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Abstract. — We prove that the Poisson–Boolean percolation on Rd undergoes a sharp
phase transition in any dimension under the assumption that the radius distribution has a
5d − 3 finite moment (in particular we do not assume that the distribution is bounded). To
the best of our knowledge, this is the first proof of sharpness for a model in dimension d > 3
that does not exhibit exponential decay of connectivity probabilities in the subcritical regime.
More precisely, we prove that in the whole subcritical regime, the expected size of the cluster
of the origin is finite, and furthermore we obtain bounds for the origin to be connected to
distance n: when the radius distribution has a finite exponential moment, the probability decays
exponentially fast in n, and when the radius distribution has heavy tails, the probability is
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equivalent to the probability that the origin is covered by a ball going to distance n (this result
is new even in two dimensions). In the supercritical regime, it is proved that the probability
of the origin being connected to infinity satisfies a mean-field lower bound. The same proof
carries on to conclude that the vacant set of Poisson–Boolean percolation on Rd undergoes a
sharp phase transition.

Résumé. — Nous prouvons que la percolation Poisson–Booléenne sur Rd a une transition
de phase rapide en toute dimension sous l’hypothèse que la distribution pour le rayon des
boules a un moment d’ordre 5d − 3 qui est fini (en particulier, nous ne supposons pas que
cette distribution est à support compact). Ceci représente la première preuve de ce fait en
dimension d > 3 pour un modèle qui n’exhibe pas de décroissance exponentielle du rayon de la
composante connexe de l’origine dans le régime sous-critique. Plus précisément, nous montrons
que dans tout le régime sous-critique, l’expérance de la taille de la composante connexe de
l’origine est finie, et de plus nous obtenons des estimées sur la probabilité que cette composante
connexe ait un rayon plus grand que n : quand la distribution pour le rayon des boules a
un moment exponentiel fini, cette probabilité décroit exponentiellement vite en n, et quand
cette distribution a une queue lourde, la probabilité devient équivalente à la probabilité qu’il
existe une boule de diamètre au moins n contenant l’origine. Le même résultat s’étend au
complémentaire de la percolation Poisson–Booléenne (aussi appelé ensemble vacant).

1. Introduction
1.1. Definition of the model

Bernoulli percolation was introduced in [BH57] by Broadbent and Hammersley to
model the diffusion of a liquid in a porous medium. Originally defined on a lattice,
the model was later generalized to a number of other contexts. Of particular interest
is the development of continuum percolation (see [MR96] for a book on the subject),
whose most classical example is provided by the Poisson–Boolean model (introduced
by Gilbert [Gil61]). It is defined as follows.
Fix a positive integer d > 2 and let Rd be the d-dimensional Euclidean space

endowed with the `2 norm ‖·‖. For r > 0 and x ∈ Rd, set Bxr := {y ∈ Rd : ‖y−x‖ 6 r}
and ∂Bxr := {y ∈ Rd : ‖y − x‖ = r} for the ball and sphere of radius r centered at x.
When x = 0, we simply write Br and ∂Br. For a subset η of Rd × R+, set

O(η) :=
⋃

(z,R)∈η
Bz
R.

Let µ be a measure on R+ (below, we use the notation µ[a, b] to refer to µ([a, b)),
where a, b ∈ R∪{∞}) and λ be a positive number. Let η be a Poisson point process
of intensity λ · dz ⊗ µ, where dz is the Lebesgue measure on Rd. Write Pλ for the
law of η and Eλ for the expectation with respect to Pλ. The random variable O(η),
where η has law Pλ is called the Poisson–Boolean percolation of radius law µ and
intensity λ. A natural hypothesis in the study of Poisson–Boolean percolation is to
assume dth moment on the radius distribution:
(1.1)

∫ ∞
0

rddµ(r) <∞.

Indeed, as observed by Hall [Hal85], the condition (1.1) is necessary in order to avoid
the entire space to be almost surely covered, regardless of the intensity (as long as
positive) of the Poisson point process.
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Remark 1.1. — The techniques of this paper do not rely heavily on the round
shape of the balls used to construct O(η). We think that the results below extend to
general (even random) shapes under proper assumptions (such as non-empty interior
and boundedness).

1.2. Main result

Two points x and y of Rd are said to be connected (by η) if there exists a continuous
path in O(η) connecting x to y or x = y. This event is denoted by x ←→ y. For
X, Y ⊂ Rd, the event {X ←→ Y } denotes the existence of x ∈ X and y ∈ Y such
that x is connected to y (when X = {x}, we simply write x ←→ Y ). Define, for
every r > 0, the two functions of λ

θr(λ) := Pλ[0←→ ∂Br] and θ(λ) := lim
r→∞

θr(λ).

We define the critical parameter λc = λc(d) of the model by the formula
λc := inf{λ > 0 : θ(λ) > 0}.

Another critical parameter is often introduced to discuss Poisson–Boolean perco-
lation. Define λ̃c = λ̃c(d) by the formula

λ̃c := inf
{
λ > 0 : inf

r>0
Pλ[Br ←→ ∂B2r] > 0

}
.

This quantity is of great use as it enables one to initialize renormalization arguments;
see e.g. [Gou08, GT18] and references therein. As a consequence, a lot is known
for Poisson–Boolean percolation with intensity λ < λ̃c. We refer to Theorems 1.4
and 1.5 and to [MR96] for more details on the subject.
Under the minimal assumption (1.1), Gouéré [Gou08] proved that λc and λ̃c are

nontrivial. More precisely he proved 0 < λ̃c 6 λc <∞. The main result of this paper
is the following.

Theorem 1.2 (Sharpness for Poisson–Boolean percolation). — Fix d > 2 and
assume that
(1.2)

∫
R+
r5d−3dµ(r) <∞.

Then, we have that λc = λ̃c. Furthermore, there exists c > 0 such that θ(λ) > c(λ−λc)
for any λ > λc.

