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DAMIEN THOMINE

KEPLERIAN SHEAR IN ERGODIC
THEORY
LE CISAILLEMENT KEPLÉRIEN EN
THÉORIE ERGODIQUE

Abstract. — Many integrable physical systems exhibit Keplerian shear. We look at this
phenomenon from the point of view of ergodic theory, where it can be seen as mixing condi-
tionally to an invariant σ-algebra. In this context, we give a sufficient criterion for Keplerian
shear to appear in a system, investigate its genericity and, in a few cases, its speed. Some
additional, non-Hamiltonian, examples are discussed.

Résumé. — Le cisaillement keplérien est une propriété commune à de nombreux systèmes
intégrables. Nous considérons ce phénomène du point de vue de la théorie ergodique, en
tant que propriété de mélange conditionnellement à une tribu invariante. Dans ce contexte,
nous donnons des conditions suffisantes assurant que le cisaillement keplérien apparaisse dans
un système dynamique donné. De plus, nous discutons la généricité de ce phénomène et,
dans certains cas, sa vitesse. Quelques exemples supplémentaires, qui ne sont pas de nature
hamiltonienne, sont donnés.

1. Introduction

When a celestial body is orbiting circularily around another, Kepler’s third law
asserts that the period of the orbit is proportional to the radius of the orbit at the
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power 3/2: closer bodies complete their orbits faster. When one considers bodies
whose size is non-negligible with respect to the radius of the orbit, this difference of
orbital periods induces a shearing effect, called Keplerian shear [Tis12]. Keplerian
shear is most notable in planetary rings, for instance Saturn’s. As a consequence,
any large-scale heterogeneity of the rings is wrapped around the rings, until – for
large enough times – it equidistributes angularly (see Figure 1.1): Keplerian shear
explains the radial symmetry of large planetary rings.

Figure 1.1. Equirepartition of a cloud of dust in Saturn’s rings. On the left: the
cloud (thick black line) at initial time. In the middle: the same cloud, after 6
hours. On the right: the same cloud, after 48 hours.

Keplerian shear is a more general feature of many integrable Hamiltonian dynami-
cal systems. Using action-angle coordinates, the phase space is foliated by invariant
Lagrangian tori, and the dynamics of a point belonging to the phase space is con-
jugate to a translation on one of these tori. Provided that the translations on the
Lagrangian tori are (in some sense) asynchronous, the dynamics shear the transver-
sals to the invariant tori, so that in large time, densities equidistribute along the tori.
In the case of planetary rings, the invariant tori are orbits of given radius, and the
asynchronicity comes from the variation of the orbital period: we recover classical
Keplerian shear. Other systems with Keplerian shear are the geodesic flow on a flat
torus (see Figure 1.2), or the dynamics of a ball bouncing in a square box.
In this article, we frame Keplerian shear in the more general context of ergodic

theory, as a conditional version of the notion of strong mixing.

Definition 1.1 (Keplerian shear). — A dynamical system (Ω, µ, (gt)t∈R) which
preserves a probability measure is said to exhibit Keplerian shear if, for all
f ∈ L2(Ω, µ),

(1.1) lim
t→+∞

f ◦ gt = Eµ(f |I),

where I is the invariant σ-algebra and the convergence is for the weak topology on
L2(Ω, µ).
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Figure 1.2. Propagation of a wavefront at unit speed in a unit square torus. The
wave starts from the corner, and propagates at unit speed. From left to right:
the wavefront at times 0.5, then 10 and 500 respectively.

Recall that a system (Ω, µ, (gt)t∈R) is mixing if and only if, for any function
f ∈ L2(Ω, µ),

lim
t→+∞

f ◦ gt =
∫

Ω
f dµ = Eµ(f),

where the limit is taken in the weak topology on L2(Ω, µ), so a system (Ω, µ, (gt)t∈R)
is mixing if and only if it is ergodic and exhibits Keplerian shear. As such, Keplerian
shear is a conditional version of the notion of strong mixing. Informally, if the system
restricted to its invariant subsets is mixing, then (Ω, µ, (gt)t∈R) has Keplerian shear.
The interesting examples occur when these restrictions are ergodic, but not mixing:
that is the case, for instance, of translation flows on a torus.
In this article, we give a criterion ensuring Keplerian shear for a large class of such

systems; for instance, one of our result is:

Proposition 1.2 (Corollary of Theorem 3.3 and Proposition 3.5). —
Let M be a Riemannian manifold, d > 1 and k ∈ [1,∞]. Let v ∈ Ck(M,Rd), and
put gt(x, y) := (x, y + tv(x)) for (x, y) ∈M × Td. If:

VolM(d〈ξ, v〉 = 0) = 0 ∀ ξ ∈ Zd \ {0},
then the invariant σ-algebra I is (up to completion) B(M) ⊗ {0,Td}, and the
dynamical system (M × Td,VolM ⊗LebTd , (gt)) exhibits Keplerian shear. Moreover,
the above criterion is satisfied for a generic v ∈ Ck(M,Rd).

We also study the rate of decay of conditional covariance for the geodesic flow
on T 1Td, and give non-trivial examples of non-Hamiltonian systems with Keplerian
shear.
Keplerian shear for the geodesic flow on the flat torus is related to two famous

problems. The first is Landau’s damping for plasma dynamics on a torus (see
Landau’s article [Lan46], and [MV11, Theorem 3.1] for a version which follows
closely our formalism), where the effect is qualitatively similar, although the under-
lying mechanism is different. The second is Gauss’s circle problem, which consists in
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counting integral points in a large disc; we shall discuss it in Sub-subsection 3.4.2.
The methods used to tackle these problems are either through Fourier transform
(e.g. for Landau damping), or with a big arc/small arc decomposition (typical for
Gauss’s circle problem). While both methods work in our setting, we shall only use
the Fourier transform.
In the context of ergodic theory, a notion closely related with Keplerian shear was

used independently by F. Maucourant [Mau17] to prove that the some hyperbolic
actions on (Rd o SLd(R))/(ZdoSLd(Z)) are ergodic for a large class of measures. The
presentation in [Mau17] is however very different, as the phenomenon – named
asynchronicity – is described as a version of unique ergodicity for measures with
prescribed marginals.

1.1. Organization of the article

Section 2 gives general results on the notion of Keplerian shear (including equiva-
lences between distinct definitions), and gives us some tools to use for the remainder
of the article.
Section 3 deals with a first family of systems which may exhibit Keplerian shear:

fibrations by tori, where the flow acts by translation on each torus. Using action-angle
coordinates, this family includes integrable Hamiltonian flows. We give an explicit
criterion ensuring Keplerian shear, check that it is Cr-generic (r > 1) and satisfied
for some explicit systems, then give rates of convergence for the geodesic flow on
T 1Tn. We also detail the link between Keplerian shear and the unique ergodicity as
investigated in [Mau17].
Section 4 deals with another family of dynamical systems (roughly, flows with a

change of time), which includes many non-Hamiltonian examples, and uses a different
mechanism to ensure Keplerian shear.
The shorter Section 5 gives examples of systems without Keplerian shear.

1.2. A note on the terminology

Given that Keplerian shear is a conditional version of the notion mixing, one could
want to use a terminology such as conditional (strong) mixing. For this article, we
prefer to eschew this option, and to keep the name of Keplerian shear; indeed, we
think that otherwise the name of conditional (strong) mixing would be overloaded.
In probability theory, there are already multiple notions of conditional mixing;

compare for instance [PR09] (where it refers to conditional α-mixing) and [KLMD16],
among others.
More worryingly, in ergodic theory, the notion of conditionally weakly mixing

systems is well-established (see e.g. [Tao08]), but if one where to conceive a notion
of conditional strong mixing along this line, the resulting notion would be stronger
than Keplerian shear, essentially requiring that almost every subsystem in its ergodic
decomposition be mixing.
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1.3. Open problems

We sum up here some further leads which seem worth pursuing.
The setting of Section 3 covers integrable Hamiltonian systems. However, it requires

some regularity, and in particular it does not cover singular systems. A conjecture by
Boshernitzan asserts that given a compact translation surface S, the geodesic flow
on (T 1S,Liouv) exhibits Keplerian shear. This question, mentioned as illumination
by circles, also appears in [Mon05], and admits a partial answer by J. Chaika and
P. Hubert [CH17], where the convergence of E(Covt(f, h|I)) to zero, with:

Covt(f, h|I) := E(f · h ◦ gt|I)− E(f |I)E(h|I),

is shown along a density 1 subsequence for all continuous observables f and h(1) .
In Subsection 3.5, we investigate the speed of Keplerian shear for the geodesic

flow on T 1Tn. The problem is simplified by the particularities of the geometry of
the sphere, more precisely the fact that its principal curvatures do not vanish. What
would the speed of convergence be if the curvature vanishes (e.g. in a topologically
or measure-theoretically generic setting)?
Finally, while the settings of Sections 3 and 4 are distinct and Keplerian shear arises

from different mechanisms, a more general structure (spaces fibrated by suspension
tori) mixes the difficulties of both. However, even a description of the invariant
σ-algebra I is not obvious at this level of generality.

2. General properties of Keplerian shear

The following Lemma 2.1 from basic functional analysis is quite useful to prove
the ergodicity and mixing of any given dynamical system, and will be instrumental
in the remainder of our article.

Lemma 2.1. — Let B be a Banach space. Let (Tt)t>0 be a family of operators on
B, such that supt∈R+ ‖Tt‖B→B < +∞. Let T be an operator on B.
Let E and E∗ be subsets of B and B∗ respectively, whose span is dense in their

respective space. Assume that, for all f ∈ E and g ∈ E∗,

(2.1) lim
t→+∞

〈g, Ttf〉 = 〈g, Tf〉.

