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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation coupled
with Maxwell equation stated in R+ × R3 :

iψt + ∆ψ = eφψ + e2|A|2ψ + 2ie∇ψ ·A + ieψ div A− g(|ψ|2)ψ,(1.1)
Att −∆A = e Im(ψ̄∇ψ)− e2|ψ|2A−∇φt −∇ div A,(1.2)

−∆φ = e

2 |ψ|
2 + div At,(1.3)

where ψ : R+ ×R3 → C, A : R+ ×R3 → R3, φ : R+ ×R3 → R, e ∈ R and i denotes
the unit complex number, that is, i2 = −1. In this setting, ψ is an electrically
charged field and (φ,A) represents a gauge potential of an electromagnetic field.
System (1.1)–(1.3) describes the interaction of this Schrödinger wave function ψ
with the Maxwell gauge potential. The constant e represents the strength of the
interaction. For more details and physical backgrounds, we refer to [Fel98].
Since we are interested in the Cauchy Problem, let us consider the following set of

initial data:

(1.4) ψ(0, x) = ψ(0)(x), A(0, x) = A(0)(x), At(0, x) = A(1)(x),

where the regularity of each functions is given in Theorem 1.1. It is known that
System (1.1)–(1.3) has a so-called gauge ambiguity. Namely if (ψ,A, φ) is a solution
of (1.1)–(1.3), then (exp(ieχ)ψ,A +∇χ, φ− χt) is also a solution of (1.1)–(1.3) for
any smooth function χ : R+ ×R3 → R. To push out this ambiguity, we adopt in the
sequel the Coulomb gauge:

(1.5) div A = 0,

which is propagated by the set of Equations (1.1)–(1.3). Indeed, if initially

div A(0, · ) = div At(0, · ) = 0,

then (1.5) holds for all t > 0. (See e.g. [CW16] for the proof.) In this setting, the
last Equation (1.3) can be solved explicitly and the solution is given by

φ = e

2(−∆)−1|ψ|2,

which imposes that
φ(0, x) = e

2(−∆)−1|ψ(0)(x)|2.

From (1.5), we also observe that (1.1) can be written as

(1.6) iψt + LAψ − V (x)ψ + g(|ψ|2)ψ = 0,

where V is the non-local potential: V (x) = e2

2 (−∆)−1|ψ|2 and LA is the magnetic
Schrödinger operator which is defined by A = (A1, A2, A3) and

(1.7) LAψ :=
3∑

j=1

(
∂

∂xj

− ieAj(x)
)2

ψ = ∆ψ − 2ie∇ψ ·A− e2|A|2ψ.
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Cauchy problem for the Schrödinger–Maxwell system 69

In this context, the two conserved quantities of the Schrödinger–Maxwell system
are the charge Q and the energy E:

(1.8) Q(ψ) =
∫
R3
|ψ|2 dx,

(1.9) E(ψ,A, φ) = 1
2

∫
R3

(
|∇ψ − ieAψ|2 + |∇A|2 + |∂tA|2

)
dx

+ e2

4

∫
R3
φ|ψ|2 dx−

∫
R3
G(|ψ|2) dx,

where G(t) =
∫ t

0 g(s)ds. To prove that (1.8) is formally conserved, one has to mul-
tiply Equation (1.1) by ψ, integrate over R3 and take the imaginary part of the
resulting equation. In a similar way, the conservation of (1.9) can be proved by
multiplying (1.1)–(1.3) by ∂tψ, ∂tA and ∂tφ respectively. This conserved quantities
play a fundamental role if one wants to investigate the stability properties of such
system, which is one of our main motivations. Indeed, in a previous paper [CW17],
we have showed that for small e > 0, System (1.1)–(1.3) admits a unique orbitally
stable ground state of the form:

(1.10) (ψe,ω,Ae,ω, φe,ω) :=
(

exp(iωt)ue,ω, 0,
e

2(−∆)−1|ue,ω|2
)
.

In order to investigate the stability of such standing waves (ψe,ω,Ae,ω, φe,ω) as per-
formed in [CW17], it is necessary to prove that the Cauchy Problem (1.1)–(1.3) is
almost locally well-posed around (ψe,ω,Ae,ω, φe,ω).
In a previous paper [CW16], we have proved the local existence of solutions for

the nonlinear Klein–Gordon–Maxwell system in Sobolev spaces of high regularity.
The method was to convert the Klein–Gordon–Maxwell system into a symmetric hy-
perbolic system and apply the standard energy estimate. Although our Schrödinger–
Maxwell system (1.1)–(1.3) looks similar, especially Equation (1.2) is completely the
same, the usual reduction tools does not lead us to a symmetric hyperbolic system,
which causes the necessity of a new strategy.
Let us also introduce results concerning the solvability of the Cauchy problem

related to (1.1)–(1.3). In [BT09], [NW07], the linear Schrödinger equation (g ≡ 0)
coupled with the Maxwell equations has been studied. Using the Strichartz esti-
mate, the authors obtained the global well-posedness in the energy space. Recently
in [ADM17], it was shown, by using the Strichartz estimate obtained in [NW07],
that the system (1.1)–(1.3) is locally well-posed in H2 ×H 3

