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Résumé. — Nous montrons que certains types associés à des représentations supercuspi-
dales de groupes p-adiques modérément ramifiés qui apparaissent dans les travaux de Jiu-Kang
Yu sont géométrisables. Pour cela, nous définissons un dictionnaire entre fonctions et faisceaux
pour les caractères de dimension un de schémas en groupes arbitraires sur les corps finis. Dans
un travail précédent, nous avons considéré le cas des schémas en groupes lisses commutatifs
et nous avons montré que la définition standard des faisceaux caractères donne lieu à un
dictionnaire avec un noyau non trivial. Dans cet article, nous proposons une modification de la
catégorie des faisceaux caractères qui corrige ce défaut et s’étend aux groupes non commutatifs.
Nous utilisons ensuite ces faisceaux caractères commutatifs pour géométriser les caractères
linéaires qui apparaissent dans les types introduits par Jiu-Kang Yu, en supposant que le
caractère s’annule sur un certain sous-groupe dérivé. Pour définir les types géométriques, nous
combinons les faisceaux caractères commutatifs avec la géométrisation par Gurevich et Hadani
de la représentation de Weil et les faisceaux caractères de Lusztig.

Introduction

The combined work of Ju-Lee Kim in [Kim07] and Jessica Fintzen in [Fin18, Fin19]
establishes that all irreducible supercuspidal representations of a tamely ramified
p-adic group G can be built from “data” introduced by Jiu-Kang Yu [Yu01, § 15],
as long as p does not divide the order of the Weyl group of G. While the type, in
the sense of Bushnell & Kutzko [BK98], of a supercuspidal representation built from
Yu data can be constructed directly from the datum, it is convenient to consider
an intermediate object, introduced in [Yu01, Remark 15.4], which we call a Yu
type datum. Yu type data are studied in [Yu15], which concludes with the following
observation.

Therefore, up to some linear characters, all the ingredient represen-
tations are on groups of the form H(O), where H is a smooth group
scheme over [a Henselian discrete valuation ring with finite residue
field κ] O, and the representations are inflated from H(κ). These
results suggest that algebraic geometry and group schemes should play
an important role in the representation theory of p-adic groups.

In this paper we follow the suggestion above by showing that certain Yu type data
are geometrizable, in the following sense. A Yu type datum determines a sequence
of representations ◦ρi of compact p-adic groups ◦Ki, for i = 0, . . . , d, such that
( ◦Kd, ◦ρd) is a type for a supercuspidal representation of a p-adic group. Let R be
the ring of integers of a local field with finite residue field k. The main result of [Yu15]
shows how to find, for each i = 0, . . . , d, a smooth group scheme Gi over the ring
R with Gi(R) = ◦Ki. Under certain assumptions on the Yu type datum, we show
how each representation ◦ρi can be replaced by a pair (Gi,F i), where F i is a formal
Q̄-linear combination of conjugation-equivariant sheaf complexes on the Greenberg
transform Gi of Gi. Writing tFi for the function on Gi(k) = Gi(R) = ◦Ki obtained
by evaluating the trace of the action of Frobenius on F i, we show in Theorem 5.2 that

(0.1) tF i = Tr( ◦ρi).
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By this theorem, then, we obtain geometric avatars for each type in a Yu datum:

(
◦Ki, ◦ρi

) (
Gi,F i

)
.

geometrization

trace of Frob

We refer to the pair (Gd,Fd) as a geometric type.
To prove Theorem 5.2, we must find a way to geometrize linear characters of groups

of the form H(R), where H is a smooth group scheme over R. In order to do so in a
systematic manner, we begin this paper by describing the function-sheaf dictionary
for characters of arbitrary smooth group schemes over finite fields. When coupled
with the Greenberg transform, this dictionary will allow for the geometrization of
certain linear characters of H(R).
The function-sheaf dictionary over a finite field k [Del77, Sommes trig.] provides

a way of encoding functions on the k-rational points of an algebraic group G as
`-adic local systems on G. More specifically, if G is a connected, commutative,
algebraic group then there is a certain category CS(G) of rank-one local systems on
G and an explicit isomorphism between isomorphism classes of objects in CS(G) and
G(k)∗ := Hom(G(k), Q̄×` ); the isomorphism is given by mapping L to the function
TrG : g 7→ Tr(Fr |Lg).
In previous work [CR18], we studied the function-sheaf dictionary for characters

smooth commutative group schemes G, allowing for non-connected groups. We gave
a description of the category CS(G) in this context, as well as an epimorphism TrG :
CS(G)/iso → G(k)∗. In contrast to the connected case, TrG may have nontrivial kernel;
we gave an explicit description of its kernel as H2(π0(Ḡ), Q̄×` )Fr [CR18, Theorem 3.6].
In this paper we repair this defect in the function-sheaf dictionary by describ-

ing a full subcategory CCS(G) of CS(G) so that TrG restricts to an isomorphism
CCS(G)/iso → G(k)∗. We refer to objects of CS(G) as character sheaves and ob-
jects in CCS(G) as commutative character sheaves, since the passage from CS(G) to
CCS(G) involves a condition that exchanges the inputs to the multiplication mor-
phism on G (see Definition 2.1). When G is connected, all character sheaves on G
are commutative.
Category CCS(G) clarifies several questions about CS(G). Invisible character

sheaves [CR18, Definition 2.8] are precisely those L with TrG(L) = 1 that are not
commutative. Moreover, Tr−1

G : G(k)∗ → CCS(G)/iso provides a canonical splitting
of TrG : CS(G)/iso → G(k)∗ [CR18, Remark 3.7].
Next, we broaden our scope further to encompass smooth group schemes G over

k that are not necessarily commutative. We assume G is smooth, but not that it is
connected, reductive or commutative; we write Gab := G/Gder for the abelianization.
The category CS(G) has a straightforward generalization to this case. We then
define category CCS(G) for such G and a forgetful functor to CS(G) so that TrG :
CCS(G)/iso → Gab(k)∗ is an isomorphism. Since Gab(k)∗ maps onto G(k)∗ with
cokernel Gder(k)∗, it follows that for each character χ ∈ G(k)∗ trivial on Gder(k)
there is a commutative character sheaf L on G with TrG(L) = χ. Moreover, we find
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that pullback along the quotient q : G → Gab defines an equivalence of categories
CCS(Gab) → CCS(G). The functor CCS(G) → CS(G) is not essentially surjective,
missing the kinds of linear character sheaves highlighted by Kamgarpour in [Kam09,
(1.1)].
In order to provide further justification for referring to objects in CCS(G) as

commutative character sheaves, suppose for the moment that G is a connected,
reductive algebraic group over k. Let L̄ be the geometric part of an object in CCS(G);
see Section 1. Let T be a maximal torus in the base change Ḡ of G to k̄ and let
L̄T be the restriction of L̄ to T . Then the perverse sheaf L̄[dimG] appears in the
semisimple complex indḠB, T (L̄T ) produced by parabolic induction. It follows that
every object in CCS(G) determines a Frobenius-stable character sheaf on G, in the
sense of [Lus85, Definition 2.10]. Of course, the sheaves arising in this way represent
a small part of Lusztig’s geometrization of characters of representations of connected,
reductive groups over finite fields, but they are precisely those needed to describe
one-dimensional characters of such groups.
Armed with the function-sheaf dictionary for smooth group schemes over finite

fields, we return to the task of geometrizing Yu type data. The proof of Theorem 5.2
requires: Yu’s work on smooth integral models [Yu15]; the geometrization of the
character of the Heisenberg–Weil representation over finite fields by Gurevich &
Hadani [GH07]; Lusztig’s character sheaves on reductive groups over finite fields;
and finally, the function-sheaf dictionary for characters of smooth group schemes
over finite fields, now at our disposal in Theorem 3.12.
In order to use these tools we must restrict our attention to Yu type data that satisfy

a technical condition, appearing in Section 5.4 as Hypothesis (H1). Granting this
hypothesis, these pieces are assembled in Section 5.4, where we prove Theorem 5.2.
With this theorem, we provide all of the ingredients needed to geometrize a class of
supercuspidal representations of arbitrary depth.
Yu’s construction has been revisited recently by several authors. Hakim [Hak18,