Then (Ttf)t>0 converges weakly to Tf for all f ∈ B.

Proof. — By bilinearity, Equation (2.1) holds for all f ∈ span(E) and g ∈
span(E∗). Since supt∈R+ ‖Tt‖B→B < +∞, the family of functions Tt : B∗ × B → C
is locally equicontinuous, and by the remark above, it converges to T on a dense
subset. Hence, the convergence of Equation (2.1) holds for all f ∈ B and g ∈ B∗. �

(1)Technically, J. Chaika and P. Hubert show the convergence only for observables which do not
depend on the direction, but a straightforward generalization and a diagonal argument yield the
general case.
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When we use Lemma 2.1, the operator Tt shall correspond to the composition by
the flow gt at time t, and the operator T to the projection f 7→ E(f |I); if B = L2,
then E(f |I) is actually the orthogonal projection of f onto the closed subspace of
I-measurable square-integrable functions. Since the flow is assumed to preserve the
measure, for all t > 0 and all p ∈ [1,+∞], the operator Tt acting on Lp(Ω, µ) is
unitary. Lemma 2.1 implies that to prove the Keplerian shear in one of those Banach
space B (potentially different from L2), it is enough to restrict ourselves to subsets E
of B and E∗ of B∗ whose linear span is dense. As a first consequence, in the definition
of Keplerian shear, one may replace L2 by Lp for any p ∈ [1,+∞):

Proposition 2.2. — Let (Ω, µ, (gt)t∈R) be a flow which preserves a probability
measure. Let I be the invariant σ-algebra of the system. Then there is equivalence
between:

• There exists p ∈ [1,+∞) such that, for all f ∈ Lp(Ω, µ), we have f ◦ gt →
E(f |I) weakly in Lp.
• The system exhibits Keplerian shear.
• For all p ∈ [1,+∞), for all f ∈ Lp(Ω, µ), we have f ◦ gt → E(f |I) weakly
in Lp.

Proof. — We only prove the non-trivial implication. Let p ∈ [1,+∞). Assume
such that, for all f ∈ Lp(Ω, µ), we have f ◦ gt → E(f |I) weakly in Lp. Then, since
L∞ ⊂ Lp ∩ (Lp)∗, for all f1 and f2 in L∞,

lim
t→+∞

E(f1 · f2 ◦ gt) = 〈f1,E(f2|I)).

Let q ∈ [1,+∞). Since L∞ is dense in both Lq and (Lq)∗, by Lemma 2.1, the
convergence above occurs for all f1 and f2 in Lq and (Lq)∗ respectively. �

A second consequence is that Keplerian shear is not only a property of the invariant
measure µ, but of the class of µ.

Proposition 2.3. — Let (Ω, µ, (gt)t∈R) be a flow which preserves a probability
measure and exhibits Keplerian shear. Let ν � µ be a probability measure which is
also (gt)-invariant. Then (Ω, ν, (gt)t∈R) also exhibits Keplerian shear.

Proof. — Let (Ω, µ, (gt)t∈R) and ν be as in assumptions of the proposition. Let
h := dν/dµ. Since ν is (gt)-invariant, the function h is I-measurable.
Let f1 be in L∞(Ω, µ) be such that f1h ∈ L2(Ω, µ), and let f2 ∈ L∞(Ω, µ). Recall

that the conditional expectation Eµ(f2|I) is the unique I-measurable function in
L2(Ω, µ) such that, for all I-measurable and bounded k,

Eµ(Eµ(kf2|I)) = Eµ(kEµ(f2|I)).
Given a I-measurable and bounded function k and since h is I-measurable,

Eν(Eµ(kf2|I)) = Eµ(hEµ(kf2|I)) = Eµ(Eµ(hkf2|I))
= Eµ(hkEµ(f2|I)) = Eν(kEµ(f2|I)).

By the previous characterization of the conditional expectation, ν-almost surely,
Eν(f2|I) = Eµ(f2|I). Let t > 0. Then:

Eν(f1 · f2 ◦ gt) = Eµ((f1h) · f2 ◦ gt).
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Since the initial system is assumed to have Keplerian shear, f ∈ L∞(Ω, µ) and
gh ∈ L∞(Ω, µ), we get:

lim
t→+∞

Eν(f1 · f2 ◦ gt) = Eµ(f1hEµ(f2|I)) = Eν(f1Eν(f2|I)).

The canonical projection L∞(Ω, µ)→ L∞(Ω, ν) is surjective, so its image is dense in
L2(Ω, ν). The image of the set of functions f1 ∈ L∞(Ω, µ) such that f1h ∈ L2(Ω, µ)
by this projection is also dense in L2(Ω, ν). We use Lemma 2.1 to conclude. �

The last Lemma 2.1 asserts that, in the definition of Keplerian shear, the limit
object Eµ(f |I) cannot be meaningfully modified.

Proposition 2.4. — Let (Ω, µ, (gt)t∈R) be a flow which preserves a probability
measure. Let f, h ∈ L2(Ω, µ). If (f ◦ gt)t∈R converges weakly to h, then h = Eµ(f |I).

Proof. — Let f2 ∈ L2(Ω, µ). Our hypotheses imply that limt→+∞ Eµ(f2 · f ◦ gt)
= Eµ(f2h). In addition, the function t→ Eµ(f2 · f ◦ gt) is measurable and bounded.
By taking the Cesàro average, we get:

lim
t→+∞

Eµ
(
f2

t

∫ t

0
f ◦ gs ds

)
= lim

t→+∞

1
t

∫ t

0
Eµ(f2 · f ◦ gs) ds = Eµ(f2h).

On the other hand, by von Neumann’s ergodic theorem,

lim
t→+∞

Eµ
(
f2

t

∫ t

0
f ◦ gs ds

)
= Eµ(f2Eµ(f |I)).

Since this holds for all f2 ∈ L2, we have h = Eµ(f |I). �

Remark 2.5. — In most examples in this article, Ω = M × A is a product space,
the invariant σ-algebra is the Borel σ-algebra of M , and µ = µM ⊗µA is the product
of two probability measures. In this situation, the conditional expectation admits a
simple expression:

Eµ(f |I)(x) =
∫
{x}×A

f(x, y) dµA(y).

Note that the value of Eµ(f |I) does not depend on µM . For instance, for planetary
rings in polar coordinates, the state space is [a, b]×T1, the flow preserves each circle
{r}×T1, the invariant σ-algebra I is the σ-algebra of radially symmetric measurable
sets, and for any probability measure µ = µ[a,b] ⊗ Leb:

Eµ(f |I)(r) = 1
2π

∫ 2π

0
f(r, θ) dθ.

3. Affine tori bundles

3.1. Setting and main theorem

We generalize our introductory examples to a class of flows on fibre bundles by
tori which leave the basis invariant. More specifically, the spaces on which we work
are the following:
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Definition 3.1 (Affine tori bundles). — An affine tori bundle is a C1 manifold
Ω which is a fiber bundle by d-dimensional tori, with group structure Td o GLd(Z).
In other words, there exist:

• two integers n, d > 1;
• a n-dimensional C1 real manifold M ;
• a C1 projection π : Ω→M ;
• a maximal atlas A on M ,

such that, for all U ∈ A, we have a diffeomorphism ψU : π−1(U)→ U ×Td such that
π1 ◦ ψU = π, and the change of charts are given by:

ψV ◦ ψ−1
U :

(U ∩ V )× Td → (U ∩ V )× Td

(x, y) 7→ (x, αU,V (x) + AU,V (y))

where αU,V is C1 and AU,V ∈ GLd(Z).
The notions of “subset of zero Lebesgue measure” or “subset of full Lebesgue

measure” are well-defined on C1 manifolds (as they are invariant by diffeomorphisms),
and thus so is the notion of “probability measure absolutely continuous with respect
to the Lebesgue measure”. We will abuse notations and write Leb(A) = 0 for a
measurable subset of zero Lebesgue measure A, and µ � Leb for an absolutely
continuous measure.
Definition 3.2 (Compatible flows). — Let Ω be an affine tori bundle. A flow

(gt)t∈R on Ω is said to be compatible on a chart ψU : π−1(U) → U × Td if there
exists vψU ∈ C1(U,Rd) such that, for all t ∈ R,

ψU ◦ gt ◦ ψ−1
U (x, y) = (x, y + tvψ(x)).

A σ-finite measure µ on Ω is said to be compatible on a chart ψU : π−1(U)→ U×Td
if ψU,∗µ|π−1(U) = (π∗µ)|U ⊗ LebTd .
A flow or a measure is said to be compatible if it is compatible on all charts.
A compatible measure is always invariant under a compatible flow. In addition,

this notion behaves well with respect to the affine structure on the manifolds we work
with. If a flow or a measure is compatible on some chart ψU : U ∩V → π(U ∩V )×Td
and if ψU,V is a change of charts, then the flow or the measure is compatible on the
chart ψV |U∩V : U ∩ V → π(U ∩ V )× Td.
In what follows, we shall work mostly with absolutely continuous measures. In

this case, what happens on a subset of zero Lebesgue measure does not matter: the
assumption that M be a manifold can be weakened to account for singularities or
boundaries.
In light of the previous paragraph, the introduction of the structure group Td o

GLd(Z) might look gratuitous: one can always cut out the manifold M along a
set of zero Lebesgue measure to get a disjoint union of simply connected domains,
on which there is no holonomy. However, this structure appears naturally in many
examples. For instance, for all n > 1, we can work with the geodesic flow on TSn: if
we ignore the set of null tangent vectors, which is negligible, we get a fibre bundle over
R∗+× G̃r(2, n+ 1) with fibre S1. With the same adaptation, our setting also includes
billiards in ellipsoids or the geodesic flow on ellipsoids (see C. Jacobi [Jac66] for the
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geodesic flow on ellipsoids, J. Moser [Mos80] for similar examples, and S. Tabach-
nikov [Tab02] for the relation between the geodesic flow and the billiard). Let us
also mention the study of the geodesic flow on (Rd o SLd(R))/ZdoSLd(Z) done by
F. Maucourant [Mau17], in which the same structure appears.
Another important remark is that, when we change charts from chart U to chart

V , we have vψV |U∩V = AU,V vψU |U∩V . So, while there is in general no well-defined
function v : M → Rd which gives the direction of the flow, the set of functions
{x 7→ 〈ξ, v(x)〉}ξ∈Zd−{0} is well-defined.
We are now ready to state our main Theorem 3.3.