2 ×H 1
2 and the global

existence holds for finite energy weak solutions, when the nonlinear term g is defo-
cusing (namely the case with +|ψ|p−1ψ in (1.1)). We also mention the paper [NT86],
where the Cauchy problem of the Schrödinger–Maxwell system in the Lorentz gauge
has been studied by using the energy method. On the other hand, a huge attention
has been paid in the magnetic Schrödinger equation (1.6). Especially in [Mic08],
the local well-posedness for (1.6) in the energy space has been established in the
case V ≡ 0. However, in this situation, the magnetic potential A is given and was
assumed to be C∞, which cannot be expected a priori in our case. We also refer
to [DFVV10] for the Strichartz estimate for the magnetic Schrödinger operator (1.7)
in the case A ∈ L2

loc(R3).
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We mention that if we look for the standing wave (1.10), we are led to the following
non-local elliptic problem:

(1.11) −∆u+ ωu+
(

e2

8π|x| ∗ |u|
2
)
u = g(|u|2)u in R3,

which is referred as the Schrödinger–Poisson(–Slater) equation. The existence of
ground states of (1.11) as well as their orbital stability have been widely studied
(see [AP08], [BF14], [BS11], [CDSS13], [Kik07] and references therein). Finally, the
orbital stability of standing waves for the magnetic Schrödinger equation (1.6) has
been considered in [CE88], [GR91]. Our study on the solvability of the Cauchy
problem for (1.1)–(1.3) and the result established in [CW17] enable us to generalize
these previous results to the full Schrödinger–Maxwell system.
Before stating the main result of this paper, we introduce the following notations.

As usual, Lp(R3) denotes the usual Lebesgue space:

Lp(R3) =
{
u ∈ S ′(R3) ; ‖u‖Lp < +∞

}
,

where

‖u‖Lp =
(∫

R3
|u(x)|p dx

) 1
p

if 1 6 p < +∞

and
‖u‖L∞ = ess sup

{
|u(x)| ; x ∈ R3

}
.

We define the Sobolev space Hs(R3) as follows:

Hs(R3) =
{
u ∈ S ′(R3) ; ‖u‖2

Hs(R3) =
∫
R3

(1 + |ξ|2)s|F(u)(ξ)|2 dξ < +∞
}
,

where F(u)(ξ) is the Fourier transform of u. We also introduce the homogeneous
Sobolev space Ḣ1(R3) as being the completion of C∞0 (R3,C) for the norm u →
‖|ξ|F(u)(ξ)‖L2(R3). Recall that the space Ḣ1(R3) is continuously embedded into
L6(R3). Finally let C(I, E) be the space of continuous functions from an interval I
of R to a Banach space E. For 1 6 j 6 3, we set ∂xj

= ∂
∂xj

and ∂t = ∂
∂t
. For k ∈ N3,

k = (k1, k2, k3), we denote Dku = ∂k1
x1 ∂

k2
x2 ∂

k3
x3u and for a non-negative integer s, Ds

denotes the set of all partial space derivatives of order s. Different positive constants
might be denoted by the same letter C. We also denote by Re(u) and Im(u) the real
part and the imaginary part of u respectively.
We assume that g satisfies

(1.12) g ∈ Cm+1(R,R) and g(0) = 0,

for some m ∈ N with m > 2, so that the function W : C→ C defined by W (u) :=
g(|u|2)u satisfies W ∈ Cm+1(C,C), W (0) = W ′(0) = 0. Some typical examples of
the nonlinear term g are the power nonlinearity g(s) = ±s p−1

2 with [p] > 2m + 3
([p] denotes the integer part of p), or the cubic-quintic nonlinearity g(s) = s− λs2

for λ > 0, which frequently appears in the study of solitons in physical literatures.
(See [RV08] for example.) In this setting, we prove the following result.
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Theorem 1.1. — Let s be any integer larger than 3
2 and assume that ψ0 ∈

Hs+2(R3,C), A(0) ∈ Hs+2(R3,R3), A(1) ∈ Hs+1(R3,R3) with div A(0) = 0, div A(1) =
0 and g satisfies (1.12). Then there exist T ∗ > 0 and a unique solution (ψ,A, φ) to
System (1.1)–(1.3) satisfying the initial condition (1.4) such that

ψ ∈ C([0, T ∗];Hs+2(R3)) ∩ C1([0, T ∗];Hs(R3)),
A ∈ C([0, T ∗];Hs+2(R3)) ∩ C1([0, T ∗];Hs+1(R3)),

φ ∈ C([0, T ∗]; Ḣ1(R3) ∩ L∞(R3)), ∇φ ∈ C([0, T ∗];Hs+1(R3)),
φt ∈ C([0, T ∗]; Ḣ1(R3) ∩ L∞(R3)), ∇φt ∈ C([0, T ∗];Hs+1(R3)).

The proof of Theorem 1.1 is based on energy estimates and particularly, on the
strategies developed in [Col02] and [CC04]. Note also that to overcome the loss
of derivatives embedded in Equation (1.2), we use the original idea of Ozawa and
Tsutsumi presented in [OT92].
The paper is organized as follows. In Section 2, we transform System (1.1)–(1.3)

into a system to which we can apply the usual energy method. Section 3 is devoted
to the proof of Theorem 1.1.

2. Transformation of the equations

In this section, we transform the original System (1.1)–(1.3) into a new symmetric
system to which we can apply an energy method. In order to overcome the loss
of derivatives contained in Equations (1.1)–(1.2), we introduce the following new
unknowns (see [OT92]):

Ψ = ∂tψ and Φ = ∂tφ.