§ 2.1] gives an alternate construction beginning with a representation of a compact-
mod-center subgroup of G. Unfortunately, this ingredient does not lend itself to
geometrization using our techniques. In contrast, Kaletha [Kal19] has given a con-
struction in terms of a tame elliptic maximal torus S ⊂ G and a character θ of S.
The pair (S, θ) can already be geometrized using [CR18] since S is commutative.
However, Kaletha’s construction only produces a subset of Yu’s supercuspidal repre-
sentations [Kal19, Proposition 3.7.14], so we phrase our geometrization in terms of
Yu’s original construction.
We now summarize the sections of the paper in more detail. In Section 1, we

recall the category CS(G) from [CR18] and note that it still makes sense when G
is not commutative. We focus on the case of commutative G in Section 2, giving
the definition of a commutative character sheaf and proving our first main theorem,
that TrG : CS(G)/iso → G(k)∗ induces an isomorphism on CCS(G)/iso. Passing to
the case that G is non-commutative, we give the definition of and main results
about commutative character sheaves in Section 3. We note that we should only
consider character sheaves that arise via pullback from Gab in order to eliminate those
that have nontrivial restriction to the derived subgroup. This observation underlies
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the definition of commutative character sheaves for non-commutative G. We state
our second main result, Theorem 3.12, that pullback along the abelianization map
defines an equivalence of categories CCS(G) → CCS(Gab). In Section 3.3, we use
Galois cohomology to describe the relationship between G(k)∗ and Gab(k)∗. We also
compute the automorphism groups in CCS(G). In Section 5 we use Theorem 3.12 to
geometrize types for certain supercuspidal representations of p-adic groups, in a sense
made precise in Theorem 5.2. As preparation for the proof, we review some facts
about the Heisenberg–Weil representation and its geometrization, in Section 5.2.
Then, in Section 5.3, we review Yu’s theory of types and his study of smooth
integral models. These elements are pulled together in Section 5.4, where the proof
Theorem 5.2 is given.
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1. Recollections and definitions

Let G be a smooth group scheme over a finite field k; that is, let G be a group
scheme over k for which the structure morphism G→ Spec(k) is smooth in the sense
of [Gro67, Definition 17.3.1]. This implies G→ Spec(k) is locally of finite type, but
not that it is of finite type. We remark that the identity component G0 of G is of
finite type over k, while the component group scheme π0(G) of G is an étale group
scheme over k, and both are smooth over k.
Let k̄ be a fixed algebraic closure of k. In general, we use overline to denote a

separable closure of a field or the base change a geometric object to a scheme over
a separable closure of a field. In this paper we use a common formalism for Weil
sheaves, writing L for the pair (L̄, φ), where L̄ is an `-adic sheaf on Ḡ = G⊗k k̄ and
where φ : Fr∗ L̄ → L̄ is an isomorphism of `-adic sheaves. We also follow convention
by referring to L as a Weil sheaf on G, as in [Del80, Définition 1.1.10]. If L and
L′ := (L̄′, φ′) are Weil sheaves, we write α : L → L′ for a morphism α : L̄ → L̄ such
that

Fr∗ L̄ Fr∗ L̄

L̄ L̄

φ

Fr∗ α

φ′

α

commutes. These conventions simplify notation considerably, but they were not
employed in [CR18].
We write m : G × G → G for the multiplication morphism, and G(k)∗ for

Hom(G(k), Q̄×` ). Define θ : G×G→ G×G by θ(g, h) = (h, g).
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When G is commutative, a character sheaf on G is a triple (L̄, µ, φ), where L̄ is a
rank-one `-adic local system on Ḡ, µ : m̄∗L̄ → L̄�L̄ is an isomorphism of sheaves
on Ḡ× Ḡ, and φ : Fr∗G L̄ → L̄ is an isomorphism of sheaves on Ḡ; the triple (L̄, µ, φ)
is required to satisfy certain conditions [CR18, Definition 1.1]. Write CS(G) for the
category of character sheaves on G.
Even when G is not commutative, the category CS(G), defined as in [CR18, Defi-

nition 1.1], still makes sense. In order to distinguish the resulting objects from the
character sheaves of Lusztig, we will refer to the former as linear character sheaves
(to evoke the one-dimensional character sheaves of [Kam09]).

2. Commutative character sheaves on commutative groups

We consider first the case that G is commutative, which we will later apply to
the case of general smooth G. Let L be a character sheaf on G. Since m = m ◦ θ
in this case, there is a canonical isomorphism ξ : m∗L → θ∗m∗L. There is also
an isomorphism ϑ : L � L → θ∗(L � L) given on stalks by the canonical map
L̄g ⊗ L̄h → L̄h ⊗ L̄g.

Definition 2.1. — A character sheaf (L, µ) on a smooth commutative group
schemeG is commutative if the following diagram of Weil sheaves on G×G commutes.

m∗L L� L

θ∗(m∗L) θ∗(L� L)

ξ m=m◦θ

µ

ϑ

θ∗µ

We write CCS(G) for the full subcategory of CS(G) consisting of commutative char-
acter sheaves.

In [CR18, Theorem 3.6], we showed that TrG : CS(G)/iso → G(k)∗ is surjective and
explicitly computed its kernel. In this section, we show that the corresponding map
TrG : CCS(G)/iso → G(k)∗ for commutative character sheaves is an isomorphism. We
begin by reinterpreting Definition 2.1 in terms of cocycles.
Let G be a commutative étale group scheme over k. For a character sheaf L on

G, recall [CR18, § 2.3] that SG : CS(G)/iso → H2(E•G) is an isomorphism mapping
[L] to [α ⊕ β], where E•G is the total space of the zeroth page of the Hochschild–
Serre spectral sequence, α ∈ ◦K0(W, ◦K2(Ḡ, Q̄×` )) is obtained from µ and β ∈
◦K1(W, ◦K1(Ḡ, Q̄×` )) is obtained from φ.
Let a ∈ Z2(Ḡ, Q̄×` ) correspond to α. We say that [α⊕ β] ∈ H2(E•G) is symmetric if

a(x, y) = a(y, x) for all x, y ∈ Ḡ. This condition is well defined, since every cobound-
ary in B2(Ḡ, Q̄×` ) is symmetric. The connection between commutative character
sheaves and symmetric classes is given in the following lemma.

