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Résumé. — Dans cet article, nous étudions les variétés couvertes par des courbes ration-
nelles ou elliptiques. Nous montrons tout d’abord que les images des variétés de Calabi–Yau
ou irréductibles symplectiques par des applications rationnelles sont presque toujours ration-
nellement connexes. Nous étudions ensuite les variétés elliptiquement connexes, elliptiquement
connexes par chaînes ainsi que les variétés balayées par une famille de courbes elliptiques.
Entre autres choses, nous montrons que les variétés de Calabi–Yau ou hyperkählériennes qui
sont couvertes par une famille de courbes elliptiques contiennent des diviseurs uniréglés, et
que les variétés elliptiquement connexes par chaînes de dimension au moins 2 contiennent une
courbe rationnelle, tout comme les variétés à fibré canonique trivial de groupe fondamental
fini qui sont couvertes par des courbes elliptiques.

1. Introduction

There are two main themes in this paper. First, starting from a morphism (or merely
a dominant rational map) from a Calabi–Yau manifold, it is a natural and important
question to determine the geometry of the target variety. Indeed, F. Bogomolov
raised this question at a conference in Będlewo in June 2016, which was the starting
point of this paper. Throughout the paper we work over C.
The answer is given in the following result.
Theorem 1.1. — Let X be a Calabi–Yau variety or an irreducible symplectic

variety. Let f : X 99K Y be a dominant rational map to a projective manifold Y .
Suppose that either dim Y < dimX or that dimX = dim Y and f is ramified in
codimension 1. Then Y is rationally connected.
When X is smooth and dim Y < dimX, this was shown by Lin [Lin20, Theo-

rem 1.4] by using a holonomy argument. For the notions of singular Calabi–Yau
and singular irreducible symplectic varieties we refer to Section 2. The proof of this
result is in Section 3.
Second, we study elliptically chain connected varieties. If C = (Ct)t∈T is family of

elliptic curves covering a projective variety X, we say that X is elliptically chain
connected with respect to C if every two very general points on X can be joined
by a finite connected chain of curves Ct. Similarly, the variety X is elliptically
connected if there exists a family (Ct)t∈T (with T irreducible) of elliptic curves such
that two general points of X can be joined by one curve Ct. These notions are in
analogy to rational chain connectedness (for some family of rational curves) and
rational connectedness, and have been first studied in detail by Gounelas [Gou16].
If X is smooth, rational connectedness and rational chain connectedness coincide
by [KMM92, 2.1]. However, in the elliptic setting, things change drastically: elliptic
connectedness is much stronger than elliptic chain connectedness. For instance, we
show:
Theorem 1.2. — Let X be a Calabi–Yau threefold such that there is a finite

map f : X → Y to a smooth cubic threefold Y ⊆ P4. Then X is elliptically chain
connected but not elliptically connected.
This result follows from Theorem 4.7 and Example 4.8. The statement that X is

not elliptically connected stems from [Gou16, Theorem 6.2], stating that otherwise
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X would be rationally connected or would admit a rationally connected fibration
to an elliptic curve. There are actually many more examples of elliptically chain
connected but not elliptically connected varieties; in principle, any non-uniruled
manifold which is elliptically chain connected provides an example.
We next study the structure of elliptically chain connected varieties which are not

uniruled. The starting point is the following result, proved in Section 5.

Proposition 1.3. — Let X be a normal projective Q-Gorenstein variety and
C = (Ct)t∈T be a covering family of elliptic curves such that X is smooth along the
curve Ct for general t ∈ T . Then:

(i) KX · Ct 6 0 for all t;
(ii) if KX is pseudoeffective, then the normalisation morphism of a general curve

Ct is étale and KX · Ct = 0 for all t;
(iii) if KX is pseudoeffective and if for a general t ∈ T the curve Ct is smooth,

then its normal bundle NCt/X is trivial.

When X has canonical singularities, then Assertion (i) and the second part of
Assertion (ii) hold without assuming that X is smooth near the general curve Ct,
see Corollary 5.3.
It is natural to expect that elliptically chain connected manifolds X should have

non-positive Kodaira dimension, and we prove this provided X has a minimal model
reached only by a sequence of divisorial contractions, without any flips. However,
the general case remains mysterious, even assuming the Minimal Model Program,
see Remarks 5.5 and 5.6.
Finally, in Section 6 we study the problem of existence of rational curves, provided

the variety is already covered by elliptic curves; see also [DFM19] for the case of
elliptic and abelian fibrations on Calabi–Yau manifolds. We first show the following
in Theorem 6.6.

Theorem 1.4. — Let X be a Calabi–Yau or hyperkähler manifold of dimension
dimX > 2. If X has a covering family of elliptic curves, then X contains a uniruled
divisor. In particular, X contains a rational curve.

Theorem 1.4 in the case of quintic threefolds was treated in [CKM88, Lecture 22].
If X is moreover elliptically chain connected, we obtain in Theorem 6.8, without

any further assumption on X:

Theorem 1.5. — Let X be an elliptically chain connected projective manifold
with dimX > 2. Then X contains a rational curve.

In Theorem 6.12 we obtain a precise structure theorem in the absence of rational
curves.
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Theorem 1.6. — Let X be a projective manifold of dimension at least 2 with a
covering family C of elliptic curves. Suppose that X does not contain rational curves.
Then there exists a fibration ϕ : X → W to a normal projective variety W with the
following properties:

(i) ϕ contract all elements of C; more precisely, ϕ is the C-quotient of X;
(ii) all fibres of ϕ are irreducible;
(iii) the normalisation of any fibre of ϕ is an elliptic curve;
(iv) ϕ is an almost smooth elliptic fibration over the smooth locus of W ;
(v) W has klt singularities.

We end the paper with a list of open problems and conjectures.

2. Preliminaries

Notation 2.1. — Let X be a normal projective variety. By Ω[p]
X we denote the

sheaf of reflexive p-differentials. In other words, if j : Xreg → X denotes the inclusion
of the smooth locus, then

Ω[p]
X = j∗Ωp

Xreg .

If F is a coherent sheaf on X, then for every positive integer m, F [m] denotes the
reflexive tensor power (F⊗m)∗∗. For a proper morphism f : Y → X, we have the
reflexive pullback f [∗]F := (f ∗F)∗∗.

Following [GKP16], we define singular Calabi–Yau varieties and singular irreducible
symplectic varieties as follows.

Definition 2.2. — Let X be a normal projective variety with trivial canonical
sheaf ωX ' OX having canonical singularities.

(a) We call X Calabi–Yau if

H0
(
X̃,Ω[q]

X̃

)
= 0

for all 0 < q < dimX and for all finite covers X̃ → X which are étale in
codimension one.

(b) We call X irreducible (holomorphic) symplectic if there exists a reflexive
2–form

σ ∈ H0
(
X,Ω[2]

X

)
such that σ is everywhere non-degenerate on Xreg, and such that for all finite
covers f : X̃ → X which are étale in codimension one, the exterior algebra of
global reflexive forms is generated by f ∗σ.

When X is smooth, we get back the classical definitions; the fundamental group
is automatically finite in the smooth case (which is unclear in the singular setting).
Note that sometimes a Calabi–Yau manifold or an irreducible symplectic manifold
X is assumed to be simply connected. When X has even dimension, finiteness of
π1(X) is automatic in our setting by [GKP16, Proposition 8.23].
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Remark 2.3. — Let X be a normal projective variety with trivial canonical sheaf
and with canonical singularities, and let f : X̃ → X be a finite cover which is étale
in codimension one. Since

H0
(
X̃,Ω[q]

X̃

)
' Hq

(
X̃,O

X̃

)
by [GKP16, Proposition 6.9], we obtain the vanishing

Hq
(
X̃,O

X̃

)
= 0

for all 1 6 q 6 dimX − 1 in the Calabi–Yau case, respectively for all odd numbers
1 6 q 6 dimX − 1 in the symplectic case.

We need the notion of a pseudoeffective reflexive sheaf of rank 1, see [HP19,
Definition 2.1] for the definition in the higher rank case.

