

= 1
2|λ|

∑
(n,m)∈N2d

(
(|n+m|+ d)W(ŵ, Y )θ(ŵ)−

d∑
j=1

√
njmj θ(ŵ)W(ŵ−j , Y )

−
d∑
j=1

√
(nj + 1)(mj + 1) θ(ŵ)W(ŵ+

j , Y )
)
.

Changing variable (ñ, m̃) = (n+δj,m+δj) and (ñ, m̃) = (n−δj,m−δj), respectively,
gives∑

(n,m)∈N2d

θ(ŵ)|Y |2W(ŵ, Y )

= 1
2|λ|

∑
(n,m)∈N2d

(
(|n+m|+ d)θ(ŵ)W(ŵ, Y )

−
d∑
j=1

(√
(nj+1)(mj+1) θ(ŵ+

j ) +√njmj θ(ŵ−j )
))
W(ŵ, Y )

= −
∑

(n,m)∈N2d

∆̂θ(ŵ)W(ŵ, Y ),

where ∆̂ is the operator introduced in (2.2).
Multiplying by 2d−1π−d−1eisλ, integrating with respect to λ and remembering (2.9),

we end up with

(3.4) (M2F̃Hθ)(Y, s) = −F̃H(∆̂θ)(Y, s).

Understanding how M0 acts on F̃H(S(Ĥd)) is more delicate. It requires using the
continuity property of Definition 2.5. Now, if θ is in S(Ĥd) then it is integrable. As
obviously |W| 6 1, one may thus write for all w = (Y, s) in Hd, denoting Rε

def=
R \ [−ε, ε],

(M0F̃Hθ)(w) = 2d−1

πd+1 lim
ε→0

∑
(n,m)∈N2d

Ψε(n,m,w)

with Ψε(n,m,w) def= −
∫
Rε

(
d

dλe
isλ

)
θ(n,m, λ)W(n,m, λ, Y )|λ|ddλ .

Integrating by parts yields

Ψε(n,m,w) = Ψ(1)
ε (n,m,w)−Ψ(2)

ε (n,m,w) with

Ψ(1)
ε (n,m,w) def=

∫
Rε
eisλ

d
dλ

(
W(n,m, λ, Y )θ(n,m, λ)|λ|d

)
dλ and

Ψ(2)
ε (n,m,w) def= εd

(
eisεW(n,m, ε, Y )θ(n,m, ε)− e−isεW(n,m,−ε, Y )θ(n,m,−ε)

)
.
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Let us compute

(3.5) Θ(ŵ, Y ) def= d
dλ

(
W(n,m, λ, Y )θ(n,m, λ)|λ|d

)
.

Leibniz’s rule gives

Θ(ŵ, Y ) = ∂λW(ŵ, Y )θ(ŵ)|λ|d +W(ŵ, Y ) d
dλ

(
|λ|dθ(ŵ)

)
.

Hence, remembering Identity (3.1), we discover that

Θ(ŵ, Y ) = dθ
dλ(ŵ)W(ŵ, Y )|λ|d + d

2λθ(ŵ)W(ŵ, Y )|λ|d

− |λ|
d

2λ

d∑
j=1

θ(ŵ)
(√

njmjW(ŵ−j , λ, Y )−
√

(nj+1)(mj+1)W(ŵ+
j , Y )

)
.

From the changes of variable (n′,m′) = (n− δj,m− δj) and (ñ, m̃) = (n+ δj,m+ δj),
we infer that

∑
(n,m)∈N2d

θ(ŵ)
(√

njmjW(ŵ−j , Y )−
√

(nj+1)(mj+1)W(ŵ+
j , Y )

)

= −
∑

(n,m)∈N2d

W(ŵ, Y )
(√

njmj θ(ŵ−j )−
√

(nj+1)(mj+1) θ(ŵ+
j )
)
.

Therefore, using the operator D̂λ introduced in Definition 2.2, we get

∑
(n,m)∈N2d

Ψ(1)
ε (n,m,w) =

∑
(n,m)∈N2d

∫
Rε
eisλ(D̂λθ)(n,m, λ)W(n,m, λ, Y )|λ|ddλ.

Since D̂λθ belongs to S(Ĥd) and is thus integrable, Lebesgue dominated convergence
theorem guarantees that

lim
ε→0

∑
(n,m)∈N2d

Ψ(1)
ε (n,m,w) =

∫
Ĥd
eisλ(D̂λθ)(ŵ)W(ŵ, Y ) dŵ.

In order to show that the contribution of Ψ(2)
ε (n,m,w) tends to 0, the boundedness

of Σ̂0θ will come into play. Indeed, we have

eisεW(n,m, ε, Y )θ(n,m, ε)− e−isεW(n,m,−ε, Y )θ(n,m,−ε)

=
(
eisε − e−isε

)
W(n,m, ε, Y )θ(n,m, ε)

+ e−isε (W(n,m, ε, Y )θ(n,m, ε)−W(n,m,−ε, Y )θ(n,m,−ε)) .
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Hence, thanks to (2.7)∑
(n,m)∈N2d

Ψ(2)
ε (n,m,w) = 2i εd sin(sε)

∑
(n,m)∈N2d

W(n,m, ε, Y )θ(n,m, ε)

+ εde−isε

 ∑
(n,m)∈N2d

W(n,m, ε, Y )θ(n,m, ε)

−
∑

(n,m)∈N2d

(−1)|n+m|W(m,n, ε, Y )θ(n,m,−ε)
.

Swapping indices n and m in the last sum gives∑
(n,m)∈N2d

Ψ(2)
ε (n,m,w) = 2iεd sin(sε)

∑
(n,m)∈N2d

W(n,m, ε, Y )θ(n,m, ε)

+ εd+1e−isε
∑

(n,m)∈N2d

W(n,m, ε, Y )(Σ̂0θ)(n,m, ε).

Remembering that |W| 6 1, we thus get

(3.6)

∣∣∣∣∣∣
∑

(n,m)∈N2d

Ψ(2)
ε (n,m,w)

∣∣∣∣∣∣
6 εd+1

2|s|
∑

(n,m)∈N2d

|θ(n,m, ε)|+
∑

(n,m)∈N2d

|(Σ̂0θ)(n,m, ε)|
 .

Since∑
(n,m)∈N2d

|θ(n,m, ε)| 6 ‖θ‖2d+2,0,S(H̃d)

∑
(n,m)∈N2d

(1 + ε(|n+m|+ d) + |n−m|)−2d−2

and∑
(n,m)∈N2d

(1+ε(|n+m|+d)+|n−m|)−2d−2 6
∑
`∈Nd

(1+ε(|`|+d))−d−1 ∑
k∈Zd

(1 + |k|)−d−1

6 Cε−d,

the first term of the right-hand side of (3.6) tends to 0 when ε goes to 0. Employing
the same argument with Σ̂0θ guarantees that we do have

lim
ε→0

∑
(n,m)∈N2d

Ψ(2)
ε (n,m,w) = 0,

from which one may conclude that
M0F̃Hθ = F̃HD̂λθ.

Together with (3.4), this implies that

MHF̃Hθ = F̃H

(
(−∆̂ + D̂λ)(θ)

)
with MH

def= M2 +M0.

Hence, for any integer K, there exist an integer NK and a constant CK so that
(3.7) ‖MK

H F̃θ‖L2(Hd) 6 CK‖θ‖NK ,NK ,S(Ĥd).
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Finally, to study the action of the sublaplacian on F̃H(S(Ĥd)), we write that by
definition of Xj and of W , we have

Xj
(
eisλW(ŵ, Y )

)
=
∫
Rd
Xj
(
eisλ+2iλ〈η,z〉Hn,λ(y + z)Hm,λ(−y + z)

)
dz

=
∫
Rd
eisλ+2iλ〈η,z〉

(
2iληj + ∂yj

)
(Hn,λ(y + z)Hm,λ(−y + z)) dz.

As 2iληje2iλ〈η,z〉 = ∂zj(e2iλ〈η,z〉), integrating by parts yields

(3.8) Xj
(
eisλW(ŵ, Y )

)
=
∫
Rd
eisλ+2iλ〈η,z〉

(
∂yj−∂zj

)
(Hn,λ(y+z)Hm,λ(−y+z)) dz.

The action of Ξj is simply described by

Ξj

(
eisλW(ŵ, Y )

)
=
∫
Rd

Ξj

(
eisλ+2iλ〈η,z〉

)
Hn,λ(y + z)Hm,λ(−y + z) dz

=
∫
Rd
eisλ+2iλ〈η,z〉2iλ(zj − yj)Hn,λ(y + z)Hm,λ(−y + z) dz.

