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ABSTRACT. — In this paper, we are interested in path-dependent stochastic differential
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Markovian context, we give a Hérmander-type criterion for the regularity of solutions. Indeed,
our criterion is expressed as a spanning condition with brackets. A novelty in the case of delays
is that noise can “flow from the past” and give additional smoothness thanks to semi-brackets.

The proof follows the general lines of Malliavin’s probabilistic proof, in the Markovian
case. Nevertheless, in order to handle the non-Markovian aspects of this problem and to treat
anticipative integrals in a path-wise fashion, we heavily invoke rough path integration.
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1024 Reda CHHAIBI & Ibrahim EKREN

dans le cas avec retard est que le bruit peut « se propager depuis le passé » et donner lieu a
de la régularité grace a des demi-crochets.

La preuve suit dans les grandes lignes celle de Malliavin pour le cas markovien. Néanmoins,
afin de traiter les intégrales anticipatives de fagon trajectorielle ainsi que certains aspects
non-markoviens diis aux retards, nous invoquons la théorie des chemins rugueux de facon
essentielle.

1. Introduction

This is a first paper on the general question of smoothness for marginals of solutions
to non-Markovian SDEs. Here, we fix a time maturity 7' > 0 and 7 = (h;)oc;cy_q €
RY is an increasing sequence of delays satisfying:

(11) 0= h0<h1<h2<"'<hN_1<T.

We also fix m,d > 0 two integers and consider the random variable X7 € R? where
(Xt)o<<r is the solution to a delayed SDE:

moo

(1.2) X, = Xo+ Z/ Vi(r, X) o dW* | for all £ > 0
k=070

(1.3) X=Xy, forallt<0.

The process (Wk>1<k-<m is an m-dimensional Brownian motion. The vector fields are
of the form

Vk = ‘/k:(taX) = Vk‘ <t7Xt7Xt—h17 s aXt—hN_1> S Rd )

and depend smoothly on delayed values of the path X. N = 1 recovers the usual
Markovian setting of diffusions. By convention, the additional index k£ = 0 will refer
to time and I/Vt0 = t. Notice that the Stratonovich stochastic integration odW¥* is a
priori ill-defined as the integrand has no reason to be a semi-martingale. Recall that
by definition, Stratonovich integration is usual given in the setting of two continuous
semi-martingales (X,Y) by:

1
X;odY; = X, dY, + §d<X7 Y,

where X;dY; is defined by It6 integration and (X,Y’); is the covariation bracket
which may not exist outside of the framework of semi-martingales.

At this point, we leave to later the discussion regarding which theory of stochastic
integration is invoked. Here is a simple example showing that delays take us out of
the usual framework: in the natural filtration F; := o (Wy; s < t), X; = Wiy, itself
cannot be a semi-martingale. Indeed, assume the semi-martingale decomposition
X; = M; + A; such that M is a local martingale and A adapted with locally finite
total variation. Upon localizing thanks to stopping times, we can assume that M is
a bounded martingale and that A has bounded total variation. Now because of the
delays, and Brownian motion having almost surely infinite total variation, necessarily
X has infinite mean variation

MV, = sup

0<t1<ta<--<t

‘:OO

}kj \E (Xier — X[ P
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Hoérmander condition for delayed SDEs 1025

for all ¢ > 0 and therefore the finite variation compensator A cannot exist.

Let us now go back to discussing the topic of regularity. The Markovian setting
i.e when V, = Vi (¢, X;) has a beautiful answer in the form of Hérmander’s spanning
condition [H6r67]. In that paper, Hormander states that Xr has a smooth density
if certain Lie brackets between the vector fields (Vi)o<<y span R% Of course, the
language of Hérmander was functional analysis and PDEs. The translation from
probability to PDEs is readily obtained via the fundamental solutions to the forward
Fokker—Planck PDE. Malliavin’s proof pushed further by giving a probabilistic
approach. We recommend [Haill] for a comprehensive review.

Although everything can be recast into the It6 convention, we choose to work under
the Stratonovich convention. This choice is not innocuous. Indeed, it is well-known
that the Stratonovich reformulation in terms of vector fields is the right language for
“geometric” arguments (see for e.g. [Hsu02]). The Hérmander condition itself is very
geometric by nature, since it morally says that heat dissipates along the vector fields
Vi and their brackets, due to the erratic movement of Brownian motion. Another
reason is the use of “geometric rough paths” (see [FH14, Chapter 2.2] for a definition
and [FH14, Chapter 3| for the discussion) thanks to which the It6 formula looks
similar to the usual chain rule.

Literature review

)

In the literature, there are two ways of understanding the word “non-Markovian’
regarding the topic of Hormander’s hypoellipticity. On the one hand, certain authors
as [CF10, CHLT15, HP13] mean that the SDE’s driving noise is a fractional Brownian
motion or a general Gaussian process which may fail to be Markovian. On the other
hand, another legitimate direction of investigation is to consider a source of non-
Markovianity which is the path-dependence of the SDE. In this case, one needs to
qualify the path-dependence, otherwise uniform ellipticity becomes the only recourse.

To the best of the authors” knowledge, regularity with a path-dependence via delays
has been treated in the following papers. In [Bel04, BM91, BM95, Sto98], the authors
deal with a martingale term of the form o(X;_,)dW; i.e one single delay in front
the driving Brownian motion with a particular form of degeneracy on o. In contrast,
in [Tak07], there is no delay in the martingale term and the author is only able to
prove that a form of strong hypoellipticity similar to our Assumption 1.4 implies the
regularity of laws. Furthermore, the analyzed SDEs have drift terms with various
levels of generality: [BM91] treats the case where the drift vanishes and [Sto98§]
treats an explicit form. When considering these aspects only, the classes of SDEs
just described are all particular cases of Equation (1.2) and the conditions which
yield regularity are more restrictive than the paper’s main theorem. This paper is
the only piece of literature where a form of weak hypoellipticity as in Assumption 1.4
is shown to be sufficient for the regularity of laws. This feature allows us treat the
classical example of Langevin Equation with delay where the noise is introduced to
the totality of the system via the drift term.

Let us also point out [Str83] where non-Markovian SDEs is considered, and in
particular [Str83, Equation (9.1) p. 365] which exhibits a path-dependence via a
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1026 Reda CHHAIBI & Ibrahim EKREN

kernel. The forms of path dependence in [Str83, Tak07] are beyond the scope of this
paper and are understood as the limiting case when there is a continuum of delays.