The case of bounded radius is already proved in [MRS94, ZS85] (see also [MR96]),
and we refer the reader to [Zie16] for a new proof. Theorems stating sharpness of
phase transitions for percolation models in general dimension d were first proved in
the eighties for Bernoulli percolation [AB87, Men86] and the Ising model [ABF87].
The proofs of sharpness for these models (even alternative proofs like [DCT16]) har-
vested independence for Bernoulli percolation and special structures of the random-
current representation of the Ising model. In particular, they were not applica-
ble to other models of statistical mechanics. In recent years, new methods were
developed to prove sharpness for a large variety of statistical physics models in two
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dimensions [ATT16, BDC12, BR06]. These methods rely on general sharp threshold
theorems for Boolean functions, but also on planar properties of crossing events.
In particular, the proofs use planarity in an essential way and seem impotent in
higher dimensions. Recently, the authors proved the sharpness of phase transition for
random-cluster model [DCRT17b] and Voronoi percolation [DCRT17a] in arbitrary
dimensions. The shared theme of the proofs is the use of randomized algorithms to
prove differential inequalities for connection probabilities.
Here, we do not prove that connectivity probabilities decay exponentially fast in the

distance below criticality since this is simply not true in general for Poisson–Boolean
percolation. Indeed, if the tail of the radius distribution is slower than exponential,
then the event that a large ball covers two given points has a probability larger than
exponential in the distance between the two points. Instead, we show by contradiction
that λc = λ̃c, without ever referring to exponential decay, by controlling the derivative
of θr(λ) in terms of “pivotality events” for λ in the “fictitious” regime (λ̃c, λc) and
by deriving a differential inequality on θr(λ) (using randomized algorithms) which
is valid only in this regime. The regime (λ̃c, λc) is referred to as the fictitious regime
since one eventually concludes from our proof that the interval is empty.
We wish to highlight that while the proof below also harvests randomized

algorithms, we consider that the main novelty of the paper lies in the comparison
between the derivative of θr(λ) and pivotal events. In many percolation models con-
structed from disordered systems with long range interaction, the pivotality events
that typically appear in Russo’s formula for Bernoulli percolation get replaced by
more complicated quantities. For instance, in our model probability of large ball
being pivotal also enter into the expression of the derivative, in percolation models
built out of Gaussian processes such as Gaussian Free Field or Bargmann–Fock, the
probability of pivotality conditioned on the field being equal to a certain value are
relevant, etc. It is not true that these quantities are comparable to the pivotality
probabilities for arbitrary values of λ, but one may show with some work that this
is indeed the case in the fictitious regime. We believe that the introduction of this
fictitious regime is therefore a powerful tool towards a better understanding of these
models. To illustrate recent applications of similar techniques that were inspired by
the present paper, we refer e.g. to [DCGRS19, DCGR+18].

1.3. Decay of θr(λ) when λ < λ̃c

For standard percolation, sharpness of the phase transition refers to the exponen-
tial decay of connection probabilities in the subcritical regime. In Poisson–Boolean
percolation with arbitrary radius law µ, we mentioned above that one cannot expect
such behavior to hold in full generality. In order to explain why the theorem above is
still called “sharpness” in this article, we provide below some new results concerning
the behavior of Poisson–Boolean percolation when λ < λ̃c.
Let us start with the following easy Proposition 1.3.
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Proposition 1.3. — The following properties hold:
• For λ < λ̃c, lim

r→∞
Pλ[Br ←→ ∂B2r] = 0.

• There exists c > 0 such that for every λ > λ̃c and r > 1, Pλ[Br ←→ ∂B2r] > c.

Notice that the previous proposition immediately implies that for every λ < λ̃c,
the expected size of the cluster of the origin is finite (see Remark 4.3).
Now, remark that for every λ > 0, θr(λ) is always bounded from below by

(1.3) φr(λ) := Pλ[∃(z,R) ∈ η such that Bz
R contains 0 and intersects ∂Br],

whose decay may be arbitrarily slow. Nevertheless, one may expect the following
phenomenology when λ < λ̃c:

• If µ[r,∞] decays exponentially fast, then so does θr(λ) (but not necessarily
at the same rate of exponential decay).
• Otherwise, the decay of θr(λ) is governed by φr(λ), in the sense that it is
roughly equivalent to it.

The first item above is formalized by the following theorem.

Theorem 1.4. — If there exists c > 0 such that µ[r,∞] 6 exp(−cr) for every
r > 1, then, for every λ < λ̃c, there exists cλ > 0 such that for every r > 1,

θr(λ) 6 exp(−cλr).

Giving sense to the second item above is not easy in full generality, for instance
when the law of µ is very irregular (one can imagine distributions µ that do not decay
exponentially fast, but for which large range of radii are excluded). In Section 4.5, we
give a general condition under which a precise description of θr(λ) can be obtained.
To avoid introducing technical notation here, we only give two applications of the
results proved in Section 4.5. We believe that these applications bring already a good
idea of the general phenomenology. The proof mostly relies on new renormalization
inequalities. We believe that these renormalization inequalities can be of great use
to other percolation models such as long-range Bernoulli percolation models. The
Theorem 1.4 claims that the cheapest way for 0 to be connected to distance r is if a
single huge ball covers 0 and intersects the boundary of Br.

Theorem 1.5. — Fix d > 2. Let µ satisfy one of the two following cases:
(C1) There exists c > 0 such that µ[r,∞] = 1/rd+c for every r > 1,
(C2) There exist c > 0 and 0 < γ < 1 such that µ[r,∞] = exp(−crγ) for every

r > 1.
Then, for every λ < λ̃c,

lim
r→∞

θr(λ)
φr(λ) = 1.

This theorem is new even in two dimensions. The proofs of Theorem 1.4 and
Theorem 1.5 are independent of the proof of Theorem 1.2 and can be read separately.
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1.4. Vacant set of the Poisson–Boolean model

Another model of interest can also be studied using the same techniques. In this
model, the connectivity of the points is given by continuous paths in the complement
of O(η). Write x ∗←→ y for the event that x and y are connected by a continuous
path in Rd \ O(η), and X ∗←→ Y if there exist x ∈ X and y ∈ Y such that x and y
are connected. For λ and r > 0, define

θ∗r(λ) := Pλ[0 ∗←→ ∂Br] and θ∗(λ) = lim
r→∞

θ∗r(λ).

(Note that θ∗(λ) is decreasing in λ.) We define the critical parameter λ∗c (see e.g.
[Pen17] or [ATT17] for the fact that it is positive) by the formula

λ∗c := sup{λ > 0 : θ∗(λ) > 0} = inf{λ > 0 : θ∗(λ) = 0}.

We have the following Theorem 1.6.

Theorem 1.6 (Sharpness of the vacant set of the Poisson–Boolean model). —
Fix d > 2 and assume that the radius distribution µ is compactly supported. Then,
for all λ < λ∗c , there exists cλ > 0 such that for every r > 1,

θ∗r(λ) 6 exp(−cλr).

Furthermore, there exists c > 0 such that for every λ > λ∗c , θ∗(λ) > c(λ− λ∗c).

Since the proof follows the same lines as in Theorem 1.2, we omit it in the article
and leave it as an exercise to the reader.

1.5. Strategy of the proof of Theorem 1.2

Let us now turn to a brief description of the general strategy to prove our main
theorem. Theorem 1.2 is a consequence of the following Lemma 1.7.

Lemma 1.7. — Assume the moment condition (1.2) on the radius distribution.
Fix λ0 > λ̃c. There exists c1 > 0 such that for every r > 0 and λ̃c < λ < λ0,

(1.4) θ′r(λ) > c1
r

Σr(λ) θr(λ)(1− θr(λ)),

where Σr(λ) :=
∫ r

0 θs(λ)ds.

