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Abstract. — We show that the Fargues–Fontaine curve associated to an algebraically
closed field of characteristic p is geometrically simply connected; that is, its base extension from
Qp to any complete algebraically closed overfield admits no nontrivial connected finite étale
covering. We then deduce from this an analogue for perfectoid spaces (and some related objects)
of Drinfeld’s lemma on the fundamental group of a product of schemes in characteristic p.

Résumé. — On montre que la courbe de Fargues–Fontaine associée à un corps algébrique-
ment clos de caractéristique p est géométriquement simplement connexe ; c’est-à-dire que son
extension de base de Qp à tout corps complet algébriquement clos n’admet aucun revêtement
étale connexe non trivial. On en déduit alors un analogue pour les espaces perfectoïdes (et
certains objets associés) du lemme de Drinfeld sur le groupe fondamental d’un produit de
schémas en caractéristique p.

Introduction

Let F be an algebraically closed field of characteristic p which is complete with
respect to a nontrivial multiplicative norm. The construction of Fargues–Fontaine
[FF18] associates to F a pair of geometric objects, a scheme over Qp and an adic space

Keywords: perfectoid spaces, Fargues–Fontaine curves, Drinfeld’s lemma.
2020 Mathematics Subject Classification: 14G45, 14F35.
DOI: https://doi.org/10.5802/ahl.101
(*) The author was supported by NSF (grants DMS-1501214, DMS-1802161), UC San Diego
(Warschawski Professorship), and IAS (Visiting Professorship 2018–2019).

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.101


1204 K.S. KEDLAYA

over Qp in the sense of Huber, which together play a central role in p-adic Hodge
theory. The two spaces are related by a morphism from the adic space to the scheme
which has some formal features of an analytification map, such as a form of the
GAGA principle for coherent sheaves.
Various aspects of the geometry of the spaces constructed by Fargues–Fontaine

justifies their use of the term curves with reference to these spaces. At the level
of local geometry, the scheme is noetherian and regular of dimension 1, while (as
shown by the present author [Ked16b]) the adic space is noetherian and admits a
neighborhood basis consisting of the adic spectra of principal ideal domains. At the
level of global geometry, if one defines the degree of an effective divisor to be its
length as a scheme, then every principal divisor has degree 0 and the degree map
defines a bijection of the Picard group with Z. One also has an interpretation of
p-adic representations of the Galois group of F over a subfield in terms of vector
bundles over a corresponding quotient of the curve, in analogy with the theorem of
Narasimhan–Seshadri [NS65] on unitary representations of the fundamental group
of a compact Riemann surface.
Going further, one finds indications that the correct analogy is not with arbi-

trary curves, but with curves of genus 0. Most notably, the celebrated theorem
of Grothendieck that every vector bundle on a projective line splits into line bun-
dles [Gro57] has a close analogue for Fargues–Fontaine curves, on which every vector
bundle splits into summands each of which is the pushforward of a line bundle along
a finite étale morphism. (This is materially a reformulation of a prior result of the
present author [Ked04, Ked05], but with a much more transparent statement and
an independent proof.) Using this result, Fargues–Fontaine showed (see Lemma 4.7)
that the curves satisfy a form of geometric simple connectivity: if one performs a
base extension from Qp to a completed algebraic closure Cp, then the profinite fun-
damental group of the curve becomes trivial. (A similar observation had previously
been made by Weinstein [Wei17].)
The purpose of this paper is to extend the result of Fargues–Fontaine by establish-

ing the following result.
Theorem 0.1. — The Fargues–Fontaine curve associated to F is geometrically

simply connected: for any complete algebraically closed overfield K of Qp, the base
extension of the curve from Qp to K admits no nontrivial connected finite étale
covering.
We then apply this result to obtain a form of Drinfeld’s lemma in p-adic analytic

geometry, expanding on a line of inquiry initiated by Scholze [SW20] and continued
by this author in [Ked19, Lecture 4]. The original statement by this name is a result
about schemes of characteristic p, and specifically about the effect of formation of
products on fundamental groups. For context, recall that (under suitable “reason-
ableness” hypotheses) the formation of the profinite étale fundamental group of a
scheme commutes with taking products over an algebraically closed field of charac-
teristic 0 (see for example [Ked19, Corollary 4.1.23]). This fails in characteristic p
without stronger hypothesis (e.g., properness of one of the factors); Drinfeld’s lemma
is a replacement statement in which one forms the fiber product directly over Fp,
rather than over an algebraically closed field, but then takes a formal quotient by
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the action of relative Frobenius on one of the two factors. See Theorem 2.7 for the
precise statement.
We prove an analogue of Drinfeld’s lemma in which the category of schemes over

Fp (or equivalently for the statement, of perfect schemes over Fp) is replaced by the
category of perfectoid spaces; see Theorem 9.7. We also obtain a formally stronger
statement in which the category of perfectoid spaces is replaced by a certain category
of stacks, which can be Scholze’s category of diamonds or the even larger category
of small v-sheaves (both terms used in the sense of [SW20]); see Theorem 10.6. In
both cases, Theorem 0.1 amounts to the special case where the two input spaces are
both geometric points, and (as for schemes) it is a formal reduction to pass from
this case to the general case.
As an aside, we note that Drinfeld’s lemma for perfectoid spaces has some notable

consequences in p-adic Hodge theory, particularly for giving descriptions of the
representation theory of products of p-adic Galois groups analogous to the description
for singleton Galois groups given by the theory of (ϕ,Γ)-modules. See [CKZ21] for
a treatment of this topic.
We conclude this introduction with some words on the proof of Theorem 0.1. We

begin with two approaches that we were unable to make work. One is to somehow
reduce to Drinfeld’s lemma for schemes; this fails because the nature of absolute
products is rather different in the category of perfectoid spaces than in the category
of schemes, and in particular quasicompactness is not preserved (see Lemma 9.3).
Another is to adapt the proof in the case K = Cp; this fails because the classification
of vector bundles on a Fargues–Fontaine curve makes crucial use of the discreteness
of the valuation on finite extensions of Qp. (An exception to this occurs when F
is the completed algebraic closure of Fp((t)), as then one can deduce the claim
from Lemma 4.7 using a certain symmetry between F and K; see Remark 4.8 and
Remark 10.4.)
To circumvent these points, we use a two-pronged approach. First, we give a direct

argument using the Artin–Schreier construction to rule out the existence of nontrivial
Z/pZ-covers (Lemma 5.3); it may be of independent interest that essentially the
same argument applies for schemes (see Lemma 2.10). We then use this to establish
an inductive statement: if simple connectivity holds for a particular coefficient field
K, then it is also true for any completed algebraic closure of K(t). (It should also
be possible to prove Drinfeld’s lemma for schemes by such an inductive approach,
but we do not know of a reference where this is done; see Remark 2.9.) In light
of the argument for Z/pZ-covers, this reduces to the construction of “ramification
filtrations” on representations of the étale fundamental group using tools from the
theory of p-adic differential equations [Ked10]; this is in the spirit of previous work of
the author [Ked07, Ked11] and Xiao [Xia10, Xia12] on differential Swan conductors.
(It should be possible to replace the use of p-adic differential equations with a
somewhat more elementary argument using ramification theory of covers of Berkovich
curves, as described in [CTT16, Tem17]; we did not attempt to do this.)
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1. Some algebraic preliminaries

We start with some assorted algebraic preliminaries.

Lemma 1.1. — Let k be an algebraically closed field. Let A and B be two integral
k-algebras. Then A⊗k B is again integral.

Proof. — Since k is algebraically closed, A is an absolutely integral k-algebra in
the sense of Bourbaki [Bou07, §V.17, Proposition 8, Corollaire 2]. By [Bou07, §V.17,
Proposition 2], this forces A⊗k B to be integral. �

Definition 1.2. — By a nonarchimedean field F , we will mean a field equipped
with a specified nontrivial multiplicative norm with respect to which F is complete.
(Specifying a norm on F , in addition to its topology, amounts to fixing the norm of
some topologically nilpotent unit.) Let oF , κF , ΓF denote the valuation ring, residue
field, and value group of F (written additively), respectively.

Definition 1.3. — For k a field and Γ a totally ordered subgroup of R (written
additively), the field of Hahn–Mal’cev–Neumann generalized power series k((tΓ)) is
defined to be the set of formal sums ∑i∈Γ xit

i with coefficients in k having well-
ordered support. For x such a sum, we write x−, x0, x+ for the sums of xiti over
indices i with respectively i < 0, i = 0, i > 0. Some key facts about this construction
are the following; these include results of Kaplansky [Kap42, Kap45].

• For the t-adic absolute value, the field k((tΓ)) is not only complete but spheri-
cally complete (every decreasing sequence of balls has nonempty intersection).
• The field k((tΓ)) is algebraically closed if and only if k is algebraically closed
and Γ is divisible.
• Any nonarchimedean field L of equal characteristic which is spherically com-
plete is isomorphic to κL((tΓL)).
• A nonarchimedean field is spherically complete if and only if it is maximally
complete, that is, it admits no nontrivial algebraic extension with the same
value group and residue field.

Definition 1.4. — Let D be a one-dimensional affinoid space over an alge-
braically closed nonarchimedean field K, in the sense of Huber’s category of adic
spaces [Hub96]. We classify points of D into types 1, 2, 3, 4, 5 as in [Sch12, Exam-
ple 2.20]; note that this classification is preserved by lifting a point along a finite
morphism.

We recall also the following additional features of the classification.

Lemma 1.5. — With notation as in Definition 1.4, the following statements hold.
(1) Each point of type 1 corresponds to a classical rigid-analytic point of D.
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(2) Each point of type 2 is the generic point on some one-dimensional affinoid
space of good reduction. The reduction of this affinoid space is a curve C
over the residue field κ of K; if C is proper over κ, we say that D is a strict
neighborhood of the original point. The genus of the smooth compactification
of C is called the residual genus of the original point.

(3) Each point of type 3 is the intersection of a descending sequence of annuli.
(4) Each point of type 4 is the intersection of a descending sequence of discs.
(5) Each point of type 5 is a specialization of a type 2 point; we may thus again

speak of the residual genus of a type 5 point. The points of type 5 are the
only points whose associated valuations are of rank 2 rather than rank 1.

