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Abstract. — We investigate the long-time behavior of solutions to the isothermal Euler,
Korteweg or quantum Navier–Stokes equations, as well as generalizations of these equations
where the convex pressure law is asymptotically linear near vacuum. By writing the system
with a suitable time-dependent scaling we prove that the densities of global solutions display
universal dispersion rate and asymptotic profile. This result applies to weak solutions defined
in an appropriate way. In the exactly isothermal case, we establish the compactness of bounded
sets of such weak solutions, by introducing modified entropies adapted to the new unknown
functions.
Résumé. — Nous étudions le comportement en temps long des équations d’Euler, Kor-

teweg ou Navier–Stokes quantique compressibles, dans le cas d’une loi de pression isotherme,
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vide. À l’aide d’une réécriture du système faisant intervenir un changement d’échelle dépendant
du temps, nous établissons que les densités des solutions globales ont toutes le même taux de
dispersion, et le même profil. Ce résultat est valide pour toute solution faible définie de manière
adéquate. Dans le cas exactement isotherme, nous montrons la compacité des ensembles bornés
de telles solutions faibles, grâce à l’introduction d’entropies modifiées adaptées aux nouvelles
fonctions inconnues.

1. Introduction

In the isentropic case γ > 1, the Euler equation on Rd, d > 1,

(1.1)

∂tρ+ div (ρu) = 0,
∂t(ρu) + div(ρu⊗ u) +∇ (ργ) = 0,

enjoys the formal conservations of mass,

M(t) =
∫
Rd
ρ(t, x)dx ≡M(0),

and entropy (or energy),

E(t) = 1
2

∫
Rd
ρ(t, x)|u(t, x)|2dx+ 1

γ − 1

∫
Rd
ρ(t, x)γdx ≡ E(0).

In general, smooth solutions are defined only locally in time (see [MUK86, Che90,
Xin98]). However, for some range of γ, if the initial velocity has a special structure
and the initial density is sufficiently small, the classical solution is defined globally
in time. In addition the large time behavior of the solution can be described rather
precisely, as established in [Ser97]. We restate some results from [Ser97] in the
following theorem:

Theorem 1.1 (From [Ser97]). — Let 1 < γ 6 1 + 2/d and s > d/2 + 1. There
exists η > 0 such that the following holds.

(1) If ρ0, u0 ∈ Hs(Rd) are such that ‖(ρ(γ−1)/2
0 , u0)‖Hs(Rd) 6 η, then the sys-

tem (1.1) with initial data ρ(0, x) = ρ0(x) and u(0, x) = x + u0(x) admits a
unique global solution, in the sense that (ρ, ũ) ∈ C([0,∞);Hs(Rd)), where
ũ(t, x) = u(t, x)− x

1+t . In addition, there exists R∞, U∞ ∈ Hs(Rd) such that

(1.2)
∥∥∥∥(ρ(t, x)− 1

td
R∞

(
x

t

)
, u(t, x)− x

1 + t
− 1
t
U∞

(
x

t

))∥∥∥∥
L∞(Rd)

−→
t→∞

0.

(2) Conversely, if R∞, U∞ ∈ Hs(Rd) are such that ‖(R(γ−1)/2
∞ , U∞)‖Hs(Rd) 6 η,

then there exists ρ0, u0 ∈ Hs(Rd) such that the solution to (1.1) with ρ(0, x) =
ρ0(x) and u(0, x) = x + u0(x) is global in time in the same sense as above,
and (1.2) holds.

In particular, in the frame of small data (in the sense described above), the
dispersion

‖ρ(t)‖L∞(Rd) ∼t→∞
‖R∞‖L∞(Rd)

td
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is universal but the asymptotic profile R∞ can be arbitrary. Typically, given any
function ψ ∈ S(Rd), R∞ = εψ will be allowed provided that ε > 0 is sufficiently
small. For completeness we provide a brief proof of the above theorem in appendix.
We emphasize that the structure of the velocity is crucial: the initial velocity is a

small (decaying) perturbation of a linear velocity. In a way, the above result is the
Euler generalization of the global existence results for the Burgers equation with
expanding data. Refinements of this result can be found in [GS97, Gra98, Ser16].
The isothermal Euler equation corresponds to the value γ = 1 in (1.1),

(1.3)

∂tρ+ div (ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + κ∇ρ = 0, κ > 0.

The mass is still formally conserved, and the energy now reads

E(t) = 1
2

∫
Rd
ρ(t, x)|u(t, x)|2dx+

∫
Rd
ρ(t, x) ln ρ(t, x)dx ≡ E(0).

Unlike in the isentropic case, the energy has an indefinite sign, a property which
causes many technical problems. In this paper, we show that the isothermal Euler
equation on Rd, d > 1, with asymptotically vanishing density, ρ(t, · ) ∈ L1(Rd),
displays a specific large time behavior, in the sense that if the solution is global
in time, then the density disperses with a rate different from the above one, and
possesses a universal asymptotic Gaussian profile. This property remains when the
convex pressure law P (ρ) satisfies P ′(0) > 0, as well as for the Korteweg and quantum
Navier–Stokes equations:

(1.4)

∂tρ+ div (ρu) = 0,
∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = ε2

2 ρ∇
(∆√ρ√

ρ

)
+ ν div(ρDu),

with ε, ν > 0, where Du denotes the symmetric part of the gradient,

Du := 1
2(∇u+ t∇u).

For this system, we still have conservation of mass and the energy

(1.5) E(t) = 1
2

∫
ρ(t, x)|u(t, x)|2dx+ ε2

2

∫ ∣∣∣∣∇√ρ(t, x)
∣∣∣∣2 dx+

∫
F (ρ(t, x))dx,

where
F (ρ) = ρ

∫ ρ

1

P (r)
r2 dr,

satisfies
Ė(t) = −ν

∫
ρ|Du|2.

In the case ε = 0 and P (ρ) = κρ, equation (1.4) is the precise system derived
in [BM10], as a correction to the isothermal quantum Euler equation. We emphasize
that, because of the lack of positivity of the term F in the energy functional, only
the barotropic variant – where P (ρ) = κργ with γ > 1 – is studied in references.
Classically, a Bohm potential (corresponding to the term multiplied by ε in (1.4))
is also added, see [AS18, GLV15, Jün10, VY16b] for instance. In the case where the
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dissipation is absent (ν = 0), but with capillarity (ε > 0), we refer to [BGDD07,
AM09, AM12, AH17].
A loose statement of our main result reads (a more precise version is provided in

the next section, see Theorem 2.11):

Theorem 1.2. — Let (ρ, u) be a global weak solution to (1.4) with initial den-
sity/velocity (ρ0, u0) satisfying

(1 + |x|2 + |u0|2)1/2√ρ0 ∈ L2(Rd).
Then there exists a mapping τ : [0,∞)→ [1,∞) such that

τ(t) ∼
t→∞

2t
√
P ′(0) ln(t),

ρ(t, x) ∼
t→∞

‖ρ0‖L1

πd/2
exp(−|x|2/τ(t)2)

τ(t)d weakly in L1(Rd).

Formally, this theorem entails that, in contrast with the isentropic case, the density
of solutions to (1.4) disperses as follows :

‖ρ(t)‖L∞(Rd) ∼t→∞
‖ρ0‖L1(Rd)

(2P ′(0)
√
π)d
× 1(

t
√

ln(t)
)d ,

with a universal profile. Note however that in the general framework of the theorem,
we do not establish an L∞ estimate like above; such a decay is proven rigorously only
in the case of specific initial data considered in Section 3.1 below. This result applies
to a notion of “weak solution” that is based on standard a priori estimates satisfied
by smooth solutions to (1.4). We make precise the definition of such solutions in the
next section, see Definition 2.1.
The main ingredient of the proof is to translate in terms of our isothermal equations

a change of unknown functions introduced for the dispersive logarithmic Schrödinger
equation in [CG18]. This enables to transform (1.4) into a system with unknowns
(R,U) for which the associated energy is positive-definite. A second feature of the
new system is that, asymptotically in time, it reads (keeping only the dominating
terms):

(1.6)

∂tR + 1
τ 2 div (RU) = 0,

∂t(RU) + 2P ′(0)yR + P ′(0)∇R = 0,
where τ is the time-dependent scaling mentioned in Theorem 1.2. By taking the
divergence of the second equation and replace ∂t div(RU) with the first one, we
obtain then (keeping again only the dominating terms):∂tR = 0,

∂tR− P ′(0)LR = 0,

where L is the Fokker–Planck operator LR = ∆R + 2 div(yR). In this last system,
the first equation implies that R converges to a stationary solution to the second
equation. The analysis of the long-time behavior of solutions to this Fokker–Planck
equation, as provided in [AMTU01], entails the expected result.
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The outline of the paper is as follows. In the next section, we provide rigorous
definitions of weak solutions and precise statements for our main result. Section 3
is then devoted to the long-time behavior of solutions to (1.4). In this section, we
compute at first explicit solutions to (1.4) with Gaussian densities. These explicit
computations motivate the introduction of the change of variable that we use after-
wards. In what remains of this section we give an exhaustive proof of the precise
version for Theorem 1.2. The long-time analysis mentioned here is based on the a
priori existence of solutions. However, in the compressible setting, global existence of
solutions is questionable. So, in the last section of the paper, we focus on the notion
of weak solutions that we consider. At first, we present the a priori estimates which
motivate their definition. We end the paper by proving a sequential compactness re-
sult. This sequential compactness property is a cornerstone for the proof of existence
of weak solutions, see e.g. [Lio98, Fei04]. As for the large time behavior, we simply
state a loose version of our result here (see Theorem 4.10 for the precise statement):
Theorem 1.3. — Assume ν > 0, 0 6 ε 6 ν, P (ρ) = κρ with κ > 0, and let

T > 0. Let (ρn, un)n∈N be a sequence of weak solutions to (1.4) on (0, T ), enjoying
a suitable notion of energy dissipation, BD-entropy dissipation, and Mellet–Vasseur
type inequality. Then up to the extraction of a subsequence, (ρn, un)n∈N converges
to a weak solution of (1.4) on (0, T ).
It is for the system (2.8) in terms of (R,U), as mentioned above, that fairly natural

a priori estimates are required in the above statement. Even though the notions of
solution for (1.4) and (2.8) are equivalent (Lemma 2.7 below), we did not find a
direct approach to express the pseudo energy, pseudo BD-entropy and Mellet–Vasseur
type inequality mentioned above in a direct way in terms of (ρ, u), that is, without
resorting to (R,U).

2. Weak solutions and large time behavior
We now state a precise definition regarding the notion of solution that we consider

in this paper. Even though, in (1.4), the fluid genuine unknowns are ρ and u, the
mathematical theory that we develop in Section 4 suits better to the unknowns √ρ
and √ρu. Therefore we state our definition of weak solution in terms of these latter
unknowns. Nevertheless, we shall keep these notations, even though no fluid velocity
field u underlies the computation of √ρu.
Definition 2.1. — Let ν > 0 and ε > 0. Given T > 0, we call weak solution

to (1.4) on (0, T ) any pair (ρ, u) such that there is a collection (√ρ,√ρu,SK ,TN)
satisfying

(1) The following regularities:

(〈x〉+ |u|)√ρ ∈ L∞
(
0, T ;L2(Rd)

)
, where 〈x〉 =

√
1 + |x|2,

(ε+ ν)∇√ρ ∈ L∞
(
0, T ;L2(Rd)

)
,

ε∇2√ρ ∈ L2(0, T ;L2(Rd)),
√
ν TN ∈ L2(0, T ;L2(Rd)),
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with the compatibility conditions
√
ρ > 0 a.e. on (0, T )× Rd,

√
ρu = 0 a.e. on {√ρ = 0} .

(2) Euler case ε = ν = 0: The following equations in D′((0, T )× Rd)

(2.1)

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(√ρu⊗√ρu) +∇P (ρ) = 0.