The whole point of Section 3 will be to prove Lemma 1.7. Before that, let us
mention how it implies Theorem 1.2.
Proof of Theorem 1.2. — Fix λ0 > λ̃c. As in [DCRT17b, Lemma 3.1], Lemma 1.7

implies that there exists λ1 ∈ [λ̃c, λ0] such that
• for any λ > λ1, θ(λ) > c(λ− λ1).
• for any λ ∈ (λ̃c, λ1), there exists cλ > 0 such that θr(λ) 6 exp(−cλr) for every
r > 0.
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The two items imply that λ1 = λc. Yet, the second item implies that λ1 6 λ̃c, since
clearly exponential decay would imply that for λ ∈ (λ̃c, λ1),

lim
r→∞

Pλ[Br ←→ ∂B2r] = 0.

Since λ1 = λc > λ̃c, we deduce that λ1 = λc = λ̃c and the proof of Theorem 1.2
is finished. �

Remark 1.8. — Note that we did not deduce anything from Lemma 1.7 about
exponential decay since eventually λ1 = λ̃c. It is therefore not contradictory with
the case in which µ[r,∞] does not decay exponentially fast.

The proof of Lemma 1.7 relies on the (OSSS) inequality, first proved in [OSSS05],
connecting randomized algorithms and influences in a product space. Let us briefly
describe this inequality. Let I be a finite set of coordinates, and let Ω = ∏

i∈I Ωi

be a product space endowed with product measure π = ⊗i∈Iπi. An algorithm T
determining f : Ω→ {0, 1} takes a configuration ω = (ωi)i∈I ∈ Ω as an input, and
reveals the value of ω in different i ∈ I one by one. At each step, which coordinate
will be revealed next depends on the values of ω revealed so far. The algorithm stops
as soon as the value of f is the same no matter the values of ω on the remaining
coordinates. Define the functions δi(T) and Infi(f), which are respectively called the
revealment and the influence of the ith coordinate, by

δi(T) := π[Treveals the value of ωi],
Infi(f) := π[ f(ω) 6= f(ω̃)] ,

where ω̃ denotes the random element in ΩI which is the same as ω in every coordinate
except the ith coordinate which is resampled independently.

Theorem 1.9 ([OSSS05]). — For every function f : Ω → {0, 1}, and every
algorithm T determining f ,

(OSSS) Varπ(f) 6
∑
i∈I

δi(T) Infi(f),

where Varπ is the variance with respect to the measure π.

This inequality is used as follows. First, we write Poisson–Boolean percolation as
a product space. Second, we exhibit an algorithm for the event {0↔ ∂Br} for which
we control the revealments. Then, we use the assumption λ > λ̃c to connect the
influences of the product space to the derivative of θr. Altogether, these steps lead
to (1.4).

Organization of the article

The next Section 2 contains some preliminaries. Section 3 contains the proof of
Theorem 1.2 while the last Section 4 contains the proofs of Theorems 1.4 and 1.5.
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2. Background

We introduce some notation and recall three properties of the Poisson–Boolean
percolation that we will need in the proofs of the next sections.

2.1. Further notation

For x ∈ Zd, introduce the squared box Sx := x+ [−1/2, 1/2)d around x. In order
to apply the OSSS inequality, we wish to write our probability space as a product
space. To do this, we introduce the following notation. For any integer n > 1 and
x ∈ Zd, let

η(x,n) := η ∩
(
Sx × [n− 1, n)

)
,

which corresponds to all the balls of η centered at a point in Sx with radius in
[n− 1, n). All the constants ci below (in particular in the lemmata) are independent
of all the parameters.

2.2. Insertion tolerance

We will need the following insertion tolerance property. Consider r∗ and r∗ such
that

(IT) cIT = cIT(λ) := Pλ[Dx] > 0,

where Dx is the event that there exists (z,R) ∈ η with z ∈ Sx and Bx
r∗ ⊂ Bz

R ⊂ Bx
r∗ .

Without loss of generality (the radius distribution may be scaled by a constant
factor), we further assume that r∗ and r∗ satisfy the following conditions (these will
be useful at different stages of the proof):

(2.1) 1 + 2
√
d 6 r∗ 6 r∗ 6 2r∗ − 2

√
d.

While the quantity cIT varies with λ, the dependency will be continuous and therefore
irrelevant for our arguments. We will omit to refer to this subtlety in the proofs to
avoid confusion.

2.3. FKG inequality

An increasing event A is an event such that η ∈ A and η ⊂ η′ implies η′ ∈ A. The
FKG inequality for Poisson point processes states that for every λ > 0 and every
two increasing events A and B,

(FKG) Pλ[A ∩B] > Pλ[A]Pλ[B].
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2.3.1. Russo’s formula

For x ∈ Zd and an increasing event A, define the random variable

(2.2) Pivx,A(η) := 1η/∈A
∫

Sx

∫
R+

1η∪(z,r)∈A dz µ(dr).

Russo’s formula [LP17, Equation 19.2] yields that

(Russo) d

dλ
Pλ[A] =

∑
x∈Zd

Eλ[Pivx,A].

3. Proof of Lemma 1.7

The next subsection contains the proof of Lemma 1.7 conditioned on two lemmatas,
Lemmas 3.3 and 3.4 which are proved in the next two Subsections 3.1 and 3.2.

3.1. Proof of Lemma 1.7

As mentioned above, the proof of the Lemma 1.7 is obtained by applying the (OSSS)
inequality to a truncated version of the probability space generated by the inde-
pendent variables (η(x,n))x∈Zd,n>1. In this section, we fix L > 2r > 0. Set A :=
{0←→ ∂Br} and f = 1A. Define

IL :=
{

(x, n) ∈ Zd × N such that ‖x‖ 6 L and 1 6 n 6 L
}
.

Also, for r > 0, let ηg denote the union of the η(x,n) for (x, n) /∈ IL. For i being
either (x, n) or g, set Ωi to be the space of possible ηi and πi the law of ηi under Pλ.
For 0 6 s 6 r, apply the (OSSS) inequality (Theorem 1.9) to
• the product space (∏i∈I Ωi,⊗i∈Iπi) where I := IL ∪ {g},
• the indicator function f = 1A considered as a function from ∏

i∈I Ωi onto
{0, 1},
• the algorithm Ts,L defined below.

Definition 3.1 (Algorithm Ts,L). — Fix a deterministic ordering of I. Set i0 = g,
and reveal ηg. At each step t, assume that {i0, . . . , it−1} ⊂ I has been revealed. Then,

• If there exists (x, n) ∈ I \ {i0, . . . , it−1} such that the Euclidean distance
between Sx and the connected component of ∂Bs in ∂Bs ∪O(ηi1 ∪ · · · ∪ ηit−1)
is smaller than n, then set it+1 to be the smallest such (x, n) for some fixed
ordering.
• If such an (x, n) does not exist, halt the algorithm.

