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1164 A. AKOPYAN & V. VYSOTSKY

Abstract. — We prove large deviations principles (LDPs) for the perimeter and the area
of the convex hull of a planar random walk with finite Laplace transform of its increments.
We give explicit upper and lower bounds for the rate function of the perimeter in terms of

the rate function of the increments. These bounds coincide and thus give the rate function for
a wide class of distributions which includes the Gaussians and the rotationally invariant ones.
For random walks with such increments, large deviations of the perimeter are attained by the
trajectories that asymptotically align into line segments. However, line segments may not be
optimal in general.
Furthermore, we find explicitly the rate function of the area of the convex hull for random

walks with rotationally invariant distribution of increments. For such walks, which necessarily
have zero mean, large deviations of the area are attained by the trajectories that asymptotically
align into half-circles. For random walks with non-zero mean increments, we find the rate
function of the area for Gaussian walks with drift. Here the optimal limit shapes are elliptic
arcs if the covariance matrix of increments is non-degenerate and parabolic arcs if otherwise.
The above results on convex hulls of Gaussian random walks remain valid for convex hulls

of planar Brownian motions of all possible parameters. Moreover, we extend the LDPs for the
perimeter and the area of convex hulls to general Lévy processes with finite Laplace transform.

Résumé. — Nous montrons des principes de grandes déviations pour le périmètre et l’aire
de l’enveloppe convexe d’une marche aléatoire planaire dont les incréments ont une transformée
de Laplace finie.
Nous donnons des bornes inférieures et supérieures explicites pour la fonction de taux

pour le périmètre, en termes de la fonction de taux pour les incréments. Pour une large
classe de distributions incluant les distributions gaussiennes et les distributions invariantes par
rotation, ces bornes coïncident et donnent donc la fonction de taux exacte. Pour des marches
aléatoires avec de tels incréments, les grandes déviations pour le périmètre sont atteintes par les
trajectoires qui se comportent asymptotiquement comme des segments de droite. Cependant,
les segments de droite ne sont pas optimaux en général.

De plus, nous trouvons explicitement la fonction de taux pour l’aire de l’enveloppe convexe
des marches aléatoires è incréments invariants par rotation. Pour de telles marches, qui sont
nécessairement centrées, les grandes déviations pour l’aire sont réalisées par les trajectoires qui
se comportent asymptotiquement comme des demi-cercles. Pour des marches aléatoires avec
des incréments non centrés, nous donnons la fonction de taux pour l’aire pour des marches
gaussiennes non centrées. En ce cas, les trajectoires optimales sont des arcs elliptiques si la
matrice de covariance des incréments est non dégénérée, et des arcs paraboliques sinon.

Les résultats précédents sur les enveloppes convexes de marches aléatoires gaussiennes restent
valides pour les enveloppes convexes de mouvements browniens plans pour tous les paramètres.
De plus, nous étendons le principe de grande déviation pour le périmètre et l’aire des enveloppes
convexes à des processus de Lévy généraux avec transformée de Laplace finie.

1. Introduction

Let (Sk)k> 1, where Sk = X1 + . . .+Xk, be a planar random walk with independent
identically distributed increments X1, X2, . . . We assume that the expectation of
X1 exists and is finite, and put µ := EX1. We are interested in the perimeter Pn
and the area An of the convex hull Cn := conv(0, S1, . . . , Sn) of the first n steps of
the random walk, including the origin. Here, by definition, the perimeter of a line
segment is its doubled length.
All of our results remain valid for the convex hulls conv(S1, . . . , Sn) but it is more

natural to consider hulls of the form Cn, which allow remarkably simple formulas for
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Large deviations of convex hulls of planar random walks 1165

their expected perimeters and areas. In fact, Spitzer and Widom [SW61] proved(1)

that

(1.1) EPn = 2
n∑

k=1

E|Sk|
k

,

where by | · | we denote the Euclidean norm. This implies that EPn/n → 2|µ|
as n → ∞, by the law of large numbers and uniform integrability of (Sk/k)k> 1.
Moreover, Pn/n→ 2|µ| a.s. by McRedmond and Wade [MW18].
Wade and Xu [WX15a] showed (developing the ideas introduced by Snyder and

Steele [SS93]) that if µ 6= 0 and E|X1|2 < ∞, then Var(Pn)/n → 4σ2
µ/|µ|2, where

σ2
µ := E(µ · (X1 − µ))2 and ‘·’ denotes the scalar product. Here σ2

µ > 0 unless
the trajectory of (Sk)k> 1 is the graph of a zero-mean one-dimensional random
walk. With the exception of this degenerate case, the variance of the perimeter
grows linearly (when E|X1|2 < ∞), and moreover, the sequence (Pn)n> 1 satisfies
a central limit theorem for µ 6= 0 (see [WX15a]) and a limit theorem under the
scaling n−1/2 for µ = 0 (see Wade and Xu [WX15b]). The latter result follows
naturally from the invariance principle using the continuous mapping theorem. The
degenerate case µ · (X1 − µ) = 0 a.s. is more tricky. Alsmeyer et al. [AKMV20]
proved that Var(Pn) = O(log n) under E|X1|3 < ∞; it is likely that Var(Pn) may
grow super-logarithmically (contradicting the corresponding conjecture in [WX15a])
when E|X1|3 = ∞ and E|X1|2 < ∞, but a proof is still missing. Yet there is no
central limit theorem for (Pn)n> 1, although Alsmeyer et al. [AKMV20] established
the ones for the lengths of the convex minorant and the concave majorant of n-step
one-dimensional random walks (the sum of these quantities is Pn; their variances
may grow polynomially when E|X1|3 = ∞ but not much is known about their
correlation).
The Spitzer–Widom formula (1.1) admits various generalizations to higher di-

mensions, including explicit formulas for the expected mean width, surface area,
volume, and other intrinsic volumes of the convex hulls, see Barndorff-Nielsen and
Baxter [BNB63] or Vysotsky and Zaporozhets [VZ18]. In particular, for the area of
the convex hull of a planar random walk,

(1.2) EAn = 1
2

∑

j, k> 1
j+k6n

E| det[Sj, S ′k]|
jk

,

where (S ′k)k> 1 is an independent copy of (Sk)k> 1. Furthermore, the invariance prin-
ciple naturally implies (see Wade and Xu [WX15b]) that if E|X2

1 | < ∞, then the
sequence (An)n> 1 satisfies a limit theorem under the scaling n−3/2 for µ 6= 0 and
n−1 for µ = 0.
In this paper we study large deviations probabilities for the perimeter and the

area of the convex hull of the random walk. This describes very atypical behaviour
of these quantities, as opposed to the results above on their typical behaviour. In
(1) [SW61] proved formula (1.1) under the assumption P(u · Sk = 0) = 0 for every k ∈ N and
non-zero u ∈ R2, which can be dropped using a simple approximation argument based on the fact
that the perimeter is a continuous functional on the space of compact convex sets equipped with
the Hausdorff distance. This observation also applies to equality (1.2).
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1166 A. AKOPYAN & V. VYSOTSKY

particular, we will consider the logarithmic asymptotics of P(Pn > 2xn) for x > |µ|
and P(Pn 6 2xn) for x < |µ|, and P(An > an2) for a > 0. We will also describe
the limit shape of the trajectories, scaled by the factor of n−1 in both time and
space (this explains the scalings of Pn and An), resulting in such large deviations
probabilities.
To the best of our knowledge, there is only one rigorous result in this direction.

Snyder and Steele [SS93] obtained the following non-sharp concentration inequality
for the perimeter for random walks with bounded increments: if |X1| 6 M a.s. for
some M > 0, then

P(|Pn − EPn| > xn) 6 2 exp
(
−x2n/

(
8π2M2

))
, x > 0.

Claussen et al. [CHM15] gave a numerical analysis of atypically large values of the
perimeter and the area of the convex hull and concluded that these quantities “seem...
to obey a large deviations principle” (LDP, in short) for random walks with standard
Gaussian increments. There are few follow-up numerical papers on related questions
by the same group of authors.
The other results on atypical behaviour of convex hulls include the works by

Khoshnevisan [Kho92] and Kuelbs and Ledoux [KL98], who considered a.s. superior
limits of monotone functionals of convex hulls (including the perimeter and the area)
of zero-mean finite-variance random walks and standard Brownian motions scaled
as in the law of iterated logarithm.
The simulation-based conclusions of [CHM15] in fact easily follow (see Section 4.2

below) from the contraction principle applied to Mogulskii’s LDP for trajectories of
random walks with finite Laplace transform of their increments. The main task is to
obtain explicitly the rate functions in these LDP’s in terms of the rate function of
the increments. For the perimeter, we found the rate function (Corollary 2.10) for a
wide class of random walks (see Proposition 2.9) including all Gaussian walks (this
is not at all an expected result), and also gave the upper and the lower bound valid
for general walks with finite Laplace transform of increments (Theorem 2.3). For the
area, we found the rate function for random walks that have rotationally invariant
distributions of increments with finite Laplace transform (Theorem 2.11) and for
Gaussian random walks with arbitrary drift (Theorem 2.13 and Proposition 2.15).
In all these results we identified the asymptotic form of optimal trajectories of the
walk resulting in the large deviations.
Furthermore, we extended the above results on random walks, which have incre-

ments in discrete time, to convex hulls of planar Lévy processes (Theorem 2.16) with
finite Laplace transform, including Brownian motions. Convex hulls of general Lévy
processes were studied e.g. by Molchanov and Wespi [MW16].
Lastly, we extended the LDPs for Pn and An to random walks whose increments

have Laplace transform finite only in a neighbourhood of zero (Proposition 4.1).
The paper is organized as follows. In Section 2.1 we introduce notation and in

particular, define the radial minimum rate function and state its properties. In Sec-
tions 2.2 and 2.3 we present our main results on large deviations for the perimeter
and the area of the convex hull of a planar random walk. The continuous-time
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counterparts are given in Section 2.4. Further generalizations are discussed in Sec-
tion 2.5. In Section 3 we prove basic properties of the radial minimum rate function
for general increments of the walk and its convexity for Gaussian walks. Section 4.1
contains essentials on large deviations relevant to this paper. The proofs of our LDPs
for the perimeter and the area (for random walks), including computations of the
rate functions, are given in Section 4.2. The core parts of these computations are
unified by the use of geometric inequalities of isoperimetric type. The proofs for Lévy
processes are in Section 4.3. Finally, in Section 4.4 we give a partial result for walks
with Laplace transform of increments finite only in a neighbourhood of zero.

2. Main results

2.1. Notation

Recall that the Legendre–Fenchel transform or the convex conjugate of a function
F : Rd → R ∪ {+∞} (where d > 1) with a non-empty effective domain DF :=
{u : F (u) <∞} is the function F ∗ : Rd → R ∪ {+∞} defined by

F ∗(v) := sup
u∈Rd

(u · v − F (v)) , v ∈ Rd.

The conjugate function F ∗ is convex and lower semi-continuous on Rd; F itself does
not need to be convex. Recall that any convex function F is continuous on the
relative interior rintDF of its effective domain (Rockafellar [Roc70, Theorem 10.1])
so the property of lower semi-continuity is needed to characterize F only near the
relative boundary of DF . By convF we denote the largest convex minorant or the
convex hull of F , i.e. the convex function with the epigraph conv(epiF ), which is a
subset of Rd+1. Thus, we use the notation “conv” both for functions and sets.
The cumulant generating function K(u) := logEeu ·X1 is convex by Jensen’s in-

equality and satisfies K(0) = 0. Its convex conjugate I := K∗ is the rate function
of X1. This function satisfies I(µ) = 0 and is non-negative, lower semi-continuous,
and continuous on rintDI , where rint stands for the relative interior (taken in the
induced topology of the affine hull of DI). In the main results of this paper (namely,
the LDPs for Pn and An) we assume that the Laplace transform of the increments
L(u) := Eeu ·X1 is finite for all u ∈ R2. For example, this is trivially true when the
support of X1 is bounded. Under this assumption, K is infinitely differentiable on
R2 and I is strictly convex on its effective domain DI ; see Barndorff-Nielsen [BN78,
Corollary 7.1] and Vysotsky [Vys21b, Corollary 2.12].
The effective domain of I is known to satisfy (see [Vys21b, Proposition 1.1.a])

(2.1) rint
(

conv(supp(X1))
)
⊂ DI ⊂ cl

(
conv(supp(X1))

)
,

where supp(X1) is the topological support of the distribution of X1. Furthermore,
put

rmin := inf {|u| : u ∈ conv(supp(X1))} , rmax := sup {|u| : u ∈ supp(X1)} .
Note that rmin 6 |µ| 6 rmax, where the second inequality is strict unless X1 = µ a.s.
and the first inequality is strict unless µ · (X1 − µ) = 0 a.s.
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On occasions, we will give general statements assuming that the random vector X1
takes values in Rd with an arbitrary d > 1 rather than merely in R2. With no risk
of confusion, in such cases in L(u) = Eeu ·X1 we take u ∈ Rd and understand I, K,
etc. accordingly. Then we will usually assume that X1 satisfies merely the Cramér
moment assumption 0 ∈ intDL.
Define the radial maximum and radial minimum functions

(2.2) I(r) := inf
`∈ Sd−1

I(r`), K̄(p) := sup
`∈ Sd−1

K(p`), p, r > 0,

where Sd−1 stands for the unit sphere in Rd centred at 0, and put I(r) := ∞ and
K̄(p) := ∞ for p, r < 0. Note that the function I admits the following geometric
interpretation: the epigraph of I(|v|) is the union of all rotations of the epigraph
of I(v) about the vertical axis. Clearly, the supremum and the infimum above are
always attained at some points since the Laplace transform is continuous, I is lower
semi-continuous, and spheres in Rd are compact. Thus, the respective sets of minimal
and maximal directions

(2.3) Λr := argmin
`∈ Sd−1

I(r`), Λ̄p := argmax
`∈ Sd−1

K(p`), r, p > 0

are always non-empty. Note that the argmax will not change if we replace K by L
in (2.3).
Recall that a point u in a convex set C ⊂ Rd is called extreme if there is no way

to express u = αu1 + (1− α)u2 for some u1, u2 ∈ C and α ∈ (0, 1) except by taking
u1 = u2 = u. Every extreme point of C belongs to the relative boundary ∂relC of C,
defined by ∂relC := C \ rintC. An extreme point u of a convex set C ⊂ Rd is called
exposed if C ∩ L = {u} for some hyperplane L supporting C.
The radial minimum rate function I and the sets of minimal directions Λr appear

in most of our results on the perimeter of the convex hull. Let us state some of
their properties. Let us agree that by [|µ|, rmax] we will mean the half-line [|µ|,∞)
if rmax =∞.

