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Résumé. — Les processus de croissance-fragmentation décrivent l’évolution de familles de
cellules qui croissent continûment et se divisent soudainement; ils apparaissent notamment
comme modèles pour la division cellulaire et la polymérisation des protéines. Au fur et à
mesure que le temps passe, on s’attend à ce que les concentrations de cellules de masse donnée
croissent à un taux exponentiel, et qu’une fois ce taux compensé, elles convergent vers un profil
asymptotique. Jusqu’à présent, cette question a principalement été étudiée pour le processus
moyenné, le plus souvent via l’analyse spectrale d’une équation intégro-différentielle qui est
associée naturellement au modèle. Cependant, l’étude du comportement du processus lui-même,
et pas seulement de sa moyenne, est plus délicate. Dans ce travail, nous établissons qu’un
critère obtenu par l’un des auteurs pour assurer l’ergodicité exponentielle en moyenne est
également une condition suffisante pour des résultats de convergence forte (i.e. en probabilité)
pour la famille des cellules vers un certain profil asymptotique. Nous donnons par ailleurs des
conditions explicites pour que ceci ait lieu.

1. Introduction

This work is concerned with the large time asymptotic behavior of a class of
branching Markov processes in continuous time, which we call growth-fragmentation
processes. These may be used to model the evolution of a population, for instance
of bacteria, in which an individual reproduces by fission into two or more new
individuals.
Each individual grows continuously, with the growth depending deterministically

on the current mass of the individual, up to a random instant at which fission occurs.
This individual, which may be thought of as a mother, is then replaced by a family
of new individuals, referred to as her daughters. We assume that mass is preserved
at fission, meaning that the mass of the mother immediately before the division
is equal to the sum of the masses of her daughters immediately afterwards. The
time at which the fission occurs and the masses of her daughters at fission are both
random, and depend on the mass of the mother individual. After a fission event, the
daughters are in turn viewed as mothers of future generations, and evolve according
to the same dynamics, independently of the other individuals.
Mathematically, we represent this as a process in continuous time, Z = (Zt, t > 0),

with values in the space of point measures on (0,∞). Each individual is represented
as an atom in Zt, whose location is the individual’s mass. That is, if at time t there
are n ∈ N ∪ {∞} individuals present, with masses z1, z2, . . . , then Zt = ∑n

i=1 δzi ,
with δz the Dirac delta at z ∈ (0,∞).
Growth-fragmentation processes are members of the family of structured popu-

lation models, which were first studied using analytic methods in the framework
of linear integro-differential equations. To demonstrate this connection, consider
the intensity measure µt of Zt, defined by 〈µt, f〉 = E[〈Zt, f〉] for all f ∈ Cc. That
is, f is a continuous function on (0,∞) with compact support, and the notation
〈m, f〉 =

∫
f dm is used for the integral of a function f against a Radon measure m

on (0,∞), whenever this makes sense. In words, µt(A) describes the concentration
of individuals at time t with masses in the set A ⊂ (0,∞), and, informally, the
evolution of the branching Markov process Z entails that the family (µt)t>0 solves
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an evolution equation (see [EN00] for background) of the form

(1.1) d
dt〈µt, f〉 = 〈µt,Af〉,

where the infinitesimal generator

Af(x) = c(x)f ′(x) +B(x)
∫
P

( ∞∑
i=1

f(xpi)− f(x)
)
κ(x, dp)

is naturally associated to the dynamics of Z, f is a smooth function in the domain
of A and P = {p = (p1, p2, . . . ) : p1 > p2 > · · · > 0,∑∞i=1 pi = 1}. The meaning of
this operator will be described precisely later, when we derive it in equation (3.1).
Briefly, an individual of mass x grows at speed c(x), experiences fission at rate B(x)
and, if fission occurs, then the relative masses of the daughters are drawn from the
distribution κ(x, ·). We shall refer to (1.1) as the growth-fragmentation equation. We
assume that

c : (0,∞)→ (0,∞) is a continuous function,(1.2)
B : (0,∞)→ [0,∞) is a continuous bounded function, and(1.3)
κ is a continuous probability kernel from (0,∞) to P .(1.4)

A fundamental problem in this analytic setting is to determine explicit conditions
on the parameters governing the evolution of the system that ensure the so-called
(asynchronous) Malthusian behavior : for all f ∈ Cc,

(1.5) E[〈Zt, f〉] = 〈µt, f〉 ∼ eλt〈µ0, h〉〈ν, f〉 as t→∞,

where λ ∈ R, h is positive function, and ν a Radon measure on (0,∞) with 〈ν, h〉 = 1.
When (1.5) holds, we call λ the Malthus exponent and ν the asymptotic profile. There
exists a vast literature on this topic, and we content ourselves here to cite a few
contributions [BG20, CDP18, DDGW18, Esc20] amongst the most recent ones, in
which many further references can be found.
Spectral analysis of the infinitesimal generator A often plays a key role for estab-

lishing (1.5). Indeed, if there exist λ ∈ R, a positive function h and a Radon measure
ν that solve the eigenproblem

(1.6) Ah = λh , A′ν = λν , 〈ν, h〉 = 1,

with A′ the adjoint operator to A, then (1.5) follows rather directly. In this direction,
the Perron–Frobenius paradigm, and more specifically the Krein–Rutman theorem
(which requires compactness of certain operators related to A) yield a powerful
framework for establishing the existence of solutions to the eigenproblem (1.6).
Then λ arises as the leading eigenvalue of A, i.e., the eigenvalue with the maximal
real part, and h and ν respectively as a corresponding positive eigenfunction and
dual eigenmeasure. This method has been widely used in the literature; see, for
instance, [BCG13, DJG10, MS16, Per07]. We also point out the recent works [BCG20,
BCGM19]; the first develops a generalization of Doeblin’s conditions to deal with a
non-homogeneous setting, and the second approaches (1.5) in a manner akin to the
analysis of quasi-stationary distributions.
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A stochastic approach for establishing (1.5), which is based on the Feynman–
Kac formula and circumvents spectral theory, has been developed by the authors
in [Ber19, BW18] and Cavalli in [Cav20]. To carry out this programme, we introduce,
under the assumption

(1.7) sup
x>0

c(x)/x <∞,

the unique strong Markov process X on (0,∞) with generator

Gf(x) = 1
x
Af̄(x)− c(x)

x
f(x),

where f̄(x) = xf(x). Assume that

(1.8) the Markov process X, with generator G, is irreducible and aperiodic,

and define the Feynman–Kac weight

Et = exp
(∫ t

0

c(Xs)
Xs

ds
)
,

and the Laplace transform

Lx,y(q) = Ex[e−qH(y)EH(y)1{H(y)<∞}],

where H(y) = inf{t > 0 : Xt = y} denotes the first hitting time of y by X. A weaker
version of [Ber19, Theorem 1.2] (see also [BW18, Theorem 1.1]) can then be stated
as follows.

Theorem 1.0. — Assume (1.2), (1.3), (1.4), (1.7) and (1.8). Fix x0 > 0. Define

λ = inf{q ∈ R : Lx0,x0(q) < 1}.

Then, λ is real and its value is independent of x0. If

(1.9) lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ,

then the Malthusian behavior (1.5) holds (so λ is the Malthus exponent) with

h(x) = xLx,x0(λ) and ν(dy) = dy
h(y)c(y)|L′y,y(λ)| .

Indeed, in [Ber19], it was even shown that (1.9) implies that (1.5) occurs at
exponential rate. Theorem 1.0 will form the basis of our work, the purpose of which
is to investigate the analog of (1.5) for the random variable 〈Zt, f〉 itself, rather
than merely its expectation. More precisely, assuming for simplicity that the growth-
fragmentation process Z starts from a single individual with mass x > 0 and writing
Px for the corresponding probability law, we prove the following result:

Theorem 1.1. — Under the assumptions of Theorem 1.0, the process Z exhibits
strong Malthusian behavior: for all x > 0 and for f any continuous function satisfying
‖f/h‖∞ <∞, one has
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(1.10) lim
t→∞

e−λt〈Zt, f〉 = 〈ν, f〉W∞ in L1(Px),

where
W∞ = lim

t→∞
e−λt〈Zt, h〉 and Ex[W∞] = h(x).