(3) Korteweg and Navier–Stokes cases ε + ν > 0: The following equations in
D′((0, T )× Rd)

(2.2)


∂t
√
ρ+ div(√ρu) = 1

2 Trace(TN),

∂t(ρu) + div(√ρu⊗√ρu) +∇P (ρ) = div
(
ν
√
ρSN + ε2

2 SK
)
,

with SN the symmetric part of TN , and the compatibility conditions:
√
ρTN = ∇(√ρ√ρu)− 2√ρu⊗∇√ρ ,(2.3)

SK = √ρ∇2√ρ−∇√ρ⊗∇√ρ .(2.4)

We emphasize that the above definition is essentially the “standard” one, up to
the fact that we require |x|√ρ ∈ L∞(0, T ;L2(Rd)). The reason for this assumption
will become clear in the Subsection 4.1 where we will recall the a priori estimates
motivating this definition (see Lemma 2.7, as well as the definition of the pseudo-
energy E in (2.13)).
Several remarks are in order. When the symbol ρ alone appears, it must be

understood as |√ρ|2, while when the symbol u appears alone, it is defined by
u = √ρu/√ρ1√ρ>0. Under the compatibility condition of item (1) this yields a
well-defined vector-field. As for the stress-tensors involved in the momentum equa-
tion (2.2), we emphasize that (2.3) reads formally TN = √ρ∇u.
An originality of the previous definition is that in the case ε + ν > 0, we do

not ask for the continuity equation in terms of ρ but in terms of √ρ. However, we
prove here that the usual continuity equation as written in (2.2) is a consequence to
this definition thanks to the regularity of √ρ and √ρu. This is the content of the
following lemma:

Lemma 2.2. — Let ε+ ν > 0. Assume that (ρ, u) is a weak solution to (2.2) on
(0, T ) in the sense of Definition 2.1. Then it satisfies

∂tρ+ div(ρu) = 0 in D′((0, T )× Rd).

Proof. — By definition, we have

∂t
√
ρ+ div (√ρu) = 1

2 Trace(TN)

Here we note that √ρu ∈ L∞(0, T ;L2(Rd)) (so that div(√ρu) ∈ L∞(0, T ;H−1(Rd))).
We can then multiply this equation by √ρ ∈ L∞(0, T ;H1(Rd)). We obtain:

∂tρ = −2√ρ div(√ρu) +√ρ Trace(TN).
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At this point we remark that, by definition of TN :
div(ρu) = √ρ Trace(TN) + 2√ρu · ∇√ρ

and, since ρu = √ρ√ρu, the products of the identity below are well-defined:
div(ρu) = √ρ div(√ρu) +√ρu · ∇√ρ.

Combining these equation entails
div(ρu) = 2√ρ div(√ρu)−√ρ Trace(TN).

We conclude thus that:
∂tρ = − div(ρu). �

The assumptions regarding the regularity of the solution actually imply that the
mass of any weak solution is constant:

Lemma 2.3. — Let ε, ν > 0 and (ρ, u) be a solution to (1.4) on the interval (0, T )
in the sense of Definition 2.1. Then we have ρ ∈ C(0, T ;L1(Rd)) and the mass is
conserved, ∫

Rd
ρ(t, x)dx =

∫
Rd
ρ(0, x)dx, ∀ t ∈ [0, T ).

Proof. — The only point to notice is that the regularity assumed on the solution
makes it possible to perform integrations by parts in the continuity equation. The
previous lemma shows indeed that whether we consider the Euler equation or the
case ε+ ν > 0, we can work at the level of the usual continuity equation. Integrating
in space, recall that√ρ,√ρu ∈ L∞(0, T ;L2(Rd)), hence ρu ∈ L∞(0, T ;L1(Rd)), and
boundary terms at spatial infinity vanish in the integrations by parts. �

2.1. Rewriting of (1.4) with a suitable time-dependent scaling

In the case where the density ρ is defined for all time and is dispersive (in the
sense that it goes to zero pointwise), it is natural to examine the behavior of P near
0, since it gives an “asymptotic pressure law” as time goes to infinity. A consequence
of our result is that the large time behavior in (1.4) is very different according to
P ′(0) > 0 or P ′(0) = 0. Herein, we assume that P ∈ C2(0,∞;R+) with P ′(0) > 0
and P ′′ > 0. Typically, when P ′′ ≡ 0, we recover the isothermal case, P (ρ) = κρ,
and we can also consider

P (ρ) = κρ+
N∑
j=1

κjρ
γj , N > 1, κj > 0, γj > 1,

with no other restriction on γj (in any dimension), or even the exotic case P (ρ) = eρ.
The most general class of pressure laws that we shall consider is fixed by the following
assumptions:

Assumption 2.4 (Pressure law). — The pressure P ∈ C1(R+;R+)∩C2(0,∞;R+)
is convex (P ′′(ρ) > 0 for all ρ > 0), and satisfies

κ := P ′(0) > 0.
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Resuming the approach from [CG18] (the link between Schrödinger equation and
Euler–Korteweg equation is formally given by the Madelung transform), we change
the unknown functions as follows. Introduce τ(t) solution of the ordinary differential
equation

(2.5) τ̈ = 2κ
τ
, τ(0) = 1 , τ̇(0) = 0 .

The reason for considering this equation will become clear in Subsection 3.1. We
find in [CG18], for slightly more general initial data:

Lemma 2.5. — Let α, κ > 0, β ∈ R. Consider the ordinary differential equation

(2.6) τ̈ = 2κ
τ
, τ(0) = α , τ̇(0) = β.

It has a unique solution τ ∈ C2(0,∞), and it satisfies, as t→∞,

τ(t) = 2t
√
κ ln t (1 +O(`(t))) , τ̇(t) = 2

√
κ ln t (1 +O(`(t))) ,

where
`(t) := ln ln t

ln t ·

We sketch the proof of this lemma in Appendix B, without paying attention to
the quantitative estimate of the remainder term. We now introduce the Gaussian
Γ(y) = e−|y|

2 , and we set

(2.7) ρ(t, x) = 1
τ(t)dR

(
t,

x

τ(t)

)
‖ρ0‖L1

‖Γ‖L1
, u(t, x) = 1

τ(t)U
(
t,

x

τ(t)

)
+ τ̇(t)
τ(t)x,

where we denote by y the spatial variable for R and U . Denoting θ = ‖ρ0‖L1
‖Γ‖L1

, (1.4)
becomes, in terms of these new unknowns,

(2.8)



∂tR + 1
τ 2 div (RU) = 0,

∂t(RU) + 1
τ 2 div(RU ⊗ U) + 2κyR + P ′

(
θR

τ d

)
∇R

= ε2

2τ 2R∇
(

∆
√
R√
R

)
+ ν

τ 2 div(RDU) + ντ̇

τ
∇R.

The analogue of Definition 2.1 is the following:

Definition 2.6. — Let ν > 0 and ε > 0. Given T > 0, we call weak
solution to (2.8) on (0, T ) any pair (R,U) such that there exists a collection
(
√
R,
√
RU,SK ,TN) satisfying

(1) The following regularities:

(〈y〉+ |U |)
√
R ∈ L∞

(
0, T ;L2(Rd)

)
,

(ε+ ν)∇
√
R ∈ L∞

(
0, T ;L2(Rd)

)
,

ε∇2
√
R ∈ L2(0, T ;L2(Rd)),

√
ν TN ∈ L2(0, T ;L2(Rd)),

ANNALES HENRI LEBESGUE



Rigidity in isothermal fluids 55

with the compatibility conditions
√
R > 0 a.e. on (0, T )× Rd,

√
RU = 0 a.e. on {

√
R = 0}.

(2) Euler case ε = ν = 0: The following equations in D′((0, T )× Rd)

(2.9)


∂tR + 1

τ 2 div(RU) = 0,

∂t(RU) + 1
τ 2 div(

√
RU ⊗

√
RU) + 2κyR + P ′

(
θR

τ d

)
∇R = 0.

(3) Korteweg and Navier–Stokes cases ε + ν > 0: The following equations in
D′((0, T )× Rd)

(2.10)



∂t
√
R + 1

τ 2 div(
√
RU) = 1

2τ 2 Trace(TN),

∂t(RU) + 1
τ 2 div(

√
RU ⊗

√
RU) + 2κyR + P ′

(
θR

τ d

)
∇R

= div
(
ν

τ 2

√
RSN + ε2

2τ 2SK
)

+ ντ̇

τ
∇R,

with SN the symmetric part of TN and the compatibility conditions:
√
RTN = ∇(

√
R
√
RU)− 2

√
RU ⊗∇

√
R ,(2.11)

SK =
√
R∇2
√
R−∇

√
R⊗∇

√
R .(2.12)

Mimicking the proof of Lemma 2.2, we see that in the case ε+ ν > 0, if (R,U) is
a weak solution to (2.10) on (0, T ) in the sense of Definition 2.6, then it satisfies

∂tR + 1
τ 2 div(RU) = 0 in D′((0, T )× Rd).

Similarly, the mass of any weak solution is conserved,∫
Rd
R(t, y)dy =

∫
Rd
R(0, y)dy.

In view of (2.7), we check directly:

Lemma 2.7 (Equivalence of the notions of solution). — Let T > 0. Then (ρ, u)
is a weak solution of (1.4) on (0, T ) if and only if (R,U) is a weak solution of (2.8)
on (0, T ), where (ρ, u) and (R,U) are related through (2.7).

Remark 2.8. — If in Definition 2.1, we had required only (1 + |u|)√ρ ∈
L∞(0, T ;L2(Rd)), then the above equivalence would not hold. In the same spirit,
the change of unknown (2.7) would make the notion of solution rather delicate
in the case of the Newtonian Navier–Stokes equation, a case where typically u ∈
L2(0, T ;H1(Rd)). More generally, we do not consider velocities enjoying integrability
properties, unless the density appears as a weight in the integral.

Remark 2.9. — To complement the previous remark, we emphasize that for the
Euler equation (1.1), for γ > 1, the local existence result by Makino, Ukai and
Kawashima [MUK86] requires u0 ∈ Hs(Rd) with s > d/2 + 1, while Theorem 1.1
uses the fact that u0(x)− x is a small Hs function, generalizing the expanding case
in Burgers’ equation. In the present case, the change of unknown functions (2.7)
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implies u(0, x) = U(0, x), and we assume no special property on u0, since u always
comes with √ρ as a multiplying factor in Definition 2.1.

We define the pseudo-energy E of the system (2.8) by

(2.13) E(t) := 1
2τ 2

∫
R|U |2 + ε2

2τ 2

∫
|∇
√
R|2 + P ′(0)

∫
(R|y|2 +R lnR)

+ τ d

θ

∫
G

(
θR

τ d

)
,

where
G(u) =

∫ u

0

∫ v

0

P ′(σ)− P ′(0)
σ

dσdv,
which formally satisfies

(2.14) Ė(t) = −D(t)− ν τ̇(t)
τ(t)3

∫
R(t, y) divU(t, y)dy,

where the dissipation D(t) is defined by

(2.15) D(t) := τ̇

τ 3

∫
R|U |2 + d

τ̇

τ
τ d
(∫

[P (σ)− σP ′(0)]
∣∣∣
σ= θR

τd

)

+ ε2 τ̇

τ 3

∫
|∇
√
R|2 + ν

τ 4

∫
|SN |2.

By convexity we have G > 0, and P (σ) > P ′(0)σ for σ > 0, so D(t) > 0. Note also
the identities

(2.16) F ′′(σ) = P ′(0)
σ

+G′′(σ), F (ρ) = P ′(0)ρ ln ρ+G(ρ).

Recall the Csiszár–Kullback inequality (see e.g. [ABC+00, Theorem 8.2.7]): for f, g >
0 with

∫
Rd f =

∫
Rd g,

‖f − g‖2
L1(Rd) 6 2‖f‖L1(Rd)

∫
f(x) ln

(
f(x)
g(x)

)
dx.