Lemma 2.1. — Assume that X1 is a random vector in Rd, where d > 1, such
that 0 ∈ intDL.

(a) The effective domain DI of I is an interval that satisfies intDI = (rmin, rmax);
(b) The function I is lower semi-continuous; satisfies I(|µ|) = 0; is strictly de-

creasing and convex (also strictly if DL = Rd) on [rmin, |µ|]; and is strictly
increasing on [|µ|, rmax];

(c) Suppose that I is discontinuous at a point x ∈ [|µ|, rmax]. Then for any ` ∈ Λx,
x` is an exposed point of DI and I(x) = − logP(X1 = x`) <∞.

(d) For any r ∈ (rmin, |µ|], the set Λr contains a unique element, which we denote
by `r.

Combining Part (c) with the second inclusion in (2.1) gives:

Corollary 2.2. — I is continuous on (rmin,∞) if P(X1 = u) = 0 for any
u ∈ ∂rel(conv(supp(X1))).
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We stress that the function I may be discontinuous on its effective domain, and
may be non-convex even if it is continuous; see Remark 2.4 in Section 2.2 and
Example 3.1 in Section 3.2.

2.2. Large deviations of the perimeter

Denote by AC0([0, 1];R2) the set of coordinate-wise absolutely continuous functions
h on [0, 1] such that h(0) = 0. We will occasionally refer to functions from [0, 1] to
R2 as (planar) curves or trajectories. Denote by im(·) the image of a function, that
is the set of its values as the argument varies over the effective domain. Let P (C)
denote the perimeter of a non-empty convex set C ⊂ R2, so Pn = P (Cn).
We now state our first main result.

Theorem 2.3. — Assume that X1 is a random vector in R2 such that DL = R2.
(1) The sequence (Pn/(2n))n> 1 satisfies the LDP in R with speed n and the tight

rate function

(2.4) JP (x) := min
h∈AC0([0, 1] ;R2) :
P (conv(imh)) = 2x

∫ 1

0
I(h′(t))dt.

This function shares the properties of I stated in Parts (a) and (b) of
Lemma 2.1.

(2) We have JP = I on [0, |µ||] and conv I 6 JP 6 I on [|µ|,∞), and a bit more:

(2.5) lim
n→∞

1
n

logP(Pn 6 2xn) =



−I(x), x ∈ (rmin, |µ|]
logP (|X1| = rmin) , x = rmin

and for any x ∈ [|µ|, rmax],

(2.6)
−I(x) 6 lim inf

n→∞
1
n

logP(Pn > 2xn)

6 lim sup
n→∞

1
n

logP(Pn > 2xn) 6 − conv I(x).

(3) For any ε > 0, we have

(2.7) lim
n→∞P

(
max

06 k6n

∣∣∣∣∣
Sk
n
− k

n
x`x

∣∣∣∣∣ 6 ε

∣∣∣∣∣Pn 6 2xn
)

= 1, x ∈ (rmin, |µ|],

where `x was defined in Lemma 2.1(d), and

(2.8) lim
n→∞P

(
max

06 k6n

∣∣∣∣
Sk
n
− h(k/n)

∣∣∣∣ 6 ε for some h ∈ HP (x)
∣∣∣∣Pn > 2xn

)
= 1,

x ∈ [|µ|, rmax),
where HP (x) denotes the set of minimizers in (2.4). If I(x) = conv I(x) for
an x ∈ (rmin, rmax), then HP (x) = {t 7→ tx`}`∈Λx

.
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We refer to the elements of the sets HP (x) as the optimal trajectories (for the
perimeter).
Let us give a few comments. The limit shape results (2.7) and (2.8) mean that if

I(x) = conv I(x), then large deviations of the perimeter are attained on trajectories
that asymptotically align into line segments and move with constant speed. Note
that under I(x) = conv I(x), equality (2.8) does not assert that every direction in
Λx can be attained. This equality means that the epigraph of I admits a support
line at the point (x, I(x)). This is true for every x iff I is convex, in which case the
rate function in the LDP for the perimeter is JP = I. In Proposition 2.6 below we
will provide a tractable condition, stated directly in terms of the Laplace transform
of increments, for checking the equality I(x) = conv I(x) for a given x. Moreover,
this proposition relates the sets of optimal directions Λx in (2.8) to more tractable
sets Λ̄p defined in terms of the Laplace transform; cf. (2.3).
The idea of our proof of Theorem 2.3 is as follows. Equalities (2.4), (2.7), and (2.8)

follow from an LDP for trajectories of random walks combined with the contraction
principle. If I(x) = conv I(x), an additional geometric argument yields that the
set HP (x) consists of curves of minimal length with the fixed perimeter 2x of their
convex hull. A known geometric result (Corollary A.2 in the Appendix) asserts that
the image of such a curve is a line segment of length x. This curve must move with
constant speed by strict convexity of I.
With this geometric optimality property of line segments, it is tempting to assume

that JP = I and we always have HP (x) = {t 7→ tx`}`∈Λx
in (2.8). However, in

general,
the optimal trajectories are not necessarily linear.

Hence it may be that JP 6= I, as shown in Example 2.5, which follows the next
remark.

Remark 2.4. — For µ 6= 0, the upper bound in Part (2) of Theorem 2.3 can
improved to JP 6 I0 on [|µ|,∞), where I0 := conv(1R\{0} · I) is the function with
the epigraph conv(epi I ∪ {0}). This follows from considering the set of trajectories

D :=
{
h ∈ AC0[0, 1] : h′ = v on [0, s], h′ = µ on [s, 1] for some s ∈ (0, 1), v ∈ T

}
,

where T := {v ∈ DI : I(tv) > tI(v) for any t ∈ R}, whose energies satisfy
∫ 1

0
I(h′)dt = sI(v) + (1− s)I(µ) = sI(v) < I(sv).

Note in passing that it is easy to check that T = (K ◦ ∇I)−1(0) if ∇I is defined
on R2.
We actually have JP = I0 on [|µ|,∞) if the distribution of X1 is supported on

the straight line µR (and satisfies DL = R2). Even in this degenerate case I0 differs
from I on [|µ|,∞) if there is an a > 1 such that K(−aµ) = 0 and I(aµ) > I(−aµ)
(cf. Example 2.5). There are only two directions, therefore both optimal trajectories,
one of which belongs to D, start moving backwards at some moment. This is very
counter-intuitive! In this case JP is non-convex, and so is I. Unfortunately, the case
P(X1 ∈ µR) = 1 is the only type of distribution of the increments with a possibly
non-convex JP where we found JP explicitly.
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this proposition relates the sets of optimal directions Λx in (2.8) to more tractable
sets Λ̄p defined in terms of the Laplace transform; cf. (2.3).
The idea of our proof of Theorem 2.3 is as follows. Equalities (2.4), (2.7), and (2.8)

follow from an LDP for trajectories of random walks combined with the contraction
principle. If I(x) = conv I(x), an additional geometric argument yields that the
set HP (x) consists of curves of minimal length with the fixed perimeter 2x of their
convex hull. A known geometric result (Corollary 4.3 in the Appendix) asserts that
the image of such a curve is a line segment of length x. This curves must move with
constant speed by strict convexity of I.
With this geometric optimality property of line segments, it is tempting to assume

that JP = I and (2.8) always hold true. However, in general,
the optimal trajectories are not necessarily linear.

Hence it may be that JP 6= I, as shown in Example 2.5, which follows the next
remark.
Remark 2.4. — For µ 6= 0, the upper bound in Part 2 of Theorem 2.3 can improved

to JP 6 I0 on [|µ|,∞), where I0 := conv(1R\{0} · I) is the function with the epigraph
conv(epi I ∪ {0}). This follows from considering the set of trajectories
D :=

{
h ∈ AC0[0, 1] : h′ = v on [0, s], h′ = µ on [s, 1] for some s ∈ (0, 1), v ∈ T

}
,

where T := {v ∈ DI : I(tv) > tI(v) for any t ∈ R}, whose energies satisfy
∫ 1

0
I(h′)dt = sI(v) + (1− s)I(µ) = sI(v) < I(sv).

Note in passing that it is easy to check that T = (K ◦ ∇I)−1(0) if ∇I is defined
on R2.
We actually have JP = I0 on [|µ|,∞) if the distribution of X1 is supported on

the straight line µR (and satisfies DL = R2). Even in this degenerate case I0 differs
from I on [|µ|,∞) if there is an a > 1 such that K(−aµ) = 0 and I(aµ) > I(−aµ)
(cf. Example 2.5). There are only two directions, therefore both optimal trajectories,
one of which belongs to D, start moving backwards at some moment. This is very
counter-intuitive! In this case JP is non-convex, and so is I. Unfortunately, the case
P(X1 ∈ µR) = 1 is the only type of distribution of the increments with a possibly
non-convex JP where we found JP explicitly.

5 10 15

1

2

3

0

I(x, 0)

I(−x, 0)

x

JP (x)

Fig. 1. I0(x) < I(x) for x ∈ [12.77, 21.88].
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Figure 2.1. I0(x) < I(x) for x ∈ [12.77, 21.88].

Example 2.5 (Non-linear optimal trajectories). — Consider the distribution of X1
given by the mixture of the uniform distribution on the line segment [11, 13]× {0}
taken with weight 49/50 and the delta distribution at (−38, 0) taken with weight
1/50; see Figure 2.4.

We now turn our attention to the function conv I. The following result gives a
simple description of conv I directly in terms of K̄ and a condition when it equals I
at a given point. Denote by (·)′+ and (·)′− respectively right and left derivatives of a
function of real argument.

Proposition 2.6. — Assume that X1 is a random vector in Rd, d > 1, such that
DL = Rd. Then

(a) K̄ is an increasing convex function on [0,∞) satisfying K̄ ′+(0) = |µ| and
conv I = (K̄)∗ on [|µ|,∞);

(b) If r ∈ cl(im(K̄ ′)) (and r > |µ|), then I(r) = conv I(r) <∞;
(c) For any p ∈ (0,∞), the one-sided derivatives satisfy

K̄ ′+(p) = max
`∈ Λ̄p

|∇K(p`)| and K̄ ′−(p) = min
`∈ Λ̄p

|∇K(p`)|.

(d) If p ∈ (0,∞) and r > |µ| are such that K̄ ′(p) = r, then Λr = Λ̄p.

The main result of the proposition is Part (a), which relates the radial maximum of
the logarithmic Laplace transform K to the radial minimum of its convex conjugate
I. This assertion is actually a general fact valid for arbitrary convex functions; see
Proposition 3.2 of Section 3.3, which yields a stronger version of Proposition 2.6 under
the Cramér moment assumption. Part (b) is an easy consequence of Part (a) and
the well-known fact that the Legendre–Fenchel transform maps kinks of a convex
function (in our case, K̄) into linear segments of its convex conjugate. Part (c),
which clarifies the possible reason of non-differentiability of K̄, follows by a standard
application of the method of Lagrange multipliers. Part (d), which follows naturally
from Parts (a)-(c), claims that the slowest directions of I are exactly the fastest
directions of K (equivalently, of L) at the corresponding radii.
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The main use of Proposition 2.6 is through its following corollaries.

Corollary 2.7. — I is strictly convex on DI if K̄ is differentiable on (0,∞).

Corollary 2.8. — K̄ is differentiable if there exists a continuous mapping
` : (0,∞)→ Sd−1 such that `(p) ∈ Λ̄p for any p ∈ (0,∞).

These claims follow easily from Parts (b) and (c), respectively, using convexity of K̄;
see Section 3.3. We do not assume that `(p) is differentiable, otherwise Corollary 2.8
becomes trivial.
We now present a few types of distributions with convex radial minimum rate

function I. By ‖ · ‖ we denote the largest eigenvalue of a symmetric real matrix.

Proposition 2.9. — Assume that X1 is a random vector in Rd, d > 1. Then the
function I is convex in either of the following cases:

(a) X1 = AY1+µ, where Y1 is a random vector in Rk, 1 6 k 6 d, with rotationally
invariant distribution and A is a d×k real matrix such that AA>µ = ‖AA>‖µ;

(b) X1 is Gaussian.

Corollary 2.10. — For the above types of distributions, we have JP = I
(cf. Theorem 2.3).

We regard that Corollary 2.10 gives the rate function JP explicitly, since finding
the radial minimum I is a standard optimization problem (which is much simpler
than (2.4)) solvable using the method of Lagrange multiplies.
We now comment on Proposition 2.9. Note that in Case (a), the matrix AA> is

proportional to the covariance matrix of X1 given by Σ := E(X1X
>
1 ) − µµ>. The

assumption on A is always satisfied if µ = 0.
For Case (a), convexity of I follows rather directly from that of I. Our proof for

Case (b) rests on Corollaries 2.7 and 2.8 and uses properties of quadric curves to
construct a path `(p).
The condition in Corollary 2.8 is trivially satisfied if the set ∩p> 0 Λ̄p is non-empty,

i.e. there exists a direction that maximizes the Laplace transform at all radii. This
rather restrictive assumption naturally holds true for either linearly transformed
or shifted rotationally invariant distributions of increments. Both cases are covered
by Case (a) of Proposition 2.9, where ∩p> 0 Λ̄p is the set of maximal eigenvectors
of Σ of unit length if µ = 0 and ∩p> 0 Λ̄p = {µ/|µ|} if µ 6= 0. For general affine
transforms (i.e. compositions of linear transforms and translations) of rotationally
invariant distributions, we were able to prove convexity of I only for Gaussian
distributions, as per Case (b). We will see that here ∩p> 0 Λ̄p is empty unless the
Gaussian distribution of X1 is degenerate or X1 satisfies the assumptions of Case (a).

2.3. Large deviations of the area

The main geometric argument used in our proof of Theorem 2.3 to find the rate
function in the LDP for the perimeter can be applied directly to obtain the rate
function in the LDP for the area An of the convex hull. The problem reduces to
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finding a planar curve of the unit length that maximizes the area of its convex hull.
This question is known as one of Ulam’s problems. Although it is very similar to
the classical Dido problem and of course has the same answer that the curve is a
half-circle (Moran [Mor46]), it appears that this Ulam problem does not allow an
easy solution by reduction. The corresponding isoperimetric inequality easily yields
the following result.
Denote by A(C) the area of a non-empty convex set C ⊂ R2, so An = A(Cn).

Theorem 2.11. — Assume that X1 is a random vector in R2 such that DL = R2.
(1) The sequence (An/n2)n> 1 satisfies an LDP with speed n and the tight rate

function

(2.9) JA(a) := min
h∈AC0([0, 1] ;R2) :
A(conv(imh)) = a

∫ 1

0
I(h′(t))dt,

which is strictly increasing on DJA
and satisfies JA(0) = 0. In particular, for

any continuity point a > 0 of JA, we have

(2.10) lim
n→∞

1
n

logP
(
An > an2

)
= −JA(a).