Let us first derive equations for Ψ and Φ. Differentiating Equation (1.1) with
respect to t, one obtains

iΨt + ∆Ψ = eΦψ + eφΨ + e2|A|2Ψ + 2e2ψA ·At + 2ie∇Ψ ·A + 2ie∇ψ ·At

− g′(|ψ|2)(|ψ|2Ψ + ψ2Ψ)− g(|ψ|2)Ψ.
Taking advantage of the new unknown Ψ, we also transform Equation (1.1) into an
elliptic version

iΨ + ∆ψ = eφψ + e2|A|2ψ + 2ie∇ψ ·A− g(|ψ|2)ψ.
Moreover, we derive an equation for Φ by applying ∂t on Equation (1.3):

−∆Φ = e

2
(
ψΨ + Ψψ

)
.

Next, in order to ensure the Coulomb condition on A for all t > 0, we introduce
the projection operator P on divergence free vector fields :

P :
(
L2(R3)

)3
−→

(
L2(R3)

)3

A 7−→ PA =
(
−∆

)−1
rot rotA,
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so that if div A = 0, then PA = A. Thus applying P on Equation (1.2), we derive

(2.1) Att −∆A = P
(
e Im(ψ̄∇ψ)− e2|ψ|2A−∇Φ

)
.

Note that any solution to (2.1) satisfying

div A(0, · ) = 0 and div At(0, · ) = 0,

obviously satisfies
div A(t, · ) = 0 for all t > 0.

At this step, we have transformed System (1.1)–(1.3) into

iΨ + ∆ψ = eφψ + e2|A|2ψ + 2ie∇ψ ·A− g(|ψ|2)ψ,(2.2)
iΨt + ∆Ψ = eΦψ + eφΨ + e2|A|2Ψ + 2e2ψA ·At + 2ie∇Ψ ·A(2.3)

+ 2ie∇ψ ·At − g′(|ψ|2)(|ψ|2Ψ + ψ2Ψ)− g(|ψ|2)Ψ,

Att −∆A = P
(
e Im(ψ̄∇ψ)− e2|ψ|2A−∇Φ

)
,(2.4)

−∆φ = e

2 |ψ|
2,(2.5)

−∆Φ = e

2
(
ψΨ + Ψψ

)
.(2.6)

In order to take advantage of elliptic regularity properties, we transform Equa-
tions (2.2) by adding −αψ (α > 0 will be chosen in Lemma 3.3 below) to both sides
of the equation to obtain:

(2.7) (−∆ + α)ψ = iΨ− eφψ − e2|A|2ψ − 2ie∇ψ ·A + g(|ψ|2)ψ + αψ.

For simplicity, introduce U = (φ,Φ) and rewrite Equations (2.5) and (2.6) as

(2.8) −∆U = F1(ψ,Ψ),

where

F1(ψ,Ψ) = e

2

(
|ψ|2

ψΨ + Ψψ

)
.

Equation (2.3) is then transformed into

(2.9) i∂tΨ + ∆Ψ = 2ie∇Ψ ·A + 2ie∇ψ ·At + F2(U , ψ,Ψ,A,At),

where

F2(U , ψ,Ψ,A,At) = eΦψ + eφΨ + e2|A|2Ψ + 2e2ψA ·At

− g′(|ψ|2)(|ψ|2Ψ + ψ2Ψ)− g(|ψ|2)Ψ.

It is then necessary to work with At as new unknown. We recall first that A =
(a1, a2, a3). To properly write the equations on A and At, for j = 1, 2, 3, k = 1, 2, 3
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and ` = 1, 2, 3, we introduce

pj,k = ∂xk
aj,

qj = ∆aj,

rj = ∂taj,

λj,k = ∂xk
∆−1∂taj,

µj,k,` = ∂x`
λj,k = ∂x`

∂xk
∆−1∂taj,

νj,k = ∆λj,k = ∂xk
∂taj,

τj,k = ∂tλj,k = ∂xk
∆−1∂2

t aj,

and set A = (A1,A2,A3) with Aj : R+ × R3 → R24 and

Aj = t(aj, pj,k, qj, rj, λj,k, µj,k,`, νj,k, τj,k).

We also need to give some details on the projection operator P. For that purpose,
we introduce the Riesz transform Rj from L2(R3) to L2(R3) which is given by

Rj = ∂xj
(−∆)− 1

2 for j = 1, 2, 3.

Then, P can be rewritten as P = (Pj,m)16j,m63 where

Pj,m = δj,m + RjRm.

Now we compute the equations for each components of Aj. First by the definitions
of Aj, one finds that

∂taj = ∆∆−1∂taj =
3∑

k=1
∂xk

(∂xk
∆−1∂taj) =

3∑
k=1

∂xk
λj,k,

∂tpj,k = ∂t∂xk
aj = ∆(∂xk

∆−1∂taj) = ∆λj,k =
3∑

`=1
∂x`

(∂x`
λj,k) =

3∑
`=1

∂x`
µj,k,`,

∂tqj = ∂t∆aj =
3∑

k=1
∂xk

∆(∂xk
∆−1∂taj) =

3∑
k=1

∂xk
∆λj,k =

3∑
k=1

∂xk
νj,k,

∂trj = ∂2
t aj = ∆∆−1∂2

t aj =
3∑

k=1
∂xk

∂t(∂xk
∆−1∂taj)

=
3∑

k=1
∂xk

∂tλj,k =
3∑

k=1
∂xk

τj,k.