Writing ∫
(R|y|2 +R lnR) =

∫
R ln RΓ ,

the conservation of the mass for R and the definition (2.7) imply that the pseudo-
energy E is non-negative, E > 0.
As for global solutions, we have the following natural definition:

Definition 2.10. — Let ν > 0 and ε > 0. We call global weak solution to (2.8)
any pair (R,U) which, by restriction, yields a weak solution to (2.8) on (0, T ) for
arbitrary T > 0.

2.2. Main result: large-time behavior of weak solutions to (2.10)

With the previous definitions and remarks, a quantitative and precise statement
of Theorem 1.2 reads as follows:
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Theorem 2.11. — Let ε, ν > 0. Assume that P satisfies Assumption 2.4, and
let (R,U) be a global weak solution of (2.8), in the sense of Definition 2.10.

(1) If
∫∞

0 D(t) dt <∞, then∫
Rd
yR(t, y)dy−→

t→∞
0 and

∣∣∣∣∫
Rd

(RU)(t, y)dy
∣∣∣∣−→t→∞∞,

unless
∫
yR(0, y)dy =

∫
(RU)(0, y)dy = 0, a case where∫

Rd
yR(t, y)dy =

∫
Rd

(RU)(t, y)dy ≡ 0.

(2) If supt>0 E(t)+
∫∞
0 D(t) dt <∞, then R(t, · ) ⇀ Γ weakly in L1(Rd) as t→∞.

(3) If supt>0 E(t) <∞ and the energy E defined by (1.5) satisfies E(t) = o (ln t)
as t→∞, then ∫

Rd
|y|2R(t, y)dy−→

t→∞

∫
Rd
|y|2Γ(y)dy.

Remark 2.12. — Unlike in Theorem 1.1, no smallness assumption is made on U
at t = 0 (U may even be linear in space), so there is no such geometrical structure
on the initial velocity as in [Ser97, Gra98].

Remark 2.13. — In view of (2.14)–(2.15) and the property E > 0, the assumptions
of point (2) are fairly natural, after noticing that

τ̇(t)
τ(t)3

∫
R |divU | dy 6 τ̇

τ

(∫
Rdy

)1/2 ( 1
τ 4

∫
R| divU |2dy

)1/2

.
τ̇

τ

(∫
Rdy

)1/2√
D(t).

Similarly, at least in the case ν = 0, the formal conservation of the energy E defined
by (1.5), encompasses the assumption of point (3).

Remark 2.14 (Wasserstein distance). — The points (2) and (3) of Theorem 2.11
imply the large time convergence of R to Γ in the Wasserstein distance W2, defined,
for ν1 and ν2 probability measures, by

Wp(ν1, ν2) = inf
{(∫

Rd×Rd
|x− y|pdµ(x, y)

)1/p
; (πj)]µ = νj

}
,

where µ varies among all probability measures on Rd × Rd, and πj : Rd × Rd → Rd

denotes the canonical projection onto the j-th factor. This implies, for instance, the
convergence of fractional momenta (see e.g. [Vil03, Theorem 7.12])

(2.17)
∫
|y|2sR(t, y)dy−→

t→∞

∫
|y|2sΓ(y)dy, 0 6 s 6 1.

Back to the initial unknowns (ρ, u), Theorem 2.11 and (2.7) yield

ρ(t, x) ∼
t→∞

‖ρ0‖L1(Rd)

πd/2
1

τ(t)d e
−|x|2/τ(t)2

,

as announced in Theorem 1.2, where the symbol ∼ means that only a weak limit
is considered. However, in the special case of Gaussian initial data considered in
Section 3.1, it is easy to check that all the assumptions of Theorem 2.11 are satisfied,
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and moreover that R(t, · )→ Γ strongly in L1(Rd). Finally, another consequence of
Lemma 2.5, the (proof of the) last point in Theorem 2.11, and (2.7) is
1
2

∫
Rd
ρ(t, x)|u(t, x)|2dx ∼

t→∞
P ′(0)d‖ρ0‖L1(Rd) ln t ∼

t→∞
−P ′(0)

∫
Rd
ρ(t, x) ln ρ(t, x)dx.

This shows that indeed, no a priori information can be directly extracted from the
energy E defined in (1.5).

3. From Gaussians to Theorem 2.11
This part of the paper is devoted to the large time behavior of solutions to (1.3)

and its variants. We first compute explicit Gaussian solutions and then proceed to
the proof of Theorem 2.11.

3.1. Explicit solution

In this section, we resume and generalize some results established in [Yue12,
CFY17]. The generalizations concern two aspects: we allow densities and veloci-
ties which are not centered at the same point (hence xj and cj below), and we
consider the quantum Navier–Stokes equation.

3.1.1. Euler and Newtonian Navier–Stokes equations

We recall the compressible Euler equation for isothermal fluids on Rd

(3.1)

∂tρ+ div (ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + κ∇ρ = 0,

where κ > 0. As noticed in [Yue12], (3.1) has a family of explicit solutions with
Gaussian densities and affine velocities centered at the same point. Allowing different
initial centers for these quantities leads to considering

(3.2) ρ(0, x) = b0e
−
∑d

j=1 α0jx2
j , u(0, x) =


β01x1

...
β0dxd

+


c01
...
c0d

 ,
with b0, α0j > 0, β0,j, c0,j ∈ R. Seeking a solution of the form

ρ(t, x) = b(t)e−
∑d

j=1 αj(t)(xj−xj)
2
, u(t, x) =


β1(t)x1

...
βd(t)xd

+


c1(t)
...

cd(t)

 ,
and plugging this ansatz into (3.1), we obtain a set of ordinary differential equations:

α̇j + 2αjβj = 0, β̇j + β2
j − 2καj = 0,(3.3)

ẋj = βjxj + cj, ḃ = b
d∑
j=1

(
α̇jx

2
j + 2αjxjẋj − 2αjcjxj − βj

)
,(3.4)

ċj + βjcj + 2καjxj = 0.(3.5)
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Mimicking [LW06], seeking αj and βj of the form

αj(t) = α0j

τj(t)2 , βj(t) = τ̇j(t)
τj(t)

,

we check that the two equations in (3.3) are satisfied if and only if

(3.6) τ̈j = 2κα0j

τj
, τj(0) = 1, τ̇j(0) = β0j,

and we find

b(t) = b0∏d
j=1 τj(t)

, xj(t) = c0jt, cj(t) = c0j

(
1− τ̇j(t)

τj(t)
t

)
.

Remark 3.1. — Since the velocity is affine in x, this computation also yields
explicit solutions for the isothermal (Newtonian) Navier–Stokes equations, but not
for its quantum counterpart, as we will see below.

3.1.2. Korteweg and quantum Navier–Stokes equations

As in [CFY17], we generalize (3.1) by allowing the presence of a Korteweg term
(ε > 0), and we extend this contribution by allowing a quantum dissipation (quan-
tum Navier–Stokes equation, when ν > 0). We recall the isothermal Korteweg and
quantum Navier–Stokes equations

(3.7)


∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + κ∇ρ = ε2

2 ρ∇
(

∆√ρ
√
ρ

)
+ ν div (ρD(u)) ,

with ε, ν > 0, and where the Korteweg term is also equal to
ε2

4 ∇∆ρ− ε2 div (∇√ρ⊗∇√ρ) ,

which is called the Bohm’s identity. Proceeding as in the previous subsection, (3.3)–
(3.5) become

(3.8)

α̇j + 2αjβj = 0, β̇j + β2
j − 2καj = ε2α2

j − ναjβj,

ẋj = βjxj + cj, ḃ = b
d∑
j=1

(
α̇jx

2
j + 2αjxjẋj − 2αjcjxj − βj

)
,

ċj + βjcj + 2καjxj = −ε2α2
jxj + ναjβjxj.

Again, we seek αj and βj of the form

αj(t) = α0j

τ ε,νj (t)2 , βj(t) =
τ̇ εj (t)
τ ε,νj (t) ,

we check that the two equations in (3.8) are satisfied if and only if

(3.9) τ̈ ε,νj = 2κα0j

τ ε,νj
+ ε2 α2

0j

(τ ε,νj )3 − να0j
τ̇ ε,νj

(τ ε,νj )2 , τ ε,νj (0) = 1, τ̇ ε,νj (0) = β0j,
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and we find, like before,

b(t) = b0∏d
j=1 τ

ε,ν
j (t)

, xj(t) = c0jt, cj(t) = c0j

(
1−

τ̇ ε,νj (t)
τ ε,νj (t)t

)
.

3.1.3. A universal behavior

It is obvious that the Euler equation (3.1) is a particular case of (3.7), by taking
ε = ν = 0. The Korteweg equation (ν = 0) is in turn related to the nonlinear
Schrödinger equation, through Madelung transform. In the present case, consider
the logarithmic Schrödinger equation in the semi-classical regime,

(3.10) iε∂tψ
ε + ε2

2 ∆ψε = κ ln
(
|ψε|2

)
ψε.

The Madelung transform consists in writing the solution as ψε = √ρeiφ/ε, with
ρ > 0 and φ real-valued. Plugging this form into (3.10) and identifying the real
and imaginary parts yields (3.7), with the identification u = ∇φ. The model (3.10)
was introduced in [BBM76], where the authors noticed that this equation possessed
explicit (complex) Gaussian solutions: the phase φ is then quadratic, hence a velocity
u = ∇φ which is linear (or affine). For fixed ε > 0, the large time dynamics for (3.10)
was studied in [CG18].
As a matter of fact, the presence of a Korteweg (ε > 0) or quantum Navier–Stokes

(ν > 0) term does not alter the large time dynamics provided in Lemma 2.5:
Lemma 3.2. — Let α, κ > 0, β ∈ R, and ε, ν > 0. Consider

(3.11) τ̈ ε,ν = 2κ
τ ε,ν

+ ε2

(τ ε,ν)3 − ν
τ̇ ε,ν

(τ ε,ν)2 , τ ε,ν(0) = α, τ̇ ε,ν(0) = β.

It has a unique solution τ ε,ν ∈ C2(0,∞), and it satisfies, as t→∞,
τ ε,ν(t) ∼

t→∞
2t
√
κ ln t , τ̇ ε,ν(t) ∼

t→∞
2
√
κ ln t.

We present a sketchy proof of Lemma 3.2 in Appendix B.
Lemma 3.2 shows that ε and ν do not influence the large time dynamics in (3.6).

In particular,

αj(t) ∼
t→∞

(
2t
√
κ ln t

)−2
, βj(t) ∼

t→∞

1
t
, b(t) ∼

t→∞

‖ρ(0)‖L1

πd/2
1

(2t
√
κ ln t)d

,

xj(t) = c0jt = o (αj(t)) , cj(t)−→
t→∞

0,

thus revealing some unexpected universal behavior for the explicit solutions to (3.7).
This is an important hint to believe in Theorem 2.11, as well as a precious guide in the
computation, in particular in the derivation of the change of unknown functions (2.7).

3.2. Proof of Theorem 2.11

For the end of this section, we consider a pressure P satisfying Assumption 2.4.
As a preamble, we prove a useful a priori estimate:
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Lemma 3.3. — Consider a density R(t, y) and a velocity-field U(t, y). Suppose
that the pseudo-energy

E(t) = 1
2τ 2

∫
Rd
R|U |2 + ε2

2τ 2

∫
Rd
|∇
√
R|2 + κ

∫
Rd

(R|y|2 +R lnR) + τ d

θ

∫
Rd
G

(
θR

τ d

)
is bounded from above for positive times, E(t) 6 Λ for all t > 0. Then there exists
C0 > 0 such that for all t > 0,

1
2τ 2

∫
Rd
R|U |2 + ε2

2τ 2

∫
Rd
|∇
√
R|2 + κ

∫
Rd
R(1 + |y|2 + | lnR|) + τ d

∫
Rd
G

(
θR

τ d

)
6 C0.