The set of minimizers in (2.9), denoted by HA(a), is such that for any ε > 0,

(2.11) lim
n→∞P

(
max

06 k6n

∣∣∣∣
Sk
n
− h(k/n)

∣∣∣∣ 6 ε for some h ∈ HA(a)
∣∣∣∣An > an2

)
= 1,

a ∈ int (DJA
) .

(2) Suppose that the distribution of X1 is rotationally invariant. Then JA(a)
= I(
√

2πa); equality (2.10) is valid for every a > 0; and for any a ∈ [0, r2
max/

(2π)),

(2.12) HA(a) =




√
2a
π

(cos(±πt+ α)− cosα, sin(±πt+ α)− sinα)



α∈R

.

Thus, for rotationally invariant distributions, large deviations of the area are
attained on the trajectories that asymptotically align into half-circles and move with
constant speed. Note that for such distributions, I is convex.
We will refer to the elements of the sets HA(a) as the optimal trajectories (for the

area).

Remark 2.12. — Assume that the covariance matrix Σ of X1 is non-degenerate,
satisfies DL = R2, and Σ−1/2X1 has a rotationally invariant distribution, whose rate
function we denote by I1. Then (Σ−1/2Sk)k> 1 is a random walk with a rotationally
invariant distribution of increments, and the area of its convex hull satisfies

area
(
conv

(
Σ−1/2S1, . . . , Σ−1/2Sn

))
= (det Σ)−1/2An.

Hence by Theorem 2.11 we have JA(a) = I1(
√

2πa/(det Σ)1/2). To rewrite JA in terms
of I, note that I1(|u|) = I1(u) = I(Σ1/2u) for u ∈ R2, where the last equality follows
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by changing variables in the definition of I. This gives I1(r) = I(r
√
λ1) for r > 0,

where 0 < λ2 6 λ1 are the eigenvalues of Σ, hence JA(a) = I(
√

2πa(λ1/λ2)1/4).
Moreover, equality (2.12) remains valid for a ∈ [0, area(supp(X1))/(2π2)) if we

multiply the factor
√

2a/π in (2.12) by (det Σ)−1/2Σ1/2. The optimal trajectories are
halves of the ellipse supp(X1) divided by the lines passing through its centre.

For random walks with a shifted (i.e. µ 6= 0) rotationally invariant distribution of
increments, the optimal trajectories for the area are not universal, unlike those for
the perimeter. We were able to solve only the Gaussian case. We apply the same
approach as in the proof of Theorem 2.11. In fact, since Gaussian rate functions are
quadratic, computation of the rate function for the area reduces to finding a planar
curve of fixed length and fixed endpoints that maximizes the area of its convex hull.
Pach [Pac78] proved that such a curve is a circular arc, as in the Dido problem
with fixed endpoints. The corresponding isoperimetric inequality yields the following
LDP.
Let us denote by u⊥ a vector u ∈ R2 rotated π/2 counterclockwise about the

origin.

Theorem 2.13. — Suppose that X1 has a shifted standard Gaussian(µ, Id) dis-
tribution on R2 with a non-zero mean µ. Then

(2.13) JA(a) = 4aϕ− 1
2 |µ|

2 tan2 ϕ, a > 0,

where ϕ ∈ [0, π/2) is the unique solution to
2ϕ− sin 2ϕ
8ϕ2 cos2 ϕ

= a

|µ|2 ;

equality (2.10) is valid for every a > 0; and in the basis µ, µ⊥, the set of optimal
trajectories is
(2.14)

HA(a) =
{

1
2ϕ cosϕ (sin(2ϕt− ϕ) + sinϕ,± cos(2ϕt− ϕ)∓ cosϕ)

}
, a > 0.

Thus, large deviations of the area of the convex hull for random walks with shifted
standard Gaussian increments are attained on the trajectories that asymptotically
align into either of the two µ-axially symmetric circular arcs of radius |µ|

2ϕ cosϕ and
angle 2ϕ starting at the origin and ending on the µ-axis. The radius is defined so
that for either of the two limit curves, the orthogonal projections of their velocities
to the direction of µ at times 0 and 1 both equal µ. Note that the shifted standard
Gaussian rate function I(v) = 1

2 |v − µ|2 is not constant on the velocity of the
optimal trajectories (which move with constant speed), contrasting the results of
Theorems 2.3 and 2.11.
It is easy to show that the asymptotics in Theorem 2.11 for the Gaussian case

appears as the limit case of Theorem 2.13 as |µ| → 0 with a fixed a: since ϕ→ π/2,
the radius tends to

√
2a/π and the right-hand side of (2.13) tends to πa, which is

I(
√

2πa) for the standard Gaussian distribution.
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Remark 2.14. — Using the same argument as in Remark 2.12 above, we can
easily check that for X1 following any Gaussian distribution with a non-degenerate
covariance matrix Σ and non-zero drift µ, it holds that

JA(a) = 4aϕ√
det Σ

− 1
2
(
µ>Σµ

)
tan2 ϕ, where 2ϕ− sin 2ϕ

8ϕ2 cos2 ϕ
= a√

det Σ · µ>Σµ
, a > 0.

With this uniquely defined ϕ, the set of optimal trajectories is given by (2.14) taken
in the basis µ, (Σ−1/2µ)⊥. In this general case the optimal limit shapes are elliptic
arcs starting at the origin and ending on the µ-axis.
For completeness of exposition, we consider shifted degenerate Gaussian distribu-

tions. Since these arise as the limit case of non-degenerate Gaussian distributions,
we can use Remark 2.14 to get the following result, which we present here without
a proof.

Proposition 2.15. — Suppose that X1
d= (µ1, µ2 + σY1), where µ = (µ1, µ2),

µ1 and σ are non-zero, and Y1 is a standard Gaussian random variable. Then JA(a)
= 6a2µ−2

1 σ−2 for a > 0; (2.10) is valid for every a > 0; and the optimal trajectories
are the parabolas

HA(a) =
{
µt± 6aµ−1

1

(
0, t− t2

)}
, a > 0.

In the case µ1 = 1, the proposition describes large deviations for the area of the
convex hull of the graph of one-dimensional random walk with Gaussian(µ2, σ

2)
increments. The assumptions of Proposition 2.15 ensure that the distribution of X1
is not supported on the line µR passing through the origin.

2.4. Convex hulls of Lévy processes

The above results on convex hulls of random walks, which have increments in
discrete time, have the following counterparts in continuous time.
Assume now that (St)t> 0 is a Lévy process on the plane, that is a stochastic process

with stationary independent increments and càdlàg trajectories (i.e. right-continuous
and having left limits) taking values in R2. Then (St)t∈N is a random walk. Conversely,
every random walk with an infinitely divisible distribution of increments (that for
every n ∈ N is the n-fold convolution of some distribution) can be regarded as such
time-discretization of a Lévy process (St)t> 0; see Bertoin [Ber96, Theorem I.1].
Consider the convex hull CT := conv({St}06 t6T ) for T > 0. Its perimeter

PT := P (CT ) and area AT := A(CT ) are random variables (see the Appendix).
The following general result extends Theorems 2.3(1) and 2.11(1).
Theorem 2.16. — Assume that (St)t> 0 is a Lévy process on the plane such that

S1 = X1 and DL = R2. Then the variables (PT/(2T ))T > 0 and (AT/T
2)T > 0 satisfy

the LDP’s in R (as T →∞) with speed T and the respective rate functions JP and
JA (given in (2.4) and (2.9)).
Remark 2.17. — Assume that (St)t> 0 is a planar Brownian motion starting at

zero (which is the only Lévy process with continuous trajectories). By Corollary 2.10
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we have JP = I, and I can be found using the method of Lagrange multipliers as in
the proof of Proposition 2.9(a) (where we essentially found a similar quantity K̄).
JA is given explicitly in Theorem 2.13, Proposition 2.15, and Remarks 2.12, 2.14,
which together cover all possible values of the drift µ and the covariance Σ of S1.
Moreover, the limit shape results (2.7), (2.8), (2.11) remain valid with k and n

considered as positive reals (instead of integers, as before) and Pn, An replaced
respectively by Pn, An; this describes the optimal trajectories of the Brownian motion
that result in the large deviations of Pn and An. Indeed, the proofs of Theorems 2.3
and 2.11 can be carried over without any changes if instead of Mogulskii’s LDP
(see Section 4.1) for trajectories of random walks we apply Schilder’s LDP ([DZ10,
Theorem 5.2.3]) for trajectories of a Brownian motion in Rd (this result is stated
in [DZ10] for a standard Brownian motion but we can convert it into the LDP
for S applying the contraction principle to the mapping f 7→ Σ1/2f(t) + µt for
f ∈ AC0[0, 1]).
We will prove Theorem 2.16 by reduction to the random walks case, showing that

the trajectory of (St)06 t6T stays close to that of (St)t∈{0, 1, ..., [T ]}. This also allows
one to extend our simplest limit shape result (2.7) to general Lévy processes. It is
also tempting to provide counterparts to (2.8) and (2.11). However, it appears that
arguing by reduction to random walks would require additional technical assump-
tions. Therefore, we do not give any results in this direction. Note that we cannot
directly prove counterparts to (2.7), (2.8), (2.11), as we did for Brownian motions in
Remark 2.17 above, since we are not aware of any LDP for general Lévy processes
appropriate for the purpose.

2.5. Further extensions

2.5.1. Higher dimensions

One can further consider large deviations of surface area, volume, etc. for convex
hulls of random walks in higher dimensions. The expected values of these quantities
are available through the explicit formulas of [VZ18, Section 4] which generalize (1.1).
However, currently we cannot obtain any progress even for rotationally invariant
distributions of increments. In fact, according to Tilli [Til10], the problem of finding
the shape of a curve in Rd, where d > 3, of unit length that maximizes the volume
of its convex hull is yet solved only in the class of curves convex in the sense of
Schoenberg (i.e., those that intersect no hyperplane at more than d points) and
there is no complete solution. Croft et al. [CFG91, Problem A28] mention that there
are no results on the similar problem of maximizing the surface area, and we are
unaware of any progress in this direction.
Remark 2.18. — On the other hand, our results for the perimeter of planar random

walks can be easily extended for mean width of convex hulls in higher dimensions,
defined in (A.1). A closely related quantity is the first intrinsic volume of the convex
hull, which equals (see [SW08, Eq. (14.7)]) the mean width divided by 2vd−1

dvd
, which

is mean width of a unit segment, where vd denotes volume of a unit ball in Rd.
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Assume now that Sn is a random walk in Rd satisfying DL = Rd. Denote by Wn

and Vn the mean width and first intrinsic volume, respectively, of the convex hull
Cn. The Spitzer–Widom formula (1.1) remains valid (see [VZ18, Corollary 3]) in any
dimension if we replace the perimeter Pn of the convex hull Cn by its doubled first
intrinsic volume 2Vn. Accordingly, our Theorem 2.3 remains valid if we replace Pn by
dvd

vd−1
Wn = 2Vn so the probabilities change to P(Wn > 2vd−1

dvd
xn) and P(Wn 6 2vd−1

dvd
xn)

or, equivalently, more elegant expressions P(Vn > xn) and P(Vn 6 xn). The only
difference in the proof is that Remark A.3 in the Appendix should be used instead
of Corollary A.2.

2.5.2. Weaker exponential moments assumptions

The Cramér moment assumption 0 ∈ intDL for the increments is a standard
minimal requirement to work with large deviations of random walks. However, in
the case DL 6= R2 we have to regard trajectories of the walk as random elements
of the space of functions of bounded variation (equipped with a certain Skorokhod-
type topology). Essentially, this is due to the fact that the rate function I is not
super-linear at infinity, and in particular, the infima in (2.4) and (2.9) may not be
attained on absolutely continuous functions.
The only available large deviations result for such trajectories is the non-standard

LDP by Borovkov and Mogulskii [BM13]. It can be applied to our problems using
the contraction principle by Vysotsky [Vys21a], which yields LDP’s for the perimeter
and the area in the case 0 ∈ intDL; see Proposition 4.1 in Section 4.4. The rate
functions there are rather complicated but remarkably, they are exactly the same as
in the main case DL = R2 when I is convex (for the perimeter) or the distribution of
X1 is rotationally invariant (for the area). We do not identify the optimal trajectories
in Proposition 4.1 since there are too many cases to analyse.

3. Properties of the radial minimum rate function I

3.1. Basic facts from convex analysis

Suppose that F : Rd → R ∪ {+∞} is any function with a non-empty effective
domain DF .
• By [Roc70, Theorem 12.2 and Corollary 12.1.1]) it holds that

(3.1) F ∗∗ = cl(convF ),
where cl(·) denotes the closure of a function, that is the function with the epigraph
cl(epi(·)). Recall that F is lower semi-continuous iff F = clF , i.e. its epigraph epiF
is closed in (R ∪ {+∞})× Rd ([Roc70, Theorem 7.1]). Thus the Legendre–Fenchel
transform is an involution on the set of lower semi-continuous convex functions.
• The Fenchel inequality F (u) + F ∗(v) > u · v, which holds for any u, v ∈ Rd,

immediately follows from the definition of convex conjugation.
• If the function F is convex, then it is continuous on rint(DF ) ([Roc70, Theo-

rem 10.1]) and if, in addition, F is lower semi-continuous, then it is continuous on
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every closed interval contained in DF ([Roc70, Corollary 7.5.1]). If F is convex, finite,
and differentiable on an open convex set C ⊂ Rd, then F continuously differentiable
on C ([Roc70, Corollary 25.5.1]). If C = Rd, then F ∗ is strictly convex on rint(DF ∗),
which means that F ∗ is linear on no line segment with the endpoints in rint(DF ∗)
([Roc70, Theorem 26.3]).
• Suppose that d = 1 and F is convex. Then

(3.2) {v ∈ int(DF ∗) : F ∗ is affine on [v − ε, v + ε] for some ε > 0}
= int(conv(im(F ′))) \ cl(im(F ′)),

where, recall, im(·) denotes the image of a function. Thus, kinks of convex functions
correspond to affine segments of their convex conjugates, and vice versa.
In order to prove this, let v belong to the set in the r.h.s. of (3.2). Since the

function F ′ is non-decreasing on its domain and v /∈ cl(im(F ′)), there is a unique
real u such that
(3.3) inf(im(F ′)) < F ′−(u) < v < F ′+(u) < sup(im(F ′)).
Then it is easy to see that F ∗ is affine on [F ′−(u), F ′+(u)] with slope u, which in partic-
ular implies that v belongs to the set in the l.h.s. of (3.2). For the reverse inclusion,
if v belongs to the set in the l.h.s. of (3.2), which is open, then v ∈ int

(
conv(im(F ′))

by DF ∗ = cl(conv(im(F ′))). By taking the Legendre–Fenchel transform of F ∗ and
using (3.1), which gives F ∗∗ = F on int(DF ), we see that (3.3) holds true with
u = (F ∗)′(v). Hence v 6∈ cl(im(F ′)), and thus v belongs to the set in the r.h.s.
of (3.2).