Theorem 3.3. — Let π : Ω→M be an affine d-dimensional tori bundle over a
manifold M . Let (gt)t∈R be a compatible flow, and µ be an absolutely continuous
compatible probability measure.
If Leb

(⋃
ξ∈Zd−{0}{d〈ξ, v〉 = 0}

)
= 0 on M , then the invariant σ-algebra I is

(up to completion) π−1B(M), and the dynamical system (Ω, µ, (gt)) exhibits Ke-
plerian shear.

Proof. — Assume that Leb
(⋃

ξ∈Zd−{0}{d〈ξ, v〉 = 0}
)

= 0. Then Leb
(⋃

ξ∈Zd−{0}{〈ξ,
v〉 = 0}

)
= 0, so (gt(x, y))t∈R equidistributes in {x} × Td for Lebesgue-almost every

x. Hence, up to completion by the measure µ, the invariant σ-algebra of the flow is
I := π∗BM , where BM is the Borel σ-algebra of M .
Our goal is to find a family of observables which is large enough to generate a

dense subset of L2(Ω, µ), and specific enough to make our computations manageable.
Roughly, we choose a specific frequency in the direction of the torus Td. Under the
hypothesis of the Theorem 3.3, we can rectify the differential form 〈ξ, v〉 so that
it has a very simple expression. Then we choose observables which split into an
observable a in the direction of 〈ξ, v〉, and another observable b in the direction of
the kernel. The later observable b does not see the shearing at all, so the shearing
only affects a.
Let (Ui, ϕi)i∈I be a countable cover of M by disjoint open charts(2) , up to a

Lebesgue-negligible set, with ϕi : Ui → Wi ⊂ Rn. Let ψi : π−1(Ui) → Ui × Td be a
family of trivializing charts for Ω, and let vi := vψi .
For ξ ∈ Zd \ {0}, let V ξ

i := Vi ∩ {d〈ξ, vi〉 = 0}. Using the local normal form of
submersions, we can find a finite or countable family (V ξ

ij)j∈J(i,ξ) of open sets which
are pairwise disjoint, cover V ξ

i up to a Lebesgue-negligible set, and with charts
ϕξij : V ξ

ij → W ξ
ij ⊂ Rn such that 〈ξ, vi〉 ◦ ϕξ,−1

ij (x) = x1. For ξ = 0, we choose J(i, ξ)
to be a singleton and take V 0

ij := Vi.
Given a point p ∈ Rn, we write px its first coordinate in Rn, and py for its remaining

n− 1 coordinates in Rn. Given a point p ∈ M × Td, we write pz for its coordinate

(2)The goal of this first decomposition is only to get well-defined speed functions vψi
, and can be

bypassed if the fibre bundle is trivial.
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in Td. We apply Lemma 2.1, with the Banach space B = B∗ = L2(Ω, µ), and:

E = E∗

=
⋃
i∈I
ξ∈Zd

j∈J(i,ξ)

{
a
(
(ϕξij ◦ π)x

)
b
(
(ϕξij ◦ π)y

)
e2πi〈ξ,ψi,z〉 : a, b ∈ L∞, ab ∈ L∞

(
W ξ
ij,Leb

)}
.

Let fj = ajbje
〈ξj ,·〉, with j ∈ {1, 2}, be in E. If the corresponding indices i ∈ I are

different, then f1 and f2 ◦ gt have disjoint support for all t, so Eµ(f 1 · f2 ◦ gt) = 0
= Eµ(f 1 ·Eµ(f2|I)) for all t ∈ R. We can thus assume without loss of generality that
they are supported by the same open set π−1(Vi).
If the corresponding frequencies ξj ∈ 2πZd are different, then the integral of

f 1 · f2 ◦ gt on each torus Td vanishes, and a least one of Eµ(f 2|I) or Eµ(f2|I)
vanishes, so for all t ∈ R:

Eµ
(
f 1 · f2 ◦ gt

)
= 0 = Eµ

(
Eµ(f 1|I)Eµ(f2|I)

)
= Eµ

(
f 1 · Eµ(f2|I)

)
.

We can thus assume without loss of generality that their frequencies ξj are the same;
let us denote it by ξ. If ξ = 0, then f1 and f2 are invariant under the flow, so there
is nothing more to prove. We further assume that ξ 6= 0.
If the corresponding indices j ∈ J(i, ξ) are different, then the supports of f1 and

f2 ◦ gt are disjoint for all t, so then again there is nothing more to prove. We thus
further assume that these indices are the same.
Write hξij := d(ϕξij,∗π∗µ)/d Leb ∈ L1(W ξ

ij,Leb). Then, for all t ∈ R:

Eµ(f 1 · f2 ◦ gt) =
∫
W ξ
ij

a1(x)b1(y)a2(x)b2(y)
∫
Td
e2πi〈ξ,z+tvi◦ϕ−1

ij (x,y)−z〉 dzhξij(x, y) dx dy

=
∫
W ξ
ij∩{0}×Rn−1

[
(b1b2)(y)e2πi〈ξ,tvi◦ϕ−1

ij (0,y)〉

×
∫
W ξ
ij∩(y+R×{0})

(a1a2)(x)eixthξij(x, y)
]

dx dy.

The function x 7→ (a1a2)(x)hξij(x, y) is integrable for almost every y. By the
Riemann–Lebesgue lemma, the inner integral decay to 0 as t → ±∞. The inner
integral is bounded by:

‖a1a2‖L∞
∫
W ξ
ij∩(y+R×{0})

hξij(x, y) dx,

which is integrable as a function of y. Hence, by the dominated convergence
Theorem 3.3,

lim
t→±∞

Eµ(f 1 · f2 ◦ gt) = 0 = Eµ(f 1 · Eµ(f2|I)). �
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Remark 3.4 (Non-resonance conditions for Hamiltonian systems). —
The condition that d〈ξ, v〉 6= 0 almost everywhere for all ξ ∈ Zd \ {0} is reminiscent
of non-resonance conditions for Hamiltonian systems. An integrable Hamiltonian
flow can be parametrized by action-angle coordinates (I, θ) ∈ Rm × Tn, satisfying:

(3.1)


dI
dt = 0,
dθ
dt = v(I).

Such a flow, is, by our definitions, compatible. The system is said to satisfy Kol-
mogorov’s condition if v : Rm → Rn has full rank, and Arnol’d’s condition if
Vect(v) : Rm → Pn(R) has full rank [LM88, Chapter 6.4].
These conditions arise naturally in the study of the stability of solutions of Hamil-

tonian perturbations of Equation (3.1). For instance, under Kolmogorov’s condition
with m = n, the perturbed system satisfies a KAM theorem [Kol54], which implies
the existence of a positive measure subset of invariant tori (after perturbation). Kol-
mogorov’s and Arnol’d’s conditions also appear in the context of averaging. In a
perturbation of Equation (3.1), the action variable I may change, albeit much more
slowly than the angle variable θ. The trajectory of the perturbed system can be well
approximated by a trajectory of the flow averaged over the angle (fast) variable, as
long as the system does not spend too much time close to the resonances. The non-
degeneracy conditions above ensure that the volume of points close to the resonances
is small.
Kolmogorov’s condition is stronger than the condition of Theorem 3.3: for any

fixed ξ ∈ Zd \ {0}, Kolmogorov’s condition imply that the level set {d〈ξ, v〉 = 0} is
an hypersurface, and thus has zero Lebesgue measure. However, the weaker Arnol’d
condition is not sufficient, as it does not rule out all resonances; for instance, a
non-vanishing flow on a circle satisfies Arnol’d condition.

3.2. Genericity

We check in this subsection that the sufficient condition in Theorem 3.3 is
Cr-generic for all r ∈ [1,+∞]. Given a Cr affine tori bundle Ω, we begin by
endowing the space of Cr compatible flows with a topology.
Let r ∈ [1,+∞], and π : Ω → M be a Cr affine d-dimensional tori bundle over a

manifold M . Let (Ui)i∈I be a locally finite open cover of M with trivializing charts
ϕi : Ui → Wi ⊂ Rn. Let (Ki)i∈I be a cover of M by compact sets subordinated
to (Ui)i∈I .
Denote by F r(M,Rd) the set of Cr compatible flows on Ω. For each v ∈ F r(M,Rd),

there is a unique family of function (vi)i∈I which generates the flow, where each
vi belongs to Cr(Ui,Rd). A sequence (vn) of elements of F r(M,Rd) converges to
v ∈ F r(M,Rd) if, for all i ∈ I, all the derivatives of (vn,i)n>0 (up to order r) converge
to those of v uniformly on each Ki. This topology does not depends on the choice
of the charts (Ui)i∈I nor on that of the compacts (Ki)i∈I , and makes F r(M,Rd) a
Baire space.
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Proposition 3.5. — Let r ∈ [1,+∞]. Let π : Ω → M be a Cr affine
d-dimensional tori bundle over a manifold M .
For a Baire generic subset of compatibles flows in F r(M,Rd), the dynamical

system (Ω, µ, (gt)) exhibits Keplerian shear for all absolutely continuous compatible
measures µ.
Proof. — We use the criterion of Theorem 3.3. It is enough to prove that, for all

ξ ∈ Zd \ {0} and all i ∈ I:
Aξ,i :=

{
v ∈ F r(M,Rd) : Leb({d〈ξ, vi〉 = 0} ∩Ki) = 0

}
is Baire generic. But Acξ,i = ⋃

n>1
⋂
m>1Bξ,i,n,m, with:

Bξ,i,n,m =
{
v ∈ F r(M,Rd) : Leb

({∥∥∥d〈ξ, vi ◦ ϕ−1
i 〉

∥∥∥ 6 1/m
}
∩ ϕi(Ki)

)
> 1/n

}
.