Contributions of the paper

We give a criterion for smoothness of the density of X7, which is expressed as a
spanning condition, unlike the previous contributions for delayed SDEs. This form
is closer in spirit to Hormander’s original Theorem [Hor67] and is ready-to-use.

Furthermore, the three following aspects of the proof are interesting in their own
right.

e We enhance Brownian trajectories with their delays into a rough path, showing
it has all the desired features. Thus, we are able to follow the general lines of
Hairer’s streamlined proof [Haill], where rough path theory allows to bypass
some of the technicalities of Malliavin calculus.

e We exhibit a new phenomenon, which we loosely qualify as noise flowing from
the past: Delays manifest in the spanning condition through semi-brackets.

e The Lie algebras appearing in the spanning condition are always larger or
equal than their Markovian counterparts. Thus, thanks to the noise flowing
from the past, the regularity criterion has better chances of being satisfied.

1.1. Setting and main statement

Let « be a real satisfying % <a< % and let C* be the Banach space of a-Holder
continuous functions and for a given a, C; is the subset of C* that contains paths
equal to a at time 0. For a vector field

F:[0,T] x RN - R4
(t,.%o,l'l,...,l']\[,l) — F(t,mo,...,x‘]\[,1>

and a path (¢,x) € [0,7] x C* we define the partial derivatives of the functional F
as the elements given by:

(1.4) OiF(t,x) = (0p, F)(t,Xg, ..., Xepy_,) € LR RY) |
(15) 3tF(t, X) = (3tF)(t, Xty 7Xt—hN71) < E(R, Rd) .
Note that for all i = 0,..., N — 1 these partial derivatives measure the sensitivity

of the vector field F' with respect to the i delay. The action of 9;F on a vector a
vector v € R? will be denoted 0;F - v.

The delay case is also the setting of [NNTO08] where the authors prove well-
posedness for SDEs driven by rough paths and in particular for fractional Brownian
motion with Hurst parameter H > % Also, given the right integration framework,
which will be given in the preliminaries, we shall see that there is global existence
and uniqueness of solutions under the following analytic assumptions.
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Hoérmander condition for delayed SDEs 1027

AssuMPTION 1.1 (The analytic assumptions). — The family of functions
Vit Ry x RN 5 R4
are smooth with bounded derivatives at all order and satisfy for all k =1,...,m,
(1.6) 0oV} - Vi is uniformly Lipschitz.

In the main Theorem 1.5, we shall give a criterion in the form of spanning condi-
tions, which is a geometric assumption. We now define the analog of Hérmander’s
condition for delayed diffusions.

DEFINITION 1.2. —

(1) We introduce first the Lie brackets of the vector fields with respect to the
end-point of X:

(1.7) U, V] =0U-V =0,V -U
where 0y stands for the derivative defined at (1.4).

(2) Given the SDE (1.2), we define sets of vector fields which span the Lie algebra
generated by the Vj:

Vo :={(s,x) = Vi(s,x) : k=1,...,m}
and
Vigr =V, U{[U V] U eV, k=1,...,m}.

(3) We also define extensions of these sets by the contribution of V and semi-
brackets:

Vj = Vj

U {(s,x) — [F, ‘/()](S,X)+8tF(S,X)+NEI 0 F(s,x)-Vo(s—hs, x) : FGVj_l}

i=1
U{(s,x) — 0;F(s,x)-Vi(s—h;,x) : FEV;_1, k=1,...,m, izl,...,N—l}.
Remark 1.3. —
(i) The bracket [F,Vy], O.F andd;F are well defined for all ¥ € V; and

k > 0 since both F(t,x) and Vj(t,x) can be expressed as smooth functions
of (t,X¢, .oy, Xi—hpy_,)-

(ii) Note that for j > 0, the set V; is smaller than its Markovian counter-part
that also contains the brackets with V4. The bracket with Vj is introduced
at V; and we are able to infer regularity results for diffusions such as the
Langevin equation with delay (treated in Section 1.2).

(iii) The fundamental difference between V; and V; is the fact that the elements
of the first are functions of (t,xy,...,Xt—n,_,) but not the elements of the
latter.

Notice that in the non-Markovian case the functionals V}, are necessarily depending
on ¢ in a peculiar manner as time plays a special role. Thus, unlike [Haill] for example,
we made the choice of not treating the time variable as an additional dimension and
adjust the brackets with respect to V4 by adding the time derivative. However, the
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1028 Reda CHHAIBI & Ibrahim EKREN

estimate on the drift part does not allow us to give separate contributions for each
of the different terms in the sum
N—-1
(s,x) = [F, Vol (s,%) + O F(s,x) + Y 9;F(s,x) - Vo(s — hy, x).
i=1
We can only rely on the contribution of the sum to produce smoothness.

AsSUMPTION 1.4 (The geometric assumption — Hoérmander’s hypoellipticity
condition). — We assume either of the following hypotheses:

(1) Strong hypoellipticity: 3 jo such that

inf inf sup [nF(T,x)| > 0.
Inl=1 x€C% Fev;,

(2) Weak hypoellipticity : 3 jo such that
inf inf sup |nF(7T,x)| > 0.

=t < ey,
(3) The bounded case : The process (X;)icpo,r) is uniformly bounded by a deter-
ministic constant and there exists jo > 0 such that for all x € c;go and for all
In| = 1 the pointwise Hérmander condition holds
(1.8) sup [nF(T,x)| > 0.
FEVJ'O
Clearly, the stronger condition (1) of Assumption 1.4 implies the weaker condi-
tion (2), while the condition (3) above is easier to check in the case of bounded
processes. We are now ready to state the main result of the paper.

THEOREM 1.5. — Let X1 be the marginal of the solution to the SDE (1.2). If the
analytic Assumption 1.1 is satisfied, as well as either of the geometric assumptions
in 1.4, then Xt has a smooth density with respect to the Lebesgue measure.

We give the proof of this theorem only at Subsection 4.2 after handling all the
prerequisites. For now, let us sketch the idea of proof.

Idea of proof. — As shown by Malliavin calculus (see [Nua95]), smoothness of
the law of X is implied by a control of the Malliavin matrix. The Malliavin matrix
Mo € My(R) is a random variable introduced in Section 4, and needs to have an
inverse with enough moments. This is implied by the statement that for all n € R,
(n, Morn) is small with small probability.

The relationship with Lie brackets is as follows: (1, M n) is bounded from
below by processes expressed in term of the vector fields (V), < j<m- 10 turn, these
are themselves driven by Brownian motion integrated against Lie brackets. The
integrands are again processes which are driven by Brownian motion driven by
higher order Lie brackets and so on.