In view of Remark 2.13, the assumption of this lemma is a consequence of the
assumptions of Theorem 2.11.
Proof. — We note that since P is convex, G > 0, so all the terms in E but one are

non-negative. The functional

E+(t) := 1
2τ 2

∫
R|U |2 + ε2

2τ 2

∫
|∇
√
R|2 + P ′(0)

(∫
R|y|2 +

∫
R>1

R lnR
)

+ τ d

θ

∫
G

(
θR

τ d

)
is the sum of non-negative terms, and

E+(t) 6 Λ + P ′(0)
∫
R<1

R ln 1
R
.

Note that for any η > 0, ∫
R<1

R ln 1
R
.
∫
Rd
R1−η.

Using the interpolation inequality∫
Rd
R1−η 6 Cη‖R‖1−η−dη/2

L1(Rd) ‖|y|2R‖dη/2L1(Rd), 0 < η <
2

d+ 2 ,

we infer
E+(t) 6 Λ + CηP

′(0)‖R‖1−η−dη/2
L1(Rd) ‖|y|2R‖dη/2L1(Rd).

Choosing η < 2/(d+ 2) and invoking the boundedness of mass, we deduce that E+(t)
remains uniformly bounded for t > 0. The lemma follows by recalling the estimate
used above, ∫

R<1
R ln 1

R
. ‖R‖1−η−dη/2

L1(Rd) ‖|y|2R‖dη/2L1(Rd). �

Remark 3.4. — In view of the evolution of E given by (2.14), and given that
the dissipation D defined by (2.15) is non-negative, the assumptions of Lemma 3.3
are fairly natural. The uniform boundedness of E , consequence of the conclusion of
Lemma 3.3, explains why the assumption∫ ∞

0
D(t)dt <∞,

made in Theorem 2.11, is quite sensible, even without invoking the Csiszár–Kullback
inequality to claim that E > 0.
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Proof of Theorem 2.11. — We assume that (
√
R,
√
RU,TN , SK) is a global weak

solution of (2.8), in the sense of Definition 2.10.
(1). — The proof of the first point is a rather straightforward consequence of

Definition 2.10 and the assumption
∫∞

0 D(t) dt <∞. Define

I1(t) =
∫
Rd

(RU)(t, y)dy, I2(t) =
∫
Rd
yR(t, y)dy.

Integrating the momentum equation in (2.10) with respect to y (and just setting
ε = ν = 0 in the case of the Euler equation), we find

İ1 = − 1
τ 2

∫
Rd

div(RU ⊗ U)− 2κI2 −
τ d

θ

∫
Rd
∇P

(
θR
τd

)
+ ε2

2τ 2

∫
Rd

div (SK)

+ ν

τ 2

∫
Rd

div
(√

RSN
)

+ ντ̇

τ

∫
Rd
∇R.

In view of Definition 2.10, RU ⊗U,R ∈ L∞loc(0,∞;L1(Rd)) as well as εSK , ν
√
RSN ∈

L2
loc(0,∞;L1(Rd)). On the other hand, the property

∫∞
0 D(t) dt < ∞ yields that

[P (σ)− σP ′(0)] |σ= θR

τd
∈ L1

loc(0,∞;L1(Rd)). Therefore, all the functions whose diver-
gence or gradient is present above belong to L1

loc(0,∞;L1(Rd)), so integrating by
parts in space yields

İ1 = −2κI2.

Similarly, multiplying the continuity equation by y and integrating in space,

İ2 = − 1
τ 2

∫
Rd
y div(RU) = 1

τ 2

∫
Rd
RU ≡ 1

τ 2I1,

where we have used the property R|y||U | ∈ L∞loc(0,∞;L1(Rd)), which stems from
Definition 2.10 and Cauchy–Schwarz inequality. Therefore,

İ1 = −2κI2, İ2 = 1
τ 2I1.

Introducing J2 = τI2, we readily compute J̈2 = 0, hence

I2(t) = −I1(0)t+ I2(0)
τ(t) , I1(t) = I1(0)− 2κ

∫ t

0
I2(s)ds.

The first point of Theorem 2.11 is then a direct consequence of Lemma 2.5.
(2). — We split the proof of the second point into four steps.
Step 1. — We first obtain an equation satisfied by R only. Since ∂t(τ 2∂tR) =
−∂t div(RU) as well as ∂t(τ 2∂tR) = τ 2∂2

tR + 2τ̇ τ∂tR, we obtain from (2.8) that

τ 2∂2
tR + 2τ̇ τ∂tR = P ′(0)LR + 1

τ 2∇
2 : (RU ⊗ U) + div

(
(P ′( θR

τd
)− P ′(0)) · ∇R

)
+∇2 :

(
ν

τ 2

√
RSN + ε2

2τ 2SK
)

+ ν
τ̇

τ
∆R,

where we denote by L the Fokker–Planck operator LR := ∆yR + 2 divy(yR).
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Step 2. — Since τ 2 � (τ τ̇)2 as t → ∞, it is natural to introduce the new time
variable

s(t) = P ′(0)
∫ 1
τ τ̇

= 1
2

∫ τ̈

τ̇
= 1

2 ln τ̇(t) ∼
t→∞

1
4 ln ln t,

where the last estimate stems from Lemma 2.5, and we define α : s 7→ α(s) = t.
We observe that, thanks to Lemma 2.5, the following asymptotic estimates hold in
terms of the s-variable:

τ ◦ α(s) ∼
s→∞

2
√
P ′(0)e2see

4s
, τ̇ ◦ α(s) ∼

s→∞
2
√
P ′(0)e2s.

Setting R̄(s, y) = R(t, y), Ū(s, y) = U(t, y) and T̄N(s, y) = TN(t, y), S̄K(s, y) =
SK(t, y), a straightforward computation shows that R̄ satisfies

∂sR̄−
2P ′(0)
(τ̇ ◦ α)2∂sR̄ + P ′(0)

(τ̇ ◦ α)2∂
2
s R̄ = LR̄ +Nα[R̄, Ū , T̄N , S̄K ],

where

(3.12) Nα[R̄, Ū , T̄N , S̄K ] := 1
(τ ◦ α)2∇

2 : (R̄Ū ⊗ Ū)

+ div
((
P ′
(

θR̄
(τ◦α)d

)
− P ′(0)

)
∇R̄

)
+∇2 :

(
ν

(τ ◦ α)2

√
R̄S̄N + ε2

2(τ ◦ α)2 S̄K
)

+ ν
τ̇ ◦ α
τ ◦ α

∆R̄,

and the same compatibility conditions between overlined quantities as in (2.11)–
(2.12). We also remark that we have

div
((
P ′
(

θR̄
(τ◦α)d

)
− P ′(0)

)
∇R̄

)
= (τ ◦ α)d

θ
∆ (P (σ)− σP ′(0))

∣∣∣∣
σ= θR̄

(τ◦α)d

.

In view of Lemma 3.3, (R̄, Ū) verifies for some constant C0 > 0

(3.13) sup
s>0

∫
Rd
R̄(1 + |y|2 + | ln R̄|) dy 6 C0,

and we also have, by the assumption
∫∞

0 D(t)dt <∞,

(3.14)
∫ ∞

0

(
τ̇ ◦ α
τ ◦ α

)2 (∥∥∥∥√R̄Ū∥∥∥∥2

L2(Rd)
+ ε2

∥∥∥∥∇√R̄∥∥∥∥2

L2(Rd)

)
ds

+
∫ ∞

0
(τ̇ ◦ α)2(τ ◦ α)d

∫
Rd

(P (σ)− σP ′(0))
∣∣∣∣
σ= R̄

(τ◦α)d

dy
 ds

+ ν
∫ ∞

0

τ̇ ◦ α
(τ ◦ α)3

∥∥∥S̄N∥∥∥2

L2(Rd)
ds 6 C1,

for some constant C1 > 0.

TOME 1 (2018)



64 R. CARLES, K. CARRAPATOSO & M. HILLAIRET

Step 3. — Let s ∈ [0, 1] and consider a sequence sn → ∞ when n → ∞. Define
the sequences R̄n(s, y) := R̄(s+sn, y), Ūn(s, y) := Ū(s+sn, y), T̄N,n := T̄N(s+sn, y),
S̄K,n := S̄K(s+ sn, y) and αn(s) := α(s+ sn), in such a way that

(3.15) ∂sR̄n −
2P ′(0)

(τ̇ ◦ αn)2∂sR̄n + P ′(0)
(τ̇ ◦ αn)2∂

2
s R̄n = LR̄n +Nαn [R̄n, Ūn, T̄N,n, S̄K,n].

Moreover, estimates (3.13) and (3.14) yield

(3.16) sup
n∈N

sup
s∈[0,1]

∫
Rd
R̄n(1 + |y|2 + | ln R̄n|)dy 6 C,

and

(3.17)

lim
n→∞

∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 (∥∥∥∥√R̄nŪn

∥∥∥∥2

L2(Rd)
+ ε2

∥∥∥∥∇√R̄n

∥∥∥∥2

L2(Rd)

)
ds = 0,

lim
n→∞

∫ 1

0
(τ̇ ◦ αn)2(τ ◦ αn)d

∫
Rd

(P (σ)− σP ′(0))
∣∣∣∣
σ= θR̄

(τ◦αn)d

dy
 ds = 0,

lim
n→∞

ν
∫ 1

0

τ̇ ◦ αn
(τ ◦ αn)3

∥∥∥S̄N,n∥∥∥2

L2(Rd)
ds = 0.

From (3.16) and Dunford–Pettis theorem, we deduce that there exists

R∞ ∈ L1((0, 1)× Rd)

such that (up to extracting a subsequence)

R̄n ⇀ R∞ weakly in L1((0, 1)× Rd) as n→∞,

with R∞ of finite (mean) relative entropy
∫ 1

0
∫
Rd |R∞ ln(R∞/Γ)| <∞.

Therefore, passing to the limit n→∞ in Equation (3.15), we obtain

(3.18) ∂sR∞ = LR∞ in D′((0, 1)× Rd).

In order to establish (3.18), the convergence of the second, third and fourth terms
of (3.15) are evident, hence we only give the details for the convergence of the term
Nαn [R̄n, Ūn, T̄N,n, S̄K,n] in D′((0, 1)× Rd). For any φ ∈ D((0, 1)× Rd) we have∣∣∣∣∣
〈

1
(τ ◦ αn)2∇

2 : (R̄nŪn ⊗ Ūn), φ
〉∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

∫
Rd

1
(τ ◦ αn)2 (R̄nŪn ⊗ Ūn) : ∇2φ dy ds

∣∣∣∣∣
.

(
sup
s∈[0,1]

1
(τ̇ ◦ αn)2

)(∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2
‖
√
R̄nŪn‖2

L2(Rd) ds
)
,

from which we deduce, using (3.16) and (3.17), the convergence of the first term of
Nαn [R̄n, Ūn, T̄N,n, S̄K,n], that is

lim
n→∞

1
(τ ◦ αn)2∇

2 : (R̄nŪn ⊗ Ūn) = 0 in D′((0, 1)× Rd).
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For the second term, we write∣∣∣〈div
(
(P ′( θR̄n

(τ◦αn)d )− P ′(0))∇R̄n

)
, φ
〉∣∣∣

=

∣∣∣∣∣∣
∫ 1

0

∫
Rd

(τ ◦ αn)d (P (σ)− σP ′(0))
∣∣∣∣
σ= θR̄n

(τ◦αn)d

∆φ dy ds

∣∣∣∣∣∣
.