Together with (3.8) and the definition of ∆H in (1.6), this gives

∆H

(
eisλW(ŵ, Y )

)
= 4

∫
Rd
eisλ+2iλ〈η,z〉Hn,λ(y + z)(∆λ

oscHm,λ)(−y + z) dz

= −4|λ|(2|m|+ d)eisλW(ŵ, Y ).
This implies that for all integers K, we have

(−∆H)K(F̃Hθ) = F̃HM̂
Kθ with M̂θ(n,m, λ) def= 4|λ|(2|m|+ d)θ(n,m, λ),

whence there exist an integer NK and a constant CK so that
(3.9) ‖(−∆H)K(F̃Hθ)‖L2(Hd) 6 CK‖θ‖NK ,NK ,S(Ĥd).

Putting (3.7) and (3.9) together and remembering the definition of the semi-norms
on S(Hd) given in (3.3), we conclude that for all integer K, there exist an integer
NK and a constant CK so that

‖F̃Hθ‖K,S(Hd) 6 CK‖θ‖NK ,NK ,S(Ĥd).

This completes the proof of Theorem 2.6.

4. Examples of functions in the range of the Schwartz class

The purpose of this sectionis to prove Theorem 2.8. Let us recall the notation

Θf (ŵ) def= f (|λ|R(n,m),m− n, λ) with R(n,m) def= (nj +mj + 1)16j6d.

For any function f in S+
d which is either supported in [0,∞[d × {0} × R or in

[r0,∞[d × Zd × R for some positive real number r0 and satisfies (2.11), the fact
that ‖Θf‖N,0,S(Ĥd) is finite for all integer N is obvious. We next have to study the
action of ∆̂ and D̂λ on Θf . To this end, we shall establish a Taylor type expansion
of ∆̂Θf and D̂λΘf near λ = 0. To explain what kind of convergence we are looking
for, we need the following definition.
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Definition 4.1. — Let M be an integer. We say that two continuous functions θ
and θ′ on Ĥd are M -equivalent (denoted by θ M≡ θ′) if for all positive integer N , a
constant CN,M exists such that

∀ ŵ ∈ H̃d , |θ(ŵ)− θ′(ŵ)| 6 CN,M |λ|M(1 + |λ|(|n+m|+ d) + |m− n|)−N .

Obviously, if two continuous functions θ and θ′ on H̃d are M -equivalent for some
M > 1 then they are also (M−1)-equivalent, and Σ̂0θ is (M−1)-equivalent to Σ̂0θ

′.
Hence

(4.1) θ
M≡ 0 =⇒ ‖θ‖N,0 <∞ for all N ∈ N.

It is also clear that

(4.2) θ1
M≡ θ′1 and θ2

M≡ θ′2 implies θ1 + θ2
M≡ θ′1 + θ′2,

that, whenever 0 6M0 6M and λ 6= 0, we have

(4.3) θ
M≡ θ′ =⇒ |λ|−M0θ

M−M0≡ |λ|−M0θ′

and that, if the function P is bounded by a polynomial in (n,m) with degree M0,
then

(4.4) θ
M≡ θ′ =⇒ P (n,m) θ M−M0≡ P (n,m) θ′.

Finally, the definition of ∆̂ in (2.2) implies that

(4.5) θ
M≡ θ′ =⇒ ∆̂θ M−2≡ ∆̂θ′ and D̂λθ

M−2≡ D̂λθ′.
We have the following lemma.

Lemma 4.2. — For any positive integer M , we have

∀ ŵ ∈ H̃d , Θf (ŵ±j ) M+1≡
M∑
`=0

(±2|λ|)`
`! Θ∂`xj f

(ŵ).

Proof. — Performing a Taylor expansion at order M + 1, we get

f(|λ|R(n± δj,m± δj),m− n, λ)

=
M∑
`=0

(±2|λ|)`
`! (∂`xjf)(|λ|R(n,m),m− n, λ)

+ (±2|λ|)M+1
∫ 1

0

(1− t)M
M ! (∂M+1

xj
f)
(
|λ|R±j (n,m, t),m− n, λ

)
dt

with R±j (n,m, t) def= (n1 +m1 + 1, . . . , nj +mj + 1± 2t, . . . , nd +md + 1). The fact
that f belongs to S+

d implies that for any positive integer N , we have∣∣∣∣∣
∫ 1

0

(1− t)M
M ! ∂M+1

xj
f
(
|λ|R+

j (n,m, t),m− n, λ
)

dt
∣∣∣∣∣

6 CN (1 + |λ|(|n+m|+ d) + |m− n|)−N .
This gives the lemma. �
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One can now tackle the proof of Theorem 2.8. Let us first investigate the (easier)
case when the support of f is included in [0,∞[d×{0}×R. The first step consists in
computing an equivalent (in the sense of Definition 4.1) of ∆̂Θf at an order which
will be chosen later on. For notational simplicity, we here set R(n) def= R(n, n) and
omit the second variable of f . Now, by definition of the operator ∆̂, we have

(4.6) (−∆̂Θf )(n, n, λ) = 1
2|λ|

(|2n|+ d)f (|λ|R(n), λ)−
d∑
j=1

∆̃j(n, λ)


with ∆̃j(n, λ) def= (nj + 1)f (|λ|R(n+ 2δj), λ) + njf (|λ|R(n− 2δj), λ) .

Lemma 4.2, and Assertions (4.3) and (4.4) imply that

1
2|λ|∆̃j(n, λ) 2M−1≡ nj + 1

2|λ|

2M∑
`=0

(2|λ|)`
`! (∂`xjf)(|λ|R(n), λ)

+ nj
2|λ|

2M∑
`=0

(−2|λ|)`
`! (∂`xjf)(|λ|R(n), λ)

2M−1≡ 2nj + 1
2|λ|

M∑
`=0

(2λ)2`

(2`)! (∂2`
xj
f)(|λ|R(n), λ)

+ 1
2|λ|

M−1∑
`=0

(2|λ|)2`+1

(2`+ 1)! (∂2`+1
xj

f)(|λ|R(n), λ).

Let us define

f2`(x, λ) def=
d∑
j=1

22`−1

(2`)! xjλ
2`−2∂2`

xj
f(x, λ)

and f2`+1(x, λ) def=
d∑
j=1

22`

(2`+ 1)!λ
2`∂2`+1

xj
f(x, λ).

Clearly, all functions f` are supported in [0,∞[d × {0} × R and belong to Sd+, and
the above equality rewrites

(4.7) ∆̂Θf (n, n, λ) 2M−1≡ −
2M∑
`=1

f` (|λ|R(n), λ) .

Arguing by induction, it is easy to establish that for any function f in S+
d supported

in [0,∞[×{0}×R and any integers N and p, the quantity ‖∆̂pΘf‖N,0,S(Ĥd) is finite.
Indeed, this is obvious for p = 0. Now, if the property holds true for some non
negative integer p then, thanks to (4.5) and (4.7),

∆̂p+1Θf (n, n, λ) 2M−1−2p
≡ −

2M∑
`=1

∆̂pΘf`(n, λ).

From (4.1), (4.7) and the induction hypothesis, it is clear that if we chooseM greater
than p then we get that ‖∆̂pΘf‖N,0,S(Ĥd) is finite for all integer N .
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Let us next study the action of Operator D̂λ. From its definition in Lemma 2.3
and the chain rule, we gather that

(4.8) (D̂λΘf )(n, n, λ) = (∂λf) (|λ|R(n), λ) + d

2λf (|λ|R(n), λ)

+ sgn λ
d∑
j=1

(2nj + 1)(∂xjf) (|λ|R(n), λ) + 1
2λ

d∑
j=1
Dj(n, λ)

with Dj(n, λ) def= njf (|λ|(R(n)− 2δj), λ)− (nj + 1)f (|λ|(R(n) + 2δj), λ) .

Lemma 4.2, and Assertions (4.3) and (4.4) imply that

1
2λDj(n, λ) 2M−1≡ −nj + 1

2λ

2M∑
`=0

(2|λ|)`
`! (∂`xjf)(|λ|R(n), λ)

+ nj
2λ

2M∑
`=0

(−2|λ|)`
`! (∂`xjf)(|λ|R(n), λ)

2M−1≡ −
M∑
`=0

(2λ)2`−1

(2`)! (∂2`
xj
f)(|λ|R(n), λ)(4.9)

− 2nj + 1
2λ

M−1∑
`=0

(2|λ|)2`+1

(2`+ 1)! (∂2`+1
xj

f)(|λ|R(n), λ).