Lemma 2.2. — Suppose G is a smooth commutative group scheme, and let L be
a character sheaf on G. Then L is commutative if and only if SG(L) is symmetric.
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Proof. — The symmetry of SG(L) is a direct consequence of the commutativity of
the diagram in Definition 2.1 after choosing bases for each stalk. �
We may similarly define a symmetric class in H2(Ḡ, Q̄×` ) to be one represented by

a symmetric 2-cocycle. The following lemma will allow us to show that there are no
invisible commutative character sheaves.
Lemma 2.3. — Let Ḡ be a commutative group. Then the only symmetric class

in H2(Ḡ, Q̄×` ) is the trivial class.
Proof. — By the universal coefficient theorem,

0→ Ext1
Z

(
Hn−1

(
Ḡ,Z

)
, Q̄×`

)
→ Hn

(
Ḡ, Q̄×`

)
→ Hom

(
Hn

(
Ḡ,Z

)
, Q̄×`

)
→ 0

is exact for all n > 0. When n = 2, using the fact that Ḡ is commutative, we have
that H1(Ḡ,Z) ∼= Ḡ and that H2(Ḡ,Z) ∼= ∧2Ḡ. We get

0→ Ext1
Z

(
Ḡ, Q̄×`

)
→ H2

(
Ḡ, Q̄×`

)
→ Hom

(
∧2Ḡ, Q̄×`

)
→ 0.

The map H2(Ḡ, Q̄×` )→ Hom(∧2Ḡ, Q̄×` ) maps a 2-cocycle f to the alternating function

(x, y) 7→ f(x, y)
f(y, x) .

Thus the cohomology classes represented by symmetric cocycles are precisely those
in the image of Ext1

Z(Ḡ, Q̄×` ). But Ext1
Z(−, Q̄×` ) vanishes because Q̄×` is divisible. �

Lemma 2.4. — If G is a connected commutative algebraic group over k then
every character sheaf on G is commutative.
Proof. — Suppose SG(L) = [α ⊕ β] ∈ H2(E•G). We can use étale descent to see

that pullback by the Lang isogeny defines an equivalence of categories between local
systems on G and G(k)-equivariant local systems on G. Thus every character sheaf L
on G arises through the Lang isogeny, together with a character G(k)→ Q̄×` . Pushing
forward the Lang isogeny along this character defines an extension of Ḡ by Q̄×` whose
class is fixed by Frobenius; let a ∈ Z2(Ḡ, Q̄×` ) be a representative 2-cocycle. Then
a corresponds to the α ∈ ◦K0(W, ◦K2(Ḡ, Q̄×` )), above. Since the covering group of
the Lang isogeny is G(k), which is commutative, the class of this extension satisfies
a(x, y) = a(y, x) for all x, y ∈ Ḡ. This shows that SG(L) is symmetric. It follows
from Lemma 2.2 that L is a commutative character sheaf. �

Theorem 2.5. — If G is a smooth commutative group scheme over k then
TrG : CCS(G)/iso → G(k)∗ is an isomorphism.
Proof. — Suppose first that G is étale. Consider the isomorphism of short exact

sequences

0 ker TrG CS(G)/iso G(k)∗ 0

0 H0
(
W,H2

(
Ḡ, Q̄×`

))
H2 (E•G) H1

(
W,H1

(
Ḡ, Q̄×`

))
0

SG

TrG

from [CR18, Proposition 2.7].
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Suppose that L is a commutative character sheaf with tL = 1, and set [α, β]
= SG([L]). Then SG([L]) is in the image of H2(Ḡ, Q̄×` )W , so is cohomologous to
[α′, 0]. Since α is symmetric and coboundaries are symmetric, α′ is symmetric as
well. So by Lemma 2.3, α′ is cohomologically trivial, and thus [L] is trivial as well.
To see that TrG is still surjective on CCS(G)/iso, note that the character sheaf

constructed in the proof of [CR18, Proposition 2.6] has trivial α, and is thus com-
mutative.
For general smooth commutative group schemes, we use Lemma 2.4 and the snake

lemma, as in the proof of [CR18, Theorem 3.6]. �

Remark 2.6. — Since H0(W,H2(Ḡ, Q̄×` )) is not necessarily trivial [CR18, Exam-
ple 2.10], the functor CCS(G) → CS(G) is not necessarily essentially surjective.
Indeed, the invisible character sheaves [CR18, Definition 2.8] defined in our previous
paper are precisely those non-commutative character sheaves with trivial trace of
Frobenius.

3. Commutative character sheaves on non-commutative
groups

We now consider the case of a smooth group scheme without the commutativity
assumption. Our approach is to relate linear character sheaves on G to character
sheaves on its abelianization Gab = G/Gder, where Gder is defined by [Ber70, Défini-
tion 7.2.2] and the quotient Gab is an instance of [Gab70, Section 7.2.2]. While every
character χ ∈ G(k)∗ vanishes on G(k)der, it may not vanish on Gder(k). For exam-
ple, if k has odd characteristic then there are nontrivial characters PGL2(k)→ Q̄×`
vanishing on PGL2(k)der = PSL2(k) (see Section 4). In passing to Gab, we may only
hope to geometrize characters that vanish on all of Gder(k).
We begin this section with the main definition in this paper – the category CCS(G)

of commutative character sheaves, Definition 3.2. This definition is delicate and
somewhat technical, but it is vindicated in Theorem 3.10 which shows that CCS(G)
is equivalent to the category of commutative character sheaves on the abelianization
Gab of G. To prove Theorem 3.10 we use descent theory in Section 3.2, in the process
giving insight into Definition 3.2. Section 3 concludes with Theorem 3.12, showing
that the dictionary from CCS(G) to characters of G(k) in fact encompasses every
character vanishing on Gder(k).

3.1. Main definition

Recall from Section 1 that we refer to objects in category CS(G), defined as
in [CR18, Definition 1.1], as linear character sheaves when G is smooth but not
necessarily commutative. We define the following category to track the trivialization
on the derived subgroup; commutative character sheaves will then be defined as a
subcategory.
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Definition 3.1. — Let CSab(G) denote the category of triples (L, µ, β) where
(L, µ) ∈ CS(G) and β : L|Gder → (Q̄`)Gder is an isomorphism of Weil local systems
on Gder with the constant sheaf on Gder. A morphism (L, µ, β) → (L′, µ′, β′) is a
morphism α : (L, µ)→ (L′, µ′) in CS(G) such that β = β′ ◦ α|Gder .

The reason for tracking β is that it determines an isomorphism γ : m∗L → θ∗m∗L
which will replace the ξ of Definition 2.1, as follows. Let i : G→ G be inversion and
c : G×G→ Gder be the commutator map, defined by c(x, y) = xyx−1y−1. Both are
morphisms of k-schemes. Set m′ = i ◦ m ◦ θ and let jder : Gder → G be inclusion;
then jder ◦ c = m◦ (m×m′). Then β : L|Gder → (Q̄`)Gder determines the isomorphism
γ′ : m∗L ⊗ θ∗m∗i∗L → (Q̄`)G×G by the diagram of isomorphisms below.