Proof. — The maximal Hausdorff quotient of D is a one-dimensional Berkovich
analytic space, which consists of points of type 1–4 with the specified properties;
see [Ber90, Example 1.4.1] for the case where D is contained in the projective line
and [Duc14, § 3.3] for the general case.
To complete the argument from this, it suffices to check that every point of D not

in the associated Berkovich space is a specialization of a type 2 point. For this, one
may reduce to the case where D is a disc or annulus and then argue as in [Sch12,
Example 2.20]. �

2. Drinfeld’s lemma for schemes

We next recall from [Ked19, § 4.2] the formulation of Drinfeld’s lemma for schemes.
This will be used primarily as the basis of an analogy with the setup for perfectoid
spaces; our approach to Drinfeld’s lemma for perfectoid spaces does not depend on
the full result for schemes, but only on a special case which can be handled more
directly (Lemma 2.10). On the other hand, it is possible to go the other way, deriving
the result from schemes from the result for perfectoid spaces; see Section 10.
Definition 2.1. — Let X be a scheme or adic space, and let Γ be a group of

automorphisms of X. We say that X is Γ-connected if X is nonempty and its only
Γ-stable closed-open subsets are itself and the empty set.
Let FEt(X/Γ) be the category of finite étale coverings of X equipped with

Γ-actions (i.e., finite étale coverings of the stack-theoretic quotient of X by Γ).
This is a Galois category in the sense of [Sta17, Tag 0BMQ].
For X Γ-connected and x a geometric point of X, let πprof

1 (X/Γ, x) be the auto-
morphism group of the fiber functor Y 7→ |Yx| on FEt(X/Γ). As usual, the choice of
the basepoint x is needed to resolve a conjugation ambiguity in the definition; when
this ambiguity is not an issue, we may omit the choice of x from the notation.
When Γ is the cyclic group generated by a single automorphism ϕ, we typically

write X/ϕ in place of X/Γ. When Γ is the trivial group, we typically write X in
place of X/Γ; this recovers the usual definition of the profinite (étale) fundamental
group.

Remark 2.2. — In the setting of adic spaces, a geometric point of X is a morphism
Spa(K,K+) → X where K is algebraically closed, but we do not require that K+
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equal K◦; that is, the valuation ring of K may have rank greater than 1. However,
the choice of K+ has no effect on the resulting fiber functor.

Lemma 2.3. — Let f : Y → X be a morphism of schemes or adic spaces, such
that both X and Y are qcqs (quasicompact and quasiseparated). Suppose that the
base change functor FEt(X)→ FEt(Y ) is an equivalence of categories.

(a) The map π0(X)→ π0(Y ) is a homeomorphism.
(b) Suppose that one of X or Y is connected. Then so is the other, and for any

geometric point y of Y the map πprof
1 (Y, y)→ πprof

1 (X, y) is a homeomorphism.

Proof. — For schemes, this is [Sta17, Tag 0BQA]; the same proof applies for adic
spaces once we observe that the underlying topological space of a qcqs adic space is a
spectral space. (This is true by construction for adic affinoid spaces, and a qcqs adic
space is covered by finitely many adic affinoid spaces with the pairwise intersections
being quasicompact.) �

We now restrict to the case of schemes. For the corresponding discussion for
analytic spaces, see Section 10.

Definition 2.4. — Let X1, . . . , Xn be schemes over Fp and put X = X1 ×Fp

· · · ×Fp Xn. Write ϕi as shorthand for ϕXi
, the automorphism of X induced by

the absolute (p-power) Frobenius on Xi. We say that X is Φ-connected if X is
〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉-connected for some (and hence any) i ∈ {1, . . . , n}.
Define the category

FEt(X/Φ) := FEt (X/ 〈ϕ1, . . . , ϕn〉)×FEt(X/ϕX) FEt(X);

for each i ∈ {1, . . . , n}, there is a canonical equivalence

FEt(X/Φ) ∼= FEt (X/ 〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉) .

Remark 2.5. — The condition that X is Φ-connected is equivalent to saying
that the algebraic stack X/Φ is connected; similarly, FEt(X/Φ) is naturally (in X)
equivalent to the category of finite étale coverings of the stack X/Φ. Of course X/Φ
is generally not a scheme; by contrast, the corresponding construction for perfectoid
spaces will give an object in the same category (see Lemma 9.3).

The key nonformal input into the proof of Drinfeld’s lemma is the following.

Lemma 2.6. — Let X be any scheme over Fp, let k be an algebraically closed
field over Fp, put Xk := X ×Fp k, and let ϕk : Xk → Xk be the morphism induced
by the Frobenius on k. Then the functor

FEt(X)→ FEt (Xk/ϕk)

is an equivalence of categories.

Proof. — See [Ked19, Lemma 4.2.6]. �

This then leads to the precise statement of Drinfeld’s lemma; note that the addi-
tional hypotheses on X1, . . . , Xn arise from Lemma 2.3. For the mechanism to pass
from Lemma 2.6 and this result, see the proof of Theorem 9.7.
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Theorem 2.7 (Drinfeld’s lemma for schemes). — Let X1, . . . , Xn be connected
qcqs (quasicompact quasiseparated) schemes over Fp and put X = X1×Fp · · · ×FpXn.

(a) The scheme X is Φ-connected.
(b) For any geometric point x of X, the map

πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x)

is an isomorphism of topological groups.

Proof. — See [Ked19, Lemma 4.2.11] for (a) and [Ked19, Theorem 4.2.12]
for (b). �

Remark 2.8. — To strengthen the analogy we are going after, we note that the
forgetful functor from perfect schemes over Fp (i.e., those on which Frobenius is an
isomorphism) to arbitrary schemes over Fp admits a right adjoint which preserves the
Zariski and étale topologies, corresponding to the functor on rings over Fp given by
R 7→ lim−→ϕ

R. Consequently, Theorem 2.7 does not change if we require X1, . . . , Xn

to be perfect (although the proof goes through schemes of finite type over Fp).

Remark 2.9. — One can give a direct proof of Lemma 2.6 in the case where k is
an algebraic closure of Fp. In this case, any given object of FEt(Xk/ϕk) is the base
extension of an object of FEt(X ×Fp `) for some finite extension ` of Fp, and thus
in turn may be viewed as an object of FEt(X). One shows easily that pulling back
from X to this covering splits the original object of FEt(Xk/ϕk).
With this in mind, one plausible approach to proving Lemma 2.6 in general would

be to show that the statement for a given k implies the same for an algebraic
closure of k(t). While we do not know of a reference for a proof along these lines,
our approach to Drinfeld’s lemma for analytic spaces follows essentially this model,
with Lemma 4.7 playing the role of the base case. (A more precise analogue of the
argument would be do this induction in the case where X is a geometric point, then
formally promote the statement to general X; compare the proof of Lemma 9.5.)

As discussed above, we do not know of a way to apply Theorem 2.7 directly to
deduce Drinfeld’s lemma for perfectoid spaces. However, our proof of the latter does
rely upon a limited case of Theorem 2.7, covering the maximal pro-p quotient of the
profinite fundamental group. For this, one can give a rather direct argument, which
we will then expand upon in the adic setting (Section 5); the fact that this case of
Drinfeld’s lemma is easy to prove, even in the schematic case, may be of independent
interest.

Lemma 2.10. — Let k1, k2 be algebraically closed fields of characteristic p, put
Xi = Spec(ki), and put X := Spec(k1 ⊗Fp k2). Then X is Φ-connected and for any
geometric point x of X, the maximal pro-p quotient of πprof

1 (X/Φ, x) is trivial.
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Proof. — Recall that (k1 ⊗Fp k2)ϕ is the set of continuous functions from X to Fp
(see for example [KL15, Corollary 3.1.4]). Since k2 is flat over Fp,(

k1 ⊗Fp k2
)ϕ,ϕ1 =

(
kϕ1

1 ⊗Fp k2
)ϕ

=
(
Fp ⊗Fp k2

)ϕ2 = kϕ2
2 = Fp;

this implies that X is Φ-connected.
Since k1 and k2 are algebraically closed, we have Artin–Schreier exact sequences

0→ Fp → ki
ϕ1−1→ ki → 0 (i = 1, 2).

By tensoring the sequence with i = 1 over Fp with k2, we obtain a commutative
diagram with exact rows

0 // k2 //

ϕ−1
��

k1 ⊗Fp k2
ϕ1−1 //

ϕ−1
��

k1 ⊗Fp k2 //

ϕ−1
��

0

0 // k2 // k1 ⊗Fp k2
ϕ1−1 // k1 ⊗Fp k2 // 0

to which we may apply the snake lemma; this yields a surjective morphism
0 = H1 (ϕ, k2)→ H1

(
ϕ, k1 ⊗Fp k2

)ϕ1

whose target may be identified withH1((X/Φ)et,Z/pZ) by Artin–Schreier again. This
proves that X/Φ has no nonsplit étale Z/pZ-cover, from which the claim follows. �

3. Fargues–Fontaine curves

We continue with various notations and statements about Fargues–Fontaine curves.
We use standard notation for Huber rings and pairs and their adic spectra, as
in [Wei19].
Hypothesis 3.1. — For the remainder of the paper (except as specified), let L be

an algebraically closed nonarchimedean field of characteristic p. Fix a power q of p
and an embedding Fq ↪→ κL (which lifts uniquely to an embedding Fq ↪→ L) and let
E be a local field with residue field Fq. Let $ be a uniformizer of E. Let F be an
algebraically closed nonarchimedean field containing E.
Remark 3.2. — In [Ked16b, Hypothesis 2.1] it is only asserted that E must be

a complete discretely valued field whose residue field contains Fq, but almost every
subsequent statement requires this containment to be an equality (as in [FF18]).
For instance, in [Ked16b, Definition 2.2], the expression of a general element of
W (oL) ⊗W (Fq) oE as a sum ∑

$n[xn] with xn ∈ L depends on E having residue
field Fq.
Definition 3.3. — For R a perfect Fq-algebra, define W (R)E := W (R)⊗W (Fq)

oE. For I ⊆ (0,∞) a closed interval, let BI
L,E denote the Fréchet completion of

W (oL)E[$−1][[x] : x ∈ L] for the family of multiplicative (see Lemma 3.4) norms

λt

∑
n∈Z

$n[xn]
 = max

{
p−n |xn|t

}
(t ∈ I);
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this ring is a principal ideal domain [Ked16b, Theorem 7.11] and a strongly noetherian
Huber ring [Ked16b, Theorem 4.10]. For any given x ∈ BI

L,E, the function t 7→
log λt(x) is convex on I [Ked16b, Lemma 4.4] (see also Lemma 3.4), so BI

L,E is in
fact a Banach ring for the norm max{λr, λs} for I = [r, s].

