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Abstract. — In the moduli space of polarized varieties (X, L) the same unpolarized
variety X can occur more than once. However, for K3 surfaces, compact hyperkähler manifolds,
and abelian varieties the ‘orbit’ of X, i.e. the subset {(Xi, Li) | Xi ' X}, is known to be
finite, which may be viewed as a consequence of the Kawamata–Morrison cone conjecture. In
this note we provide a proof of this finiteness not relying on the cone conjecture and, in fact,
not even on the global Torelli theorem. Instead, it uses the geometry of the moduli space of
polarized varieties to conclude the finiteness by means of Baily–Borel type arguments. We also
address related questions concerning finiteness in twistor families associated with polarized K3
surfaces of CM type.
Résumé. — Dans l’espace de modules des variétés polarisées (X, L) la variété (non-

polarisée) X peut apparaître plus d’une fois. Néanmoins, pour les surfaces K3, les variétés
hyperkähleriennes compactes et les variétés abéliennes il est connu que l’orbite de la variété
X, i.e. l’ensemble {(Xi, Li) | Xi ' X}, est fini, ce qui peut être vu comme une conséquence
de la conjecture du cône de Kawamata–Morrison. Nous donnons ici une démonstration de la
finitude qui ne repose pas sur la conjecture du cône et qui n’utilise même pas le théorème de
Torelli global. La finitude de l’orbite se déduit plutôt de la géométrie de l’espace de modules
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228 D. HUYBRECHTS

des variétés polarisées et d’arguments à la Baily–Borel. Le problème de la finitude pour la
famille de twisteurs associée à une surface K3 à multiplication complexe est également traité.

The paper studies the connection between moduli spaces of polarized varieties, on
the one hand, and the shape of the ample cone on a fixed variety, on the other hand.
To illustrate our point of departure, let us revue a few well-known results.

0.1. The classical Torelli theorem shows that two complex smooth projective
curves C and C ′ are isomorphic if and only if their polarized Hodge structures are
isomorphic, i.e. there exists a Hodge isometry H1(C,Z) ' H1(C,Z), or, equivalently,
if their principally polarized Jacobians J(C) ' J(C ′) are isomorphic. Dropping the
compatibility with the polarizations, so only requiring isomorphisms of unpolarized
Hodge structures or unpolarized abelian varieties, the geometric relation between
C and C ′ becomes less clear. In moduli theoretic terms, one may wonder about the
geometric nature of the quotient mapMg →Mg/∼. Here,Mg denotes the moduli
space of genus g curves and C ∼ C ′ if and only if J(C) ' J(C ′) unpolarized.
Similarly, two polarized K3 surfaces (S, L) and (S ′, L′) are isomorphic if and only

if there exists a Hodge isometry H2(S,Z) ' H2(S ′,Z) that maps L to L′. Dropping
the latter condition has a clear geometric meaning and corresponds to considering
isomorphisms between unpolarized surfaces S and S ′. Therefore, dividing out by
the resulting equivalence relation yields a map Md →Md/∼ from the moduli space
of polarized K3 surfaces (S, L) of degree d to the space of isomorphism classes
of K3 surfaces that merely admit a polarization of this degree. Considering only
isomorphisms of Hodge structures without any further compatibilities leads to the
analogue of the aforementioned question for curves. At this time, there is no clear
picture of what the existence of an unpolarized isomorphism of Hodge structures
could mean for the geometry of the two K3 surfaces, but finiteness has recently been
established in [Efi17].
Other types of varieties, like abelian varieties, Calabi–Yau or hyperkähler varieties,

can be discussed from the same perspective.

0.2. Let us move to the cone side. For a K3 surface S, the ample cone Amp(S) ⊂
NS(S) ⊗ R and its closure, the nef cone Nef(S), are complicated and usually not
rationally polyhedral. The situation changes when the natural action of Aut(S) is
taken into account. More precisely, there exists a fundamental domain Π ⊂ Nef+(S)
for the action of Aut(S) on the effective nef cone that is rational polyhedral,
see [Ste85] or [Huy16, Chapter 8]. Its generalization to smooth projective varieties
with trivial canonical bundle is the cone conjecture of Kawamata [Kaw97] and Mor-
rison [Mor93]. It has been proved for abelian varieties [PS12] and for hyperkähler
manifolds [AV17, AV16, MY15]. For recent progress in the case of Calabi–Yau vari-
eties see [LOP15].
The cone conjecture has the following somewhat less technical consequence: Up

to the action of the group of automorphisms, there exist at most finitely many
polarizations of a fixed degree, see [Ste85] for the argument. For abelian varieties
the result had been observed already in [NN81].
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0.3. These two circles of ideas are of course linked. For example, for K3 surfaces
the fibre over S0 of the map Md → Md/∼ is naturally identified with the set {L |
ample, (L)2 = d}/Aut(S0). Due to the cone conjecture for K3 surfaces, this set is
finite and, therefore, all fibres of Md → Md/∼ are finite. Similarly, for the moduli
space Ag,d of polarized abelian varieties of dimension g and degree d and a fixed
(unpolarized) abelian variety A0 there exist at most finitely many polarized abelian
varieties (A1, L1), . . . , (An, Ln) ∈ Ag,d with Ai ' A0, i.e. the fibres of Ag,d → Ag,d/∼,
and consequently also ofMg →Mg/∼, are finite.
It is worth emphasizing that the quotients Md/∼, Mg/∼, and Ag,d/∼ have no

reasonable geometric structure, which is mainly due to the fact that the fibres of
the quotient maps are all finite but of unbounded cardinality. See Section 1.5, where
this is discussed for K3 surfaces.
Note that the local Torelli theorem for these types of varieties immediately implies

that the fibres of Md →Md/∼, Ag,d → Ag,d/∼, andMg →Mg/∼, i.e. the sets
Md(S0) := {(S, L) | S ' S0} ⊂Md, Ag,d(A0) := {(A,L) | Ai ' A0} ⊂ Ag,d,

and Mg(C0) := {C | Jac(C) ' Jac(C0)} ⊂ Mg,

are discrete subsets of the corresponding moduli spaces. The present paper is moti-
vated by the question whether the geometric nature of the three moduli spaces Md,
Ag,d, andMg (and others), namely being quasi-projective varieties, can alternatively
be used to deduce from their discreteness the finiteness of the three sets Md(S0),
Ag,d(A0), andMg(C0). There are well-known instances where this naive idea indeed
yields finiteness of certain discrete sets in appropriate moduli spaces by verifying
their algebraicity. As an example, we recall in Section 1.6 the proof for the finiteness
of Aut(S, L) along these lines.
Although, finiteness of the sets Md(S0), Ag,d(A0), orMg(C0) cannot be deduced

quite so easily, we will show that the quasi-projectivity of certain related moduli
spaces can indeed be exploited. We will demonstrate this for the moduli space Md

of compact hyperkähler manifolds of fixed degree and fixed dimension by proving
the following result.
Theorem 0.1. — Fix a compact hyperkähler (or irreducible holomorphic sym-

plectic) manifold X0. Let Md(X0) ⊂Md be the set of polarized compact hyperkähler
manifolds (X,L) of degree (L)2n = d with X ' X0. Then Md(X0) is finite.
In other words, the set of ample line bundles on X0 of fixed degree is finite up to