Remark 3.2. — Roughly speaking, the algorithm checks O(ηg) and then discovers
the connected components of ∂Bs.
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Theorem 1.9 implies that
(3.1) θr(1− θr) 6

∑
i∈I

δi(Ts,L)Infi(f).

By construction, the random variable ηg is automatically revealed so its revealment
is 1. Also,
(3.2) Infg(f) 6 2Pλ[∃(z,R) ∈ η with R > L and Bz

R ∩ Br 6= ∅]
so that this quantity tends to 0 as L tends to infinity (thanks to the moment
assumption (1.1) on µ).
Let us now bound the revealment for (x, n) ∈ IL. The random variable η(x,n) is

revealed by Ts,L if the Euclidean distance between Sx and the connected component
of ∂Bs is smaller than n. Let Sxn be the union of the boxes Sy that contain a point
at distance exactly n from Sx. We deduce that
(3.3) δ(x,n)(Ts,L) 6 Pλ[Sxn ←→ ∂Bs].
Overall, plugging the previous bounds (3.2) and (3.3) on the revealments of the
algorithms Ts,L into (3.1), we obtain

θr(1− θr) 6
∑

(x,n)∈IL

Pλ[Sxn ←→ ∂Bs] · Inf(x,n)(f) + o(1).

(Above, o(1) denotes a quantity tending to 0 as L tends to infinity.) Letting L tend
to infinity (note that the influence Inf(x,n) does not depend on the algorithms Ts,L),
we find

θr(1− θr) 6
∑
x∈Zd
n>1

Pλ[Sxn ←→ ∂Bs] · Inf(x,n)(f).(3.4)

In order to conclude the proof, we need the following two lemmata 3.3 and 3.4. First,
a simple union bound argument allows us to bound Pλ[Sxn ←→ ∂Bs] in terms of the
one-arm probability. More precisely, consider the following Lemma 3.3, which will
be proved at the end of the Section 3.1.
Lemma 3.3. — Fix λ0 > 0. There exists c2 > 0 such that for every λ > λ0, x ∈ Zd

and n > 1, ∫ r

0
Pλ[Sxn ←→ ∂Bs]ds 6 c2n

d−1Σr(λ).

Integrating (3.4) for radii between 0 and r and using the Lemma 3.3 above gives
(3.5) rθr(1− θr) 6 c2Σr

∑
x∈Zd
n>1

nd−1Inf(x,n)(f).

The most delicate step is to relate the influences in the equation above with the
pivotal probabilities appearing in the derivative formula (Russo). This is the content
of the following Lemma 3.4, which will be proved in Section 3.3.
Lemma 3.4. — There exists c3 > 0 such that for every x ∈ Zd, every n > 1 and

every λ > λ̃c, ∑
x∈Zd

Inf(x,n)(f) 6 c3λn
4d−2 µ[n− 1, n]

∑
x∈Zd

Eλ[Pivx,A].
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Dividing (3.5) by Σr, then applying the lemma above, and then using λ < λ0 gives
r

Σr

θr(1− θr) 6 c2c3λ
∑
n>1

n5d−3µ[n− 1, n]
∑
x∈Zd

Eλ[Pivx,A]

6 c1
∑
x∈Zd

Eλ[Pivx,A] (Russo)= c1θ
′
r.

This implies Lemma 1.7. Before proving Lemmatas 3.3 and 3.4, we would like to
make several remarks concerning the proof above.
Remark 3.5. — The role of L is the following. The interest of working with Ts,L

is to have a finite number (depending on L) of coordinates for the algorithm. We
could have stated an OSSS inequality valid for countably many states and get (3.4)
directly, but we believe the previous strategy to be shorter and thriftier. The role of
s on the other hand is purely technical and one could have avoided it by working
with a randomized algorithm.
Remark 3.6. — Lemma 3.3 may a priori be improved. Indeed, the union bound

in the first inequality is quite wasteful. Nonetheless, with the moment assumption
on the radius distribution, the claim above is sufficient.

Remark 3.7. — We refer to λ > λ0 in Lemma 3.3 instead of λ > λ̃c (even though
the lemma is anyway used in this context) to illustrate that the only place where
λ > λ̃c is used is in Lemma 3.4.
We finish this section with the proof of Lemma 3.3.
Proof of Lemma 3.3. — Let Y be the subset of Zd such that

Sxn =
⋃
y∈Y

Sy.

We have that

Pλ[Sxn ←→ ∂Bs] 6
∑
y∈Y

Pλ[Sy ←→ ∂Bs] 6
1
cIT

∑
y∈Y

Pλ[y ←→ ∂Bs].

where in the last inequality, we used the FKG inequality, (IT) and the fact that if
Sy ←→ ∂Bs and the event Dy defined below (IT) occur, then y is connected to ∂Bs.
Integrating on s between 0 and r and observing that y is at distance |s− ‖y‖| of

∂Bs, we deduce that∫ r

0
Pλ[y ←→ ∂Bs]ds 6

∫ r

0
θ|s−‖y‖|(λ)ds 6 2Σr(λ).

Since the cardinality of Y is bounded by a constant times nd−1, the result follows. �

3.2. A technical statement regarding connection probabilities above λ̃c

The following Lemma 3.8 will be instrumental in the proof of Lemma 3.4. It is the
unique place where we use the assumption λ > λ̃c.
Below, X Z←→ Y means that X is connected to Y in O(ηZ), where ηZ is the set

of (z,R) ∈ η such that Bz(R) ⊂ Z. We highlight that this is not the same as the
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existence of a continuous path in O(η) ∩ Z connecting x and y, since such a path
could a priori pass through regions in Z which are only covered by balls intersecting
Rd \ Z.

Lemma 3.8. — There exists a constant c4 > 0 such that for every λ > λ̃c and
r > r∗,

(3.6) Pλ
[
0 Br←→ Bx

r∗

]
>

c4

r2d−2 for every x ∈ ∂Br.

Remark 3.9. — Before diving into the proof, let us first explain how we will use
the assumption λ > λ̃c. Fix r > 0. If Br is connected to ∂B2r, then there must exist
x ∈ Zd with Bx

1 ∩ ∂Br 6= ∅ such that Bx
1 is connected to ∂B2r. Since above λ̃c, the

probability of the former is bounded away from 0 uniformly in r and λ thanks to
Proposition 1.3, and since the probabilities of the latter events are all smaller than
Pλ[B1 ←→ ∂Br], the union bound gives the existence of c5 > 0 such that for every
r > 1 and λ > λ̃c,

(3.7) Pλ[B1 ←→ ∂Br] >
c5

rd−1 .