3.2. Basic properties of the radial minimum function I

Example 3.1 (Discontinuous I). — The function I is not necessarily continuous on
[|µ|, rmax): it is easy to check that if P(X1 = (1, 0)) = 3/4 and P(X1 = (−2, 0)) = 1/4,
then I has a jump at r = 1. It is also possible to show that I is discontinuous for
the “truly” two-dimensional distribution that is a mixture of the above two-atomic
distribution and the uniform distribution on the disk {u : |u| 6 1}.
It is not clear if I can be discontinuous for zero mean distributions.
Proof of Lemma 2.1.
(a) This follows from (2.1) and the fact that DI is convex.
(b) Clearly, I(|µ|) = 0 by I(µ) = 0 and I > 0. We claim that for any direction

` ∈ Sd−1, the function I`(t) := I(µ+ t`) is strictly increasing for t > 0 while it stays
finite. This implies that I strictly decreases on [rmin, |µ|] and strictly increases on
[|µ|, rmax], since the line segment that joins µ with a point of minimum of I over the
sphere rSd−1 always intersects the sphere r′Sd−1 if 0 6 r < r′ < |µ| or |µ| < r′ < r.
To prove the claim, we can assume without loss of generality that µ = 0 since the

rate function of X1 − µ is I(v − µ) and the Laplace transforms of X1 and X1 − µ
have the same effective domains. Since I` is a convex function with minimum at
t = 0, it can cease to be strictly increasing only if it stays zero in a neighbourhood
of 0. If ` · X1 = 0 a.s., then there is nothing to prove since I`(t) = +∞ for t > 0
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if v belongs to the set in the l.h.s. of (3.2), which is open, then v ∈ int
(
conv(im(F ′))

by DF ∗ = cl(conv(im(F ′))). By taking the Legendre–Fenchel transform of F ∗ and
using (3.1), which gives F ∗∗ = F on int(DF ), we see that (3.3) holds true with
u = (F ∗)′(v). Hence v 6∈ cl(im(F ′)), and thus v belongs to the set in the r.h.s. of
(3.2).

3.2. Basic properties of the radial minimum function I

Example 3.1 (Discontinuous I). — The function I is not necessarily continuous on
[|µ|, rmax): it is easy to check that if P(X1 = (1, 0)) = 3/4 and P(X1 = (−2, 0)) = 1/4,
then I has a jump at r = 1. It is also possible to show that I is discontinuous for
the “truly” two-dimensional distribution that is a mixture of the above two-atomic
distribution and the uniform distribution on the disk {u : |u| 6 1}.
It is not clear if I can be discontinuous for zero mean distributions.
Proof of Lemma 2.1. a) This follows from (2.1) and the fact that DI is convex.
b) Clearly, I(|µ|) = 0 by I(µ) = 0 and I > 0. We claim that for any direction

` ∈ Sd−1, the function I`(t) := I(µ+ t`) is strictly increasing for t > 0 while it stays
finite. This implies that I strictly decreases on [rmin, |µ|] and strictly increases on
[|µ|, rmax], since the line segment that joins µ with a point of minimum of I over the
sphere rSd−1 always intersects the sphere r′Sd−1 if 0 6 r < r′ < |µ| or |µ| < r′ < r.
To prove the claim, we can assume without loss of generality that µ = 0 since the

rate function of X1 − µ is I(v − µ) and the Laplace transforms of X1 and X1 − µ
have the same effective domains. Since I` is a convex function with minimum at
t = 0, it can cease to be strictly increasing only if it stays zero in a neighbourhood
of 0. If ` · X1 = 0 a.s., then there is nothing to prove since I`(t) = +∞ for t > 0
by (2.1), otherwise by the criterion of equality in Hölder’s inequality, the function
a 7→ logEea`·X1 , where a ∈ R, is strictly convex on its effective domain. Since the
interior of this domain contains 0 by the assumption 0 ∈ intDL, it is easy to see
that I(t`) > supa∈R(a` · t`− logEea`·X1) > 0 for t 6= 0. This proves the claim.
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Fig. 2.
Furthermore, the function I is convex on [rmin, |µ|] since for any rmin 6 r < r′ 6 |µ|

and ` ∈ Λr, `
′ ∈ Λr′ , one has

I(r) + I(r′) = I(r`) + I(r′`′) > 2I
(
r`+ r′`′

2

)
> 2I

(∣∣∣∣
r`+ r′`′

2

∣∣∣∣
)
> 2I

(
r + r′

2

)
.
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Figure 3.1.

by (2.1), otherwise by the criterion of equality in Hölder’s inequality, the function
a 7→ logEea` ·X1 , where a ∈ R, is strictly convex on its effective domain. Since the
interior of this domain contains 0 by the assumption 0 ∈ intDL, it is easy to see
that I(t`) > supa∈R(a` · t`− logEea` ·X1) > 0 for t 6= 0. This proves the claim.
Furthermore, the function I is convex on [rmin, |µ|] since for any rmin 6 r < r′ 6 |µ|

and ` ∈ Λr, `
′ ∈ Λr′ , one has

I(r) + I (r′) = I(r`) + I (r′`′) > 2I
(
r`+ r′`′

2

)
> 2I

(∣∣∣∣∣
r`+ r′`′

2

∣∣∣∣∣

)
> 2I

(
r + r′

2

)
.

Here we used the triangle inequality and the fact that I decreases on [0, |µ|], see
Figure 3.2 for a geometric explanation in the planar case. If DL = Rd, then I is
strictly convex on its effective domain, thus the first inequality is strict, hence I is
strictly convex on [rmin, |µ|].
The lower semi-continuity of I easily follows from that of I using a simple com-

pactness argument.
(c) By Part (b), I is lower semi-continuous and increasing, and hence left-conti-

nuous, on [|µ|, rmax]. If I is discontinuous at an x ∈ [|µ|, rmax], then it must be
I(x) < ∞, otherwise there is a contradiction with the left-continuity of I. For any
` ∈ Λx, consider the hyperplane L passing through x` and orthogonal to `. Assume
that there is an v ∈ L ∩ DI that is distinct from x`. Then |(1− ε)x` + εv| > x for
every ε > 0, hence

I(x+) 6 lim
ε→ 0+

I((1− ε)x`+ εv) = I(x`) = I(x),

where the first equality holds since the convex lower semi-continuous function I is
continuous on the line segment [x`, v] ⊂ DI ([Roc70, Corollary 7.5.1]). Thus, I is
continuous at x, which is a contradiction. Therefore, L ∩ DI = x`, meaning that x`
is an exposed point of DI . It remains to check that I(x`) = − logP(X1 = x`).
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Here we used the triangle inequality and the fact that I decreases on [0, |µ|], see
Figure 2 for a geometric explanation in the planar case. If DL = Rd, then I is strictly
convex on its effective domain, thus the first inequality is strict, hence I is strictly
convex on [rmin, |µ|].
The lower semi-continuity of I easily follows from that of I using a simple com-

pactness argument.
c) By Part b, I is lower semi-continuous and increasing, and hence left-continuous,

on [|µ|, rmax]. If I is discontinuous at an x ∈ [|µ|, rmax], then it must be I(x) < ∞,
otherwise there is a contradiction with the left-continuity of I. For any ` ∈ Λx,
consider the hyperplane L passing through x` and orthogonal to `. Assume that
there is an v ∈ L ∩ DI that is distinct from x`. Then |(1− ε)x`+ εv| > x for every
ε > 0, hence

I(x+) 6 lim
ε→0+

I((1− ε)x`+ εv) = I(x`) = I(x),

where the first equality holds since the convex lower semi-continuous function I is
continuous on the line segment [x`, v] ⊂ DI ([Roc70, Corollary 7.5.1]). Thus, I is
continuous at x, which is a contradiction. Therefore, L ∩ DI = x`, meaning that x`
is an exposed point of DI . It remains to check that I(x`) = − logP(X1 = x`).

supp(X1)

clDI =cl(conv(supp(X1)))

L

0

x`
v

L0

Fig. 3.
We have ` ·X1 6 x a.s., where the inequality is strict unless X1 = x`. Denote by

L0 the hyperplane passing through 0 and parallel to L; see Figure 3. Let us identify
Rd with L0 ⊕ R`. For any u1 ∈ L0 such that Ee(u1+u2`)·X1 <∞ for some real u2, we
have

(3.4) sup
u2∈R

(
u2x− logEe(u1+u2`)·X1

)
= − log

(
inf
u2∈R

Eeu1·X1+u2(`·X1−x)
)

= − logE[eu1·X11{X1=x`}] = − logP(X1 = x`),

with the second equality following from the dominated convergence theorem using
that the random variables in the inf E term decrease point-wisely in u2 since ` ·X1 6
x a.s. These equalities hold true e.g. for u1 = 0. This yields the required equality

I(x`) = sup
u1∈L0

sup
u2∈R

(
(u1 + u2`) · x`− logEe(u1+u2`)·X1

)
= − logP(X1 = x`),

where the last equality holds because no u1 ∈ L0 such that Ee(u1+u2`)·X1 = ∞ for
every u2 ∈ R contributes to the first supremum since for such u1 the l.h.s. of the
first line in (3.4) is −∞.
Finally, we have P(X1 = x`) > 0 by x` ∈ DI .

TOME 1 (-1)

Figure 3.2.

We have ` ·X1 6 x a.s., where the inequality is strict unless X1 = x`. Denote by
L0 the hyperplane passing through 0 and parallel to L; see Figure 3.2. Let us identify
Rd with L0 ⊕ R`. For any u1 ∈ L0 such that Ee(u1+u2`)·X1 <∞ for some real u2, we
have

(3.4)
sup
u2 ∈R

(
u2x− logEe(u1+u2`)·X1

)
= − log

(
inf
u2 ∈R

Eeu1 ·X1+u2 (` ·X1−x)
)

= − logE
[
eu1·X11{X1=x`}

]
= − logP(X1 = x`),

with the second equality following from the dominated convergence theorem using
that the random variables in the inf E term decrease point-wisely in u2 since ` ·X1
6 x a.s. These equalities hold true e.g. for u1 = 0. This yields the required equality

I(x`) = sup
u1 ∈L0

sup
u2 ∈R

(
(u1 + u2`) · x`− logEe(u1+u2`)·X1

)
= − logP (X1 = x`) ,

where the last equality holds because no u1 ∈ L0 such that Ee(u1+u2`)·X1 = ∞ for
every u2 ∈ R contributes to the first supremum since for such u1 the l.h.s. of the
first line in (3.4) is −∞.
Finally, we have P(X1 = x`) > 0 by x` ∈ DI .
(d) Suppose that for an r ∈ (rmin, |µ|], there are two distinct elements `, `′

in Λr. By convexity of I, it holds that I(r|` + `′|/2) 6 I(r(` + `′)/2) 6 I(r),
which is a contradiction by Part (b) since I is strictly decreasing on (rmin, |µ|] and
|`+ `′| < 2. �

3.3. Radial maxima and minima of conjugate convex functions

Let us prove the following statement, which may be known in convex analysis
but we found no references. It is stronger than Proposition 2.6 since the Laplace
transform of a distribution is lower semi-continuous by Fatou’s lemma. In particular,
it applies to distributions with Laplace transform finite only in a neighbourhood of
zero.
Proposition 3.2. — Let F : Rd → R ∪ {+∞}, where d > 1, be any lower

semi-continuous convex function differentiable at 0 and such that pmin := inf{|u| :
F (u) =∞} > 0, where inf∅ =∞ by convention. Put m := ∇F (0) and define F̄ and
F ∗ as in (2.2). Then
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(a) F̄ is an increasing convex function on [0,∞) satisfying F̄ ′+(0) = |m| and
convF ∗ = (F̄ )∗ on [|m|,∞);

(b) If r ∈ cl(im(F̄ ′)) (and r > |m|), then F ∗(r) = conv(F ∗)(r) <∞.
If additionally F is differentiable on {u : |u| < pmin}, and Λ̄p and Λr are defined

for F and F ∗ as in (2.3), then
(c) For any p ∈ (0, pmin), the one-sided derivatives satisfy

F̄ ′+(p) = max
`∈ Λ̄p

|∇F (p`)| and F̄ ′−(p) = min
`∈ Λ̄p

|∇F (p`)| .

(d) If p ∈ (0, pmin) and r > |m| are such that F̄ ′(p) = r, then Λr = Λ̄p.
The following corollaries to Proposition 3.2 will easily imply those to Proposi-

tion 2.6.
Corollary 3.3. — If F̄ is differentiable on (0, pmin), then F ∗ is strictly convex

on [|m|, (F̄ )′−(pmin)].

Corollary 3.4. — F̄ is differentiable on (0, pmin) if F is differentiable on {u :
|u| < pmin} and there exists a continuous mapping ` : (0, pmin) → Sd−1 such that
`(p) ∈ Λ̄p for any p ∈ (0, pmin).
There are few ways to prove Part (a) of Proposition 3.2, using geometric or analytic

approaches. The current simple proof is due to Fedor Petrov.
Proof of Proposition 3.2.
(a) We have F̄ (p) = sup`∈ Sd−1 F (p`), where p > 0, hence F̄ is convex as a maximum

of convex functions F`(·) := F (·`). Furthermore, the convex function F attains its
maximum over any closed compact convex set on the boundary of the set. Therefore
for any 0 6 p < p′ 6 pmin, we have

F̄ (p) = max
u: |u|=p

F (u) = max
u: |u|6 p

F (u) 6 sup
u: |u|6 p′

F (u) = F̄ (p′)

(where the supremum may not be attained if p′ = pmin). Hence F̄ is increasing on
[0,∞) since F̄ (p) =∞ for p > pmin. The right derivative of F̄ at 0 clearly satisfies
F̄ ′+(0) = |m|.
It remains to prove that conv(F ∗) = (F̄ )∗ on [|m|,∞). We first claim that

(3.5) (F ∗)∗(p) = F̄ (p), p > 0.
In fact, by the definition, we have F ∗(r) =∞ for r < 0, hence for every real p,

(F ∗)∗(p) = sup
r> 0

(pr − F ∗(r)) = sup
r> 0

(
pr − inf

`∈ Sd−1
F ∗(r`)

)

= sup
r> 0, `∈ Sd−1

(pr − F ∗(r`)) = sup
v ∈Rd

(p|v| − F ∗(v)) .