Observe that the term corresponding to ` = 0 of the first and second sums above
cancel out with the second and third terms of the right-hand side of (4.8), respectively.
Hence, defining for ` > 1 the functions

f̃2`(x, λ) def=
d∑
j=1

22`−1

(2`)! λ
2`−1∂2`

xj
f(x, λ)

and f̃2`+1(x, λ) def=
d∑
j=1

22`

(2`+ 1)!xjλ
2`−1∂2`+1

xj
f(x, λ),

we get, using (4.8) and (4.9),

(D̂λΘf )(n, n, λ)− (Θ∂λf )(n, n, λ) 2M−1≡ −
2M∑
`=2

f̃` (|λ|R(n), λ) .

From that relation, mimicking the induction proof for ∆̂, we easily conclude that for
any function f in S+

d supported in [0,∞[d×{0}×R, and any integer p, the quantity
‖D̂pλΘf‖N,0,S(Ĥd) is finite for all integer N . This completes the proof Theorem 2.8 in
that particular case.
Next, let us investigate the case when the function f of S+

d is supported in the
set [r0,∞[d ×Zd ×R for some positive r0 and satisfies (2.11). Then, by definition of
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the operator ∆̂, we have for all ŵ = (n,m, λ) in H̃d, denoting k def= m− n,

−∆̂Θf (ŵ) def= 1
2|λ|

(|n+m|+ d)f (|λ|R(n,m), k, λ)−
d∑
j=1

∆̃j(ŵ)


with ∆̃j(ŵ) def=
√

(nj + 1)(mj + 1) f (|λ|(R(n,m) + 2δj), k, λ)
+√njmj f (|λ|(R(n,m)− 2δj), k, λ) .

Compared to (4.6), the computations get wilder, owing to the square roots in the
above formula. Let M be an integer (to be suitably chosen later on). Lemma 4.2,
and Assertions (4.3) and (4.4) imply that

1
2|λ|∆̃j(ŵ) 2M−1≡

√
(nj + 1)(mj + 1)

2|λ|

2M∑
`=0

(2|λ|)`
`! (∂`xjf) (|λ|R(n,m), k, λ)

+
√
njmj

2|λ|

2M∑
`=0

(−2|λ|)`
`! (∂`xjf) (|λ|R(n,m), k, λ) .

Defining
α±(p, q) def=

√
(p+ 1)(q + 1)±√pq,

for nonnegative integers p and q, we get
1

2|λ|∆̃j(ŵ) 2M−1≡ ∆̃0
j(ŵ) + ∆̃1

j(ŵ),

with ∆̃0
j(ŵ) def= α+(nj,mj)

2|λ|

M∑
`=0

(2λ)2`

(2`)! (∂2`
xj
f) (|λ|R(n,m), k, λ)

and ∆̃1
j(ŵ) def= α−(nj,mj)

2|λ|

M−1∑
`=0

(2|λ|)2`+1

(2`+ 1)! (∂2`+1
xj

f) (|λ|R(n,m), k, λ) .

In order to compute an expansion of α±j (n,m) with respect to nj+mj+1 and nj−mj,
we shall take advantage of the following two identities that are valid for any (p, q)
in N2 : √

(p+ 1)(q + 1) = 1
2(p+ q + 1)

√√√√1 + 2
p+ q + 1 + 1− (p− q)2

(p+ q + 1)2

and √
pq = 1

2(p+ q + 1)

√√√√1− 2
p+ q + 1 + 1− (p− q)2

(p+ q + 1)2 .

Let us introduce the notation f(p, q) = OM(p, q) to mean that for some constant C,
there holds

|f(p, q)| 6 C

(
1

(p+ q + 1)M + |p− q|2M+2

(p+ q + 1)2M+1

)
.

Using the following Taylor expansion with K = 2M :
√

1 + u = 1 +
K∑
`1=1

a`1u
`1 + (K + 1)aK+1u

K+1
∫ 1

0
(1 + tu)−K− 1

2 (1− t)K dt,
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we gather that, up to a O2M(p, q) term, we have

√
(p+ 1)(q + 1) = 1

2(p+ q + 1)
1 +

2M∑
`1=1

a`1

(
2

p+ q + 1 + 1− (p− q)2

(p+ q + 1)2

)`1
and √

pq = 1
2(p+ q + 1)

1 +
2M∑
`1=1

a`1

(
− 2
p+ q + 1 + 1− (p− q)2

(p+ q + 1)2

)`1 .
Now we can compute the expansion of α±(p, q). Newton’s formula gives

(4.10)

α+(p, q) = p+q+1+
∑

16`162M
2`26`1

a`1

(
`1
2`2

)
4`2 (1− (p− q)2)`1−2`2

(p+ q + 1)2`1−2`2−1 +O2M(p, q)

α−(p, q) = 2
∑

16`162M
2`2+16`1

a`1

(
`1

2`2 + 1

)
4`2 (1− (p− q)2)`1−2`2−1

(p+ q + 1)2`1−2`2−2 +O2M(p, q).

In the above expansion, some O2M(p, q) terms are kept for notational simplicity.
Now, one may check that for all functions θ and θ′ supported in [r0,∞[d × Zd × R
and any integers M1 and M2, we have for all j ∈ {1, . . . , d},

(4.11)
(
f = OM1 and θ

M2≡ θ′
)

=⇒ f(nj,mj)θ(ŵ) M1+M2≡ f(nj,mj)θ′(ŵ).

Then Assertion (4.10) implies that for any function g in S+
d supported in the

set [r0,∞[d × Zd × R, and any j in {1, . . . , d}, we have

(4.12) α+(nj,mj)Θg(ŵ)

2M−1≡

nj +mj + 1 +
∑

16`162M
2`26`1

a`1

(
`1
2`2

)
4`2(1− (nj −mj)2)`1−2`2

(nj +mj + 1)2`1−2`2−1

Θg(ŵ)

and

(4.13) α−(nj,mj)θg(ŵ)

2M−1≡ 2

 ∑
16`162M
2`2+16`1

a`1

(
`1

2`2+1

)
4`2 (1− (nj −mj)2)`1−2`2−1

(nj+mj+1)2`1−2`2−2

Θg(ŵ).

Using (4.11), this gives

∆̃(0)
j (ŵ) 2M−1≡

(
nj +mj + 1

2|λ|

)
Θf (ŵ) +

M∑
`=0

Θfj,2`(ŵ)

with fj,0(x, k, λ) def=
∑

16`162M
2`26`1

a`1

(
`1
2`2

)
22`2−1

(
1− k2

j

)`1−2`2 λ2(`1−`2−1)

x2`1−2`2−1
j

f(x, k, λ)
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and, if 1 6 ` 6M ,

fj,2`(x, k, λ) def= 1
(2`)!

∑
06`162M

2`26`1

a`1

(
`1
2`2

)
22`2−1+2`

(
1−k2

j

)`1−2`2 λ2(`+`1−`2−1)

x2`1−2`2−1
j

∂2`
xj
f(x, k, λ).

Similarly,

∆̃(1)
j (ŵ) 2M−1≡

M−1∑
`=0

Θfj,2`+1

with fj,2`+1(x, k, λ) def= 1
(2`+ 1)!

∑
16`162M
2`2+16`1

a`1

(
`1

2`2 + 1

)
4`2+`

(
1− k2

j

)`1−2`2−1

× λ2(`+`1−`2−1)

x2`1−2`2−2
j

∂2`+1
xj

f(x, k, λ).

From the definition of Operator ∆̂, we thus infer that there exist functions f` of S+
d

supported in [r0,∞[d × Zd × R and satisfying (2.11), such that for all M > 0,

∆̂Θf
2M−1≡

2M∑
`=0

Θf` .

At this stage, one may prove by induction as in the previous case that ‖∆̂pΘf‖N,0,S(Ĥd)
is finite for all integers N and p.
Let us finally study the action of D̂λ. From its definition, setting k = m−n, we get

(D̂λΘf )(ŵ) = d
dλ (f (|λ|R(n,m), k, λ)) + d

2λf (|λ|R(n,m), k, λ) + 1
2λ

d∑
j=1
Dj(ŵ)

with Dj(ŵ) def= √njmjf (|λ|(R(n,m)− 2δj), k, λ)

−
√

(nj + 1)(mj + 1)f (|λ|(R(n,m) + 2δj), k, λ) .