Definition 2.4. — Let X be a normal projective variety and L a reflexive sheaf
of rank 1 on X. Then L is pseudoeffective if there is an ample divisor H on X such
that for all c > 0 there are positive integers i and j with i > cj such that

H0
(
X,L[i] ⊗OX(jH)

)
6= 0.

Remark 2.5. — Let L be a reflexive sheaf of rank 1. Then L is pseudoeffective if
and only if some reflexive power L[m] is pseudoeffective.
Assume now that L is a Q-line bundle, i.e. some reflexive power L[m] is locally

free. If D is a Weil divisor associated to L, then D is Q-Cartier. In this setting,
L is pseudoeffective if and only the Q-Cartier divisor D is pseudoeffective.

Lemma 2.6. — Let X be a Q-factorial projective variety of dimension n with
canonical singularities and trivial canonical sheaf, and let L ⊆ Ω[p]

X be a pseudoeffec-
tive reflexive subsheaf of rank 1 for some p > 0. Then:

(i) L is numerically trivial;
(ii) if X is a Calabi–Yau variety, then p = n and there exists a quasi-étale cover

f : X̃ → X such that f [∗]L ' O
X̃
;

(iii) if X is an irreducible symplectic variety with a symplectic form σ, then p is
even and there exists a quasi-étale cover f : X̃ → X such that f [∗]L ' O

X̃
⊆

Ω[p]
X̃
. Furthermore, the form defined by the inclusion O

X̃
⊆ Ω[p]

X̃
is a scalar

multiple of f ∗(σp/2).

Proof. — If H is an ample divisor on X, then the tangent sheaf TX is H-semistable
by [GKP16, Proposition 5.4]. Since KX ∼ 0, we have TX ' Ω[n−1]

X , and then it is
easily seen that Ω[p]

X is H-semistable. Consequently, c1(L) · Hn−1 6 0. Since L is
pseudoeffective and X is Q-factorial, this shows (i).
If now X is a Calabi–Yau or an irreducible symplectic variety, then L is torsion

by (i) and by Remark 2.3, and it defines a quasi-étale cover f : X̃ → X such that
f [∗]L ' O

X̃
, see [KM98, Lemma 2.53]. Furthermore,

(2.1) f [∗]L ⊆ f [∗]Ω[p]
X ⊆ Ω[p]

X̃
.

When X is a Calabi–Yau, this forces p = n, which shows (ii).
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When X is an irreducible symplectic variety, (2.1) yields a holomorphic reflexive
p-form ω on X̃. Then (iii) is immediate by the definition of irreducible symplectic
varieties. �

For later use we note the following well-known result.

Lemma 2.7. — Let f : X → Y be a proper morphism with connected fibres
between normal varieties. Let π : Y ′ → Y be a proper birational morphism from a
normal variety Y ′ and let X ′ be the normalisation of the main component of the
fibre product Y ′ ×Y X with the commutative diagram

X ′

π′

��

f ′ // Y ′

π

��
X

f
// Y.

Then the morphism f ′ has connected fibres.

Proof. — The following proof, communicated by the referee, shortens our previous
proof: let U ⊆ Y ′ denote some Zariski open subset such π|U is an isomorphism.
Then f ′ has connected fibres over U . Hence all fibres of f ′ are connected by [Uen75,
Corollary 1.12]. �

We also need the following consequence of a more general version of the Negativity
lemma. A more general result is [KL09, Corollary 13], but here we give a different
proof.

Lemma 2.8. — Let f : X → Y be a birational morphism from a projective
manifold X to a Q-factorial projective variety Y . Let λi be real numbers and let Ei
be f -exceptional prime divisors on X such that the divisor ∑λiEi is pseudoeffective.
Then λi > 0 for all i.

Proof. — Consider Nakayama’s divisorial Zariski decomposition as in [Nak04,
Chapter III]: denote P := Pσ(∑λiEi) and Nσ(∑λiEi) = ∑

αjDj for prime divi-
sors Dj and real numbers αj > 0. Then pushing forward the relation∑

λiEi = P +
∑

αjDj

to Y via f implies that all Di are f -exceptional and f∗P ∼R 0; we may assume that
Di = Ei, and hence

P =
∑

(λi − αi)Ei.
Now applying [Bir12, Lemma 3.3] for D := −P implies that λi 6 αi, hence λi = αi
since P is pseudoeffective. This concludes the proof. �

3. Rational connectedness

In this section we prove Theorem 1.1. We first consider maps to lower-dimensional
varieties and start with the following lemma. For the definition of a Q-factorialisation,
see [Kol13, Corollary 1.37].
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Lemma 3.1. — Let X be normal projective klt variety of dimension n with
ωX ' OX . Let ϕ : X̃ → X be a Q-factorialisation. If X is a Calabi–Yau, respectively
irreducible symplectic, variety, then so is X̃.

Proof. — Since ϕ is an isomorphism in codimension 1, we have ω
X̃
' O

X̃
, and X̃

has klt singularities by [KM98, Proposition 5.20].
Assume first that X is a Calabi–Yau variety. Let ψ : X̂ → X̃ be a quasi-étale map.

We need to show that

(3.1) H0
(
X̂,Ω[q]

X̂

)
= 0

for 1 6 q 6 n− 1. Let
X̂

α−→ Z
β−→ X

be the Stein factorization of ϕ ◦ ψ. Then α is birational, β is quasi-étale and Z has
klt singularities again by [KM98, Proposition 5.20]. Since X is Calabi–Yau, we have

H0
(
Z,Ω[q]

Z

)
= 0.

Then H0
(
X̂,Ω[q]

X̂

)
' H0

(
Z,Ω[q]

Z

)
by [GKKP11, Theorem 1.4], we obtain (3.1).

Assume now that X is an irreducible symplectic variety, and let ω ∈ H0
(
X,Ω[2]

X

)
be the symplectic form. Let ψ : X̂ → X̃ be a quasi-étale map. If q is odd, the very
same argument as above shows that

H0
(
X̂,Ω[q]

X̂

)
= 0.

Let now q be even and let η ∈ H0
(
X̂,Ω[q]

X̂

)
. Using the Stein factorisation as above,

we observe that Z is irreducible symplectic, with the symplectic form ωZ = β∗(ω).
Again by [GKKP11, Theorem 1.4], we find λ ∈ C such that η = λα∗(ωZ). Since
α∗(ωZ) is non-degenerate on X̂reg, we conclude. �

Theorem 3.2. — Let X be a Calabi–Yau variety or an irreducible symplectic
variety. Let f : X 99K Y be a dominant rational map to a projective manifold Y . If
dim Y < dimX, then Y is rationally connected.

Proof. — By passing to a Q-factorialisation, by Lemma 3.1 we may assume that
X is Q-factorial. Choose a resolution of indeterminacies π : X ′ → X of f with
X ′ smooth and let f ′ : X ′ → Y be the induced morphism. Consider the Stein
factorisation g : X ′ → Y ′ of f ′. It suffices to show that Y ′ is rationally connected.
By blowing up X ′ and Y ′ further, by Lemma 2.7 we may assume that Y ′ is smooth.
Hence, by replacing Y by Y ′ and f ′ by g, we may assume from the beginning that
f ′ has connected fibres.
We claim that Y is uniruled. This immediately implies the result: indeed, let

h : Y 99K Z be an MRC fibration of Y such that Z is smooth, see [Kol96, Section IV.5].
If Y is not rationally connected, then dimZ > 0 and Z is not uniruled by [GHS03].
But then the claim applied to the dominant rational map h ◦ f : X 99K Z implies
that Z is uniruled, a contradiction.
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It remains to prove the claim. Assume to the contrary that Y is not uniruled and
denote d = dim Y . Then KY is pseudoeffective by [BDPP13, Corollary 0.3]. Set

L′ := f ′∗Ωd
Y .

From the canonical injective morphism f ′∗Ωd
Y → Ωd

X′ coming from the cotangent
sequence we obtain a pseudoeffective rank 1 reflexive sheaf

L = (π∗L′)∗∗ ⊆ Ω[d]
X .