On the other hand, by the assumptions, F is convex, lower semi-continuous, and has
non-empty effective domain, hence F = F ∗∗ holds by (3.1). Then (3.5) follows since
for p > 0,

F̄ (p) = sup
`∈ Sd−1

F (p`) = sup
`∈ Sd−1

sup
v ∈Rd

(p` · v − F ∗(v)) = sup
v ∈Rd

(p|v| − F ∗(v)) .
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By the definition, we have F̄ (p) = ∞ for p < 0, hence the Legendre–Fenchel
transform of F̄ is fully defined by the values of F̄ on [0,∞). Likewise, the Legendre–
Fenchel transform of (F ∗)∗ restricted to [|m|,∞) is defined by the values of (F ∗)∗ on
[0,∞). In fact, the function p 7→ pr−(F ∗)∗(p) is increasing on (−∞, 0] for any r > |m|
since (F ∗)∗ is a convex function, whose right derivative increases on its domain and
its value at 0 equals that of F̄ by (3.5), while we already proved that F̄ ′+(0) = |m|.
Therefore, (3.5) implies (F ∗)∗∗ = (F̄ )∗ on [|m|,∞), hence cl(conv(F ∗)) = (F̄ )∗ on
[|m|,∞) by (3.1).
It remains to remove the closure operation cl from the last equality. It suffices to

show that conv(F ∗) is lower semi-continuous at the boundary points of its effective
domain, which coincides with that of F ∗. By a simple compactness argument it follows
from the lower semi-continuity of F ∗ that F ∗ is also lower semi-continuous. Every
point x ∈ ∂(DF ∗) has a neighbourhood U such that the convex function conv(F ∗)
is either strictly increasing, strictly decreasing, or constant on U ∩ DF ∗ . From the
definition of the largest convex minorant, it follows that conv(F ∗)(x) = F ∗(x). This
equality, combined with the property of lower semi-continuity of F ∗ at x, implies the
same property for conv(F ∗) by a simple consideration of the three cases mentioned
above.
(b) It it easy to see that the non-negative function F ∗− conv(F ∗), which we define

to be zero outside DF ∗ , is lower semi-continuous. In fact, this property holds at the
points of int(DF ∗) by continuity of conv(F ∗) and lower semi-continuity of F ∗, which
we showed above in the proof of Part (a). At the points of ∂(DF ∗), this is true by
non-negativity and the fact that F ∗ = conv(F ∗) on ∂(DF ∗). Hence the set

{r > |m| : F ∗(r) = conv(F ∗)(r)} = {r > |m| : F ∗(r)− conv(F ∗)(r) 6 0}
is closed as a sub-level set of a lower semi-continuous function. Therefore, if F ∗(r)
> conv(F ∗)(r) for an r ∈ (|m|, supDF ∗), then this inequality also holds on an
open interval (r1, r2) that contains r, on which conv(F ∗) must be affine. Since
conv(F ∗) = (F̄ )∗ on [|m|,∞) by Part (a), we conclude that (F̄ )∗ is affine on [r1, r2]. As
we explained in Section 3.1, this yields that r 6∈ cl(im(F̄ ′)), which is a contradiction.
(c) The one-sided derivatives of F̄ exist by convexity of this function proven

in Part (a). The set Λ̄p := argmax`∈ Sd−1 F (p`) is well-defined since the convex
function F is continuous on rint(DF ) and pSd−1 is a compact subset of rint(DF ) by
p ∈ (0, pmin).
For any ` ∈ Λ̄p, the gradient∇F (p`) is directed along ` since p` is an extremal point

of the function F over the sphere pSd−1 and F is differentiable, and hence continuously
differentiable, on {u : |u| < pmin}; see Section 3.1. Hence |∇F (p`)| = F ′`(p) and by

F̄ ′+(p) = lim
ε→0+

ε−1(F̄ (p+ ε)− F̄ (p)) > lim
ε→0+

ε−1(F ((p+ ε)`)− F (p`)) = F ′`(p),

we arrive at F̄ ′+(p) > max`∈ Λ̄p
|∇F (p`)|, where the r.h.s. accounts the fact that the

function ∇F , which is continuous on pSd−1, attains its maximum on the compact
set pΛ̄p.
Furthermore, since Sd−1 is compact, there exist two sequences pk → p+ and

`(k) ∈ Λ̄pk
such that `(k)→ ` for some ` ∈ Sd−1 as k →∞. Then necessarily ` ∈ Λ̄p

since F and F̄ are continuous on some neighbourhoods of pSd−1 and p, respectively.
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Finally,
F̄ (pk)− F̄ (p) = F (pk`(k))− F (p`)

= (pk`(k)− p`) · (∇F (p`) + o(1)) 6 (pk − p) (|∇F (p`)|+ o(1))

as k →∞, and thus F̄ ′+(p) 6 max`∈ Λ̄p
|∇F (p`)|. This inequality, combined with the

opposite one proven above, yields the equality required.
The argument for F̄ ′−(p) is analogous.
(d) The set Λr := argmin`∈ Sd−1 F ∗(r`) is well-defined since F ∗ is lower semi-

continuous. First check that Λ̄p ⊂ Λr. For any ` ∈ Λ̄p, ∇F (p`) is directed along `,
hence by Part (c) it holds that∇F (p`) = r`. Note that F (u) > F (p`)+r`·(u−p`) for
any u ∈ Rd since the right-hand side of this inequality defines the support hyperplane
to graph of F at the point (p`, F (p`)). Then

(3.6) F ∗(r) 6 F ∗(r`) = sup
u∈Rd

(r` · u− F (u))

6 sup
u∈Rd

(r` · u− F (p`)− r` · (u− p`)) = r` · p`− F (p`) = rp− F̄ (p).

The concave function q 7→ rq − F̄ (q) attains its maximum at q = p since by the
assumption, it holds that F̄ ′(p) = r. Then by Parts (a) and (b),

(3.7) rp− F̄ (p) = (F̄ )∗(r) = conv(F ∗)(r) = F ∗(r),
and since the latter expression equals the first term in (3.6), we get ` ∈ Λr(F ∗).
It remains to prove the reverse inclusion Λr ⊂ Λ̄p. Suppose that ` ∈ Λr. Combining

the Fenchel inequality with (3.7), we obtain

F̄ (p) > F (p`) > r` · p`− F ∗(r`) = rp− F ∗(r) = F̄ (p),

which implies that ` ∈ Λ̄p. �
Proof of Corollary 3.3. Since the function F̄ , which is convex on [0,∞) by Propo-

sition 3.2(a), is assumed to be differentiable on (0, pmin), it is continuously differen-
tiable there; see Section 3.1. Then by (3.2), (F̄ )∗ is affine on no subinterval of

[
inf(im(F̄ ′)), sup(im(F̄ ′))

]
=
[
(F̄ ′)+(0), (F̄ ′)−(pmin)

]
=
[
|m|, (F̄ ′)−(pmin)

]
,

and therefore strictly convex there. So is the function F ∗, which equals (F̄ )∗ on
[|m|,∞) by Proposition 3.2(a) and 3.2(b). �
Proof of Corollary 3.4. Since the function F̄ is convex on [0,∞), its left and right

derivatives satisfy ([Roc70, Theorem 24.1])

F̄ ′+(p−) = F̄ ′−(p) 6 F̄ ′+(p) = F̄ ′−(p+), p ∈ (0, pmin).

On the other hand, we have F̄ ′−(p) 6 |∇F (p`(p))| 6 F̄ ′+(p) by Proposition 3.2(c). The
claim follows by combining these relations and using that |∇F (p`(p))| is continuous
on (0, pmin), which is true since p`(p) is continuous on (0, pmin) and ∇F is continuous
on int(DF ); see Section 3.1. �
Proofs of Corollaries 2.7 and 2.8. We apply Corollaries 3.3 an 3.4 with K substi-

tuted for F . Since DL = Rd by the assumption, we have pmin = ∞ by K = logL.
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Then Corollary 2.8 follows from Corollary 3.4. Furthermore, it follows from Proposi-
tion 2.6(c) that limp→∞(K̄)′−(p) = rmax. Then I is strictly convex on [|µ|, rmax] by
Corollary 3.3, while I is strictly convex on [rmin, |µ|] by Lemma 2.1(b). Since I at-
tains its minimum at µ and is continuous at µ except for the trivial case X1 = µ a.s.,
I is strictly convex on the interval [rmin, rmax], which contains DI by Lemma 2.1(a).
This proves Corollary 2.7, which is trivial in the remaining case X1 = µ a.s. �

3.4. Convexity of the radial minimum function I

Here we prove that I is convex for the distributions described in Proposition 2.9.
Proof of Proposition 2.9.
(a) Denote r := rankA. We assume that r > 1, otherwise the claim is trivial. The

d× k matrix A admits a singular value decomposition A = UDV >, where D is an
r × r diagonal matrix whose diagonal entries are non-zero singular values of A (i.e.,
the square roots of non-zero eigenvalues of AA>), and U is d× r matrix and V is a
k × r matrix such that both U>U and V >V are the unit r × r matrices.
Put L := URr. Then the assumption AA>µ = ‖AA>‖µ implies that µ ∈ L.

Furthermore, it is easy to check that (U>u1, U
>u2) = (u1, u2) for any u1, u2 ∈ L and

|U>u| < |u| for u ∈ Rd \ L. Therefore, from the equalities
∥∥∥AA>

∥∥∥ = max
u∈ Sd−1

∣∣∣AA>u
∣∣∣ = max

u∈ Sd−1

∣∣∣UD2U>u
∣∣∣

= max
u∈ Sd−1∩L

∣∣∣UD2U>u
∣∣∣ = max

u′ ∈ Sr−1

∣∣∣D2u′
∣∣∣ = ‖D‖2,

and the assumption AA>µ = ‖AA>‖µ, we see that the vector µ′ := U>µ in Rr

satisfies Dµ′ = σ1µ
′, where σ1 := ‖D‖ is the largest singular value of A.

Then for any v ∈ L, by X1 ∈ L a.s. we have
I(v) = sup

u∈Rd

(
u · v − logEeu ·X1

)
= sup

u∈L

(
u · (v − µ)− logEeu ·AY1

)

= sup
u∈L

(
U>u · U>(v − µ)− logEeDU>u·V >Y1

)
.

Denote by J the rate function of the random vector V >Y1 in Rr. Let us use that
I(v) = +∞ for v ∈ Rd\L (by X1 ∈ L a.s.) and change variables u′ = U>u, v′ = U>v,
u′′ = Du′ to get

I(r) = min
v ∈ r Sd−1 ∩L

I(v) = min
v′ ∈ r Sr−1

sup
u′ ∈Rr

(
u′ · (v′ − µ′)− logEeDu′ ·V >Y1

)

= min
v′ ∈ r Sr−1

sup
u′′ ∈Rr

(
D−1u′′ · (v′ − µ′)− logEeu′′ ·V >Y1

)

= min
v′ ∈ r Sr−1

J
(
D−1(v′ − µ′)

)
,

where in the last equality we also used that D−1 is symmetric.
The distribution of V >Y1 on Rr is rotationally invariant since so is that of Y1 on

Rk. Therefore, J is a radial function, hence

I(r) = J
(

min
v′ ∈ r Sr−1

∣∣∣D−1(v′ − µ′)
∣∣∣
)

= J
(
σ−1

1 |r − |µ′||
)
, r > 0,

ANNALES HENRI LEBESGUE



Large deviations of convex hulls of planar random walks 1185

where |µ′| = |µ| and we used that D−1µ′ = σ−1
1 µ′ and σ−1

1 is the smallest eigenvalue
of D−1. Hence I is convex since so is J and J is increasing on [0,∞).
(b) For d = 1, I is convex by Part (a), so we assume that d > 2. We will give a

detailed treatment for illustrative purposes in the planar case and then proceed to
higher dimensions.

(1) The planar case d = 2 with non-degenerate covariance matrix Σ of X1.
The cumulant generating function K of a Gaussian(µ,Σ) distribution is
K(u) = u>µ+ 1

2u
>Σu. By Corollary 2.7, it suffices to show that the radial maximum

function K̄(p) is differentiable on (0,∞). Since K̄ is invariant under orthogonal
transformations of R2, without loss of generality we can assume that

K(x, y) = 1
2a(x− x0)2 + 1

2b(y − y0)2 + c,

where a and b are the eigenvalues of Σ, c = −1
2ax

2
0 − 1

2by
2
0, µ = (−ax0,−by0), and

x0, y0 > 0 by changing directions of the axes, if necessary. We can further assume
that a > b > 0 and x0 + y0 > 0, since the cases a = b and x0 = y0 = 0 are already
covered by Part (a).
To prove that K̄ is differentiable, by Corollary 2.8 it suffices to show that there is a

continuous path `(p) on the unit sphere that belongs to Λ̄p for every p > 0. Suppose
that ` ∈ Λ̄p, i.e. K attains its maximum over pS1 at the point p`. Then ∇K(p`) = tp`
for some non-zero real t, that is (a(x− x0), b(y − y0)) = (tx, ty). Equivalently,
(3.8) (a− t)x = ax0, (b− t)y = by0.

(a) The case x0, y0 > 0. The set Λ̄p lies in the quadrant {(x, y) : x 6 0, y 6 0}
since K(−|x|,−|y|) < K(x, y) for any pair (x, y) in the complement of the quadrant.
Hence, because the right-hand sides of the equalities in (3.8) are strictly positive, we
have t > a. Therefore, equalities (3.8) define the curve

(3.9) h(t) :=
(
ax0

a− t ,
by0

b− t

)
, t > a,

marked in bold in Figure 3.3(a). Note in passing that h(t) is an arc of the Apollonian
hyperbola for the ellipses that are contour lines of K; see Glaeser et al. [GSO16,
Section 9.3] for details.
Both coordinates of h(t) are strictly decreasing and continuous in t, hence the

function t 7→ |h(t)| is a strictly decreasing continuous bijection from (a,∞) to (0,∞).
Therefore, the curve in (3.9), obtained from the necessary condition (3.8) for a
maximum, has a unique point of intersection with the circle pS1. This point must be
the unique element of the non-empty set Λ̄p. Thus, `(p) := h(|h|−1(p)) is the curve
required.