All is left is to prove that ⋂m>1Bξ,i,n,m is meager. Note that:

Bc
ξ,i,n,m ={

v ∈ F r(M,Rd) : Leb
({∥∥∥d〈ξ, vi ◦ ϕ−1

i 〉
∥∥∥ > 1/m

}
∩ϕi(Ki)

)
> Leb(ϕi(Ki))−1/n

}
.

Let v ∈ Bc
ξ,i,n,m. By inner regularity of the Lebesgue measure on ϕi(Ki), there exists

K ′ ⊂ Ki compact such that ‖d〈ξ, vi ◦ ϕ−1
i 〉‖ > 1/m on ϕi(K ′) and Leb(ϕi(K ′)) >

Leb(ϕi(Ki))−1/n. By compactness, if v′ is close enough to v, then ‖d〈ξ, v′i ◦ ϕ−1
i 〉‖ >

1/m on ϕi(K ′), and thus v′ ∈ Bc
ξ,i,n,m. Hence, each Bξ,i,n,m is closed. We only need

to show that the sets ⋂m>1Bξ,i,n,m have empty interior.
Fix ξ ∈ Zd \ {0}, i ∈ I and n > 1. Let χi ∈ Cr(Vi, [0, 1]), with Supp(χi) ⊂ Vi

compact and χi ≡ 1 on ϕi(Ki). For t ∈ R, let v(t) be defined on (Ui, ϕi) by:
vi(t) ◦ ϕ−1

i (x) := vi ◦ ϕ−1
i (x) + tx1χi(x)ξ,

and on (Uj, ϕj), with j 6= i, by:
vj(t) ◦ ϕ−1

j (x) := vj ◦ ϕ−1
j (x) + tx1χi ◦ ϕi ◦ ϕ−1

j (x)1Ui∩Uj(x)AUi,Uj(ξ).
Then limt→0 v(t) = v in F r(M,Rd). On ϕi(Ki), we have χi ≡ 1, therefore:

d〈ξ, vi(t) ◦ ϕ−1
i 〉 = d〈ξ, vi(0) ◦ ϕ−1

i 〉+ t ‖ξ‖2 e∗1,

with e∗1 = (1, 0, . . . , 0). By the pigeonhole principle, for all m > 1, at least one of the
functions v(2k/(‖ξ‖2m)), with 0 6 k 6 dnLeb(ϕi(Ki))e, belongs to Bc

ξ,i,n,m. Thus
there exists a sequence (tm)m>1 such that v(tm) ∈ Bc

ξ,i,n,m and limm→+∞ tm = 0. This
finishes the proof. �

Remark 3.6. — If Ω = M ×Td and r > 2, we can conclude using the (well known,
but more difficult to prove) fact that a generic function in Cr(M,R) is Morse.

3.3. Examples

The simplest non-trivial example of Keplerian shear is given by the map

T =
(

1 1
0 1

)
,
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acting on T2 = {(x, y) : x, y ∈ T}. This transformation preserves the Lebesgue
measure, as well as all the circles T×{y}. Keplerian shear is rather easy to prove(3) ,
as there is no need to play with charts; one can use directly the Fourier basis on
L2(T2,Leb), which behaves well under T . A slightly more sophisticated version of
this argument is used in Sub-subsection 3.5.1 to compute the speed of decay of
correlations.
All systems are not that simple. Besides genericity, Theorem 3.3 provides a useful

criterion to prove that a given dynamical system exhibits Keplerian shear. We now
use it to prove Keplerian shear for two dynamical systems: the billiard in the unit
ball BD ⊂ RD, and the unit speed geodesic flow on Td (with the flat metric).

3.3.1. Billiard in a ball

Let BD be the unit ball in RD, with D > 2. Consider a particle moving with unit
speed in BD, which reflects specularly on the boundary SD−1. The phase state is an
orbifold T 1BD, and the flow (gt)t∈R preserves the Liouville measure µD (which here
is essentially the Lebesgue measure on BD × SD−1).

Proposition 3.7. — The dynamical system (T 1BD, µD, (gt)t∈R) exhibits Keple-
rian shear.

Proof. — If we exclude trajectories which go through the origin, any given trajec-
tory lies in the unique plane generated by the center of the ball, the position and
the speed at any given time. Restricted to any such plane, the billiard is isomorphic
to the billiard in B2. Since a disjoint union of systems with Keplerian shear still has
Keplerian shear, it is enough to prove that (T 1B2, µ2, (gt)t∈R) has Keplerian shear.
The space T 1B2 is 3-dimensional. The angle θ ∈ (−π/2, π/2) with which the

trajectories hit the boundary is an invariant of the flow. Hence, (T 1B2, µ2, (gt)t∈R)
is isomorphic to (Ω, µ̃, (g̃t)t∈R), where:

• Ω = (−π/, π/2)× T2;
• µ̃ = 2−1 cos(θ)dθ ⊗ LebT2 ;
• g̃t(θ, x) = (θ, x+ tv(θ)),

and v(θ) = 2 cos(θ)(1, 1/2− θ/π). In particular,

v′(θ) = −2 sin(θ)
(

1
1
2 −

θ
π

+ 1
π

cot(θ)

)
.

For all ξ ∈ Z2 \{0}, the function 〈ξ, v′〉 is analytic and non-zero, and thus its zero set
is discrete. By Theorem 3.3, the system (T 1B2, µ2, (gt)t∈R) has Keplerian shear. �
A similar proof applies to the billiard in an ellipsoid, or the geodesic flow on a

non-spherical ellipsoid.

(3)This example has been used with some success by the author as an exercise in a graduate-level
course in ergodic theory.
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3.3.2. Geodesic flow on the torus

The second example we discuss is the unit speed geodesic flow on the torus Td,
with d > 1. This flow, again, preserves the Liouville measure.

Proposition 3.8. — The dynamical system (T 1Td,Liouv, (gt)t∈R) exhibits
Keplerian shear.

Proof. — The manifold T 1Td is trivializable, and thus isomorphic to Td × Sd−1.
The geodesic flow (gt)t∈R acts on T 1Td by:

gt(x, v) = (x+ tv, v).

Let ξ ∈ Zd \ {0}. Then d〈ξ, v〉 vanishes at only two points, which are ±ξ/ ‖ξ‖. By
Theorem 3.3, the system (T 1Td,Liouv, (gt)t∈R) has Keplerian shear. �

3.4. Unique ergodicity

In this subsection, we describe the relation between Keplerian shear and the unique
ergodicity of a transformation acting on spaces of probability measures, as introduced
by F. Maucourant [Mau17]. We drop the assumption that the function v generating
the flow be C1: here, continuity is enough.

3.4.1. Definition and relation with Keplerian shear

Let π : Ω → M be a compact affine tori bundle, (gt) a compatible flow on Ω,
and ν ∈ P(M). Denote by Pν ⊂ P(Ω) the subspace of probability measures µ̃
such that π∗µ̃ = ν, and by ν ⊗ Leb the unique compatible measure on Ω such that
π∗(ν ⊗ Leb) = ν.
Let Gt := gt,∗ act continuously on P(Ω), which is compact when endowed with

the weak convergence. Since the flow is compatible, (Gt) preserves Pν , which is also
compact. Note that ν ⊗ Leb is a fixed point of (Gt), so δν⊗Leb is (Gt)-invariant.

Theorem 3.9. — Let π : Ω→M be a compact affine tori bundle. Let (gt) be a
compatible flow on Ω. Let ν ∈ P(M).
The system (Ω, ν⊗Leb, (gt)) exhibits Keplerian shear if and only ifGt(µ)→ ν⊗Leb

for all µ ∈ Pν . Then (Pν , (Gt)) is uniquely ergodic.

Proof. — Let π : Ω→M , (gt) and ν be as in the hypotheses of the Theorem 3.9.
First, we assume that (Ω, ν ⊗ Leb, (gt)) exhibits Keplerian shear. We can find a
countable cover of M by disjoint open charts (Ui)i∈I , up to a ν-negligible subset.
Then all (Ui × Td, ν|Ui ⊗ Leb, (gt)) exhibit Keplerian shear.
Let µ be inM(Ui×Td) with π∗µ = ν|Ui . Endow Ui with any bounded Riemannian

metric, and Td with a flat metric. This yields a Riemannian metric on Ui × Td (e.g.
the product metric), from which we get a Wasserstein distance dW , which metrizes
the weak convergence.
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We denote by ∗ the fiberwise convolution on each torus. Fix ε > 0, and let ρε
be an absolutely continuous measure supported on BTd(0, ε). Then dW (ρε, δ0) 6 ε,
whence, for all t:

dW (Gt(µ ∗ ρε), Gt(µ)) = dW (µ ∗Gt(ρε), µ ∗Gt(δ0)) 6 ε.