Next from Equation (2.4), we have

∂2
t aj = ∆aj +

3∑
m=1

Pj,m

(
e Im(ψ̄∂xmψ)− e2|ψ|2am − ∂xmΦ

)
,
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which provides

∂tλj,k = ∂t∂xk
∆−1∂taj = ∂xk

∆−1∂2
t aj

= ∂xk
∆−1

(
∆aj +

3∑
m=1

Pj,m

(
e Im(ψ̄∂xmψ)− e2|ψ|2am − ∂xmΦ

))
= ∂xk

aj + h1
j,k(ψ,A),

∂tµj,k,` = ∂t∂x`
∂xk

∆−1∂taj = ∂x`
∂xk

∆−1(∂2
t aj)

= ∂x`
∂xk

∆−1
(

∆aj +
3∑

m=1
Pj,m

(
e Im(ψ̄∂xmψ)− e2|ψ|2am − ∂xmΦ

))
= ∂x`

pj,k + h2
j,k,`(ψ,A),

∂tνj,k = ∂xk
∂2

t aj

= ∂xk

(
∆aj +

3∑
m=1

Pj,m

(
e Im(ψ̄∂xmψ)− e2|ψ|2am − ∂xmΦ

))
= ∂xk

qj + h3
j,k(ψ,A),

where h1
j,k, h2

j,k,`, h3
j,k are non-local functions defined as follows:

h1
j,k(ψ,A) = ∂xk

∆−1
3∑

m=1
Pj,m

(
eIm(ψ∂xmψ)− e2|ψ|2am − ∂xmΦ

)
,

h2
j,k,`(ψ,A) = ∂x`

∂xk
∆−1

3∑
m=1

Pj,m

(
eIm(ψ∂xmψ)− e2|ψ|2am − ∂xmΦ

)
,

h3
j,k(ψ,A) = ∂xk

3∑
m=1

Pj,m

(
eIm(ψ∂xmψ)− e2|ψ|2am − ∂xmΦ

)
.

Finally one has

∂tτj,k = ∂xk
∆−1∂t(∂2

t aj)

= ∂xk
∆−1∂t

(
∆aj +

3∑
m=1

Pj,m

(
e Im(ψ̄∂xmψ)− e2|ψ|2am − ∂xmΦ

))
.

Computing separately each term of the right-hand side of the previous equation, we
obtain

∂t(ψ∂xmψ) = Ψ∂xmψ + ψ∂xmΨ,
∂t(|ψ|2am) = (Ψψ + ψΨ)am + |ψ|2rm.
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Moreover from (2.3) and (2.6), one finds that

∂t(∂xmΦ) = ∂t

(
e

2∂xm(−∆)−1(ψΨ + Ψψ)
)

= e

2∂xm(−∆)−1(2|Ψ|2 + ψ∂tΨ + ψ∂tΨ)

= e∂xm(−∆)−1|Ψ|2 + e∂xm(−∆)−1 Im(i∂tΨψ)

= e∂xm(−∆)−1
{
|Ψ|2 + Im

(
− ψ∆Ψ + eΦ|ψ|2 + eφψΨ + e2|A|2ψΨ

+ 2e2|ψ|2A ·At + 2ieψ∇Ψ ·A + 2ieψ∇ψ ·At

− g′(|ψ|2)|ψ|2(ψΨ + ψΨ)− g(|ψ|2)ψΨ
)}
,

from which we conclude that
∂tτj,k = ∂xk

rj + h4
j,k(ψ,Ψ,A,R),

where R = (r1, r2, r3) and
h4

j,k(ψ,Ψ,A,R)

= ∂xk
∆−1

3∑
m=1

Pj,m

(
eIm(Ψ∂xmψ + ψ∂xmΨ)− e2(|ψ|2rm + (Ψψ + ψΨ)am)

)

− ∂xk
∆−1

3∑
m=1

Pj,m

[
e∂xm(−∆)−1

{
|Ψ|2 + Im

(
− ψ∆Ψ + eΦ|ψ|2 + eφψΨ

+ e2|A|2ψΨ + 2e2|ψ|2A ·R + 2ieψ∇Ψ ·A + 2ieψ∇ψ ·R

− g′(|ψ|2)|ψ|2(ψΨ + ψΨ)− g(|ψ|2)ψΨ
)}]

.

The equation on Aj can be written as a symmetric system of the form
∂tAj +Mj(∇)Aj +Hj(ψ,Ψ,A,R) = 0 (j = 1, 2, 3),

where Hj = t(0, 0, 0, 0, h1
j,k, h

2
j,k,`, h

3
j,k, h

4
j,k),Mj(∇) = ∑3

k=1 M̃j∂xk
are 24 × 24 sym-

metric matrices. Recalling that Aj = (aj, pj, qj, rj, λj, µj, νj, τj), where aj, qj, rj are
scalar functions, pj, λj, νj and τj are functions with values in R3 and µj is a function
with values in R9,Mj can be simply written by blocks:

Mj(∇) =



0 0 0 0 ∇· 0 0 0
0 0 0 0 0 ∇· 0 0
0 0 0 0 0 0 ∇· 0
0 0 0 0 0 0 0 ∇·
∇ 0 0 0 0 0 0 0
0 N(∇) 0 0 0 0 0 0
0 0 ∇ 0 0 0 0 0
0 0 0 ∇ 0 0 0 0


,

with

N(∇) =

 ∇ 0 0
0 ∇ 0
0 0 ∇

 .
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Note that M̃j are 24× 24 symmetric matrices whose components are all constants.
Thus from (2.7), (2.8) and (2.9), we have transformed Equations (1.1)–(1.3) into

the following system:
−∆U = F1(ψ,Ψ),(2.10)

(−∆ + α)ψ + 2ie∇ψ ·A = iΨ− eφψ − e2|A|2ψ + g(|ψ|2)ψ + αψ,(2.11)
i∂tΨ + ∆Ψ− 2ie∇Ψ ·A = 2ie∇ψ ·R + F2(U , ψ,Ψ,A,R),(2.12)