The argument will rely on the following observation. As explained in (3.7), the
probability that B1 is connected to ∂Br does not decay quickly. This event implies
the existence of y such that B1 is connected in Br to By

r∗ , and one ball Bz
R (with

(z, R) ∈ η) covering Byr∗ and intersecting the complement of Br. The problem is that
this site y may be quite far from ∂Br. Nonetheless, this seems unlikely since the
cost (by the moment assumption on µ) of having a large ball BzR intersecting Byr∗ is
overwhelmed by the probability that the latter is connected to ∂Br in By

r−‖y‖ by a
path in O(η) using a priori smaller balls (and maybe even only balls included in Br).
The proof below will harvest this idea though with some important variations due
to the fact that all the balls under consideration must remain inside Br. One of the
key idea is the introduction of a new scale r∗∗ and an induction on the probability
that B1 is connected to Bx

r∗∗ in Br, where x ∈ ∂Br.
Proof. — We will prove that there exist r∗∗ > 0 and c6 > 0 such that

(3.8) Pλ
[
Br∗

Br←→ Bx
r∗∗
]
>

c6

r2d−2 for every x ∈ ∂Br.

This is amply sufficient to prove the Lemma 3.8 since, if T denotes the set of t ∈ Zd
such that Bt

r∗ ∩ Bx
2r∗∗ 6= ∅ and Bt

r∗ ⊂ Br, then

Pλ
[
0 Br←→ Bx

r∗
] (FKG)
> Pλ[D0]

( ∏
t∈T

Pλ[Dt]
)
Pλ
[
Br∗

Br←→ Bx
r∗∗
] (IT)
> cIT

|T |+1 · c6

r2d−2 .

We therefore focus on the proof of (3.8). We will fix r∗∗ > 2r∗ sufficiently large (see
the end of the proof). Introduce Y := Zd ∩ Br−r∗∗ and a finite set Z ⊂ ∂Br such
that the union of the balls By

r∗ and Bz
r∗∗ with y ∈ Y and z ∈ Z cover the ball Br.

Note that if Br∗ is connected to ∂Br, then either one of the z ∈ Z is such that Br∗ is
connected to Bz

r∗∗ in Br, or there exists y ∈ Y such that the event

A(y) :=
{
Br∗

Br←→ By
r∗

}
∩
{
∃(u,R) ∈ η such that Bu

R intersects both By
r∗and ∂Br

}

ANNALES HENRI LEBESGUE



Subcritical phase of d-dimensional Poisson–Boolean percolation 689

occurs. The union bound therefore implies that

(3.9)
∑
z∈Z

Pλ
[
Br∗

Br←→ Bz
r∗∗

]
+
∑
y∈Y

Pλ [A(y)] > Pλ[Br∗ ←→ ∂Br]
(3.7)
>

c5

rd−1 .

For y ∈ Y , introduce x := (r/‖y‖)y ∈ ∂Br and r = r − ‖y‖. The event on the right
of the definition of A(y) is independent of the event on the left. Since any point in
By

r∗ is at a distance at least r − r∗ of ∂Br, we deduce that

Pλ[A(y)] 6
(
c7

∫ ∞
r−r∗

rd−1µ(dr)
)
· Pλ

[
Br∗

Br←→ By
r∗

]
6

c8

r 4d−2 Pλ
[
Br∗

Br←→ By
r∗

]
.

In the second inequality, we used the moment assumption on µ and the fact that
r−r∗ > r/2 since r∗∗ > 2r∗. Using this latter assumption one more time implies that

(3.10)
Pλ
[
Br∗

Br←→ Bx
r∗∗

] (FKG)
> Pλ

[
Br∗

Br←→ By
r∗

]
· Pλ[Dy] · Pλ

[
By

r∗
By
r←→ Bx

r∗∗

]

>
cIT r

4d−2

c8
· Pλ[A(y)] · Pλ

[
By

r∗
By
r←→ Bx

r∗∗

]
.

From now on, define U(r) := Pλ[Br∗
Br←→ Bx

r∗∗ ] for x ∈ ∂Br (the choice of x is
irrelevant by invariance under the rotations). Now, one may choose Z in such a way
that |Z| 6 c9r

d−1. Plugging (3.10) in (3.9), we obtain the following inequality

c9r
d−1 U(r) + c10

∑
y∈Y

U(r)
U(r − ‖y‖)(r − ‖y‖)4d−2 >

c5

rd−1 .

Using that there exists c11 > 0 such that U(r) > c11 > 0 for every r 6 r∗∗,
we deduce (3.8) by induction on r ∈ Z+, provided r∗∗ is chosen large enough to
start with. �

3.3. Proof of Lemma 3.4

We are now in a position to prove Lemma 3.4. Fix x ∈ Zd and r, n > 1. Define
Px(n) := {0←→ Bx

n} ∩ {Bx
n ←→ ∂Br} ∩ {0←→ ∂Br}c.

Introduce C = C(η) := {z ∈ Rd : z ←→ 0} and C′ = C′(η) := {z ∈ Rd : z ←→ ∂Br}
the connected components of 0 and ∂Br in O(η). Our first goal is to prove that,
conditionally on Px(n), the probability that C and C′ are close to each other in Bx3n
is not too small.

Claim 3.10. — We have that
Pλ[Px(n) and d(C ∩ Bx

3n,C′) < r∗] > c11

n3d−2 · Pλ[Px(n)].

Before proving this claim, let us conclude the proof of the Lemma 3.4. If the event
on the left occurs, there must exist y ∈ Zd within a distance at most r∗ of both
C ∩ Bx

3n and C′: simply pick a point z ∈ Rd at a distance smaller than r∗/2 of
both C ∩ Bx

3n and C′, and then take y ∈ Zd within distance
√
d of it (we used the
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inequality on the right in (2.1)). In particular, Py(r∗) must occur for this y and we
deduce that
(3.11) Pλ[Px(n)] 6 c12 n

3d−2 ∑
y∈Zd

‖y−x‖63n+r∗

Pλ[Py(r∗)].

To conclude, observe that the definition of r∗ given by (IT) implies that for all y,

Pivx,A(η) > 1η∈Py(r∗)

∫
Sx

∫
R+

1Bxr∗⊂Bzr dz µ(dr) > 1η∈Py(r∗)Pλ[Dy].

which, after integration, gives
(3.12) cIT Pλ[Py(r∗)] 6 Eλ[Pivy,A].
Now, one easily gets that
(3.13) Inf(x,n)(f) 6 λµ[n− 1, n]× Pλ

[
Px
(
n+
√
d
)]
.