The idea is that if the (n, M rn) is small, then vector fields have to be small
(along a certain direction), which themselves cannot be small unless higher order
Lie brackets are small (along a certain direction). By induction on the order of Lie
brackets, this is excluded by the Hormander spanning condition. Therefore, we are
looking at an event of small probability.
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Hoérmander condition for delayed SDEs 1029

Here comes in the very nice idea of injecting some rough path technology in
order to obtain quantitative estimates. This has been implemented by Hairer in
his streamlined proof [Haill] of the classical Hérmander criterion. The required
statement is Norris” Lemma, which says informally that if a process remains small
in absolute value, while being an integral with respect to Brownian motion, then the
integrand has to be small. This statement is crucial in order to successfully prove
the induction step in Hérmander’s criterion and can be given a quantitative form
using the technology of rough paths.

So far, we have given an account of the content of [Haill], written in the Markovian
setting. Along these lines, our paper develops the correct framework of rough paths
for delay equations, establishes a Norris’ Lemma in this framework and then proceeds
to prove invertibility of the Malliavin matrix. O

1.2. Examples

Let us illustrate the scope of the main theorem.

1.2.1. Uniformly elliptic diffusions

This is the standard example where we assume that there exists € > 0 such that
for the order of symmetric matrices we have

VV* > eid.

Note that under this assumption the uniform spanning condition holds for j, = 0
and we obtain the smoothness of X;. However this result is not new. Indeed, it is
shown in [Str83, Theorem 8.3], [KS84] and [Conl6|, in a general path-dependent
framework, that this condition implies the smoothness of Xr.

1.2.2. Langevin Equation with Delay
Now, here is an example where the usual Hérmander criterion extends as is to the
setting of delays. Consider the diffusion in R?

dpe = Vo(pe, @45 De—ns @e—n)dt + Vi(r, @t De—n, Ge—1n) © AW,
dg: = pedt .

with Vi uniformly elliptic. By checking the spanning condition, one realizes that
(V;;j = 0) is stationary from the index j = 0 and for all j > 0:

v
w={(0)) v
We compute Vy:

‘/1 %(psa Qs, Ps—h, Qth) + 8 Vi ‘/O(psfha s—hy Ps—2h; QSth) _ *
0 ’ Ps ! 0 Ps—h _‘/1 ’
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1030 Reda CHHAIBI & Ibrahim EKREN

Hence the uniform spanning condition is satisfied and we have the regularity of law
of XT.

Similarly to [Tak07] our drift term V; is allowed to be path-dependent. However,
unlike [Tak07] where strong hypoellipticity is assumed, we are able to treat the case of
weak hypoellipticity. In particular, our spanning condition exploits the contribution
of V, to the smoothness of laws.

1.2.3. Noise flowing from the past and semi-brackets

Finally, let us give an example exhibiting a new phenomenon. We now consider
the diffusion:

o ¢ 1 ¢ —DPs—h
| = / 1| dwl+ / Gs—h | dW?2.
0 0

e —Tre_p V14712,

Again, we check the spanning condition. We have:

1 —DPs—h
VO = 1 , ds—h = Vj .

—Ts—p Nal +7”th

We compute the semi-brackets 0y Va(t)Vi(t — h), 01Vi(t)Va(t — h) hence finding a
subset of V. We have:

1 -1 0
1 ’ T5—1T5—2h ’ O C )70 )
~Ts—h 12, —y/1+ 3 an
Again, the uniform spanning condition is satisfied and X has smooth densities for

s > h. As the previous computation shows, semi-brackets are crucial in this case in
order to create regularity.

1.3. Structure of the paper

In the Preliminaries of Section 2, we start by making precise rough path integration
against Brownian motion and its delays. This will show that Equation (1.2) is well
posed in Stratonovich form with unique solutions, as well as that it is compatible
with the It6 setting. In particular, Subsection 2.2 shows how to reformulate our
Hormander criterion starting from the It6 setting.

Section 3 defines and collects results on the Malliavin derivative in this non-
Markovian context.

Section 4 finally proves the main result. We define the classical Malliavin Gram
matrix, quickly review how its control yields smoothness and relate it to tangent flows.
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2. Preliminaries

From now on, m will refer to the number of Brownian motions we will be working
with and d is the dimension of the process X we will study. {e;};=1, 4 is the
canonical basis of R? and { fi}x=1. m the canonical basis of R™. M,(RR) denotes the
set of d dimensional matrices.

Throughout the paper E will stand for a finite dimensional vector space. For any F,
we denote by C([0,T7], E) the space of continuous E-valued paths. C*([0, T, E') will
denote the subspace of a-Holder continuous functions. We will drop the dependence
on F if it is obvious from context. Also, given a path X : [0,7] — E and (s,t) €
[0, T]%, we write the increment between s and t as X, = X; — Xj.

Let us start by giving a meaning to Equation (1.2) and a solid foundation to
its treatment.

2.1. Stochastic integration and rough paths
2.1.1. Enhancing Brownian motion to a rough path

Recall that W is an m-dimensional Brownian motion. There is no loss of general-
ity in assuming that W is two-sided: (W;;t > 0) and (W_;;t > 0) are independent
Brownian motions. Taking W to be two-sided will avoid technical boundary effects
and delays can be arbitrarily large.

In this section we give statements for any given h = (hi)ogig ~_1 € RY increasing
sequence of delays. The results will be valid upon changing h to another sequence
of delays if necessary. We set E(h) := R™¥ and consider the E(h)-valued process:
Wi(h) = (W'fkd){k:h..,m, j=0,.,N—1} = (Wt’ Wi-hi, Wieh,, ""Wt*hN*1> ’
where each component is understood as a vector in R™. When h is understood from
context, we drop the dependence on h and write W, instead of W;(h). A relevant
quantity will be the first delayed date before maturity

(21) Th =T — hl.

The goal of this subsection is to establish that W is a bona-fide rough path against
which we can integrate. We now give a lemma concerning the quadratic covariation
of the process W.