Lemma 3.4. — Let Fq be the algebraic closure of Fq in F . Choose an extension
of the chosen embedding Fq ↪→ L to an embedding Fq ↪→ L.

(a) For t > 0, the tensor product norm on B[t, t]
L,E⊗̂W (Fq)E

oF is multiplicative. We
again denote this norm by λt.

(b) For x ∈ BI
L,E⊗̂W (Fq)E

oF , the function t 7→ log λt(x) on I is continuous and
convex.

Proof. — For any ring A equipped with a submultiplicative norm α, define the
associated graded ring GrA by the formula

GrA =
⊕
r > 0

Grr A, Grr A = {x ∈ A : α(x) 6 r}
{x ∈ A : α(x) < r}

.

The ring GrL consists of one graded component for each r in the value group |L×|,
each of which is a one-dimensional vector space over κL. Since L is a nonarchimedean
field, GrL is an integral domain. We may then write

GrB[t, t]
L,E
∼= (GrL)[$]

with GrL rescaled by t (that is, place Grr in degree rt rather than r) and $ placed
in degree p−1. This is again an integral domain. Finally, by Lemma 1.1,

Gr
(
B

[t, t]
L,E⊗̂W (Fq)E

oF
) ∼= (GrL)

[
$ΓL

]
⊗Fq

κF

is integral, and so the tensor product norm on B[t, t]
L,E⊗̂W (Fq)E

oF is multiplicative. This
yields (a).
To check (b), we may work locally around a single t ∈ I. In particular, we may

write x as a sum of simple tensors, then ignore any of those that do not contribute
to the image of x in Gr(B[t, t]

L,E⊗̂W (Fq)E
oF ). From the upper and lower degrees of this

image, viewed as a Laurent-Puiseux polynomial in $, we may read off the slopes of
t 7→ log λt(x) on either side of t. �

Corollary 3.5. — With notation as in Lemma 3.4, let J be a (possibly sin-
gleton) closed interval contained in the interior of I. Then x ∈ BI

L,E⊗̂W (Fq)E
oF is a

unit in BJ
L,E⊗̂W (Fq)E

oF if and only if t 7→ log λt(x) is an affine function of t on some
neighborhood of J in I.

Proof. — Suppose first that x admits the inverse y in BJ
L,E⊗̂W (Fq)E

oF . Let J ′ be
some closed interval contained in the interior of I which contains J in its interior.
We can then approximate y by some element z ∈ BJ ′

L,E⊗̂W (Fq)E
oF in such a way that

λt(y − z) < λt(x)−1 for all t ∈ J . In particular, λt(1− xz) = λt(x(y − z)) < 1 for all
t ∈ J ; by Lemma 3.4(b), for a suitable choice of J ′ this remains true for all t ∈ J ′.
For t ∈ J ′, we then have

λt(x) + λt(z) = λt(xz) = 1

TOME 4 (2021)
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but by (b) the functions t 7→ λt(x) and t 7→ λt(z) are both convex. They must
therefore both be affine, proving the claim.
In the other direction, it suffices to check that if J is a singleton interval and

t 7→ log λt(x) is an affine function of t on some neighborhood of J in I, then x is a
unit in BJ ′

L,E⊗̂W (Fq)E
oF for some closed interval J ′ containing J in its interior. The

image of x in Gr(BJ
L,E⊗̂W (Fq)E

oF ) must then be an element of (GrL)⊗Fq
oF times

some power of $. The element of (GrL)⊗Fq
oF must be placed in a single degree,

and hence must be a unit. For suitable J ′, we can then construct y ∈ BI
L,E⊗̂W (Fq)E

oF
for which λt(1− xy) < 1 for t ∈ J ′. Then xy is a unit, as then is x. �

Remark 3.6. — The ring BI
L,E⊗̂W (Fq)E

oF does not share some of the more refined
ring-theoretic properties of BI

L,E, essentially due to the value group of F not being
discrete. Notably, BI

L,E⊗̂W (Fq)E
oF is not noetherian.

Remark 3.7. — Suppose that E is of characteristic p. Then for any Banach E-
algebra A, the ring W (oL)E[$−1][[x] : x ∈ L] ⊗E A contains L ⊗Fq A as a dense
subring. In the case where A = F , the restriction to L ⊗Fq A of the norm λt from
Lemma 3.4 coincides with the tensor product norm for the given norm on F and the
tth power of the given norm on L.

Remark 3.8. — For any perfectoid E-algebra A, BI
L,E⊗̂EA is also perfectoid.

Moreover, for any topologically nilpotent unit t ∈ A[ there is a canonical isomorphism(
BI
L,E⊗̂EA

)[ ∼= BI
L,Fq((t))⊗̂Fq((t))A

[.

Definition 3.9. — Let YL,E be the inductive limit of the adic spaces Spa(BI
L,E,

BI,◦
L,E) as I varies over all closed intervals in (0,∞). The q-power Frobenius maps

ϕL : BI
L,E → BI1/q

L,E induces an isomorphism ϕ∗L : YL,E → YL,E. The group ϕ∗ZL acts
properly discontinuously on YL; define the adic Fargues–Fontaine curve XL to be
the quotient by this action.

Remark 3.10. — By Lemma 3.4, BI
L,E⊗̂W (Fq)E

oF is not connected; its connected
components are each isomorphic to BI

L,E⊗̂W (Fq)E
oF and, as a topological space, form

a principal homogenous space for GFq
∼= Ẑ. The same description then applies to

the connected components of YL,E ×E F . However, the action of ϕ∗L on this space is
nontrivial: it is via the action of the dense subgroup Z ⊆ Ẑ. As a result, XL,E ×E F
is connected.

Remark 3.11. — Suppose that E is of characteristic p and that A is a Banach
E-algebra. Let R+ be the completion of oL⊗Fq A

◦ for the ($L, $)-topology for some
(any) topologically nilpotent unit $L of L, and put R = R+[$−1

L , $−1]. Then there
is a canonical identification

YL ×E Spa(A,A◦) ∼=
{
v ∈ Spa

(
R,R+

)
: v($L), v($) < 1

}
.

See Lemma 9.3 for an expansion of this remark.
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4. Vector bundles

We next gather some statements about vector bundles on Fargues–Fontaine curves,
and deduce the simple connectivity of the Fargues–Fontaine curve associated to Cp.
Definition 4.1. — For n ∈ Z, letO(n) be the line bundle onXL,E corresponding

to the ϕL-equivariant line bundle on YL,E whose underlying bundle is trivial with a
generator v satisfying ϕ∗Lv = $−nv.

Lemma 4.2. — For any adic affinoid space U over E, the category of vector bun-
dles on XL,E×EU is equivalent to the category of ϕ-modules over O(YL,E×EU) (i.e.,
finite projective modules over the ring O(YL,E ×E U) equipped with isomorphisms
with their ϕ-pullbacks).

Proof. — It is apparent that the category of vector bundles on XL,E ×E U is
equivalent to the category of vector bundles on YL,E ×E U equipped with isomor-
phisms with their ϕ-pullbacks. Since YL,E ×E U is a quasi-Stein space in the sense
of [KL19, § 2.6], we obtain a fully faithful functor from the category of ϕ-modules
over O(YL,E ×E U) to the category of vector bundles on YL,E ×E U equipped with
isomorphisms with their ϕ-pullbacks. To check that this is essentially surjective, we
must show that given a vector bundle on YL,E ×E U equipped with isomorphisms
with their ϕ-pullbacks, the global sections form a finitely generated module over
O(YL,E ×E U) (as then [KL19, Corollary 2.6.8] implies that the module is also pro-
jective). For this, note that the space YL,E ×E U admits a locally finite covering by
spaces of the form Spa(BI

L,E, B
I, ◦
L,E)×E U (e.g., by taking I = [tqn, tqn+1] for t fixed

and n varying over Z), so we may apply [KL19, Lemma 2.6.15] to conclude. �

Remark 4.3. — It is also possible to prove Lemma 4.2 by showing that O(1) is
an ample line bundle on XL,E ×E U , as in [KL15, § 6]. We omit further details here.
Definition 4.4. — For n a positive integer, let XL,E, n be the quotient of YL,E

by the action of ϕ∗nZ
L . Let πn : XL,E, n → XL,E be the natural projection; it is

a connected n-fold étale cover which splits upon base extension from E to F (see
Remark 3.10).
For d = r

s
∈ Q written in lowest terms (so that r, s ∈ Z, gcd(r, s) = 1, and

s > 0), let O(d) be the vector bundle on XL,E defined as follows. Start with a trivial
line bundle on YL,E with a generator v. As in Definition 4.1, promote this to a
ϕsL-equivariant line bundle by specifying that ϕs∗L v = $−rv; this descends to a line
bundle on XL,E, s. Then push forward along πs to obtain O(d); for d ∈ Z, this agrees
with Definition 4.1.

Lemma 4.5. — For d ∈ Q, the following statements hold.
(a) If d = 0, then H0(XL,E,O(d)) = E.
(b) If d > 0, then H0(XL,E,O(d)) 6= 0.
(c) If d > d′, then Hom(O(d),O(d′)) = 0.
(d) For any positive integer m, O(d)⊗m is isomorphic to a direct sum of copies

of O(dm).
Proof. — See for instance [FF18, § 8.2]. �
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Theorem 4.6. — Suppose that L is algebraically closed. Then every vector
bundle on XL,E splits as a direct sum ⊕

iO(di) for some di ∈ Q.

Proof. — Modulo the interpretation of vector bundles given in Lemma 4.2, this
result is originally due to the author when E is of characteristic 0 (see [Ked04,
Theorem 4.16] in the case L = C[

p and [Ked05, Theorem 4.5.7] in the general
case) and to Hartl–Pink when E is of characteristic p [HP04, Theorem 11.1]. The
formulation given here is due to Fargues–Fontaine [FF18, Théorème 8.2.10], who
give an independent proof. See [Ked19, Theorem 3.6.13] for further discussion. �

We now use Theorem 4.6 to establish a base case of simple connectivity, following
Weinstein [Wei17], Fargues–Fontaine [FF18], and Scholze [SW20]. See also [Ked19,
Lemma 4.3.10].