the action of the group Aut(X0) of automorphisms of X0. As the cone conjecture
for hyperkähler manifolds has recently been established in great generality in [AV17,
AV16], see also [MY15] for a proof for the two standard series, the theorem can
also be seen as a consequence of the cone conjecture. In fact, the full conjecture is
not needed to conclude the above result from the global Torelli theorem, a shortcut
is outlined in Section 1.4. However, our approach shows that finiteness results of
this type can be deduced more directly and without using any version of the global
Torelli theorem from moduli space considerations and Baily–Borel type arguments.
Alternatively, Griffiths’ extension theorem can be used. To complete the picture, we
shall outline in Section 3 a proof of Theorem 0.1 that reduces the assertion to the
case of abelian varieties via the Kuga–Satake construction.
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0.4. Finiteness results of this type are clearly fundamental. However, as they fail
in the non-algebraic setting, they are also quite remarkable. Recall that there indeed
exist non-isotrivial families of K3 surfaces or hyperkähler manifolds with a dense
subset of fibres all isomorphic to one of the fibres. More precisely, the set of period
points corresponding to K3 surfaces or hyperkähler manifolds isomorphic to a fixed
one is dense except when the complex plane (H2,0 ⊕ H0,2) contains a non-trivial
integral class, see [Ver15, Ver17] and [BL16, Remark 5.7]. Theorem 0.1 now says that
this cannot happen for polarized families. The second goal of this paper is to prove
a similar result for certain families ‘orthogonal’ to the polarized case. More precisely,
we study families provided by the twistor space construction. Let us restrict to K3
surfaces for simplicity and recall that associated with any K3 surface S0 endowed
with a Kähler class ω0, e.g. the one given by a polarization L0, one associates a
twistor family S → P1 of K3 surfaces St, t ∈ P1, with a natural Kähler class ωt. Only
countably many of the fibres St are projective and the complex manifold S is not
even Kähler. We then prove the following non-algebraic analogue of Theorem 0.1,
see Proposition 2.8.

Theorem 0.2. — Let S → P1 be the twistor space associated with a polarized
K3 surface (S0, L0). Assume that S0 has CM. Then at most finitely many twistor
fibres St are isomorphic to S0.

Despite the similarities between the two finiteness results, they are rather different
from another perspective. Namely, in Theorem 0.1 the number |Md(S0)| is finite but
unbounded for varying S0, whereas in Theorem 0.2 the number of fibres isomorphic
to S0 only depends on the CM field and can be universally bounded by 132, cf.
Remark 2.9. At this point, it is not clear whether the assumption on S0 to have CM
is really necessary, but the proof suggests that it might.

0.5. We are also interested in the metric aspect. Recall that to any polarization L
on a compact hyperkähler manifold X there is naturally associated a hyperkähler
metric gL on the underlying manifold. The resulting Riemannian manifold shall be
denoted (X, gL). From the Riemannian perspective it is then natural to wonder how
often the same Riemannian manifold occurs for (X,L) ∈ Md. Again restricting to
the case of K3 surfaces for simplicity, we prove the following result, see Corollary 2.3.

Theorem 0.3. — Let Md be the moduli space of polarized K3 surfaces (S, L) of
degree (L)2 = d. Then the setMd(S0, gL0) ⊂Md of polarized K3 surfaces (S, L) ∈Md

for which there exists an isometry (S0, gL0) ' (S, gL) of the underlying Riemannian
manifolds is finite.

Acknowledgement. Thanks to Benjamin Bakker for a discussion related to Re-
mark 2.2, to Balázs Szendröi for an email exchange concerning [Sze99], to Klaus
Hulek for drawing my attention to [Lan87], to Ariyan Javanpeykar for insightful
comments on Proposition 1.2 and Section 1.4, and to Lisa Li for comments on the
first version. Discussions with François Charles and Andrey Soldatenkov related to
Section 2.2 have been very useful, their help is most gratefully acknowledged.
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1. Finiteness of polarizations on hyperkähler manifolds
Without using the global Torelli theorem, finiteness of polarizations of fixed degree

on a compact hyperkähler manifold can be proved by applying Baily–Borel type
arguments that ensure that certain arithmetic quotients and maps between them
are algebraic.

1.1. Consider H2(X0,Z) of a compact hyperkähler (or irreducible holomorphic
symplectic) manifold X0 with its Beauville–Bogomolov form qX0 as an abstract
lattice Λ. For example, if X0 is a K3 surface, then Λ ' E8(−1)⊕2 ⊕ U⊕3. In general,
nothing is known about Λ beyond the fact that it is non-degenerate of signature
(3, b2(X0)− 3) and a few restrictions on b2(X0) in low dimensions. For X0 projective,
the Hodge index theorem implies that the Néron–Severi latticeH1,1(X0,Z) ' NS(X0)
is a non-degenerate primitive sublattice of signature (1, ρ(X0)− 1).
Remark 1.1. — We shall use the following elementary facts from lattice theory,

cf. [Kne02, Satz 30.2], the second being a special case of the first. Let N and Λ be
arbitrary lattices.

(1) Up to the action of the orthogonal group O(Λ), there exist at most finitely
many (primitive) embeddings ηi : N ↪→ Λ, i = 1, . . . , k. In the following,
we often denote the lattices given as the orthogonal complements by Ti :=
ηi(N)⊥ ⊂ Λ.

(2) Up to the action of O(N), there exist only finitely many (primitive) classes
` ∈ N with fixed square (`)2 = d.

(3) If Λ is definite, then there exist at most finitely many embeddings N ↪→ Λ.

1.2. Assume now that N has signature (1, ρ(X) − 1) and fix an element ` ∈ N
with (`)2 = d. Then consider the moduli stack M(N,`) of (N, `)-polarized hyper-
kähler manifolds of deformation type (or just diffeomorphic or homeomorphic to)
X0. So,M(N,`)(T ) consists of families π : X → T of compact hyperkähler manifolds
deformation equivalent to X0 together with an embedding ι : N ↪→ R2π∗Z of locally
constant systems on T which fibrewise induces a primitive embedding of lattices
N ↪→ Pic(Xt) ' NS(Xt) ' H1,1(Xt,Z) ⊂ H2(Xt,Z) mapping ` to an ample line
bundle Lt on Xt.
Standard moduli space constructions yield the following result.
Proposition 1.2. — The stackM(N,`) of (N, `)-polarized compact hyperkähler

manifolds deformation equivalent to X0 is a Deligne–Mumford stack with a quasi-
polarized coarse moduli space M(N,`).
Proof. — We sketch the main steps in the construction. Variants of this can be

found in the literature, see [Bea04, Dol96] and Section 4 for further comments.
Denote by Md the moduli stack of polarized hyperkähler manifolds (X,L) of

degree d. This is a Deligne–Mumford stack with a quasi-projective coarse moduli
space, see [Vie95] and [Huy16, Chapter 5] for further references in the case of K3
surfaces.(1) The map (X → T, ι) 7→ (X → T, ι(`)) defines a morphism f : M(N,`) →
(1)The degree of a polarization L would usually be given as the top intersection form (L)2m or,
equivalently, as cF·q(L)m with the Fujiki constant cF. As we are only looking at varieties deformation
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232 D. HUYBRECHTS