(
sup
s∈[0,1]

1
(τ̇ ◦ αn)2

)∫ 1

0

∫
Rd

(τ̇ ◦ αn)2(τ ◦ αn)d (P (σ)− σP ′(0))
∣∣∣∣
σ= θR̄n

(τ◦αn)d

dy ds
,

which again converges to 0 thanks to (3.16) and (3.17). Concerning the third term,
we recall first the compatibility condition SK,n =

√
R̄n∇2R̄n − ∇

√
R̄n ⊗ ∇

√
R̄n

from (2.12), from which we obtain

ε2
∣∣∣∣∣
〈

1
(τ ◦ αn)2∇

2 : S̄K,n, φ
〉∣∣∣∣∣

. ε2
∫ 1

0

∫
Rd

1
(τ ◦ αn)2

(∣∣∣∣∇√R̄n

∣∣∣∣2 + |R̄n|
)

(|∇2φ|+ |∇3φ|) dy ds

. ε2
(

sup
s∈[0,1]

1
(τ̇ ◦ αn)2

)(∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 ∥∥∥∥∇√R̄n

∥∥∥∥2

L2(Rd)
ds
)

+ ε2
(

sup
s∈[0,1]

1
(τ ◦ αn)2

)
sup
n∈N

sup
s∈[0,1]

‖R̄n‖L1(Rd),

which goes to 0 using (3.16) and (3.17). For the fourth term ofNαn [R̄n, Ūn, T̄N,n, S̄K,n],
we have∣∣∣∣∣ν

〈
1

(τ ◦ αn)2∇
2 : (

√
R̄nS̄N,n), φ

〉∣∣∣∣∣ = ν

∣∣∣∣∣
∫ 1

0

∫
Rd

1
(τ ◦ αn)2

√
R̄nS̄N,n : ∇2φ dy ds

∣∣∣∣∣
. ν

∣∣∣∣∣
∫ 1

0

∫
Rd

1
(τ ◦ αn)2

√
R̄n|S̄N,n| |∇2φ| dy ds

∣∣∣∣∣
. ν

(∫ 1

0

1
(τ ◦ αn)(τ̇ ◦ αn)

∥∥∥∥√R̄n

∥∥∥∥2

L2(Rd)
ds
) 1

2
(∫ 1

0

τ̇ ◦ αn
(τ ◦ αn)3‖S̄N,n‖

2
L2(Rd) ds

) 1
2

. ν

(
sup
n∈N

sup
s∈[0,1]

1
(τ̇ ◦ αn) (τ ◦ αn)

)(
sup
n∈N

sup
s∈[0,1]

‖R̄n‖L1(Rd)

)

×
(∫ 1

0

τ̇ ◦ αn
(τ ◦ αn)3‖S̄N,n‖

2
L2(Rd) ds

) 1
2

.

That last expression converges to 0. For the last term of Nαn [R̄n, Ūn, T̄N,n, S̄K,n], we
obtain finally

ν

∣∣∣∣〈 τ̇ ◦ αnτ ◦ αn
∆R̄n, φ

〉∣∣∣∣ = ν

∣∣∣∣∫ 1

0

∫
Rd

τ̇ ◦ αn
τ ◦ αn

R̄n∆φ dy ds
∣∣∣∣

. ν

(
sup
s∈[0,1]

τ̇ ◦ αn
τ ◦ αn

)(
sup
n∈N

sup
s∈[0,1]

‖R̄n‖L1(Rd)

)
,
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which also goes to 0.
Step 4. — We now follow the arguments of [CG18] in order to show that R∞ = Γ,

which concludes the proof of point (2). Because R∞ has finite entropy and, by a
tightness argument, R̄n cannot lose mass thanks to (3.16), [AMTU01, Corollary 2.17]
entail that the solution to (3.18) satisfies

‖R∞(s)− Γ‖L1(Rd) −→s→∞ 0,

since R∞ and Γ have the same mass in view of (2.7). On the other hand, in the
s-variable we have

∂sR̄ + τ̇ ◦ α
P ′(0)τ ◦ α div(R̄Ū) = 0,

and (3.17) implies
τ̇ ◦ α
τ ◦ α

div(R̄nŪn)→ 0 in L2((0, 1);W−1,1(Rd)) as n→∞.

Therefore ∂sR∞ = 0, hence R∞ = Γ. Since the limit is unique, no extraction of a
subsequence is needed, and the result does not depend on the sequence sn → ∞,
hence the result.
(3). — The last point of Theorem 2.11 is proven by rewriting the energy E, defined

by (1.5), in terms of the new unknowns (R,U) via (2.7):

E(t) = 1
2

∫
ρ(t, x)|u(t, x)|2dx+ ε2

2

∫ ∣∣∣∣∇√ρ(t, x)
∣∣∣∣2 dx+

∫
F (ρ(t, x))dx

= θ

2τ 2

∫
R(t, y)|U(t, y)|2dy + θ(τ̇)2

2

∫
R(t, y)|y|2dy + θ

τ̇

τ

∫
R(t, y)y · U(t, y)dy

+ θ
ε2

2

∫ ∣∣∣∣∇√R(t, y)
∣∣∣∣2 dy +

∫
F

(
θ

τ d
R
(
t,
x

τ d

))
dx.

Recalling the identity (2.16),
F (ρ) = P ′(0)ρ ln ρ+G(ρ),

we can write

E(t) = θ

2τ 2

∫
R(t, y)|U(t, y)|2dy + θ(τ̇)2

2

∫
R(t, y)|y|2dy + θ

τ̇

τ

∫
R(t, y)y · U(t, y)dy

+ θ
ε2

2

∫ ∣∣∣∣∇√R(t, y)
∣∣∣∣2 dy + θP ′(0)

∫
R(t, y) lnR(t, y)dy

+ θP ′(0) ln θ

τ d

∫
R(t, y)dy + τ d

∫
G

(
θ

τ d
R(t, y)

)
dy.

In view of Lemma 3.3, the first, fourth, fifth and last terms are bounded functions
of time. Invoking in addition Cauchy–Schwarz inequality, the third term is O(τ̇) =
O(
√

ln t) from Lemma 2.5. Therefore, since we have assumed E(t) = o(ln t), we infer
(τ̇)2

2

∫
R(t, y)|y|2dy − P ′(0) ln τ d

∫
R(t, y)dy = o(ln t) as t→∞.

Lemma 2.5 yields

τ̇ = 2
√
P ′(0) ln t (1 + o(1)) , ln τ = (1 + o(1)) ln t,
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therefore
2
∫
R(t, y)|y|2dy − d

∫
R(t, y)dy−→

t→∞
0.

Recalling that the mass is conserved, and an easy property of the Gaussian Γ,∫
R(t, y)dy =

∫
R(0, y)dy =

∫
Γ(y)dy,

∫
|y|2Γ(y)dy = d

2

∫
Γ(y)dy,

the proof of the last point of Theorem 2.11 follows. �

4. On the notion of weak solutions

In this part, we investigate the notion of weak solutions that we consider for
the long-time analysis. At first, we provide a priori estimates satisfied by classical
solutions to (1.4) such that the density decays sufficiently fast at infinity. These esti-
mates justify the regularity statements of Definition 2.6. Second, we prove sequential
compactness of bounded sets of weak solutions. Classically, this compactness result
is a cornerstone for obtaining existence of weak solutions.

4.1. A priori estimates

In this section, we present some a priori estimates that motivate our definition
of weak solution. As we noticed before, the structure of (2.8) suits better a priori
estimates than (1.4). So, from now on, we consider solutions (R,U) of the system
written in this form.

4.1.1. Energy estimate

First, we have an extension of Lemma 3.3.
Proposition 4.1. — Consider ε, ν > 0. Assume that the initial data satisfies

R0(1 + |y|2 + lnR0) ∈ L1,
√
R0U0 ∈ L2, ε∇

√
R0 ∈ L2.

Let (R,U) be a smooth solution to (2.8) associated to the initial data (R0, U0), then

(4.1)

R(1 + |y|2 + lnR) ∈ L∞(R+;L1(Rd)),
1
τ

√
RU ∈ L∞(R+;L2(Rd)),

ε

τ
∇
√
R ∈ L∞(R+;L2(Rd)),√

τ̇

τ 3

√
RU ∈ L2(R+;L2(Rd)),

ε

√
τ̇

τ 3∇
√
R ∈ L2(R+;L2(Rd)),

√
ν

τ 2

√
RDU ∈ L2(R+;L2(Rd)).
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Proof. — In the same vein as in Remark 2.13, we first remark that

ντ̇

τ 3

∫
R| divU | 6 C

ντ̇ 2

τ 2

∫
R + 1

2
ν

τ 4

∫
R|DU |2 6 C

ντ̇ 2

τ 2

∫
R + 1

2D.

Therefore, using (2.14), the conservation of mass and the fact that
∫ τ̇2

τ2 < ∞, we
obtain that the pseudo energy E is uniformly bounded from above. Lemma 3.3
implies that E is uniformly bounded in time, and its nonnegative dissipation D is
integrable in time, which gives the desired a priori bounds on (R,U). �

4.1.2. Pseudo entropy and effective velocity

Contrary to the Newtonian case, the previous a priori estimate is not sufficient
to run a classical compactness argument for proving existence of solutions. So, we
provide here a further estimate satisfied by a “pseudo entropy” of an effective velocity.
This construction is inspired of [AS18]. Given λ ∈ R, define the effective velocity

Wλ = U + λ∇ lnR.

Then the pair (R,Wλ) satisfies

(4.2)



∂tR + 1
τ 2 div(RWλ) = λ

τ 2 ∆R,

∂t(RWλ) + 1
τ 2 div(RWλ ⊗Wλ) + 2P ′(0)yR + P ′

(
θR

τ d

)
∇R

= λ1

2τ 2R∇
(

∆
√
R√
R

)
+ λ2

τ 2 div(RDWλ) + λ

τ 2 ∆(RWλ) + ντ̇

τ
∇R,

where λ1 := 4λ2 − 4νλ+ ε2 and λ2 := ν − 2λ.

Remark 4.2. — If 0 6 ε < ν, we define λ := ν−
√
ν2−ε2
2 > 0 so that λ1 = 0 and

λ2 =
√
ν2 − ε2 > 0. Then (R,Wλ) satisfies

(4.3)



∂tR + 1
τ 2 div(RWλ) = λ

τ 2 ∆R,

∂t(RWλ) + 1
τ 2 div(RWλ ⊗Wλ) + 2P ′(0)yR + P ′

(
θR

τ d

)
∇R

= λ2

τ 2 div(RDWλ) + λ

τ 2 ∆(RWλ) + ντ̇

τ
∇R.

We observe that when ε = 0, thenWλ = U , and (4.3) is just the original equation (2.8)
with ε = 0.

We define the pseudo λ-entropy of (R,U) by

Eλ := 1
2τ 2

∫
R|Wλ|2 + λ1

2τ 2

∫
|∇
√
R|2 + P ′(0)

∫
(R|y|2 +R lnR) + τ d

θ

∫
G

(
θR

τ d

)
,
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and its associated dissipation

Dλ := τ̇

τ 3

∫ {
R|Wλ|2 + λ1|∇

√
R|2

}
+ d

τ̇

τ
τ d
(∫

[P (σ)− σP ′(0)]
∣∣∣
σ= θR

τd

)

+ λ2

τ 4

∫
R|DWλ|2 + λ

τ 4

∫
R|∇Wλ|2 + 4λP ′(0)

τ 2

∫
|∇
√
R|2

+ 4λ
τ 2

∫ θR

τ d
G′′

(
θR
τd

)
|∇
√
R|2 + λλ1

4τ 4

∫
R|∇2 lnR|2.

This is nothing but the pseudo energy and dissipation associated to (4.2).
By reproducing computations of the a priori estimate to this system, we obtain:

Lemma 4.3. — Let (R,U) be a smooth solution to (2.8) and consider the effective
velocity Wλ := U + λ∇ lnR with λ ∈ R. Then the pseudo λ-entropy Eλ satisfies

d
dtEλ +Dλ = 2λdP ′(0)

τ 2

∫
R− ν τ̇

τ 3

∫
R divWλ.

Remark 4.4. — If we set λ = ν, we note that λ1 = ε2 and λ2 = −ν. In this case,
two terms in the dissipation combine to yield:

λ2

τ 4

∫
R|DWλ|2 + λ

τ 4

∫
R|∇Wλ|2 = ν

τ 4

∫
R
|AWλ|2 = ν

τ 4

∫
R
|AU |2.