(3.1)

c∗ (L|Gder) c∗
((

Q̄`

)
Gder

)

c∗j∗derL
(
Q̄`

)
G×G

(m×m′)∗m∗L m∗L ⊗ θ∗m∗i∗L

(m×m′)∗ (L� L) m∗L ⊗ (m′)∗L

c∗(β)

jder◦c=m◦(m×m′)

(m×m′)∗(µ)

γ′

m′= i◦m◦θ

In the diagram above, the arrows labeled with equations come from canonical isomor-
phisms of functors on Weil sheaves derived from the equations; so, for example, the
middle left isomorphism comes from (m×m′)∗m∗ ∼= c∗j∗der since jder◦c = m◦(m×m′).
Using the monoidal structure of the category of Weil local systems on G × G, the
isomorphism γ′ : m∗L ⊗ θ∗m∗i∗L → (Q̄`)G×G defines an isomorphism

m∗L → (θ∗m∗i∗L)∨ .
Applying the canonical isomorphisms (θ∗m∗i∗L)∨ ∼= θ∗m∗i∗(L∨) and i∗(L∨) ∼= L,
this map provides the promised isomorphism

γ : m∗L θ∗m∗L.

Definition 3.2. — The category CCS(G) of commutative character sheaves on
G is the full subcategory of CSab(G) consisting of triples (L, µ, β) such that the
following diagram of Weil sheaves on G×G commutes:

m∗L L� L

θ∗ (m∗L) θ∗ (L� L) .

γ

µ

ϑ

θ∗µ

Here γ : m∗L → θ∗m∗L is the isomorphism built from β : L|Gder → (Q̄`)Gder as
above.
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3.2. Descent

In this section we give an equivalence of categories between CS(Gab) and CSab(G)
and use it to describe the pullback functor q∗ : CS(Gab) → CS(G) in terms of
the forgetful functor CSab(G) → CS(G), where q : G → Gab is the abelianization
quotient with kernel Gder. But first, in order to study commutative character sheaves,
we need some auxiliary categories.

3.2.1. Equivariant Weil local systems

Let Loc(G) be the category of Weil local systems on G. Let Locder(G) be the
category of Gder-equivariant Weil local systems on G, whose definition we now recall.
Let n : Gder × G → G be the restriction of m : G × G → G to Gder × G, let
p : Gder ×G→ G be projection to the second component, and let s : G→ Gder ×G
be given by s(g) = (1, g). Then the quotient q : G→ Gab is a regular epimorphism
of smooth group schemes with kernel pair (n, p).

Gder ×G G Gab
n

p

q

Consider the morphisms

Gder ×Gder ×G Gder ×G G
b1, b2, b3 n

p

defined by

b1(h1, h2, g) = (h1h2, g)
b2(h1, h2, g) = (h1, h2g)
b3(h1, h2, g) = (h2, g).

Note that

(3.2)
n ◦ b1 = n ◦ b2

n ◦ b3 = p ◦ b2

p ◦ b1 = p ◦ b3.

A Gder-equivariant Weil local system on G is a Weil local system L on G together
with an isomorphism

ν : n∗L → p∗L

of Weil local systems on Gder ×G such that

(3.3) s∗(ν) = idL
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and such that the following diagram of isomorphisms of Weil local systems on
Gder ×Gder ×G commutes.

(3.4)

b∗2n
∗ L b∗2p

∗ L

b∗1n
∗ L b∗3n

∗ L

b∗1p
∗ L b∗3p

∗ L

n◦b1 =n◦b2

b∗2(ν)

p◦b2 =n◦b3

b∗1(ν) b∗3(ν)

p◦b3 = p◦b1

Morphisms of H-equivariant Weil local systems (L, ν)→ (L′, ν ′) are morphisms of
Weil local systems α : L → L′ for which the diagram

(3.5)
n∗L n∗L′

p∗L p∗L′
ν

n∗(α)

ν′

p∗(α)

commutes. This defines Locder(G), the category ofGder-equivariant Weil local systems
on G. The reader will recognize this notion as the Weil local system version of
equivariant sheaves for the action n of Gder on G, as can be found, for example,
in [BL94, 0.2].
Let Loc(Gab) be the category of Weil local systems on Gab. If Lab ∈ Loc(Gab) then

q∗Lab ∈ Loc(G) comes equipped with a canonical isomorphism ν(Lab) : n∗L → p∗L
defined by the following diagram of isomorphisms.

n∗L p∗L

n∗ (q∗Lab) p∗ (q∗Lab)

ν(Lab)

q◦n= q◦p

Then (q∗Lab, ν(Lab)) satisfies (3.3) and (3.4), so (q∗Lab, ν(Lab)) ∈ Locder(G). More-
over, if αab : Lab → Lab is a morphism in Loc(Gab) then q∗(αab) satisfies the condition
in (3.5), so q∗(αab) is a morphism in Locder(G). This defines the functor

L : Loc(Gab)→ Locder(G)
Lemma 3.3. — SupposeG is a smooth group scheme. The functor L : Loc(Gab)→

Locder(G) is an equivalence.
Proof. — The quotient q : G → Gab is an Gder-torsor in the fppf topology

by [Gab70, Theorem 3.2], and thus a Gder-torsor in the fpqc topology. The lemma
is now a result from descent theory, arguing as in [FGI+05, Theorem 4.46] for exam-
ple. �

3.2.2. Equivariant linear character sheaves

With reference to Section 3.2.1, we define a Gder-equivariant linear character sheaf
on G to be a triple (L, µ, ν), where (L, µ) is a linear character sheaf and (L, ν) is an
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Gder-equivariant Weil local system. A morphism of Gder-equivariant linear character
sheaves (L, µ, ν)→ (L′, µ′, ν ′) is a morphism of Gder-equivariant Weil local systems
α : L → L′ which is also a morphism of linear character sheaves; Let CSder(G) be
the category of Gder-equivariant linear character sheaves on G.
Consider the functor

q∗ : CS(Gab)→ CS(G)

given on objects by (Lab, µab) 7→ (q∗Lab, (q2)∗µab); this is an instance of [CR18,
Lemma 1.4]. To see that (q∗Lab, (q2)∗µab) is indeed a linear character sheaf on G,
verify [CR18, CS.3]. Now set L(Lab) = (L, ν), where L : Loc(Gab) → Locder(G) is
the comparison functor above, so L = q∗Lab and ν = ν(Lab). Then (L, µ, ν) is an
object in CSder(G). If αab : (Lab, µab)→ (L′ab, µ

′
ab) is a morphism in CS(Gab), then

q∗(αab) : (L, µ) → (L′, µ′) satisfies [CR18, CS4], so α = q∗(αab) is a morphism in
CS(G). These observations define the comparison functor

q∗ab : CS(Gab)→ CSder(G)

and also show that the functor q∗ : CS(Gab) → CS(G) factors according to the
following commuting diagram of functors

(3.6)
CS(G) CS(Gab)

CSder(G).

q∗

q∗ab
forget

The definition of q∗ab : CS(Gab)→ CSder(G) will be revisited in the proof of Proposi-
tion 3.5.
Set G2 = G × G, so G2

der = Gder × Gder and G2
ab = Gab × Gab. Likewise define

n2 : G2
der ×G2 → G2 and p2 : G2

der ×G→ G.