Lemma 4.7. — Suppose that F is a completed algebraic closure of E. Then every
finite étale cover of XL,E ×E F splits.

Proof. — In light of the equivalence
FEt (XL,E ×E F ) ∼= 2- lim−→

E′
FEt (XL,E ×E E ′)

for E ′ varying over finite extensions of E within F (e.g., apply [KL15, Proposi-
tion 2.6.8] to each term in a finite covering of XL,E by affinoid subspaces), we
may start with a cover f : U → XL,E ×E F which is the base extension of the
cover f0 : U0 → XL,E ×E E ′ = XL,E′ for some finite extension E ′ of F . Let
g0 : U0 → XL,E ×E E ′ → XL,E be the composite projection. Apply Theorem 4.6 to
split g0∗OU0 as a direct sum ⊕

iO(di) for some di ∈ Q.
We claim that in fact di = 0 for all i. To see this, suppose by way of contradiction

that di > 0 for some i; since there are only finitely many such i, we may assume
without loss of generality that di = maxj{dj}. By Lemma 4.5, H0(XL,E,O(di)) is
nonzero, and any nonzero element gives rise to a nonzero square-zero element of
H0(U0,OU0); however, this yields a contradiction because XL,E is reduced, as then
must be U0. Hence di 6 0 for all i; since g0∗OU0 is self-dual, we also have di > 0 for
all i.
Consequently, di = 0 for all i, and so H0(U0,OU0) = H0(XL,E, g0∗OU0) is a finite-

dimensional E-vector space. This vector space inherits from U0 the structure of an
étale E-algebra; it follows that the original cover f splits. �

Remark 4.8. — One may already deduce from Lemma 4.7 that for L = C[
p, XL,E

is geometrically simply connected. To do this, one must use the symmetry between
L and F coming from Remark 3.11; see Remark 10.4 for further discussion.

Remark 4.9. — For any vector bundle E on XL,E ×E F , we may pull back to
BI
L,E⊗̂EF for some interval I to equip H0(XL,E ×E F, E) with the structure of a

Banach module over F . This structure does not depend on the choice of I, as follows
from the log-convexity of λt(x) as a function of t (Definition 3.3). More precisely, it
is clear that replacing I with pnI for any n ∈ Z does not change the Banach module
structure; then for any other interval J ⊂ (0,∞), we can find integers n1, n2 such
that J is contained in the convex hull of pn1I ∪ pn2I.
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Lemma 4.10. — The natural map F → H0(XL,E ×E F,O) is an isomorphism.

Proof. — To check the claim at hand, we may formally reduce to the case where
F is the completion of a subfield of countable dimension over E. We may then
construct a Schauder basis for F over E [BGR84, Proposition 2.7.2/3] to reduce to
the assertion that E → H0(XL,E,O) is an isomorphism, which is Lemma 4.5(a). �

Lemma 4.11. — Let L′ be an algebraically closed complete overfield of L. Let F
be a complete algebraically closed overfield of E and let F ′ be a complete algebraically
closed overfield of F . Let f : U → XL,E ×E F be a finite étale cover whose base
extension to XL′, E ×E F ′ splits completely. Then f splits completely.

Proof. — Let f ′ : U ′ → XL′, E×E F ′ be the base extension of f . Using Remark 4.9,
we may equip H0(U,O) = H0(XL,E ×E F, f∗OU) with the structure of a Banach
algebra over F . Using a Schauder basis argument again, we see that the natural map
H0(U,O)⊗̂FF ′ → H0(U ′,O) is an isomorphism of Banach algebras. Since f ′ splits
completely, by Lemma 4.10 the ring H0(U ′,O) is a finite direct sum of copies of F .
Consequently, H0(U,O) is a finite-dimensional reduced F -algebra, and hence must
itself split completely because F is algebraically closed. This splitting induces the
desired splitting of f . �

Remark 4.12. — Although we have chosen to establish Lemma 4.7 separately
for historical reasons, it is not actually logically necessary to do so; the reduction
method used to prove Theorem 9.1 can further be used to reduce Lemma 4.7 to
Remark 2.9. We omit the details here.

5. Abelian covers

We next give a direct argument to split Z/pZ-covers, picking up the thread from
Lemma 2.10.

Lemma 5.1. — Suppose that E is of characteristic p and that L ∼= κL((uΓL)), F ∼=
κF ((tΓF )). Assume further that ΓL,ΓF are subgroups of R and that the norms on
L, F are normalized so that∣∣∣ui∣∣∣ = p−i,

∣∣∣tj∣∣∣ = p−j (i ∈ ΓL, j ∈ ΓF ) .

Put k := κL⊗FqκF and let kΓL×ΓK be the set of functions ΓL×ΓF → k, with elements
written as k-valued formal sums over ΓL×ΓF . Consider the map L⊗Fq F → kΓL×ΓK

induced by the bilinear map

L× F → kΓL×ΓK ,

 ∑
i∈ΓL

xiu
i,
∑
j ∈ΓF

yjt
j

 7→ ∑
(i, j)∈ΓL×ΓF

(xi ⊗ yj)uitj.

Then for any r > 0, the restriction to L⊗Fq F of the function λr on kΓL×ΓK given by

λr

 ∑
(i, j)∈ΓL×ΓF

xi, ju
itj

 = sup
{
p−ri−j : xi, j 6= 0

}

TOME 4 (2021)



1216 K.S. KEDLAYA

computes the tensor product of the given norm on F and the rth power of the given
norm on L.

Proof. — We start by fixing some terminology in order to articulate the argument.
By a presentation of an element z ∈ L ⊗Fq F , we mean an expression of z as a
finite sum ∑

l xl ⊗ yl of simple tensors in L ⊗Fq F . For a presentation of the form∑
l xl ⊗ yl, define the norm of the presentation as maxl{|xl|r|yl|}; by definition, the

tensor product seminorm of an element of L⊗Fq F is the infimum of the norms of
all presentations of z. For z admitting a presentation as a simple tensor x⊗ y, the
norm of such a presentation equals λr(z); it follows formally that λr is a lower bound
for the tensor product norm. To complete the argument, we will show that every
z ∈ L⊗Fq F admits a presentation with norm λr(z); as a bonus, that shows that in
this situation, the infimum in the definition of the tensor product norm is always
achieved (which need not hold in a more general setting).
Let ∑l xl ⊗ yl be a presentation of z. Let L1 (resp. F1) be the Fq-vector subspace

of L (resp. F ) spanned by the xi (resp. the yi). Choose a basis e1, e2, . . . of L1 which
is normalized in the following sense:

• the valuations of e1, e2, . . . form a nondecreasing sequence; and
• if ei1 , . . . , ei2 have the same valuation, then their images in the graded ring
of L are linearly independent over Fq. That is, the images of ei/ei1 in κL for
i = i1, . . . , i2 are linearly independent over Fq.

Similarly, choose a normalized basis f1, f2, . . . of F1. Now rewrite the original pre-
sentation of z in the form ∑

i, j ci, jei ⊗ fj with ci, j ∈ Fq; this presentation has norm
equal to λr(z). �

Remark 5.2. — In the notation of Lemma 5.1, the completion of L⊗Fq F injects
into kΓL×ΓK . It is a subtle problem to describe the image R, and we will not attempt
to do so here. One remark we do make is that as a k-module, R splits as a direct sum⊕
e1, e2 ∈{−, 0,+}Re1, e2 in which Re1,e2 is the set of elements of R supported on pairs

(i, j) with signs (e1, e2): namely, this splitting is obtained by splitting the factors of
simple tensors in the form x = x+ + x0 + x− as per Definition 1.3.

Lemma 5.3. — Every étale Z/pZ-cover of XL,E ×E F splits.

Proof. — By Remark 3.8, we may assume that E is of characteristic p. By Lem-
ma 4.11, we may check the claim after enlarging both L and F ; we may thus also
assume that both fields are spherically complete. We may then identify L and F
with κL((uΓL)) and κF ((tΓF )), respectively; moreover, the groups ΓL,ΓF must be
divisible and the fields κL, κF must be algebraically closed.
Define the rings R := ⋂

I B
I
L,E⊗̂EF = O(YL,E ×E F ), k := κL ⊗Fq κF . Recall

that since we are in characteristic p, by Remark 3.7 we may interpret BI
L,E⊗̂EF

as a completion of L⊗Fq F ; as per Lemma 5.1 and Remark 5.2, we may write any
element x ∈ R as a formal sum ∑

(i, j)∈ΓL×ΓF
xi, ju

itj with xi, j ∈ k, and use this
representation to compute λr for all r > 0. We may further decompose x canonically
as ∑e1, e2 ∈{−, 0,+} xe1, e2 as in Remark 5.2.
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Recall the general Artin–Schreier construction: on any space of characteristic p we
have an exact sequence of étale sheaves

0→ Fp → O
ϕ−1→ O → 0.

On the quasi-Stein space YL,E ×E F , this yields isomorphisms

H i
(
(YL,E ×E F )et ,Z/pZ

) ∼= H i(ϕ,R) (i = 0, 1).
Quotienting by ϕL and considering the Hochschild–Serre spectral sequence yields a
commutative diagram

0 // H1 (ϕL, kϕ) //

��

H1 ((Spec(k)/Φ)et ,Z/pZ)

��

0 // H1 (ϕL, Rϕ) // H1
(
(XL,E ×E F )et ,Z/pZ

)
// H1 (ϕ, R)ϕL .

with exact rows. By Lemma 2.10, the terms in the top row vanish. From formal
sums, we see that the left vertical arrow is an isomorphism. Consequently, to finish
we must check that H1(ϕ,R)ϕL = 0.
Before proceeding, we record a key observation. Again by the Artin–Schreier

construction and the Hochschild–Serre spectral sequence, we have an exact sequence
H1

((
Spec(L⊗Fq F )/Φ

)
et
,Z/pZ

)
→ H1

(
ϕ,L⊗Fq F

)ϕL

→ H2
(
ϕL, (L⊗Fq F )ϕ

)
= 0.