(Simply observe that Px(n+
√
d) must occur in η, and that the resampled Poisson

point process η̃(x,n) must contain at least one point). Plugging (3.11) (applied to
n +
√
d) in (3.13), then using (3.12), and finally summing over every x ∈ Zd gives

the Lemma 3.4.
Proof of the Claim 3.10. — The proof consists in expressing the probability that

C and C′ come within a distance r∗ of each other in terms of the probability that
they remain at a distance at least r∗ of each other.
Fix y ∈ Zd. For a non-empty subset C of Rd, let uC = uC(y) be the point of Sy

furthest to C, and vC = vC(y) the point of C closest to uC (in case there is more
than one, select one according to a predetermined rule). Consider the event

Ey := {C ∩ Bx
n 6= ∅ and d(uC,C) > r∗} .

Note that the event Ey is measurable in terms of C. Let us study, on Ey, the condi-
tional expectation with respect to C. Introduce the three events

Fy := DuC Gy :=
{
uC

Rd\C←→ BvC(r∗)
}

Hy :=
{

Bx
n ∩ Sy Rd\C←→ ∂Br

}
,

where Dy is extended to each y ∈ Rd by taking the translate by y of D0. See Figure 3.1
for an example of a simultaneous occurrence of all the above events.
On the event Ey, conditioned on C, ηRd\C has the same law as η̃Rd\C for some

independent realization η̃ of the Poisson point process (recall the definition of ηZ
from the previous Section 3.2). Also, the distance between uC and vC (or equivalently
C) is at least r∗ so that Fy is measurable with respect to ηRd\C. Therefore, we may
use (IT), Lemma 3.8 and the FKG inequality to get the following inequality between
conditional expectations:

(3.14) Pλ[Fy ∩ Gy ∩Hy|C]

> Pλ[Fy|C] · Pλ[Gy|C] · Pλ[Hy|C] > cIT
c4

n2d−2Pλ[Hy|C] a.s. onEy.

Now, observe that if Ey and Hy occur simultaneously, then Px(n) occurs (we use
r∗ >

√
d). Furthermore if Fy and Gy also occur simultaneously with them, then
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0

∂Br

0

C x

vc(y)

y

uc(y)
n

Figure 3.1. A simultaneous occurrence of the events Ey, Fy, Gy, and Hy.

BvC
r∗ ∩C′ 6= ∅. Since by construction vC ∈ Bx

3n, we deduce that d(C ∩ Bx
3n,C′) < r∗.

Integrating (3.14) on Ey, we deduce that

Pλ[Px(n) and d(C ∩ Bx
3n,C′) < r∗] > Pλ[Ey ∩ Fy ∩ Gy ∩Hy] >

cIT c4

n2d−2 Pλ[Ey ∩Hy].

Observe that if Px(n) and d(C ∩ Bx
n,C′) > r∗ occur, then there exists y ∈ Zd such

that the event on the right-hand side occurs. In particular, Sy must intersect Bxn for
Hy to occur, so that there are c6n

d possible values for y. Summing over all these
values, we therefore get that

c6n
d Pλ[Px(n) and d(C ∩ Bx

3n,C′) < r∗] > cIT c4

n2d−2 Pλ[Px(n) and d(C ∩ Bx
n,C′) > r∗],

which implies the claim 3.10 readily. �

4. Renormalization of crossing probabilities

In this section, we prove Theorems 1.4 and 1.5. The proof is quite different in the
regime where µ[r,∞] decays exponentially fast (light tail), and in the regime where
it does not (heavy tail). Also, since in the heavy tail regime the renormalization
argument performed below may be of some use in the study of other models, or for
different distributions µ, we prove a quantitative lemma which we believe to be of
independent interest.
In this section, we reboot the count for the constants ci starting from c1. The

section is organized as follows. In Section 4.1, we prove a renormalization lemma,
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Lemma 4.2 which will enable us to derive the theorems. In Sections 4.2 and 4.5, we
derive Theorem 1.4 and Theorem 1.5 respectively.

4.1. The renormalization lemma

Introduce, for every δ, α, λ > 0 and r > 1, the two functions

πδr(λ) := Pλ[∃(z,R) ∈ η such that Bz
R ∩ B2δr 6= ∅ and Bz

R ∩ ∂B(1−2δ)r 6= ∅],
θαr (λ) := Pλ[Bαr ←→ ∂Br].

Note that π0
r(λ) = φr(λ) and θ0

r(λ) = θr(λ) by definition.

Remark 4.1. — The quantity πδr(λ) is expressed in terms of µ as follows: let cd be
the area of the sphere of radius 1 in Rd, then

(4.1) πδr(λ) = 1− exp
(
− λcd

∫ ∞
0

ad−1µ[|a− 2δr| ∨ |r − 2δr − a|,∞]da
)
.

The following Lemma 4.2 will be the key to the proofs of the Theorems 1.4 and 1.5.

Lemma 4.2 (Renormalization inequality). — For every 0 < α 6 δ 6 1/4, there
exists c1 > 0 such that for every λ, r > 0,

(4.2) θαr (λ) 6 πδr(λ) + c1

(δ2α)d max
u,v>δ

u+v=1−α

θαur(λ) θαvr(λ).

Note that the smaller the α and δ, the larger the entropic factor c1/(δ2α)d. We
will see that the choices of α and δ are important in the applications. Except for the
exponential bound on θr(λ) in the proof of Theorem 1.4, we will always pick δ = α.
Proof. — Fix 0 < α 6 δ 6 1/4 and λ, r > 0. Set

E := {2δr} ∪
(
[2δr, (1− 2δ)r] ∩ αδ

2 rZ
)
∪ {(1− 2δ)r}

and index the elements of E in the increasing order by r0 < r1 < · · · < r`. Recall the
notation ηZ for the set of (z, R) ∈ η with Bz

R ⊂ Z, and introduce the three events

A :=
{
∃(z,R) ∈ η : Bz

R ∩ B2δr 6= ∅ and Bz
R ∩ ∂B(1−2δ)r 6= ∅

}
,

Bk :=
{
Bαr ←→ ∂Brk in O

(
ηBrk+1

)}
,

Ck :=
{
Brk+1 ←→ ∂Br

}
.

If Bαr is connected to ∂Br but A does not occur, then Bk ∩ Ck must occur for
some 0 6 k < ` (we use that δ > α). Furthermore, by construction, Bk and Ck
are independent since Ck is measurable with respect to O(η \ ηBrk ). These two
observations together imply that

θαr (λ) 6 Pλ[A] +
`−1∑
k=0

Pλ[Bk ∩ Ck] = πδr(λ) +
`−1∑
k=0

Pλ[Bk]Pλ[Ck].(4.3)

ANNALES HENRI LEBESGUE



Subcritical phase of d-dimensional Poisson–Boolean percolation 693

Fix 0 6 k < `. Let X denote a set of points x ∈ ∂Bαr such that the union of the
balls Bxαδr for x ∈ X covers ∂Bαr. Choose X such that |X| 6 c2δ

−(d−1). Applying the
union bound, we find

Pλ[Bk] 6
∑
x∈X

Pλ
[
Bx
αδr ←→ ∂Bx

rk−αr

]
6 |X| θαrk−αr(λ) 6 c2

δd−1 θ
α
rk−αr(λ).(4.4)

Similarly, using a covering of ∂Brk+1 with at most c′2(αδ)1−d balls of radius αδr
centered on ∂Brk , we obtain

(4.5) Pλ[Ck] 6
c′2

(δα)d−1 θ
α
r−rk(λ).