Lemma 3.4. — If (L, µ, ν) is a Gder-equivariant linear character sheaf on G then
µ : m∗L → L � L is a morphism of G2

der-equivariant Weil local systems on G2, as
defined in Section 3.2.1.

Proof. — Define

d : Gder ×Gder ×G×G→ Gder ×G×Gder ×G
(h1, h2, g1, g2) 7→ (h1, g1, h2, g2)

n2 : Gder ×G×Gder ×G→ G×G
(h1, g1, h2, g2) 7→ (h1g1, h2g2)

p2 : Gder ×G×Gder ×G→ G×G
(h1, g1, h2, g2) 7→ (g1, g2) .
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The following diagram defines the isomorphisms needed to see that both m∗L and
L� L are G2

der-equivariant Weil local systems.

n∗2 (m∗L) p∗2 (m∗L)

n∗2 (L� L) p∗2 (L� L)

d∗ (n∗L� n∗L) d∗(p∗L� p∗L)

n∗2(µ) p∗2(µ)

n2 =n2◦d p2 = p2◦d
d∗(ν�ν)

The dashed arrows both satisfy (3.3) and (3.4) as they apply here. This diagram
also shows that µ : m∗L → L� L is a morphism of G2

der-equivariant local systems,
since it satisfies (3.5) as it applies here. �

Proposition 3.5. — Suppose G is a smooth group scheme. Then pullback along
q : G→ Gab defines an equivalence CS(Gab)→ CSder(G).

Proof. — Let L2 : Loc(G2
ab) → Locder(G2) be the comparison functor for the

quotient q2 : G2 → G2
ab. Then L2 is also an equivalence by Lemma 3.3. Moreover,

using Lemma 3.4, we may rewrite the comparison functor q∗ab on objects by

CS(Gab)→ CSder(G)

(Lab, µab) 7→
(
L(Lab), L2(µab)

)
.

and on morphisms by α 7→ L(α). The proposition now follows from the fact that
both L and L2 are equivalences. �

3.2.3. Rigidification

We may now relate CSab(G) to CS(Gab).

Proposition 3.6. — The categories CSab(G) and CS(Gab) are equivalent.

Proof. — In light of Proposition 3.5, it suffices to exhibit an equivalence between
CSder(G) and CSab(G).
We begin by defining a functor CSab(G)→ CSder(G). Let jder : Gder → G be the

kernel of q : G→ Gab Define k : Gder ×G→ G×G by k(h, g) = (jder(h), g). Then
for (L, µ, ν) ∈ CSder(G), define β : L|Gder → (Q̄`)Gder by the following diagram.

(3.7)

n∗L p∗L

k∗m∗L
(
Q̄`

)
Gder

� L

k∗ (L� L) L|Gder � L

m◦k=n

ν

k∗(µ)
β� idL
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Then β = rder ◦j∗(ν), where rder : (L1)Gder → (Q̄`)Gder is the isomorphism of constant
local systems determined by the rigidification r : L1 → Q̄` of L determined by µ
(see [CR18, Remark 1.11]) so that

(3.8)
L1 Q̄`

L1 ⊗ L1 Q̄` ⊗ Q̄`

r

µ(1, 1)

r⊗ r

commutes where, as usual, = denotes a canonical isomorphism. To show that
(L, µ, β) ∈ CSab(G), we must see that β is a morphism in CS(Gder) by showing
that the following diagram commutes in Loc(G2

der).

(3.9)

m∗derL|Gder (Q̄`)G2
der

L |Gder � L|Gder

(
Q̄`

)
Gder

�
(
Q̄`

)
Gder

m∗derβ

β�β

By Proposition 3.5, L = q∗Lab, for some (Lab, µab) ∈ CS(Gab). Thus, L|Gder =
(L1)Gder and the diagram above becomes a diagram of constant Weil local systems
on G2

der. We can therefore test whether diagram commutes by evaluating all local
systems at (1, 1) ∈ G2

der. Doing this recovers (3.8) from (3.9), so (3.8) commutes.
After confirming that morphisms that commute with µ and β also commute with µ
and ν, this concludes the definition of the functor CSab(G)→ CSder(G).
The adjoint functor CSder(G) → CSab(G) is given by a similar strategy: given

(L, µ, β) ∈ CSder(G), define (L, µ, ν) again using (3.7). Then verify that (L, ν) sat-
isfies (3.4) as it applies here, so that (L, ν) ∈ Locder(G). After confirming that
morphisms that commute with µ and ν also commute with µ and β, this concludes
the definition of the functor CSder(G) → CSab(G). From these constructions, it is
now clear that CSder(G)→ CSab(G) is an equivalence. �

Corollary 3.7. — If G is a smooth group scheme and (L, µ) ∈ CS(G), then the
restriction of (L, µ) to Gder is trivial if and only if (L, µ) ∼= q∗(Lab, µab) in CS(G),
for some (Lab, µab) ∈ CS(Gab).

Proof. — Notation as in the proof of Proposition 3.5. Consider the following dia-
gram.

CS(Gder) CS(G) CS(Gab)

CSab(G)

j∗der q∗

q∗ab
forget

Now, suppose (L, µ) ∈ CS(G) and there is an isomorphism β : L|Gder → (Q̄`)Gder

so that (L, µ, β) ∈ CSab(G). By Proposition 3.5, there is some (Lab, µab) ∈ CS(Gab)
with (L, µ, β) ∼= q∗ab(Lab, µab). Applying the forgetful functor CSGder(G) → CS(G)
to this isomorphism, it follows that (L, µ) ∼= q∗(Lab, µab) in CS(G), as desired.
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Conversely, suppose (L, µ) ∈ CS(G) and (L, µ) ∼= q∗(Lab, µab) in CS(G). Then
j∗der (L, µ) ∼= j∗derq

∗ (Lab, µab)
in CS(Gder). Since q ◦ jder = 1, it follows that the restriction of (L, µ) to Gder is
trivial. �

We may interpret this corollary as measuring how far q∗ is from being essentially
surjective. The next result shows that it is also not full. Let C denote the cokernel
of the natural map

Hom
(
π0(Ḡ)Fr , Q̄×`

)
→ Hom

(
π0(Ḡder)Fr , Q̄×`

)
,

where π0(Ḡ)Fr denotes the coinvariants of the action of Frobenius on the component
group of Ḡ

Corollary 3.8. — If G is a smooth group scheme and (L, µ) is a linear character
sheaf on G with trivial restriction to Gder, then the set of isomorphism classes of
objects in CS(Gab) mapping to (L, µ) under q∗ is a principal homogeneous space
for C.