A few remarks may be in order to explain (1.9) informally. On the one hand, c(x)/x
represents the instantaneous growth rate for a mass x > 0, whereas the Malthus
exponent λ rather describes the long-time average rate of growth of the total mass
of the particle system. So (1.9) requests the instantaneous growth rate to be smaller
than the long time average growth rate, for particles close to the boundary. This can
be interpreted as a condition guaranteeing that the main contribution to the growth
of the system stems from particles located in some compact set in (0,∞). Roughly
speaking, one expects the strong Malthusian behavior to hold for branching particle
systems with a compact state space, and indeed, compactness also plays a crucial in
the Krein–Rutman theory.
The criterion (1.9) involves the Malthus exponent λ, which is itself usually not

explicitly known. It might therefore appear unsatisfactory. However, one can eas-
ily obtain lower-bounds for λ solely in terms of the characteristics of the growth-
fragmentation process, and these yield a fully explicit criterion. We give an example
of such a result as a conclusion to this work.
Of course, even though the Malthusian behavior (1.5) suggests that its strong

version (1.10) might hold, this is by no means automatic. For instance, it should
be plain that (1.10) cannot hold when λ is negative. Furthermore, although one
might expect that W∞ > 0, Px-a.s. (since plainly, Z never becomes extinct under
our assumptions), this is not obvious, and is known to fail in some other branching
models [DB92]. It appears to be difficult to prove this in our case, since the space of
individual sizes is non-compact.
The question of strong Malthusian behavior has been considered in the literature

on branching processes for several different models, including general Crump–Mode–
Jagers branching processes [Jag89, JN84, Ner81], branching random walks [Big92],
branching diffusions [BBH+15, EHK10, GHH07, HH09, HHK16], branching Markov
processes [AH76, CRY17, CS07, Shi08] and pure fragmentation processes [Ber03,
Ber06, BR05]. A notable recent development is the study of the neutron transport
equation and associated stochastic processes [CHHK19, HHK19, HKV18], which
uses a different probabilistic approach based on the notion of quasi-stationarity, as
in [CV16, CV20].
Focusing in a little more detail on the literature on growth-fragmentation pro-

cesses, Bertoin et al. [BBCK18] and Dadoun [Dad17] deal with the self-similar case
c(x) = axα+1, B(x) = bxα, κ(x, dp) = κ(dp), and look at the convergence (in Lp(Px)
for some p > 1) of a reweighted collection of measures∑u(Zu

t )ωδ
t

1
αZut

1{bu6t<du}, where
ω is a particular weighting. Shi [Shi20] deals with the case c(x) = (a − θ log x)x,
B(x) = b and κ(x, dp) = κ(dp) and proves convergence (in Px-probability) of

1
#Zt

∑
u δZut 1{bu6t<du}. These references in fact allow infinite-rate fragmentation, and
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in the case of [Shi20], Gaussian fluctuations in the individuals’ sizes are permit-
ted. On the other hand, the coefficients are somewhat more specific there than our
assumptions allow. Cloez [Clo17] proves strong Malthusian behavior in a more general
trait model, essentially assuming existence of a positive eigenfunction, an ergodicity
result and some growth bounds, and verifies these in the case c ≡ 1, B bounded away
from 0 and ∞ and κ an atom at the point p = (1/2, 1/2, 0, . . . ). In a similar vein,
Bansaye et al. [BDMT11] assumes B constant, which permits the identification of
a Feynman–Kac representation, and then proves strong Malthusian behavior under
some assumptions of ergodicity. Marguet [Mar19] takes a different approach, consid-
ering a time-dependent branching rate B(t, x). Under certain assumptions, which
include Foster–Lyapunov-type conditions, [Mar19] uses a time-dependent Feynman–
Kac approach to prove strong Malthusian behavior, and verifies these assumptions
in the case c(x) = ax, B(t, x) = tφ(x) for φ bounded away from 0 and ∞, and κ
being the distribution of (Θ, 1−Θ, 0, . . . ), Θ uniform on [ε, 1− ε]. Of course, these
are just a sample of works on this topic, and many more references can be found
cited within them.
Here, we view (Zt, t > 0) as a general branching process in the sense of Jagers

[Jag89]. This means that, rather than tracking the mass of individuals at a given
time, we instead track the birth time, birth mass and death (i.e., fission) time of
every individual in each successive generation; of course, since individuals grow
deterministically until they split and die, this induces no loss of information. This
process can be characterised in terms of a reproduction kernel; given the birth time
and mass of an individual, this describes the distribution of the birth times and
masses of its daughters. Assuming that this general branching process is Malthusian
and supercritical (as defined in [Jag89, Section 5] in terms of the reproduction
kernel), and that a certain x log x integrability condition and some further technical
assumptions are fulfilled, [Jag89, Theorem 7.3] essentially states that (1.10) holds
with W∞ the terminal value of the so-called intrinsic martingale. However, the
assumptions and the quantities appearing in [Jag89, Theorem 7.3] are defined in
terms of the reproduction kernel, sometimes in an implicit way. It appears to be rather
difficult to understand the hypotheses and conclusions of [Jag89] in terms of the
parameters of the growth-fragmentation process; for instance, it does not seem to be
straightforward to connect the general branching process with the eigenproblem (1.6).
Our approach combines classical elements with some more recent ingredients.

Given the Malthusian behavior recalled in Theorem 1.0, the main technical issue is
to find explicit conditions, in terms of the characteristics of the growth-fragmentation,
which ensure the uniform integrability of a remarkable martingale that is closely
related to the intrinsic martingale. More precisely, as Theorem 1.0 may suggest, we
first establish a so-called many-to-one (or Feynman–Kac) formula, which provides
an expression for the intensity measure µt of the point process Zt in terms of a
functional of the (piecewise deterministic) Markov process X. Making use of results
in [BW18], this enables us to confirm that µt indeed solves the growth-fragmentation
equation (1.1), and to construct a remarkable additive martingale associated with
the growth-fragmentation process Z, namely

Wt = e−λt〈Zt, h〉, t > 0,
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where the Malthus exponent λ and the function h are defined in terms of the Markov
process X. In fact, W is nothing but the version in natural times of the intrinsic
martingale indexed by generations, as defined in [Jag89, Section 5]. We shall then
prove that the boundedness in L2(Px), and hence the uniform integrability, of the
martingale W follows from (1.9) by adapting the well-known spinal decomposition
technique (described in [BK04] for branching random walks) to our framework.
The spine process, which is naturally associated to the intrinsic martingale, plays

an important role in the proof of the strong Malthusian behavior (1.10). Specifically,
it yields a key tightness property for the random point measures Zt, which then
enables us to focus on individuals with masses bounded away from 0 and from ∞.
This is crucial to extend the original method of Nerman [Ner81] to our setting.
The rest of this paper is organized as follows. In Section 2, we describe the precise

construction of the growth-fragmentation process Z, which is needed in Section 3
to establish a useful many-to-one formula for the intensity measure µt of Zt. In
particular, a comparison with results in [BW18] makes the connection with the
growth-fragmentation equation (1.1) rigorous. The L2-boundedness of the intrinsic
martingale is established in Section 4 under the assumption (1.9), and we then
prove the strong Malthusian behavior (1.10) in Section 5. Section 6 is devoted to
providing explicit conditions on the characteristics of the growth-fragmentation that
ensure (1.9).

2. Construction of the growth-fragmentation process

To start with, we introduce the three characteristics c, B and κ which govern the
dynamics of the growth-fragmentation process. First, as described in the introduction,
let c : (0,∞)→ (0,∞) be a continuous function satisfying assumption (1.7), namely

sup
x>0

c(x)/x <∞.

c describes the speed of growth of individuals as a function of their masses. For every
x0 > 0, the initial value problem

(2.1)

ẋ(t) = c(x(t)), t > 0,
x(0) = x0,

has a unique solution that we interpret as the mass at time t of an individual with
initial mass x0 when no fission occurred before time t.
Next, we consider a bounded, continuous function B : (0,∞) → [0,∞), which

specifies the rate at which a particle breaks (or branches) as a function of its mass.
That is, the probability that no fission event has occurred by time t > 0 when the
mass at the initial time is x0, is given by

Px0 [no fission before time t] = exp
(
−
∫ t

0
B(x(s))ds

)
= exp

(
−
∫ x(t)

x0

B(y)
c(y) dy

)
.