0 = ∂tAj +Mj(∇)Aj +Hj(ψ,Ψ,A,R).(2.13)

3. Solvability of the Cauchy Problem

The aim of this section is to prove Theorem 1.1. To this end, we use a fix-point argu-
ment on a suitable version of System (2.10)–(2.13). In this procedure, the necessary
estimates follow from the application of the usual energy methods.
For s ∈ N with s > 3

2 , take an initial data

ψ(0) ∈ Hs+2(R3,C),

A(0) = (a1(0), a2(0), a3(0)) ∈ Hs+2(R3,R3),
and

A(1) = (r1(0), r2(0), r3(0)) ∈ Hs+1(R3,R3),
satisfying

div A(0) = 0, div A(1) = 0.
Let us define Ψ(0) ∈ Hs(R3,C) by

(3.1)
Ψ(0) = i

(
∆ψ(0) − eφ(0)ψ(0) − e2|A(0)|2ψ(0) − 2ie∇ψ(0) ·A(0) − g(|ψ(0)|2)ψ(0)

)
,

Φ(0) = e

2(−∆)−1(ψ(0)Ψ(0) + Ψ(0)ψ(0)),

where φ(0) = e
2(−∆)−1|ψ(0)|2. We also put

A(0) = (A1(0),A2(0),A3(0)) ∈ Hs(R3),
for i, j, k, l = 1, 2, 3,

Aj(0) = t(aj(0), pj,k(0), qj(0), rj(0), λj,k(0), µj,k,`(0), νj,k(0), τj,k(0)),
pj,k(0) = ∂xk

aj(0), qj(0) = ∆aj(0), λj,k(0) = ∂xk
∆−1rj(0),

µj,k,`(0) = ∂xk
∂x`

∆−1rj(0), νj,k(0) = ∂xk
rj(0)

and

τj,k(0) = ∂xk
aj(0) + ∂xk

∆−1
3∑

m=1
Pj,m

(
e Im(ψ(0)∂xmψ(0))− e2|ψ(0)|2am(0) − ∂xmΦ(0)

)
.

We introduce R = 2
(
‖ψ(0)‖Hs + ‖Ψ(0)‖Hs + ‖A(0)‖Hs

)
and let B(R) be the ball of

radius R in C
(
[0, T ]; (Hs(R3)2

)
for T > 0.
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We prove the existence of a solution (U , ψ,Ψ,Aj) of (2.10)–(2.13) by the following
procedure. Take (Ψ,A) ∈ B(R) with div A = 0 arbitrarily and construct new
functions Q and B = (B1,B2,B3) as follows.
First we define ψ ∈ C([0, T ];Hs(R3,C)) by

(3.2) ψ(t, x) := ψ(0)(x) +
∫ t

0
Ψ(s, x) ds.

Then by the construction of ψ, one finds that, for T small enough,
‖ψ‖L∞[0,T ];Hs) 6 R.

Next let U ∈ C([0, T ]; Ḣ1(R3)) be a solution to
(3.3) −∆U = F1(ψ,Ψ).
We note that U ∈ C([0, T ];L∞(R3)) and ∇U ∈ C([0, T ];Hs+1(R3)). (See Lemma 3.2
below.) Next we introduce the solution χ ∈ C([0, T ];Hs+2(R3,C)) of the following
elliptic equation:
(3.4) (−∆ + α)χ+ 2ie∇χ ·A = iΨ− eφψ − e2|A|2ψ + g(|ψ|2)ψ + αψ.

We now consider a linearized version of (2.12)–(2.13). We take (Q,B) ∈ Hs(R3)×
Hs(R3) solutions toi∂tQ+ ∆Q− 2ie∇Q ·A = 2ie∇χ ·R + F2(U , χ,Ψ,A,R),

Q(0, x) = Ψ(0),
(3.5)

∂tBj +Mj(∇)Bj +Hj(χ,Ψ,A,R) = 0,
Bj(0, x) = Aj(0).

(3.6)

Let
S : (Ψ,A) 7−→ (Q,B).

Our strategy consists in showing that S is a contraction mapping on B(R), provided
that T > 0 is sufficiently small and to prove that χ = ψ, from which we obtain
the existence of a solution (U , ψ,Ψ,Aj) of (2.10)–(2.13) and complete the proof of
Theorem 1.1.
The proof is divided into 6 steps. We first recall the following classical lemma. (See

e.g. [AG91, Proposition 2.1.1, p. 98] for the proof.)
Lemma 3.1. — Let u, v ∈ L∞(R3) ∩Hs(R3) for s ∈ N. Then for all (m1,m2) ∈

N3 × N3 with |m1|+ |m2| = s, one has

‖Dm1uDm2v‖L2 6 C
(
‖u‖L∞‖v‖Hs + ‖v‖L∞‖u‖Hs

)
.

Step 1: Solving the elliptic equation (3.3)

Lemma 3.2. — There exists a unique solution U ∈ C([0, T ]; Ḣ1(R3)) of (3.3).
Moreover, U = (φ,Φ) satisfies the following estimates.

‖∇φ‖L∞([0,T ];Hs+1) 6 C1(R), ‖φ‖L∞([0,T ];L∞) 6 C2(R),(3.7)
‖∇Φ‖L∞([0,T ];Hs+1) 6 C3(R), ‖Φ‖L∞([0,T ];L∞) 6 C4(R),(3.8)
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where C1, C2, C3 and C4 are positive constants depending only on R.