Md. As there exist at most finitely many isometric embeddings `⊥ ↪→ ι(`)⊥ ⊂
Pic(X) (use Remark 1.1(3)), the morphism is quasi-finite. In [Bea04] M(N,`) is
realized as an open and closed substack of Picρ(X)

X/Md
, where X →Md is the universal

family. This is enough to conclude thatM(N,`) is a Deligne–Mumford stack [LMB00,
Proposition 4.5].
It is not difficult to show that f : M(N,`) → Md is actually proper and hence

finite. Therefore, also the induced morphism between their coarse moduli spaces
M(N,`) → Md is finite. For the existence of the coarse moduli spaces (as algebraic
spaces) one needs to use the finiteness of the stabilizers (Matsusaka–Mumford, as
for K3 surfaces), see [KM97]. Using that Md is quasi-projective [Vie95], yields the
quasi-projectivity of M(N,`). �

According to Remark 1.1, there exist, up to the action of O(N), at most finitely
many `1, . . . , `m ∈ N with (`j)2 = d. In this sense, the quasi-projective variety

MN,d := M(N,`1) t · · · tM(N,`m)

can be understood as the moduli space of N -polarized hyperkähler manifolds of
deformation type X0 and degree d.(2)

As explained in the above proof, mapping (X → T, ι : N ↪→ R2π∗Z) to (X →
T, ι(`)) defines a morphism fromM(N,`) to the moduli stackMd of polarized compact
hyperkähler manifolds of deformation type X0 and degree d. This yields a morphism
between their quasi-projective coarse moduli spaces

(1.1) MN,d = M(N,`1) t · · · tM(N,`m) →Md.

Its image consists of all the points that correspond to polarized hyperkähler manifolds
(X,L) of deformation type X0 for which the polarization L is contained in a primitive
sublattice of the Néron–Severi lattice abstractly isomorphic to N . In particular, for
N = NS(X0) the set Md(X0) := {(X,L) ∈Md | X ' X0} is contained in the image
of (1.1). Clearly, if N = Z(d), then (1.1) is an isomorphism MN,d

∼→Md.
According to Remark 1.1, the moduli space MN,d also decomposes into a finite

disjoint union
MN,d = M1

N,d t · · · tMk
N,d.

Here, M i
N,d parametrizes N -polarized hyperkähler manifolds (X, ι) for which the

composition ι : N ↪→ H1,1(X,Z) ⊂ H2(X,Z) ' H2(X0,Z) ' Λ is equivalent to
the embedding ηi. A similar decomposition exists for each fixed `j, so M(N,`j) =⊔
M i

(N,`j).
(3)

equivalent to X0, the Fujiki constant is fixed and so prescribing the Beauville–Bogomolov square
q(L) or the classical degree (L)2m amounts to the same. In particular, it would be enough to fix
the topological type of X0 in our discussion.
(2) . . . with the slight ambiguity that a primitive embedding of N may send more than one `j to
an ample class.
(3)As a side remark, but very much in the spirit of our discussion, the fact that MN,d is quasi-
projective allows one to circumvent Remark 1.1(1), as it implies that there can be at most finitely
many equivalence classes of embeddings N ↪→ Λ obtained as composition N ↪→ H1,1(X,Z) ↪→
H2(X,Z) ' H2(X0,Z) ' Λ.
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Remark 1.3. — The image of M i
N,`j
→ Md defines a special cycle in the sense

of [Kud13]. In particular, each Md(X0) is contained in a finite union of special cycles
of codimension ρ(X0)− 1.

1.3. For each of the lattices Ti = ηi(N)⊥ ⊂ Λ we consider the usual period domain
Di ⊂ P(Ti ⊗ C)

defined by the closed condition (x)2 = 0 and the open condition (x.x̄) > 0. Recall
that Di can be identified with the Grassmannian of positive oriented planes in Ti⊗R
and that it consists of two connected components, cf. [Huy16, Chapter 6].
The orthogonal group O(Ti) acts naturally on Di and due to Baily–Borel [BB66]

the quotient O(Ti) \Di is a quasi-projective variety with finite quotient singularities.
Proposition 1.4. — Mapping (X, ι : N ↪→ NS(X)) to its period ϕ(H2,0(X))

yields a well defined and algebraic map
πi : M i

N,d → O(Ti) \Di.

Here, ϕ : H2(X,Z) ∼→ Λ is any marking for which ϕ ◦ ι = ηi.
Proof. — Note that the primitive embedding ι : N ↪→ NS(X) composed with the

inclusion NS(X) ' H1,1(X,Z) ⊂ H2(X,Z) and a marking H2(X,Z) ' Λ yields a
primitive embedding η : N ↪→ Λ. By definition of M i

N,d this primitive embedding
is equivalent to ηi and, hence, there indeed exists a marking ϕ with ϕ ◦ ι = ηi.
In particular, the sublattices Ti = ηi(N)⊥ and ϕ(ι(N))⊥ of Λ coincide. Hence,
ϕ(H2,0(X)) ⊂ Ti ⊗ C, which thus defines a point in Di. Changing ϕ to ϕ′ still
satisfying ϕ′ ◦ ι = ηi yields a period in the same orbit of the O(Ti)-action on Di. It
is easy to check that isomorphic N -polarized (X, ι) and (X ′, ι′), i.e. both defining
the same point in M i

N,d, yield the same point in O(Ti) \Di.
Introducing markings globally over M i

N,d (by passing to the appropriate principal
bundle) and applying local period maps, one finds that πi : M i

N,d → O(Ti) \ Di is
holomorphic.(4) The crucial input now is Borel’s result [Bor72] which shows that πi
is automatically algebraic. Note that Borel’s result only allows quotients by torsion
free groups. However, introducing finite level structures one obtains a finite cover of
M i

N,d that then maps holomorphically to a smooth quotient Γ \Di for some finite
index torsion free subgroup Γ ⊂ O(Ti). �

Corollary 1.5. — The fibres of πi : M i
N,d → O(Ti) \Di are finite.

Proof. — By the local Torelli theorem, non-trivial local deformations of (X, η) are
detected by their periods, i.e. by their images under πi. Thus, the fibres of πi are
discrete. Now use that πi is algebraic, which immediately implies finiteness. �

1.4. Proofs of Theorem 0.1. As announced in the introduction, we shall now
present a proof of the finiteness of Md(X0) for hyperkähler manifolds X0 that avoids
the Kawamata–Morrison cone conjecture and, in fact, the global Torelli theorem.
We shall also sketch an argument that uses the global Torelli theorem directly. For
a third proof via the Kuga–Satake construction see Section 3.
(4)This is completely analogous to the standard arguments, see e.g. [Bea04, Dol96, Huy16].
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– Let X0 be a compact hyperkähler manifold which is assumed to be projective.
Hence, N := NS(X0) ' H1,1(X0,Z) ⊂ H2(X0,Z) ' Λ is a primitive sublattice
of signature (1, ρ(X0) − 1) (which by [Huy99] is known to be equivalent to the
projectivity of X0).
The setMd(X0) ⊂Md of all polarized (X,L) of degree d with X ' X0 is contained

in the image of the map (1.1). So, let (X, ι) ∈ MN,d with X ' X0. Then ι : N ∼→
NS(X), because an embedding of abstractly isomorphic lattices is automatically an
isomorphism. Hence, (X, ι) and (X0, ι0 : N =→ NS(X0)) are both contained in the
same part M i

N,d ⊂ MN,d. Moreover, picking an isomorphism f : X ∼→ X0 yields a
Hodge isometry f ∗ : NS(X0)⊥ ∼→ NS(X)⊥, which shows that (X, ι) and (X0, ι0) have
the same image under πi : M i

N,d → O(Ti) \Di.
Therefore, Md(X0) is contained in the image under the map (1.1) of a fibre of πi.