The chain rule implies that

d
dλ (f (|λ|R(n,m), k, λ)) = (∂λf) (|λ|R(n,m), k, λ)

+ sgn λ
d∑
j=1

(nj +mj + 1)(∂xjf) (|λ|R(n,m), k, λ) .

Combining Lemma 4.2, and Assertions (4.3) and (4.4) yields

− 1
2λDj(ŵ) 2M−1≡ α−(nj,mj)

M∑
`=0

(2λ)2`−1

(2`)! (∂2`
xj
f)(|λ|R(n,m), k, λ)

+ α+(nj,mj) sgnλ
M−1∑
`=0

(2λ)2`

(2`+ 1)!(∂
2`+1
xj

f)(|λ|R(n,m), k, λ).
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Therefore, we have

(D̂λΘf )(ŵ) 2M−1≡ (∂λf)(|λ|R(n,m), k, λ)+ 1
2λ(d−

d∑
j=1

α−(nj,mj))f(|λ|R(n,m), k, λ)

+ sgn λ
d∑
j=1

(
nj +mj + 1− α+(nj,mj)

)
(∂xjf)(|λ|R(n,m), k, λ)

− α−(nj,mj)
M∑
`=1

(2λ)2`−1

(2`)! (∂2`
xj
f)(|λ|R(n,m), k, λ)

− α+(nj,mj) sgnλ
M−1∑
`=1

(2λ)2`

(2`+ 1)!(∂
2`+1
xj

f)(|λ|R(n,m), k, λ).

Hence, using (4.12) and (4.13) and noticing that the coefficient a`1 involved in the
expansion of α±(nj,mj) is equal to 1/2, we conclude that there exist some functions
f̃j, f [j and f ]j,` of S+

d , supported in [r0,∞[d × Zd × R and satisfying (2.11) so that

(D̂λΘf )(ŵ)− (Θ∂λf )(ŵ) 2M−1≡
d∑
j=1

Θ
f̃j

(ŵ)−
d∑
j=1

Θf[j
(ŵ)−

2M∑
`=1

d∑
j=1

Θf]
j,`

(ŵ) ,

where

f̃j(x, k, λ) def=
∑

26`162M
2`2+16`1

a`1

(
`1

2`2 + 1

) 4`2
(
1− k2

j

)`1−2`2−1
λ2`1−2`2−3

x2`1−2`2−2
j

f(x, k, λ) ,

f [j (x, k, λ) def=
∑

16`162M
2`26`1

a`1

(
`1
2`2

) 4`2
(
1− k2

j

)`1−2`2
λ2`1−2`2−1

x2`1−2`2−1
j

∂xjf(x, k, λ) ,

f ]j,2`(x, k, λ) def=

 ∑
16`162M
2`2+16`1

a`1

(
`1

2`2+1

)22`2+2`
(
1−k2

j

)`1−2`2−1

x2`1−2`2−2
j

λ2 +̀2`1−2`2−3

(2`)! (∂2`
xj
f)(x, k, λ)

and

f ]j,2`+1(x, k, λ) def= 2

xj +
∑

16`162M
2`26`1

a`1

(
`1
2`2

) 4`2
(
1− k2

j

)`1−2`2
λ2`1−2`2

x2`1−2`2−1
j


× (2λ)2`−1

(2`+ 1)!(∂
2`+1
xj

f)(x, k, λ) .

At this stage, one can complete the proof as in the previous cases. �
Let us finally record two interesting asymptotic properties of the operators ∆̂ and
D̂λ when λ tends to 0.
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Proposition 4.3. — For any function f in S+
1 supported in [r0,∞[× Z×R for

some positive r0, the extension of ∆̂Θf and D̂λΘf to Ĥ1
0 is given by

(∆̂Θf )(ẋ, k) = ẋ∂2
ẋẋf(ẋ, k, 0) + ∂ẋf(ẋ, k, 0)− k2

4ẋf(ẋ, k, 0)

and (D̂λΘf )(ẋ, k) = ∂λf(ẋ, k, 0).

Proof. — For expository purpose, we omit the dependency on k, for f . Then we
have by definition of Θf and ∆̂, for all (n, n+ k, λ) in H̃1 with positive λ,

−2λ2∆̂Θf (n, n+ k, λ) = λ(2n+ k + 1)f(λ(2n+ k + 1), λ)

− λ
√

(n+ 1)(n+ k + 1)f(λ(2n+ k + 3), λ)

− λ
√
n(n+ k)f(λ(2n+ k − 1), λ).

Denoting ẋ = 2λn, the above equality rewrites

(4.14)

−2λ2∆̂Θf (ŵ) = ∆̃1(ŵ)− ∆̃2(ŵ)− ∆̃3(ŵ)

with ∆̃1(ŵ) def= (ẋ+ λ(k + 1)) f (ẋ+ λ(k + 1), λ) ,

∆̃2(ŵ) def=
√(

ẋ

2 + λ
)(

ẋ

2 + λ(k + 1)
)
f (ẋ+ λ(k + 3), λ) ,

∆̃3(ŵ) def=
√
ẋ

2

(
ẋ

2 + λk
)
f (ẋ+ λ(k − 1), λ) .

Let us compute the second order expansions of ∆̃1(ŵ), ∆̃2(ŵ) and ∆̃3(ŵ) with respect
to λ, for fixed (and positive) value of ẋ = 2λn. A Taylor expansion of f near the
point (ẋ, 0) gives

(4.15) ∆̃1(ŵ) = ẋf(ẋ, 0) + ((k + 1)(f(ẋ, 0) + ẋ∂ẋf(ẋ, 0)) + ẋ∂λf(ẋ, 0))λ

+
(

1
2 ẋ∂

2
λλf(ẋ, 0) + (k + 1)2

2 (ẋ∂2
ẋẋf(ẋ, 0) + 2∂ẋf(ẋ, 0))

+ (k + 1)(∂λf(ẋ, 0) + ẋ∂2
ẋλf(ẋ, 0))

)
λ2 +O(λ3)

where as in all that follows, O(λN) denotes any function of (ẋ, k, λ) such that there
exists a constant Cr0,k depending only on f , r0 and k such that∣∣∣O(λN)

∣∣∣ 6 Cr0,k|λ|N .

In order to expand the terms ∆̃2(ŵ) and ∆̃3(ŵ), we shall use the fact that there
exists some constant C such that for all ẏ > 0 and η in ]− ẏ, ẏ[, we have

(4.16)
∣∣∣∣∣√ẏ + η −

√
ẏ − η

2
√
ẏ

+ η2

8ẏ
√
ẏ

∣∣∣∣∣ 6 C
√
ẏ

∣∣∣∣∣ηẏ
∣∣∣∣∣
3

.
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In order to find out the second order expansion of ∆̃2, let us use (4.16) with ẏ = ẋ/2
and η = λ or η = λ(k+1) together with the Taylor expansion of f at (ẋ, 0). This gives

∆̃2(ŵ) =
(
√
ẏ + λ

2
√
ẏ
− λ2

8ẏ
√
ẏ

)(
√
ẏ + (k + 1)λ

2
√
ẏ
− (k + 1)2λ2

8ẏ
√
ẏ

)

×

f(ẋ, 0) + (∂λf(ẋ, 0) + (k + 3)∂ẋf(ẋ, 0))λ

+
(

1
2∂

2
λλf(ẋ, 0) + (k + 3)∂2

ẋλf(ẋ, 0) + (k+3)2

2 ∂2
ẋẋf(ẋ, 0)

)
λ2

+O(λ3).

Hence, we get in the end, replacing ẏ by its value,

(4.17) ∆̃2(ŵ) = ẋ

2f(ẋ, 0) +
((

1+ k

2

)
f(ẋ, 0) +

(
k+3

2

)
ẋ∂ẋf(ẋ, 0)+ 1

2 ẋ∂λf(ẋ, 0)
)
λ

+
(k+3)2

4 ẋ∂2
ẋẋf(ẋ, 0) +

(
k + 3

2

)
ẋ∂2

ẋλf(ẋ, 0) + ẋ

4∂
2
λλf(ẋ, 0)

+
(

1 + k

2

)
((k + 3)∂ẋf(ẋ, 0) + ∂λf(ẋ, 0))− k2

4ẋf(ẋ, 0)
λ2 +O(λ3).