Proof. — By Proposition 3.5, it suffices to find the set of isomorphism classes in
CSab(G) mapping to (L, µ) under the forgetful functor. By the previous corollary
this set is nonempty. If (L, µ, β) and (L, µ, β′) both map to (L, µ), then β′ ◦ β−1 is
an automorphism of the constant sheaf on Gder. Conversely, if ϕ is an automorphism
of (Q̄`)Gder and (L, µ, β) ∈ CSab(G) then (L, µ, ϕ ◦ β) ∈ CSab(G). As in [CR18,
Theorem 3.9], the automorphism group is isomorphic to Hom(π0(Ḡder)Fr , Q̄×` ). Fi-
nally, we note that any automorphism α of (L, µ) ∈ CS(G) defines an isomorphism
(L, µ, β ◦ α|Gder) → (L, µ, β). Applying the analogue of [CR18, Theorem 3.9] again
yields the desired result. �

3.3. Objects and maps in commutative character sheaves

We are now in a position to prove that commutative character sheaves on G match
perfectly with commutative character sheaves on Gab. We start with a method that
will allow us to situate the diagram in Definition 3.2 within CSab(G2).

Lemma 3.9. — If (L, µ, β) ∈ CSab(G) then µ : m∗L → L�L, γ : m∗L → θ∗(m∗L)
and ϑ : L� L → θ∗(L� L) are morphisms in CSab(G2).

Proof. — Define m2 : G2×G2 → G2 by m2(g1, g2, g
′
1, g
′
2) = (g1g

′
1, g2g

′
2). Also define

p2
i : G2×G2 → G2 by p2

i (g1, g2, g1,
′ g′2) = (gi, g′i). First we show that m∗L is an object

in CS(G2) by equipping it with an isomorphism µ2
m : (m2)∗(m∗L) → m∗L �m∗L

defined by the diagram below.

(m2)∗(m∗L) m∗L�m∗L

(m2)∗(L� L) (m2)∗(p1)∗L ⊗ (m2)∗(p2)∗L (p2
1)∗m∗L ⊗ (p2

2)∗m∗L

(m2)∗µ

µ2
m
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The pair (m∗L, µ2
m) satisfies the conditions appearing in [CR18, Definition 1.1]. The

restriction of m∗L to G2
der = Gder ×Gder is canonically isomorphic to (Q̄`)G2

der
by

(m∗L) |G2
der

(Q̄`)G2
der

(L� L) |G2
der

(L|Gder) � (L|Gder) .

µ|
G2

der

β2
m

β�β

This shows that (m∗L, µ2
m, β

2
m) ∈ CSab(G2). Similar work defines (L � L, µ2

�, β
2
�)

∈ CSab(G2). By construction, µ : m∗L → L�L is a morphism in CSab(G2). Similar
work shows that γ : m∗L → θ∗(m∗L) and ϑ : L�L → θ∗(L�L) are also morphisms
in CSab(G2). �

Suppose G is commutative, so Gder = 1. Suppose (L, µ, β) is an object in CSab(G).
Then β : L1 → Q̄` is an isomorphism in CS(1), which is unique by [CR18, Theo-
rem 3.9]. Tracing through the construction of γ : m∗L → θ∗m∗L from β : L1 → Q̄`,
we find that γ : m∗L → θ∗m∗L is the canonical isomorphism coming from the
equation m = m ◦ θ. Thus, when G is commutative, Definition 3.2 agrees with
Definition 2.1. The next result generalizes this observation.

Theorem 3.10. — Pull-back along the abelianization q : G → Gab defines an
equivalence of categories

CCS(Gab)→ CCS(G).

Proof. — By definition, CCS(G) is a full subcategory of CSab(G); likewise,
CCS(Gab) is a full subcategory of CSab(Gab). We have just seen that CSab(Gab)
is equivalent to CS(Gab). By Proposition 3.5, pullback along the abelianization
q : G → Gab induces an equivalence q∗ab : CS(Gab) → CSab(G). Thus, the functor
CSab(Gab) → CSab(G) induced by pullback along q is an equivalence. The functor
CCS(Gab)→ CCS(G) under consideration is the restriction of CSab(Gab)→ CSab(G)
to the subcategory CCS(Gab).

CS(Gab)

CSab(G) CSab(Gab)

CCS(G) CCS(Gab)

q∗ab equiv.

To prove the theorem, it is now sufficient to show that CCS(Gab) → CCS(G) is
essentially surjective. Suppose (L, ν, β) ∈ CCS(G). Then (L, ν, β) ∈ CSab(G). Let
(Lab, µab) ∈ CS(Gab) be given by the equivalences above. Let ξ : m∗abLab → θ∗m∗abLab
be the isomorphism attached to (Lab, µab) ∈ CS(Gab) as in Section 2. Let γ : m∗L →
θ∗m∗L be the isomorphism attached to β : L|Gder → (Q̄`)Gder as in Section 3.1.
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By Lemma 3.9, the diagrams below are in CS(Gab) (right) and CSab(G) (left).

m∗L L� L m∗abLab Lab � Lab

θ∗ (m∗L) θ∗ (L� L) θ∗ (m∗abLab) θ∗ (Lab � Lab)

γ

µ

ϑ ξ

µab

ϑ

(q2)∗ab

θ∗µ θ∗µab

The diagram on the left is the result of applying the functor (q2)∗ab to the one on
the right; in particular γ = (q2)∗abξ. Since (q2)∗ab is an equivalence by Proposition 3.5,
it follows that the diagram in Definition 3.2 commutes if and only if the diagram
in Definition 2.1 commutes. In other words, (L, µ, β) ∈ CCS(G) if and only if
(Lab, µab) ∈ CCS(Gab). �

We may use Theorem 3.10 to give a description of the morphisms and the isomor-
phism classes of objects in CCS(G).

Corollary 3.11. — The category CCS(G) is monoidal and there is a canonical
isomorphism

CCS(G)/iso ∼= Hom
(
Gab(k), Q̄×`

)
.

Every map in CCS(G) is either trivial or an isomorphism, and the automorphism
group of any object in CCS(G) is canonically isomorphic to Hom(π0(Ḡab)Fr , Q̄×` ).

Proof. — The first claim follows from Theorems 2.5 and 3.10. Let us write (L, µ, β)
7→ (Lab, µab) to indicate the equivalence appearing in Theorem 3.10; then

AutCCS(G) (L, µ, β) = AutCCS(Gab) (Lab, µab) .

By [CR18, Theorem 3.9], AutCCS(Gab)(Lab, µab) = Hom(π0(Ḡab)Fr , Q̄×` ). �

3.4. Geometrizing characters trivial on the derived subgroup

Corollary 3.11 shows that commutative character sheaves on G provide a natural
geometrization of characters of Gab(k). In Theorem 3.12 we take this one small step
further by exploring the relation between characters of G(k) and objects in CCS(G).

Theorem 3.12. — The trace of Frobenius Tr : CCS(G)/iso → G(k)∗ fits into the
following diagram,

CCS(Gab)/iso CCS(G)/iso

1 ∆∗G Gab(k)∗ G(k)∗ Gder(k)∗ 1,

Tr∼=

∼=

Tr

where ∆G is the image of the connecting homomorphism Gab(k)→ H1(k,Gder). Thus
the category CCS(G) geometrizes characters of G(k) in the following sense: for every
group homomorphism χ : G(k) → Q̄×` that vanishes on Gder(k), there is an object
(L, µ, β) in CCS(G) such that tL = χ. While the geometrization of χ is not unique,
the isomorphism classes of possibilities are enumerated by ∆∗G.
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Proof. — By the definition of ∆G, we have a short exact sequence

1→ Gder(k)→ G(k)→ Gab(k)→ ∆G → 1.