On the other hand, µ ∗ ρε � ν|Ui ⊗ Leb and π∗(µ ∗ ρε) = ν. As we see by inte-
grating against test functions, Keplerian shear implies that Gt(µ ∗ ρε)→ ν|Ui ⊗ Leb
weakly. In particular, dW (Gt(µ ∗ ρε), ν|Ui ⊗ Leb) 6 ε for all large enough t, whence
dW (Gt(µ), νUi ⊗ Leb) 6 2ε. As this is true for all ε > 0, we get Gt(µ)→ ν|Ui ⊗ Leb.
Since this is true for all i, Gt(µ) → ν ⊗ Leb for all µ ∈ Pν . Hence, (Pν , (Gt)) is
uniquely ergodic.
Assume now that Gt(µ) → ν ⊗ Leb for all µ ∈ Pν . By [Mau17, Theorem 1], g1

is asynchronous, so the set of points x of M such that (gt) acts on {x} × Td by an
irrational translation has full ν-measure. Hence, the invariant σ-algebra is π∗BM .
Let (Ui)i∈I be an open cover of M by charts. Let f ∈ C(Ω,C). Let i ∈ I and

ρ(x, y) = a(x)b(y) on Ui × Td, for a ∈ Cc(Ui,R∗+) and b ∈ C(Td,R∗+) such that∫
Td b d Leb = 1. Take ρ ≡ 0 on π−1(U c

i ) and a ≡ 0 on U c
i . Let µ be the probability

measure on Ω defined by µ|π−1(Ui) := νUi ⊗ (b d Leb) and µ|π−1(Ui)c := νUci ⊗ Leb.
Then µ ∈ Pν , and, for all t:∫

Ω
f ◦ gt · ρ dν ⊗ Leb =

∫
Ui
fa · gt,∗(ν|Ui ⊗ b d Leb) =

∫
Ω
fa ·Gt(µ).

By assumption, Gt(µ) converges weakly to ν ⊗ Leb, so the quantity above con-
verges to: ∫

Ω
fa dν ⊗ Leb = Eν⊗Leb(Eν⊗Leb(f |I)Eν⊗Leb(ρ|I)).

By Lemma 2.1, (Ω, ν ⊗ Leb, (gt)) exhibits Keplerian shear. �

Remark 3.10 (Keplerian shear is stronger than unique ergodicity). —
F. Maucourant gives an example [Mau17] of a compatible flow and a measure ν

such that (Pν , (Gt)) is uniquely ergodic, but the fixed point ν ⊗ Leb behaves like
an indifferent fixed point: there are exceptional sequences of times (ti) for which
Gti(ν ⊗ δ0) is far from ν ⊗ Leb. As a corollary, the unique ergodicity of (Pν , (Gt))
does not imply that (Ω, ν ⊗ Leb, (gt)) has Keplerian shear.

3.4.2. An application : Gauss’ circle problem

The alternative characterization of Keplerian shear given by Theorem 3.9 is also
useful in settings which use non-absolutely continuous measures. Let us give an
elementary application to a variation on Gauss’ circle problem. Let S(x, r) be the
sphere of center x and radius r in Rd, with d > 2. Let ε ∈ (0, 1/2). What is the
number of integral points in an ε-neighborhood of S(x, r)?
Let σx,r be the uniform measure on S(x, r), and $ the canonical projection from

Rd to Td. Take Ω := Sd−1×Td, with gt(v, y) = (v, y+ tv) and ν the uniform measure
on Sd−1. Let f(y) := 1|y|6ε on Td. Then:

σx,r
({
y ∈ Rd : d(y,Zd) 6 ε

})
=($∗σx,r)

({
y ∈ Td : d(y, 0) 6 ε

})
=Gt(ν⊗δ$(x))(f).
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The system (Ω, ν ⊗ Leb, (gt)) has Keplerian shear by Proposition 3.8, so that:

lim
r→+∞

σx,r
({
y ∈ Rd : d(y,Zd) 6 ε

})
= Leb(BRd(0, ε)) = εd Lebd(BRd(0, 1)).

In addition, S(x, r) ∩B(Zd, ε) consists of finitely many caps, which get flatter as
r increases; the number of integral points ε-close to S(x, r) is the number of such
caps. Let us direct these caps by the outward normal at their center. Since the
measure supported by the projection on Sd−1 × Td of these caps equidistributes in
Sd−1 ×B(0, ε), we get that the average area (for $∗σx,r) of these caps is equivalent
with:

Average cross-section of BRd(0, ε)
Lebd−1(S(0, r)) = εd−1 Lebd(BRd(0, 1))

2rd−1 Lebd−1(Sd−1) = εd−1

2drd−1 .

Hence, the number of integral points in an ε-neighborhood of S(x, r) is equivalent,
as r goes to infinity, with:

εd Leb(BRd(0, 1)) · 2drd−1

εd−1 = 2εdrd−1 Lebd(BRd(0, 1)) = 2εLebd−1(S(x, r)).

This stays true if the sphere is replaced by any compact manifold, under non-
resonance conditions which ensure Keplerian shear for the relevant dynamical system.
Note also that for the sphere, by integrating over r, one recovers the more elementary
fact that the number of integral points at distance r from the origin is equivalent to
rd Lebd(BRd(0, 1)).
This result is not optimal. For instance, the best known bounds for Gauss’ circle

problem [Hux03] imply that:

Card
[
Z2 ∩ (S(0, r) +B(0, ε))

]
∼ 4πεr +O(r 131

208 ln(r) 18627
8320 ),

and this error bound holds if the circle is replaced by a closed C3 curve with non-
vanishing curvature. The proof of this result, however, requires more technology(4) .

3.5. Speed of mixing

Keplerian shear is a qualitative property of a measure-preserving dynamical system,
which asserts the convergence to zero on average of the conditional correlations:
(3.2) E(Covt(f1, f2|I)) = E(f 1 · f2 ◦ gt)− E(E(f 1|I)E(f2|I)).
For a mixing system, the σ-algebra I is trivial, so the correlations E(f 1 · f2 ◦ gt)−
E(f 1)E(f2) decay to zero. One cannot expect in general a rate of convergence for
all observables f1, f2 ∈ L2; however, it is often possible to get a decay rate for
observables f1 and f2 which are smooth enough, such a rate of convergence being a
measure of how chaotic the system is. In the setting of Keplerian shear, this motivates
the study of the rate of convergence to zero of the conditional correlations.
In the examples we discuss below, f1 and f2 shall belong to anisotropic Sobolev

spaces (or, more precisely, weighted anisotropic Sobolev spaces). The regularity of

(4)Typically, it uses a decomposition of the circle into “big arcs” and “small arcs”, which can also
be used to prove Keplerian shear directly without using the Fourier transform.
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such observables depends on the direction. We refer the reader to the monograph by
H. Triebel for additional information [Tri06, Chapters 5-6](5) .
In our setting, we need relatively little regularity in the direction of the invariant

tori: what matters most is the regularity transversally to the invariant tori. This is
not surprising in view of Theorem 3.9, which asserts roughly that E(Covt(f1, f2|I))
vanishes, where f1 is Lipschitz and f2 is e.g. Leb⊗δ0 on M × Td. In this case, f2 is
a distribution which is more regular transversally to the invariant tori than in the
direction of the invariant tori.
Instead of working out a general statement, we discuss a few simple systems: the

parabolic automorphism of T2 at the beginning of Subsection 3.3, planetary rings,
and the unit speed geodesic flow on Td.

3.5.1. Transvection on T2

Consider the map

(3.3) T =
(

1 0
1 1

)
,

acting on T2, endowed with the Lebesgue measure. Let us define suitable anisotropic
Sobolev spaces. For ξ ∈ R2, let:

h(ξ) :=


(
1 + ξ2

1
ξ2

2

) 1
2 if ξ2 6= 0

1 if ξ2 = 0
.

For any real number s > 0, let:

Hs,0(T2) :=
{
f ∈ L2(T2) : ‖f‖2

Hs,0(T2) :=
∑

ξ∈2πZ2

h(ξ)2s|f̂ |2(ξ) < +∞
}
.

The following proposition gives decay bounds on the correlation coefficients for
Sobolev or analytic observables.

Proposition 3.11. — Let f1, f2 be in Hs,0(T2). Then:∣∣∣E(Covn(f1, f2|I))
∣∣∣ 6 4s

n2s ‖f1‖Hs,0(T2) ‖f2‖Hs,0(T2) .

If f1 and f2 are analytic, then there exist constants c, C > 0 (depending on f1 and
f2) such that, for all n ∈ Z,∣∣∣E(Covn(f1, f2|I))

∣∣∣ 6 Ce−c|n|.

Proof. — Let f1, f2 be in Hs,0(T2). By Plancherel’s theorem,

E(f1 · f2 ◦ T n) =
∑

ξ∈2πZ2

f̂ 1(ξ)f̂ 2(T ∗nξ),

(5)A small difference is that our spaces Hs,0 and Hs,n−1
2 below do not fit exactly in the framework of

Triebel, because the weights do not satisfy the assumptions at the beginning of [Tri06, Chapters 6].
However, one can write for instance Hs,0(T2) = L2(T1)⊕Hs,0(T2), where L2(T1) has no effect on
the correlations and Hs,0(T2) fits into Triebel’s framework.
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so that:

∣∣∣E(Covn(f1, f2|I))
∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑

ξ∈2πZ2

ξ2 6=0

f̂ 1(ξ)f̂ 2(T ∗nξ)

∣∣∣∣∣∣∣∣∣
6

∑
ξ∈2πZ2

ξ2 6=0

[
|f̂ 1h

s| · |f̂ 2h
s| ◦ T ∗n · h−s · h−s ◦ T ∗n

]
(ξ)

6 ‖f1‖Hs,0(T2) ‖f2‖Hs,0(T2) sup
ξ∈2πZ2

ξ2 6=0

{h−s(ξ)h−s(T ∗nξ)}.