Similarly, we have

∆̃3(ŵ) =
√
ẏ

(
√
ẏ + kλ

2
√
ẏ
− k2λ2

8ẏ
√
ẏ

)f(ẋ, 0) + (∂λf(ẋ, 0) + (k − 1)∂ẋf(ẋ, 0))λ

+
(

1
2∂

2
λλf(ẋ, 0) + (k − 1)∂2

ẋλf(ẋ, 0) + (k − 1)2

2 ∂2
ẋẋf(ẋ, 0)

)
λ2

+O(λ3),

whence,

(4.18) ∆̃3(ŵ) = ẋ

2f(ẋ, 0) + (k2f(ẋ, 0) +
(
k − 1

2

)
ẋ∂ẋf(ẋ, 0) + 1

2 ẋ∂λf(ẋ, 0))λ

+
(k − 1)2

4 ẋ∂2
ẋẋf +

(
k − 1

2

)
ẋ∂2

ẋλf(ẋ, 0) + ẋ

4∂
2
λλf(ẋ, 0)

+ k

2 ((k − 1)∂ẋf(ẋ, 0) + ∂λf(ẋ, 0))− k2

4ẋf(ẋ, 0)
λ2 +O(λ3).

Inserting inequalities (4.15), (4.17) and (4.18) in (4.14), we discover that the zeroth
and first order terms in the expansion cancel. Hence we are left with

(4.19)
∣∣∣∣∣2∆̂Θf (ŵ) + k2

2ẋf(ẋ, 0)− 2∂ẋf(ẋ, 0)− 2ẋ∂2
ẋẋf(ẋ, 0)

∣∣∣∣∣ 6 Cr0,k|λ| .

Now let us consider a sequence (np, λp)p∈N such that 2 limp→∞ λpnp = ẋ0 and
limp→∞ λp = 0. Applying the above inequality (4.19) with ẋ = 2λpnp and λ = λp
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ensures that

lim
p→∞

(
∆̂Θf (np, np + k, λp) + k2

8λpnp
f(2λpnp, 0)

− ∂ẋf(2λpnp, 0)− 2λpnp∂2
ẋẋf(2λpnp, 0)

)
= 0.

As the function f is regular with respect to ẋ on [r0,∞[, we infer that

lim
p→∞

∆̂Θf (np, np + k, λp) = ẋ0∂
2
ẋẋf(ẋ0, 0) + ∂ẋf(ẋ0, 0)− k2

4ẋf(ẋ0, 0).

The proof for Operator D̂λ being quite similar, we just sketch it. From the definition
of D̂λ and the chain rule, we discover that for all (n, n+ k, λ) in H̃1 with λ > 0,

D̂λΘf (ŵ) = (2n+ k + 1)∂ẋf(λ(2n+ k + 1), λ) + ∂λf(λ(2n+ k + 1), λ)

+ 1
2λ

(
f(λ(2n+ k + 1), λ) +

√
n(n+k)f(λ(2n+ k − 1), λ)

−
√

(n+ 1)(n+k+1)f(λ(2n+ k + 3), λ)
)
.

Therefore, assuming that ẋ def= 2λn > 0, we get

(4.20) D̂λΘf (ŵ) = ∂λf(ẋ+ (k + 1)λ, λ) + 1
λ

(ẋ+ (k + 1)λ)∂ẋf(ẋ+ (k + 1)λ, λ)

+ 1
2λ2

(
λf(ẋ+ (k + 1)λ, λ) + ∆̃3(ŵ)− ∆̃2(ŵ)

)
.

Because

f(ẋ+ (k + 1)λ, λ) = f(ẋ, 0) + ((k + 1)∂ẋf(ẋ, 0) + ∂λf(ẋ, 0))λ+O(λ2)

and

(ẋ+ (k + 1)λ)∂ẋf(ẋ+ (k + 1)λ, λ)

= ẋ∂ẋf(ẋ, 0) +
(
(k + 1)(∂ẋf(ẋ, 0) + ẋ∂2

ẋẋf(ẋ, 0)) + ẋ∂2
ẋλf(ẋ, 0)

)
λ+O(λ2),

we get in the end, taking advantage of (4.17) and (4.18),

D̂λΘf (ŵ) = ∂λf(ẋ, 0) +O(λ),

which completes the proof. �

5. Examples of tempered distributions

A first class of examples is given by the functions belonging to the space L1
M(Ĥd)

of Definition 2.11. This is exactly what states Theorem 2.12 that we are going to
prove now.
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Proof of Theorem 2.12. — Inequality (2.13) just follows from the definition of the
semi-norms on Ĥd. So let us focus on the proof of the first part of the statement that
actually holds true in the largest class of locally integrable functions.
Let f be a function of L1

loc(Ĥd) such that ι(f) = 0. In order to prove that f = 0
a.e., it suffices to check that for all K > 0 and b > a > 0, we have∫

Ĉa,b,K
|f(ŵ)| dŵ = 0

with Ĉa,b,K def= {(n,m, λ) ∈ Ĥd : |λ|(|n+m|+d) 6 K, |n−m| 6 K and a 6 |λ| 6 b}.
To this end, we introduce the bounded function :

g
def= f

|f |
1f 6=0 1Ĉa,b,K

and smooth it out with respect to λ by setting

gε
def= χε ?λ g

where χε def= ε−1χ(ε−1·) and χ stands for some smooth even function on R, supported
in the interval [−1, 1] and with integral 1.
Note that by definition, g is supported in the set Ĉa,b,K . Therefore, if ε < a then

gε is supported in Ĉa−ε,b+ε,K(1+ε/a). This readily ensures that ‖gε‖N,0,S(Ĥd) is finite
for all integer N (as regards the action of operator Σ̂0, note that gε(n,m, λ) = 0
whenever |λ| < a− ε).
In order to prove that gε belongs to S(Ĥd), it suffices to use the following lemma

the proof of which is left to the reader:

Lemma 5.1. — Let h be a smooth function on Ĥd with support in {(n,m, λ) :
|λ| > a} for some a > 0. If h and all derivatives with respect to λ have fast decay,
that is have finite semi-norm ‖ · ‖

N,0,S(Ĥd) for all integer N , then the same properties
hold true for D̂λh and ∆̂h.

Because gε is in S(Ĥd) for all 0 < ε < a, our assumption on f ensures that we
have

Iε
def=
∫
Ĥd
f(ŵ) gε(ŵ) dŵ = 0.

Let K̃ = 3K/2. Whenever 0 < ε 6 a/2, we have for all (n,m, λ) ∈ H̃d and λ′ 6= 0,

1
ε
χ

(
λ− λ′

ε

)
g(n,m, λ′) f(n,m, λ)

= 1
ε
χ

(
λ− λ′

ε

)
g(n,m, λ′)(1Ĉ

a/2,b+a/2,K̃
f)(n,m, λ),

which guarantees that∫
Ĥd×R

χε(λ− λ′)|g(n,m, λ′)| |f(n,m, λ)| dŵ dλ′ 6 ‖χ‖L1‖1Ĉ
a/2,b+a/2,K̃

f‖L1 <∞.
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Therefore applying Fubini theorem, remembering that χ is an even function and
exchanging the notation λ and λ′ in the second line below,

Iε =
∫
Ĥd
f(n,m, λ)

(∫
R
χε(λ− λ′)g(n,m, λ′) dλ′

)
dŵ

=
∫
Ĥd
g(n,m, λ)

(∫
R
χε(λ− λ′)(1Ĉ

a/2,b+a/2,K̃
f)(n,m, λ′) dλ′

)
dŵ

=
∫
Ĥd

(
χε ? (1Ĉ

a/2,b+a/2,K̃
f)
)

(ŵ)g(ŵ) dŵ.

The standard density theorem for convolution in R ensures that for all (n,m) in N2d,
we have

lim
ε→0

∫
R

∣∣∣∣χε ? (1Ĉ
a/2,b+a/2,K̃

f)(n,m, λ)− (1Ĉ
a/2,b+a/2,K̃

f)(n,m, λ)
∣∣∣∣ dλ = 0.

Hence, because the supremum of g is bounded by 1, we get
0 = lim

ε→0
Iε

=
∫
Ĥd
1Ĉ

a/2,b+a/2,K̃
f(ŵ) g(ŵ) dŵ

=
∫
Ĉ
a,b,K̃

|f(ŵ)| dŵ,

which completes the proof of Theorem 2.12. �

Proof of Proposition 2.13. — It claims that the functions

fγ(n,m, λ) def= (|λ|(2|m|+ d))−γ δn,m
are in L1

M in the case when γ is less than d + 1. As fγ is continuous and bounded
away from any neighborhood of 0̂, it suffices to prove that∑

n∈Nd

∫
|λ|(2|n|+d)61

fγ(n, n, λ) |λ|ddλ <∞.