Plugging (4.4) and (4.5) in (4.3) and using the fact that ` 6 2/(αδ) concludes the
proof of Lemma 4.2. �

The previous Lemma 4.2 leads to Proposition 1.3.
Proof of Proposition 1.3. — Choose α = 1/6. In this case

θαr (λ) = Pλ[Br/6 ←→ ∂Br].

Using a covering of ∂Br with balls of radius r/6, it suffices to prove that θαr (λ)
converges to 0. A reasoning similar to the bound on Pλ[Bk] in the last proof implies
that for every s ∈ [αr, r],

(4.6) θαr (λ) 6 c3 θ
α
s (λ),

which enables us to rewrite (4.2) (applied with δ = α = 1/6) as

θαr (λ) 6 παr (λ) + c4 θ
α
αr(λ)2.

Now, fix ε > 0 such that 2c4ε < 1 and work with r0 large enough that παr (λ) 6 ε/2
for every r > r0.
Now, assume that there exists r > r0 such that θαr (λ) < ε. We deduce inductively

that
θαr/αk(λ) 6 ε

for every k > 1. Using (4.6) one last time gives that θαs (λ) 6 c3ε for every s > r.
We conclude that for every λ < λ̃c, Pλ[Br ←→ ∂B2r] tends to 0. Since the set of

λ such that there exists r with θαr (λ) < ε is open, we deduce that every λ > λ̃c,
θαr (λ) > ε. �

Remark 4.3. — Fix α = 1
6 and consider r1 such that 7c4θ

α
r (λ) < 1 for every

r > r1, where c4 is given by (4.6). Consider the quantity SR(λ) :=
∫ R

0 rd−1θαr (λ)dr.
Integrating (4.6), we find that

SR(λ) 6 r1 +
∫ R

r1
rd−1παr (λ)dr + 6

7SR/6(λ),

which easily implies, using the assumption (1.1) that sup{SR(λ) : R > 1} <∞. Now,
we have that the expected size of the origin is bounded by this supremum, and is
therefore also finite.
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4.2. Proof of Theorem 1.4

Consider λ < λ̃c. Fix δ ∈ (0, 1
2) and observe that since µ[r,∞] 6 exp(−cr), (4.1)

implies that there exists c′ > 0 such that πδr(λ) 6 exp(−c′r) for every r > 1. We
now proceed in two steps: we first show that θr(λ) 6 r−d−1 for r large enough, and
then improve this estimate to an exponential decay.

4.3. Polynomial bound on θr(λ)

Lemma 4.2 applied to α = δ = 1/6 implies that for every r > 1

(4.7) θαr (λ) 6 e−c
′r + c5 max

u,v>α
u+v=1−α

θαur(λ)θαvr(λ).

Since λ < λ̃c, Proposition 1.3 implies that θαr (λ) converges to 0 as r tends to infinity.
In particular, we deduce that for every ε > 0,

θαr (λ) 6 e−c
′r + ε θααr(λ)

for r large enough. A simple induction implies that θαr (λ) 6 r−d−1 for r large enough.

4.4. Exponential bound on θr(λ)

Choose δ = 1/6. For each r > 6, apply Lemma 4.2 with α = α(r) := 1/r to get
that

θr(λ) 6 e−c
′r + c6r

d max
u,v>

1
6

u+v=1−α(r)

θur(λ)θvr(λ),

where we use that

θr(λ) 6 θα(r)
r (λ) = Pλ[B1 ←→ ∂Br] 6 1

cIT
θr(λ).

Set c7 := 2 c6 e and consider r0 large enough so that for every r > δr0,

c7r
d e−c

′r 6 1
2e
−r/r0 , and

c7r
d θr(λ) 6 e−1.

(The second constraint is satisfied thanks to the polynomial bound derived in the
first part of the proof.) By induction on k, one can show that for every k > 0,

∀ r ∈ [δr0, r0/(1− δ)k] c7r
d θr(λ) 6 exp(−r/r0).
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4.5. Proof of Theorem 1.5

In this section, we prove Theorem 1.5 by proving the following quantitative
Lemma 4.4. We believe the lemma to be of value for distributions µ other than
the one considered in Theorem 1.5. Before that, note that the lower bound

(4.8) θr(λ) > φr(λ)

for every r > 0 is trivial since 0 is connected to ∂Br in the case where there exists
(z, R) ∈ η such that Bz

R contains 0 and intersects ∂Br. Therefore, the main concern
of this section will be an upper bound on θαr (λ) (which is larger than θr(λ)).

Lemma 4.4. — Consider λ > 0, η < 1 and α ∈ (0, 1
4) small enough such that

αη + (1 − 2α)η > 1. For every ε > 0 sufficiently small and r > 1, if there exists
r0 6 αr such that

θαs (λ) 6 ε παr (λ)(s/r)η ∀ s ∈ [r0, r0/α](4.9)
παs (λ) 6 ε παr (λ)(s/r)η ∀ s ∈ [r0, (1− α)r],(4.10)

then

(4.11) θαr (λ) 6 (1 + ε) παr (λ).

Remark 4.5. —
(1) Note that distributions µ with exponential decay do not satisfy the assump-

tions of the lemma for any r, provided that ε is small enough.
(2) For distributions µ satisfying limr→∞ π

α
r (λ)1/rη = κ, for some constant κ, the

existence of r0 satisfying (4.9) when λ < λ̃c follows directly from
• picking r0 such that θαr (λ) < ε

2κ for every r > r0 (by Proposition 1.3),
• picking r large enough that παr (λ)1/rη > κ2−(α/r0)η .

(3) The second assumption (4.10) is a regularity statement on παr (λ) that can be
obtained from the regularity of µ[r,∞] using (4.1).

The proof of the Lemma 4.4 will be based on the recursive relation given by
Lemma 4.2. We use a strategy which is inspired by the study of differential equations.
We control the function f(s) := θαs (λ) in terms of g(s) := παr (λ)(s/r)η uniformly for
s ∈ [r0, (1− α)r] to finally deduce a bound for f(r) using again Lemma 4.2.