Now use Corollary 1.5, to conclude the finiteness of Md(X0). �

Remark 1.6. — For Calabi–Yau threefolds a similar idea has been exploited by
Szendrői [Sze99] and it seems plausible that his arguments can be generalized to
cover Calabi–Yau manifolds of arbitrary dimensions. Instead of Baily–Borel, so the
algebraicity of the holomorphic period map, he applies Griffiths’ extension theo-
rem [CGGH83] which ensures the existence of a proper holomorphic extension.
In fact, quite generally, quasi-finiteness can alternatively be deduced from the

extension theorem. See [JL18] for an in depth discussion of various aspects of the
quasi-finiteness of period maps and references.
– As has been mentioned, Theorem 0.1 can also be deduced from the global Torelli

theorem which in turn relies on the existence of Ricci-flat metrics, twistor spaces,
etc. Here is a quick outline of the argument. The reader may, for simplicity, restrict
to the case of K3 surfaces.
The group of diffeomorphisms acts by a finite index subgroup on H2(X0,Z), of-

ten called the monodromy group Mon(X0) ⊂ O(H2(X0,Z)). For K3 surfaces the
index has been determined in [Bor86] (finiteness was known to Weil). The same
argument combined with [Huy03] proves finiteness for arbitrary hyperkähler mani-
folds. The subgroup respecting the Hodge structure yields a finite index subgroup
MonHdg(X0) ⊂ O(NS(X0)). (The finite index of the inclusion NS(X0)⊕ NS(X0)⊥ ⊂
H2(X0,Z) intervenes here.) We know that O(NS(X0)) acts with finitely many orbits
on the set of all ` ∈ NS(X0) with fixed (`)2 = d, see Remark 1.1. The last step now is
to describe the image of Aut(X0)→ O(NS(X0)) as the subgroup of finite index of all
g ∈ O(NS(X0)) such that g maps (at least) one Kähler class again to a Kähler class.
This last assertion is part of the global Torelli theorem, cf. [Huy16, Chapter 15] for
the case of K3 surfaces and [Mar11, Ver13] for the higher-dimensional case. �

Corollary 1.7. — Let π : (X ,L)→ T be a polarized family of compact hyper-
kähler manifolds (e.g. of polarized K3 surfaces) over a quasi-projective base T . Then
for any X0 the set {t ∈ T | Xt ' X0} is Zariski closed. �

Corollary 1.8. — Let N be a lattice of signature (1,m) and ` ∈ N a primitive
class. Then for any compact hyperkähler manifold X0 there exist, up to the action
of Aut(X0), at most finitely many isometric embeddings N ↪→ NS(X0) mapping `
to an ample class.
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Finiteness of polarized K3 235

Proof. — The result can be proved in the spirit of the discussion above, by means
of moduli spaces of lattice polarized hyperkähler manifolds and again using Baily–
Borel arguments. It can also be deduced from Theorem 0.1 directly. Indeed, up to
the action of Aut(X0) there are only finitely many ample classes L ∈ NS(X0) with
(L)2 = (`)2. An isometric embedding N ↪→ NS(X0) mapping ` to a fixed L is then
determined by the induced `⊥ ↪→ L⊥. As L⊥ is negative definite by the Hodge index
theorem, there are only finitely many such embeddings, see Remark 1.1. �

1.5. The cardinality of the ‘orbits’ cannot be bounded. For abelian surfaces this has
been observed in [Hay68, Lan06]. This suggests a similar behavior for the associated
Kummer surfaces, but controlling the degree of the polarizations is technical. Here,
we exhibit an example of polarized K3 surfaces (S, L) of degree (L)2 = d = 4d0
for any fixed odd d0 > 0 not divisible by any p3 showing that |Md(S)| cannot be
bounded.
For this, consider an increasing sequence of primes pi ≡ 3 (4). By Siegel’s theorem,

the sequence of class numbers hi := h(pi) = |Cl(Ki)| of the imaginary quadratic
field Ki := Q(√−pi) cannot be bounded. Then use the interpretation of Cl(Ki) as
the set of Sl(2,Z)-equivalence classes of binary quadratic forms aX2 + bXY + cY 2

of discriminant −pi = b2 − 4ac or, equivalently, as the set of isomorphism classes
of oriented positive definite lattices Γ of rank two with intersection matrix ( 2a b

b 2c ).
It is classically known that two forms are in the same genus if they differ by forms
in Cl(Ki)2 (Gauss principal genus theorem) and that under our assumptions in
fact Cl(Ki)2 = Cl(Ki). cf. [Cox89, Proposition 3.11]. Hence, for all i there exist
non-isomorphic Γi1, . . . ,Γihi within the same genus.
Hence, the indefinite lattices Γ̃ij := Γij⊕Z(−d0), j = 1, . . . , hi, of rank three are in

the same genus for fixed i. However, the genus of an indefinite ternary form determines
the isomorphism class assuming that its discriminant is odd and indivisible by any
cube, cf. [CS98, Chapter 15, Theorem 21]. Hence, Γ̃i1 ' · · · ' Γ̃ihi and we shall
denote this isomorphism type by Γ̃i. Then the generators of Z(−d0) correspond
to elements αij ∈ Γ̃i. As their orthogonal complements α⊥ij are isomorphic to Γij,
the orbits O(Γ̃i) · αij ⊂ Γ̃i are all distinct. Finally, set Ni := Γ̃i(−4), which is
lattice of signature (1, 2) containing classes αi1, . . . , αihi of square (αij)2 = d = 4d0
with distinct O(Ni)-orbits. By the surjectivity of the period map, there exist K3
surfaces Si with NS(Si) ' Ni. As the lattices Ni do not contain any (−2)-classes,
up to sign the αij, j = 1, . . . , hi correspond to ample line bundles Lij with pairwise
distinct O(NS(Si))-orbits and, hence, pairwise distinct Aut(Si)-orbits. In other words,
(Si, Lij) ∈Md, j = 1, . . . , hi, are hi distinct points, all contained in Md(Si).