LEMMA 2.1. — Consider two indices 1, j, and two reals r,r’. For a partition P of
[s,t] with mesh size |P| going to zero, we have the limit in L? and in probability:

(Wﬁ;., Wg’+->s,t = |7131IL10[ Z]: (ijw - W:+u) (WZIM - W,?/+v) = 5i,j5r,r' (t - 3) :
u,v|EP

Proof. — The case r = r’ is obvious. By symmetry and time shifting, we can
assume 7 > 0 and " = 0. For shorter notations, set

C= Z (ij - ij) (Wgw - g—&-u) .
[u,v]eP
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Upon assuming 2|P| < r, we have that E (C) = 0 as the intervals [u, v], [u + 7, v + 7]
are disjoint. Also:

E(c*) = L E (W5 =) (Wileo = W) (W7 = W5) (Wil = Wi
= Y w-uwEW) 0.
[u,v]eP

Indeed, in the double sum, the right-most interval among [u, v], [u + r,v + 7], [w, ¢],
[w+ 7, + r] does not intersect the others except if [u, v] = [w, x]. O

We fix «, 0 satisfying 1/3 < a < 1/2 < 6 < 2«. Recall that an a-Holder path X
is lifted to a rough by adjoining another path X which is 2a-Holder. We recall the
following definition from [FH14] of the topology we use:

DEFINITION 2.2. — We say that the pair (X,X) is an a-Holder rough path on a
Banach space E, if the mappings

X:[0,T] > FandX:[0,T? - E®F
satisfy

|Xst| |Xst’
2.2 Xl|lo:= su —— <00, ||X|l2q:= su — ) < 00
(2:2) 11 o<s<£)<T|t—$!a I1XIl2 Oéssélt)éT’t_Syza
In such a case, by abuse of notation, we say that (X,X) € C*([0,T], E). We write
X1 = 1 X o + /[ Xl2a and [[Xlee == [[X]la + | X]]oc-
For (X,X) € C*([0,T], E), we say that (X,X) is a geometric rough path, denoted
(X, %) € C2((0, T, B, if

1
(23) Sym(Xsi) = §Xs,t (24 Xs,t; for all t, S € [O,T]

We first need to define the first order iterated integrals of W in order to form
the lift W also known as Lévy stochastic areas. With E = E(h) = R™ it is an
(E ® E)-valued path and it is given for s < ¢:

o t
(2.4) (W§3t7117k2712> ki, ka=1,.om, | — (/ Wsk;lhi r—h; odeth) v ko — 1 .
{ilﬂ'?:O ----- Nfl} s ' ' ’ {il,lég 20,0 i\’fnz’l}

The matter at hand is to give a precise meaning of the above integrals in such a way
that the “first order calculus” condition (2.3) holds. We have two possibilities.

The first possibility is to define the iterated integrals as limits in probability of
Riemann sums. More precisely, if P is a partition of [s,¢] with mesh size |P| — 0
and (X,Y) is a pair of paths:

¢ 1
X, odY, = li — (X, +X,) (Y, —Y,).
X ob =, 35 (K X 0%

The above limit is well-defined for (X,Y) = (Wfihil : Wfihi) as soon as h;, < h
Indeed, the left-centered Riemann sum converges by standard adapted It6 integration

i1
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and we can use Lemma 2.1 to pass to the Stratonovich case. In the other case h;, > h;,,
notice that we have the first order calculus rule at the discrete level:

1
25) > —(Xu+ X)) Yo —-Y)+ > = Y+Y)(XU—XU):Xth—XSYS
[u,v]eP 2 [u,v]eP

and as such the first term converges to a limit as soon as the second does. Therefore,
(2.4) is well-defined as limits in probability of Riemann sums and gives a geometric
rough path (i.e. satisfying the equality (2.3)), as the first order calculus rule is built-in
at the discrete level already.

The second possibility is to invoke an anticipative integration theory such as
Skororhod’s. In their paper [NP88, Section 4] , Nualart and Pardoux form anticipative
Riemann sums which are centered “a la Stratonovich”, prove that they converge and
relate them to Skorohod’s integral. In any case limits in probability of Riemann sums
and anticipative Stratonovich integrals “a la Nualart—Pardoux” coincide. See [FH14,
Exercise 5.17] as well as [OP89].

2.1.2. Integration with respect to W

Thanks to this paragraph, for systems controlled by delays, we will give a proper
meaning to the integration in Equation (1.2).

DEFINITION 2.3. — Wesay thatY € C*([0, 7], E) is controlled by YW on a Banach
space E if there exists Y' € C*([0,T], L(E(h), E)) such that Ry defined by

(2.6) Yii =YW, + Ry(s,t), forall0 <s<t<T,
satisfies || Ry ||2a < 00. We denote the space of controlled rough paths by
(Y, Y") € Dy ([0,T), E)
and the norm in this space by
1Y, Y lw,2a = [Yo| + [[Y'[lee + [ By [|2a-

We recall the following integration Theorem 2.4 due to Gubinelli [FH14, Theo-
rem 4.10]:

THEOREM 2.4. — For every Banach space E, for all (Y,Y") € D33([0,T], L(E(h),
E)) the controlled integration mapping

D} ([0, 71, L(E(h), E)) — Dy (10, 7], E)

(Y,Y") — ( / Yaw, )
where

/:Y(r)dWr: T /tYk’i(r)de’i

1<k<
0<i<N—
— Z hm Z Yk,zwk,z + ((Yk 7,) )kz zzwkzkg i2
|P|—0 weooowy
1<k< [u,v]€P 1<ke <
0<i<N 0<iag <N-1
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1034 Reda CHHAIBI & Ibrahim EKREN

is continuous and bounded with bound

[yamy| < C(IYller + W hall Ry oo + [WlaalY ).

2.1.3. Roughness of W

For the convenience of the reader, we recall the concept of roughness for rough
paths as in [FH14, Definition 6.7]. The goal of this subsection is to prove roughness
for WW. This will be crucial in order to use the so-called Norris Lemma, a quantitative
version of the Doob—Meyer decomposition.

DEFINITION 2.5. — A path X : [0,T] — E is called 6-Holder rough on scale
g0 > 0 and on the interval [0, T if there exists L > 0 such that for any linear form
o € E*, s€[0,T] and € € (0,e0), there exists t € [0,T] such that

It —s| <e, and |pXs,| = Le%| ).
The largest such L is called the modulus of #-Holder roughness of X.

LEMMA 2.6. — We can choose a version of the Brownian motion such that W is
9-Holder rough at scale % on [0,T].

Proof. — The proof of roughness is exactly the same as the proof of [FH14, Propo-
sition 6.11]. The only ingredient that is missing is the small ball estimate for W,
which we now prove.