To complete the description and specify the statistics at fission events, we need to
introduce some further notation. We call a non-increasing sequence p = (p1, p2, . . .)
in the unit sphere of `1, i.e.,
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p1 > p2 > · · · > 0 and
∑
i>1

pi = 1,

a (proper) mass partition. In our setting, we interpret a mass partition as the
sequence (ranked in the non-increasing order) of the daughter-to-mother mass ratios
at a fission event, agreeing that pi = 0 when the mother begets less than i daughters.
The space P of mass partitions is naturally endowed with the `1-distance and we
write B(P) for its Borel σ-algebra. We consider a continuous probability kernel

κ : (0,∞)× B(P)→ [0, 1],
in the sense that x 7→ κ(x, ·) is continuous with respect to weak convergence of
probability measures. We think of κ(x, dp) as the distribution of the random mass
partition resulting from a fission event that occurs when the mother has mass x > 0.
We always implicitly assume that κ(x, dp) has no atom at the trivial mass partition
(1, 0, 0, . . .), as the latter corresponds to a fictive fission.
We next provide some details on the construction of growth-fragmentation pro-

cesses and make the framework rigorous. We denote by U = ⋃
n>0 Nn the Ulam–Harris

tree of finite sequences of positive integers, which will serve as labels for the individ-
uals. As usual, we interpret the length |u| = n of a sequence u ∈ Nn as a generation,
and for i ∈ N, write ui for the sequence in Nn+1 obtained by aggregating i to u as
its (n+ 1)th element, viewing then ui as the ith daughter of u. The unique element
of N0, written ∅, will represent an initial individual.
We fix x0 > 0 and aim at constructing the growth-fragmentation process (Zt, t > 0)

started from a single atom at x0, which we understand to represent a single progenitor
individual, Eve. We denote by Px0 the corresponding probability measure. First
consider a random variable ζ in (0,∞] with cumulative distribution function

Px0 [ζ 6 t] = 1− exp
(
−
∫ x(t)

x0

B(y)
c(y) dy

)
, t > 0,

where x(·) denotes the solution to the flow velocity (2.1) started from x0. We view
ζ as the fission time of Eve, and thus the trajectory of Eve is

Z∅
t = x(t) for t < ζ.

We further set b∅ = 0 and d∅ = ζ, so [b∅, d∅) is the time interval during which Eve is
alive. We also view d∅ as the birth-time of the daughters of Eve and thus set bi = d∅

for every i ∈ N.
Next, conditionally on d∅ = s < ∞, that is, equivalently, on Z∅

d∅− = x with
x = x(s), we pick a random mass partition p = (p1, . . .) according to the law
κ(x, dp). We view xp1, xp2, . . . as the masses at birth of the daughters of Eve and
continue the construction iteratively in an obvious way. That is, conditionally on
xpi = y > 0, the lifetime ζ i of the ith daughter of Eve has the same distribution as
ζ under Py. Further set di = bi + ζ i, and the trajectory of the ith daughter of Eve is
thus

Zi
t = x(t− bi) for t ∈ [bi, di),

with x(·) now denoting the solution to (2.1) started from y. We stress that, thanks
to (1.7), the boundary point 0 is a trap for the flow velocity, in the sense that the
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solution to (2.1) with initial value x(0) = 0 is x(t) = 0 for all t. Thus 0 serves a
cemetery state for particles, and individuals with zero mass can be simply discarded.
This enables us construct recursively a trajectory (Zu

t : t ∈ [bu, du)) for every
u ∈ U , and the state of the growth-fragmentation at time t is then given by the point
measure on (0,∞) with atoms at the locations of the individuals alive at time t, viz.

Zt =
∑
u∈U

1{t∈[bu,du)}δZut .

We stress that the number of individuals may explode at a finite time even in
situations when every mother always begets finitely many children (see, e.g. [Sav69]),
and then infinitely many fission events may occur on any non-degenerate time interval.
On the other hand, it is readily seen from our key assumption (1.7) that the total
mass process increases at most exponentially fast, specifically

〈Zt, Id〉 6 xeγt, Px-a.s.
where γ = supx>0 c(x)/x. Thus the point process Zt is always locally finite; however
the growth-fragmentation is not always a continuous time Markov chain.

3. A many-to-one formula

The first cornerstone of our analysis is a useful expression for the expectation
of the integral of some function with respect to the random point measure Zt in
terms of a certain Markov process X on (0,∞). In the literature, such identities are
commonly referred to as many-to-one formulas, they go back to [KP76, Pey74] and
are known to play a crucial role in the analysis of branching processes.
Recall that a size-biased pick from a mass partition p = (p1, . . .) refers to a random

element pK , where the distribution of the random index K is P(K = i) = pi for
i ∈ N. Size-biased picking enables us to map the probability kernel κ on (0,∞)×P
into a kernel k̄ on (0,∞)× (0, 1) by setting for every x > 0∫

(0,1)
g(r)k̄(x, dr) = B(x)

∫
P

∞∑
i=1

pig(pi)κ(x, dp)

for a generic measurable function g : (0, 1)→ R+. We stress that
∫

(0,1) k̄(x, dr) = B(x)
since κ is a probability kernel on the space of proper mass partitions. We then
introduce the operator

Gf(x) = c(x)f ′(x) +
∫

(0,1)
(f(rx)− f(x))k̄(x, dr),

say defined for functions f : (0,∞)→ R which are bounded and possess a bounded
and continuous derivative. It is easily seen that G is the infinitesimal generator
of a unique Markov process, say X = (Xt, t > 0). Recall that we have assumed
condition (1.7) and that B is bounded. By a slight abuse, we also use the notation
Px0 for the probability measure under which this piecewise deterministic Markov
process starts from X0 = x0.
The evolution of X can be described in words as follows. The process is driven by

the flow velocity (2.1) until it makes a first downwards jump; more precisely, the
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total rate of jump at state x is
∫

(0,1) k̄(x, dr) = B(x). Further, conditionally on the
event that a jump occurs when the process is about to reach x, the position after
the jump is distributed according to the image of the probability law B(x)−1k̄(x, dr)
by the dilation r 7→ rx. An alternative formulation which makes the connection to
the growth-fragmentation process more transparent, is that X follows the path of
Eve up to its fission, then picks a daughter at random according to a size-biased
sampling and follows her path, and so on, and so forth.
We now state a useful representation of the intensity measure of Zt in terms of

the Markov process X.

Lemma 3.1 (Many-to-one formula – Feynman–Kac representation). —
Assume (1.2)–(1.4) and (1.7). Define, for every t > 0,

Et = exp
{∫ t

0

c(Xs)
Xs

ds
}
.

For every measurable f : (0,∞)→ R+ and every x0 > 0, we have

Ex0 [〈Zt, f〉] = x0Ex0

[
f(Xt)
Xt

Et
]
.

Lemma 3.1 is closely related to [BW18, Lemma 2.2], which provides a represen-
tation of the solution to the growth-fragmentation equation (1.1) by Feynman–Kac
formula. Specifically, introduce the growth-fragmentation operator A given for every
f ∈ C1

c by

(3.1)
Af(x) = c(x)f ′(x) +

∫
(0,1)

r−1f(rx)k̄(x, dr)−B(x)f(x)

= c(x)f ′(x) +B(x)
∫
P

( ∞∑
i=1

f(xpi)− f(x)
)
κ(x, dp),

then comparing Lemma 3.1 above and [BW18, Lemma 2.2] shows that the intensity
measure µt of Zt solves (1.1) with µ0 = δx0 . A fairly natural approach for establishing
Lemma 3.1 would be to argue first that the intensity measure of Zt solves the growth-
fragmentation equation for A given by (3.1) and then invoke in [BW18, Lemma 2.2].
This idea is easy to implement when the number of daughters after a fission event
is bounded (for instance, when fissions are always binary); however, making this
analytic approach fully rigorous in the general case would be rather tedious, as
the total number of individuals may explode in finite time and thus fission events
accumulate. We rather follow a classical probabilistic approach and refer to the
treatise by Del Moral [DM04] and the lecture notes of Shi [Shi15] for background.
Proof. — We set T0 = 0 and then write T1 < T2 < · · · for the sequence of the

jump times of the piecewise deterministic Markov process X. We claim that for every
generation n > 0, there is the identity

(3.2) Ex0

 ∑
|u|=n

f(Zu
t )1{bu6t<du}

 = x0Ex0

[
1{Tn6t<Tn+1}

f(Xt)
Xt

Et
]
.