(b) The cases x0 > 0, y0 = 0 and x0 = 0, y0 > 0. We consider them solely
for the purpose of illustration since they will be covered below in Part (3.4) using
a different general argument. Meanwhile, note in passing that here equalities (3.8)
define two lines x = ax0

a−b and y = − by0
a−b , which can be regarded as the limit shapes

for the hyperbolas in (3.9).
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Hence, because the right-hand sides of the equalities in (3.8) are strictly positive, we
have t > a. Therefore, equalities (3.8) define the curve

(3.9) h(t) :=
(
ax0

a− t ,
by0

b− t
)
, t > a,

marked in bold in Figure 4. Note in passing that h(t) is an arc of the Apollonian
hyperbola for the ellipses that are contour lines of K; see Glaeser et al. [GSO16,
Section 9.3] for details.
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Fig. 5.
Both coordinates of h(t) are strictly decreasing and continuous in t, hence the

function t 7→ |h(t)| is a strictly decreasing continuous bijection from (a,∞) to (0,∞).
Therefore, the curve in (3.9), obtained from the necessary condition (3.8) for a
maximum, has a unique point of intersection with the circle pS1. This point must be
the unique element of the non-empty set Λ̄p. Thus, `(p) := h(|h|−1(p)) is the curve
required.
b) The cases x0 > 0, y0 = 0 and x0 = 0, y0 > 0. We consider them solely for the

purpose of illustration since they will be covered below in Part 2 using a different
general argument. Meanwhile, note in passing that here equalities (3.8) define two
lines x = ax0

a−b and y = − by0
a−b , which can be regarded as the limit shapes for the

hyperbolas in (3.9).
It is easy to see that in the first case y0 = 0, we have Λ̄p = {(−1, 0)} for every

p > 0, so `(p) := (−1, 0); this situation is actually covered above in Part a . In the
second case x0 = 0, from (3.8) we have x = 0 or a = t. Both solutions contribute
to the answer – we have Λ̄p = {(0,−1)} for p ∈ (0, by0/(a− b)], and Λ̄p consists of
two directions symmetric about the y-axis for p > by0/(a − b). The set ∪p>0pΛ̄p is
marked in bold in Figure 5. Clearly, there is a continuous path `(p) of directions
such that `(p) ∈ Λ̄p for every p > 0, as required.
2. Arbitrary dimension d > 2 with non-degenerate Σ.
Take a basis of Rd of eigenvectors of Σ, where the coordinates µi of µ are non-

positive. If all µi’s are strictly negative, we argue exactly as above, putting `(p) :=

TOME 1 (-1)
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Hence, because the right-hand sides of the equalities in (3.8) are strictly positive, we
have t > a. Therefore, equalities (3.8) define the curve

(3.9) h(t) :=
(
ax0

a− t ,
by0

b− t
)
, t > a,

marked in bold in Figure 4. Note in passing that h(t) is an arc of the Apollonian
hyperbola for the ellipses that are contour lines of K; see Glaeser et al. [GSO16,
Section 9.3] for details.
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Fig. 5.
Both coordinates of h(t) are strictly decreasing and continuous in t, hence the

function t 7→ |h(t)| is a strictly decreasing continuous bijection from (a,∞) to (0,∞).
Therefore, the curve in (3.9), obtained from the necessary condition (3.8) for a
maximum, has a unique point of intersection with the circle pS1. This point must be
the unique element of the non-empty set Λ̄p. Thus, `(p) := h(|h|−1(p)) is the curve
required.
b) The cases x0 > 0, y0 = 0 and x0 = 0, y0 > 0. We consider them solely for the

purpose of illustration since they will be covered below in Part 2 using a different
general argument. Meanwhile, note in passing that here equalities (3.8) define two
lines x = ax0

a−b and y = − by0
a−b , which can be regarded as the limit shapes for the

hyperbolas in (3.9).
It is easy to see that in the first case y0 = 0, we have Λ̄p = {(−1, 0)} for every

p > 0, so `(p) := (−1, 0); this situation is actually covered above in Part a . In the
second case x0 = 0, from (3.8) we have x = 0 or a = t. Both solutions contribute
to the answer – we have Λ̄p = {(0,−1)} for p ∈ (0, by0/(a− b)], and Λ̄p consists of
two directions symmetric about the y-axis for p > by0/(a − b). The set ∪p>0pΛ̄p is
marked in bold in Figure 5. Clearly, there is a continuous path `(p) of directions
such that `(p) ∈ Λ̄p for every p > 0, as required.
2. Arbitrary dimension d > 2 with non-degenerate Σ.
Take a basis of Rd of eigenvectors of Σ, where the coordinates µi of µ are non-

positive. If all µi’s are strictly negative, we argue exactly as above, putting `(p) :=

TOME 1 (-1)

(b)

Figure 3.3.

It is easy to see that in the first case y0 = 0, we have Λ̄p = {(−1, 0)} for every
p > 0, so `(p) := (−1, 0); this situation is actually covered above in Part (a). In the
second case x0 = 0, from (3.8) we have x = 0 or a = t. Both solutions contribute
to the answer – we have Λ̄p = {(0,−1)} for p ∈ (0, by0/(a− b)], and Λ̄p consists of
two directions symmetric about the y-axis for p > by0/(a− b). The set ∪p> 0 pΛ̄p is
marked in bold in Figure 3.3(b). Clearly, there is a continuous path `(p) of directions
such that `(p) ∈ Λ̄p for every p > 0, as required.

(2) Arbitrary dimension d > 2 with non-degenerate Σ.
Take a basis of Rd of eigenvectors of Σ, where the coordinates µi of µ are non-positive.
If all µi’s are strictly negative, we argue exactly as above, putting `(p) := h(|h|−1(p)),
where

h(t) := −
(

µ1

σ2
1 − t

, . . . ,
µd

σ2
d − t

)
, t > σ2

1,

and σ2
1 > . . . > σ2

d > 0 are the eigenvalues of Σ. Note in passing that if σ2
1 = . . . = σ2

d,
then h(t) parametrizes the half-line emanating from 0 in the direction of µ.
If some coordinates of µ are zero, we proceed differently from our consideration

in the planar case and prove the convexity of I directly. The rate function of the
Gaussian(µ,Σ) distribution is given by I(v) = 1

2(v − µ)>Σ−1(v − µ). For any ε > 0,
the Gaussian(µ− εed,Σ) distribution, where ed := (1, . . . , 1), has the rate function
Iε(v) := I(v + εed). All coordinates of µ − εed are strictly negative, hence each
function Iε is convex on [0,∞) as shown above. On the other hand, Iε → I as
ε→ 0+ uniformly on every compact subset of Rd since I is continuous on Rd, and
hence locally uniformly continuous. Then Iε(r)→ I(r) for every r > 0, which implies
that I is convex on [0,∞), as required.
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(3) Arbitrary dimension d > 2 with degenerate Σ.
Put L := ΣRd and note that ΣL := Σ|L is a bijection from L to L. The rate
function of the Gaussian(µ,Σ) distribution with degenerate Σ is given by I(v) =
1
2(v − µ)>Σ−1

L (v − µ) for v ∈ µ+ L and I(v) = +∞ for v 6∈ µ+ L.
For any ε > 0, let Σε be the positive definite d× d matrix defined by Σεu = Σu for

u ∈ L and Σεu = εu for u ∈ ker Σ. Let Iε be the rate function of the Gaussian(µ,Σε)
distribution. We have Iε(v) = I(v) for v ∈ µ + L and Iε(v) ↗ I(v) as ε → 0+ for
v 6∈ µ + L. Since the matrix Σε is non-degenerate, each function Iε is convex on
[0,∞) as shown above. To conclude that I is convex on [0,∞), it remains to prove
that Iε(r)→ I(r) for every r > 0.
Denote by v′ the orthogonal projection on L of a v ∈ Rd and put v′′ := v − v′.

Then

Iε(v) = 1
2(v′ − µ′)>Σ−1

ε (v′ − µ′) + 1
2ε
−1 |v′′ − µ′′|2 = I(v′ + µ′′) + 1

2ε
−1 |v′′ − µ′′|2 .

Fix an r > 0. Then for all ε > 0 small enough, we have

Iε(r) = min
v ∈ r Sd−1

Iε(v) > min
v ∈ r Sd−1 :
|v′′−µ′′|6 ε1/3

I(v′ + µ′′) > min
v ∈ r Sd−1 :
|v′′−µ′′|6 ε1/3

I
(√
|v′|2 + |µ′′|2

)
,

where in the first equality we used no v such that |v′′ − µ′′| > ε1/3 contributes to
the first minimum since Iε(v) > 1

2ε
−1/3 for such v. Finally, since |v′|2 = r2− |v′′|2 for

v ∈ rSd−1,

Iε(r) > min
v ∈ r Sd−1 :
|v′′−µ′′|6 ε1/3

I
(√

r2 + |µ′′|2 − |v′′|2
)
> min
|δ|6 2 ε1/3|µ′′|+ ε2/3

I
(√

r2 + δ
)
.

Then, since I(r) > Iε(r) and I is continuous at r, we obtain that Iε(r)→ I(r) as
ε→ 0+ for every r > 0, as required. This is also true for r = 0 since Iε(0)→ I(0). �

4. Proofs of the main results

4.1. Basic facts on large deviations

• Let (Zn)n> 1 be random elements of a Polish spaceM equipped with a metric
d, and let J :M→ [0,∞] be a lower semi-continuous function. We say that J is
tight if its sub-level sets {x ∈ M : J (x) 6 α}α> 0 are compact. We say that the
collection (Zn)n> 1 satisfies a large deviations principle (LDP, in short) inM with
speed n and the rate function J if for every Borel set B ⊂M,

(4.1)
− inf

x∈ int B
J (x) 6 lim inf

n→∞
1
n

logP (Zn ∈ B)

6 lim sup
n→∞

1
n

logP (Zn ∈ B) 6 − inf
x∈ cl B

J (x),

where, as usual, we agree that inf∅ = +∞. We assume throughout that J is tight;
so are all the rate functions considered in this paper. A Borel set B ⊂M is called

TOME 4 (2021)



1188 A. AKOPYAN & V. VYSOTSKY

regular for the rate function J if the infima in (4.1) are equal. Since J is tight, the
infimum on the r.h.s. of (4.1) is always attained at some x.
• Assume that B ⊂M is a closed set such that

lim
n→∞

1
n

logP (Zn ∈ B) = − inf
x∈B
J (x)

(e.g., we can take any regular closed set) and B ∩ DJ 6= ∅. Then for any ε > 0,

(4.2) lim
n→∞

1
n

logP
(
d(Zn, x) 6 ε for some x ∈ B

such that J (x) = min
y ∈B
J (y)

∣∣∣∣Zn ∈ B
)

= 1.

This means that given the large deviations event {Zn ∈ B}, the random elements
Zn asymptotically concentrate around the compact set of minimizers of the rate
function J over B. This follows from (4.1) since the conditioned event in (4.2) is
{d(Zn, argminx∈B J (x)) 6 ε

}
and we have

min
x∈B
J (x) < inf

x∈B : d(x, argminy∈B J (y))> ε
J (x).

The last inequality holds true since by tightness of J , the infimum on the r.h.s. is
attained on some x 6∈ argminy ∈B J (y) unless the minimum is taken over the empty
set, in which case the r.h.s. is +∞ and the inequality is still true.
• Denote by C0[0, 1] = C0([0, 1];R2) the space of continuous functions h : [0, 1]→

R2, i.e. planar curves, that satisfy h(0) = 0. We equip this space with the usual
metric of uniform convergence. Denote by AC0[0, 1] its subspace of functions with
absolutely continuous coordinates. Let Sn(·) ∈ C0[0, 1] be the random piecewise
linear functions that satisfy Sn(k/n) := Sk, 0 6 k 6 n, where S0 := 0, and their
values at the other points of [0, 1] are defined by linear interpolation. Define the
function IC : C0[0, 1]→ [0,∞] to be

(4.3) IC(h) :=




∫ 1
0 I(h′(t))dt, if h ∈ AC0[0, 1];

+∞, otherwise.

The following result, although stated in a different form, is due to Mogulskii [Mog76,
Theorem 2, Part II]; there were earlier works in this direction by A.A. Borovkov.
The exact statement presented here appears in the proof of Theorem 5.1.2 in book
by Dembo and Zeitouni [DZ10].
Theorem (Mogulskii’s LDP). — Assume thatX1 is a random vector in Rd, d > 1,

such that DL = Rd. Then the sequence of random functions (Sn(·)/n)n> 1 satisfies
the LDP in C0[0, 1] with speed n and the tight rate function IC .
• The above LDP for the trajectories Sn(·)/n readily implies that the random

vectors (Sn/n)n> 1 satisfy the LDP in R2 with speed n and the tight rate function
I1(v) := infh :h(1) = v IC(h) for v ∈ R2. This follows by applying the contraction
principle ([DZ10, Theorem 4.2.1]) and continuity of the mapping h 7→ h(1). Then
I1 = I by Jensen’s inequality:

(4.4) IC(h) =
∫ 1

0
I(h′(t))dt > I(h(1)), h ∈ AC0[0, 1].

ANNALES HENRI LEBESGUE



Large deviations of convex hulls of planar random walks 1189

In particular, for any Borel set B ⊂ R2 that is regular for the rate function I, we
have

lim
n→∞

1
n

logP(Sn/n ∈ B) = − inf
v ∈B

I(v).

Since the rate function I is strictly convex, by (4.2) this implies that the trajectories
Sn(·) that result in the large deviations event {Sn/n ∈ B} are asymptotically linear,
as in (2.7).

4.2. Main proofs

In this section we prove our main results Theorems 2.3, 2.11, and 2.13. The proofs
follow the same idea of using classical geometric inequalities to solve the variational
problems (2.4) and (2.9) and thus find the rate functions JP and JA.
Proof of Theorem 2.3.
(1) With a slight abuse of notation, denote by P (h) := P (conv(im h)) the perimeter

of the convex hull of the image of a curve h ∈ C0[0, 1]. This is a continuous functional
on C0[0, 1], as follows from Cauchy’s formula (A.2). By

(4.5) conv
(
{Sn(t)}06 t6 1

)
= conv(S0, S1, . . . , Sn),

one has
1
2P (Sn(·)/n) = Pn/(2n).