By Lemma 2.10 again, the first term in this sequence vanishes; we thus deduce that
(5.1) H1

(
ϕ,L⊗Fq F

)ϕL = 0.
Note that the action of ϕ− 1 on R preserves the decomposition R ∼=

⊕
e1, e2 Re1, e2 .

Consequently, it suffices to check that H1(ϕ,Re1, e2)ϕL = 0 for all e1, e2.
First, suppose that (e1, e2) = (0,+). Any class in H1(ϕ,R0,+) may be represented

by an element y0,+ ∈ R0,+ which is a convergent sum of products supported on
{0} × [1,∞): namely, all but finitely many terms already have the right support,
and each remaining term (which initially is only constrained to have support in
{0} × [c,∞) for some c > 0 depending on the term) can be replaced by its image
under a suitable power of Frobenius to fix its support. However, we can now replace
y0,+ with

y0,+ + zp − z, z =
∞∑
m=0

yp
m

0,+

to see that y0,+ represents the zero class in H1(ϕ,R0,+). We deduce that H1(ϕ,R0,+)
= 0 even before taking ϕL-invariants. Similar considerations apply in the cases
(e1, e2) = (+, 0), (+,+).
Next, suppose that (e1, e2) = (0,−). Any class inH1(ϕ,R0,+)ϕL may be represented

by an element of R0,+ which is a finite sum of products supported on {0}× (−∞, 0);
in particular, this yields an element of L⊗FqF whose image in H1(ϕ,L⊗FqF ) is again
ϕL-invariant. By (5.1), this image vanishes, from which we deduce thatH1(ϕ,R0,−)ϕL

= 0. Similar considerations apply in the cases (e1, e2) = (−, 0), (−,−), (0, 0).
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Finally, suppose that (e1, e2) = (+,−). Any class in H1(ϕ,R+,−)ϕL may be repre-
sented by an element y+,− of R+,− which is a convergent sum of products supported
on [c1,∞)× [c2, 0) for some c1 > 0, c2 < 0 depending on y+,−. Consider the formal ex-
pansion ∑i, j yi, ju

itj of y+,−; since the resulting class in H1(ϕ,R+,−) is ϕL-invariant,
for every i, j and every nonnegative integer m we have∑

n∈Z
yp
−n

ipn, jpn =
∑
n∈Z

ϕmκL

(
yp
−n−m

ipn, jpn+m

)
.

For m sufficiently large (depending on i, j), the conditions ipn > c1 and jpn+m > c2q
on n are incompatible, so the sum on the right is identically zero. From this, it
follows that the formal sum ∑∞

n=0 y
pn

+,− converges to an element of R+,−, and hence
that the class of y+,− in H1(ϕ,R+,−) vanishes. Similar considerations apply in the
case (e1, e2) = (−,+). �

6. Inputs from p-adic differential equations

We next bring in some relevant input from the theory of p-adic differential equa-
tions.

Hypothesis 6.1. — Throughout Section 6, assume that E is of characteristic 0.
Let K0 be the completion of F (T ) for the Gauss norm. (This field often called
the field of analytic elements over F in the variable T ; this terminology is due to
Krasner [Kra66, Kra74].) Let K be a finite tamely ramified extension of K0. (Note
that references into [Ked10] only cover the case K = K0; see [Ked15, § 2.2] for
adaptations to the general case.)

Definition 6.2. — The derivation d
dT

on F (T ) is submetric for the Gauss norm,
so it extends continuously to a derivation onK with operator norm 1. By a differential
module over K, we will mean a finite-dimensional K-vector space V equipped with
a derivation D satisfying the Leibniz rule with respect to d

dT
. The example to keep

in mind is a finite étale K-algebra equipped with the unique K-linear derivation
extending d

dT
.

Let V be a differential module over K of dimension n. We define the subsidiary
radii of V as in [Ked10, Definition 9.8.1]; this is a multisubset of (0, 1] of cardinality
n, and is invariant under base extension [Ked10, Proposition 10.6.6]. Geometrically,
the subsidiary radii may be interpreted as the radii of convergence of local horizontal
sections of V in a generic unit disc [Ked10, Theorem 11.9.2].
Let e−f1(V ), . . . , e−fn(V ) be the subsidiary radii of V listed in ascending order (with

multiplicity), and define
Fi(V ) := f1(V ) + · · · + fi(V ) (i = 1, . . . , n).

Remark 6.3. — Suppose that K is also a finite tamely ramified extension of
the completion of F (T ′) for the Gauss norm. Then any differential module V with
respect to d

dT
is also a differential module with respect to d

dT ′
, and the two resulting

definitions of subsidiary radii coincide. This follows from the geometric interpretation
in terms of convergence in a generic disc.
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Remark 6.4. — One can generally predict properties of the subsidiary radii of a
differential module V by modeling them by the inverse norms of the eigenvalues of
some linear transformation TV on some n-dimensional vector space over K, subject
to the functoriality properties

TV1⊕V2 = TV1 ⊕ TV2 , TV1⊗V2 = TV1 ⊗ 1V2 + 1V1 ⊗ TV2 .

Lemma 6.5 (Christol–Dwork). — Let V be a differential module over K of rank
n. Let v ∈ V be a cyclic vector, i.e., an element such that v, D(v), . . . , Dn−1(v) form
a basis of V . (Such elements always exist; see for example [Ked10, Theorem 5.4.2].)
Write Dn(v) = a0 + a1v + · · · + an−1D

n−1(v) with a0, . . . , an−1 ∈ K. Form the
multiset consisting of p−1/(p−1) |λ|−1 as λ varies over the roots of the polynomial
T n− an−1T

n−1− · · · − a0 in an algebraic closure of K. Then this multiset coincides
with the subsidiary radii of V in its values less than p−1/(p−1).

Proof. — The original reference is [CD94, Théorème 1.5]; see also [Ked10, Theo-
rem 6.5.3]. �

Lemma 6.6. — Let V be a differential module over K of rank n. Let V ′ be
the restriction of scalars of V along the unique continuous F -linear homomorphism
K → K taking T to T p. View V ′ as a differential module over K of rank pn using
the derivation D′ = pT p−1D (this is called the Frobenius pushforward of V ). Then
the subsidiary radii of V ′ coincide with the multiset consisting of{ρ

p}⋃({p−p/(p−1) (p− 1 times)
})

ρ > p−1/(p−1)

{p−1ρ (p times)} ρ 6 p−1/(p−1)

for ρ running over the subsidiary radii of V .

Proof. — See [Ked10, Theorem 10.5.1]. �

Lemma 6.7. — Let V be a differential module over K of rank n. Suppose that
the subsidiary radii of V are all equal to some value ρ < 1. Then at least n of the
subsidiary radii of V ∨ ⊗ V are strictly greater than ρ.

Proof. — This follows from the existence of a refined spectral decomposition of
V over a suitable tamely ramified extension of K; see [Ked10, Theorem 10.6.2,
Theorem 10.6.7]. �

Hypothesis 6.8. — For the remainder of Section 6, let D be a one-dimensional
smooth affinoid space over F (viewed as an adic space). Let E be a vector bundle
over D of rank n equipped with an F -linear connection.

Definition 6.9. — Let x ∈ D be a point of type 2 or 5 in the sense of Defi-
nition 1.4. Then the residue field H(x) may be viewed as a finite tamely ramified
extension of K0 in some fashion (e.g., see the proof of [Ked15, Theorem 5.3.6]). We
may thus define the quantities fi(E , x), Fi(E , x) for i = 1, . . . , n by viewing the fiber
Ex as a differential module overH(x). By Remark 6.3, this definition does not depend
on auxiliary choices.
Now let x ∈ D be a point of type 3 or 4. Then after replacing F with a suitable

extension field, we may lift x to a point of type 2 and apply the previous paragraph
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to define fi(E , x), Fi(E , x). Again using Remark 6.3, we may see that this definition
does not depend on auxiliary choices.

Remark 6.10. — The previous definition can again be interpreted in terms of the
convergence of local horizontal sections. See [Ked16a] for an overview of the results
one obtains in this manner.

Lemma 6.11. — Let U be an open disc in D bounded by x. If f1(E , x) = 0, then
the restriction of E to U has trivial connection.

Proof. — This is an instance of the Dwork transfer principle [Ked10, Theorem
9.6.1]. �

Lemma 6.12. — Let U be an open annulus in D and let T be a coordinate on U .
For each positive integer m, let Um be the m-fold cover of U with coordinate T 1/m.
Suppose that there exists a finite étale cover π : D′ → D such that the pullback of
E to D′ has trivial connection. If f1(E , x) = 0 for each x in the skeleton of U , then
there exists a positive integer m 6 deg(π)! not divisible by p such that the pullback
of E to Um has trivial connection.

Proof. — We first note that thanks to [Ked10, Corollary 13.6.4], we may deduce
the desired result from the corresponding statement about some smaller open annulus
contained in U . We are thus free to shrink U as needed throughout the argument.
To begin with, we may assume that π−1(U) admits a connected component U ′ which
is itself an annulus.
Let F be the pushforward along π of the trivial connection on U ′. Then F is

semisimple and E occurs as a subobject, so E is also semisimple.
The condition that f1(E , x) = 0 for each x in the skeleton of U means, in classical

language, that E satisfies the Robba condition on U . We may thus apply the Christol–
Mebkhout theory of p-adic exponents as described in [Ked10, Chapter 13].
Let Rbd be the ring of germs of bounded analytic functions on subannuli of U

with outer radius 1 (i.e., the bounded Robba ring over F in the sense of [Ked10,
Definition 15.1.2]); this is a Henselian discrete valuation ring with residue field
κF ((t)) where κF is the residue field of F . The corresponding ring associated to U ′
is a finite extension Rbd ′ of Rbd.
By hypothesis, E ⊗Rbd ′ carries the trivial connection; we claim that this remains

true if we replace Rbd ′ with its maximal unramified subextension. To this end, it
suffices (by the Galois theory of extensions of Henselian fields; see for example [Ked10,
Chapter 3]) to check that if Rbd ′ is a cyclic totally ramified extension of prime order,
then E already carries the trivial connection. If this extension is tamely ramified,
then by Abhyankar’s lemma it is obtained by making an extension of F and the
claim is evident. If it is wildly ramified, then it is cyclic of order p and the restriction
of scalars of F splits as a direct sum of copies of E twisted by the powers of a
nontrivial rank-1 connection L whose pth power is trivial. If E is not itself trivial,
then for some i ∈ {1, . . . , p− 1}, L⊗ i occurs as a subquotient of the tensor product
of two connections satisfying the Robba condition, so L itself satisfies the Robba
condition. We may thus apply [Ked10, Theorem 13.5.5] to choose an exponent B ∈ Zp
for L. Since pB is then an exponent for L⊗ p whose connection is trivial, we may
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apply [Ked10, Theorem 13.5.6] to deduce that pB ∈ Z. It follows that B ∈ Z and
so L is itself trivial; this yields a contradiction which proves the claim.
We may now assume that Rbd ′ is an unramified extension of Rbd, so that E corre-

sponds to a representation of the Galois group of κF ((t)). We may now apply [Ked10,
Theorem 19.4.1] to see that this representation is itself at most tamely ramified. By
Abhyankar’s lemma again, this representation becomes unramified if we pull back
from U to Um for some m 6 deg(π)! not divisible by p; this yields the desired
result. �

7. Relative connections

We now extend the discussion of p-adic connections to a relative setting, with the
key case being when the base field is replaced by a Fargues–Fontaine curve.