Applying Hom(−, Q̄×` ), which is exact since Q̄×` is divisible, yields the bottom row
in the statement.
By Theorem 3.10, the map CCS(Gab)/iso → CCS(G)/iso is an isomorphism. More-

over, since both CCS(Gab)/iso → CCS(G)/iso and Gab(k)∗ → G(k)∗ are defined by
pullback along q, the square in the statement of the theorem commutes. Finally,
Tr : CCS(Gab)/iso → Gab(k)∗ is an isomorphism by Corollary 3.11. �

4. Geometrizing Characters Nontrivial on the Derived
Subgroup

If χ is a character of G(k) vanishing on Gder(k) then Theorem 3.12 shows that
there is a local system L such that m∗L ∼= L � L and Tr(L) = χ. In this section,
we give methods for geometrizing characters that do not vanish on Gder(k), though
the results may not be local systems or conjugation-equivariant, a notion that we
now define.

4.1. Conjugation equivariant Weil sheaves

A Weil sheaf L is said to be conjugation-equivariant if a∗L ∼= p∗2L, where a :
G × G → G is conjugation a(x, y) = xyx−1 and p2 : G × G → G is projection
p2(x, y) = y. If (L, µ) is a linear character sheaf on G, then L is conjugation-
equivariant. Indeed, the isomorphism µ : m∗L → L� L determines an isomorphism
a∗L → p∗2L of Weil sheaves on G×G by the following diagram.

a∗L p∗2L

(m× (i ◦ p1))∗m∗L p∗1(L ⊗ L∨)⊗ p∗2L

(m× (i ◦ p1))∗(L� L) p∗1L ⊗ p∗2L ⊗ p∗1L∨

m∗L ⊗ (i ◦ p1))∗L (L� L)⊗ (i ◦ p1)∗L

a=m◦(m×(i◦ p1))

(m×(i◦ p1))∗µ

L⊗L∨ ∼= (Q̄`)G

i◦p1 = p2◦(m×(i◦p1))m= p1◦(m×(i◦p1))

µ⊗ id

Although every linear character sheaf on G is a conjugation-equivariant Weil local
system on G, the converse is certainly not true.
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4.2. Lusztig’s character sheaves

For connected reductive groups G over k, Lusztig’s character sheaves are sim-
ple perverse sheaves IC(C,L) on G that come equipped with an isomorphism
a∗ IC(C,L) → p∗2 IC(C,L) in the triangulated category Db

c(G × G; Q̄`). Conse-
quently, when IC(C,L) is also a Weil sheaf complex, its trace of Frobenius function
tIC(C,L) : G(k)→ Q̄` is a class function, called the characteristic function of IC(C,L).
By [Lus86, Corollary 25.7], Weil character sheaves on G determine a basis for the
vector space of class functions on G(k); in particular, any character of any rep-
resentation of G(k) can be expressed as a Q̄-linear combination of characteristic
functions of Weil character sheaves on G. Let us use the notation Db

c,G(G; Q̄`) for
the category of conjugation-equivariant objects in Db

c(G; Q̄`), as defined in [BL94]
for example, and KDb

c,G(G; Q̄`) for the Grothendieck group of Db
c,G(G; Q̄`); we set

KQ̄`D
b
c,G(G; Q̄`) := KDb

c,G(G; Q̄`)⊗Z Q̄`. Thus, Lusztig’s result shows that for every
representation ρ of G(k) there is some F ∈ KQ̄`D

b
c,G(G; Q̄`) such that Tr ρ = tF .

By [Lus04, Theorem 21.21], this result extends to all reductive groups G over k
without the hypothesis that G is connected.
When specialized to the case of characters χ of G(k), Lusztig’s theory of character

sheaves geometrizes χ using KQ̄`D
b
c,G(G; Q̄`); of course, the resulting geometrization

is generally not a local system. For an example when this method can be used to
geometrize a character of G(k) which is not trivial on Gder(k), consider G = SL2 over
F3. Then Gder = G, but G(k)der is the subgroup of semisimple elements, isomorphic
to the quaternion group Q8 and of index 3. There is thus a nontrivial character
χ : G(k) → µ3 ⊂ Q̄×` . Lusztig’s character sheaves are constructed by perverse
extension of local systems on a certain stratification of G. In the case of SL2, there
are five strata:

C3 regular semisimple elements
C2 regular unipotent elements
C−2 {−u : regular unipotent u}
{1} {1}
{2} {2}

Each Weil character sheaf on SL2 over F3 is the perverse extension of one of
the following local systems: the rank-1 constant sheaf 1C3 (resp. 1C2 , 1C−2 , 1{1},
1{2}) on C3 (resp. C2, C−2 , {1}, {2}), or the non-trivial rank-1 local system EC2

(resp. EC−2 ) on C
−
2 (resp. EC−2 ) trivialized by the double cover of C2 (resp. C−2 ). The

following table describes these perverse sheaves by showing how they decompose in
the Grothendieck group into standard sheaves on SL2, and also gives the values of
the trace of Frobenius on the 7 conjugacy classes in SL2(F3).
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Perverse Standard Trace of Frobenius values at conjugacy classes
Sheaf Sheaves ( 1 0

0 1 ) ( 2 0
0 2 ) ( 0 1

2 0 ) ( 1 1
0 1 ) ( 1 2

0 1 ) ( 2 1
0 2 ) ( 2 2

0 2 )
IC (1C3) 1SL2 [3] −1 −1 −1 −1 −1 −1 −1
IC (1C2) 1C2 [2]⊕ 1{1}[2] 1 0 0 1 1 0 0
IC (EC2) EC2 [2] 0 0 0

√
−3 −

√
−3 0 0

IC
(
1C−2

)
1C−2 [2]⊕ 1{2}[2] 0 1 0 0 0 1 1

IC
(
EC−2

)
EC−2 [2] 0 0 0 0 0

√
−3 −

√
−3

IC
(
1{1}

)
1{1}[0] 1 0 0 0 0 0 0

IC
(
1{2}

)
1{2}[0] 0 1 0 0 0 0 0

Using the trace of Frobenius values, we find that

− IC(1C3)− 3
2IC(1C2) + 1

2IC(EC2)− 3
2IC

(
1C−2

)
− 1

2IC
(
EC−2

)
+ 3

2IC
(
1{1}

)
+ 3

2IC
(
1{2}

)
geometrizes χ. Note that all seven character sheaves appear in this geometrization,
even though we start just with a character; in particular, the geometrization of the
character χ given by this method is not a local system.
We remark that for p > 3 and G = SL2, we have Gder(k) = G(k)der. In this

case, therefore, any character of G(k) may be geometrized by a local system using
Theorem 3.12, so Lusztig’s character sheaves are not required.