Set A(h) := ming<;<y—2 |hi — hip1| with the convention that it is infinity when
N = 1. We shall prove that there are constants ¢, C' > 0 such that for all ¢ > 0,
d>0and ¢ = (p;x) € E*:

(2.7) P ( sup  |pWs,| < 8) < Cexp (—

0<t—s<d

clel® (5/\A(h))> |

2

where |¢| is the Euclidean norm. This estimate is sufficient to replace [FH14, Equa-
tion (6.11) p. 91] so that all the arguments carry verbatim. To prove Equation (2.7),
we start by using the translation invariance and symmetry of Brownian motion
Increments:

N—1 m
k
P ( sup Wiyl < 5) =P ( sup Z Z Qpi,ksthi,tfhi < 8)
0<t—s<d 0<t—s<d| ;=1 k=1
N—1 m
k
= (s [ Sk, | <)
0<t<d|4=1 k=1
N—1 m
k
<P < sup > Qi Wi, ni—t| < 5) :
0<t<INA(R) | j=1 k=1

Now notice that W being a two sided Brownian motion, the family of processes

(t= Wh 0 <t < A)

)
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are independent Brownian motions as we have increments over disjoint intervals
when changing ¢ and independent Brownian motions when changing k. As such by
packaging them into a single Brownian motion B and then invoking the standard
small balls estimates, there exists constants ¢, C' such that:

P( sup Wiyl < 5) < P( sup  |By| < 8)

0<t—s<d 0<t<SAA(R) ]
25N AR
o (_cw (61 <>>>_ -
€
Remark 2.7. — The use of the two sided Brownian motion instead of the Brownian

motion allows us to cancel the boundary effects in Lemma 2.6. However there is
small price to pay here. In order to make the formulas work in the sequel, for all
k=20,...,m, we extend V}; to negative times:

Vi(s,x) =0, for all s <0.

Note that this extension is continuous on (—o0,0) and on (0, 00). We will need to be
careful with the possible discontinuity of higher derivatives at time 0, as mentioned
in the upcoming Remark 2.10.

2.2. Well-posedness of the SDE and 1t6 formula

For completeness, we show that it is possible to reformulate the SDE in an Ito
form as the vector fields are adapted. To do so, one should define the It6 lift W'
from W by taking into account quadratic variations:

; 1 N k1,i1,k2,1
ki,i1,k2,i2 It F1-01,k2,02
Wsﬂf — Ws,t

1 .
+ §<Wzlhk1 , W'Lzth >s,t .

The covariation of Brownian motion against its own delay is zero which is known
as absence of autocorrelation. This was already formalized in Lemma 2.1. It is
classical to see that rough integration against adapted processes and with the Ito
lift W coincides with the usual adapted stochastic integration (see for e.g. [FH14,
Proposition 5.1]). As such Equation (1.2) is readily reformulated as an It6 integral:

t 1™ moot
Xt=X0+/ (VO(T,X)—i—2ZE)OVk(T,X)-Vk(T,X)>dT+Z/ Vie(r, X)dWF
0 k=1 k=170

(2.8) o
. X0+kzo/0 Vi(r, X )dW*
where )
Folr X) = Vo0, X) 4 5 32 00Va(r X) Vi X)
and, i

Vi(r, X) = Vi(r, X) forall 1 <i < m.

Notice that X is a semi-martingale although the integrands in the SDE are not
necessarily semi-martingales. The reader more familiar with the It6 framework rather

TOME 3 (2020)



1036 Reda CHHAIBI & Ibrahim EKREN

than rough paths can establish well-posedness of Equation (2.8). Indeed, the vector
fields Vj, are Lipschitz continuous in the variable x for every fixed ¢, uniformly.
We have existence and uniqueness of strong solutions to the Equation (1.2) via a
standard implementation of the Picard iteration scheme, only in the function space

C <[O, T], Rd) ([LSO1, see the more general Theorem 4.6]). Via standard arguments
in this framework, solutions are global with

1
P
E( sup \Xs\p> < 00.
0<s<T

Leaving the It6 framework, let us show that Equation (1.2) is well-posed within the
theory of rough differential equations [FH14, Chapter 8].

PROPOSITION 2.8 (Rough forms for the SDE). — There exists a unique process

which solves both the SDE (2.8), formulated in term of It6 integrals and the RDE:
mo o

(2.9) X, =X+ Y / Vi(t, X)dW*O
k=0"0

As such it is both a semi-martingale and a controlled rough path satisfying
E [[|X, {Vi(+ X3 [5y,20) < 00, forallp> 1.

Proof. — In [FH14, Theorem 8.4], it is explained that RDEs with smooth coeffi-
cients have locally unique solutions. Moreover, solutions are global in time thanks
to [Lejl2, Proposition 2], which gives boundedness under weaker conditions than the
Analytical Assumptions 1.1 ([Lej12, Hypothesis 1]). O

We now want some sort of [t6 formula for processes of the form
F(t, Xe, Xenyse ooy Ximhyy)-

It is easy to see that this process has no reason to be a semi-martingale and as
such, we can only give a rough integral formulation of the It6 lemma. Also after
formal computations one notices that the Gubinelli derivative of this process are not
controlled by W and they cannot be integrated with respect to YW. However, they
are controlled by {Wi_ s, +n,)fo<i<j<n-1.

Thus we define the family of double delays

Eiz{hjl—i-h]éIjl,jQZO,...,N—l}

and choose a family of index J C {0,..., N — 1}? with minimal cardinality such that
h ={hj, + hj, : j = (j1,7J2) € J}. By the construction at Subsection 2.1, we obtain

a rough path Wi(h) := {W;_(n, +n,,) }jes along with its first order iterated integral

W(h). The following holds:
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PRrROPOSITION 2.9 (Itd formula). — Let F : R, x E(h) — R? be a smooth
function of time and (X;, Xy—p,, ..., X¢-n-1). The path t — F(t, X) is controlled
by W(h) as the following control equation holds, for all 0 < s < t < T with
s¢{h;:j=0,....,N —1}, we have:

(210) F(t, X)—F(s,X)= > 0;F(s,X)-Vi(s—hy, X)WE, . +Rp(s,t),

<
N-1

[/
N =

1
0<i
with E[|| Rr||5,] < oo for all p > 0. Moreover, the Gubinelli derivatives of t — F(t, X)

are controlled by W(h) as for alli =0,...,N—1,k=1,.... mand0 < s<t<T
such that s ¢ h we have:

= Y OF(s,X) - Vils —hi, X) - Vils — hy, X)Wy oy

Finally, we have the following rough integrals against (W(ﬁ), W(ﬁ)):

(2.12) F(t,X)— F(s,X)
t t
- $ O F(r, X) - Vie(r — hy, X)dWhi 4+ / O,F (r, X)dr .
8 1<k<mO<i<N-1 s
Proof. — Both control equations hold by virtue of a Taylor expansion and the
use of Equation (2.9). Equation (2.12) is obtained by invoking the rough path 1t&’s
formula given in [FH14, Theorem 7.6]. The first hypothesis required is that F' and
its Gubinelli derivative are controlled by (W(Tz), W(Tz)), which is a consequence of
the two control equations (2.10) and (2.11). The second hypothesis [FH14, Eq. (7.8)
p. 100] requires the computation of a Taylor expansion at order 2. Notice that since
we use geometric rough paths, the bracket [W)] defined in [FH14, Definition 5.5
is zero. U

Remark 2.10. — Following Remark 2.7 and the choice of extension for Vj, the
equalities (2.10) and (2.11) for Gubinelli derivatives are only stated on open intervals
between their successive delays.