1.6. We conclude this section by a few additional remarks.

– The kind of finiteness we have discussed for K3 surfaces, hyperkähler manifolds,
and abelian varieties does not generalize to arbitrary varieties. In fact, it already
fails for blow-ups of K3 surfaces. For a concrete example, consider an automorphism
f : S ∼→ S of infinite order of a K3 surface S. Then consider the family π : X :=
Bl∆(S × S) σ→ S × S p1→ S, which over a point s ∈ S is the blow-up of S in s. Fix a
sufficiently ample line bundle L on S and the induced π-ample line bundle p∗1L(−E),
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where E → ∆ is the exceptional divisor. Then for an infinite orbit {si := f i(s)}
the infinitely many fibres Xsi are all isomorphic. These isomorphisms will be mostly
unpolarized, as {f i∗L} will be infinite for every ample line bundle L on S. Hence, in
the corresponding moduli space, the orbit Md−1(Bls(S)) will be infinite.
– There are indeed instances where finiteness can be deduced by combining a

local argument, showing discreteness of a set, with algebraicity. For example, for a
polarized K3 surface (S, L) the quasi-projectivity of the Hilbert scheme HilbP (S×S)
(of closed subschemes of S × S with fixed Hilbert polynomial P (n) = χ(S, L2n))
implies that the group Aut(S, L) of automorphisms f : S ∼→ S with f ∗L ' L is
finite, cf. [Huy16, Chapter 5]. Note that the finiteness of the group of polarized
automorphisms implies that the moduli stacks discussed previously are Deligne–
Mumford stacks.

2. Finiteness of hyperkähler metrics and in twistor families

Let X be a compact hyperkähler manifold, for example a K3 surface S, and
ω ∈ H1,1(X) a Kähler class. Then there exists a unique hyperkähler metric g on X
whose Kähler form g(I , ) represents ω. This can in particular be applied to the
Kähler class provided by the first Chern class of an ample line bundle L on X. The
associated hyperkähler metric shall be denoted gL and then (X, gL) is the underlying
Riemannian manifold (with the complex structure of X dropped).
We shall first address the question how many polarized hyperkähler manifolds

(X,L) ∈ Md of fixed degree realize the same Riemannian manifold, i.e. for a given
(X0, L0) we study the set

Md(X0, gL0) ⊂Md

of all (X,L) ∈ Md such that there exists an isometry (X0, gL0) ' (X, gL) between
the underlying Riemannian manifolds.
We will then turn to families ‘orthogonal’ to the moduli spaces Md provided

by the twistor construction. Recall that to each hyperkähler metric g there exists
an S2 of complex structures compatible with g. This leads to the twistor family
π : X → P1 consisting of a complex manifold X with underlying differentiable
manifold X × P1 and the holomorphic projection π to the second factor. Each fibre
Xt, t ∈ P1, comes with an associated Kähler class ωt ∈ H1,1(Xt). Altogether they
span a positive three-space 〈ωt〉t∈P1 ⊂ H2(X,R), which is alternatively described as
R · Re(σ)⊕ R · Im(σ)⊕ R · ω. Here, 0 6= σ ∈ H2,0(X) is the unique (up to scaling)
holomorphic two-form. We shall denote by X0 the fibre that corresponds to X and
so ω0 = ω. Note that the Beauville–Bogomolov form is constant on {ωt} or, in other
words,

∫
ω2n
t ≡ const.

We then ask whether there are fibres Xt, t ∈ P1, biholomorphic to X or such that
(Xt, ωt) ' (X,ω) as Kähler manifolds? Are the following sets finite:

{t ∈ P1 | (Xt, ωt) ' (X,ω)} and {t ∈ P1 | Xt ' X}?

We prove finiteness in the first case and for K3 surfaces with CM in the second.
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2.1. Consider the twistor family X → P1 associated with a compact hyperkähler
manifold X endowed with a Kähler class.
Lemma 2.1. — There exist only finitely many t ∈ P1 such that the natural Kähler

class ωt is integral, i.e. given by an ample line bundle Lt on Xt. In particular, if ω
is the class of an ample line bundle L, then at most finitely many polarized fibres
(Xt, ωt) are isomorphic to (X,L).
Proof. — The positive three-space 〈ωt〉 = (H2,0 ⊕ H0,2)(X,R) ⊕ R · ω intersects

the lattice H2(X,Z) in a positive definite lattice (of rank 6 3). As the number of
classes of fixed square in a positive definite lattice is finite, the set {ωt}∩H2(X,Z) is
finite. As the class ωt determines t ∈ P1 up to complex conjugation, for only finitely
many fibres Xt the class ωt can be integral. �

Remark 2.2. — Note that in most cases the natural class ωt on Xt will be integral
or just rational for only two of the fibres. Indeed, ωt ∈ P := R·Re(σ)⊕R·Im(σ)⊕R·ω
and P ∩H2(X,Q) = Q · ω for very general (X,ω := c1(L)) and then only the fibres
corresponding to X and its complex conjugate (corresponding to the positive plane
(H2,0⊕H0,2)(X,R) with reversed orientation) have rational ωt. At the other extreme,
P is defined over Q if and only if ρ(X) = h1,1(X).
The remaining cases with P ∩ H2(X,Q) of dimension two are parametrized by

a countable union of real Lagrangians in Md. Let us spell this out for K3 surfaces.
Define Λd := `⊥ ⊂ Λ as the orthogonal complement of a primitive class ` in the
K3 lattice Λ with (`)2 = d. Then Md is an open subset of the arithmetic quotient
Õ(Λd)\D of the period domain D ⊂ P(Λd⊗C) (viewed as the set of positive oriented
planes in Λd⊗R) by the stabilizer of `, cf. [Huy16, Chapter 6]. Now, for any α ∈ Λd

with (α)2 > 0 consider the positive cone Cα⊥ ⊂ α⊥⊗R. Note that α⊥ is of signature
(1, 19). The image Lα ⊂Md of the natural map

Cα⊥/R∗ ↪→ D → Õ(Λd) \D,
that sends β ∈ Cα⊥ to the plane spanned by α and β, or rather its intersection
with the open set Md, describes the set of all polarized K3 surfaces (S, L) with
α ∈ (H2,0⊕H0,2)(S,Z). Each of the countably many Lα ⊂Md is of real dimension 19
and isotropic with respect to the natural symplectic form on Md. Compare this
to [BL16, Remark 5.7].
Let us rephrase Lemma 2.1 more algebraically in the case of K3 surfaces. Consider

the moduli spaceMd of polarized K3 surfaces (S, L) of degree d. For (S0, L0) ∈Md let
Md(S0, gL0) ⊂Md be the set of polarized K3 surfaces (S, L) such that the underlying
Riemannian manifold (S, gL) is isometric to (S0, gL0).
Corollary 2.3. — The setMd(S0, gL0) ⊂Md is always finite. For a very general

(S0.L0) the set Md(S0, gL0) consists of (S0, L0) and its conjugate (S̄0, L
∗
o). However,

there exist polarized K3 surfaces (S0, L0) ∈Md with |Md(S0, gL0)| > 2.
Proof. — Indeed, (S, L) ∈ Md(S0, gL0) if and only if S and S0 with the Kähler

classes induced by L and L0 are isomorphic to fibres (St, ωt) and (S0, ω0) of one
twistor family S → P1. However, as explained above, for only finitely many fibres
of the twistor family associated with (S0, ω0) the Kähler class ωt can be integral. In