Let ξ2 ∈ 2πZ \ {0}. The function ξ1 7→ h−s(ξ1, ξ2)h−s(ξ1 + nξ2, ξ2) is maximal for
ξ1 = −nξ2/2, where its value is (1 + n2/4)−s, so that:

∣∣∣E(Covn(f1, f2|I))
∣∣∣ 6 4s

n2s ‖f1‖Hs,0(T2) ‖f2‖Hs,0(T2) .

The proof for analytic functions is essentially the same. The only remark needed
is that, if f is analytic on the torus, then there exist constants c′, C ′ > 0 such that
|f̂ |(ξ) 6 C ′e−c

′|ξ|. �

Since the bound is quite elementary, this result can be generalized to other classes
of regularity; the speed of decay of correlations will be directly related to the speed
of decay of the Fourier transform of f1 and f2. For instance, if f1 and f2 belong to
the Gevrey class Gs(T2) for some s > 1, then their Fourier series are dominated by
a stretched exponential [Rod93, Theorem 1.6.1]. Then, there exist some constants
C, ε > 0 such that: ∣∣∣E(Covn(f1, f2|I))

∣∣∣ 6 Ce−ε|n|
1/s
.

The map T is especially well-behaved: it acts nicely on Fourier series, the system
is smooth, and the shearing (the derivative of v) do not vanish. The estimates of
Proposition 3.11 are thus a best case behaviour, that we do not expect to hold for
more general systems.

3.5.2. Planetary rings

The analysis for the transvection defined at Equation (3.3) can be adapted to
planetary rings, with a few subtleties. Using polar coordinates, the dynamics of
planetary rings can be modeled by the following measure-preserving dynamical
system :

• state space: Ω := [a, b]× T1, with 0 < a < b;
• invariant probability measure: µ := (b2 − a2)−12rdrdθ (which is the image of
the uniform measure on the planetary ring by polar coordinates);
• flow: gt(r, θ) = (r, θ+Cr−

3
2 t) for some constant C > 0, by Kepler’s third law.
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Then, for any f1, f2 ∈ L2([a, b]× T1),∫
Ω
f1 · f2 ◦ gt dµ = 2

b2 − a2

∫
T1

∫ b

a
f1(r, θ)f2(r, θ + Cr−

3
2 t)r dr dθ

= 4
3(b2 − a2)

∫
T1

∫ a−
3
2

b−
3
2
f1(u− 2

3 , θ)f2(u− 2
3 , θ + Cut)u− 7

3 du dθ.

The functions f̃ 1 : (u, θ) 7→ u−
7
3f1(u− 2

3 , θ) and f̃ 2 : (u, θ) 7→ f2(u− 2
3 , θ) are as

regular as f1 and f2 respectively. We need to study the decay of the integrals:∫
T1

∫
R
1

[b−
3
2 ,a−

3
2 ]×T1(u, θ)f̃ 1(u, θ)f̃ 2(u, θ + Cut) du dθ.

The effect of gt on the second coordinate is a translation proportional to u, as with
the transvection we studied before. We thus introduce a Sobolev space Hs,0(R×T1).
To simplify our analysis, we use a more classical kernel h(ξ1, ξ2) :=

√
1 + ξ2

1 . For
f ∈ L2(R× T1), we define:

‖f‖2
Hs,0(R×T1) :=

∑
ξ2∈2πZ

∫
R
h(ξ)2s|f̂ |2(ξ) dξ1,

and Hs,0(R× T1) :=
{
f ∈ L2(R× T1) : ‖f‖Hs,0(R×T1) < +∞

}
.

The computations in the proof of Proposition 3.11 can be adapted to this setting.
Thus, there exists a constant C1(s) such that, for all f1, f2 ∈ Hs,0(R× T1),∣∣∣E(Covt(f1, f2|I))

∣∣∣ 6 C1(s)
t2s

∥∥∥f11[a,b]×T1

∥∥∥
Hs,0(R×T1)

‖f2‖Hs,0(R×T1) .

If f1 or f2 is compactly supported in (a, b)×T1, the decay rates are still in O(t−2s),
as in Proposition 3.11. Otherwise, if s is too large, the function f11[a,b]×T1 may not
belong to Hs,0(R × T1). In other words, the boundary affects the rate of decay of
correlations.
Let s < 1/2. The continuity of the product of functions belonging to suitable

Sobolev spaces yields:∥∥∥f11[a,b]×T1

∥∥∥
Hs,0(R×T1)

6 C2(s) ‖f1‖
H

1
2 ,0(R×T1)

.

Hence, for any S < 1, there exists a constant C(S) such that, for all f1 and f2 ∈ H
1
2 ,0,∣∣∣E(Covt(f1, f2|I))

∣∣∣ 6 C(S)
tS
‖f1‖

H
1
2 ,0(R×T1)

‖f2‖
H

1
2 ,0(R×T1)

.

3.5.3. Speed for the geodesic flow on the torus

The geodesic flow is harder to analyse than the transvection: not only does it lack
its algebraic structure, but the functions 〈ξ, v〉 have vanishing gradient at two points
for any non-zero ξ. Hence, we cannot expect the same rate of convergence. We use
the stationary phase method to compute the speed of convergence. This yields a
polynomial rate of decay for a large space of observables belonging again to some
anisotropic Sobolev spaces (Proposition 3.12).
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The definition of these anisotropic Sobolev spaces is however slightly more delicate.
Let d > 2 and s > (d− 1)/2. For (k, ξ) ∈ Rd−1 × 2πZd, let:

h(k, ξ) :=

1 + (1+‖k‖2)
s
2

‖ξ‖
d−1

4
if ξ 6= 0

1 if ξ = 0
.

We see T 1Td as Sd−1 × Td. Fix a finite open cover by charts (Ui, ϕi) of Sd−1, and
a smooth partition of the unit (χi) subordinated to (Ui). For f ∈ L2(Sd−1 × Td)),
define:

‖f‖2
Hs, d−1

2
:=
∑
i

∑
ξ∈2πZ2

∫
Rd−1

h2
∣∣∣∣ ̂[

(fχi) ◦ (ϕ−1
i , id)

]∣∣∣∣2(x, ξ) dx,

and Hs, d−1
2 (Sd−1×Td) :=

{
f ∈ L2(Sd−1 × Td) : ‖f‖2

Hs, d−1
2
< +∞

}
. In the same way,

we define the Sobolev space Hs(Sd−1). These spaces do not depend on the choice of
the family of charts and of the partition of the unit.
The following Proposition 3.12 gives decay bounds on the correlation coefficients

for observables in Hs, d−1
2 .

Proposition 3.12. — Let d > 2 and s > (d− 1)/2. There exists a constant C
such that, for all f1, f2 ∈ Hs, d−1

2 (Sd−1 × Td), for all t ∈ R,

(3.4)
∣∣∣E(Covt(f1, f2|I))

∣∣∣ 6 C

t
d−1

2
‖f1‖

Hs, d−1
2
‖f2‖

Hs, d−1
2
.

Proof. — In this proof, the letter C shall denote a constant which may change
from line to line, but which depends only on the dimension d and on the parameter s.
Let s > (d− 1)/2. Let f1, f2 be in C∞(Sd−1 × Td,C). Denote by f ξi (x) the Fourier

transform of fi(x, ·) evaluated in ξ ∈ 2πZd. By Plancherel and Fubini–Lebesgue
theorems, the conditional covariance is equal to:

E(Covt(f1, f2|I)) =
∑

ξ∈2πZd
ξ 6=0

∫
Sd−1

f ξ1 (x)f ξ2 (x)eit〈ξ,x〉 dx.

Let us describe the charts we shall use on Sd−1. Instead of working with a fixed
atlas, we choose an atlas which depends on the frequency ξ. By construction of
these atlases, the corresponding Sobolev norms are uniformly equivalent, and this
flexibility makes the use of the stationary phase method easier.
Let χ ∈ C∞(Sd−1, [0, 1]) be such that χ ≡ 1 near N := (1, 0, . . . , 0) and

χ(−x) = 1− χ(x). Let ϕ+ : Sd−1 \ {S} → Rd−1 (resp. ϕ− : Sd−1 \ {N} → Rd−1) be
the stereographic projection from the North (resp. South) pole.
For all ξ ∈ 2πZd, let Rξ be a rotation which sends ξ/ ‖ξ‖ to N . Finally, let

ψξ,± := (ϕ± ◦Rξ)−1. Using the charts ψξ,±, we get:∫
Sd−1

f ξ1 (x)f ξ2 (x)eit〈ξ,x〉 dx =
∫
Rd−1

(
f ξ1f

ξ
2

)
◦ ψξ,+(x)eit〈ξ,ψξ,+(x)〉 χ ◦ ϕ−1

+ (x)
Jac(ϕ−1

+ )(x)
dx

+
∫
Rd−1

(
f ξ1f

ξ
2

)
◦ ψξ,−(x)eit〈ξ,ψξ,−(x)〉 (1− χ) ◦ ϕ−1

− (x)
Jac(ϕ−1

− )(x)
dx.
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The function 1/ Jac(ϕ−1
± ) is in C∞b (Rd−1) and the function x 7→ 〈ξ, ψξ,±(x)〉 has

a unique critical point at 0 which is non-degenerate. By the stationary phase
method [Hor83, Chapter 7.7], there exists a constant C such that:∣∣∣∣∣