This equality, Mogulskii’s LDP for trajectories of random walks (see Section 4.1),
and the contraction principle ([DZ10, Theorem 4.2.1]) for continuous mappings yield
that the sequence (Pn/(2n))n> 1 satisfies an LDP in R with speed n and the tight
rate function
(4.6) JP (x) := inf

h∈C0 [0, 1] :P (h) = 2x
IC(h) = min

h∈AC0 [0, 1] :P (h) = 2x
IC(h).

where, recall, IC is given by (4.3). This implies (2.4). We used that the lower semi-
continuous non-negative function IC on C0[0, 1] has compact sub-level sets and
therefore it always attains its infimum over the closed set {P (h) = 2x}.
The function JP is lower semi-continuous on R as a rate function. It clearly satisfies
JP 6 I. To show that it is strictly increasing on [|µ|, rmax], take any x 6= |µ| from
this interval and choose an h ∈ AC0[0, 1] such that P (h) = 2x and JP (x) = IC(h).
If h′(t) = h(1) a.e. t, then JP (y) 6 I(y) < I(x) = JP (x) for any y ∈ [|µ|, x), as
required. Otherwise, for any ε ∈ (0, 1),

IC((1− ε)h+ εh(1) ·)

=
∫ 1

0
I((1− ε)h′(t) + εh(1))dt <

∫ 1

0

[
(1− ε)I(h′(t)) + εI(h(1))

]
dt,

by strict convexity of I on DI . Hence IC((1 − ε)h + εh(1) ·) < IC(h) = JP (x)
by Jensen’s inequality (4.4). On the other hand, we have P ((1 − ε)h + εh(1) ·)
< P (h) = 2x, which follows from Cauchy’s formula (A.2) and the relation
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conv
(
{(1− ε)h(t) + εh(1)t}06 t6 1

)
( conv({h(t)}06 t6 1).

The strict inequalities above imply strict monotonicity of JP on [|µ|, rmax].
(2) The main task is to find the minimum in (4.6) and its minimizers.
First consider the case [0, |µ|].
For any function h ∈ AC0[0, 1], it clearly holds P (h) > 2|h(1)|. Then by Jensen’s

inequality (4.4) and the fact that I is decreasing on [0, |µ|], for any x ∈ [0, |µ|].

JP (x) = min
h :P (h) = 2x

IC(h) > min
h :P (h) = 2x

I(h(1)) > min
h : |h(1)|6x

I(h(1))

= min
r6x

I(r) = I(x).

These inequalities are actually equalities since

(4.7) IC(x`t) = I(x), P (x`t) = 2x, x > 0, ` ∈ Λx.

Hence JP = I on [0, |µ|]. Moreover, recalling that HP (x) = {h : IC(h) = I(x),
P (h) = 2x},

(4.8) HP (x) = {t 7→ x`xt} , x ∈ (rmin, |µ|] .

Indeed, the facts that I is strictly decreasing on (rmin, |µ|] and that Jensen’s inequal-
ity (4.4) for the strictly convex rate function I turns into equality only on functions
with a.e. constant derivative, imply that the minimum in (4.6) is attained only on
functions h ∈ AC0[0, 1] that satisfy P (h) = 2|h(1)| = 2x, that is h(t) = x`t for some
` ∈ S1. The unique function h of this form that satisfies the equality IC(h) = I(x)
corresponds to the direction `x.
The equality in (2.5) for x ∈ (rmin, |µ|] now follows from the LDP for the perimeters

(Pn/(2n))n> 1 proved in Part (1). In fact, we have JP = I on (rmin, |µ|]. On this
interval I is decreasing and convex (see Lemma 2.1(b)), hence continuous, and so
the set [0, x], which corresponds to the event {Pn 6 2xn}, is regular for the rate
function JP .
The claim in (2.5) for x = rmin holds trivially by Pn > 2rminn a.s.
Consider now the case [|µ|,∞).
Our main estimate follows from the inequality I(v) > conv I(|v|), v ∈ R2, and

Jensen’s inequality applied with the convex function conv I. For any h ∈ AC0[0, 1],
we have

(4.9)
IC(h) =

∫ 1

0
I(h′(t))dt >

∫ 1

0
conv I(|h′(t)|)dt > conv I

(∫ 1

0
|h′(t)|dt

)

= conv I (Var(h)) ,

where Var(h) denotes the total variation, i.e. the length, of a curve h ∈ C0[0, 1].
Now use the following well-known inequality (see Corollary A.2 in the Appendix),

which is even referred to as geometric “folklore”: Var(h) > 1
2P (h) for any h ∈ C0[0, 1]

of bounded variation. Since the function I increases on [|µ|, rmax], so does its largest
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convex minorant conv I. With the above, from (4.9) we get: for x > |µ|,

(4.10) JP (x) = min
h :P (h) = 2x

IC(h) > min
h : Var(h)>x

IC(h)

> min
h : Var(h)>x

(conv I (Var(h))) > min
r>x

(conv I (r)) = conv I(x).

Using (4.7) for an upper bound, this gives conv I 6 JP 6 I on [|µ|,∞).
We claim that if I(x) = conv I(x) for x > |µ|, then

(4.11) HP (x) = {t 7→ x`t, ` ∈ Λx} .
We first note that by conv I 6 JP 6 I and the assumption I(x) = conv I(x),
all inequalities in (4.10) are equalities. Then, since conv I is strictly increasing on
[|µ|, rmax), the infima in (4.10) are attained on the functions h ∈ C0[0, 1] that satisfy
Var(h) = 1

2P (h) = x. By Corollary A.2 in the Appendix, such functions have the
form h(t) = |h(t)|` a.e. t for some ` ∈ S1 and satisfy Var(h) = x. Further, the
second inequality in (4.9) is an equality iff |h′(t)| ∈ [x1, x2] a.e. t, where [x1, x2] is
the maximal by inclusion interval that contains x and is such that the restriction of
conv I on [x1, x2] is affine. Finally, the first inequality in (4.9) is an equality for a
function h ∈ AC0[0, 1] that satisfies the conditions above iff

|h′(t)| ∈ {y ∈ [x1, x2] : I(y`) = conv I(y)} =: Lx a.e. t

with the direction ` which was already fixed above. Since the rate function I is
strictly convex, so is I(·`), hence Lx = {x}. Thus we obtained that |h′(t)| = x a.e. t
and by I(x`) = I(x), we have ` ∈ Λx. This finishes the proof of (4.11).
It remains to prove (2.6). In general, for an x ∈ [|µ|, rmax] we can not assure

regularity of the set [x,∞) (corresponding to the event {Pn > 2xn}) for the rate
function JP . The upper bound in (2.6) immediately follows from the LDP for the
perimeters (Pn/(2n))n> 1 we proved in Part 1 and the inequality conv I 6 JP (cf. the
upper bound in (4.1) and (4.10), respectively). For the lower bound in (2.6), we
consider two cases. If I is continuous at x, then we use the inequality JP 6 I and
the LDP for the perimeters (cf. the lower bound in (4.1)). If I is discontinuous at x,
then by Lemma 2.1(c), the distribution of X1 has atoms at the points of xΛx, which
must have equal weights satisfying I(x) = − logP(X1 = x`) for ` ∈ Λx. Then

P(Pn > 2xn) > P (Sk = kx`, k = 1, . . . , n for some ` ∈ Λx) = #(Λx) e−nI(x),

which gives the lower bound in (2.6). The proof of (2.6) is now finished.
(3) The claims follow from the general statement (4.2) combined with (4.8), (4.11)

and using that max06 k6n |Sk/n − h(k/n)| 6 max06 t6 1 |Sn(t) − h(t)| for any h ∈
C0[0, 1]. �
Proof of Theorem 2.11. Our argument is fully based on the ideas we developed in

the proof of Theorem 2.3.
(1) Denote by A(h) the area of the convex hull of a curve h ∈ C0[0, 1], i.e. A(h) :=

A(conv(im h)). It follows from the Steiner formula (A.3) that A is a continuous
functional on C0[0, 1]. From (4.5), one has

A(Sn(·)/n) = An/n
2.
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This equality, Mogulskii’s LDP for trajectories of random walks (see Section 4.1),
and the contraction principle ([DZ10, Theorem 4.2.1]) for continuous mappings yield
that the sequence (An/n2)n> 1 satisfies an LDP in R with speed n and the tight rate
function

(4.12) JA(a) = inf
h∈C0 [0, 1] :A(h) = a

IC(h) = min
h∈AC0 [0, 1] :A(h) = a

IC(h),

where, recall, IC is given by (4.3). This implies (2.9). We used that the lower semi-
continuous non-negative function IC on C0[0, 1] has compact sub-level sets and
therefore it always attains its infimum over the closed set {A(h) = a}.
Clearly, JA(a) = 0. Let us check that JA is strictly increasing on the set DJA

.
This assertion is trivial if this set is {0}, otherwise pick a positive a ∈ DJA

. Then
JA(a) = IC(h) for some h ∈ C0[0, 1] such that A(h) = a. Clearly, h′ is not constant
a.e. on [0, 1] since otherwise A(h) = 0. Consider the function hs such that hs(t) =
(t/s)h(s) for t ∈ [0, s] and hs = h on [s, 1], where s ∈ (0, 1]; put h0 := h. The area
A(hs) decreases in s and satisfies A(h0) = A(h), A(h1) = 0. By Jensen’s inequality,
we also have IC(hs) 6 IC(h). From strict convexity of I, this inequality is strict if
A(hs) < A(h). Since A(hs) is continuous in s ∈ [0, 1], these inequalities imply that
JA(a1) < A(h) = JA(a) for any a1 ∈ [0, a).
Thus, the rate function JA is left-continuous on DJA

since it is lower semi-
continuous and increasing. Then (2.10) follows from (and is easily seen to be equiv-
alent to) the LDP for the areas (An/n2)n> 1. Finally, (2.11) holds by the general
result (4.2).
(2) The isoperimetric inequality for convex hulls,

(4.13) A(h) 6 Var(h)2/(2π),

is valid for any function h ∈ C0[0, 1] of bounded variation. This is Ulam’s version
of the classical Dido problem, solved by Moran [Mor46]. We have I = conv I by
convexity of I, which follows from rotational invariance of the distribution of X1.
Then by (4.9) and (4.12), for a > 0

JA(a) = min
h∈C0 [0, 1] :A(h) = a

IC(h) > min
h : Var(h)2 > 2π a

IC(h) > min
h : Var(h)>

√
2π a

I(Var(h)),

hence JA(a) > I(
√

2πa) by (4.13). These three inequalities actually are equalities,
with the minima attained only on the functions that parametrize half circles with
the constant speed

√
2πa, and thus (2.12) holds true. In fact, the value of IC on such

a function h is exactly I(
√

2πa). Since I(
√

2πa) strictly increases for a ∈ [0, rmax], it
must be that a = A(h) = Var(h)2/(2π) and |h′(t)| is constant for a.e. t, ensuring that
the second inequality in (4.9) is an equality. And the isoperimetric inequality (4.13)
is an equality only on parametrizations of semi-circles; see Tilli [Til10].
Finally, by Lemma 2.1(b), the rate function JA(a) is continuous on [0,∞), hence

(2.10) is valid for every a > 0. �
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Proof of Theorem 2.13. We need to find the rate function JA given by (2.9). For
any h ∈ AC0[0, 1], by Jensen’s inequality we have

IC(h) = 1
2

∫ 1

0
|h′(t)− µ|2 dt

= 1
2

∫ 1

0
|h′(t)|2 dt− h(1) · µ+ 1

2 |µ|
2 > 1

2 Var(h)2 − h(1) · µ+ 1
2 |µ|

2,

where the inequality is an equality iff |h′(t)| = Var(h) for a.e. t. Hence, using that
Var(h) is invariant under rotations of the image of h about 0, we get

(4.14)

JA(a) = min
h∈C0 [0, 1] :A(h) = a

IC(h)

= min
r> 0


−r|µ|+ min

h :A(h) = a,
h(1) = r µ/|µ|

1
2 Var(h)2


+ 1

2 |µ|
2, a > 0.

Assume a > 0. It follows immediately from an approximation argument and the
result by Pach [Pac78] for polygonal lines (see his Theorem 2 and the Remark just
after it) that the above minimum over h with the fixed endpoint h(1) is attained
only on parametrizations h of circular arcs with A(h) = a. Denote by R the radius
of such an arc and by 2ϕ its angle, where R > 0 and 0 6 ϕ 6 π. Then Var(h)
= 2ϕR, sinϕ = r/(2R), and A(h) = ϕR2 − 1

2rR cosϕ in both cases 0 6 ϕ 6 π/2
and π/2 6 ϕ 6 π. Due to the fact that ϕ/ sinϕ is strictly increasing on [0, π],
the mapping (ϕ,R) 7→ (r, V ) is a bijection between the sets [0, π) × (0,∞) and
{(r, V ) ∈ [0,∞)× (0,∞) : r 6 V }. Hence (4.14) reduces to

(4.15) JA(a) = 1
2 |µ|

2 + 2 min
06ϕ6π,R> 0 :

R2 (ϕ− 1
2 sin 2ϕ) = a

(
ϕ2R2 − |µ|R sinϕ

)
.

Note that R(ϕ) =
√
a/(ϕ− 1

2 sin 2ϕ) satisfies ∂R
∂ϕ

= −a−1R3 sin2 ϕ. The values of
the function ϕ2R(ϕ)2 − |µ|R(ϕ) sinϕ at 0, π/, π are respectively +∞, πa/2, πa,
hence this function attains its minimum at a critical point inside (0, π) satisfying

2ϕR2 + 2ϕ2R
∂R

∂ϕ
= |µ|∂R

∂ϕ
sinϕ+ |µ|R cosϕ.

Dividing by R4 and substituting the expression for ∂R
∂ϕ

gives

2ϕ
a

(
ϕ− sinϕ cosϕ− ϕ sin2 ϕ

)
= |µ|
aR

(
− sin3 ϕ+ (ϕ− sinϕ cosϕ) cosϕ

)
.

Then 2ϕ(ϕ cos2 ϕ − sinϕ cosϕ) = |µ|
R

(− sinϕ + ϕ cosϕ), and using that ϕ 6= tanϕ
on (0, π/2),

(4.16) R = |µ|
2ϕ cosϕ,

which is possible only when ϕ ∈ (0, π/2). This gives

(4.17) a

|µ|2 = 2ϕ− sin 2ϕ
8ϕ2 cos2 ϕ

.
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It easy to check that this equation has only one solution ϕ ∈ [0, π/2) for every
a > 0. In fact, the right-hand side of (4.17) equals zero at ϕ = 0 and +∞ at ϕ = π/2,
and its derivative

1
2ϕ2 cos3 ϕ

(
cos2 ϕ sinϕ+ ϕ2 sinϕ− ϕ cosϕ

)

is positive on (0, π/2) by

cos2 ϕ sinϕ+ ϕ2 sinϕ− ϕ cosϕ > cos2 ϕ sinϕ+ sin3 ϕ− ϕ cosϕ
= sinϕ− ϕ cosϕ = cosϕ(tanϕ− ϕ) > 0.

Substituting (4.16) into (4.15) and using (4.17), we obtain

JA(a) = inf
h∈C0 [0, 1] :A(h) = a

IC(h) = |µ|
2

2

(
1

cos2 ϕ
− 2 tanϕ

ϕ
+ 1

)
= 4ϕa− 1

2 |µ|
2 tan2 ϕ.