Hypothesis 7.1. — Throughout Section 7, let A be a uniform Huber ring over Qp.

Definition 7.2. — LetM(A) denote the Gel’fand spectrum of A in the sense
of Berkovich, i.e., the space of all bounded multiplicative seminorms on A, equipped
with the evaluation topology; it may be identified with the maximal Hausdorff
quotient of the adic spectrum Spa(A,A◦). Since A is assumed to be uniform, the
supremum over M(A) is a norm on A which induces the correct topology on A.
For α ∈ M(A), let ker(α) := α−1(0) be the inverse image of 0 under α, and let
H(α) := ̂A/ ker(α) denote the (completed) residue field of α.
For α ∈M(A), we say that a rational localization A→ B (in the sense of Huber

rings) encircles α if the mapM(B)→M(A) identifiesM(B) with a neighborhood
of α inM(A). Such neighborhoods form a neighborhood basis of α inM(A).

Definition 7.3. — Equip the ring A〈T 〉 with the Gauss extension of the norm
on A. For each α ∈ M(A), let α̃ ∈ M(A〈T 〉) be its Gauss extension. Let S be the
multiplicative subset of s ∈ A〈T 〉 for which α̃(s) 6= 0 for all α ∈M(A) (equivalently,
the coefficients of s have no common zero in M(A)). We may then form a new
Huber ring RA by completing the algebraic localization A〈T 〉S for the supremum of
the seminorms induced by α̃ for each α ∈ M(A). By construction, RA is again a
uniform Huber ring; in the case where A = K is a nonarchimedean field with norm
α, the ring RK is simply the completion of K(T ) with respect to the multiplicative
norm α̃. Note that any homomorphism A → B of uniform Huber rings induces a
homomorphism RA → RB.

Definition 7.4. — By a differential module over RA, we will mean a finite
projective RA-module M equipped with a derivation D satisfying the Leibniz rule
with respect to d

dT
. We define the subsidiary radii of M at α ∈ M(A) by base

extension from RA to RH(α) and application of Definition 6.2. For α ∈ M(A) let
e−f1(M,α), . . . , e−fn(M,α) be the subsidiary radii of M at α listed in ascending order
(with multiplicity), and define

Fi(M,α) := f1(M,α) + · · · + fi(M,α) (i = 1, . . . , n).
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Lemma 7.5. — Let I be a closed subinterval of (0,∞). Let M be a differential
module over RA of constant rank n for A = BI

L,E⊗̂W (Fq)E
oF . Then for i = 1, . . . , n,

the function
t 7→ Fi (M,λt)

on I is convex in t.

Proof. — It suffices to check that for any ε > 0, the function

t 7→
i∑

j=1
max {fj (M,λt) , ε}

is convex. It further suffices to check this claim locally around some interior point
t ∈ I.
We first check the claim for ε = 1

p−1 log p. By arguing as in [Ked10, Lemma 11.5.1],
we may construct a basis v1, . . . , vn of M ⊗RA

RBJ
L, E⊗̂W (Fq)E

oF
for some closed subin-

terval J of I containing t in its interior, such that the values of Fi(M,λu) for u ∈ J
can be read off from the characteristic polynomial of the matrix of action of d

dT
on

this basis. We may then deduce the claim from the convexity of t 7→ log λt(x) (see
Definition 3.3).
To conclude, it suffices to check the claim for ε = p−m

p−1 log p for each nonnegative
integer m. For this, we apply the previous argument to treat the base case m = 0
and Lemma 6.6 to handle the induction step. �

Definition 7.6. — Let X be an adic space over some nonarchimedean field K
over Qp. Let D be a subset of the analytic affine line over K containing the Gauss
point (the boundary of the closed unit disc). Let E be a vector bundle of constant
rank n on X ×K D equipped with an OX-linear connection. By base extension to
Definition 6.2, we may define the functions fi(E , x) and Fi(E , x) for x ∈ X and
i ∈ {1, . . . , n}.

Hypothesis 7.7. — For the remainder of Section 7, let D be a connected rational
subspace of the analytic affine line over F containing the Gauss point, and let E be a
vector bundle of constant rank n on XL,E ×E D equipped with an OXL, E×EF -linear
connection. Let Ẽ be the pullback of E to YL,E ×E D.

Lemma 7.8. — For i = 1, . . . , n, the function x 7→ fi(E , x) on YL,E ×E F is
constant. We will hereafter denote by fi(E) this constant value.

Proof. — We proceed by strong induction on i. We start by using Remark 3.10 to
make an identification of topological spaces

{λt : t > 0} ×E F ∼= (0,+∞)× Ẑ.

We then note that
t 7→ sup

{
Fi
(
Ẽ , x

)
: x ∈ {t} × Ẑ

}
is both convex (by Lemma 7.5) and invariant under t 7→ tq; it must therefore be
constant. Denote by c the constant value.
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Our next goal is to check that Fi(Ẽ , x) is in fact constant on (0,+∞) × Ẑ. This
is guaranteed in case c equals the known constant value of Fi−1(Ẽ , x), as this is a
lower bound on Fi(Ẽ , x); we may thus assume that the difference

c′ = sup
{
fi
(
Ẽ , x

)
: x ∈ {t} × Ẑ

}
is positive (and again independent of t).
From the proof of Lemma 7.5 (and using that c′ > 0), we see that for any fixed t,

the set Ut of y ∈ Ẑ for which x = (t, y) maximizes Fi(Ẽ , x) is nonempty and open
in Ẑ. Choose a set U of the form Ut0 for some t0 > 0. For y ∈ U , the function
t 7→ Fi(Ẽ , (t, y)) on (0,+∞) is convex (again by Lemma 7.5), has c as an upper
bound everywhere, and achieves this bound at one point; it therefore is identically
equal to c.
By Remark 3.10 again, for y belonging to any translate of U under the action of

Z ⊂ Ẑ, Fi(Ẽ , (t, y)) = c for all t > 0. Since U is nonempty and open, its translates
cover Ẑ; hence Fi(Ẽ , x) = c for all x ∈ (0,+∞)× Ẑ.
At this point, it now suffices to check that the function

α 7→ Fi(Ẽ , α) onM
(
B

[t, t]
L,E⊗̂W (Fq)E

oF
)

is constant. As in the proof of Lemma 7.5, it suffices to check that for any ε > 0, the
function

α 7→
i∑

j=1
max

{
fj
(
Ẽ , α

)
, ε
}

is constant; again using Lemma 6.6, we may further reduce to the case ε = 1
p−1 log p.

To check this case, set notation as in the proof of Lemma 7.5. Let a0, . . . , an−1 be
the coefficients of the characteristic polynomial of the matrix of action of d

dT
on the

basis v1, . . . , vn. Carrying the equality Fi(Ẽ , (u, y)) = c (for u in some neighborhood
of t) back through the proof of Lemma 7.5, we see that if ai contributes a vertex to
the Newton polygon for α = λt, then the position of that vertex varies linearly (in a
neighborhood of t). This in turn implies that the image of ai in

GrR
B

[t, t]
L, E⊗̂W (Fq)E

oF

belongs to GrRF (compare [Ked10, Theorem 11.2.1(c)]).
To conclude, note that as we vary α ∈M(B[t, t]

L,E⊗̂W (Fq)E
oF ), the spectral norm of

d
dT

on RH(α) does not change. Consequently, as in the proof of Lemma 7.5, we may
continue to argue as in [Ked10, Lemma 11.5.1] to read off ∑i

j=1 max{fj(Ẽ , α), ε}
from a1, . . . , an just as we did for α = λt; this yields the desired result. (By contrast,
the corresponding argument in the context of [Ked10] is more subtle due to the
variation of the spectral norm of d

dT
; see for example [Ked10, Lemma 4.3.12].) �

Lemma 7.9. — After possibly shrinking D, there exists a unique decomposition
E = E1 ⊕ · · · ⊕ Ek of vector bundles with connection (with nonzero summands) with
the following properties.

(i) For i = 1, . . . , k, we have f1(Ei) = · · · = frank(Ei)(Ei).
(ii) We have f1(E1) > · · · > f1(Ek).
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Proof. — We may assume that n > 0. Let j be the largest integer such that
fj(E) = f1(E); it suffices to split E as a direct sum E1 ⊕ E2 with rank(E1) = j such
that fi(E1) = f1(E) for all i and fi(E2) < f1(E) for all i. For this, we may assume that
j < n, and use Frobenius pushforwards (as in Lemma 6.6, but see more specifically
the proof of [Ked10, Theorem 12.2.2]) to reduce to the case where f1(E) > p−1/(p−1).
In this case, set notation as in the proof of Lemma 7.8; we may then deduce the claim
by applying a suitable version of Hensel’s lemma, such as [Ked10, Theorem 2.2.2],
to the polynomial coming from the cyclic vector. �

Remark 7.10. — Consider an open disc in the analytic affine line over F bounded
by the Gauss point. If the entire disc is contained in D, then the conclusion of
Lemma 7.9 holds without removing any points of the disc, again as in the proof
of [Ked10, Theorem 12.2.2]. By contrast, if some of the disc is missing from D, then
more of it may have to be removed in order to achieve the conclusion of Lemma 7.9.