This already gives a contradiction if X is a Calabi–Yau variety by Lemma 2.6(ii)
since d < dimX.
Therefore, for the rest of the proof we assume that X is an irreducible symplectic

variety with the symplectic form σ. By Lemma 2.6(iii) there exists a quasi-étale
cover g : X̃ → X such that
(3.2) O

X̃
' g[∗]L ⊆ Ω[d]

X̃
.

By replacing X̃ by its Q-factorialisation, by Lemma 3.1 we may assume that X̃ is a
Q-factorial irreducible symplectic variety.
Let X̂ be a desingularisation of the main component of the fibre product X ′×X X̃

with induced morphisms τ : X̂ → X ′ and g′ : X̂ → X ′; note that τ is birational.
Consider the Stein factorization

X̂
α−→ Ŷ

β−→ Y

of f ′ ◦ g′. Blowing up X̂ and Ŷ further, by Lemma 2.7 we may assume Ŷ smooth;
then the map β becomes generically finite.

Ŷ

β

��
X̂

τ
��

g′
//

α

77

X ′

π

��

f ′ // Y

X̃ g
// X

f

??

Let
L̂ := g′∗L′,

and let X◦ ⊆ X be an open subset with codimX(X \X◦) > 2 over which g is étale.
Then by flat base change we have an isomorphism (g∗L)|X◦ '

(
τ∗L̂

)
|X◦ , and it

extends to an isomorphism

g[∗]L '
(
τ∗L̂

)∗∗
.

This and (3.2) imply (
τ∗L̂

)∗∗
' O

X̃
,

thus there exist integers λi and τ -exceptional prime divisors Ei on X̂ such that
L̂ ' O

X̂

(∑
λiEi

)
.
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Then Lemma 2.8 implies that λi > 0 for all i and therefore

h0
(
X̂, L̂

)
= 1.

Since L̂ = α∗β∗Ωd
Y and since α has connected fibres, we get

h0
(
Ŷ , β∗Ωd

Y

)
= 1.

Since we have an inclusion β∗Ωd
Y ⊆ Ωd

Ŷ
, it follows finally that

(3.3) h0
(
Ŷ ,Ωd

Ŷ

)
6= 0.

By [GKKP11, Theorem 1.4] we have H0
(
X̂,Ωd

X̂

)
' H0

(
X̃,Ω[d]

X̃

)
, hence

(3.4) h0
(
X̂,Ωd

X̂

)
= 1

as X̃ is irreducible symplectic. By (3.3) we can pick a nonzero form η ∈ H0
(
Ŷ ,Ωd

Ŷ

)
,

hence by (3.4) then there exists λ ∈ C \ {0} such that

α∗(η) = λτ ∗g∗(σd/2).

The form τ ∗g∗(σd/2) is therefore degenerate along the fibres of α, and since
dim Y < dimX, this is a contradiction which finishes the proof. �

Remark 3.3. — The uniruledness of Y in the previous proof can also be deduced
from [KL09, Theorem 14]; however, note that the proof above is much simpler.
Indeed, if Y were not uniruled, then by [KL09, Theorem 14] there would exist a
finite cover h : X̃ → X such that X̃ is a product of lower dimensional varieties and
has a trivial canonical class. Since X̃ and X both have trivial canonical bundles, the
map h would be quasi-étale. But then X could not be a Calabi–Yau variety or an
irreducible symplectic variety.

We next discuss the case dim Y = dimX. We say that a dominant rational map
f : X 99K Y between normal projective varieties has ramification in codimension 1
if there exists an irreducible analytic set A ⊆ Y of codimension 1 such that:

(i) there exists a resolution of indeterminacies π : X ′ → X of f such that the
exceptional set of π does not project onto A;

(ii) for any a ∈ A there exists b ∈ f−1(a) such that the Jacobian of f does not
have maximal rank at b.

In this terminology we have:

Theorem 3.4. — Let X be a Calabi–Yau variety or an irreducible symplectic
variety. Let f : X 99K Y be a dominant rational map to a normal projective variety
Y with canonical singularities such that dimX = dim Y , and assume that f has
ramification in codimension 1. Then Y is rationally connected.

The case when Y is the quotient of X by a finite group has been studied in detail
in [KL09].
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Proof. — It suffices to show that Y is uniruled: indeed, then we may consider an
MRC fibration Y 99K Z of Y , and we have dimZ < dim Y . Theorem 3.2 implies
that Z must be rationally connected, which contradicts the main result of [GHS03]
if dimZ > 0. Therefore, Z must be a point, hence Y is rationally connected.
It remains to show the claim. We may assume that Y is smooth. By passing to a

Q-factorialisation, by Lemma 3.1 we may assume that X is Q-factorial. Arguing by
contradiction, assume that Y is not uniruled, and hence that KY is pseudoeffective
by [BDPP13, Corollary 0.3]. Set n = dimX, choose a resolution of indeterminacies
π : X ′ → X of f with X ′ smooth and let f ′ : X ′ → Y be the induced morphism.
Since f ′∗Ωn

Y ⊆ Ωn
X′ , we may write

(3.5) KX′ ∼ f ′∗KY +
∑

aiEi,

where the Ei are the irreducible components of the ramification divisor, and ai > 0
for all i. The divisor L := π∗f

′∗KY is pseudoeffective and
E := π∗

(∑
aiEi

)
is a non-zero effective divisor, since f is ramified in codimension 1. Pushing forward
the relation (3.5) to X by π we obtain

0 ∼Q L+ E,

a contradiction which finishes the proof. �

To sum up: we may basically say that given a rational dominant map f : X 99K Y
from a Calabi–Yau variety or an irreducible symplectic variety X to a projective
manifold Y , then Y is rationally connected unless f is a composition of a birational
and an étale map.

Remark 3.5. — One cannot expect Y to be rational, see Example 4.8.

4. Maps from K-trivial varieties to Fano manifolds

We recall the notion of a quotient of a normal projective variety with respect to a
covering family and refer to [Cam81, Cam04b, BCE+02] for the details.

Definition 4.1. — A covering family (Ct)t∈T of X by varieties of dimension d
is given by its graph, respectively projection

p : C → X, respectively q : C → T,

where:
(a) T and C ⊆ X×T are irreducible reduced projective varieties (with projections

p = prX |C and q = prT |C);
(b) p is surjective and q is equidimensional;
(c) the cycle-theoretic preimage Ct of t ∈ T is a purely d-dimensional cycle in X.

By abuse of notation we also say that C is a covering family.

For details, we refer to [Kol96, Section I.4]; for the analytic case see [Bar75, BM14].
We can form the quotient of X with respect to this family:
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Proposition 4.2. — Let X be a normal projective variety and let (Ct)t∈T be a
covering family of X. Then there is an almost holomorphic map

f : X 99K Z

to a projective manifold Z such that for two very general points x1, x2 ∈ X we have
f(x1) = f(x2) if and only if x1 and x2 can be joined by a chain of varieties Ct. The
map f is the quotient of X with respect to the family (Ct)t∈T . We say that f , or Z,
is the C-quotient of X.

Proof. — See [Cam81, Cam04b]. �

Definition 4.3. — Let X be a normal projective variety and let C be a covering
family of X. Then:

(a) X is C-chain connected if its C-quotient is a point;
(b) X is elliptically chain connected if it is C-chain connected for some family C

such that the normalisation of the general member is an elliptic curve;
(c) X is torically chain connected if it is C-chain connected for some family C

whose general member is birational to an abelian variety.

Lemma 4.4. — Let X be a Q-factorial projective variety with ρ(X) = 1 and let
C be a covering family of X. Then X is C-chain connected.

Proof. — Consider the C-quotient f : X 99K Z and assume that dimZ > 0. Since
the map f is almost holomorphic, we may choose a resolution of indeterminacies
π : X ′ → X of f which does not alter a general fibre of f , and let f ′ : X ′ → Z be the
induced morphism. Let D be a general ample divisor on Z. Then D0 = π∗f

′∗D is an
effective non-zero Q-Cartier divisor on X. Since D0 · C = 0 for each curve C which
is contracted by the almost holomorphic map f , the divisor D0 cannot be ample,
and this contradicts the assumption on the Picard number of X. �

The following is an analogue of rational connectedness in the case of elliptic
curves [Gou16, Definition 3.3].