Now, performing the change of variables λ′ = λ(2|n| + d), we discover that, since
γ < d+ 1,∑

n∈Nd

∫
|λ|(2|n|+d)61

fγ(n, n, λ)λ|ddλ =
∑
n∈Nd

(2|n|+ d)−d−1
∫
|λ′|61

|λ′|d−γdλ′ <∞.

Hence one may conclude that fγ is in L1
M . �

Proof of Proposition 2.15. — We start with the obvious observation that∣∣∣∣∣
∫
Ĥd

(
θ(n, n, λ) + θ(n, n,−λ)− 2θ(0̂)

|λ|γ(2|n|+ d)γ

)
δn,m dŵ

∣∣∣∣∣ 6 I1 + I2

with

I1
def=
∫
Ĥd
1{|λ|(2|n|+d)>1}δn,m

∣∣∣θ(n, n, λ) + θ(n, n,−λ)− 2θ(0̂)
∣∣∣

|λ|γ(2|n|+ d)γ dŵ

and I2
def=
∫
Ĥd
1{|λ|(2|n|+d)<1}δn,m

∣∣∣θ(n, n, λ) + θ(n, n,−λ)− 2θ(0̂)
∣∣∣

|λ|γ(2|n|+ d)γ dŵ.
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On the one hand, we have, changing variable λ′ = λ(2|n|+d) and using that γ > d+1,

(5.1) I1 6 4‖θ‖
L∞(Ĥd)

∑
n∈Nd

2
(2|n|+ d)d+1

∫ ∞
1
|λ′|d−γ dλ′ 6 C‖θ‖

L∞(Ĥd).

On the other hand, changing again variable λ′ = λ|(2|n|+ d), we see that

I2 =
∑
n∈Nd

2
(2|n|+ d)d+1

×
∫ 1

0

(
θ

(
n, n,

λ′

2|n|+ d

)
+ θ

(
n, n,

−λ′

2|n|+ d

)
− 2θ(0̂)

)
|λ′|d−γdλ′.

At this stage, we need a suitable bound of the integrand just above. This will be
achieved thanks to the following lemma.

Lemma 5.2. — There exists an integer k such that for any function θ in S(Ĥd),
we have

∀ (n,m, λ) ∈ Ĥd , |θ(n,m, λ)− θ(0̂) δn,m| 6 C‖θ‖
k,k,S(Ĥd)

(√
|λ|(2|n|+ d) + |λ|

)
.

Proof. — Theorem 2.6 guarantees that θ is the Fourier transform of a function f
of S(Hd) (with control of semi-norms). Hence it suffices to prove that∣∣∣∣f̂H(ŵ)− δn,m

∫
Hd
f(w) dw

∣∣∣∣ 6 CN(f)
(√
|λ|(|n+m|+ d) + |λ|δn,m

)
with N(f) def=

∫
Hd

(1 + |Y |+ |s+ 2〈η, y〉|) |f(Y, s)| dw.

According to (1.9), we have

f̂H(ŵ)− δn,m
∫
Hd
f(w) dw

=
∫
Hd
f(w)

(
e−iλ(s+2〈η,y〉)

∫
Rd
e−2iλ〈η,z〉Hn,λ(z+2y)Hm,λ(z)dz

−
∫
Rd
Hn,λ(z)Hm,λ(z)dz

)
dw.

The right-hand side may be decomposed into I1 + I2 + I3 with

I1 =
∫
Hd
e−iλ(s+2〈η,y〉)f(w)

(∫
Rd

(
e−2iλ〈η,z〉 − 1

)
Hn,λ(z + 2y)Hm,λ(z) dz

)
dw,

I2 =
∫
Hd
e−iλ(s+2〈η,y〉)f(w)

(∫
Rd

(Hn,λ(z + 2y)−Hn,λ(z))Hm,λ(z) dz
)

dw

and I3 =
∫
Hd

(
e−iλ(s+2〈η,y〉) − 1

)
f(w)

(∫
Rd
Hn,λ(z)Hm,λ(z) dz

)
dw.

To bound I1, it suffices to use that∣∣∣∣∫
Rd

(
e−2iλ〈η,z〉 − 1

)
Hn,λ(z+2y)Hm,λ(z) dz

∣∣∣∣
6 2

d∑
j=1
|ληj|

∫
Rd
|Hn,λ(z+2y)| |zjHm,λ(z)| dz
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whence, combining Cauchy–Schwarz inequality and (A.4),∣∣∣∣∫
Rd

(
e−2iλ〈η,z〉 − 1

)
Hn,λ(z + 2y)Hm,λ(z) dz

∣∣∣∣ 6 d∑
j=1
|ηj|

√
|λ|(4mj + 2).

This gives

(5.2) |I1| 6
√
|λ|(4|m|+ 2d)

∫
Hd
|η| |f(y, η, s)| dy dη ds.

To handle the term I2, we use the following mean value formula:

Hn,λ(z + 2y)−Hn,λ(z) = 2y ·
∫ 1

0
∇Hn,λ(z + 2ty) dt,

which implies, still using (A.4),∣∣∣∣∫
Rd

(Hn,λ(z + 2y)−Hn,λ(z))Hm,λ(z) dz
∣∣∣∣ 6 d∑

j=1
|yj|

√
|λ|(4nj + 2),

and thus

(5.3) |I2| 6
√
|λ|(4|n|+ 2d)

∫
Hd
|y| |f(y, η, s)| dy dη ds.

Finally, it is clear that the mean value theorem (for the exponential function) and
the fact that (Hn)n∈Nd is an orthonormal family imply that

(5.4) |I3| 6 |λ|δn,m
∫
Hd
|s+ 2〈η, y〉| |f(y, η, s)| dy dη ds.

Putting (5.2), (5.3) and (5.4) together ends the proof of the lemma. �

Conclusion of the proof of Proposition 2.15. — Taking λ = ± λ′

2|n|+d in Lemma 5.2,
we discover that∣∣∣∣∣θ

(
n, n,

λ′

2|n|+ d

)
+ θ

(
n, n,− λ′

2|n|+ d

)
− 2θ(0̂)

∣∣∣∣∣ 6 C‖θ‖
k,k,S(Ĥd)

√
λ′.

This implies that

I2 6 C‖θ‖
k,k,S(Ĥd)

∑
n∈Nd

1
(2|n|+ d)d+1

∫ 1

0
|λ′|d+ 1

2−γ dλ′

6 C‖θ‖
k,k,S(Ĥd)

∫ 1

0
|λ′|d+ 1

2−γ dλ′ .

As γ < d+ 3/2, combining with (5.1) completes the proof of the proposition. �

6. Examples of computations of Fourier transforms

The present sectionaims at pointing out a few examples of computations of Fourier
transform that may be easily achieved within our approach.
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Let us start with Proposition 2.18. The first identity is easy to prove. Indeed,
according to (1.10), we have

〈FH(δ0), θ〉S′(Ĥd)×S(Ĥd) = 〈δ0,
tFH(θ)〉S′(Hd)×S(Hd)

=
∫
Ĥd

(Hm,λ|Hn,λ)L2θ(ŵ) dŵ.

As (Hn,λ)n∈N is an orthonormal basis of L2(Rd), we get

〈FH(δ0), θ〉S′(Ĥd)×S(Ĥd) =
∑
n∈Nd

∫
R
θ(n, n, λ) |λ|ddλ

which is exactly the first identity.
In order to prove the second identity, we start again from the definition of the

Fourier transform on S ′(Hd), and get

(6.1) 〈FH(1), θ〉S′(Ĥd)×S(Ĥd) =
∫
Hd

(tFHθ)(w) dw.

Let us underline that because tFHθ belongs to S(Hd), the above integral makes sense.
Besides, (2.15) implies that

〈FH(1), θ〉S′(Ĥd)×S(Ĥd) = πd+1

2d−1

∫
Hd

(F−1
H (θ))(y,−η,−s) dy dη ds.

By Theorem 2.7 and Lemma 5.2 we have, for any integrable function f on Hd,

f̂H(0̂) =
∫
Hd
f(w) dw.

Thus we get

〈FH(1), θ〉S′(Ĥd)×S(Ĥd) = πd+1

2d−1FH

(
F−1

H (θ)
)

(0̂) = πd+1

2d−1 θ(0̂).

This concludes the proof of the proposition. �
In order to prove Theorem 2.19, we need the following obvious property of the

Fourier transform.

Lemma 6.1. — Let (Tn)n∈N be a sequence of tempered distribution on Hd which
converges to T in S ′(Hd). Then the sequence (FHTn)n∈N converges to FHT in S ′(Ĥd).