TOME 1 (2018)



238 D. HUYBRECHTS

fact, as discussed in Remark 2.2, for (S0, L0) in the complement of the countable
union ⋃Lα ⊂Md of real Lagrangians, only for the fibres St corresponding to S0 and
to its conjugate S̄0 the class ωt will be integral and thus correspond to the Kähler
class of the form gL.
To construct examples with more interesting Md(S0, gL0) ⊂Md, take (S0, L0) with

(L0)2 = 2, T (S0) = ( 2 1
1 2 ), and such that T (S0)⊕Z ·L ⊂ H2(S0,Z) is primitive. Then

the fibres (St, ωt) of the form (S, L) ∈M2 correspond to elements α ∈ T (S0)⊕ Z(2)
with (α)2 = 2. For example, S0 corresponds to the basis vector e3 and another
fibre St corresponds to the standard vector e1. As their orthogonal complements
T (S0) and T (St) ' Z · (e1 − 2e2) ⊕ Z · e3 have distinct discriminants, the two
fibres are not isomorphic or complex conjugate to each other. Hence, in this case
|Md(S0, gL0)| > 2. �

It should be possible, using the above construction, to show that |Md(S0, gL0)| is
unbounded for varying (S0, L0) ∈Md and fixed d, analogously to Section 1.5.

Remark 2.4. — The two sets Md(S0),Md(S0, gL0) ⊂Md associated with a polar-
ized K3 surface (S0, L0) ∈Md are not related and, in particular, not contained in each
other. Indeed, |Md(S0, gL0)| 6 2 for all K3 surfaces S0 with (H2,0⊕H0,2)(S0,Q) = 0.
However, the latter condition is unrelated to the question how many non-isomorphic
polarizations L on S0 there are with (L)2 = (L0)2. Also, theMd(S0) come in algebraic
families parametrized by quasi-projective varieties, see Corollary 4.1, whereas the
Md(S0, gL0) come in families parametrized by the Lagrangians Lα discussed above.

2.2. The lattice theory in the unpolarized situation is more involved and we will
restrict for simplicity again to the case of K3 surfaces.
Let T be a lattice of signature (2, n − 2) with a fixed basis γ1, . . . , γn ∈ T . We

consider Hodge structures of K3 type on T . Up to scaling, such a Hodge structure
is given by a class σ ∈ T ⊗ C with (σ)2 = 0 and (σ.σ̄) > 0. We let σi := (γi.σ),
where we may choose σ such that σ1 = 1 (after permuting the γi if necessary or by
assuming (γ1)2 > 0 from the start). The period field of σ is defined as

Kσ := Q(σi) ⊂ C,

which is also generated by the coordinates of σ. The Hodge structure determined
by σ is general if there does not exist a proper primitive sublattice T ′ ⊂ T with
σ ∈ T ′ ⊗ C.
Consider now an isometric embedding ϕ : T ↪→ T ⊕ Z · e with (e)2 = d > 0 and

such that

(2.1) ϕC(σ) = λ · σ + µ · e.

Note that then λ is automatically an algebraic integer, for it is an eigenvalue of the
composition ψ := pr1 ◦ ϕ : T ↪→ T ⊕ Z · e� T .

Lemma 2.5. — Assume that σ ∈ T ⊗ C defines a general Hodge structure of K3
type on T such that Kσ is a subfield of a CM field. Then there exist at most finitely
many isometric embeddings ϕ : T ↪→ T ⊕ Z · e satisfying (2.1).
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Proof. — Consider an isometric embedding ϕ satisfying (2.1). For the induced
map ψ : T → T one then has ψC(σ) = λ · σ. Hence, λ = λ(σ.γ1) = (ψC(σ).γ1) =
(σ.ψt(γ1)) ∈ Kσ. Therefore, λ ∈ OKσ and, as ϕC(σ) ∈ (T ⊕ Z · e)⊗Kσ, also µ ∈ Kσ.
From equation (2.1) one deduces (σ.σ̄) = (λλ̄) (σ.σ̄) + (µµ̄) d or, equivalently,

(2.2) 1 = λλ̄+ (µµ̄) d/(σ.σ̄).
The assumption that Kσ is contained in a CM field implies that any embedding
g : Kσ ↪→ C commutes with complex conjugation. Hence, g applied to (2.2) also
shows 1 = g(λ)g(λ) + (g(µ)g(µ)) d/g(σ.σ̄). Observe that g(σ.σ̄) > 0 and that,
therefore, the second summand is non-negative. Indeed, choose z ∈ C such that
(zσ, z̄σ̄) = 1. Then |g(z)|2 g(σ.σ̄) = (g(zσ), g(z̄σ̄)) = 1, as g commutes with complex
conjugation. Hence, |g(λ)| 6 1 for all g : Kσ ↪→ C. By Minkowski theory there are
only finitely many such λ ∈ OKσ . In fact, λ is a root of unity (Kronecker’s theorem).
From the finiteness of the λ’s one concludes the assertion by observing that λ

determines ϕ essentially uniquely. Indeed, if ϕ and ϕ′ are both isometric embeddings
satisfying (2.1), then σ ∈ Ker(ψ − ψ′) ⊗ C, where, as above, ψ, ψ′ : T → T are the
compositions of ϕ, ϕ′ with the projection to T . Hence, by assumption ψ = ψ′. Using
that ϕ and ϕ′ are both isometric embeddings allows one to conclude. �

Remark 2.6. — The proof shows more. It allows one to control the number of
isometric embeddings ϕ : T ↪→ T ⊕Z · e satisfying (2.1). Indeed, up to a certain sign,
such a ϕ is determined by a root of unity in OKσ . Hence, the number of such maps
ϕ is bounded by twice the number of roots of unity in OKσ , which is bounded from
above by a number depending only on [Kσ : Q].

Remark 2.7. — The hypotheses can be relaxed a little. For example, one can
consider isometric embeddings of T into a fixed finite index overlattice of T ⊕ Z · e
(e.g. the saturation of T (S) ⊕ Z · e in H2(S,Z)). Indeed, instead of working with
ϕ in the proof above one uses n · ϕ, where n is the index of the overlattice, and
then replaces the left hand side of (2.2) by n2. Also, (e)2 ∈ 2Z>0 can be replaced by
(e)2 ∈ Kσ satisfying g((e)2) ∈ R>0 for all embeddings g : Kσ ↪→ C.

Consider the twistor space S → P1 associated with a polarized K3 surface (S0, L0).

Proposition 2.8. — Assume that S0 is a K3 surface with CM. Then there exist
at most finitely many t ∈ P1 such that the fibre St is isomorphic to S0. In fact, there
are at most finitely many t ∈ P1 such that St and S0 are Fourier–Mukai partners.