Proof. — First we note that the bilinear form

a(u, v) :=
∫
R3
∇u · ∇v dx

is continuous and elliptic on Ḣ1(R3,R) × Ḣ1(R3,R). Moreover since ψ ∈ Hs(R3)
and Ψ ∈ Hs(R3), a direct computation gives∥∥∥|ψ|2∥∥∥

L
6
5

= ‖ψ‖2
L

12
5
6 C‖ψ‖2

H1 ,

‖ψΨ + Ψψ‖
L

6
5
6 C‖ψ‖L3‖Ψ‖L2 6 C‖ψ‖H1‖Ψ‖L2 .

Then by the Sobolev embedding L 6
5 (R3) ↪→

(
Ḣ1(R3)

)∗
and the Lax–Milgram theo-

rem, we deduce that there exists a unique solution U ∈ C([0, T ]; Ḣ1(R3)) of (3.3).
Next for 0 6 k 6 s, we apply Dk+1 to the first line of (3.3), multiply the resulting

equation by Dk+1φ and make an integration by parts to obtain

‖∇(Dk+1φ)‖2
L2 = e

2

∣∣∣∣∫
R3
Dk+1|ψ|2Dk+1φ dx

∣∣∣∣
6 C

∫
R3

∣∣∣Dk|ψ|2
∣∣∣|Dk+2φ| dx.

Using the Leibniz rule, Lemma 3.1 and the Schwarz inequality, one has

(3.9) ‖∇φ(t, · )‖Hk+1 6 C‖ψ(t, · )‖2
Hk for all t ∈ [0, T ].

Summing up the inequalities (3.9) from k = 0 to s and recalling the fact that
‖ψ‖L∞([0,T ];Hs) 6 R, we obtain

‖∇φ‖L∞([0,T ];Hs+1) 6 C1(R),

where C1(R) is a constant depending only on R.
Finally, the Sobolev embedding W 1,6(R3) ↪→ L∞(R3) provides that

‖φ(t, · )‖L∞ 6 C

( 3∑
k=1
‖∂xk

φ(t, · )‖L6 + ‖φ(t, · )‖L6

)

6 C

( 3∑
k=1
‖∇(∂xk

φ)(t, · )‖L2 + ‖∇φ(t, · )‖L2

)
,

from which we deduce that there exists a constant C2(R) depending only on R such
that

‖φ‖L∞([0,T ];L∞) 6 C2(R),

which ends the proof of (3.7). The proof of estimates (3.8) is similar and we omit
the details. �
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Step 2: Solving the elliptic equation (3.4)

Lemma 3.3. — Suppose that A ∈ Hs(R3,R3), s > 3
2 and div A = 0. Then for

sufficiently large α > 0, the bilinear form

b(u, v) :=
∫
R3

(∇u · ∇v + αuv + 2ie∇u ·Av) dx

is hermitian, continuous and elliptic on H1(R3,C)×H1(R3,C).
As a consequence, there exists a unique solution χ(t, · ) ∈ H1(R3,C) to (3.4) and

there exists a constant C5(R) such that

‖χ‖L∞([0,T ];Hs+2) 6 C5(R).

Proof. — First we note that b is hermitian by the condition div A = 0. Indeed,
one has

2ie
∫
R3

(∇u ·A)v dx = −2ie
∫
R3

div Auv dx− 2ie
∫
R3

(∇v ·A)u dx

= 2ie
∫
R3

(∇v ·A)u dx,

from which it follows directly that b(u, v) = b(v, u). The continuity is a direct
consequence of the Cauchy–Schwarz inequality and the fact that A ∈ Hs(R3) ↪→
L∞(R3). Finally for all u ∈ H1(R3,C), we have∣∣∣∣2ie ∫

R3
(∇u ·A)u dx

∣∣∣∣ 6 2e‖A‖L∞‖∇u‖L2‖u‖L2

6
1
2‖∇u‖

2
L2 + 2e2‖A‖2

L∞‖u‖2
L2

6
1
2‖∇u‖

2
L2 + Ce2‖A‖2

Hs‖u‖2
L2 .

Taking α > 2Ce2‖A‖2
Hs , one gets

b(u, u) > 1
2‖∇u‖

2
L2 + α

2 ‖u‖
2
L2 .

This shows that b is elliptic on H1(R3,C)×H1(R3,C).
Now since ψ, Ψ ∈ Hs(R3) and φ ∈ Ḣ1(R3)∩L∞(R3), it is obvious that iΨ−eφψ−

e2|A|2ψ − g(|ψ|2)ψ + αψ belongs to L2(R3) ↪→ (H1(R3))∗. Then the Lax–Milgram
theorem ensures the existence of a unique solution χ to (3.4) in H1(R3). Using the
elliptic regularity theory and recalling that

(ψ,Ψ) ∈ C([0, T ], Hs(R3))2, φ ∈ C(([0, T ]; Ḣ1(R3) ∩ L∞(R3)),

∇φ ∈ C([0, T ];Hs(R3)), A ∈ C([0, T ], Hs(R3)),
one gets

‖χ‖L∞([0,T ];Hs+2) 6 C5(R),
where C5(R) is a constant depending only on R. This ends the proof of
Lemma 3.3. �
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Step 3: Solving the Schrödinger equation (3.5)

For convenience, we introduce the real form of Equation (3.5). Denote R =
(R1,R2) = (ReQ, ImQ) and write

(3.10) ∂tR+ J∆R− 2e
3∑

j=1
Kj(A)∂xj

R = L1(∇χ,R) + L2(U , χ,Ψ,A,R),

R(0, x) =
(

Re Ψ0(x), Im Ψ0(x)
)
,

where

J =
(

0 1
−1 0

)
, Kj(A) =

(
aj 0
0 aj

)
,

L1(∇χ,R) =
(

Im(2ie∇χ ·R)
−Re(2ie∇χ ·R)

)
,

L2(U , χ,Ψ,A,R) =
(

ImF2(U , χ,Ψ,A,R)
−ReF2(U , χ,Ψ,A,R)

)
.