Proof. — Set C = c1α
−2d, where c1 is given by Lemma 4.2, and assume that ε < 1

4C .
The key ingredient will be the following inequality: for every s ∈ [r0, (1− α)r],

(4.12) θαs (λ) 6 2ε παr (λ)(s/r)η .
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For s ∈ [r0, r0/α], (4.12) follows from (4.9). To obtain the claim for s > r0/α, use
the induction hypothesis in the second line below to get

θαs (λ)
(4.2)
6 παs (λ) + C max

u,v>α
u+v=1−α

θαus(λ) θαvs(λ)

(4.12)
6 παs (λ) + 4Cε2 max

u,v>α
u+v=1−α

παr (λ)(uη+vη)(s/r)η

(4.10)
6

(
ε+ 4Cε2

)
παr (λ)(s/r)η

6 2ε παr (λ)(s/r)η .

In the first line, we applied (4.2) with δ = α. In the second line, we used (4.12) for
us, vs ∈ [r0, s − r0] and in the third line we used uη + vη > 1 for every u, v > α
satisfying u+ v = 1− α. One may apply the first two lines in the previous sequence
of inequalities for s = r (since in such case ur, vr ∈ [r0, (1− α)r]) so that

θαr (λ) 6 παr (λ) + 4Cε2 max
u,v>α

u+v=1−α

παr (λ)uη+vη 6 (1 + ε) παr (λ).

This concludes the proof of the Lemma 4.4. �

Proof of Theorem 1.5. — Fix λ < λ̃c. Since (4.8) gives the lower bound, we focus
on the upper bound. Under the condition (C1), define f(α, r) by

(4.13) παr (λ) = f(α, r)r−c,

and, under the condition (C2), define g(α, r) by

(4.14) παr (λ) = g(α, r)rd−γ exp
[
−c

(
r

2 − 2αr
)γ]

.

Using (4.1), one can check that f(α, r) and g(α, r) converge (as r tends to infinity)
uniformly in 0 6 α < 1

4 to two continuous positive functions f(α) and g(α).
Consider ε very small and use Proposition 1.3 to guarantee that θαs (λ) < ε for

every s large enough. Then, for every distribution µ satisfying (C1) or (C2), one can
find 0 < η < 1, r0 large enough such that (4.9) and (4.10) are satisfied for every
r > r0 large enough, and α small enough (use (4.13) and (4.14) and Remark 4.5 to
check the two conditions), so that Lemma 4.4 implies that for r large enough,

(4.15) θαr (λ) 6 (1 + ε)παr (λ).

Thanks to (4.13), we obtain the claim in case (C1) by letting ε and then α tend
to 0. For case (C2), we need to do more, since letting α tend to 0 slowly gives only
that θr(λ) 6 φr(λ)1+o(1). More precisely, we prove the following claim.

Claim 4.6. — Assume that µ satisfies (C2). Fix γ ∈ (γ, 1). There exist α > 0
and R <∞ such that for every k > 0 and every r > 3kR, we have that

(4.16) θαkr (λ) 6 (1 + 2−k)παkr (λ)

where αk := α3−kγ.
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Before proving the Claim 4.6, note that it implies, together with (4.14), that for
every k > 0 and r ∈ [3kR, 3k+1R),

θr(λ) 6 θαkr (λ) 6 (1 + 2−k)παkr (λ) 6 (1 + 2−k)g(αk, r)
g(0, r) e

Crγ−γφr(λ)

for some constant C = C(α,R) > 0. This proves the Theorem 1.5 in case (C2)
thanks to the choice of γ > γ and the uniform convergence of g(. , r) towards a
continuous function. �

Proof of the Claim 4.6. — We prove (4.16) recursively. Fix 0 < α 6 1/8 such that

2(1− 12α)γ
(

1−α
2

)γ
> 1 + 1

4α
γ, and(4.17)

∀ x ∈ [0, α] (1− 12x)2γ + (x/2)γ > 1 + 1
4x

γ.(4.18)

Fix also R > 1. There will be several conditions on R that will be added during the
proof. The important feature is that every time a new condition is added, one only
needs to take R possibly larger than before.
Define M such that for every x 6 1

4 ,
2
M
6 g(x) 6 M

2 . By uniform convergence, R
can be chosen large enough that for every x 6 1

4 and r > R,

(4.19) 1
M
6 g(x, r) 6M.

Use (4.15) to choose R in such a way that θαr (λ) 6 2παr (λ) for every r > αR. Then,
(4.16) follows for k = 0 by definition. We now assume that (4.16) is valid for k − 1
and prove it for k. Lemma 4.2 applied to r > R2k and αk gives that

θαkr (λ) 6 παkr (λ) + c1

α3d
k

θαkur (λ) θαkvr (λ),(4.20)

for some u, v > αk such that u + v = 1 − αk. Without loss of generality, we
can assume that u > 1

3 and v 6 1−αk
2 . In particular, we have ur > R3k−1. Also,

vr > αR3k(1−γ) > αR. The induction hypothesis (in fact we simply bound 2−(k−1)

by 1) implies that

θαkur (λ) 6 θαk−1
ur (λ) 6 2παk−1

ur (λ) and θαkvr (λ) 6 θαvr(λ) 6 2παvr(λ).

We may use the induction hypothesis to get that

θαkur (λ)θαkvr (λ)
(4.16)
6 4παk−1

ur (λ)παvr(λ)
(4.19)
6 4M2(uvr2)d−γ exp

[
− c(r/2)γ

(
(u− 4αk−1u)γ + (v − 4αv)γ

)]
.(4.21)

We now bound the term

h(v) := (u− 4αk−1u)γ + (v − 4αv)γ=(1− 4 · 3γαk)γ(1− αk − v)γ + (1− 4α)γvγ

appearing in the exponential in (4.21). Since αk 6 v 6 1−αk
2 , an elementary analysis

of the function h shows that h(v) > min(h(αk), h(1−αk
2 )). Using (4.17) and (4.18) to

bound h(1−αk
2 ) and h(αk) respectively, we obtain

h(v) > 1 + 1
4α

γ
k > (1− 4αk)γ + 1

4α
γ
k .
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Plugging this estimate in (4.21) and using (4.19) one last time, we finally get

θαkur (λ)θαkvr (λ) 6 4M3r2d exp
[
− c

8(αkr)γ
]
παkr (λ)

(4.22)
6

α3d
k

c12k π
αk
r (λ),

which concludes the proof using (4.20). In the second line, we used that R is chosen
so large that for every k > 0 and r > 3kR,

�(4.22) c12k
α3d
k

4M3r2d exp
[
− c

8(αkr)γ
]
6

c1

α3d4M3r6d exp
[
− c

8(αr1−γ)γ
]
6 1.

Remark 4.7. — By adapting the reasoning above, one can prove similar statements
for other distributions µ having sub-exponential tails, for instance µ[r,∞] decaying
like exp[−c(log r)γ] or exp[−cr/(log r)γ].
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