The arguments below only use that the period field Kσ is a CM field and, therefore,
in particular algebraic. It is known, that under the additional assumption that S0 is
defined over Q̄ the period field Kσ is algebraic if and only if S0 has CM, see [Tre15].
Proof. — Recall that a K3 surface with CM is a projective K3 surface S0 for which

the endomorphism field K = EndHdg(T (S0)⊗Q) of endomorphisms of the rational
Hodge structure T (S0)⊗Q given by the transcendental lattice T (S0) is a CM field
with dimK(T (S0)⊗Q) = 1, see [Huy16, Chapter 3] for references. It is known that
any K3 surface with CM is defined over Q̄, but this will not be used in the argument.
Let Kσ be the field generated by the periods σi of S0 as above. We claim that

Kσ ⊂ K. For this it is enough to show that (γ.σ) ∈ K for all γ ∈ T (S0). As
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dimK(T (S0)⊗Q) = 1 by assumption, T (S0) is contained in the Q-span of all α(γ1),
α ∈ K ⊂ End(T (S0)⊗Q), where γ1 is as above the first vector of a basis γi ∈ T (S0)
with (σ.γ1) = 1. Hence, for γ ∈ T (S0), (σ.γ) is a Q-linear combination of numbers
of the form (σ.α(γ1)), α ∈ K. As (σ.α(γ1)) = (α′σ.γ1) = α′ ∈ K, this proves
Kσ ⊂ K. (Recall that α 7→ α′ is an automorphism of the CM field K which under
any embedding corresponds to complex conjugation.)
Let us now turn to the proposition itself. Clearly, it is enough to show the finiteness

of Fourier–Mukai partners in a twistor family. Suppose that a twistor fibre St is
derived equivalent to S0, i.e. that there exists an exact linear equivalence Db(St) '
Db(S0) between their derived categories. Hence, in addition to the identification of
lattices H2(St,Z) = H2(S0,Z) induced by the twistor diffeomorphism S ' S0 × P1,
any chosen equivalence Db(S0) ∼→ Db(St) provides us with an additional Hodge
isometry between the transcendental lattices T (S0) ∼→ T (St). The composition of
the two induces an isometric embedding ϕ : T (S0) ∼→ T (St) ↪→ H2(S0,Z) with the
additional property that ϕ(σ) is contained in C · σ⊕C · σ̄⊕C · e, where e := c1(L0).
Hence, ϕ(T (S0)) is contained in the saturation of T (S0) ⊕ Z · e ⊂ H2(S0,Z). For
simplicity assume that ϕ : T (S0) ↪→ T (S0)⊕ Z · e, but see Remark 2.7.
According to Lemma 2.5, under our assumptions there exist only finitely many

such ϕ. Here we use that the transcendental lattice is general, for it is the minimal
primitive sublattice containing σ in its complexification. As ϕ(σ) determines t up to
sign, only finitely many fibres St are derived equivalent to S0. �

Remark 2.9. — Using Remark 2.6, we conclude that for a polarized K3 surface
(S0, L0) with CM one can bound the cardinality of the two finite sets
(2.3) |{t ∈ P1 | St ' S0}| and |{t ∈ P1 | Db(St) ' Db(S0)}|
by a constant c(K) only depending on the CM field K = EndHdg(T (S0) ⊗ Q). In
fact, as [K : Q] = rk T (S0) 6 21, the Euler function ϕ(m) of the m-th roots of
unity that can occur in the proof of Lemma 2.5 is bounded by 21 and hence m 6 66.
Taking complex conjugation into account, this shows that the numbers in (2.3) are
universally bounded by 132.

Note however that infinitely many of the fibres St may come with a polarization Lt
yielding infinitely many points (St, Lt) in the moduli space of polarized K3 surfaces
Md of fixed degree, which could be loosely phrased as saying that a twistor line
usually intersects the quasi-projective moduli space Md in infinitely many points,
only that the underlying K3 surfaces will not be isomorphic to each other.

2.3. It may be instructive to look at K3 surfaces S0 of maximal Picard number
ρ(S0) = 20. Those are known to have CM, cf. [Huy16, Remark 3.3.10]. In this case,
the arguments simplify. Indeed, the transcendental lattice T (S0) is then positive
definite (of rank two) and there exist only finitely many isometric embeddings of
T (S0) into any other fixed positive definite lattice, e.g. T (S0)⊕ Z · e. So finiteness
in Lemma 2.5 follows directly.
K3 surfaces of maximal Picard rank can also be used to construct examples of

twistor families with isomorphic distinct fibres. Indeed, if S0 is a K3 surface with
T (S0) ' Z(d)⊕2 with orthogonal basis e1, e2 and such that there exists a polarization
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L of degree d for which T (S0)⊕ Z · L ⊂ H2(S0,Z) is saturated, then the two fibres
S1,S2 corresponding to T (Si) = e⊥i have both transcendental lattices isomorphic to
T (S0). Therefore, by Orlov’s result, Db(Si) ' Db(S0) and, as ρ(Si) = 20, in fact
Si ' S0.
A closer inspection of this case also reveals that Proposition 2.8 will be difficult to

strengthen. For example, one could ask how many of the fibres St are isogenous to S0,
i.e. such that there exists a Hodge isometry H2(S,Q) ' H2(St,Q) (or, equivalently,
a Hodge isometry T (S) ⊗ Q ' T (St) ⊗ Q), or how many of them have the same
Chow motive h(S0) ' h(St), see [Huy17] for the relation between the two notions.
However, finiteness fails in these settings. Indeed, for ρ(S0) = 20 the projective
fibres St are up to conjugation uniquely determined by primitive classes et in (the
saturation of) T (S0)⊕Z · e ⊂ H2(S0,Z). It is essentially (et1)2/(et2)2 ∈ Q∗/Q∗2 that
decides whether St1 and St2 are isogenous. So one will usually have infinitely many
fibres St that are isogenous to S0 and infinitely many that are not.

3. Finiteness via Kuga–Satake and abelian varieties

An approach to the finiteness of polarizations of fixed degree on an abelian variety
A0 modulo the action of Aut(A0) similar to the one presented in Section 1 can
be worked out. It provides a new proof of the classical result of Narasimhan and
Nori [NN81], cf. [Mil86, Section 18]. Note that the finiteness of Ag,d(A0) ⊂ Ag,d can
be quickly reduced to the case of principally polarized abelian varieties via Zarhin’s
trick [Zar85] which provides a (non-canonical) quasi-finite morphism Ag,d → A8g :=
A8g,1, (A,L) 7→ ((A × Â)4,L) to the moduli space of principally polarized abelian
varieties, see e.g. the account in [OS18, Section 4.1].
The question how many principal polarizations an abelian variety can admit has

been studied by Lange [Lan87], who in particular describes bounds for the cardinality
of Ag(A0) ⊂ Ag for A0 with real multiplication. Further results for products of
elliptic curves can be found in [Hay68, Lan06], where, for example, it is shown that
|A2(E1 × E2)| is unbounded for isogenous elliptic curves E1, E2 without complex
multiplication. See also [How01, How05].