3. The Malliavin derivative

In the context of performing probabilistic constructions and estimating densities,
one needs to be able to differentiate with respect to Brownian trajectories. This
contribution of Malliavin brought functional analysis to probability.
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3.1. Derivatives

Let us start by the general notion of Fréchet derivative of a functional (see [KM97,
p. 128]):

DEFINITION 3.1 (Fréchet derivative). — For H any vector subspace of C =
C([0,T],R), the continuous functions from [0,7] to R, and F : C — RY, we
define DF(x)(p) € R%, the Fréchet derivative of F at point x € C and direction
@ € H, as the limit
F - F
(3.1) DF(x)(¢) = lim L 22) = F)

e—0

eR?

when it exists. The limit needs to hold, uniformly in ¢ belonging to the unit ball.
For ease of notation, if ' takes functions in C? as input, i.e from [0,T] to R?, then
for all ¢ € C?, we also define the Fréchet derivative matrix DF(x)(¢) € My(R) as
the matrix whose j" column is
lim F(87X + 6(90)_7) B F(va)
e—0 £

e R?

where (p); € C is the path of the j' column of ¢. The functional F is said to be
Fréchet differentiable if the Fréchet derivative exists and is a bounded linear operator.
The operator norm is the supremum norm.

In the particular case of Brownian motion, we obtain the Malliavin derivative. In
order to define the Malliavin derivative we introduce the Cameron—Martin space

H:={p e L°([0,T;R™) : ¢ € L*([0,T;R™), ¢(0) = 0}.

Let F be an R%valued smooth functional on C ([0, 7], R™), evaluated on the Brow-
nian motion W. The Malliavin derivative of F' applied to ¢ € H is defined as the
Fréchet differential of F:

DF - p :=lim FW +ep) = F(W)

e—0 I

eR? .

The iterated Malliavin derivatives D’ are defined in the same fashion from higher
order Fréchet differentials. As such, D’ is seen as acting on random variables which
are smooth functions of W. Then D’ is extended to the domain D’* in LP(Q), p > 1,
with respect to the norm:

S

7], = E<|F|p>+kiE(!D’“F\p )
=1

H®k

Moreover, we write:
D = M, 5 DIP .
For further details we refer to [Nua95, Section 1.2].

A standard notation is to represent the Malliavin derivative as an element in the
Cameron—Martin space

DF = (D}F,..., D'F)

0<t<T
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and write:
DF h=Y /DJF £ 1 ()t
j=1

where (f})1<j<n is the basis dual to the standard basis (fj)1<;j<n of R™ and (-, )
is the duality bracket. '
Morally, at time t and for j = 1,...,m, the operator D} is given by:

fDJF — lim F(W+6]l[th]fj) - F(W)

h%O 9

e R .

We denote by D,F € My,, (R) the matrix whose j* column is D} F. The following
Proposition 3.2 sums up the properties of the Malliavin derivative in our context.

PROPOSITION 3.2 (Kusuoka-Stroock [KS84]). — For all t < r, the random vari-
able X, belongs to the space D“*°. Moreover, for all j = 1,...,m, the Malliavin
derivative DI X, of the random variable X, satisfies:

(3.2) DIX, =Vi(r,X) + Z ka (s, X) (DIX.) dWE.
k=0""
One also has DI X; = 0 if t < r, as X, is adapted. In matrix notation one has
DX, =V(r,X)+ Z DVk (s,X) (D, X.)dWF
k=0""
where V(r, X)) is the matrix whose columns are V;(r, X) for j =1,...,m.

Pointers to the proof. — This is essentially [KS84, Lemma 2.9]. Note that the
latter reference uses It6’s formulation. Thus we start with the Equation (2.8) and
see that it satisfies the assumptions in [KS84, Lemma 2.9].

Due to the analytical Assumptions 1.1 the functions V;, admits Fréchet derivatives
at all order and for all h € H the Malliavin derivatives (DX;(h))secjo,r] solves the
SDE

. t m t .
(3.3) DJXt-h:/ Vj(r,X)h;dr+Z/ DVi(s, X)(D'X. - h)dW* .
0 =0

Additionally, as proven by Kusuoka and Stroock, the mapping D’ X, is a Hilbert—
Schmidt operator on H hence the existence of {DIX;} e, € L*([0,T] : R?) satis-
fying

. b
DIX,(h) = / [DiX,|hdr forall he H.
0
Note that the equality

N—
DVksx Z iVi(s,%) - Xy,
i=0
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implies thanks to Fubini

t t m N-1 ¢ o )
/ DIX,H.dr = / V(r, X h’dr+ Z / / O Vi(s, X) - DIX,_p. AW N dr
0 0 —0 0

t ~ .
= / Vj(r,X)h;dr+Z / / DVi(s, X)(DIX)AWE R, dr
0 k=070 70

which implies by identification (3.2). O

3.2. Factorization of the Malliavin derivative

The main result of this section concerns a factorization of the Malliavin derivative.

PROPOSITION 3.3. — Define the family of processes (J,+;0 < r <t < T) as the
solution to the SDE taking values in My(R):
id+Y0, [fDVi(s, X) (J,.)dWF,  forr < t,
(34) th - ’
’ 0, forr >t.
Here id stands for the identity matrix. Then, for 0 < r <t < T, the tangent process
and the Malliavin derivative satisfy

(35) Jr,t xV (Tu X) - D'f (Xt)
where on the left-hand side, the product denotes a matrix product.