Thus, we recover the BD-entropy estimate associated with our system (see [BD04,
BDL03] for the introduction of this method, and [VY16b] in the case with a Bohm
potential). We apply only this particular case to obtain the regularity statement
below. Nevertheless, we apply the choice of λ from Remark 4.2 in the next subsection
(to prove a Mellet–Vasseur estimate). This choice enables to delete the Korteweg
term, this is why we provided a statement with a general λ in the previous lemma.

Combining the latter entropy estimate with energy estimate yields controls on
(R,U), which enable to consider various cases for the parameters ε and ν. This
ensures the following regularity properties of a classical solution:

Proposition 4.5. — Consider ε, ν > 0. Assume that the initial data satisfies

R0(1 + |y|2 + lnR0) ∈ L1(Rd),
√
R0U0 ∈ L2(Rd), (ε+ ν)∇

√
R0 ∈ L2(Rd).

TOME 1 (2018)



70 R. CARLES, K. CARRAPATOSO & M. HILLAIRET

Let (R,U) be a smooth solution to (2.8) associated to the initial data (R0, U0), then

(4.4)

R(1 + |y|2 + lnR) ∈ L∞(R+;L1(Rd)),
1
τ

√
RU ∈ L∞(R+;L2(Rd)),

(ε+ ν)
τ
∇
√
R ∈ L∞(R+;L2(Rd)),√

τ̇

τ 3

√
RU ∈ L2(R+;L2(Rd)),

ε

√
τ̇

τ 3∇
√
R ∈ L2(R+;L2(Rd)),

√
ν

τ
∇
√
R ∈ L2(R+;L2(Rd)),

√
ν

τ 2

√
R∇U ∈ L2(R+;L2(Rd)),

ν

τ 2
θR

τ d
G′′

(
θR

τ d

)
|∇
√
R|2 ∈ L1(R+;L1(Rd)),

ε
√
ν

τ 2

√
R∇2 logR ∈ L2(R+;L2(Rd)),

and we observe that last estimate implies (see [Jün10, VY16b])

ε
√
ν

τ 2 ∇
2
√
R ∈ L2(R+;L2(Rd)), ε1/2ν1/4

τ
∇R

1
4 ∈ L4(R+;L4(Rd)).

Proof of Proposition 4.5. — From (2.14) and Lemma 4.3 with λ = ν, it follows
d
dt (E(t) + Eν(t)) +D(t) +Dν(t) = 2dν

τ 2

∫
R,

and we conclude in a similar way as in the proof of Proposition 4.1, using now that∫
dt/τ(t)2 < ∞ and recalling that P ′(σ) = P ′(0) + σG′′(σ) with P ′(0) > 0 and

G′′ > 0. �

4.1.3. Mellet–Vasseur estimate

It turns out that the above estimates are insufficient for the construction of solu-
tions to (1.4) via a compactness approach: the above information does not enable
to pass to the limit in the convective term RU ⊗U (see the introduction of [VY16a]
for more precise statements). So, when 0 6 ε 6 ν, we add a further estimate that
we adapt from [MV07, AS18] to the isothermal case. For this, we restrict from now
to the isothermal case P (ρ) ≡ κρ.

Proposition 4.6. — Let ν > 0 and 0 6 ε 6 ν, P (ρ) = κρ with κ > 0, and
T > 0. Assume that the initial data satisfy

R0(1 + |y|2 + lnR0) ∈ L1(Rd),
√
R0U0 ∈ L2(Rd), (ε+ ν)∇

√
R0 ∈ L2(Rd).
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Let (R,U) be a smooth solution to (2.8) associated to the initial data (R0, U0).
Consider λ(ε) := (ν −

√
ν2 − ε2)/2 > 0 and define the effective velocity

Wε := U + λ(ε)∇ lnR,

so that (R,Wε) satisfies (4.3). Denote ϕMV (z) = (1 + z) ln(1 + z) for z > 0, and
suppose further that ∫

Rd
R0ϕMV

(
|Wε,0|2 + |y|2

)
dy <∞.

Then there exists a constant KT depending only on T and C ′′0 depending only on
initial data such that

sup
t∈(0,T )

{∫
Rd
RϕMV

(
|Wε|2 + |y|2

)
dy
}

+
∫ T

0

∫
Rd
Rϕ′MV

(
|Wε|2 + |y|2

) {
λ(ε)|∇Wε|2 + λ2(ε)|D(Wε)|2

}
dy dt 6 KTC

′′
0 ,

where λ2(ε) :=
√
ν2 − ε2 > 0.

Remark 4.7. — The functional is not quite the same as in [MV07], where the
authors analyze ϕMV (|u|2). Considering an effective velocity follows from [AS18]. On
the other hand, the introduction of the term |y|2 is due to the presence of term yR
in (2.8), which is a specific feature of our approach adapted to the isothermal case,
and seems necessary in order to obtain closed estimates.

Proof. — We first remark that, by construction, we have:

(4.5) ϕ′MV (z) = 1 + ln(1 + z), z|ϕ′′MV (z)| 6 1, ∀ z > 0.

Given (R,Wε) a solution to (4.3), we have then:

d
dt

∫
RϕMV

(
|Wε|2 + |y|2

)
=
∫
∂tRϕMV

(
|Wε|2 + |y|2

)
+ 2

∫
Rϕ′MV

(
|Wε|2 + |y|2

)
Wε · ∂tWε.

For conciseness, we drop the arguments of ϕMV and its derivative in what follows.
We may then rewrite the last integral on the right-hand side by applying that

R∂tWε = λ(ε)
τ 2 [∆(RWε)− (∆R)Wε] + λ2(ε)

τ 2 div(RD(Wε))

+ ντ̇

τ
∇R− κ∇R− 2κyR− 1

τ 2RWε · ∇Wε,

from which we obtain

(4.6) d
dt

∫
RϕMV = λ(ε)

τ 2 I0 + 2λ2(ε)
τ 2 I1 + 2

(
ντ̇

τ
− κ

)
I2 + 2

( 1
τ 2 − 2κ

)
I3,
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with
I0 =

∫
{2[∆(RWε)− (∆R)Wε] ·Wεϕ

′
MV + ∆RϕMV } ,

I1 =
∫

div(RD(Wε)) ·Wεϕ
′
MV ,

I2 =
∫
∇R ·Wεϕ

′
MV ,

I3 =
∫
yR ·Wεϕ

′
MV .

We compute bounds above for these integrals by applying standard transformations
and application of (4.5). By integrating by parts we obtain

I0 = −
∫
R|∇(|Wε|2)|2ϕ′′MV − 2

∫
R|∇Wε|2ϕ′MV + 2

∫
R(ϕ′MV + 2|y|2ϕ′′MV )

= −
∫
R|∇(|Wε|2)|2ϕ′′MV − 2

∫
R|∇Wε|2ϕ′MV +O

(∫
R(1 + |y|2 + |Wε|2)

)
.

For the term I1 we have

I1 = −
∫
Rϕ′MV |D(Wε)|2 +O

(∫
R(|Wε|2 + |y|2)|ϕ′′MV ||D(Wε)||∇Wε|

)
= −

∫
Rϕ′MV |D(Wε)|2 +O

(∫
R|∇Wε|2

)
.

We compute I2 by integrating by parts, which gives

I2 = −
∫
R div Wε ϕ

′
MV − 2

∫
R [(Wε · ∇)Wε] ·Wεϕ

′′
MV − 2

∫
RWε · yϕ′′MV ,

and introducing an absolute constant C and a small parameter η > 0 to be fixed
later on, we obtain

|I2| 6 C
(∫

R|D(Wε)|ϕ′MV +
∫
R(|Wε|2 + |y|2)ϕ′′MV |∇Wε|

)
6 η

∫
Rϕ′MV |D(Wε)|2 + C

η

(∫
R|∇Wε|2 +

∫
R(1 + ϕ′MV )

)
6 η

∫
Rϕ′MV |D(Wε)|2 + C

η

(∫
R|∇Wε|2 +

∫
R(1 + |y|2 + |Wε|2)

)
.

Concerning I3, Young inequality yields

|I3| 6
∫
R|y||Wε|

(
ln
(
1 + |Wε|2 + |y|2

)
+ 1

)
6
∫
R
(
|y|2 + |Wε|2

)
+
∫
RϕMV .

We substitute I0, I1, I2 and I3 with these computations into (4.6), and we remark
that τ and 1/τ are uniformly bounded with their derivatives on [0, T ]. We obtain
then that there exist positive constants cT and CT depending only on T for which

(4.7) d
dt

∫
RϕMV + cT

∫
Rϕ′MV {λ(ε)|∇Wε|2 + λ2(ε)|D(Wε)|2}

6 (CT (ν + 1) + κ)

×
(
η
∫
Rϕ′MV |D(Wε)|2 + 1

η

(∫
R|∇Wε|2 +

∫
R(1 + |y|2 + |Wε|2) +

∫
RϕMV

))
.
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Choosing η sufficiently small so that the first term of the right hand side is absorbed
by the left hand side, we are in position to apply a Grönwall lemma to

∫
RϕMV . We

note here that combining the estimates of Propositions 4.1 and 4.5 entails∫ T

0

∫
Rd
R|∇Wε|2 +

∫ T

0

∫
Rd
R(1 + |y|2 + |Wε|2) 6 KT (C0 + C ′0),

and we obtain
sup
t∈(0,T )

∫
Rd
RϕMV 6 KTC

′′
0 .

It remains to integrate (4.7) to conclude. �

Remark 4.8. — We note that, when ε > 0, the choice ϕMV (z) = (1 + z) ln(1 + z)
is not unique. Indeed, with the term I0 we control a full gradient of Wε, while the
term I1 only enables a control of the symmetric part of this gradient. Hence, when
ε = 0 we have to choose an entropy such that zϕ′′MV is bounded, and the parasite
term appearing in I1 is controlled with the previous pseudo-entropy estimate. On
the other hand, when ε > 0, this Mellet–Vasseur estimate is self-consistent and we
can afford entropies ϕ such that zϕ′′ . ϕ

′
, typically, any power-like entropy.

Remark 4.9. — The restriction ε 6 ν is mandatory to enable the choice of a
parameter λ such that the Korteweg term disappears in the system for (R,Wλ),
see (4.3).

4.2. Compactness of weak solutions

In this section we assume ν > 0 and 0 6 ε 6 ν, and we consider the isothermal
case P (ρ) ≡ κρ with κ > 0. From Section 4.1, any classical solution (R,U) to (2.8)
on (0, T ) decaying sufficiently fast at infinity satisfies the following a priori estimates:

• The conservation of mass:
(4.8) sup

t∈(0,T )

∫
Rd
R = M0

where M0 is the mass of the initial data,
• From the dissipation of the pseudo energy:

(4.9) sup
t∈(0,T )

{ 1
2τ 2

∫
Rd

(
R|U |2 + ε2|∇

√
R|2

)
+ κ

∫
Rd
R(|y|2 + | lnR|)

}

+
∫ T

0

(
τ̇

τ 3

∫
Rd

(
R|U |2 + ε2|∇

√
R|2

)
+ ν

τ 4

∫
Rd
|SN |2

)
dt 6 C0,

where C0 depends on initial data only.
• From the dissipation of the pseudo BD-entropy:

(4.10) sup
t∈(0,T )

{ 1
2τ 2

∫ (
R|U + ν∇ lnR|2 + ε2|∇

√
R|2

)
+ κ

∫
R(|y|2 + | lnR|)

}

+
∫ T

0

(
τ̇

τ 3

∫ (
R|U |2 + ε2|∇

√
R|2

)
+ ν

τ 4

∫
|AN |2 + 4νκ

τ 2

∫
|∇
√
R|2

)
dt

+
∫ T

0

νε2

4τ 4

(∫
R
∣∣∣∇2 lnR

∣∣∣2) dt 6 C ′0,
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where C ′0 depends again only on initial data and AN stands for the skew-
symmetric part of TN .
• The Mellet–Vasseur type inequality: denoting ϕMV (z) = (1 + z) ln(1 + z),
there holds

(4.11) sup
t∈(0,T )

{∫
RϕMV

(
|Wε|2 + |y|2

)}

+
∫ T

0

∫
ϕ′MV

(
|Wε|2 + |y|2

)
{λ(ε)|TN |2 + λ2(ε)|SN |2} 6 C ′′0,T ,

with C ′′0,T depending only on initial data and T , where hereafter in this section
we define the effective velocity Wε associated to (R,U) by

Wε := U + λ(ε)∇ lnR,

where we recall that λ(ε) = ν−
√
ν2−ε2
2 > 0 and λ2(ε) =

√
ν2 − ε2 > 0.