The many-to-one formula of Lemma 3.1 then follows by summing over all generations.
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We shall now establish (3.2) by iteration. The identity

(3.3) exp
(∫ t

0

c(x(s))
x(s) ds

)
= x(t)
x(0)

for the solution to the flow velocity (2.1) makes (3.2) obvious for the generation
n = 0.
Next, by considering the fission rates of Eve, we get that for every measurable

function g : [0,∞)× [0,∞)→ R+ with g(t, 0) = 0, we have

(3.4) Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]

=
∫ ∞

0
dtB(x(t)) exp

(
−
∫ t

0
B(x(s))ds

) ∫
P
κ(x(t), dp)

∞∑
i=1

g(t, x(t)pi).

We then write
∞∑
i=1

g(t, x(t)pi) = x(t)
∞∑
i=1

pi
g(t, x(t)pi)
x(t)pi

,

so that by comparing with the jump rates of X, we see that the right-hand side
of (3.4) equals

Ex0

[
g(T1, XT1)

XT1

XT1−

]
= x0Ex0

[
g(T1, XT1)

XT1

ET1

]
,

where we have used ET1 = ET1− = XT1−
x0

by (3.3), since (Xt : t < T1) is a solution
of (2.1). Putting the pieces together, we have shown that

(3.5) Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]

= x0Ex0

[
g(T1, XT1)

XT1

ET1

]
.

We then assume that (3.2) holds for a given n > 0. Applying the branching
property at the fission event of Eve, we get

Ex0

 ∑
|u|=n+1

f(Zu
t )1{bu6t<du}

 = Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]
,

with

(3.6) g(s, y) = Ey

 ∑
|u|=n

f(Zu
t )1{bu6t−s<du}

 = yEy
[
1{Tn6t−s<Tn+1}

f(Xt−s)
Xt−s

Et−s
]
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for s 6 t and g(s, y) = 0 otherwise, using the induction hypothesis (3.2) in the last
equality. We conclude as follows:

x0Ex0

[
1{Tn6t<Tn+1}

f(Xt)
Xt

Et
]

= x0Ex0

[
ET1

g(T1, XT1)
XT1

]

= Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]

= Ex0

 ∑
|u|=n+1

f(Zu
t )1{bu6t<du}

 ,

using in the first equality the Markov property and the multiplicative property
Et = ET1−tET1 , in the second (3.5) and in the final equality (3.6). This shows that
the many-to-one formula (3.2) holds for the generation n + 1. By induction, (3.2)
holds for any n. �

The many-to-one formula of Lemma 3.1 connects the intensity measure of the
branching process Z to the instrumental Markov process X. We will use this to
identify the martingale (Wt, t > 0), whose terminal value W∞ plays a key role in
strong Malthusian behavior (1.10). We will use this martingale in the next section to
define a tilted measure P̃, under which both the process Z and the size of a selected
cell X̃ are defined simultaneously.
In the final section of this work, we shall also need a version of Lemma 3.1 extended

to the situation where, roughly speaking, individuals are frozen at times which are
observable from their individual trajectories. Specifically, we define a simple stopping
line to be a functional T on the space of piecewise continuous trajectories z = (zt)t>0
and with values in [0,∞], such that for every t > 0 and every trajectory z, if T (z) 6 t,
then T (z) = T (z′) for any trajectory z′ that coincides with z on the time-interval
[0, t], and then we simply write zT = zT (z). Typically, T (z) may be the instant of
the jth jump of z, or the first entrance time T (z) = inf{t > 0 : zt ∈ A} in some
measurable set A ⊂ (0,∞). The notion of a simple stopping line is a particular case
of the more general stopping line introduced by Chauvin [Cha91]. The restriction
simplifies the proofs somewhat, and will be sufficient for our applications later.
We next introduce the notion of ancestral trajectories. Recall from the preced-

ing section the construction of the trajectory (Zu
t : t ∈ [bu, du)) for an individual

u = u1 . . . un ∈ U . The sequence of prefixes uj = u1 . . . uj for j = 1, . . . , n forms the
ancestral lineage of that individual. Note that, as customary for many branching
models, the death-time of a mother always coincides with the birth-time of her chil-
dren, so every individual u alive at time t > 0 (i.e. with bu 6 t < du) has a unique
ancestor alive at time s ∈ [0, t), which is the unique prefix uj with bu

j
6 s < du

j .
We can thus define unambiguously the mass at time s of the unique ancestor of u
which is alive at that time, viz. Zu

s = Zuj

s . This way, we extend Zu to [0, du), and
get the ancestral trajectory of the individual u.
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For the sake of simplicity, for any simple stopping line T and any trajectory z, we
write zT = zT (z), and define the point process of individuals frozen at T as

ZT =
∑
u∈U

1{T (Zu)∈[bu,du)}δZuT .

Note that ZT = 0 if T (Zu) =∞ for all u.

Lemma 3.2. — Assume (1.2)–(1.4) and (1.7). Let T be a simple stopping line.
For every measurable f : (0,∞)→ R+ and every x0 > 0, we have

Ex0 [〈ZT , f〉] = x0Ex0

[
f(XT )
XT

ET (X), T (X) <∞
]
.

Proof. — The proof is similar to that of Lemma 3.1, and we use the same notation
as there. In particular, we write x(·) for the solution to the flow velocity (2.1) started
from x(0) = x0, and set T (x(·)) = t0 ∈ [0,∞]. By the definition of a simple stopping
line, we have obviously that under Px0 , T (Z∅) = t0 a.s. on the event 0 6 T (Z∅) < d∅,
and also T (X) = t0 a.s. on the event 0 6 T (X) < T1. Using (3.3), we then get

E
[
f(Z∅

T )1{b∅6T (Z∅)<d∅}
]

= x0Ex0

[
1{06T<T1}

f(XT )
XT

ET
]
.

Just as in the proof of Lemma 3.1, it follows readily by induction that for every
generation n > 0, there is the identity

Ex0

 ∑
|u|=n

f(Zu
T )1{bu6T (Zu)<du}

 = x0Ex0

[
1{Tn6T<Tn+1}

f(XT )
XT

ET
]
,

and we conclude the proof of Lemma 3.2 by summing over generations. �

4. Boundedness of the intrinsic martingale in L2(P)

In order to apply results from [BW18, Ber19], we shall now make some further fairly
mild assumptions that will be enforced throughout the rest of this work. Specifically,
we suppose henceforth that assumption (1.8) holds, namely that

the Markov process X, with generator G, is irreducible and aperiodic.
Although (1.8) is expressed in terms of the Markov process X rather than the
characteristics of the growth-fragmentation process, it is easy to give some fairly
general and simple conditions in terms of c, B and κ that guarantee (1.8); see
notably of [Ber19, Lemma 3.1] for a discussion of irreducibility. We further stress
that aperiodicity should not be taken to granted if we do not assume the jump kernel
k̄ to be absolutely continuous.

Remark 4.1. — We mention that a further assumption is made in [BW18, Ber19],
namely that the kernel k̄(x, dy) is absolutely continuous with respect to the Lebesgue
measure, and that the function (0,∞) 3 x 7→ k̄(x, ·) ∈ L1(0,∞) is continuous.
However, this is only needed in [BW18] to ensure some analytic properties (typically,
the Feller property of the semigroup, or the connection with the eigenproblem (1.6)),
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but had no role in the probabilistic arguments developed there. We can safely drop
this assumption here, and apply results of [Ber19, BW18] for which it was irrelevant.