Definition 4.5. — A projective manifold X is said to be elliptically connected
if there exists a covering family of elliptic curves C = (Ct)t∈T such that the canonical
morphism

C ×T C → X ×X
is surjective.

Remark 4.6. —
(1) Gounelas [Gou16, Theorem 6.2] showed that an elliptically connected projec-

tive manifold is either rationally connected or admits a rationally connected
fibration over an elliptic curve.

(2) If X is chain connected with respect to a family (Ct) of curves, then never-
theless each class [Ct] (which is independent on t) might be on the boundary
of the movable cone of curves NM(X), see [BDPP13, Example 8.8]. However,
each class [Ct] is in the interior of NE(X) by [BCE+02, Theorem 2.6].
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We now show that in contrast to connectedness concepts for rational curves on
projective manifolds, elliptic chain connectedness is a weaker property than elliptic
connectedness.
Theorem 4.7. — Let X be a Q-factorial projective threefold with ρ(X) = 1

and with terminal singularities. Assume that KX ∼ 0 and that there exists a finite
surjective map f : X → Y to a projective manifold Y which contains a smooth
rational curve C with trivial normal bundle. Then X is elliptically chain connected,
but not elliptically connected.
Proof. — First, since X is not uniruled, it is not elliptically connected by [Gou16,

Theorem 6.2].
It remains to show that X is elliptically chain connected. It is a classical fact that

the deformations of C cover the whole variety Y , hence we obtain a covering family
of rational curves (Cs)s∈S of Y . For each s ∈ S, let C̃s be an irreducible component
of f−1(Cs). A general curve Cs does not meet the image of the singular locus of X
(which is a finite set) by the morphism f , hence f−1(Cs) is contained in the smooth
locus of X. Therefore, by an argument analogous to that of [Ame04, Lemma 2.2.3],
for a general s ∈ S the curve C̃s is smooth and has trivial normal bundle. In fact,
the general Cs meets the critical locus of f transversely in general points, and a
local computation then shows that f−1(Cs) is smooth. Moreover, since f−1(Cs) is
the scheme-theoretic preimage of Cs, we have N∗f−1(Cs)/X ' f ∗(N∗Cs/Y

) ' OCs .

Thus, C̃s is an elliptic curve by the adjunction formula since KX is trivial and
moreover, we obtain a covering family C̃ = (C̃s)s∈T in X. By Lemma 4.4, X is
C̃-chain connected. �

Example 4.8. — It is easy to construct examples in the setting of Theorem 4.7,
see [Cyn03, Theorem 1]. Let Y be a Fano threefold of index 2 and ρ(Y ) = 1. Then
Y is covered by a family of lines whose general element has a trivial normal bundle,
see [IP99, Chapter 3]. Take a smooth divisor D ∈ |−2KY | and let f : X → Y the
cyclic cover of degree 2 attached to D. Then X is a Calabi–Yau threefold with
h1,1(X) = h1,1(Y ); furthermore, π1(X) = π1(Y ) = 0 by [Cor81], hence ρ(X) = 1. By
Theorem 4.7, X is elliptically chain connected, but not elliptically connected.
Instead of considering a Fano threefold of index 2, we might also take a Fano

threefold of index 1 and consider conics instead of lines. In any case, we obtain
examples where Y is not rational.
We finally mention that Voisin [Voi03, Example 2.17] showed that any smooth

double cover X → Pn is elliptically chain connected unless X is of general type.
In many cases the condition ρ(X) = 1 in Theorem 4.7 is redundant:
Theorem 4.9. — Let X be a smooth Calabi–Yau threefold and let f : X → Y

be a finite map to a smooth Fano threefold Y with ρ(Y ) = 1. Assume one of the
following:

(i) Y is of index 2, and H3 = 3 or H3 = 4 for the ample generator H of Pic(Y ),
i.e. Y is a cubic hypersurface in P4 or a complete intersection of two quadrics
in P5;

(ii) Y is of index 1 and 12 6 −K3
Y 6 18.
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Then X is elliptically chain connected.

Proof. — As in Theorem 4.7, we obtain a covering family C of elliptic curves and
consider its quotient g : X 99K Z. Assume first that dimZ = 2, so that Z is a
rational surface. Let H be the 2-dimensional Hilbert scheme of lines on Y (in the
case (i)) respectively of conics (in the case (ii)). By construction, we obtain a rational
dominant map h : Z 99K H, hence H is rational. This contradicts the classification
of H, see [KPS18].
So it remains to rule out dimZ = 1, i.e. Z ' P1. Here the map g is even holomor-

phic. By construction of the covering family C, the general Ct is smooth with trivial
normal bundle. Consider a general smooth fibre S of g: then S is either a K3 surface
or an abelian surface. The second alternative is excluded since S is elliptically chain
connected. Thus, S is a K3 surface which is chain connected by a family of elliptic
curves whose general member Ct is smooth with the trivial normal bundle in S. Since
all Ct are linearly equivalent, the linear system |Ct| is basepoint free and defines an
elliptic fibration S → P1. But then the family cannot be chain connecting in S. �

Remark 4.10. — In the context of the proof of the previous result, it is very likely
that the irreducible components of the Hilbert scheme H are not rational in all
other cases of Fano threefolds of index at most 2 and Picard number 1, with two
exceptions. If Y has index 2 and H3 = 5 (so that Y ' V5 in the classical notation),
or if Y has index 1 and −K3

Y = 22 (so that Y ' A22), then H ' P2, and we cannot
conclude that X is elliptically chain connected.

5. Elliptically chain connected varieties

In this section we study the structure of elliptically chain connected manifolds
which are not uniruled. First observe:

Remark 5.1. — Any K3 surface X is elliptically chain connected. Indeed, by
[Huy16, Corollary 13.2.2], X contains a family of singular elliptic curves Ct such
that C2

t > 0. Therefore, the quotient of X with respect to the family cannot be a
fibration to a curve, hence the family must be chain connecting.

On the other hand, it is clear that abelian varieties of dimension at least 2 cannot
be elliptically chain connected.

Proposition 5.2. — Let X be a normal Q-Gorenstein projective variety and let
C = (Ct)t∈T be a covering family of elliptic curves such that X is smooth along the
curve Ct for general t ∈ T . Then:

(i) KX · Ct 6 0 for all t;
(ii) if KX is pseudoeffective, then the normalisation morphism C̃t → Ct of a

general curve Ct is unramified, i.e. Ω1
C̃t/Ct

= 0, and KX · Ct = 0 for all t;
(iii) if KX is pseudoeffective and if for a general t ∈ T the curve Ct is smooth,

then its normal bundle NCt/X is trivial.
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Proof. — Possibly passing to a subfamily, we may assume that
dimT = dimX − 1.

If T̃ and C̃ are the normalisation of T , respectively the normalised graph of C,
consider the projections p̃ : C̃ → X and q̃ : C̃ → T̃ . If t ∈ T̃ is a general point, then
C̃t := q̃−1(t) is a smooth elliptic curve which does not meet the singular locus of C̃
(notice that the singular locus of C̃ is of codimension at least 2 and therefore disjoint
from the general C̃t). We may write near C̃t:
(5.1) KC̃ ∼ p̃∗KX + E,

where E is an effective Weil divisor. Since KC̃ · C̃t = 0 by the adjunction formula,
the relation (5.1) gives KX · Ct = −E · C̃t 6 0, which proves (i) for general t, hence
for all t by [Kol96, Proposition I.3.12].
For (ii), the assumption that KX is pseudoeffective and (i) immediately give

(5.2) KX · Ct = 0 for all t.
Note that we have the canonical sequence of cotangent sheaves outside of the singular
locus of C̃:

0→ p̃∗Ω1
X → Ω1

C̃ → Ω1
C̃/X → 0.

Thus (p̃∗Ω1
X)|

C̃t
is a subsheaf of Ω1

C̃
|
C̃t
' OdimX

C̃t
, and passing to determinants, we

obtain an injective map L → O
C̃t
, where L is numerically trivial on C̃t by (5.2).