We shall now indicate an alternative proof of Theorem 0.1 based on the Kuga–
Satake construction which reduces the problem to the finiteness for abelian varieties.
For simplicity, we restrict to the case of K3 surfaces and leave the necessary modifi-
cations in the higher-dimensional case to the reader.
Starting with the Hodge structure of weight two H2(S,Z)L-pr of an arbitrary

polarized K3 surface (S, L), the Kuga–Satake construction produces an abelian
variety KS(S, L) of dimension g = 219. By choosing a pair of positive orthogonal
vectors in H2(S,Z)L-pr, e.g. e1 + f1, e2 + f2 in the two copies of the hyperbolic plane
U in the decomposition H2(S,Z)L-pr ' E8(−1)⊕2 ⊕ U⊕2 ⊕ Z(−d), one can define a
polarization on KS(S, L) of a fixed degree d′, cf. [Huy16, Chapter 4]. Suppressing
the choice of finite level structures, this leads to a morphism

(3.1) Md → Ag,d′ ,
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which is known to be quasi-finite, see [And96, Riz10] and [Mau14, Proposition 5.10].
The Kuga–Satake construction applies to any Hodge structure of K3 type, in

particular to the transcendental lattice T (S) of a K3 surface, which is independent
of the polarization, and to T (S) ⊕ L⊥. Here, L⊥ ⊂ NS(S) denotes the primitive
sublattice orthogonal to an ample L ∈ NS(S). Moreover,

KS(T (S)⊕ L⊥) ' KS(T (S))2ρ(S)−1
.

In particular, for two different polarizations L1, L2 on a K3 surface S one has
KS(T (S) ⊕ L⊥1 ) ' KS(T (S))2ρ(S)−1 ' KS(T (S) ⊕ L⊥2 ). Now, the natural inclusion
ιi : T (S)⊕L⊥i ⊂ H2(S,Z)Li-pr defines a finite index sublattice, leading to an isogeny

KS(T (S))2ρ(S)−1 ' KS(T (S)⊕ L⊥)� KS(S, L).
Its degree depends only on the index of ιi. There may be infinitely many polarizations
Li of fixed degree but only finitely many inequivalent ones under the action of
O(NS(S)). Hence, the inclusions ιi have bounded index and, therefore, the KS(S, Li)
are all quotients of bounded degree of the abelian variety KS(T (S))2ρ(S)−1 .
This then shows the following result which allows one to deduce from the finiteness

ofAg,d(A0) for abelian varieties [NN81, Mil86] the finiteness ofMd(S0) for K3 surfaces
(and more generally of Md(X0) for compact hyperkähler manifolds).
Corollary 3.1. — For any K3 surface S0 the image of Md(S0) ⊂ Md under

the quasi-finite map (3.1) is contained in a finite union of sets Ag,d′(Ai) ⊂ Ag,d′ ,
where the finitely many abelian varieties Ai are quotients of the abelian variety
KS(T (S))2ρ(S)−1 of a fixed degree. �

Using the finiteness of Ag,d′(Ai) [NN81] and the finiteness of the fibres of (3.1),
this proves Theorem 0.1 once again.

4. Parametrization by special cycles and FM interpretation

The discussion in Section 1 can be understood more explicitly in the case of K3
surfaces, although most issues related to lattice theory remain, for example the
decomposition of the moduli space according to the various ` ∈ N and the possible
choices for the primitive embeddings N ↪→ Λ still occur (unless N is of small rank
as in [Bea04]).

4.1. Moduli spaces of lattice polarized K3 surfaces have first been studied in [Dol96]
and later also in [Bea04]. Dolgachev shows (using the global Torelli theorem) that the
moduli space of ‘ample N -polarized’ K3 surfacesMN injects into the quotient Õ(Ti)\
DTi . Here, Õ(Ti) ⊂ O(Ti) is the finite index subgroup of orthogonal transformations
that extend to all of Λ by the identity on ηi(N). Note that in [Dol96] the embedding
N ↪→ Λ is actually fixed so that only one period domain Di has to be considered
and that ι(N) is only requested to contain an ample class (but without fixing ` ∈ N
or its image ι(`)). So there exists a quasi-finite morphism MN,d → MN inducing
injections M(N,`) ↪→ MN . In [Bea04] the rank of N is small enough to ensure that
the embedding is actually unique, so that again only one period domain occurs.
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For K3 surfaces there exists an interpretation of all points in the fibre of the
map πi : M i

N,d → O(Ti) \Di through a very general (S0, ι0). They correspond to N -
polarized K3 surfaces whose transcendental part is Hodge isometric to Ti ' T (S0).
Those are known to be the Fourier–Mukai partners of S0 with Néron–Severi lattice
isomorphic to NS(S0), see [Huy16, Chapter 16] for references.
Hence, for K3 surfaces πi factorizes as

πi : M i
N,`j

↪→ Õ(Ti) \Di � O(Ti) \Di,

where the degree of the second map is essentially the number of Fourier–Mukai
partners for the very general K3 surfaces parametrized by M i

N,d with fixed Néron–
Severi lattice NS(S0).

4.2. As the sets Md(S0) (or Ag,d(A0), Md(X0), etc.) are finite, one may wonder
whether they can be realized as fibres of a finite map fromMd to some variety or space.
Clearly, since |Md(S0)| for varying (S0, L0) ∈Md is unbounded (cf. Section 1.5), this
cannot be true literally. However, we shall explain that this idea can be turned into
a correct statement, which then also sheds light on the distributions of the Md(S0).
For this purpose it is more convenient to replace the sets Md(S0) ⊂Md by the sets

Md(Db(S0)) ⊂Md

of all (S, L) ∈Md for which there exists an exact linear equivalence

(4.1) Db(S0) ' Db(S)

between the bounded derived categories of coherent sheaves on S and S0. According
to a result of Mukai and Orlov, the condition is equivalent to the existence of a
Hodge isometry

(4.2) T (S) ' T (S0).

Recall that for ρ(S0) > 12 the existence of a Hodge isometry (4.2) is in fact equiv-
alent to the existence of an isomorphism S ' S0. In general, as Md(S0) also the
set Md(Db(S0)) is finite and the arguments in Section 1 in fact reprove this re-
sult. See [Huy16, Chapter 16] for references and further details and [HP13] proving
finiteness of Fourier–Mukai orbits in the moduli space of quasi-polarized K3 surfaces.

Corollary 4.1. — Consider a polarized K3 surface (S0, L0) ∈ Md with tran-
scendental lattice T := T (S0) and its associated period domain DT ⊂ P(T⊗C). Then
there exist a quasi-projective variety MS0 of dimension 20− ρ(S0) and morphisms

MS0
Φ //

π
��

Md

M̄S0 := O(T ) \DT ,

such that: (i) π is quasi-finite and dominant; (ii) Md(Db(S0)) = Φ(π−1(t0)) for some
point t0 ∈ M̄S0 , and (iii) Md(Db(St)) = Φ(π−1(t)) for very general t ∈ M̄S0 and any
(St, Lt) ∈ Φ(π−1(π(t))). �
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In other words, the Fourier–Mukai orbits Md(Db(S0)) are indeed (images of) fibres
of a certain quasi-finite morphism of some subvariety of Md of dimension 20− ρ(S0).

Remark 4.2. — Note that for the case of Picard rank one, T (S0) ' Λd and π is
simply the composition

Md ↪→ Õ(Λd) \Dd → O(Λd) \Dd.

This map has been studied in [HLOY04, Ogu02, Ste08]. Its degree, which is the
number of Fourier–Mukai partners for the very general K3 surface, is known to be
2τ(d)−1, where τ(d) is the number of prime divisors of d/2.
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