Following [BW18], we introduce the Laplace transform

Lx,y(q) = Ex
[
e−qH(y)EH(y)1{H(y)<∞}

]
, q ∈ R,

where H(y) = inf{t > 0 : Xt = y}. For any x0 > 0, the map Lx0,x0 : R → (0,∞]
is a convex non-increasing function with, limq→∞ Lx0,x0(q) = 0 since x 7→ c(x)/x is
bounded by assumption (1.7). We then define the Malthus exponent as

λ := inf{q ∈ R : Lx0,x0(q) < 1}.

Recall that the value of λ does not depend on the choice for x0, and that although our
definition of the Malthus exponent apparently differs from that in [Jag89, Section 5],
[BW18, Proposition 3.3] strongly suggests that the two actually should yield the
same quantity.
With this in place, we define the functions `, h : (0,∞)→ (0,∞) by

`(x) = Lx,x0(λ) and h(x) = x`(x),

and may now state the main result of this section.

Theorem 4.2. — Under the same assumptions as Theorem 1.1, which are the
conditions (1.2)–(1.4), (1.7)–(1.8) already developed together with (1.9), namely

lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ,

for every x > 0, the process

Wt = e−λt〈Zt, h〉, t > 0

is a martingale bounded in L2(Px).

Before tackling the core of the proof of Theorem 4.2, let us first recall some fea-
tures proved in [BW18, Ber19] and their immediate consequences. From [Ber19,
Section 3.5], it is known that (1.9) ensures the existence of some q < λ with
Lx0,x0(q) <∞. By continuity and non-increase of the function Lx0,x0 on its domain,
this guarantees that

(4.1) Lx0,x0(λ) = 1.

[BW18, Theorem 4.4] then shows that e−λt`(Xt)Et is a Px-martingale, and we can
combine the many-to-one formula of Lemma 3.1 and the branching property of Z
to conclude that Wt is indeed a Px-martingale. We therefore call h a λ-harmonic
function; in this vein, recall also from [BW18, Corollary 4.5 and Lemma 4.6] that h is
an eigenfunction for the eigenvalue λ of (an extension of) the growth-fragmentation
operator A which has been defined in (3.1). We call W = (Wt : t > 0) the intrinsic
martingale, as it bears a close connection to the process with the same name that
has been defined in [Jag89, Section 5].
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Remark 4.3. — This remark clarifies the connection with [Jag89], and is not
required for the remainder of the proofs.

(1) It is convenient to view the atomic measure e−λtZt as a weighted version of
point measure Zt, where the weight of any individual at time t is e−λt. In
this setting, Wt is given by the integral of the λ-harmonic function h with
respect to the weighted atomic measure e−λtZt. Next, consider for each k ∈ N,
the simple stopping line Tk at which a trajectory makes its kth jump, and
recall from the preceding section, that ZTk then denotes the point measure
obtained from Z by freezing individuals at the instant when their ancestral
trajectories jump for the kth time. In other words, ZTk is the point process
that describes the position at birth of the individuals of the kth generation.
Just, as above, we further discount the weight assigned to each individual at
rate λ, so that the weight of an individual of the kth generation which is born
at time b is e−λb (of course, individuals at the same generation are born at
different times, and thus have different weights). The integral, say Wk, of the
λ-harmonic function h with respect to this atomic measure, is precisely the
intrinsic martingale as defined in [Jag89]. Using more general stopping line
techniques, one can check that the boundedness in L2 of (Wt : t > 0) can be
transferred to (Wk : k ∈ N). Details are left to the interested reader.

(2) In fact, (4.1), which is a weaker assumption than (1.9), not only ensures that
the process in continuous time Wt = e−λt〈Zt, h〉 is a martingale, but also that
the same holds for the process indexed by generations, (Wk : k ∈ N). Indeed,
from the very definition of the function Lx0,x0 , (4.1) states that the expected
value under Px0 of the nonnegative martingale e−λt`(Xt)Et, evaluated at the
first return time H(x0), equals 1, and therefore the stopped martingale

e−λt∧H(x0)`(Xt∧H(x0))Et∧H(x0), t > 0
is uniformly integrable. Plainly, the first jump time of X, T1 occurs before
H(x0), and the optional sampling theorem yields

Ex0 [e−λT1ET1`(XT1)] = 1.
One concludes from the many-to-one formula of Lemma 3.2 (or rather, an
easy pathwise extension of it) that Ex[W1] = h(x) for all x > 0, and the
martingale property of W can now be seen from the branching property.

The rest of this section is devoted to the proof of Theorem 4.2; in particular we
assume henceforth that (1.9) is fulfilled.
To start with, we recall from [BW18, Lemma 4.6] that the function ` is bounded

and continuous, and as a consequence
(4.2) sup

y>0
h(y)/y = sup

y>0
`(y) = ‖`‖∞ <∞.

Moreover ` and h are strictly positive, and thus bounded away from 0 on compact
subsets of (0,∞). We shall use often these facts in the sequel.
The heart of the matter is thus to establish boundedness of (Wt)t>0 in L2(Px),

for which we follow the classical path based on the probability tilting and spine
decomposition; see e.g. [BK04] and references therein.
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Fix t > 0. We define a probability measure P̃x on an augmented probability space
by further distinguishing an individual Ut, called the spine, in such a way that

P̃x[Λ ∩ {Ut = u}] = h(x)−1e−λtEx[h(Zu
t )1Λ1{bu6t<du}]

for Λ ∈ Ft = σ(Zt, s 6 t) and u ∈ U . For s 6 t, we define Us to be the ancestor at
time s of the individual Ut.
We then have that P̃x(Λ) = Ex

[
1Λ · Wt

W0

]
, and the martingale property ofW ensures

the consistency of the definition of P̃x with respect to the choice of t.
An equivalent description is to say that, under the conditional measure P̃x[· | Ft],

the spine is picked at random amongst the individuals alive at time t according to
an h-biased sampling, and the ancestor Us of Ut at time s 6 t serves as spine at
time s.
In order to describe the dynamics of the mass of the spine X̃ t = ZUt

t as time passes,
we introduce first for every x > 0

w(x) =
∫
P

∞∑
i=1

h(xpi)κ(x, dp)

and set

(4.3) B̃(x) = w(x)
h(x)B(x) and κ̃(x, dp) = w(x)−1

∞∑
i=1

h(xpi)κ(x, dp).

In short, one readily checks that just as X, X̃ increases steadily and has only negative
jumps. Its growth is driven by the flow velocity (2.1), and the total rate of negative
jumps at location x is B̃(x), which is the total fission rate of the spine when its mass
is x. Further, κ̃(x, dp) gives the distribution of the random mass partition resulting
from the fission of the spine, given that the mass of the latter immediately before
that fission event is x. At the fission event of the spine, a daughter is selected at
random by h-biased sampling and becomes the new spine. We now gather some facts
about the spine which will be useful later on.

Lemma 4.4. — Assume conditions (1.2)–(1.4), (1.7)–(1.9). Let X̃ t = ZUt
t

represent the mass of the spine at time t > 0.
(1) The law of the process X̃ can be expressed in terms of that of X as follows:

for Λ ∈ Ft,
P̃x(Λ) = Ex[1ΛMt],

whereMt := e−λtEt`(Xt)/`(X0) is a Px-martingale.
(2) The process X̃ is Markovian and exponentially point recurrent, in the sense

that if we write H̃(y) = inf{t > 0 : X̃ t = y} for the first hitting time of y > 0
by X̃, then there exists ε > 0 such that Ẽx

[
exp

(
εH̃(y)

)]
<∞.

(3) The following many-to one formula holds: for every nonnegative measurable
function f on (0,∞), we have

(4.4) Ex[〈Zt, f〉] = eλth(x)Ẽx
[
f
(
X̃ t

)
/h
(
X̃ t

)]
.

ANNALES HENRI LEBESGUE



The strong Malthusian behavior of growth-fragmentation processes 811

(4) Any function g : (0,∞)→ R such that g` is continuously differentiable belongs
to the domain of its extended infinitesimal generator G̃ and

(4.5) G̃g(x) = 1
`(x)G(g`)(x) + (c(x)/x− λ)g(x),

in the sense that the process

g
(
X̃ t

)
−
∫ t

0
G̃g

(
X̃s

)
ds

is a P̃x-local martingale for every x > 0.