Proof. — Inspecting Equations (3.2) and (3.4), we recognize the same stochastic
differential equation with a different initial condition. The starting condition V; (r, X)
in Equation (3.2) is replaced by the constant f; in the matrix Equation (3.4). The
Equation (3.4) is linear in the original condition and one can multiply by the constant
Vj (r, X) to identify the Malliavin derivative and the multiplied flow. Hence we obtain
the result. O

Remark 3.4. —

(i) In the Markovian setting, let X% be the solution to (1.2) such that X;* =
By uniqueness of the solution, there exists flow maps
(B : R? — RY)
’ 0<t<s<T

such that ®,4(z) = X*. It is well-known that ® are in fact flows of dif-
feomorphisms. We recommend the works of Kunita for example ([Kun84]
and [Kun97, Chapter 4]). The tangent process is a process of invertible linear
maps J;r(x) : R? — R? obtained via:

Xt,x—i—aH _ Xt,.Z‘
VHeRY Jp(x) H:=lim L T
’ e—0 £

= d@uT(fL‘) -H .

Here d stands for the usual differential. Moreover, we have:

Jor(z) = id+ Z/ [(m

(r, X1") - Jt,r@)} AWk
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which is virtually the same equation as (3.4) only that Fréchet derivatives of
the vector fields have replaced the usual derivative. Here J, ; can be understood
as the sensitivity of X; to a variation of the point X,. It is also well-known
that in the Markovian framework the equality J; r(X,) x V (r, X,) = D; (X7)
holds.

(ii) Note that we do not endow {J,,} with the classical interpretation of derivative
of the flow here. This family is only defined as the solution of (3.4).

3.3. Analysis on [T}, T

Classically, the Lie bracket in the Hormander’s condition appears through the
evolution of thsl together with the vector fields Vi (¢, X). As such it will be crucial
to understand the evolution of J{sl. However, in the non-Markovian framework the
matrix-valued process J; s might fail to be invertible at all times.

However thanks to the delay structure, a perturbation of X at time ¢ € [T}, T] will
affect Xr through only 9yVj (s, X). This is seen in the simplification of Equation (3.4)
on the interval [T},, T]. We treat it in the following proposition.

PROPOSITION 3.5. — J satisfies the following SDE, for T, <t < s < T
(3.6) Jos=id+ Y / Vi (r, X) - Jy AW |
k=0"t

where we take the convention that J,, = 0 of r < t. Moreover, {J;, }1, <t<r<r €xists
for all time and satisfies the following moment bounds:

vpz1 B s ) <o
<t T

<r<

AT

We also give the following proposition allowing us to differentiate J; r in ¢.

PROPOSITION 3.6. — For all T;, < s <t < T we have the following relation,
m t
(3.7) Jur = Jor = =3 [ Jr O0Vilr, X)AWES
k=0""

where the integral is understood as a rough integral with respect to V.

Proof. — By direct computation we see that the SDE (3.6) can be written on
Ty, < s <t < T as the rough differential equation (RDE):

t m
Joo=id+ / S 0Vilr, X) - J, WO
S k=0

and because we are dealing with a linear RDE, (J ;7 < s < T') remains invertible
and we have the splitting:

(3.8) Jor = Jn,rdg -
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Applying the chain rule for dJ=! = —J~'dJJ !, we have:

-1 -1
Jt,T - JS,T = JTh,TJTh,t - JTthJTh,S

t m
= _JThyT/ Jf’hl,r ’ [Z a()Vk(T, X) : J’Zjhl,r ’ Jf’hl,rdwfyo
s k=0
mooet
= —Jrr > [ Ik Oi(r, X)W
k=0"%

m t
—-3 / Ty BoVi(r, X)W 0
—0v*

Remark 3.7. — The splitting property (3.8) is one of the main limitations of this
paper. This property gives the invertibility of {J, r}scpr, 71 and its regularity in s.
This property does not hold for s < T}, since there would be an extra noise coming
from the delays. Additionally, when V} is a general path-dependent functional there
is no obvious way to obtain the invertibility of J, v and its regularity in s.

4. Malliavin’s argument: smoothing by Gaussian noise

The gist of Malliavin’s argument is that the random variable X is a complicated
function of the Brownian motion W. Provided that such a map is smooth enough,
and because Gaussian noise is smooth, one expects Xt to have a smooth density.
The quantity that encodes this dependence is the Malliavin matrix Mo € My(R)
which is defined as:

T T m , ,
(41) Moy = / D, X1 (D, X1)" ds = {/ S Dk (Xp) DF (Xp) ds}
0 0 k=1 ij
It is morally a Gram matrix or a covariance matrix of the sensitivities of Xt to the
Brownian motion W. The norm of its inverse will control the smoothness of the map
W — Xr. Let n € R? such that |n|gs = 1. Thanks to Proposition 3.3 we have:

T
(0. Mozrn)s = [0, DoXr (DaXr) n)pads

T 2
2/ V(s X) T, ds

Th
- T * 2

_ ZI/T " T Vi(s, X) 2 ds
]:

Remark 4.1. — In the Markovian case, it is very convenient to introduce the
reduced Malliavin matrix Cor such that Mor = Jo1CorJg . In that case, tangent
processes have the multiplicative property

_ —1
JS,T — JO,TJO,S )

and one obtains:

(4.2) Cor _/ T2V (s, 5) (V (. X)) (J5:1) " ds,

ANNALES HENRI LEBESGUE



Hoérmander condition for delayed SDEs 1043

which is an adapted process. This classical trick allows to use It6 calculus to study the
matrix Cy 7 and relate its evolution to iterated Lie brackets, thus to the Hormander’s
condition. See the general guidelines of Theorem 4.5 in [Haill].

However, in our setting, such an approach is not possible because the infinitesimal
flow property (Equation (3.4)) takes a more complicated form. It is a priori not
obvious to find a reduced Malliavin matrix which is the integral of an adapted
process. This is the reason why we perform an analysis only on the segment [T}, 7.

4.1. The evolution of Z; and its derivatives

In this subsection, we fix a functional of time and (X, Xipy,..., Xichy )
denoted by F : Rt x (RY)" — R? and compute the expansion as a rough inte-
gral of {n*JyrF(t,X)},ci7, 7 on the path W. For notational simplicity we define

ZF(t) = U*Jt,TF(ta X) .

The underlying assumption is that F' is smooth and all of its derivatives at any order
are bounded.

Recall that the rough path (W(h), W(R)) is the lift of W taken with the family
of double delays h and defined at Subsection 2.2. We also mentioned at Remark 2.7
that the functionals V}, have discontinuities at time h;. In order to avoid problems
due to this lack regularity and to be able to use the Norris’ lemma we define

T; == sup{hN[0,T)} VT} € (0,7T).