8. Elimination of one parameter

Hypothesis 8.1. — Throughout Section 8, suppose that every finite étale cover of
XL,E ×E F splits completely. Let D be a one-dimensional smooth affinoid space over
F . Let x ∈ D be a point of type 2, 3, 4 in the sense of Definition 1.4; in the type 2
case, assume further that D is a strict neighborhood of x.
Let ρ : πprof

1 (XL,E ×E D) → GL(V ) be a discrete representation on a finite-
dimensional F -vector space V . We will make various statements that hold not for ρ
itself, but its restriction to πprof

1 (XL,E ×D′) for some connected étale neighborhood
D′ of x in D (which in the type 2 case must again be a strict neighborhood of some
preimage of x). To indicate this restriction, we will say that such statements hold
after replacing D.

Definition 8.2. — Let f : U → XL,E ×E D be a finite étale cover such that the
restriction of ρ to πprof

1 (U) splits completely. We then obtain a diagonal action of
πprof

1 (XL,E ×E D, x) on f∗OU ⊗F V ; let Eρ be the fixed submodule for this action,
viewed as a vector bundle on XL,E ×E D. The connection on Eρ is induced by
differentiation on OU with respect to XL,E.
For n = dim(V ), for y ∈ D of type 2 or 5 with residual genus 0, we may define

quantities f1(Eρ, y), . . . , fn(Eρ, y) using Lemma 7.8; for y of type 3 or 4, we may
define these quantities by enlarging F to lift y to a point of type 2 or 5 (which
will necessarily have residual genus 0) and then applying Lemma 7.8 after suitable
rescaling. (It is possible to extend the construction to points of type 2 or 5 of positive
genus, but this is not crucial here.)

Lemma 8.3. — Suppose that fi(Eρ, y) = 0 for all i and y. Then ρ becomes trivial
after replacing D.
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Proof. — We first verify that for each geometric point z of XL,E ×E F , after
replacing D, the restriction of ρ to πprof

1 (z ×F D) becomes trivial.
• If x is of type 3, then after replacing D, we may assume that D is an annulus.
By Lemma 6.12, the restriction of ρ to πprof

1 (z ×F D) becomes trivial after
replacing D.
• If x is of type 4, then after replacing D, we may assume that D is a disc. By
Lemma 6.11, the restriction of ρ to πprof

1 (z ×F D) is trivial.
• If x is of type 2, then for all but finitely many specializations x′ of x, we may
find an open disc W in D bounded by x′; by Lemma 6.11, the restriction of
ρ to πprof

1 (z ×F W ) is trivial. For each of the other remaining specializations
x′, we may find an open annulus W in D bounded by x′ at one end; by
Lemma 6.12, the restriction of ρ to πprof

1 (z×FW ) becomes trivial after replac-
ing D. Combining these results, we see that after replacing D, the restriction
of ρ to πprof

1 (z ×F D) factors through πprof
1 (C`) where C is the residual curve

of D at x and ` is the residue field of H(z). Since C is proper by hypothesis,
we may apply [Ked19, Corollary 4.1.19] to deduce that πprof

1 (C`)→ πprof
1 (C)

is a homeomorphism; consequently, after replacing D, the restriction of ρ to
πprof

1 (z ×F D) becomes trivial.
For any given z, it formally follows that after replacing D, there exists some neigh-
borhood U of z in XL,E ×E F such that the restriction of ρ to πprof

1 (U ×F D) factors
through πprof

1 (U). By compactness, we may choose D uniformly over some finite set
of geometric points z for which the neighborhoods U form a covering of XL,E; we
then deduce that (after replacing D) the restriction of ρ to πprof

1 (XL,E ×ED) factors
through πprof

1 (XL,E×E F ). As we are working under Hypothesis 8.1, the latter group
is trivial; this proves the claim. �

Lemma 8.4. — Under no additional hypotheses, ρ becomes trivial after replac-
ing D.

Proof. — Assume by way of contradiction that the conclusion fails for some ρ. We
may assume that ρ is irreducible with nontrivial simple image G, and remains so
after replacing D arbitrarily.
Suppose first that G is abelian, and hence cyclic of prime order. If this order is

prime to p, we obtain a contradiction against Lemma 8.3; if the order is p, we obtain
a contradiction against Lemma 5.3.
Suppose next that G is nonabelian. Let [ρ] be the Tannakian category generated

by ρ (keeping in mind that F is algebraically closed of characteristic 0). Since ρ has
simple image, every nontrivial irreducible τ ∈ [ρ] is a generator. For each τ , form
the vector bundle Eτ as in Definition 8.2 and consider the functions fi(Eτ , y) for
i = 1, . . . , dim(τ) for y ∈ D of type 2 with residual genus 0, or of type 3 or 4. In
particular, these functions are well-defined for y in the skeleton of any neighborhood
of x in D, and so it is meaningful to consider limiting behavior as y → x.
For clarity, let us first treat the case where x itself is not a point of type 2 with

positive residual genus, so that we may even take y = x. We divide the argument
into two parallel steps.
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(i) Suppose that f1(Eτ , x) > 0. By Lemma 7.9 and the irreducibility of τ ,
f1(Eτ , x) = · · · = fdim(τ)(Eτ , x). Moreover, since each τ generates [ρ], f1(Eτ , x)
does not depend on τ either; since the trivial representation occurs in τ∨ ⊗ τ
with multiplicity 1,

fi (Eτ∨⊗τ , x) =

f1(Eτ , x) i = 1, . . . , dim(τ)2 − 1
0 i = dim(τ)2.

On the other hand, if f1(Eτ , x) > 0, then Lemma 6.7 implies that fi(Eτ∨⊗τ , x)
= 0 for i = dim(τ)2 − dim(τ) + 1; this forces dim(τ) = 1, contradicting our
assumption that G is nonabelian.

(ii) Suppose that f1(Eτ , x) = 0. By [Ked10, Theorem 11.3.2], each function
fi(Eτ , y) restricts to a linear function on the skeleton of some neighborhood of
x in D. By Lemma 7.9 again, f1(Eτ , y) = · · · = fdim(τ)(Eτ , y) on some skeleton,
and this common value does not depend on τ either. Applying Lemma 6.7 as
in the previous paragraph yields a contradiction unless f1(Eτ , y) is identically
zero on some skeleton. But in this case, Lemma 8.3 yields a final contradiction.

To complete the proof, we must revise the last two paragraphs to cover the case
where (G is nonabelian and) x is of type 2 with positive residual genus. The approach
will be to replace fi(Eτ , x) with limy→x fi(Eτ , y); by the continuity aspect of [Ked15,
Theorem 5.3.8], these limits exist and compute subsidiary radii in the same fashion
as in Section 7. In particular, Lemma 6.7 applies without issue (in particular, the
analogue of Lemma 7.8 holds).
If limy→x f1(Eτ , x) = 0, then step (ii) applies without change. If limy→x f1(Eτ , x)

> 0, then step (i) applies mutatis mutandis except for the application of Lemma 7.9;
however, we may take care of this step by pushing forward along a finite morphism
from D to a subspace of the affine line as in the proof of [Ked15, Theorem 5.3.6].
(This does not preserve simplicity of the image of the representation, but that is not
material to Lemma 7.9.) �

9. Simple connectivity and Drinfeld’s lemma

We now put everything together to prove Theorem 0.1, then deduce a form of
Drinfeld’s lemma for perfectoid spaces.

Theorem 9.1. — Every finite étale cover of XL,E ×E F splits completely. In
particular, Theorem 0.1 holds.

Proof. — By Remark 3.8, we may assume that E is of characteristic 0. By Lem-
ma 4.7, the claim holds in case F is a completed algebraic closure of E. By transfinite
induction, it suffices to prove that if the claim holds for F , then it holds for the
completed algebraic closure F ′ of the completion of F (T ) for some multiplicative
norm.
Note that the norm determines a point x of the adic affine line over F of type 2,

3, or 4; the point x admits a fundamental system of étale neighborhoods D, each
a smooth one-dimensional affinoid space over F . Thanks to the Henselian property
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of local rings of adic spaces [KL15, Lemma 2.4.17] and the fact that XL,E is qcqs,
any finite étale cover of XL,E ×E F ′ can be spread out to XL,E ×E D for some D.
We may thus apply Lemma 8.4 to deduce that the cover can be split by replacing
D with another étale neighborhood D′; this implies the desired conclusion. �

Definition 9.2. — Let Pfd denote the category of perfectoid spaces in charac-
teristic p.

We must take note of a slight difference in behavior between absolute products of
schemes and of perfectoid spaces. This expands upon Remark 3.11.

Lemma 9.3. — Let X1, . . . , Xn ∈ Pfd be arbitrary.
(a) The (absolute) product X := X1 × · · · ×Xn exists in Pfd.
(b) Write ϕi as shorthand for ϕXi

, the automorphism ofX induced by the absolute
(p-power) Frobenius on Xi. Then for any i ∈ {1, . . . , n}, the quotient

X/Φ := X/ 〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉
exists in Pfd. (Note that it is canonically independent of the choice of i.)

(c) If X1, . . . , Xn are qcqs, then X/Φ is qcqs (but X need not be).