Proof.
(1) It follows immediately from the definition of the spine and the many-to-

one formula of Lemma 3.1 that for every t > 0, the law of X̃ t under P̃x is
absolutely continuous with respect to that of Xt under Px, with density given
by Mt = e−λtEt`(Xt)/`(X0), as claimed. We have already pointed out the
martingale property ofM above (see page 808.)

(2) In [BW18, Section 5], we used M to construct a point-recurrent Markov
Y = (Yt, t > 0) by probability tilting. Hence Y has the same one-dimensional
marginals as X̃, and since the two processes are Markovian, they have the same
law. The claim that X̃ (that is equivalently, Y ) is exponentially point recurrent
then follows from [Ber19, Proof of Theorem 2] and [BW18, Lemma 5.2(iii)].

(3) The many-to-one formula (4.4) merely rephrases the very definition of the
spine.

(4) Finally, claim about the infinitesimal generator follows from [BW18, Lem-
ma 5.1].

�

Remark 4.5. — The description of the dynamics governing the evolution of the
spine entails that its infinitesimal generator can also be expressed by

(4.6) G̃f(x) = c(x)f ′(x) + B(x)
h(x)

∫
P

( ∞∑
i=1

h(xpi)
[
f(xpi)− f(x)

])
κ(x, dp),

say for any f ∈ C1
c . The agreement between (4.5) and (4.6) can be seen from the

identity G`(x) = (λ− c(x)/x)`(x), which is proved in [BW18, Corollary 4.5(i)].

We readily deduce from Lemma 4.4 that the intensity measure of the growth-
fragmentation satisfies the Malthusian behavior (1.5) uniformly on compact sets.

Corollary 4.6. — Assume conditions (1.2)–(1.4), (1.7)–(1.9). For every com-
pact set K ⊂ (0,∞) and every continuous function f with ‖f/h‖∞ <∞, we have

lim
t→∞

e−λtEx[〈Zt, f〉] = h(x)〈ν, f〉 uniformly for x ∈ K,

where the asymptotic profile is given by ν = h−1π, with π the unique stationary law
of the spine process X̃.
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Proof. — Suppose K ⊂ [b, b′] for some 0 < b < b′ < ∞, and fix ε ∈ (0, 1). For
every 0 < x < y, let s(x, y) denote the instant when the flow velocity (2.1) started
from x reaches y.
Since the total jump rate B̃ of X̃ remains bounded onK and the speed of growth c is

bounded away from 0 on K, we can find a finite sequence b = x1 < x2 < . . . < xj = b′

such that for every i = 1, . . . , j − 1 and every x ∈ (xi, xi+1):

s(x, xi+1) < 1 and s(xi, x) < 1,

as well as

P̃x
(
H̃(xi+1) = s(x, xi+1)

)
> 1− ε and P̃xi

(
H̃(x) = s(xi, x)

)
> 1− ε.

An immediate application of the simple Markov property now shows that for every
i = 1, . . . , j − 1, every x ∈ (xi, xi+1), every t > 1, and every nonnegative measurable
function g, the following bounds hold

(1− ε)Ẽxi+1

(
g
(
X̃ t−s(x,xi+1)

))
6 Ẽx

(
g
(
X̃ t

))
6 (1− ε)−1Ẽxi

(
g
(
X̃ t+s(xi,x)

))
On the other hand, we know that X̃ is irreducible, aperiodic and ergodic, with

stationary law π (recall Lemma 4.4(1)). Since ε can be chosen arbitrarily small, it
follows from above that X̃ is uniformly ergodic on K, in the sense that for every
continuous and bounded function g,

lim
t→∞

Ẽx
(
g
(
X̃ t

))
= 〈π, g〉 uniformly for x ∈ K.

We conclude the proof with an appeal to the many-to-one formula of Lemma 4.4(2),
taking g = f/h. �

The next Lemma 4.7 is a cornerstone of the proof of Theorem 4.2.

Lemma 4.7. — Assume conditions (1.2)–(1.4), (1.7)–(1.9). We have:
(1) There exists a <∞ such that, for all x > 0 and t > 0,

Ẽx
[
1/`

(
X̃ t

)]
6 at+ 1/`(x).

(2) There exists some λ′ < λ such that, for all x > 0,

lim
t→∞

e−λ′tX̃ t = 0 in L∞(P̃x).

Proof.
(1) We apply Lemma 4.4(4) to g = 1/`, with

G̃
(1
`

)
(x) = (c(x)/x− λ)/`(x).

Our assumption (1.9) ensures that the right-hand side above is negative for
all x aside from some compact subset of (0,∞). By taking the constant
a = supx>0 G̃ (1/`) <∞, we deduce from Lemma 4.4(3) by optional sampling
that Ẽx[1/`(X̃ t)]− at 6 1/`(x), which entails our claim.
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(2) Recall from the description of the dynamics of the spine before the state-
ment that X̃ increases continuously with velocity c and has only negative
jumps. As a consequence, X̃ is bounded from above by the solution to the
flow velocity (2.1). One readily deduces that limt→∞ e−λ′tx(t) = 0 for every
λ′ > lim supx→∞ c(x)/x, and since lim supx→∞ c(x)/x < λ according to our
standing assumption (1.9), this establishes our claim. �

We now have all the ingredients needed to prove Theorem 4.2.
Proof of Theorem 4.2. — Since the projection on Ft of P̃x is absolutely con-

tinuous with density Wt/W0, the process W is bounded in L2(Px) if and only if
supt>0 Ẽx[Wt] <∞. We already know thatsupt>0 Ẽx[e−λtX̃ t] <∞, by Lemma 4.7(2),
and we are thus left with checking that

(4.7) sup
t>0

Ẽx[W ′
t ] <∞,

where
W ′
t = Wt − e−λth

(
X̃ t

)
.

In this direction, it is well-known and easily checked that the law of Z under the
new probability measure P̃x can be constructed by the following procedure, known
as the spine decomposition. After each fission event of the spine, all the daughters
except the new spine start independent growth-fragmentation processes following the
genuine dynamics of Z under P. This spine decomposition enables us to estimate the
conditional expectation of W ′

t under P̃x, given the spine and its sibling. At each time,
say s > 0, at which a fission occurs for the spine, we write p(s) = (p1(s), . . .) for the
resulting mass partition, and I(s) for the index of the daughter spine. Combining
this with the fact that (Ws : s > 0) is a Py-martingale for all y > 0 entails the
identity

Ẽx
[
W ′
t |
(
X̃s,p(s), I(s)

)
s>0

]
=

∑
s∈F̃ ,s6t

e−λs
∑
i 6=I(s)

h
(
X̃s−pi(s)

)
,

where F̃ denotes the set of fission times of the spine. We see from (4.2) that∑
h(xpi) 6 x‖`‖∞ for every x > 0 and every mass-partition p = (p1, . . .), so the

right-hand side is bounded from above by

‖`‖∞
∑

s∈F̃ ,s6t

e−λsX̃s−,

and to prove (4.7), we now only need to check that

Ẽx

∑
s∈F̃

e−λsX̃s−

 <∞.
Recall from (4.3) that B̃ = wB/h describes the fission rate of the spine, and

observe from (4.2) that w(x) 6 ‖`‖∞x, so that

B̃(x) 6 ‖`‖∞‖B‖∞
1
`(x) for all x > 0.

TOME 3 (2020)



814 Jean BERTOIN & Alexander R. WATSON

Using the fact that the predictable compensator of the fission times and relative
offspring sizes (s,p) is B̃(X̃s−)κ(X̃s−, dp) ds, we obtain that

Ẽx

∑
s∈F̃

e−λsX̃s−

 6 ‖`‖∞‖B‖∞Ẽx
∫ ∞

0
e−λs X̃s

`
(
X̃s

)ds
 .

We now see that the expectation in the right-hand side is indeed finite by writing
first ∫ ∞

0
e−λs X̃s

`
(
X̃s

)ds =
∫ ∞

0

1
`
(
X̃s

) · e−λ′sX̃s · e−(λ−λ′)s ds

and then applying Lemma 4.7. �

5. Strong Malthusian behavior

We assume again throughout this section that the assumption (1.9) is fulfilled. We
will prove Theorem 1.1: the strong Malthusian behavior (1.10) then holds.
The proof relies on a couple of technical lemmas. Recall from Section (3) the

notation Zu : [0, du)→ (0,∞) for the ancestral trajectory of the individual u.
The first Lemma 5.1 states a simple tightness result.