Clearly, this function is continuous in a, hence (2.10) is valid for every a > 0. The
infimum is attained only at either of the two µ-axially symmetric curves

R
(

sin(2ϕt− ϕ) + sinϕ,± cos(2ϕt− ϕ)∓ cosϕ
)
,

where ϕ and R are given by (4.16) and (4.17). This yields (2.14). �

4.3. The LDP’s in continuous time

Here we obtain LDP’s for convex hulls of Lévy processes by reduction to random
walks.
Proof of Theorem 2.16. — First consider the perimeter PT of the convex hull

CT = conv({St}06 t6T ) of the Lévy process (St)t> 0. We shall compare it with the
perimeter P[T ] of the convex hull C[T ] = conv(0, S1, . . . , S[T ]) of the random walk
(St)t∈N∪{0}.
It follows from Cauchy’s formula (A.2) that

0 6
(
PT − P[T ]

)
/(2π) 6 max

k∈{0, 1, ..., [T ]}
sup

k6 t6 k+1
|St − Sk| =: dT ,

where dT is an upper bound for the Hausdorff distance between CT and C[T ]. Let us
estimate probabilities of large deviations of dT/T . By stationarity of increments of
(St)t> 0, for every ε > 0 we have

P (dT > εT ) 6 ([T ] + 1)P
(

sup
06 t6 1

|St| > εT

)
.

Put S̃t := St − tµ for t > 0 (recall that S1 = X1) and let S̃(1)
t and S̃

(2)
t be the

coordinates of S̃t is any orthonormal basis of R2. Note that

sup
06 t6 1

|St| 6 |µ|+ sup
06 t6 1

|S̃t| 6 |µ|+ max
i, j ∈{1, 2}

sup
06 t6 1

(
(−1)iS̃(j)

t

)
.
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Denote a := εT − |µ|. Then for any u > 0 we get

P
(

sup
06 t6 1

|St| > εT

)
6

2∑

i, j= 1
P
(

sup
06 t6 1

(
(−1)iS̃(j)

t

)
> a

)

=
2∑

i, j= 1
P
(

sup
06 tv6 1

eu (−1)i S̃
(j)
t > eua

)
.

Since (S̃t)t> 0 is a zero-mean Lévy process in R2, each of the four stochastic proce-
sses((−1)iS̃(j)

t )t> 0 is a right-continuous real-valued martingale. Then (eu(−1)iS̃
(j)
t )t> 0

are right-continuous positive sub-martingales, because x 7→ eux is a positive convex
function of x ∈ R. Hence, applying Doob’s maximal inequality (Revuz and Yor [RY99,
Theorem 1.7, Chapter II]), we obtain

P
(

sup
06 t6 1

|St| > εT

)
6

2∑

i, j= 1
e−uaEeu(−1)iS̃

(j)
1

=
2∑

i, j= 1
exp

{
−
(
ua− logEeu (−1)i S̃

(j)
1

)}
.

Finally, if a > 0 (where 0 = ES̃(j)
1 ), then optimizing the last expression over u > 0

yields

P (dT > εT ) 6 ([T ] + 1)
2∑

i, j= 1
exp {−Ii,j (εT − |µ|)} ,

where Ii, j denotes the rate function of (−1)iS̃(j)
1 .

Since the Laplace transform of S1 is finite in R2 by the assumption, the Laplace
transform of each of the random variables (−1)iS̃(j)

1 is finite in R. This implies
limu→∞ Ii, j(u)/u = ∞; see Rockafellar [Roc70, Theorems 8.5 and 13.3] or Vysot-
sky [Vys21a, Eqs. (5.4) and (5.5)]. Therefore, for every ε > 0, we have

(4.18) lim
T →∞

1
T

logP (dT/T > ε) = −∞,

which means that the sequence of random variables (dT/T )T>0 is exponentially
equivalent to 0 as T →∞ in the sense of [DZ10, Definition 4.2.10].
Finally, let us use that

∣∣∣PT/T − P[T ]/[T ]
∣∣∣ 6

∣∣∣PT/T − P[T ]/T
∣∣∣+ P[T ] (1/[T ]− 1/T )

6 2πdT/T +
(
P[T ]/[T ]

)
/T,

where the r.h.s. is exponentially equivalent to 0 as T → ∞ by (4.18) and the fact
that (Pn/n)n∈N satisfies an LDP in R with a tight rate function (by Theorem 2.3).
Therefore, the sequences PT/(2T ) and P[T ]/(2[T ]) are exponentially equivalent as
T →∞, hence they satisfy the same LDP by [DZ10, Theorem 4.2.13], as claimed.
As for the areas, the Steiner formula (A.3) yields

0 6
(
AT − A[T ]

)
6 P[T ]dT + πd2

T ,
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and it follows by the same argument as above that AT/T
2 and A[T ]/T

2 are ex-
ponentially equivalent as T → ∞ (use (4.18) and the facts that (Pn/n)n∈N and
(An/n2)n∈N satisfy LDPs with tight rate functions). Then it follows from Theo-
rem 2.11 and [DZ10, Theorem 4.2.13] that (AT/T

2)T > 1 and (A[T ]/[T ]2)T > 1 satisfy
the same LDP, as claimed. �

4.4. The LDP’s under the Cramér moment assumption

Here we partially extend our main Theorems 2.3 and 2.11 under the weaker
assumption 0 ∈ intDL. We will use the contraction principle by Vysotsky [Vys21a].
Denote by BV [0, 1] = BV ([0, 1];R2) the set of right-continuous functions of

bounded variation from [0, 1] to R2. Denote by A(h) and P (h) respectively the
area and the perimeter of conv(h([0, 1]) ∪ {0}) of an h ∈ BV [0, 1]. This extends the
definitions given in Section 4.2 for h ∈ C0[0, 1]. Consider the functional
(4.19) IBV (h) := sup

t⊂ (0,1] : #t<∞
IC(ht), h ∈ BV [0, 1],

where ht denotes the continuous function on [0, 1] defined by linear interpolation
between its values at t ∪ {0, 1} that are given by ht(s) := h(s) for s ∈ t ∪ {1} and
ht(0) := 0. This functional satisfies IBV = IC on AC0[0, 1]; see [Vys21a, Theorem 5.1],
which gives an explicit and transparent formula for IBV (h) in terms of the Lebesgue
decomposition of h.
Proposition 4.1. — Assume that X1 is a random vector in the plane such that

0 ∈ intDL. Then the random variables (Pn/(2n))n> 1 and (An/n2)n> 1 satisfy the
LDP’s in R with speed n and the respective tight rate functions J̃ P and J̃ A given
by
(4.20) J̃ P (x) := cl inf

h∈BV [0, 1] :
P (h) = 2x

IBV (h), J̃ A(x) := cl inf
h∈BV [0, 1] :
A(h) =x

IBV (h), x > 0.

These rate functions increase on [|µ|,∞) and [0,∞), respectively. We always have
J̃ P = I on [0, |µ|]. Moreover, J̃ P = I if I is convex. Also, we have J̃ A(a) = I(

√
2πx)

for x > 0 if the distribution of X1 is rotationally invariant.

Note that the monotonicity properties of J̃ P and J̃ A imply that the lower semi-
continuous regularizations cl in (4.20) may change the values of the infima only at
the discontinuity points.
Proof. — Let us equip BV [0, 1] with the metric ρ equal the Hausdorff distance be-

tween the completed graphs of functions, defined by Γh := {(t, x) : 0 6 t 6 1, x
∈ [h(t−), h(t)]} for h ∈ BV [0, 1], where h(0−) := 0. Note that Γh is a com-
pact subset of [0, 1] × R2 and it uniquely defines h, i.e. Γh1 = Γh2 for h1, h2 ∈
BV [0, 1] implies h1 = h2. The total variation of an h ∈ BV [0, 1], given by Var(h)
:= supt⊂ (0, 1] : #t<∞Var(ht), is simply the length of the spatial coordinate of any
continuous bijective parametrization of Γh.
It follows from Steiner’s and Cauchy’s formulas (A.3) and (A.2) that the functionals

A and P are continuous in the metric ρ and moreover, they are uniformly continuous
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on the sets {h ∈ BV [0, 1] : Var(h) 6 R} for every R > 0. Therefore, the contraction
principle for the trajectories Sn(·) in BV [0, 1], given by [Vys21a, Theorem 3.3] (which
uses a metric longer than ρ, see [Vys21a, Eqs. (2.6) and (2.7)]), yields the LDPs
stated with the respective rate functions given in (4.20).
The rest of the proof is identical to the ones of the corresponding parts of Theo-

rems 2.3 and 2.11. We comment only on the differences. The monotonicity properties
of J̃ P and J̃ A follow from equalities (4.19) and (4.20). We get only non-strict mono-
tonicity since we are not claiming that the infima in (4.20) are always attained, as
opposed to the main case DL = R2.
Furthermore, by (4.19) and Jensen’s inequality, we have IBV (h) > I(h(1)) for any

h ∈ BV [0, 1]. Moreover, if I is convex, we have IBV (h) > I(Var(h)). This follows
from (4.9) and (4.19) using lower semi-continuity of I (Lemma 2.1(b)) if we choose
an increasing sequence (tn)n> 1 of finite subsets of (0, 1] such that IC(htn)→ IBV (h)
and Var(htn)→ Var(h) as n→∞. The two inequalities above for IBV (h) yield, as
in the proof of Theorem 2.3, that infh :P (h) = 2x IBV (h) > I(x) for any x ∈ [0, |µ|]
and also for x > |µ| if I is convex. Hence J̃ P (x) > I(x) for such x since I is lower
semi-continuous. On the other hand, we have
J̃ P (x) 6 inf

h∈BV [0, 1] :P(h) = 2x
IBV (h) 6 inf

h∈AC0 [0, 1] :
P (h) = 2x

IBV (h) = inf
h∈AC0 [0, 1] :
P (h) = 2x

IC(h) 6 I(x),

where we used that IBV = IC on AC0[0, 1]. This yields the claims on J̃ P .
Similarly, if I is convex, which is surely the case when the distribution of X1 is

rotationally invariant, then we have IBV (h) > I(Var(h)) for h ∈ BV [0, 1], hence
infh :A(h) = a IBV (h) > I(

√
2πa) for a > 0 by the same argument as in the proof

of Theorem 2.11. Hence J̃ A(a) > I(
√

2πa) for a > 0. On the other hand, for
rotationally invariant distributions of X1 we have J̃ A(a) 6 I(

√
2πa), arguing as

above for J̃ P (x) 6 I(x). This yields the claim on J̃ A. �

Appendix A.

Perimeters. Throughout the paper, by the perimeter P (C) of a non-empty convex
set C on the plane we mean the length of its boundary unless C is a line segment,
in which case P (C) is its doubled length. Recall that a continuous curve in Rd is
rectifiable if it has finite length (equivalently, it has bounded variation).
The following simple proposition is proved in our separate note [AV17], which

was initially motivated by the questions concerning the perimeter of the convex
hulls considered in the present paper. For the reader’s convenience, we present the
result here. Its main use here is in the corollary, which not only gives the “folklore”
inequality for the half-perimeter but also specifies all instances when the equality is
attained.
Proposition A.1. — Let γ be a rectifiable curve in R2, and let Γ denote its

convex hull. Then
length γ > per Γ− diam Γ.
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Corollary A.2. — It holds that

length γ > 1
2 per Γ,

and equation can be attained only if γ parametrizes is a line segment.

Remark A.3. — These statements remain valid if we replace R2 by Rd (with any
d > 2) and per Γ by dvd

vd−1
W (Γ), where vd denotes volume of a unit ball in Rd and

(A.1) W (Γ) := 1
|Sd−1|

∫

Sd−1
w`(Γ)d`

is mean width of Γ, with w`(Γ) being width of Γ in the direction ` i.e. length of
the projection of Γ on the line passing through the origin in the direction `. The
normalizing factor corresponds to mean width 2vd−1

dvd
of a unit segment in Rd.

It is easy to prove the remark using Crofton’s formula (Schneider and Weil [SW08,
Eq. (5.32)])

length γ = 1
vd−1

∫∫

Sd−1R+

nγ(`, r)d`dr,

where nγ(`, r) denotes the number of intersections of γ with the hyperplane perpen-
dicular to the direction ` at the distance r from the origin. Indeed, consider the
closed curve γ′ obtained by joining the end points of γ by a line segment. Almost
every hyperplane intersecting Γ intersect γ′ at least at two points since conv(γ′) = Γ.
It remains to use that |Sd−1| = dvd.
Note that Crofton’s formula implies Cauchy’s formula for the perimeter of the

planar convex set Γ:

(A.2) per Γ = 1
2

∫

S1
w`(Γ)d`.

Areas. Let C ⊂ R2 be a non-empty bounded convex set and let B ⊂ R2 be the
closed unit ball centred at the origin. Steiner’s formula ([SW08, Eq. (14.5)]) asserts
that for every r > 0,
(A.3) A(C + rB) = A(C) + P (C)r + πr2,

where ‘+’ stands for Minkowski addition of sets.

Measurability. Let us show that the perimeters and areas (Pn)n∈N, (An)n∈N,
(PT )T>0, (AT )T>0 of the convex hulls, introduced in Sections 1 and 2.4, are measur-
able.
It follows from (A.2) and (A.3) that for every n ∈ N, the mappings

(x1, . . . , xn) 7→ P (conv(0, x1, . . . , xn)) and (x1, . . . , xn) 7→ A(conv(0, x1, . . . , xn))
are continuous from R2×n to R. Hence Pn and An are random variables.
Furthermore, for any T > 0 and a dense subset {tk}k∈N of [0, T ] that includes T ,

cl CT = cl(conv({St}06 t6T )) = conv(cl({St}06 t6T ))
= conv(cl({Stk}k∈N)) = cl(conv({Stk}k∈N)) a.s.,
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where the second and the fourth equalities hold true by [Roc70, Theorem 17.2],
which applies because the trajectories of a Lévy process are bounded a.s. on any
interval, and in the third equality we used that the trajectories are right-continuous
and have left limits a.s. Then cl CT = cl(∪∞k=1 conv(St1 . . . , Stk)) by Carathéodory’s
theorem ([Roc70, Theorem 17.1]).
Hence, since the union on the r.h.s. is a convex set, we have

AT = A(CT ) = A
(
∞∪
k=1

conv (St1 . . . , Stk)
)

= lim
k→∞

A (conv (St1 . . . , Stk)) ,

and by the above, AT is measurable as a limit of measurable functions. Also, for any
` ∈ S1,

w`(CT ) = w`

(
∞∪
k=1

conv (St1 . . . , Stk)
)

= lim
k→∞

w` (conv (St1 . . . , Stk)) ,

which yields PT = limk→∞ P (conv(St1 . . . , Stk)) by (A.2) and the monotone conver-
gence theorem. Hence PT is measurable as a limit of measurable functions.
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