Now for ε > 0, we consider a long-wave type regularization of (3.10) (see [CG01]):

(3.11) ∂t(1− ε∆)Rε + J∆Rε − 2e
3∑

j=1
Kj(A)∂xj

Rε = L1 + L2,

with Rε(0) = (1− ε∆)−1(Re Ψ0, Im Ψ0). Since Equation (3.11) is linear and contains
differential operator in space of at most zero order, one can show that there exists
a unique solution Rε ∈ C([0, T ];Hs(R3)) to Equation (3.11). Furthermore, we have
the following estimate.

Lemma 3.4. — Let Rε be the unique solution of Equation (3.11). Then there
exist constants C6(R), C7(R) independent of ε such that

‖Rε‖L∞([0,T ];Hs) 6 eC6(R)T‖Ψ0‖Hs +
(
eC7(R)T − 1

) 1
2 .

Proof. — We first begin with the L2-estimate. We multiply (3.11) by Rε and
integrate over R3. Since J is skew-symmetric, one obtains

(3.12) ∂

∂t

(1
2

∫
R3

(
|Rε|2 + ε|∇Rε|2

)
dx
)

= 2e
∫
R3

3∑
j=1
Kj(A)∂xj

Rε · Rε dx+
∫
R3
L1 · Rε dx+

∫
R3
L2 · Rε dx.

For j = 1, 2, 3, we have from ‖∂xj
aj‖Hs 6 R that∣∣∣∣∫

R3
Kj(A)∂xj

Rε · Rε dx
∣∣∣∣ =

∣∣∣∣12
∫
R3
aj∂xj

|Rε|2 dx
∣∣∣∣ =

∣∣∣∣12
∫
R3
∂xj

aj|Rε|2 dx
∣∣∣∣

6
1
2‖∂xj

aj‖L∞‖Rε‖2
L2 6 C(R)‖Rε‖2

L2 .(3.13)
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Since Ψ, R ∈ Hs and A ∈ Hs+1, using Lemmas 3.2-3.3, one can also compute as
follows : ∣∣∣∣∫

R3
L1(∇χ,R) · Rε dx

∣∣∣∣ 6 C(R)‖Rε‖L2 ,∣∣∣∣∫
R3
L2(U , χ,Ψ,A,R) · Rε dx

∣∣∣∣ 6 C(R)‖Rε‖L2 .(3.14)

Collecting (3.12)–(3.14), we derive
∂

∂t
‖Rε‖2

L2 6 C(R)‖Rε‖2
L2 + C(R).

By the Gronwall inequality and from
‖Rε(0, · )‖L2 = ‖(1− ε∆)−1(Re Ψ0, Im Ψ0)‖L2 6 ‖Ψ0‖L2 ,

it follows that
‖Rε(t, · )‖2

L2 6 eC(R)t
(
‖Rε(0, · )‖2

L2 + 1− e−C(R)t
)

6 eC(R)T‖Ψ0‖2
L2 + eC(R)T − 1

6
(
e

C(R)T
2 ‖Ψ0‖L2 + (eC(R)T − 1) 1

2

)2
for all t ∈ [0, T ].

Next we perform the Hs-estimate. We apply Ds on (3.11), multiply the resulting
equation by DsRε, integrate over R3 and use the Gronwall inequality. We limit
our attention to non-trivial terms. Recalling that χ ∈ C([0, T ];Hs+2) and using
Lemma 3.3, we obtain∣∣∣∣∫

R3
DsL1(∇χ,R) ·DsRε dx

∣∣∣∣ 6 C(R)‖Rε‖Hs .

Moreover, one gets∣∣∣∣∫
R3
Kj(A)∂xj

DsRε ·DsRε dx
∣∣∣∣ =

∣∣∣∣12
∫
R3
aj∂xj

|DsRε|2 dx
∣∣∣∣

=
∣∣∣∣12
∫
R3
∂xj

aj|DsRε|2 dx
∣∣∣∣

6
1
2‖∂xj

aj‖L∞‖Rε‖2
Hs .

Arguing similarly as above, one finds that

‖Rε‖L∞([0,T ];Hs) 6 eC6(R)T‖Ψ0‖Hs + (eC7(R)T − 1) 1
2 ,

which ends the proof of Lemma 3.4. �

Now we argue as in [BdBS95], [CG01] and we perform the limit ε → 0. By
Lemma 3.4, we know that Rε is uniformly bounded in L∞([0, T ], Hs). From (3.11),
one also has

∂tRε = −(1− ε∆)−1J∆Rε + 2e(1− ε∆)−1
3∑

j=1
Kj(A)∂xj

Rε

+ (1− ε∆)−1L1 + (1− ε∆)−1L2.
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This implies that

‖∂tRε‖Hs−2 6 C(R)‖Rε‖Hs +‖L1‖Hs−2 +‖L2‖Hs−2 6 C for all t > 0 and ε ∈ (0, 1].