∫
Sd−1

f ξ1 (x)f ξ2 (x)eit〈ξ,x〉 dx
∣∣∣∣∣ 6 C

(t ‖ξ‖) d−1
2

[∫
Rd−1

∣∣∣∣∣ ̂(
f ξ1f

ξ
2

)
◦ ψξ,+ · χ ◦ ϕ−1

+

∣∣∣∣∣ (k) dk

+
∫
Rd−1

∣∣∣∣∣ ̂(
f ξ1f

ξ
2

)
◦ ψξ,− · (1− χ) ◦ ϕ−1

−

∣∣∣∣∣ (k) dk
]

6
C

(t ‖ξ‖) d−1
2

∥∥∥f ξ1∥∥∥Hs(Sd−1)

∥∥∥f ξ2∥∥∥Hs(Sd−1)
,

where we used the fact that
∥∥∥f̂ g∥∥∥

L1(Rd−1)
6 C ‖f‖Hs(Rd−1) ‖g‖Hs(Rd−1) whenever

s > (d− 1)/2. Hence:

E(Covt(f1, f2|I)) 6 C

t
d−1

2

∑
ξ∈2πZd
ξ 6=0

∥∥∥f ξ1∥∥∥Hs(Sd−1)

∥∥∥f ξ2∥∥∥Hs(Sd−1)

‖ξ‖
d−1

2

6
C

t
d−1

2

√√√√√√√ ∑
ξ∈2πZd
ξ 6=0

∥∥∥f ξ1∥∥∥2

Hs(Sd−1)

‖ξ‖
d−1

2

√√√√√√√ ∑
ξ∈2πZd
ξ 6=0

∥∥∥f ξ2∥∥∥2

Hs(Sd−1)

‖ξ‖
d−1

2
.

Finally, using the charts (Ui, ϕi) on Sd−1:

∑
ξ∈2πZd
ξ 6=0

∥∥∥f ξ1∥∥∥2

Hs(Sd−1)

‖ξ‖
d−1

2
6 C

∑
i

∑
ξ∈2πZd
ξ 6=0

∫
Rd−1

(1 + ‖k‖2)s

‖ξ‖
d−1

2

∣∣∣∣ ̂[
(f1χi) ◦ (ϕ−1

i , id)
]∣∣∣∣2(k, ξ) dk

6 C ‖f1‖2
Hs, d−1

2 (Sd−1×Td)
.

This finishes the proof of Proposition 3.12 for smooth observables f1 and f2. But,
for fixed t, the correlation function E(Covt(·, ·|I)) is bilinear and continuous from
L2 to C. Since the Hs, d−1

2 norm is stronger than the L2 norm, E(Covt(|I)) is also
continuous from Hs, d−1

2 to C. But C∞ is dense in Hs, d−1
2 , so the bound (3.4) actually

holds for any two observables in Hs, d−1
2 . �

Assuming that the observables f1 and f2 have higher regularity, standard for-
mulations of the stationary phase method yield a higher order development of
E(Covt(f1, f2|I)) as t goes to infinity.
Assume now that we change the flow on Sd−1 × Td, for instance by making the

velocity depend on the direction. Then the rates we got in Proposition 3.12 may not
be generic. We shall sketch the difficulties encountered with more general systems.
Let d > 3 and M be a compact connected (d − 1)-dimensional smooth manifold,
and let v : M → Rd be smooth. Consider the flow gt(x, y) = (x, y + tv(x)) on
M × Td. If Dv is never degenerate (which is a C1-open condition on v), then v is an
immersion. If in addition the extrinsic curvature of the immersed manifold is never

TOME 3 (2020)



670 Damien THOMINE

degenerate, then we get rates of convergence as in Proposition 3.12. However, if the
extrinsic curvature is never degenerate, then the Gauss map M → Sd−1 is a local
diffeomorphism, so a diffeomorphism (since d > 3), and thus M is a sphere.
In other words, if M is not a sphere, then we have to deal with degeneracies of the

extrinsic curvature of v(M). If such a degeneracy happens in a rational direction of
Rd, then we would get a speed of convergence in O(t− d−1−r

2 ), where r is the corank
of the Hessian in the given direction. If this degeneracy happens in a direction u
which is not rational, then this bound could be improved, although any improvement
would depend on the Diophantine properties of u (the bound getting better if u is
badly approximable by rationals).
For d > 2, the same kind of obstruction may happen for v : Sd−1 → Rd. For

a C3-open set of such functions v, the map v has non-degenerate inflexion points.
Without further argument about the directions these inflexion points occur, this
would for instance yield a rate of decay of only O(t− 1

3 ) for d = 2.

4. Stretched Birkhoff sums

We present in this sub-section another class of systems which may exhibit Keplerian
shear. The examples of Subsection 3.1 are based on translations on the torus, which
are a family of non-mixing dynamical systems. In this section, the elementary brick
will be given by measure-preserving semiflows, whose speed may vary. The family
of examples we get includes many non-Hamiltonian systems, and the mechanism
behind Keplerian shear is distinct from that of Section 3.

4.1. Setting and main theorem

Let us give ourselves:
• a measure-preserving semiflow (A, ν̃, (g̃t)t>0);
• a n-dimensional C1 manifold M , with n > 1;
• a measurable function v : M → R∗+.

With this data we construct a new semiflow (Ω, (gt)t>0) with Ω := M × A and
gt(x, y) = gvt (x, y) := (x, g̃v(x)t(y)). A measure µ ∈ P(Ω) is said to be compatible if
it is equal to µ̃⊗ ν for some µ̃ ∈ P(M). Compatible measures are preserved by (gt).
If we take a flow (A, ν̃, (g̃t)t∈R) instead of a semiflow, the function v may take

negative values. The following theorem also holds in this alternative setting.

Theorem 4.1. — Let (Ω, (gt)t>0) be a semiflow defined as above, with v ∈
C1(M,R∗+). Let µ be an absolutely continuous compatible measure. If Leb(dv = 0)
= 0, then (Ω, µ, (gt)t>0) exhibits Keplerian shear.

Proof. — Let IA be the invariant σ-algebra of (A, ν̃, (g̃t)t>0), and BM the Borel
σ-algebra of M . Then the invariant σ-algebra of (Ω, (gt)t>0) is I := BM ⊗ IA.
Let U := {dv 6= 0} ⊂M . Let (Ui, ψi)i∈I be a countable cover of U by charts, with

ϕi : Ui → W ′
i ⊂ Rn and W ′

i bounded. Using the local normal form of submersions,
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we assume that v ◦ ϕ−1
i (z) = z1 > 0. We write z′ = (z2, . . . , zn). Let (Vi)i∈I be

a partition of U by open sets, up to a Lebesgue negligible subset of U , such that
V i ⊂ Ui for all i. We write Wi := ϕi(Vi).
We apply Lemma 2.1, with the Banach space B = B∗ = L2(Ω, µ), and:

E = E∗ =⋃
i∈I

{
f(x, y) = a(ϕi(x)1)b(ϕi(x)′)c(y) : a, b ∈ L2, ab ∈ L2(Wi,Leb), c ∈ L2(A, ν̃)

}
.

Let us write d(x) := a(ϕi(x)1)b(ϕi(x)′) for x ∈ Ui.
Let (pi)i∈I be a sequence of positive numbers such that ∑i∈I pi Leb(Wi) = 1. By

Proposition 2.3, without loss of generality, we replace µ̃ by µ̂ := ∑
i∈I piϕ

∗
i Leb|Wi

.
Let fj = djcj, with j ∈ {1, 2}, be in E. If d1 and d2 have disjoint support, then

E(f1 · f2 ◦ gt) = 0 = E(f1E(f2|I)) for all t, and there is nothing more to prove. We
assume without loss of generality that the dj are supported by the same open set Vi.
Then, for all t > 0:∫

Ω
f1 · f2 ◦ gt dµ =

∫
M

[d1d2](x)
∫
A
c1(y)c2(g̃v(x)t(y)) dν̃(y) dµ̂(x)

= pi

∫
Wi

[a1a2](x1)[b1b2](x′)
∫
A
c1(y)c2(g̃x1t(y)) dν̃(y) dx

= pi

∫
Rn−1

[b1b2](x′) dx′
∫ +∞

0
[a1a2](x1)

∫
A
c1(y)c2(g̃x1t(y)) dν̃(y) dx1

= pi

∫
Rn−1

[b1b2](x′) dx′
∫
A
c1(y)

∫ +∞

0
[a1a2](x1)c2(g̃tx1(y)) dx1 dν̃(y).

For t > 0, let Pt : L1(R+,Leb)→ L2(A, ν̃) be defined by:

Pt(h)(y) :=
∫ +∞

0
h(s)c2(g̃ts(y)) ds ∀ h ∈ L1(R+,Leb).

Note that :

‖Pt(h)‖L2(A,ν̃) =
∥∥∥∥∫ +∞

0
h(s)c2 ◦ g̃ts ds

∥∥∥∥
L2(A,ν̃)

6
∫ +∞

0
|h(s)| ‖c2 ◦ g̃ts‖L2(A,ν̃) ds

=
∫ +∞

0
|h(s)| ds · ‖c2‖L2(A,ν̃)

= ‖h‖L1(R+,Leb) · ‖c2‖L2(A,ν̃) .