Now, proving Theorem 2.19 just amounts to recasting Theorem 1.4 of [BCD] (and
its proof) in terms of tempered distributions. We recall here the statement for the
reader convenience.

Theorem 6.2. — Let χ be a function of S(R) with value 1 at 0, and com-
pactly supported Fourier transform. Then for any function g in L1(T ?Rd) and any
sequence (εn)n∈N of positive real numbers tending to 0, we have

(6.2) lim
n→∞

FH(g ⊗ χ(εn·)) = 2π(GHg)µĤd0

in the sense of measures on Ĥd.
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Proof of Theorem 2.19. — As g⊗χ(εn·) tends to g⊗1 in S ′(Hd), Proposition 6.1
ensures that

(6.3) FH(g ⊗ 1) = lim
n→∞

Iεn(g, θ) with Iεn(g, θ) def= FH(g ⊗ χ(εn·)).

Moreover, according to Theorem 6.2, we have, for any θ in S(Ĥd),

Iεn(g, θ) =
∫
Ĥd

1
εn
χ̂

(
λ

εn

)
G(ŵ)θ(ŵ) dŵ with G(ŵ) def=

∫
T ?Rd
W(ŵ, Y )g(Y ) dY.

As g is integrable on T ?Rd, Proposition 2.1 of [BCD] implies that the (numerical)
product Gθ is a continuous function that satisfies

|G(ŵ)θ(ŵ)| 6 C (1 + |λ|(|n+m|+ d) + |n−m|)−2d+1.

This matches the hypothesis of Lemma 3.1 in [BCD], and thus

lim
n→∞

∫
Ĥd

1
εn
χ̂

(
λ

εn

)
G(ŵ)θ(ŵ) dŵ =

∫
Ĥd0
θ(ẋ, k)(GHg)(ẋ, k)dµĤd0

(ẋ, k).

Together with (6.3), this proves the theorem. �

Appendix A. Useful tools and more results

For the reader’s convenience, we here recall (and sometimes prove) some results
that have been used repeatedly in the paper. We also provide one more result
concerning the action of the Fourier transform on derivatives.

A.1. Hermite functions

In addition to the creation operator Cj def= −∂j + Mj already defined in the
introduction, we used the following annihilation operator :

(A.1) Aj
def= ∂j +Mj.

It is very classical (see e.g. [Olv74]) that

(A.2) AjHn =
√

2nj Hn−δj and CjHn =
√

2nj + 2Hn+δj .

As, obviously,

(A.3) 2Mj = Cj + Aj and 2∂j = Aj − Cj,

we discover that

(A.4)
MjHn = 1

2
(√

2nj Hn−δj +
√

2nj + 2Hn+δj

)
and ∂jHn = 1

2
(√

2nj Hn−δj −
√

2nj + 2Hn+δj

)
.
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A.2. The inversion theorem

We here present the proof of Theorem 1.3. In order to establish the inversion
formula, consider a function f in S(Hd). Then we observe that if we make the
change of variable x′ = x− 2y in the integral defining (FH(f)(λ)(u))(x) and use the
definition of the Fourier transform with respect to the variable s in R, then we get

(A.5)
(FH(f)(λ)(u)) (x) =

∫
Hd
f(y, η, s)e−iλs−2iλ〈η,x−y〉u(x− 2y) dy dη ds

= 2−d
∫
T ?Rd

(Fsf)
(
x− x′

2 , η, λ

)
e−iλ〈η,x+x′〉u(x′) dx′dη.

This can be written

(A.6)

FH(f)(λ)(u)(x) =
∫
Rd
Kf (x, x′, λ)u(x′) dx′,

with Kf (x, x′, λ) def= 2−d
∫

(Rd)?
(Fsf)

(
x− x′

2 , η, λ

)
e−iλ〈η,x+x′〉dη

= 2−d(Fη,sf)
(
x− x′

2 , λ(x+ x′), λ
)
.

This identity enables us to decompose FH into the product of three very simple
operations, namely

(A.7)

FH = 2−dPH ◦ Φ ◦ Fη,s

with Φ(φ)(x, x′, λ) def= φ

(
x− x′

2 , λ(x+ x′), λ
)

and (PHψ)(n,m, λ) def= (ψ( · , λ)|Hn,λ ⊗Hm,λ)L2(R2d) .

Let us point out that for all λ in R \ {0}, the map

φ( · , λ) 7−→ Φ(φ)( · , λ)

is an automorphism of L2(R2d) such that

(A.8) ‖Φ(φ)( · , λ)‖L2(R2d) = |λ|− d2‖φ( · , λ)‖L2(R2d),

and that the inverse of Φ is explicitly given by

(A.9) Φ−1(y, z, λ) = ψ
(
y + z

2λ,−y + z

2λ, λ
)
.

Next, Operator PH just associates to any vector of L2(R2d) its coordinates with
respect to the orthonormal basis (Hn,λ ⊗Hm,λ)(n,m)∈N2d . It is, by definition, an iso-
metric isomorphism from L2(R2d) to `2(N2d), with inverse

(A.10) (P−1
H θ)(x, x′, λ) =

∑
(n,m)∈N2d

θ(n,m, λ)Hn,λ(x)Hm,λ(x′).

Obviously, arguing by density, Formula (A.7) may be extended to L2(Hd). There-
fore, according to Identities (A.8)-(A.10) and to the classical Fourier–Plancherel
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theorem in Rd+1, the Fourier transform FH may be seen as the composition of three
invertible and bounded operators on L2, and we have

F−1
H = 2dF−1

η,s ◦ Φ−1 ◦ P−1
H .

This gives (1.11) and (1.12). For the proof of (1.13), we refer for instance to [BCD].
This concludes the proof of Theorem 1.3.

A.3. Properties related to the sub-ellipticity of the sublaplacian

Under Notation (1.5), denote by X = (X1, . . . ,X2d) the family of horizontal left
invariant vector fields (where we agree that Xj+d = Ξj for j in {1, . . . , d}), and define,
for any multi-index α in {1, . . . , 2d}k :

(A.11) X α def= Xα1 . . .Xαk .
Then setting, for a nonnegative integer k

‖u‖2
Ḣk(Hd)

def=
∑

α∈{1,...,2d}k
‖X αu‖2

L2 ,

we have the following well-known result (see the proof in e.g. [CCX93, Hör85]):
Theorem A.1. — For any positive integer `, we have for some constant C` > 0,

‖∆`
Hu‖L2(Hd) 6 ‖u‖Ḣ2`(Hd) 6 C`‖∆`

Hu‖L2(Hd) .

This will enable us to establish the following proposition which states that the
usual semi-norms on the Schwartz class and the semi-norms using the structure of Hd

are equivalent.
Proposition A.2. — Let us introduce the notation

(MHf)(X, s) def= (|X|2 − is)f(X, s) .
Next, for all α = (α0, α1, . . . , α2d) in N1+2d, we define

wα
def= sα0yα1

1 . . . yαdd η
αd+1
1 . . . ηα2d

d and |̃α| def= 2α0 + α1 + ...+ α2d .

Then the two families of semi-norms defined on S(Hd) by

‖f‖2
p,S(Hd)

def= ‖f‖2
L2 + ‖Mp

Hf‖2
L2 + ‖∆p

Hf‖2
L2

and N2
p (f) def=

∑
|̃α|+|β|6p

‖wαX βf‖2
L2

are equivalent to the classical family of semi-norms on S(R2d+1).
Proof. — As obviously ‖f‖p,S(Hd) 6 N2p(f), showing that the two families of semi-

norms are equivalent reduces to proving that
(A.12) ∀ p ∈ N , ∃ (Cp,Mp) / ∀ f ∈ S(Hd) , Np(f) 6 Cp‖f‖Mp,S(Hd) .

Now, integrating by parts yields∫
Hd
wαX βf(w)wαX βf(w) dw = (−1)|β|

∫
Hd
f(w)X β

(
w2αX βf(w)

)
dw.
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Observe that X γwγ
′ is either null or an homogeneous polynomial (with respect to

the dilations (1.4)) of degree γ′ − γ, and equal to 0 if the length of γ is greater than
the length of γ′. Thus, thanks to Leibniz’s rule, we have

(A.13) [X β, w2α]f(w) =
∑

|̃α′|62̃|α|−1
|β′|6|β|−1

aα,α′,β′,β w
α′X β′f(w).

Hence we get that∫
Hd
f(w)X β

(
w2αX βf(w)

)
dw =

∑
|̃α′|62̃|α|
|β′|6|β|

aα,α′,β,β′
∫
Hd
wα
′
f(w)X β′X βf(w) dw.