Proof. — In all three cases, it suffices to treat the case where Xi = Spa(Ai, A+
i ) is

an affinoid perfectoid space for i = 1, . . . , n. (Here we use the convention that per-
fectoid rings are Tate, as per [KL15, KL19], and not merely analytic, as per [Ked19];
this does not affect the definition of Pfd.) Let $i ∈ Ai be a topologically nilpotent
unit, let A+ be the completion of A+

1 ⊗Fp · · · ⊗Fp A
+
n for the ($1, . . . , $n)-adic

topology, and put A := A+[$−1
1 · · · $−1

n ]. Then (A,A+) is a Huber pair, and taking

X :=
{
x ∈ Spa(A,A+) : |$1(x)| , . . . , |$n(x)| < 1

}
yields an absolute product of X1, . . . , Xn; this proves (a). (Note that X is not in
general quasicompact.)
The action of Φ on X (defined using i = 1 for the sake of fixing notation) is totally

discontinuous: any x ∈ X admits a neighborhood of the form{
x ∈ Spa(A,A+) : |$1(x)|bj 6 |$j(x)| 6 |$1(x)|aj (j = 2, , . . . , n)

}
for some aj, bj ∈ Q> 0 with aj 6 bj < paj, and the Φ-translates of such a neighbor-
hood are pairwise disjoint. Hence X/Φ exists in Pfd, proving (b). Moreover, it is
clear that X/Φ is covered by finitely many such neighborhoods, and that the inter-
sections of these are again of the same form; it follows that X/Φ is quasicompact
and separated (and in particular qcqs), proving (c). �

Remark 9.4. — Remark 3.11 amounts to the assertion that for E of characteris-
tic p,

XL,E ×E F ∼= (Spa(L,L◦)× Spa(F, F ◦)) /Φ.
Consequently, Theorem 0.1 implies that πprof

1 ((Spa(L,L◦) × Spa(F, F ◦))/Φ, x) is
trivial (for any choice of the basepoint x).

As an intermediate step towards Theorem 9.7, we establish the following analogue
of Lemma 2.6.
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Lemma 9.5. — For X ∈ Pfd, put XL := X × Spa(L,L◦) and let ϕL : XL → XL

be the pullback of the Frobenius on L. Then the base extension functor

FEt(X)→ FEt(XL/ϕL)

is an equivalence of categories.

Proof. — Since the functors X 7→ FEt(X) and X 7→ FEt(XL/ϕL) on Pfd are
both stacks for the étale topology, it suffices to check the claim when X is a geometric
point. This case is a consequence of Theorem 0.1, as described in Remark 9.4. �

Corollary 9.6. — For X ∈ Pfd connected and qcqs, for any geometric point
x of XL, the map πprof

1 (XL/ϕL, x)→ πprof
1 (X, x) is a homeomorphism.

Proof. — This follows by combining Lemma 2.3 with Lemma 9.5. �

Theorem 9.7 (Drinfeld’s lemma for perfectoid spaces). — LetX1, . . . , Xn ∈ Pfd
be connected and qcqs.

(a) ForX := X1× · · · ×Xn, the quotientX/Φ (which exists in Pfd by Lemma 9.3)
is connected.

(b) For any geometric point x of X, the map

πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x)

is an isomorphism of profinite groups.

Proof. — Put X ′ := (X1 × · · · ×Xn−1)/〈ϕ2, . . . , ϕn−1〉; then

X/Φ ∼= (X ′ ×Xn)/ϕn,

so by induction on n we may deduce both claims from the case n = 2. (Note that
this depends on the fact that by Lemma 9.3, X ′ exists in Pfd and is qcqs; otherwise,
we would have to formulate the induction hypothesis in terms of a larger category
than Pfd.) We thus assume n = 2 hereafter.
To check (a), we argue as in [Ked19, Corollary 4.1.22] (which in turn is based

on [SW20, Proposition 16.3.6]). Suppose by way of contradiction that X admits
a nontrivial ϕ2-invariant disconnection U1 t U2. For each geometric point s of X2,
U1 ×X2 s, U2 ×X2 s form a ϕ2-invariant disconnection of X1 ×X2 s; Lemma 2.3 and
Lemma 9.5 imply that this disconnection is the pullback of a disconnection of
X1, and so one of the terms must be empty. For s = Spa(K,K+) → X with K a
nonarchimedean field, we may write U1×X2 s as the inverse limit lim←−V X1×X2V for V
running over quasicompact open neighborhoods of s in X2; at the level of topological
spaces, we have an inverse limit of spectral spaces and spectral morphisms, which
can only be empty it if is empty at some term. (For the constructible topologies,
this is an inverse limit of compact Hausdorff spaces, which by Tikhonov’s theorem
cannot be empty if none of the terms is empty.) It follows that the images of the
maps U1 → X2 and U2 → X2 form a nontrivial disconnection of X2, yielding a
contradiction.
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To check (b), we continue as in [Ked19, Corollary 4.1.22, Corollary 4.1.23]. In the
diagram

πprof
1 (X ×X2 s, x) // πprof

1 (X/Φ, x)

��

// πprof
1 (X2, x) // 1

πprof
1 (X1, x)

the diagonal is an isomorphism by Lemma 2.3 and Lemma 9.5 again. For X ′2 ∈
FEt(X2) connected, the previous paragraph implies that (X1×X ′2)/Φ is connected; as
in [Ked19, Remark 4.1.10], it follows that πprof

1 (X/Φ, x)→ πprof
1 (X2, x) is surjective.

By the same token, πprof
1 (X/Φ, x)→ πprof

1 (X1, x) is surjective.
Let G be a finite quotient of πprof

1 (X/Φ, x) corresponding to X ′ ∈ FEt(X/Φ). Let
G → H be the quotient corresponding to a Galois cover X ′2 → X2 as produced
by [SW20, Proposition 16.3.3] (the uniqueness property of that result implies the
Galois property of the cover). Since X ′ → X ′2 has geometrically connected fibers,
the map πprof

1 (X ×X2 s, x) → ker(G → H) must be surjective. This completes the
proof of exactness. �

10. Drinfeld’s lemma in the analytic setting
To conclude, we reinterpret Theorem 0.1 in Scholze’s language of diamonds and

v-sheaves [Sch17, SW20] and give the formulation of Drinfeld’s lemma for v-sheaves
described in [Ked19, § 4.3], which see for more details. We conclude with a remark to
the effect that Drinfeld’s lemma for v-sheaves includes the corresponding statement
for schemes (Remark 10.7).
Definition 10.1. — Equip Pfd with the v-topology, generated by open covers

and arbitrary quasicompact surjective morphisms [SW20, Definition 17.1.1]. This
topology is subcanonical, that is, representable presheaves are sheaves [SW20, Corol-
lary 17.1.5]. A v-sheaf is small if it admits a surjective morphism from some perfectoid
space.
For F a small v-sheaf, we may define the underlying topological space |F| of F as

follows: write F as the quotient of a perfectoid space X by an equivalence relation
R ⊆ X ×X using [SW20, Proposition 17.2.2], then set |F| := |X| / |R|. This does
not depend on the choice of X [Sch17, Proposition 12.7]. We say F is spatial if it
is qcqs and admits a neighborhood basis consisting of the underlying topological
spaces of quasicompact open subobjects.
We use the term diamond in the sense of [SW20, Definition 8.3.1], except that we

assume that all diamonds are locally spatial. That is, diamonds are small v-sheaves
(see [SW20, Proposition 17.1.6]) which are locally the quotient of a perfectoid space
by a pro-étale equivalence relation (in the sense of [SW20, § 8.2]). We write X� for
the diamond associated to the analytic adic space X over E [SW20, Theorem 10.1.5].
For A a Huber ring over E, we write Spd(A) as shorthand for Spa(A,A◦)�.
Lemma 10.2. — Let X1, . . . , Xn be locally spatial small v-sheaves (resp. dia-

monds)
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(a) The (absolute) product X := X1× · · · ×Xn is a locally spatial small v-sheaf
(resp. a diamond).

(b) Write ϕi as shorthand for ϕXi
, the automorphism ofX induced by the absolute

(p-power) Frobenius on Xi. Then for any i ∈ {1, . . . , n}, the quotient
X/Φ := X/ 〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉

exists as a locally spatial small v-sheaf (resp. a diamond).
(c) If X1, . . . , Xn are spatial, then X/Φ is spatial (but X need not be).

Proof. — This is a formal consequence of Lemma 9.3. �

Remark 10.3. — Note that if A is a perfectoid E-algebra, then Spd(A) = Spd(A[)
as diamonds; the extra data of the choice of A as an untilt of A[ is equivalent to
the specification of a structure morphism Spd(A[)→ Spd(E). Consequently, for any
Huber ring A over E, by Remark 9.4 we have an identification

(YL,E ×E Spa (A,A◦))� ∼= Spd(L)× Spd(A).
Remark 10.4. — Continuing with the previous remark, suppose that F is a per-

fectoid field of characteristic p containing E. From Remark 3.11, we have an identi-
fication

FEt ((XL ×E F )�) ∼= FEt (Spd(L)× Spd(F )/ϕL) .
On the other hand, as in Definition 2.4, for X := Spd(L)× Spd(F ) we may identify
the right side with

FEt(X/Φ) ∼= FEt (X/ 〈ϕL, ϕE〉)×FEt(X/ϕX) FEt(X),
in which L and F play symmetric roles.
Lemma 9.5 immediately promotes to the following statement.
Lemma 10.5. — For X a small v-sheaf, put XL := X × Spa(L,L◦) and let

ϕL : XL → XL be the pullback of the Frobenius on L. Then the base extension
functor

FEt(X)→ FEt (XL/ϕL)
is an equivalence of categories.
Proof. — This is a formal consequence of Lemma 9.5. �

Theorem 10.6 (Drinfeld’s lemma for v-sheaves). — Let X1, . . . , Xn be con-
nected spatial small v-sheaves.

(a) For X := X1 × · · · ×Xn, the quotient X/Φ is connected.
(b) For any geometric point x of X, the map

πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x)

is an isomorphism of profinite groups.
Proof. — We cannot directly deduce this from Theorem 9.7, because a connected

spatial small v-sheaf may not be covered by a connected perfectoid space. However,
given Lemma 10.2 and Lemma 10.5, the proof of Theorem 9.7 adapts without
incident. �
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Remark 10.7. — There is a fully faithful functor from arbitrary perfect schemes
over Fp to small v-sheaves [SW20, Proposition 18.3.1]; however, objects in the essen-
tial image of this functor need not be locally spatial, so we cannot directly apply
Theorem 10.6 to them.
However, one may recover Theorem 2.7 from Lemma 10.5 as follows. Suppose

that X is a perfect scheme over Fp with associated v-sheaf X�; we may still apply
Lemma 10.5 to see that the target of the composition

FEt(X)→ FEt (XL/ϕL)→ FEt ((X�)L /ϕL)
is equivalent to FEt(X�) ∼= FEt(X). It is not hard to show that the second functor
is fully faithful, so both functors must be equivalences. This yields Lemma 2.6 for
perfect schemes, from which one recovers Lemma 2.6 and Theorem 2.7 at full strength
using Remark 2.8.
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