Note that on the interval the analysis above concerning the Malliavin derivative holds.
We also have the following lemma where all the integrands are free of discontinuities
on [TE, T]

LEMMA 4.2. — For all T; < s <t <T, we have
< ¢ k.0 N ki
(4.3) ZF(t) — ZF(S) = Z l/ Z[F,Vk](r)dwr’ + Z ZaiF(~,X)~Vk('—hi,X)(T)dWr *
k=1 L% i=1"9%

t
+ /S Z{atF(.,X)HF,VOHZjV:f BiF(-,X)-Vo(-—hs, X)} (r)dr

where all the integrands are controlled by W(h) and the integrals are rough integrals
of W(h). Additionally,

(4.4) E [HZFHQ[TE,T]} < oo, forallp>2,

and the remainder Rp defined by

Rp(s,t) :== Zp(t) Z [Z[ka Wt + Z Zo, (- X)Vil—henx) (SYWEE |

1=1

for Tr; < s <t < T and s ¢ h satisfies

E [HRFHIQ)OC,[TTUTJ < oo, forallp>2
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Proof. — Apply the Leibniz rule on the product Zg(s) = nJsF(s), and then use
the rough integral expansions for F' (Proposition 2.9) and J. 7 (Proposition 3.6). O

Note that we can apply Lemma 2.6 for the rough path W(h) and obtain that this
path is §-Holder rough. We can apply the Norris’ Lemma in [HP13, Theorem 3.1] in
the following form.

LEMMA 4.3 (Norris Lemma). — There exist constants p,r > 0 such that for all
(A, A") € Dig(h)([O,T], V) and B a-Hoélder continuous, the path defined for t,s €
[7%771 by

m N-—1

(4.5) Z(t /Bdr+z Z/ ABi gk

k=1 =0

satisfies
[Alloo,izz, 11 + || Bllss, 711 < CRPNZ|% 12 1y

where the constant C' depends only on T,{h;} and m and

Ri=1+L;'WH) + [WH)|| + 114, Al 20 + 1Bllea ;1.

The choice of T3, is mainly motivated by the fact that || B||ce ; might become infinite
if the interval I contains an element of h.
For notational simplicity we define the key quantity for all n € N

(46)  Ra:=1+Lg' W) + [|[WR)| + X [IZellce izy.07 + | Rellzairs ]
Fev,

which satisfies E[RE] < oo for all p > 0 and n € N. Recall the definition of jy in the
Assumption 1.4. It is the rank such that V;, has the uniform spanning condition.

LEMMA 4.4. — Fix jo € N. There exist deterministic constants py,qo,C" > 0
depending on jo, T and {h;}, such that for all F' € V;,, we have
(47) |ZF|oo,[TE,T] < CR?S <777 MO,Tn>qO

Proof. — We reason by induction over the index 7.
For initial step jo = 0, we start by the fact that there exists a constant C}, v such
that forall j=1,...,m

1
(4.8) 12, |z 71 < Chr(n, Mom) 757 || Zy, | oI5 T
To prove that fact, simply repeat the interpolation inequality argument as in the

proof of Lemma 5 in [HP13] on 73, T] and obtain that

_2a
(4.9) s 120,(9)| < Crr 2o, | 5. 1pl1 20 1355

We finish the proof of Equation (4.8) with the obvious inequalities
HZV]'H%?([TZ,T]) < (n, Mozm).

Finally, Equation (4.8) implies (4.7) because || Zv; [|o,ir. 7]l < Ro
Now for the induction step, we assume that the result holds true for jy,. Consider
F € Vj,+1. Due to the definition of the brackets at (1.7), there exists G € V;, such
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that G is a function of the form G : Rt x (RY)Y — R? and Zp is a Gubinelli
derivative of Zg or Zp is the absolutely continuous part in the decomposition of
Zg. We apply the Norris Lemma 4.3 to Equation (4.3) for Zg on [T3, T to have the
existence of C1, p; and ¢; such that

’ZF‘OO,[TB,T] < 0173?3 Gsél]go |ZG|g;,[T}—L,T] .

This implies by induction hypothesis that there are py and gy such that
’ZF‘oo,[TE,T] < 01R§8+1<77>M0,T77>q0-

The fact that this inequality is in particular true for /' € V; 41 is what we need
to iterate. 0

4.2. Proof of Theorem 1.5

We first prove the theorem under the Assumption 1.4, Conditions (1) or (2). It
is classical that E [|M§%~|p} < oo for all p > 2 is a sufficient condition for the

existence of smooth densities for Xr(see for example [NP88, Theorem 2.1.4]). As
shown in [Haill, Lemma 4.7], this latter statement is itself implied by the existence
for all p € N of a constant C), such that:

(4.10) sup P ((n, Morn) <€) < Cpe”
Inl=1

We now use the inequality (4.7) at time 7" and obtain
inf inf sup |n"F(T,x)] < CRY(n, Morn)™.

Due to the Hormander condition in Assumption 1.4 the left hand side is a positive
deterministic constant that we denote § > 0. We obtain
51/7‘0
(CR%’)V o
Using the integrability of R, we easily obtain (4.10).

<77; Mo,Tﬂ> =

Remark 4.5 (Special case of bounded diffusion). — Note that the classical
Hormander Theorem requires a pointwise spanning condition. This is due to the fact
that in the Markovian case the derivative of the flow J; r is invertible for all ¢ € [0, 7]
and the spanning condition is only required at the initial point of the diffusion. We
do not have any hope of obtaining this invertibility. Thus we are only able to reason
at time T and check a spanning condition at the random variable (T, X7) via our
uniform condition 1.4.

Note that if we know a priori that the process is bounded we can still have a more
pointwise statement of the Hérmander condition. In order to state this result we
formulated Condition (3) of Assumption 1.4.

We now prove the Theorem 1.5 under Condition (3). Denote C' the constant
bounding X;. jy is finite and the functions F' € V;, are continuous on a finite
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dimensional space. Thus there exists n* with |n*| = 1 and x* € C* with such that

We now

inf ing’2 sup [nF(T,x)| = sup |n"F(T,x")|

n|=1 xXE 3. .
I ‘ |X|oo<0 FGVJO FEV]O

use the Hormander Condition (1.8) at the point x* to obtain that the

existence of F* € V;, such that |[n*F*(T,x*)| = § > 0. Similarly to the beginning of
this section we obtain that

51/7‘0

(n, Morn) = (CREY

and finish the proof.
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