Thanks to Cauchy–Schwarz inequality and by definition of MH, we get, applying
Theorem A.1 and taking p large enough,

∑
|̃α′|62̃|α|
|β′|6|β|

aα,α′,β,β′
∫
Hd
wα
′
f(w)X β′X βf(w) dw 6 C

(
‖f‖2

L2 + ‖Mp
Hf‖2

L2 + ‖∆p
Hf‖2

L2

)
.

This proves that the two families of semi-norms in the above statement are equivalent.
In order to establish that they are also equivalent to the classical family, one can

observe that for all j in {1, . . . , d},

S = 1
4[Ξj,Xj], ∂yj = Xj −

ηj
2 (ΞjXj −XjΞj) and ∂ηj = Ξj + yj

2 (ΞjXj −XjΞj),

from which we easily infer that

‖̃f‖p,S(R2d+1) 6 CN2p(f) with ‖̃f‖2
p,S(R2d+1)

def=
∑

|α|+|β|6p
‖xα∂βf‖2

L2(R2d+1).

This ends the proof of the proposition. �

A.4. Derivations and multiplication in the frequency space

In Section 2, we only considered the effect of the sublaplacian ∆H or of the deriva-
tion ∂s on Fourier transform. Those operations led to multiplication by−4|λ|(2|m|+d)
or iλ, respectively, of the Fourier transform. We also studied the effect of the mul-
tiplication by |Y |2 or −is, and found out that they correspond to the “derivation
operators” ∆̂ and D̂λ for functions on H̃d.
Our purpose here is to study the effect of left invariant differentiations Xj and Ξj

and multiplication by M±
j

def= yj ± iηj on the Fourier transform. This is described by
the following proposition.
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Proposition A.3. — For any function f in S(Hd), we have, for λ different
from 0,

FHXjf = −M̂+
j f̂H and (FHΞjf) = −M̂−

j f̂H

with M̂+
j θ(ŵ) def= |λ| 12

(√
2mj + 2 θ(n,m+ δj, λ)−

√
2mj θ(n,m− δj, λ)

)
and M̂−

j θ(ŵ) def= iλ

|λ| 12
(√

2mj + 2 θ(n,m+ δj, λ) +
√

2mj θ(n,m− δj, λ)
)
.

We also have FHM
±
j f = D̂±j f̂H with

(D̂±j θ)(ŵ) def= 1{±λ>0}

2|λ| 12
(√

2nj θ(n− δj,m, λ)−
√

2mj+2 θ(n,m+ δj, λ)
)

+ 1{±λ<0}

2|λ| 12
(√

2nj+2 θ(n+ δj,m, λ)−
√

2mj θ(n,m− δj, λ
)
.

Proof. — The main point is to compute
∂yjW(ŵ, Y ), ∂ηjW(w̃, Y ), yjW(ŵ, Y ) and ηjW(ŵ, Y ).

By the definition of W and Leibniz’s rule, we have, using the notation fλ(x) def=
f(|λ|1/2x),

∂yjW(ŵ, Y ) =
∫
Rd
e2iλ〈z,η〉|λ|

1
2

(
(∂jHn)λ(y + z)Hm,λ(−y + z)

−Hn,λ(y + z)(∂jHm)λ(−y + z)
)

dz.

From (A.4), we infer that

(A.14) ∂yjW(ŵ, Y ) = |λ|
1
2

2 (
√

2njW(n−δj,m, λ, Y ))−
√

2nj+2W(n+δj,m, λ, Y )

−
√

2mjW(n,m− δj, λ, Y ) +
√

2mj + 2W(n,m+ δj, λ, Y )).
Let us observe that

∂ηjW(ŵ, Y ) =
∫
Rd

2iλzje2iλ〈η,z〉Hn,λ(y + z)Hm,λ(−y + z)dz

= iλ
∫
Rd
e2iλ〈η,z〉((yj + zj)Hn,λ(y + z)Hm,λ(−y + z)

+Hn,λ(y + z)(−yj + zj)Hm,λ(−y + z)) dz

= iλ

|λ| 12

∫
Rd
e2iλ〈η,z〉((MjHn)λ(y + z)Hm,λ(−y + z)

+Hn,λ(y + z)(MjHm)λ(−y + z)) dz.
Now, using again (A.4), we get

(A.15) ∂ηjW(ŵ, Y )= iλ

2|λ| 12
(
√

2njW(n−δj,m, λ, Y ))+
√

2nj+2W(n+δj,m, λ, Y )

+
√

2mjW(n,m− δj, λ, Y ) +
√

2mj + 2W(n,m+ δj, λ, Y )).
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For multiplication by yj, we proceed along the same lines. By definition of W, we
have

yjW(ŵ, Y ) = 1
2|λ| 12

∫
Rd
e2iλ〈η,z〉

(
(MjHn)λ(y + z)Hm,λ(−y + z)

−Hn,λ(y + z)(MjHm)λ(−y + z)
)

dz.

Still using (A.4), we deduce that

(A.16) yjW(ŵ, Y ) = 1
4|λ| 12

(√
2njW(n−δj,m, λ, Y )

)
+
√

2nj+2W(n+δj,m, λ, Y )

−
√

2mjW(n,m− δj, λ, Y )−
√

2mj + 2W(n,m+ δj, λ, Y )).

For the multiplication by ηj, let us observe that, performing an integration by parts,
we can write

ηjW(ŵ, Y ) = 1
2iλ

∫
Rd
∂zj

(
e2iλ〈η,z〉

)
Hn,λ(y + z)Hm,λ(−y + z) dz

= i

2λ

∫
Rd
e2iλ〈η,z〉∂zj (Hn,λ(y + z)Hm,λ(−y + z)) dz.

Leibniz’s rule implies that

ηjW(ŵ, Y ) = i|λ| 12
2λ

∫
Rd
e2iλ〈η,z〉

(
(∂jHn)λ(y + z)Hm,λ(−y + z)

+Hn,λ(y + z)(∂jHm)λ(−y + z)
)

dz.

Using (A.4), we deduce that

(A.17) ηjW(ŵ, Y ) = i|λ| 12
4λ (

√
2njW(n−δj,m, λ, Y ))−

√
2nj+2W(n+δj,m, λ, Y )

+
√

2mjW(n,m− δj, λ, Y )−
√

2mj + 2W(n,m+ δj, λ, Y )).

As e−isλXj
(
eisλW(ŵ, Y )

)
= 2iηjλW(ŵ, Y ) + ∂yjW(ŵ, Y ), we infer from (A.14)

and (A.17) that

e−isλXj
(
eisλW(ŵ, · )

)
= |λ| 12

(√
2mj+2W(n,m+δj, λ, · )−

√
2mjW(n,m−δj, λ, · )

)
=M+

j W(ŵ, · ).

Then, using the definition of FH completes the proof of the first item of the proposi-
tion. Indeed, we have for all ŵ in H̃d,

FHXjf(ŵ) =
∫
Hd
e−isλW(ŵ, Y )Xjf(Y, s) dw

= −
∫
Hd
Xj
(
e−isλW(ŵ, Y )

)
f(Y, s) dw

= −
∫
Hd
e−isλ(M+

j W)(Y, s) f(Y, s) dw = −M+
j FHf(ŵ).
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For proving the second item, we start from the relation

e−isλΞj

(
eisλW(ŵ, Y )

)
= −2iyjλW(ŵ, Y ) + ∂ηjW(ŵ, Y ),

and infer from (A.15) and (A.16) that

e−isλΞj

(
eisλW(ŵ, · )

)
= iλ

|λ| 12
(√

2mjW(n,m−δj, λ, · )+
√

2mj+2W(n,m+δj, λ, · )
)

=M−
j W(ŵ, · ).

Finally, it is obvious that (A.16) and (A.17) give

(yj±iηj)W(ŵ, Y ) = 1
4|λ| 12

(√
2njW(n− δj,m, λ, Y )

)
+
√

2nj + 2W(n+δj,m, λ, Y )

−
√

2mjW(n,m− δj, λ, Y )−
√

2mj + 2W(n,m+ δj, λ, Y )

± sgn(λ)
(√

2njW(n− δj,m, λ, Y )−
√

2nj + 2W(n+ δj,m, λ, Y )

+
√

2mjW(n,m− δj, λ, Y )−
√

2mj + 2W(n,m+ δj, λ, Y ))
)
.

Then reverting to the definition of FH gives the last part of the proposition. �
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