We proceed by studying the compactness of weak solutions to (2.8) which satisfy
the estimates (4.8)–(4.11). The different arguments follow closely the proof of [MV07,
Theorem 2.1].

Theorem 4.10. — Assume ν > 0 and 0 6 ε 6 ν, P (ρ) = κρ with κ > 0,
and let T > 0. Consider (

√
Rn,
√
RnUn)n∈N a sequence of weak solutions to (2.8)

satisfying (4.8)–(4.11) with constants C0, C
′
0, C

′′
0,T independent of n ∈ N, and de-

note by SK,n and TN,n the tensors associated to (
√
Rn,
√
RnUn). Then, there exists

(
√
R,
√
RU), with associated tensors SK and TN , such that:

(1) Up to the extraction of a subsequence, (
√
Rn,
√
RnUn,TN,n)n∈N satisfy

√
Rn →

√
R in C([0, T );L2(Rd)),

√
RnUn →

√
RU in L2(0, T ;L2(Rd)),

TN,n ⇀ TN in L2(0, T ;L2(Rd))− w,

(2) (
√
R,
√
RU) is a weak solution to (2.8) in the sense of Definition 2.6.

Proof of Theorem 4.10. — To start with, we remark that, thanks to (4.8)–(4.10),
the sequence we consider is bounded in the following respective spaces:
(b1) (

√
Rn)n is bounded in L∞(0, T ;H1(Rd) ∩ L2(Rd; |y|2dy)),

(b2) (
√
RnUn)n is bounded in L∞(0, T ;L2(Rd)),

(b3) (TN,n)n is bounded in L2(0, T ;L2(Rd)).
(b4) (∇2√Rn)n is bounded in L2(0, T ;L2(Rd)) if ε > 0.

Up to the extraction of a subsequence, we can then construct (
√
R,
√
RU,TN) as

the following limits:
(c1)

√
Rn ⇀

√
R in L∞(0, T ;H1(Rd))− w∗,

(c2)
√
RnUn ⇀

√
RU in L∞(0, T ;L2(Rd)))− w∗,

(c3) TN,n ⇀ TN in L2(0, T ;L2(Rd))− w,
(c4) ∇2√Rn ⇀ ∇2

√
R in L2(0, T ;L2(Rd))− w if ε > 0.

We note directly that the non-negativity of
√
R is preserved in the weak limit.
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Step 1. — From (b1) and Sobolev embeddings, we have

(b5) (
√
Rn)n is bounded in L∞(0, T ;Lq(Rd)) for all

q ∈ [2,∞) if d = 2,
q ∈ [2, 2∗] if d > 3,

where 2∗ = 2d/(d− 2). Together with (b2), this implies

(b6) (RnUn)n is bounded in L∞(0, T ;Lq(Rd)) for all

q ∈ [1,∞) if d = 2,
q ∈ [1, d′] if d > 3,

where d′ is the Hölder conjugate exponent of d. Recalling the continuity equation
satisfied by

√
Rn,

∂t
√
Rn = − 1

τ 2 div(
√
RnUn) + 1

2τ 2 Trace(TN,n),

and that τ is uniformly bounded from below on (0, T ), the bounds (b1)–(b3) yield
that (∂t

√
Rn)n is bounded in L2(0, T ;H−1(Rd)). Consequently, as in [MV07, Lem-

ma 4.1], we apply Aubin–Lions’ lemma in the form [Sim87, Corollary 4] with the
triplet H1(Rd) ∩ L2(Rd; |y|2dy) ⊂ L2(Rd) ⊂ H−1(Rd), where the first embedding is
compact. This yields that

(c5) (
√
Rn)n is relatively compact in C([0, T ];L2(Rd)).

Furthermore, in the case ε > 0, estimates (b1)–(b4) imply that (
√
Rn)n is bounded

in L2(0, T ;H2(Rd)) which yields, applying Aubin–Lions’ lemma again, that

(c5′) (
√
Rn)n is relatively compact in L2(0, T ;H1

loc(Rd)) if ε > 0.

Step 2. — The second step of the proof is to obtain the relative compactness of
(RnUn)n. We remark that, by definition:

∇(RnUn) =
√
RnTN,n + 2

√
RnUn ⊗∇

√
Rn.

We combine here (b1)–(b3). This yields that (∇(RnUn))n is bounded in
L2(0, T ;L1(Rd)), hence (RnUn)n is bounded in L2(0, T ;W 1,1(Rd)) thanks to (b5).
As for ∂t(RnUn), we apply the momentum equation to write:

∂t(RnUn) = − 1
τ 2 div

(√
RnUn ⊗

√
RnUn

)
− 2κyRn − κ∇Rn + ντ̇

τ
∇Rn

+ ε2

2τ 2 div SK,n + ν

τ 2 div
(√

RnSN,n
)
,

where we recall that SK,n =
√
Rn∇2√Rn − ∇

√
Rn ⊗ ∇

√
Rn. Again, the bounds

on
√
Rn,
√
RnUn, TN,n and ∇2√Rn coming from (b1)–(b4) imply that ∂t(RnUn) is

bounded in L2(0, T ;W−1,1(Rd)). So, by the Aubin–Lions’ lemma with the triplet
W 1,1(K) ⊂ Lp(K) ⊂ W−1,1(K) for any p ∈ [1, d′) and any compact K ⊂ Rd, where
the first embedding is compact, we obtain that

(c6) (RnUn)n is relatively compact in L2(0, T ;Lploc(Rd)) for all p ∈ [1, d′).
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In what follows we assume that we have extracted a subsequence (that we do not
relabel) so that we have the convergences:

•
√
Rn →

√
R in C([0, T ];L2(Rd));

• RnUn →M in L2(0, T ;Lploc(Rd)) for any 1 6 p < d′;
•
√
Rn →

√
R in L2(0, T ;H1

loc(Rd)) if ε > 0.
We add here that (b5) entails that the sequence (Rn)n is bounded in
L∞(0, T ;Lq/2(Rd)) for any 2 6 q < ∞ if d = 2 and any 2 6 q 6 2∗ if d > 3,
hence it admits (up to the extraction of a subsequence) a weak-∗ limit. Thanks to
the strong convergence (c5) of (

√
Rn)n we have that

(c7) Rn ⇀ R in L∞(0, T ;Lq/2(Rd))− w∗ for all

q ∈ [2,∞) if d = 2,
q ∈ [2, 2∗] if d > 3.

Step 3. — We proceed with defining the asymptotic velocity-field U. For this, we
remark first that, for arbitrary K ⊂ (0, T )×Rd there holds, for arbitrary 2 < q < 2∗
and p such that 1/p = 1/2 + 1/q ∈ (1− 1/d, 1) :

‖RnUn‖Lp(K) 6 ‖
√
Rn‖Lq(K)‖

√
RnUn‖L2((0,T )×Rd).

Taking K = {
√
R = 0} ∩ ((0, T )×B(0, A)) for arbitrary A > 0 we apply that√

Rn1K →
√
R1K = 0 in Lp(K) (by (c5)), and is bounded in Lr(K) for arbitrary

r ∈ (q, 2∗) (by (b5)). By interpolation, we conclude that
√
Rn1K → 0 in Lq(K).

Recalling that ‖
√
RnUn‖L2((0,T )×Rd) remains bounded and that RnUn1K → M in

Lp(K), we infer that M = 0 on {
√
R = 0}. So, we set

U =


0 on {

√
R = 0},

M

R
on

(
(0, T )× Rd

)
\ {
√
R = 0}.

We note here that by construction

U = lim
n→∞

RnUn
Rn

= lim
n→∞

√
RnUn√
Rn

a.e. on
(
(0, T )× Rd

)
\ {
√
R = 0}.

In a similar fashion we define the asymptotic effective velocity field Wε in the case
ε > 0. We observe first that

RnUn + 2λ(ε)
√
Rn∇

√
Rn →M + 2λ(ε)

√
R∇
√
R =: M̄ε a.e. on (0, T )× Rd,

and we have M̄ε = 0 on {
√
R = 0}. Hence we set

Wε =


0 on {

√
R = 0},

M

R
+ 2λ(ε)

√
R∇
√
R

R
on

(
(0, T )× Rd

)
\ {
√
R = 0}.

Step 4. — The last important step is to prove the strong convergence of the
sequence (

√
RnUn)n in L2(0, T ;L2

loc(Rd)). In order to do so, we work with the effective
velocity Wε,n = Un + λ(ε)∇ lnRn (which is just equal to Un when ε = 0). We first
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remark that we have a.e. convergence of RnϕMV (|y|2 + |Wε,n|2). Estimate (4.11) with
Fatou’s Lemma yield

sup
(0,T )

∫
RϕMV (|y|2 + |Wε|2) <∞.

We may now repeat the arguments of [MV07, p. 445–446] and [AS18]. Namely, we
first fix A,A′ > 0, and remark that√

RnWε,n = RnUn√
Rn

+∇
√
Rn →

M√
R

+∇
√
R a.e. on {

√
R 6= 0},

as well as |
√
RnWε,n1|Wε,n|<A| 6 A

√
Rn → 0 a.e. on {

√
R = 0}. Hence we get√

RnWε,n1|Wε,n|<A∩ |Rn|<A′ →
√
RWε1|Wε|<A∩ |R|<A′ a.e. on (0, T )× Rd.

We write, for any compact K ⊂ Rd,∫ T

0

∫
K

∣∣∣∣√RnUn −
√
RU

∣∣∣∣2
6 C

∫ T

0

∫
K

∣∣∣∣√RnWε,n −
√
RWε

∣∣∣∣2 + Cλ2(ε)
∫ T

0

∫
K

∣∣∣∣∇√Rn −∇
√
R
∣∣∣∣2

and evaluate each term separately. The second term goes to 0 thanks to (c5′), while
for the first term we estimate

(4.12)
∫ T

0

∫
K

∣∣∣∣√RnWε,n −
√
RWε

∣∣∣∣2
6 C

∫ T

0

∫
K

∣∣∣∣√RnWε,n1|Wε,n|<A∩ |Rn|<A′ −
√
RWε1|Wε|<A∩ |R|<A′

∣∣∣∣2

+
∫ T

0

∫
K

∣∣∣∣√RnWε,n1|Wε,n|>A

∣∣∣∣2 +
∣∣∣∣√RnWε,n1|Wε,n|<A∩|Rn|>A′

∣∣∣∣2
+
∫ T

0

∫
K

∣∣∣√RWε1|Wε|>A

∣∣∣2 +
∣∣∣√RWε1|Wε|<A∩|R|>A′

∣∣∣2
.

For fixed A and A′, the first term on the right-hand side of (4.12) converges to 0
when n→∞, while for the second one we have, introducing 2 < q < 2∗:∫ T

0

∫
K

∣∣∣∣√RnWε,n1|Wε,n|>A

∣∣∣∣2 +
∣∣∣∣√RnWε,n1|Wε,n|<A∩|Rn|>A′

∣∣∣∣2
6

1
ln(1 + A2)

∫ T

0

∫
K
RnϕMV ((|y|2 + |Wε,n|2)/2) + A2

|A′|q−2

∫ T

0

∫
K
Rq
n

6 C

(
1

ln(1 + A2) + A2

|A′|2−q

)
,

with a constant C independent of n. Proceeding in a similar way for the third term
of (4.12), we obtain that

lim sup
n→∞

∫ T

0

∫
K

∣∣∣∣√RnUn −
√
RU

∣∣∣∣2 6 C

(
1

ln(1 + A2) + A2

|A′|2−q

)
,
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for arbitrary A and A′, which implies the convergence

(c8)
√
RnUn →

√
RU in L2

loc((0, T )× Rd).

by letting A′ →∞ and then A→∞. We note here that, by construction
√
RU = 0

where U = 0 in particular on the set {
√
R = 0}.