Therefore, this last map is an isomorphism, and hence
(p̃∗Ω1

X)|
C̃t
' Ω1

C̃|C̃t
.

From the cotangent sequence above, this yields that p̃ is étale in a neighbourhood
of C̃t, and the normalisation map C̃t → Ct is unramified.
Suppose finally that the general curve Ct is smooth. Since the deformations of Ct

cover X, we see (passing to the graph) that its normal bundle NCt/X is generically
globally generated. By adjunction, detNCt/X is numerically trivial by (ii), hence
NCt/X is trivial, which shows (iii). �

Corollary 5.3. — Let X be a normal projective variety with canonical singu-
larities and let C = (Ct)t∈T be a covering family of elliptic curves. Then

(i) KX · Ct 6 0 for all t;
(ii) if KX is pseudoeffective, then KX · Ct = 0 for all t;
(iii) if KX is pseudoeffective and if X has terminal singularities, then the general

curve Ct does not meet the singular locus of X.

Proof. — Let π : X ′ → X be a resolution of singularities. Then X ′ carries a
covering family C ′ = (C ′t)t∈T ′ of elliptic curves such that for general t ∈ T ′, the curve
C ′t is the strict transform of Ct in X ′. We may write

KX′ ∼Q π
∗KX + E,

where E is an effective divisor. By Proposition 5.2(i) we have KX′ · C ′t 6 0, hence
for a general t ∈ T we have KX ·Ct = KX′ ·C ′t−E ·C ′t 6 0, which shows (i), and (ii)
follows immediately.
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For (iii), we have KX′ · C ′t = KX · Ct = 0, and hence E · C ′t = 0. Therefore, a
general curve Ct cannot meet the singular locus of X. �

Theorem 5.4. — Let X be a normal projective variety with canonical singulari-
ties such that KX is pseudoeffective and such that there exists a chain connecting
family of elliptic curves (Ct)t∈T . Assume that X has a minimal model Xm via
a sequence of divisorial contractions. Then Xm has torsion canonical bundle and
κ(X,KX) = 0.

Proof. — Let ϕi : Xi → Xi+1 be a sequence of divisorial contractions with X0 = X
such that Xm is a minimal model of X for some m, as in the statement of the
theorem. We claim that for each i > 0 there is a chain connecting family (Ci

t)t∈Ti
of

elliptic curves on Xi such that KXi
· Ci

t = 0.
This immediately implies the theorem: indeed, then there exists a chain connect-

ing family of curves (Cm
t )t∈Tm with KXm · Cm

t = 0. Then KXm ≡ 0 by [BCE+02,
Theorem 2.6], hence KXm ∼Q 0 by [Kaw85, Theorem 8.2], and we conclude.
It remains to show the claim. The claim holds for i = 0 by Corollary 5.3. Assume

it holds for some i > 0, and set Ci+1
t := ϕ(Ci

t). Then we obtain a chain connecting
family of elliptic curves in Xi+1. If Ei is the exceptional prime divisor of ϕi, then
there is a positive rational number λi such that

(5.3) KXi
∼Q ϕ

∗
iKXi+1 + λiEi.

Since KXi+1 is pseudoeffective, we have ϕ∗iKXi+1 · Ci
t > 0 for a general t ∈ Ti, and

we have KXi
·Ci

t = 0 by induction. Then (5.3) implies Ei ·Ci
t 6 0, hence Ei ·Ci

t = 0
since Ci

t is not contained in Ei for general t ∈ Ti. Therefore, Ci
t ∩ Ei = ∅ and

KXi+1 · Ci+1
t = ϕ∗iKXi+1 · Ci

t = 0, which proves the claim. �

Remark 5.5. — We currently do not understand what happens if flips occur in the
MMP. Let X be as in the previous result. Let ϕ : X → Z be a flipping contraction
and let ψ : X 99K X+ be the associated flip. Let (p, q) : W → X×X+ be a resolution
of indeterminacies of ψ. By [KM98, Lemma 3.38] there are q-exceptional divisors Ei
and non-negative rational numbers ai such that

p∗KX ∼Q q
∗KX+ +

∑
aiEi,

where ai > 0 if and only if p(Ei) ⊆ Exc(ϕ). Let C ′t be the strict transform of Ct in
W , and let C+

t = q(C ′t) ⊆ X+ be strict transform in X+. Then

q∗KX+ · C ′t 6 p∗KX · C ′t,

with the strict inequality when Ct ∩ Exc(ϕ) is non-empty and finite. On the other
hand, since KX and KX+ are pseudoeffective, we have

KX · Ct = KX+ · C+
t = 0

by Corollary 5.3(ii). Hence, we obtain the following alternative: either Ct∩Exc(ϕ) = ∅
or there is a component of Ct which is contained in Exc(ϕ). However, it might possibly
happen that the induced family (C+

t )t∈T+ is no longer connecting.
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Remark 5.6. — If X is elliptically chain connected with canonical singularities
and KX is semiample, then κ(X,KX) = 0. Indeed, let ϕ : X → Y be the associated
Iitaka fibration, and consider a chain connecting family C = (Ct) of elliptic curves.
Then each Ct is contracted by ϕ by Corollary 5.3(ii), which can only happen if Y is
a point.
Remark 5.7. — A weaker notion of elliptic chain connectedness would be to

require that any two general points can be joined by a chain of elliptic and rational
curves. Even then it is unclear whether we obtain a birationally invariant notion,
except in dimension 3 where the exceptional loci of flips are rational curves.

6. From elliptic curves to rational curves

Consider a smooth projective surface which is covered by elliptic curves, and assume
that X does not contain any rational curve. Then the classification of surfaces implies
that X is minimal, and it is either a torus, or hyperelliptic, or κ(X,KX) = 1 and
the Iitaka fibration is an almost smooth elliptic fibration, i.e. all singular fibres are
multiples of elliptic curves. In particular, we have c2(X) = 0. Conversely, none of
these surfaces possesses a rational curve.
Here we study to which extent this picture generalises to higher dimensions.
Definition 6.1. — Let X be a projective manifold and let ϕ : X → Y be a

morphism with connected fibres to a normal projective variety. Then ϕ is an almost
smooth elliptic fibration if all smooth fibres are elliptic curves and the underlying
reduced scheme of any fibre is smooth.

Clearly the fibres of an almost smooth elliptic fibration do not contain rational
curves.
We begin with some preparations. Recall that a curve C on a surface S is called

exceptional if there is a birational map from S to an analytic space which contracts
C to a point.
Lemma 6.2. — Let S be a normal projective surface and let h : S → B be a

morphism with connected fibres to a smooth curve B. Assume that a general fibre
of h is an elliptic curve and that there are no rational curves in the fibres of h. Then
S is smooth and h is an almost smooth elliptic fibration. Moreover, h is isotrivial
and S does not contain any exceptional curve.

Proof. — If π : Ŝ → S is the minimal resolution, then the induced fibration ĥ : Ŝ →
B is relatively minimal. Since all fibres of ĥ contain non-rational curves, Kodaira’s
classification of the fibres of ĥ implies that ĥ does not contract any rational curve.
So π is an isomorphism and all fibres of h are multiples of smooth elliptic curves.
Then h is isotrivial: indeed, by the stable reduction theorem [KKMSD73] there

is a finite base change B′ → B and an induced fibration h′ : S ′ → B′ such that all
fibres of h′ are smooth. Then h′ is locally trivial by [BHPVdV04, Theorems III.17.3
and III.18.2], hence by [Bea96, Proposition VI.8], after an étale base change, we may
assume that S ′ = B′ × E and h′ is the first projection, where E is an elliptic curve.
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Finally, if C ⊆ S is an exceptional curve on S, then C2 < 0, and hence there exists
a component C ′ of the preimage of C in S ′ with
(6.1) (C ′)2 < 0.
However, note that any translation on E induces a translation of C ′ in S ′. Then
either C ′ is a fibre of h′, which contradicts (6.1), or these translations cover S ′.
But (6.1) implies that C ′ does not move in its linear system, a contradiction. �

Lemma 6.3. — Let X and Y be smooth projective varieties and let q : X → Y
be an equidimensional surjective morphism such that the reduction of any fibre is a
smooth elliptic curve. Then q∗OX(KX/Y ) is a torsion line bundle on Y .