Hence, the family of operators (Pt)t>0 is uniformly bounded. By von Neumann’s
ergodic theorem, for any K > 0,

lim
t→+∞

Pt(1[0,K]) = lim
t→+∞

1
t

∫ +∞

0
1[0,K](s/t)c2(g̃s(y)) ds =

∫ +∞

0
1[0,K](s) ds · E(c2|IA),

where the convergence is strong in L2(A, ν̃). By linearity, this convergence holds
when one replaces 1[0,K] with any step function with bounded support on R+. By
density of step functions in L1(R+,Leb) and boundedness of (Pt)t>0, the convergence
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holds for any h ∈ L1(R+,Leb). In particular, taking h = a1a2, we get:

lim
t→+∞

∫ +∞

0
[a1a2](x1)c2(g̃tx1(y)) dx1 =

∫ +∞

0
[a1a2](x1) dx1 · E(c2|IA),

where the convergence is strong in L2(A, ν̃), whence:

lim
t→+∞

∫
Ω
f1 · f2 ◦ gt dµ = pi

∫
Rn−1

[b1b2](x′) dx′ ·
∫ +∞

0
[a1a2](x1) dx1 · Eν̃(c1Eν̃(c2|IA))

= Eµ(f1Eµ(f2|I)). �

Since the sufficient criterion in Theorem 4.1 is the same as in Theorem 3.3,
genericity follows (as for Proposition 3.5):

Corollary 4.2. — Let (A, ν̃, T ) be a system preserving a probability measure,
M a n-dimensional manifold (with n > 1). Let r ∈ [1,+∞]. For v ∈ Cr(M,R∗+), let
(Ω, (gvt )t>0) be defined as above.
For Cr generic roof functions v, the system (Ω, µ, (gvt )t>0) exhibits Keplerian shear

for any absolutely continuous compatible measure µ.

We shall not discuss the speed of decay of correlations for such systems: not only
do the critical points of v matter, so do the decay of correlations on (A, ν̃, (g̃t)t>0).

4.2. Examples

We now discuss some systems to which Theorem 4.1 may apply. To begin with,
some compatible flows on affine tori bundles (see Section 3) fit. Let M be a manifold,
and v ∈ C1(M,Rd). If the image of v lies on a line, i.e. v(x) = f(x)v0 for some f ∈
C1(M,R) and v0 ∈ Rd \ {0}, then Keplerian shear holds as soon as Leb(df = 0) = 0.
If the coordinates of v0 are rationally dependent, then the criterion of Theorem 4.1

may hold while the criterion of Theorem 3.3 fails. However, in this case, the tori Td
can be decomposed into sub-tori Td′ for some d′ < d, which are invariant under the
translation flow by v0. Seeing the whole system as an affine bundle by the sub-tori
Td′ , the criterion of Theorem 3.3 holds again.
Let us move to another example. A parametrized family of mixing flows exhibits

Keplerian shear, but proving that a specific flow is mixing can be challenging. One
advantage of Theorem 4.1 is that we do not need to look at mixing. For instance, let
M ∈ SLd(Z) be a matrix whose spectrum contains roots of the unit, and no eigen-
value of modulus 1 which is not a root of the unit. Let r ∈ C1(Td,R∗+). Define the sus-
pension flow with roof function r as the measure-preserving flow (Ω, µ, (gt)t∈R) with:

• Ω := (Td × R+)(x,y+r(x))∼(M(x),y);
• gt[(x, y)] = [(x, y + t)];
• µ := LebTd ⊗LebR+ on the fundamental domain{

(x, y) ∈ Td × R+ : 0 6 y 6 r(x)
}
.

The dynamical system (Td,LebTd ,M) is not ergodic, so (Ω, µ, (gt)t∈R) is not either.
We want to find a criterion on r ensuring that (Ω, µ, (gt)t∈R) exhibits Keplerian shear.

ANNALES HENRI LEBESGUE



Keplerian shear in ergodic theory 673

Up to taking a finite covering, the map M is conjugated with:

T :

Tk × Td−k → Tk × Td−k

(x, y) 7→ (M1(x),M2(y))
.

whereM1 is periodic of period p,M2 is hyperbolic, and k is the number of eigenvalues
of M which are roots of the unit (counted with multiplicity). If this covering has
Keplerian shear, then so has the initial map. For x ∈ Tk, let O(x) be its orbit under
the map M1. Since M2 is mixing for the Lebesgue measure on Td−k, the map T
restricted to the invariant set O(x)× Td−k is ergodic for the Lebesgue measure µx
on O(x)× Td−k (though not mixing if O(x) is not trivial).
Let us define:

r(x) :=
∫
O(x)×Td−k

r dµx

= 1
Card(O(x))

∫
O(x)×Td−k

r(x′, y) dy = 1
p

p−1∑
i=0

∫
Td−k

r(M i
1(x), y) dy,

which, given the left-hand side expression, is a C1 function of x ∈ Tk.
By the Anosov alternative, either the suspension flow with roof function r over

(O(x) × Td−k, µx, T ) is mixing, or it is conjugated with the suspension flow with
constant roof function r. Let A be the subset of Tk corresponding to the first part
of the alternative (mixing suspension flows), and B the subset of Tk corresponding
to the second part (non-mixing suspension flows). Note that A and B are both
M1-invariant.
The suspension flow over A× Td−k has Keplerian shear, since all the systems in

its ergodic decomposition are mixing. Now, let B′ be a fundamental domain for
the action of M1 on B. Using the Anosov alternative and B′ × Td−k as a Poincaré
section, the suspension flow (gt) over B × Td−k is conjugated with the suspension
flow over (B′ × Td−k,Leb, id×Mp

2 ) with roof function pr, which depends only on
the first coordinate. Using Theorem 4.1 with v = (pr)−1, we get that a sufficient
condition for (Ω, µ, (gt)t∈R) to exhibit Keplerian shear is:

(4.1) LebTk(dr = 0) = 0.

Finally, let us remark that the suspension flow with base (Td−k,Leb,M2) and roof
functionR is not the sum of a constant and a coboundary, and thus mixing, for generic
R : Td−k → R∗+. More generally, for a generic roof function r : Td → R∗+, the set of
x ∈ Tk such that r|O(x)×Td−k is not the sum of a constant and a coboundary has full
Lebesgue measure. This property implies that, for a generic roof function r, almost
every subsystem in the ergodic decomposition is mixing, from which Keplerian shear
follows. What we proved before is weaker (the condition LebTk(dr = 0) = 0 tells us
nothing about the mixing properties of the subsystems in the ergodic decomposition),
but the criterion of Equation (4.1) is rather easy to check.
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5. Systems without Keplerian shear

While systems with Keplerian shear are abundant in the classes we discussed –
since the conditions in Theorems 3.3 and 4.1 are generic –, we shall finish with
a couple of examples of non-ergodic systems without Keplerian shear. The first is
given by geodesic flows all of whose geodesics are closed, which fall in the setting
of Section 3 but lacks asynchronicity; the second is given by a large class of p-adic
translations.

5.1. Manifolds with periodic geodesics

We shall prove the following:

Proposition 5.1. — Let M be a smooth Riemannian manifold of dimension
n > 1. Assume that all its geodesics are periodic. Let µ be an absolutely continuous
probability measure on T 1M invariant under the geodesic flow. Then the geodesic
flow on (T 1M,µ) does not exhibit Keplerian shear.

This proposition follows directly from a theorem by A.W. Wadsley [Wad75]: if all
the geodesics of a smooth Riemannian manifold are periodic, then the geodesic flow
itself is periodic, which precludes Keplerian shear.
This class of examples includes, for instance, spheres and their finite quotients

(e.g. lenticular spaces), Zoll surfaces, etc. We refer the interested reader to [Bes78,
Chapter 7] for further information on these manifolds.

5.2. p-adic translations

Until now, we have seen classes of dynamical systems for which Keplerian shear is
generic, with the geodesic flow on T 1Sn being an exception rather than the rule. As
we shall see now, the situation is completely different for p-adic translations. Recall
that, for p a prime number, the ring Zp is the completion of Z for the p-adic norm. It
is compact, and thus supports an invariant probability, which we shall denote Leb.
We shall see that, when one replaces translations on a torus by translations on

Zp, the system they get typically does not exhibit Keplerian shear. The reason is
that, on Zp, errors do not accumulate: if we change a translation on Zp by a small
quantity, the iterates of the two translations still stay close one to another at all
times.

Proposition 5.2. — Let p be a prime number, d > 1. Let (M, ν) be a standard
probability space. Let v : M → (Zp)d be measurable. Let:

T :

M × (Zp)d →M × (Zp)d

(x, y) 7→ (x, y + v(x))
.

Then (M × Zp, ν ⊗ Leb, T ) exhibits Keplerian shear if and only if v ≡ 0 almost
everywhere.
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Proof. — If v ≡ 0 almost everywhere, then T is essentially the identity, which has
Keplerian shear. Assume that this is not the case. Then one can find A ⊂M , N > 0,
i ∈ {1, . . . , d} and k ∈ {1, . . . , p−1} such that ν(A) > 0 and vi(x) = kpN + `(x)pN+1

for all x ∈ A.
Let χ be a non-trivial character on Z/pZ. Let

f :


A× (Zp)d → C(
x,
(∑

`>0 y`,ip
`
)

16i6d

)
7→ χ(yN,i)

,

Then, for (x, y) ∈ A× (Zp)d,
f ◦ T n(x, y) = χ(yN,i + nk) = χ(yN,i)χ(k)n.

The function f is non-zero on a set of positive measure, and since χ(k) is a non-trivial
pth root of the unit, we get that (f ◦T n)n>0 is exactly p-periodic. Hence, the system
(M × Zp, ν ⊗ Leb, T ) does not exhibit Keplerian shear. �
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