Lemma 5.1. — Assume conditions (1.2)–(1.4), (1.7)–(1.9). For every x > 0 and
ε > 0, there exists a compact K ⊂ (0,∞) such that for all t > 0:

e−λtEx

 ∑
u∈U :bu6t<du

h(Zu
t )1{Zut 6∈K}

 < ε.

Proof. — From the very definition of the spine X̃, there is the identity

e−λtEx

 ∑
u∈U :bu6t<du

h(Zu
t )1{Zut 6∈K}

 = h(x)P̃x
[
X̃ t 6∈ K

]
.

Recall from Lemma 4.4(1) that X̃ is positive recurrent; as a consequence the family
of its one-dimensional marginals under P̃x is tight, which entails our claim. �

The second Lemma 5.2 reinforces the boundedness in L2 of the intrinsic martingale,
cf. Theorem 4.2.

Lemma 5.2. — Assume conditions (1.2)–(1.4), (1.7)–(1.9). For every compact
subset K ⊂ (0,∞), we have

sup
x∈K

sup
t>0

Ex
[
W 2
t

]
<∞.

Proof. — We may assume that K = [b, b′] is a bounded interval. For any x ∈ (b, b′],
we write s(x) for the time when the flow velocity (2.1) started from b reaches x. We
work under Pb and consider the event Λx that the Eve individual hits x before a
fission event occurs.
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We have on the one hand, that the law of Zs(x)+t conditionally on Λx is the same
as that of Zt under Px. In particular, the law of Wt under Px is the same as that of
eλs(x)Ws(x)+t under Pb[· | Λx], and thus

sup
t>0

Ex
[
W 2
t

]
6

eλs(x)

Pb[Λx]
Eb
[
W 2
∞

]
.

On the other hand, for every x ∈ (b, b′], we have s(x) 6 s(b′) <∞ and

Pb[Λx] > Pb[Λb′ ] = exp
(
−
∫ b′

b

B(y)
c(y) dy

)
> 0,

and our claim is proven. �

We have now all the ingredients to prove Theorem 1.1.
Proof of Theorem 1.1. — We suppose that 0 6 f 6 h, which induces of course

no loss of generality. Our aim is to check that e−λ(t+s)〈Zt+s, f〉 is arbitrarily close to
〈ν, f〉Wt in L1(Px) when s and t are sufficiently large. In this direction, recall that
Ft denotes the natural filtration generated by Zt and use the branching property at
time t to express the former quantity as

e−λ(t+s)〈Zt+s, f〉 =
∑

u∈U :bu6t<du
e−λth(Zu

t ) · 1
h(Zu

t )e−λs〈Z(u)
s , f〉,

where conditionally on Ft, the processes Z(u) are independent versions of the growth-
fragmentation Z started from Zu

t .
Fix ε > 0. To start with, we choose a compact subset K ⊂ (0,∞) as in Lemma 5.1,

and restrict the sum above to individuals u with Zu
t 6∈ K. Observe first that, since

〈Z(u)
s , f〉 6 〈Z(u)

s , h〉 and h is λ-harmonic, taking the conditional expectation given
Ft yields

Ex

 ∑
u∈U ,

bu6t<du

e−λth(Zu
t )1{Zut 6∈K} ·

1
h(Zu

t )e−λs〈Z(u)
s , f〉

 6 Ex

 ∑
u∈U ,

bu6t<du

e−λth(Zu
t )1{Zut 6∈K}

.
From the very choice of K, there is the bound

(5.1) Ex

 ∑
u∈U :bu6t<du

e−λth(Zu
t )1{Zut 6∈K} ·

1
h(Zu

t )e−λs〈Z(u)
s , f〉

 6 ε.

Next, recall from Lemma 5.2 that
C(K) := sup

y∈K
sup
s>0

Ey
[
W 2
s

]
<∞,

and consider
A(u, t, s) = 1

h(Zu
t )e−λs〈Z(u)

s , f〉

together with its conditional expectation given Ft
a(u, t, s) = Ex[A(u, t, s) | Ft].

Again, since 0 6 f 6 h, for every u with Zu
t ∈ K, we have

(5.2) Ex[(A(u, t, s)− a(u, t, s))2 | Ft] 6 4C(K).
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Since conditionally on Ft, the variables A(u, t, s) − a(u, t, s) for u ∈ U are inde-
pendent and centered, there is the identity

Ex


∣∣∣∣∣∣

∑
u∈U :bu6t<du

e−λth(Zu
t )1{Zut ∈K} · (A(u, t, s)− a(u, t, s))

∣∣∣∣∣∣
2


= Ex

 ∑
u∈U :bu6t<du

e−2λth2(Zu
t )1{Zut ∈K} · Ex

[
(A(u, t, s)− a(u, t, s))2

∣∣∣ Ft]
 ,

and we deduce from (5.2) and the martingale property of W that this quantity is
bounded from above by

4C(K)e−λth(x) max
y∈K

h(y).

This upper-bound tends to 0 as t→∞, and it thus holds that

Ex

∣∣∣∣∣∣
∑

u∈U :bu6t<du
e−λth(Zu

t )1{Zut ∈K} · (A(u, t, s)− a(u, t, s))

∣∣∣∣∣∣
 < ε

for all t sufficiently large.
On the other hand, writing y = Zu

t , we have from the branching property

a(u, t, s) = 1
h(y)e−λsEy [〈Zs, f〉] ,

and Corollary 4.6 entails that for all s sufficiently large, |a(u, t, s) − 〈ν, f〉| 6 ε
for all individuals u with Zu

t ∈ K. Using the bound (5.1) with h in place of f for
individuals u with Zu

t 6∈ K and putting the pieces together, we have shown that for
all s, t sufficiently large,

Ex
[∣∣∣e−λ(t+s)〈Zt+s, f〉 − 〈ν, f〉Wt

∣∣∣] 6 (2 + h(x))ε,
which completes the proof of Theorem 1.1. �

6. Explicit conditions for the strong Malthusian behavior

The key condition for strong Malthusian behavior, (1.9), is given in terms of the
Malthus exponent λ, which is not known explicitly in general. In this final section,
we recall some known results that can be used to verify (1.9), and prove a sharper
new one.
Recently, the following result was pointed out in [Ber19]; we provide a short outline

of the proof.
Proposition 6.1. — Assume conditions (1.2)–(1.4), (1.7)–(1.8), that

d := inf
x>0

c(x)
x

= lim
x→0+

c(x)
x

= lim
x→∞

c(x)
x
> 0,

and that c is not the linear function x 7→ dx. Assume moreover that there exist some
q∞ > 0 and x∞ > 0 such that

(6.1) q∞c(x)/x+
∫

(0,1)
(rq∞ − 1)k̄(x, dr) 6 0 for all x > x∞,
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and also some q0 > 0 and x0 > 0 such that

(6.2) − q0c(x)/x+
∫

(0,1)
(r−q0 − 1)k̄(x, dr) 6 0 for all x 6 x0.

Then, (1.9), and hence the strong Malthusian behavior of Theorem 1.1, holds, and
λ > d.

Proof. — In [BW18, Proposition 3.4(ii)], it was shown that, if the Markov process
X is recurrent, and the case when c(x) = dx is a linear function excluded, then
λ > infx>0 c(x)/x, so that (1.9) holds. The further conditions ensure that X is
recurrent, as pointed out in [Ber19, Section 3.6]. �

This proposition is effective in the case c(x) ∼ dx as x→ 0 and x→∞, provided
c is not linear. If c is linear, c(x) = dx, then λ = d, h(x) = x, and one readily checks
that the martingale W is actually constant, so this case is less interesting.
We will now find a weaker version of the conditions above, which is effective when

d = 0. In this direction, if we can show that λ > 0, then the simple condition

(6.3) lim
x→0+

c(x)
x

= lim
x→∞

c(x)
x

= 0

implies the strong Malthusian behavior of Theorem 1.1.
Recall first that [DJG10, Theorem 1] already gives sufficient conditions for the

strict positivity of the leading eigenvalue in the eigenproblem (1.6). We can use our
probabilistic methods to find alternative conditions for this.
For the sake of simplicity, we focus on the situation when fissions are binary (which

puts Z in the class of Markovian growth-fragmentations defined in [Ber17]). However,
it is immediate to adapt the argument to the general case.
Assume that, for all x > 0, κ(x, dp) is supported by the set of binary mass

partitions p = (1 − r, r, 0, . . .) with r ∈ (0, 1/2]. It is then more convenient to
represent the fission kernel κ by a probability kernel %(x, dr) on (0, 1/2], such that
for all functionals g > 0 on P ,∫

P
g(p)κ(x, dp) =

∫
(0,1/2]

g(1− r, r, 0, . . .)%(x, dr).