We may finally combine (c1)–(c8) to pass to the limit in the continuity and momen-
tum equations satisfied by (

√
Rn,
√
RnUn) and their associated tensors SK,n,TN,n,

and obtain that the different items of Definition 2.6 are satisfied by the limit
(
√
R,
√
RU) and their associated tensors SK ,TN . �

Appendix A. On large time behavior for isentropic Euler
equations

In this appendix, we prove Theorem 1.1: for the Euler equation with pressure law
P (ρ) = ργ, γ > 1, there is no such thing as a universal asymptotic profile for the
density. In addition, the dispersion associated to global smooth solutions is not the
same as in the isothermal case. To see this, we rewrite the arguments from [Ser97],
in the simplest case in order to illustrate the above claims. Consider on Rd, d > 1,

(A.1)

∂tρ+ div (ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + κ∇ (ργ) = 0,

with κ > 0 and 1 < γ 6 1 + 2
d
. Consider the analogue of (2.7),

ρ(t, x) = 1
(1 + t)dR

(
t

1 + t
,

x

1 + t

)
, u(t, x) = 1

1 + t
U
(

t

1 + t
,

x

1 + t

)
+ x

1 + t
.

Denoting by σ and y the time and space variables for (R,U), we readily check that
in terms of (R,U), (A.1) is equivalent to

(A.2)

∂σR + div (RU) = 0,
∂σ(RU) + div(RU ⊗ U) + κ(1− σ)dγ−d−2∇ (Rγ) = 0.

Note that in the case γ = 1 + 2/d, (R,U) solves exactly (A.1). This algebraic
identity can be viewed as the counterpart of the pseudo-conformal transform in the
framework of nonlinear Schrödinger equations (see e.g. [Caz03]), after Madelung
transform and a semi-classical limit (see e.g. [AM09, AM12, CDS12]). (Leaving out
the semi-classical limit, this shows that at least in the case γ = 1 + 2/d, (A.1) could
be replaced by Korteweg equations, with essentially the same conclusions as below.)
The important remark is that the time interval t ∈ [0,∞) has been compactified,

since it corresponds to σ ∈ [0, 1). Therefore, if the solution of (A.2) is defined (at
least) on the time interval [0, 1], going back to the original unknowns yields a global
solution to (A.1).
We rewrite (A.2) away from vacuum as:

(A.3)

∂σR + div (RU) = 0,
∂σU + U · ∇U + κ(1− σ)dγ−d−2 1

R
∇ (Rγ) = 0.
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Using the same change of unknown function used to symmetrize (A.1) ([MUK86,
Che90]), but in the case of (R,U), that is,

R̃ = R
γ−1

2 ,

(A.3) becomes

(A.4)


∂σR̃ + U · ∇R̃ + γ − 1

2 R̃ divU = 0,

∂σU + U · ∇U + κ
2γ
γ − 1(1− σ)dγ−d−2R̃∇R̃ = 0.

Multiplying the second equation by the symmetric positive definite matrix

S(σ) = (γ − 1)2

4κγ (1− σ)d+2−dγ Id

makes the system symmetric.
Case γ = 1+2/d. — In this case, the symmetrizer is constant. Using the standard

results in this framework (see e.g. [Maj84, Tay97]), we infer that if for s > d/2 + 1,
‖(R̃, U)‖Hs(Rd) is sufficiently small at σ = 0, then (A.4) has a unique solution
(R̃, U) ∈ C([0, 1];Hs(Rd)). By the same argument, we can actually solve (A.4)
backward in time, by prescribing the data at σ = 1: if these data are sufficiently
small, the solution satisfies (R̃, U) ∈ C([0, 1];Hs(Rd)). Back to the initial unknowns,
we infer Theorem 1.1.
Case 1 < γ < 1 + 2/d. — In this case, the symmetrizer S goes to zero as σ → 1.

Setting, for m > 1 + d/2 an integer

Fm(σ) :=
∑

06|α|6m

(
‖∂αy R̃‖2

L2 +
〈
∂αy U, S∂

α
y U

〉
L2,L2

)
,

it is proven in [Ser97] that Fm satisfies the differential inequality
dFm
dσ 6 CFm + C (1− σ)dγ/2−1−d/2

(
F 3/2
m + F (m+3)/2

m

)
.

Defining Gm(σ) = Fm(σ) exp(−Cσ), we get
dGm

dσ . (1− σ)dγ/2−1−d/2
(
G3/2
m +G(m+3)/2

m

)
.

Introducing

H(G) :=
∫ G

1

dg
g3/2 + g(m+3)/2 ,

we have
H (Gm(σ)) 6 H (Gm(0)) + C1

∫ σ

0
(1− s)dγ/2−1−d/2 ds.

Since the last integral is convergent as σ → 1 (recall that γ > 1), and

H (Gm(σ)) 6 H (Gm(0)) + C1

∫ 1

0
(1− s)dγ/2−1−d/2 ds︸ ︷︷ ︸

:=C2

.
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Noticing that H(0) = −∞, we see that if ‖(R̃, U)‖Hm is sufficiently small, then
(R̃, U) is defined up to σ = 1 (by contradiction). Again, we can adapt this argument
with data at σ = 1 (replace Gm(0) with Gm(1) in the above estimate), and decrease
time to σ = 0, in order to infer Theorem 1.1. Note that in starting from σ = 1, we
only assume (R̃, U)|σ=1 in Hm, with ‖R̃(1)‖Hm small (not necessarily ‖U(1)‖Hm).

Appendix B. Qualitative study of ordinary differential
equations

B.1. Universal dispersion

We sketch the proof of Lemma 2.5, and refer to [CG18] for details. The fact that
under the assumptions of Lemma 2.5, (2.6) has a unique local C2 solution is an
immediate consequence of Cauchy–Lipschitz Theorem. Multiplying (2.6) by τ̇ and
integrating, we find
(B.1) (τ̇)2 = C + 4κ ln τ,
where the value C = β2 − 4κ lnα is irrelevant for the rest of the discussion. Since
the left hand side of (B.1) is non-negative, we readily have

τ(t) > exp
(
− C4κ

)
> 0,

for all t in the life-span of τ . This shows that the C2 solution is uniformly convex,
and global in time.
Next, we note that τ grows at least linearly in time. Indeed, if β > 0, then since τ

is convex,
τ(t) > βt+ α.

On the other hand, if β 6 0, suppose that τ is bounded, τ(t) 6M . Then (2.6) yields

τ̈(t) > 2κ
M
,

hence a contradiction for t large enough. Therefore, we can find T > 0 such that
τ(T ) > 1 and τ̇(T ) > 0, so arguing like above,

τ(t) > τ̇(T )(t− T ) + τ(T ), and τ̇(t) > 0 ∀ t > T.

From the above discussion, there exists T > 0 such that for t > T , τ̇(t) > 0, and
so (B.1) yields

(B.2) τ̇(t) =
√
C + 4κ ln τ(t), t > T.

Separating the variables, we have
dτ√

C + 4κ ln τ
= dt,

and the change of variable σ =
√
C + 4κ ln τ yields∫ dτ√

C + 4κ ln τ
= 1

2κ

∫
e(σ2−C)/4κdσ.
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The asymptotic expansion of Dawson function (see e.g. [AS64]) yields, in the sense
of diverging integrals, ∫

eσ
2dσ ∼ 1

2σe
σ2
.

We get
τ(t)√

C + 4κ ln τ
∼
t→∞

t, hence τ(t)√
4κ ln τ

∼
t→∞

t.

We see here that the initial data of τ , appearing in the numerical value of C, are
irrelevant for the leading order large time behavior of τ . We readily infer

τ(t) ∼
t→∞

2t
√
κ ln t, τ̇(t) ∼

t→∞
2
√
κ ln t,

where the second relation stems from the first one and (B.2).

B.2. Perturbed dynamics

The proof of Lemma 3.2 resume several of the above steps. Local existence follows
again from the Cauchy–Lipschitz Theorem. Leaving out the explicit dependence
upon ε and ν in the notation, and multiplying (3.11) by τ̇ , integration now yields

(B.3) (τ̇(t))2 = C + 4κ ln τ(t)− ε2

2τ(t)2 − ν
∫ t

0

(
τ̇(s)
τ(s)

)2

ds.

Writing

C + 4κ ln τ(t) = (τ̇(t))2 + ε2

2τ(t)2 + ν
∫ t

0

(
τ̇(s)
τ(s)

)2

ds > 0,

we still have τ(t) > e−C/4κ > 0.
Now suppose that τ ∈ L∞(R+). Then (B.3) and the above property imply

(τ̇(t))2 + ν
∫ t

0

(
τ̇(s)
τ(s)

)2

ds ∈ L∞(R+),

hence
(τ̇(t))2 + ν

‖τ‖2
L∞

∫ t

0
(τ̇(s))2 ds ∈ L∞(R+).

In particular,
∫∞

0 (τ̇)2 <∞. Integrating by parts,∫ t

0
(τ̇(s))2 ds = τ(t)τ̇(t)− αβ −

∫ t

0
τ τ̈

= τ(t)τ̇(t)− αβ −
∫ t

0

(
2κ+ ε2

τ 2 − ν
τ̇

τ

)

= τ(t)τ̇(t)− αβ −
∫ t

0

(
2κ+ ε2

τ 2

)
+ ν ln

(
τ(t)
α

)
.

Since τ is bounded, we infer
τ(t)τ̇(t) & t− 1,
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hence a contradiction. Therefore, there exists tn →∞ such that

τ(tn) −→
n→∞

∞.

Now we suppose that

(B.4)
∫ ∞

0

(
τ̇(s)
τ(s)

)2

ds =∞.

Then (B.3) implies

(B.5) 4κ ln τ(t)− (τ̇(t))2 −→
t→∞
∞.

Integrating by parts yields∫ t

tn

(
τ̇

τ

)2
= τ̇

τ

∣∣∣∣t
tn

−
∫ t

tn
τ̇

(
τ̈

τ 2 − 2(τ̇)2

τ 3

)

= τ̇

τ

∣∣∣∣t
tn

+ 2
∫ t

tn

(
τ̇

τ

)3
−
∫ t

tn

(
2κ τ̇
τ 3 + ε2 τ̇

τ 5 − ν
(τ̇)2

τ 4

)

= τ̇

τ
+ κ

τ 2 −
ε2

4τ 4

∣∣∣∣t
tn

+ 2
∫ t

tn

(
τ̇

τ

)3
+ ν

∫ t

tn

(τ̇)2

τ 4 .

In view of (B.5), the above three integrated terms are bounded. We infer
∫ t

tn

(
τ̇

τ

)2
6 C +

(
2 sup
s>tn

∣∣∣∣∣ τ̇(s)
τ(s)

∣∣∣∣∣+ ν sup
s>tn

1
τ(s)2

)∫ t

tn

(
τ̇

τ

)2
.

Now (B.5) yields, for t > tn � 1,∫ t

tn

(
τ̇

τ

)2
6 C + 1

2

∫ t

tn

(
τ̇

τ

)2
.

This provides a contradiction with (B.4). We infer that τ is not bounded, and
∫ ∞

0

(
τ̇(s)
τ(s)

)2

ds <∞.

But (B.3) shows that for any sequence of time along which τ goes to infinity, (τ̇)2

also goes to infinity. Therefore,

τ(t)−→
t→∞
∞ and τ̇(t)−→

t→∞
∞.

For large time, (B.3) becomes

(τ̇(t))2 ∼
t→∞

4κ ln τ(t),

and we can resume the computation of the above subsection to infer Lemma 3.2.
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