Thus passing to a subsequence, we may assume that

Rε → R ∈ L∞([0, T ], Hs), ∂tRε → ∂tR ∈ L∞([0, T ], Hs−2) in the weak * topology.

From (3.11), one can see that R is a solution of Equation (3.10) and satisfies

‖R‖L∞([0,T ];Hs) 6 eC6(R)T‖Ψ0‖Hs + (eC7(R)T − 1) 1
2 .

Moreover since Rε(0) → (Re Ψ0, Im Ψ0), we get R(0) = (Re Ψ0, Im Ψ0). We then
deduce the existence of a solution Q to Equation (3.5) satisfying

(3.15) ‖Q‖L∞([0,T ];Hs) 6 eC6(R)T‖Ψ0‖Hs + (eC7(R)T − 1) 1
2 .

Step 4: Solving the symmetric system (3.6)

First we note that it is straightforward to prove the existence of a unique solution
Bj to Equation (3.6). (We refer to [AG91, Proposition 1.2, p. 115] for the proof.)
Furthermore, by using the Fourier transform F , one has directly

Rju = F−1
(
i
ξj

|ξ|
F(u)

)
for j = 1, 2, 3,

from which we deduce that Rj and hence Pj,m are bounded from L2(R3) to L2(R3).
As a consequence, using the fact Ψ ∈ Hs, A ∈ Hs+2, R ∈ Hs+1 and χ ∈ Hs+2, one
can prove that

‖Hj(χ,Ψ,A,R)‖L∞([0,T ];Hs) 6 C(R).

Thus applying the energy estimate to (3.6), recalling that Mj(∇) = ∑3
k=1 M̃j∂xk

is
symmetric and using the fact M̃j consists of constant elements, we get

∂

∂t
‖Bj‖2

Hs 6 ‖Bj‖2
Hs + C(R).

Then by the Gronwall inequality, we obtain the following estimate.

Lemma 3.5. — Let Bj be the unique solution of (3.6). Then there exists a
constant C8(R) > 0 such that

(3.16) ‖Bj‖L∞([0,T ];Hs) 6 e
T
2 ‖Aj(0)‖Hs + C8(R)(eT − 1) 1

2 .

Collecting (3.15) and (3.16), we can state the following result.

Proposition 3.6. — There exists T̂ > 0 such that for 0 < T 6 T̂ , S maps B(R)
into itself.
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Step 5: Contraction mapping

Now we establish the following result.

Proposition 3.7. — There exists T ∗ ∈ (0, T̂ ] such that S is a contraction
mapping in the L∞([0, T ∗];L2(R3))-norm.

Proof. — The proof is based on the fact that s > 3
2 and on the fact that all the

functions of Equations (3.3)–(3.6) are Lipschitz with respect to their arguments. The
proof is classical and we omit the details. �

From Propositions 3.6, 3.7 and by the contraction mapping principle, it follows
that there exists a unique (Ψ,A) ∈ B(R) such that

S(Ψ,A) = (Ψ,A),
that is, Ψ is the unique solution of the Schrödinger equation:i∂tΨ + ∆Ψ− 2ie∇Ψ ·A = 2ie∇χ ·R + F2(U , χ,Ψ,A,R),

Ψ(0, x) = Ψ(0),

and Aj (j = 1, 2, 3) is the unique solution to the symmetric system:∂tAj +Mj(∇)Aj +Hj(χ,Ψ,A,R) = 0,
Aj(0, x) = Aj(0).

Since A(0, x) = A(0), we also have A(0, x) = A(0) and At(0, x) = A(1).

Step 6: Proof of Theorem 1.1 completed

Let us now go back to the original problem (1.1)–(1.3). To this end, we first remark
that ∂tψ = Ψ by (3.2). Applying ∂t on Equation (3.4), comparing the resulting
equation with Equation (2.12) and recalling that R = ∂tA, one obtains
(3.17) −∆(∂tχ− ∂tψ) + 2ie∇(∂tχ− ∂tψ) ·A = 0.
By Lemma 3.3, we know that the bilinear form

b(u, v) =
∫
R3

(∇u · ∇v + αuv + 2ie∇u ·Av) dx

is hermitian, continuous and elliptic on H1(R3,C) × H1(R3,C), from which we
deduce that Equation (3.17) has a unique solution. Since obviously 0 is a solution to
Equation (3.17), one has ∂tχ = ∂tψ. Moreover from (3.2), it follows that ψ(0, x) =
ψ(0) and hence φ(0, x) = φ(0) by the uniqueness of the solution of (3.3). Thus
substituting t = 0 into (3.4), we get
−∆χ(0) + 2ie∇χ(0) ·A(0) = iΨ(0) − eφ(0)ψ(0) − e2|A(0)|2ψ(0) + g(|ψ(0)|2)ψ(0).

By the definition of Ψ(0) given in (3.1), one finds that
−∆(χ(0)− ψ(0)) + 2ie∇(χ(0)− ψ(0)) ·A(0) = 0,

yielding that χ(0) = ψ(0) by Lemma 3.3.
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Since ∂tχ = ∂tψ and χ(0) = ψ(0), it follows that χ = ψ. As a consequence, ψ
is the unique solution to Equation (1.1). Then from (3.4) and (3.5), we conclude
that A and φ are the unique solutions to (1.2) and (1.3) respectively. Moreover by
the uniqueness of (3.3), one finds that ∂tφ = Ψ. Finally by Lemmas 3.2, 3.3 and
from (3.15), (3.16), (ψ,A, φ) has the desired regularity as stated in Theorem 1.1.
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