In particular, there is the identity∫
(0,1)

f(r)k̄(x, dr) = B(x)
∫

(0,1/2]
((1− r)f(1− r) + rf(r))%(x, dr).

Proposition 6.2. — Assume conditions (1.2)–(1.4), (1.7)–(1.8) and, in the no-
tation above, that there exist q∞, x∞ > 0 such that

(6.4) q∞c(x)/x+B(x)
∫

(0,x1/2]
(rq∞ − 1)%(x, dr) 6 0 for all x > x∞,

and q0, x0 > 0 such that

(6.5) − q0c(x)/x+B(x)
∫

(0,1/2]
((1− r)−q0 − 1)%(x, dr) 6 0 for all x 6 x0.

Then, the Malthus exponent λ is positive. If moreover (6.3) holds, then condi-
tion (1.9), and hence the strong Malthusian behavior of Theorem 1.1, holds.
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Proof. — Let a ∈ (x0, x∞). By the definition of the Malthus exponent in Section 4
and the right-continuity of the function La,a, we see that λ > 0 if and only if
La,a(0) ∈ (1,∞]. We thus have to check that

Ea
[
EH(a), H(a) <∞

]
> 1,

that is, thanks to the many-to-one formula of Lemma 3.2 (with f = 1), that
Ea[〈ZH(a),1〉] > 1,

where 1 is the constant function with value 1. A fortiori, it suffices to check that
〈ZH(a),1〉 > 1 Pa-a.s., and that this inequality is strict with positive Pa-probability.
In words, we freeze individuals at their first return time to a; it is easy to construct
an event with positive probability on which there are two or more frozen individuals,
so we only need to verify that we get at least one frozen individual Pa-a.s. The
latter point is not obvious, since it could in principle occur that no descendant of an
individual started from a succeeds in to returning to a.
In this direction, we focus on a specific ancestral trajectory, say X∗, which is

defined as follows. Recall that any trajectory is driven by the flow velocity (2.1)
between consecutive times of downward jumps, so we only need to explain how
we select daughters at fission events. When a fission event occurs at a time t with
X∗t− = x∗ > a, producing two daughters, say rx∗ and (1− r)x∗ for some r ∈ (0, 1/2],
then we choose the smallest daughter, i.e. X∗t = rx∗, whereas if x∗ < a then we
choose the largest daughter, i.e. X∗t = (1− r)x∗. The process X∗ is then Markovian
with infinitesimal generator

G∗f(x) = c(x)f ′(x) +B(x)
∫

(0,1/2]
(1{x>a}f(rx) + 1{x<a}f((1− r)x)− f(x))%(x, dr).

We now outline a proof that X∗ is point-recurrent. Since the process has only
negative jumps, it is sufficient to show that X∗t → ∞ and X∗t → 0, as t → ∞, are
both impossible. For the former, consider starting the process at x > x∞ and killing
it upon passage below x∞. Denote this process by X~ and its generator by

G~f(x) = c(x)f ′(x) +B(x)
∫

(0,1/2]
(1{rx>x∞}f(rx)− f(x))%(x, dr).

(The dependence on a in the integral vanishes since x∞ > a.) Now, let V (x) = xq∞ ,
for x > x∞. The conditions in the statement imply that G~V 6 0, so V (X~) is
a supermartingale. This ensures that X~ cannot converge to +∞, and indeed the
same for X∗ itself. To show X∗ cannot converge to 0, we start it at x < x0 and kill
it upon passing above x0, and follow the same argument with V (x) = x−q0 .
To conclude, we have shown that X∗ is point-recurrent, and therefore Pa-almost

surely hits a. This shows that Pa[〈ZH(a),1〉 > 1] = 1, and completes the proof of
Proposition 6.2. �
The conditions in Propositions 6.1 and 6.2 express that the fragmentation is

stronger than growth near ∞, and the reverse near 0. Proposition 6.1 describes
this comparison in terms of the Markov process X, which can be selected from the
process Z by making a size-biased pick from the offspring at each branching event;
that is, from offspring of sizes rx and (1− r)x, following the former with probability
r and the latter with probability 1− r. On the other hand, Proposition 6.2 describes
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this comparison for the process X∗, where we pick from the offspring more carefully
in order to follow a line of descent which is more likely to stay close to the point a.
This accounts for the improvement in conditions between [Ber19] and this work.
Finally, we conclude with a discussion of the self-similar case, where our conditions

can be simplified further. We say that the fragmentation is self-similar if the relative
sizes of offspring do not depend on the size of the parent; that is, κ(x, dp) = κ(dp).
We define a measure σ on (0, 1) by∫

(0,1)
f(r)σ(dr) =

∫
P

∞∑
i=1

f(pi)κ(dp),

and note that then the measure k̄, defined in terms of κ on page 803, satisfies
k̄(x, dr) = B(x)σ̄(dr),

where σ̄(dr) = rσ(dr) is a probability measure. If this is the case, then conditions (6.1)
and (6.2) of Proposition 6.1 can be rewritten as

xB(x)
c(x) >

q∞∫
(0,1)(1− rq∞) σ̄(dr) , x > x∞,(6.6)

and
xB(x)
c(x) 6

q0∫
(0,1)(r−q0 − 1) σ̄(dr) , x 6 x0.(6.7)

The comparable conditions in [DJG10] would be (13) and (12), respectively, which
state that limx→∞ xB(x)/c(x) = ∞ and B/c ∈ L1((0, b), dx) for some b > 0. Our
conditions are rather weaker than these, though of course in other respects [DJG10]
is more general.
Turning to Proposition 6.2, self-similarity means that we have %(x, dr) = %(dr),

and σ can be expressed as σ(dr) = %(dr) + %(1− dr). The conditions (6.4) and (6.5)
of Proposition 6.2 become

xB(x)
c(x) >

q∞∫
(0,1/2](1− rq∞) %(dr) , x > x∞,(6.8)

and
xB(x)
c(x) 6

q0∫
(0,1/2]((1− r)−q0 − 1) %(dr) , x 6 x0.(6.9)

To demonstrate these conditions, consider the simple case of binary fission with
uniform size repartition. In this case, σ̄(dr) = 2rdr, and the right-hand sides of (6.6)
and (6.7) become q∞+2 and 2−q0, respectively. Hence, the conditions (6.1) and (6.2)
of Proposition 6.1 hold if there exist 0 < x0 < x∞ and β0 < 2 < β∞ such that

xB(x)
c(x) > β∞ for all x > x∞ and xB(x)

c(x) 6 β0 for all x 6 x0.

In turn, Proposition 6.2 improves upon the preceding bounds. Specifically, one has
%(dr) = 2 · 1(0,1/2](r)dr, and the right-hand side of (6.8) becomes 1− 2−q∞

q∞+1 , which is
an increasing function whose limit as q∞ → 0 is 1

1+log 2 ≈ 0.59. The right-hand side
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of (6.9) becomes 2
1−q0

(1 − 2q0−1) − 1 (for q0 6= 1), a decreasing function with limit
1

1−log 2 ≈ 3.3 as q0 → 0. Hence, the conditions of Proposition 6.2 hold if there exist
0 < x0 < x∞, β′∞ > 1

1+log 2 and β′0 < 1
1−log 2 , such that

xB(x)
c(x) > β′∞ for all x > x∞ and xB(x)

c(x) 6 β′0 for all x 6 x0.

Again, these are weaker than [DJG10, Conditions (12) and (13)].
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