Proof. — First notice that
L := q∗OX(KX/Y )

is locally free, and of rank 1: indeed, q∗OX(KX/Y ) is reflexive (by checking Hartogs–
Riemann’s extension theorem and using the equidimensionality of q), hence locally
free, and it is of rank 1 since a general fibre of q is an elliptic curve.
Let C ⊆ Y bea general complete intersection curve, and denote XC := q−1(C).

Then
L|C = q∗OX(KX/Y )|C = (q|XC

)∗(KXC/C).
Since XC is smooth, the line bundle L|C is torsion by [BHPVdV04, Theorem III.18.3].
In particular,
(6.2) L ≡ 0.
To show that L is torsion, we proceed by induction on n = dim Y . The case

dim Y = 1 is already done. Let H be a very ample divisor on Y and D ∈ |H| general.
Using the induction hypothesis, we may choose a positive integer m such that
H0(D,L⊗m|D) 6= 0. Now, as L⊗−m ⊗OY (D) is ample by (6.2), the restriction map
(6.3) H0(Y,L⊗m)→ H0(D,L⊗m|D) is surjective
since we have

H1
(
Y,L⊗m ⊗OY (−D)

)
' Hn−1

(
Y,L⊗−m ⊗OY (KY +D)

)
= 0

by the Serre duality and Kodaira vanishing. Thus L⊗m ' OY by (6.3). �

We need the following slight generalisation.

Lemma 6.4. — Let X be a normal projective variety, let Y be a projective
manifold and let q : X → Y be an equidimensional surjective morphism. Assume
furthermore:

(1) there exists a finite set S ⊆ Y such that, if we set Y0 := Y \ S and X0 :=
X \ q−1(S), the reduction of any fibre of the map q|X0 : X0 → Y0 is a smooth
elliptic curve;

(2) X0 is smooth;
(3) q does not contract any rational curve.

Then q∗OX(KX/Y ) is a torsion line bundle on Y .
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Proof. — As in the proof of Lemma 6.3 the sheaf
L := q∗OX(KX/Y )

is locally free of rank 1. Let H ⊆ Y be a general hyperplane section. Since q−1(H)
is smooth, L|H is a torsion line bundle by Lemma 6.3, and hence L ≡ 0. We argue
as in the proof of Lemma 6.3 to conclude that L is torsion. �

The next proposition is the technical heart of Theorem 6.6.

Proposition 6.5. — Let X be a projective manifold of dimension n with a
covering family C of elliptic curves and let C̃ be the normalisation of C. If X does
not contain a uniruled divisor, then:

(1) the family C has no moduli;
(2) the projection p̃ : C̃ → X is finite;
(3) there exists a normal variety Y and a finite surjective morphism f : Y → X

such that
H0(Y, f ∗TX) 6= 0.

Proof.
Step 1. — Let q : C → T be the projection to the parameter space T . Assume that

the family of elliptic curves has moduli. Then the j-invariant yields a non-constant
holomorphic map j : T → P1. Consequently, q−1(j−1(∞)) is a uniruled divisor in C̃,
projecting onto a uniruled divisor in X, see the proof of [Voi03, Corollary 3.34]. This
is a contradiction which shows (1).
Step 2. — Suppose that p̃ contracts a curve Γ. Let q̃ : C̃ → T̃ denote the normalised

projection, and set Γ′ := q̃(Γ) and S := q̃−1(Γ′). Since C̃ is the normalised graph,
we have dim p̃(S) = 2, hence Γ is a contractible curve in the surface S. Since the
family C has no moduli by (1), Lemma 6.2 applies to the Stein factorisation of the
morphism q̃|S : S → Γ′ and yields a contradiction. This shows (2). Note that we did
not assume that dimT = n− 1; this is a consequence of our assumptions.
Step 3. — From now on we prove (3). We will perform a weak semistable reduction

to handle the multiple fibres of q̃. To do that we need to pass to a suitable birational
model as follows.
Let π : W → T̃ be a resolution of singularities and consider the base change:

Z

τ

��

σ // C̃
q̃
��

W π
// T̃ ,

where Z is the normalisation of the main component of C̃×
T̃
W . Notice that a general

fibre of τ is an elliptic curve and that there are no rational curves in the fibres of τ .
Let C ⊆ W be a general complete intersection curve. Then ZC := τ−1(C) is a

normal surface, hence smooth by Lemma 6.2, and τ |ZC
is almost smooth. Thus, Z

is smooth near ZC by Bertini’s theorem.
We claim that there exists a finite set Σ ⊆ W such that, setting W0 = W \ Σ and

Z0 = τ−1(W0), the variety Z0 is smooth, and the reduction of any fibre over W0 is
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a smooth elliptic curve, i.e. τ |Z0 is almost smooth by Lemma 6.2. Indeed, for each
w ∈ W let Zw be the scheme-theoretic fibre of τ over w. Set

Σ := {w ∈ W | Sing(Z) ∩ Zw 6= ∅ and (Zw)red is not smooth elliptic}.
If dim Σ > 1, then a general complete intersection curve C cuts Σ. Since ZC is
smooth and τ |ZC

is almost smooth by above, this is a contradiction which proves
the claim.
By Lemma 6.4, τ∗OZ(KZ/W ) is a torsion line bundle on W . After passing to a

finite étale cover of W , we may assume that
(6.4) τ∗OZ(KZ/W ) ' OW .
Step 4. — We are now in a position to perform a weak semistable reduction

as in [Vie95, Definition 6.7 and Lemma 6.8]. First of all, we choose a resolution
π̂ : Ŵ → W and a commutative diagram

Ẑ

τ̂
��

σ̂ // Z

τ

��
Ŵ

π̂

// W,

where Ẑ is a resolution of the main component Z ×W Ŵ , such that there exists a
divisor Σ̂ with simple normal crossings in Ŵ with the property that τ̂−1(Σ̂) is a
divisor with simple normal crossings in Ŵ and that τ̂ |

Ẑ\τ̂−1(Σ̂) is smooth. Let Êi
denote the π̂-exceptional divisors. By (6.4), over Ŵ \⋃i Êi we have an isomorphism

τ̂∗OẐ
(
K
Ẑ/Ŵ

)
→ π̂∗τ∗OZ(KZ/W ) ' O

Ŵ
.

Thus
(6.5) τ̂∗OẐ

(
K
Ẑ/Ŵ

)
= O

Ŵ

(∑
aiÊi

)
with ai ∈ Z.
By [Vie95, Lemma 6.8] there exist a commutative diagram

Z ′

τ ′

��

σ′ // Ẑ

τ̂
��

W ′
π′
// Ŵ

and a closed subset Π ⊆ W ′ of codimension at least 2 such that W ′ is smooth, Z ′
is normal, π′ is finite, σ′ is generically finite and the fibres of τ ′ are smooth elliptic
curves outside Π. Moreover, by [Vie95, Lemma 6.9] the morphism τ ′ is flat over
W ′ \ Π and the line bundle τ ′∗OZ′(KZ′/W ′) satisfies

(6.6) τ ′∗OZ′(KZ′/W ′) ⊆ π′∗τ̂∗OẐ
(
K
Ẑ/Ŵ

)
= OW ′

(∑
aiπ
′∗Êi

)
,

where the last equality follows by (6.5). By [Vie95, Theorem 6.12] the line bundle
τ ′∗OZ′(KZ′/W ′) is nef.
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We claim
(6.7) τ ′∗OZ′(KZ′/W ′) ' OW ′ .
Indeed, let L be a nef Cartier divisor such that OW ′(L) ' τ ′∗OZ′(KZ′/W ′), let
λ : W ′ → W ′′ be the birational part of the Stein factorisation of the generically
finite map π̂ ◦ π′, and denote E ′i := π′∗Êi. Then the divisors E ′i are λ-exceptional.
By (6.6) we may assume that there exists an effective Cartier divisor M such that

L+M =
∑

aiE
′
i.

By the Negativity lemma [KM98, Lemma 3.39], applied to λ, we have M > ∑ aiE
′
i,

and hence L 6 0. But then L = 0 and the claim (6.7) follows.
Step 5. — We define the generically finite morphism h′ : Z ′ → X by the following

commutative diagram:

Z ′

τ ′

��

σ′
//

h′

**Ẑ

τ̂
��

σ̂

// Z

τ

��

σ
// C̃
q̃
��

p̃

// X

W ′
π′
// Ŵ

π̂

// W π
// T̃ .

Then we obtain a non-zero morphism
(6.8) h′∗Ω1

X → Ω1
Z′ → Ω1

Z′/W ′ → OZ′(KZ′/W ′).
The canonical injective morphism

τ ′∗τ ′∗OZ′(KZ′/W ′)→ OZ′(KZ′/W ′)
is an isomorphism away from τ ′−1(Π), since the fibres of τ ′ outside Π are smooth
elliptic curves. Since τ ′∗τ ′∗OZ′(KZ′/W ′) ' OZ′ by (6.7), there exists an effective divisor
D′ supported on τ ′−1(Π) such that
(6.9) OZ′(KZ′/W ′) = OZ′(D′).
Hence, by (6.8) and (6.9) we obtain

(6.10) H0
(
Z ′, h′∗TX ⊗OZ′(D′)

)
6= 0.

Since q̃ is equidimensional and since codim
T̃

(π ◦ π̂ ◦ π′)(Π) > 2, we conclude that
(6.11) codimX h

′(D′) > 2.
Finally, let

Z ′
h′1−→ Y

f−→ X

be the Stein factorization of h′. Then
H0(Y, f ∗TX) 6= 0

by (6.10) and (6.11). �

The following is the main result in this section.

Theorem 6.6. — Let X be a Calabi–Yau or a projective hyperkähler manifold.
If X has a covering family of elliptic curves, then X contains a uniruled divisor.
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Proof. — Arguing by contradiction and applying Proposition 6.5, there exists a
normal projective variety Y and a finite surjective map f : Y → X such that

H0(Y, f ∗TX) 6= 0.
Since the map f is finite, there exists a reflexive sheaf F such that

f∗OY ' OX ⊕F .
Consequently,
(6.12) 0 6= H0(X, f∗f ∗TX) = H0(X,TX)⊕H0(X,TX ⊗F).
Since X is a Calabi–Yau or a hyperkähler manifold, we have H0(X,TX) = 0, which
in combination with (6.12) yields

H0(X,TX ⊗F) 6= 0.
Therefore, there exists a non-zero morphism

α : F∗ → TX .

Let H be an ample divisor on X and let
S = H1 ∩ . . . ∩Hn−2

be a surface cut by general hyperplane sections Hj ∈ |mH| of degree m � 0.
Set YS := f−1(S). Then YS normal and therefore Cohen–Macaulay. In particular,
f |YS

: YS → S is flat. By a result of Lazarsfeld [PS00, Appendix, Proposition A],
applied to the flat morphism fS, the locally free sheaf((

(f |YS
)∗(OYS

)
)∗
/OS

)
|C

is nef for any curve C ⊆ S which is not contained in the branch locus B of f |S. But
this sheaf is precisely F∗|C by definition. Consequently, the sheaves (α|S)(F∗|S)|C
and (det(α|S)(F∗|S))|C are nef. In particular, this holds for any general curve on S
cut out by mH|S. Since TX is H-stable, the restriction TX |S is H|S-stable by the
theorem of Mehta–Ramanathan, hence

rk(α|S)(F∗|S) = dimX.

Thus, there exists a proper closed subset A ⊆ S such that α|S is surjective on S \A.
Since (α|S)(F∗|S)|C is nef on every curve C 6⊆ B ∪ A, so is TX |C .
To summarise, the locally free sheaf

E := TX |S
is H|S-stable with c1(E) = 0 and is nef on all but finitely many curves. By [HP19,
Corollary 5.4], E is numerically flat,(1) and in particular, c2(E) = 0. Thus

c2(X) ·Hn−2 = 0,
and consequently,

c2(X) = 0.
By Yau’s theorem, X is then an étale quotient of a torus, which contradicts our
assumption that X is a Calabi–Yau or a hyperkähler manifold. �

(1)Actually, E is even trivial, since it has a filtration by unitary flat bundles and since π1(S) = 0.

TOME 3 (2020)



494 Vladimir LAZIĆ & Thomas PETERNELL

The proof of Theorem 6.6 shows also the following.

Theorem 6.7. — Let X be a projective manifold which contains a covering
family of elliptic curves. Then X contains a uniruled divisor unless there exists a
torsion free quotient Q of Ω1

X such that detQ ≡ 0.

Proof. — We may assume that X itself is not uniruled. If Ω1
X is generically ample,

i.e., ample on curves cut out by general hyperplane sections, then the proof of
Theorem 6.6 applies. If Ω1

X is not generically ample, then [Pet11, Proposition 2]
gives the quotient Q as required. �

If X is elliptically chain connected, then the existence of rational curves follows
without any further assumptions on X:

Theorem 6.8. — Let X be an elliptically chain connected projective manifold
with dimX > 2. Then X contains a rational curve.

Proof. — Arguing by contradiction, assume that X does not contain a rational
curve. Then KX is nef by Mori’s Cone theorem, hence KX ∼Q 0 by Theorem 5.4.
By the Beauville–Bogomolov decomposition theorem, there exists a finite étale cover
from a product of Calabi–Yau manifolds, hyperkähler manifolds and an abelian
variety to X. We may assume that X itself decomposes as

X = X1 × . . .×Xr.

If r = 1, then X must be Calabi–Yau or hyperkähler, since abelian varieties of
dimension at least two are not elliptically chain connected. Then we conclude by
Theorem 6.6.
If r > 2, then all factors Xj are elliptically chain connected by Lemma 6.9. Fur-

thermore, at most one factor can be abelian and this factor has to be of dimension
one. Hence one of the factors Xj is Calabi–Yau or hyperkähler and we conclude
again by Theorem 6.6. �

Lemma 6.9. — Let X be an elliptically chain connected projective manifold.
Assume that X ' Y1 × Y2, where Y1 and Y2 are projective manifolds. Then Y1 and
Y2 are elliptically chain connected.

Proof. — Let (Ct)t∈T be a chain connecting family of elliptic curves on X. By
symmetry, it suffices to show that Y1 is elliptically chain connected, and let p1 : X →
Y1 denote the first projection.
Suppose that dim p1(Ct0) = 0 for some t0 ∈ T . If H is an ample divisor on Y1,

then p∗1H · Ct0 = 0, hence p∗1H · Ct = 0 for all t ∈ T by [Kol96, Proposition I.3.12].
Therefore, dim p1(Ct) = 0 for all t ∈ T , i.e., all curves Ct are contained in fibres of
p1. But then the family (Ct)t∈T cannot be chain connecting.
Thus dim p1(Ct) = 1, and therefore we obtain a covering family (C ′s) of elliptic

curves on Y1. This family is chain connecting: choose general points a1, a2 ∈ Y1 and
general points b1, b2 ∈ Y2. Then the points (a1, b1), (a2, b2) ∈ Y1 × Y2 can be joined
by a chain of curves Ct, hence a1 and a2 can be joined by a chain of curves C ′s. �
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Theorem 6.10. — Let X be a smooth projective variety with κ(X,KX) = 0.
Assume that X carries a covering family of elliptic curves and that X does not
contain any rational curve. Then there is a finite étale cover X ′ → X with

X ′ = E ×
∏
j

Xj,

where E is an elliptic curve and each Xj is either a torus, a Calabi–Yau manifold or
a hyperkähler manifold.

Proof. — As in the proof of Theorem 6.8, there is a finite étale cover X ′ → X
such that

X ′ = T ×
∏
j

Xj,

where T is a torus (a priori possibly of dimension 0) and each Xj is a Calabi–Yau
manifold or a hyperkähler manifold. Considering a covering family (C ′s) of X ′ and
the induced maps C ′s → Xj and C ′s → T , we conclude that at least one of the factors
Xj or T is covered by elliptic curves. In the first case, Xj would contain a rational
curve by Theorem 6.6, a contradiction. Thus dimT > 0 and T is covered by a family
of elliptic curves. Hence, by Poincaré’s Reducibility theorem, after passing to a finite
étale cover, we may assume that T = T ′ × E, where E is an elliptic curve. �

Remark 6.11. — In fact, in Theorem 6.10 we expect that X ′ is a product of
an elliptic curve and a torus. This, however, requires to prove that Calabi–Yau
and hyperkähler manifolds contain rational curves, which seems out of reach at the
moment.

Theorem 6.12. — Let X be a projective manifold of dimension at least 2 with
a covering family C of elliptic curves. Suppose X does not contain rational curves.
Then there exists an equidimensional fibration ϕ : X → W to a normal projective
variety W with the following properties:

(i) ϕ contract all elements of C; more precisely, ϕ is the C-quotient of X;
(ii) all fibres of ϕ are irreducible;
(iii) the normalisation of any fibre of ϕ is an elliptic curve;
(iv) ϕ is an almost smooth elliptic fibration over the smooth locus of W ;
(v) W has klt singularities.

Proof.
Step 1. — By Theorem 6.8, the manifold X is not elliptically chain connected

with respect to C. Let ϕ : X 99K W be the C-quotient of X, and recall that ϕ is
almost holomorphic. Assume the dimension of a general fibre F of ϕ is at least
2. Since F is elliptically chain connected, Theorem 6.8 implies that F possesses a
rational curve, a contradiction. Therefore, a general fibre of ϕ is a curve.
Let q : C̃ → T be the normalized graph of the family with projection p : C̃ → X,

and for each t ∈ T denote Ct := p(q−1(t)). Since there is a unique elliptic curve
through a general point x ∈ X, the morphism p is birational, and we may assume
that W = T and ϕ = q ◦ p−1. To show that ϕ is a morphism, it suffices to show that
p is an isomorphism. By Zariski’s main theorem, it suffices to show that p is finite.
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Step 2. — Assume to the contrary that dim p−1(x) > 0 for some x ∈ X, and set
T (x) = {t ∈ T | x ∈ Ct}.

Then dimT (x) > 0; choose an irreducible curve C ⊆ T (x). Let σ : T̂ → T be a
desingularisation and Ĉ be the normalisation of the main component of fibre product
C̃ ×T T̂ , so that we have a diagram

Ĉ τ //

q̂
��

C̃
q

��
T̂ σ

// T.

Possibly by blowing up further, we may assume that there exists a smooth curve
Ĉ ⊆ T̂ such that σ(Ĉ) = C; choose an irreducible component Ŝ of q̂−1(Ĉ) with
normalisation ν : Ŝν → Ŝ. Let

f : Ŝν → Ĉ

be the induced map and notice that the fibres of f do not contain rational curves,
since otherwise q would contain a rational curve in a fibre.
We claim that a general fibre of f is an elliptic curve. Indeed, pick a general point

y ∈ Ĉ, and let B be a general smooth curve containing y such that the surface
SB := q̂−1(B) is normal and such that a general fibre of SB is an elliptic curve. Then
Lemma 6.2 implies that SB is smooth and the projection SB → B is almost smooth.
Hence, a general fibre of f is likewise elliptic, which proves the claim.
Lemma 6.2 now implies that Ŝν is smooth, that f is almost smooth, and that

Ŝν does not contain exceptional curves. However, the birational map Ŝν → X
contracts ν−1(Ŝ∩(p◦τ)−1(x)), a contradiction. Thus p is finite, hence an isomorphism.
Consequently, ϕ : X → W is an equidimensional morphism.
Step 3. — The arguments above also show that ϕ is almost smooth over the smooth

locus of W . To see that each fibre of ϕ is an irreducible curve whose normalisation is
an elliptic curve, let w ∈ W be a singular point. Let Γ ⊆ W be a general irreducible
curve through w. Then the preimage SΓ = ϕ−1(Γ) is an irreducible surface in X.
Let h : SνΓ → Γν be the induced map between normalisations. Then by Lemma 6.2,
h is an almost smooth elliptic fibration. Hence ϕ−1(w) is an irreducible curve whose
normalisation is elliptic.
Step 4. — We claim first that KX is numerically trivial on every fibre of ϕ. Indeed,

this is clear for a general fibre, which is a smooth elliptic curve. If F is a special
fibre, then Fred is irreducible. So if KX |Fred were not numerically trivial, then KX |Fred

would be ample or anti-ample. Hence the same would be true for the nearby fibres,
as ampleness is an open property, which is a contradiction which proves the claim.
Therefore, the manifold X has a relative good model over W by [HX13, The-

orem 2.12], and in particular, KX ∼Q ϕ∗A for some Q-Cartier divisor A on W .
Consequently, there exists an effective divisor ∆W on W such that (W,∆W ) is klt
by [Amb05, Theorem 0.2]. �

Using [DFM19], we conclude again that a Calabi–Yau or hyperkähler manifold
which admits a covering family of elliptic curves, contains a rational curve.
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7. Open problems
In this section we address some conjectures and open problems. The first question

already came up in Theorem 5.4 and Remark 5.5:
Problem 7.1. — Is elliptic chain connectedness a birational property of terminal

or klt varieties?
Next, we recall the following:
Definition 7.2. — A projective manifold X is special if for any p > 0 and for

any locally free subsheaf L ⊆ Ωp
X of rank 1, we have κ(X,L) 6 p− 1.

This is not Campana’s original definition, but an equivalent statement, see [Cam04a,
Theorem 2.27]. Campana’s theory yields the following statement.
Proposition 7.3. — Any torically chain connected projective manifold is special.
Proof. — This follows from [Cam04a, Theorem 3.3(2) and Theorem 5.1]. �

Problem 7.4. — Therefore, given a torically chain connected projective manifold,
we have κ(X,L) 6 p−1 for any locally free subsheaf L ⊆ Ωp

X of rank 1. Is it, actually,
true that κ(X,L) 6 0? By Campana’s theory, this is (modulo the Minimal Model
Program) equivalent to saying that κ(X,KX) 6 0.
Following [Voi03, Definition 3.26], one may consider whether a variety is ratio-

nally swept out by a family of varieties. In particular, to say that X is rationally
swept out by abelian varieties is equivalent to the existence of a covering family of
subvarieties such that the general member has a finite cover which is birational to
an abelian variety. Then we have the following version of Lang’s conjecture [Voi03,
Conjecture 3.31].
Conjecture 7.5. — Let X be a projective manifold with 0 6 κ(X,KX) 6

dimX − 1. Then X is rationally swept out by abelian varieties.
One might ask for a higher-dimensional analogue of Theorem 6.12:
Problem 7.6. — LetX be a projective manifold with 0 6 κ(X,KX) 6 dimX−1.

Assume that X is rationally swept out by abelian varieties, and suppose that X
has no rational curves. Does there exists a holomorphic equidimensional fibre space
ϕ : X → W to a normal klt variety W such that:

(a) all fibres are irreducible (but possibly non-reduced),
(b) the normalisation of any fibre is an abelian variety up to finite étale cover?
Problem 7.7. — Are there Calabi–Yau threefolds which are rationally swept out

by tori or even torically connected, but not by elliptic curves? As possible examples,
one might consider Calabi–Yau threefolds with ρ(X) = 2 admitting a fibre space
structure over P1 whose general fibre is a simple abelian surface. A weaker question
would be: Is there a Calabi–Yau threefold which is not elliptically chain connected
(but possibly covered by elliptic curves)?
Remark 7.8. — If X is a general hypersurface of degree n + 2 in Pn+1, then X

is not rationally swept out by abelian varieties of dimension at least 2, see [Voi03,
Theorem 3.30]. Therefore, Lang’s conjecture predicts that X is covered by elliptic
curves. However, as Voisin shows, this contradicts a conjecture of Clemens.
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