4.3. Pushforward along the Lang isogeny

For connected, commutative groups, the standard method for geometrizing a
character χ is to use the Lang isogeny L : G → G, defined by L(y) = y−1 FrG(y).
The pushforward L!(Q̄`)G of the constant sheaf decomposes into a direct sum of rank
1 local systems according to characters of the automorphism group G(k) of the cover
L, and the local system L associated to χ−1 will have Tr(L) = χ.
If G is nonabelian or disconnected, a similar strategy sometimes succeeds in ge-

ometrizing characters χ : G(k)→ Q̄×` . Define L̃ : G→ G by L̃(y) = FrG(y)y−1. The
fibers of L are right cosets of G(k) and the fibers of L̃ are left cosets. Suppose that
(L.1) G(k) ⊂ im(L̃) ∩ im(L) (which will hold if G is connected).
Then we may associate to each χ a function χ̃ : G(k)→ Q̄×` as follows. If z ∈ G(k),
write z = L̃(y) and define χ̃(z) = χ(L(y)). Note that χ̃ is well defined since changing
y to ya for a ∈ G(k) has the effect of conjugating L(y) by a−1, which has no effect
on the value χ(L(y)). In order to obtain a local system with trace χ, we must also
assume that
(L.2) χ̃ is also a character.
Proposition 4.1. — Let G be a smooth group scheme over k and assume (L.1)

and (L.2). Let L = (L!(Q̄`)G)χ̃−1 . Then Tr(L) = χ.
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Proof. — The stalk of L at x ∈ G(k) is
Lx =

{
s : L−1(x)→ Q̄` : s(ay) = χ̃−1(a)s(y) for all a ∈ G(k), y ∈ L−1(x)

}
.

For any y ∈ L−1(x), note that Fr−1
G (y) = yx−1 and L̃(y) = yxy−1 ∈ G(k). Frobenius

acts on s ∈ Lx by(
Frs
)

(y) = s
(
Fr−1

G (y)
)

= χ̃−1
(
yx−1y−1

)
s(y) = χ̃

(
L̃(y)

)
s(y) = χ(x)s(y),

thus proving the claim. �
Note that the resulting sheaf is a local system, but is not necessarily conjugation-

equivariant because the Lang map is not a homomorphism when G is nonabelian.
This method of geometrization also applies to the example considered above. Let

G = SL2 over F3 and let χ : G(k) → µ3 ⊂ Q̄×` be a non-trivial character. In this
case, χ̃ = χ−1. Since G is connected and χ̃ is a character, Proposition 4.1 produces
a local system L on G which geometrizes χ. This L is not conjugation-equivariant.
The same method of geometrization applies to G = PGL2 when k has odd char-

acteristic. In this case, Gder = G, but G(k)der = PSL2(k) has index 2 in G(k). For
the non-trivial character χ of G(k), χ̃ = χ, so again we may use Proposition 4.1 to
geometrize χ as a local system.

5. Application to type theory for p-adic groups

We now show how to use Theorem 3.12 to geometrize Yu type data and how to
geometrize types for supercuspidal representations of tamely ramified p-adic groups.

5.1. Quasicharacters of smooth group schemes over certain Henselian
traits

Recall that R is the ring of integers of a local field with finite residue field k. The
maximal ideal of R will be denoted by m. Let G be a smooth group scheme over
R. Here we shall use [BGA18] for the definition and fundamental properties of the
Greenberg transform. Let G be the Greenberg transform of G; then G is a group
scheme over k and there is a canonical isomorphism

G(k) = G(R).
Let ϕ : G(R)→ Q̄×` be a quasicharacter. By the continuity of ϕ there is some r ∈ N
and a factorization

G(R) Q̄×`

G (R/pr+1)

ϕ

ϕr

The least such r ∈ N is called the level of ϕ. For any r ∈ N, define Rr :=R/pr+1

and set Gr := GrRr (G), the Greenberg transform of G×Spec(R) Spec(Rr). Then Gr is
a smooth group scheme over k and Gr(k) = G(Rr).
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Proposition 5.1. — Let G be a smooth group scheme over R. Let ϕ : G(R)
→ Q̄×` be a quasicharacter and let r be the level of ϕ. If ϕr : Gr(k)→ Q̄×` is trivial
on Gr, der(k) then there is a commutative character sheaf Lr ∈ CCS(Gr) such that

tLr = ϕr.

Proof. — This is a direct consequence of Theorem 3.12. �

With ϕ as above, note that if r′ is any integer greater or equal to the level r of ϕ,
then the pullback of Lr along Gr′ → Gr is a linear character sheaf on Gr. Thus, Lr′
is conjugation-equivariant in the sense of Section 4.1.
Recall that the full Greenberg transform G := GrR(G) is a group scheme over k

such that G(k) = G(R); it comes equipped with a morphism G→ Gr. The Weil sheaf
on G obtained from Lr by pullback along the morphism of group schemes G→ Gr

is a quasicharacter sheaf on G, in the sense of [CR18, Definition 4.2], such that
tL = ϕ.

5.2. Jacobi theory over finite fields

For use below, we recall some facts about the Heisenberg–Weil representation.
Let V be a finite-dimensional vector space over a finite field k equipped with a

symplectic paring 〈 , 〉 : V ×V → Z, where Z is a one-dimensional vector space over
k. Let V ] be the Heisenberg group determined by (Z, 〈 , 〉) [GH07, § 1.1]. Let Sp(V )
be the symplectic group determined by the symplectic pairing 〈 , 〉; this group acts
on V ]. The group Sp(V ) n V ] is called the Jacobi group. From the construction
above, it is clear that the Jacobi group may be viewed as the k-points of an algebraic
group over k; we will refer to that algebraic group as the Jacobi group.
Let ψ : Z → Q̄×` be an additive character and let ωψ be the Heisenberg represen-

tation on V ] with central character ψ [GH07, § 1.1]. The Heisenberg representation
determines a representation πψ of Sp(V ) with the same representation space as ωψ
and with the defining property: for each g ∈ Sp(V ), πψ(g) determines an isomor-
phism of representations ωgψ → ωψ. Let Wψ = πψ n ωψ be the Heisenberg–Weil
representation of the Jacobi group Sp(V ) n V ] given by ωψ and πψ [GH07, § 2.2].
By [GH07, Theorem 3.2.2.1] (see also [GH11, Theorem 4.5]), there is a Frobenius-

stable conjugation-equivariant perverse sheaf Kψ on Sp(V ) n V ] such that
(5.1) tKψ = Tr(Wψ).

In particular, this geometrization uses Db
c, Sp(V )nV ](Sp(V ) n V ]; Q̄`), as recalled in

Section 4.2, to geometrize Tr(Wψ).

5.3. Yu’s types and integral models

A Yu type datum ( ◦Ki, ◦ρ0, ϕi, d) consists of the following:
(Y0) a sequence of compact groups ◦K0 ⊆ ◦K1 ⊆ · · · ⊆ ◦Kd = ◦K;
(Y1) a continuous representation ◦ρ0 of ◦K0;
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(Y2) quasicharacters ϕi : ◦Ki → C×, for i = 0, . . . d.
The representation ◦ρ0 and the quasicharacters (ϕ0, . . . , ϕd) enjoy certain properties
which allow Yu to construct a sequence of types ( ◦Ki, ◦ρi), for i = 1, . . . , d. In order
to prepare for the construction of the geometric types of Theorem 5.2 we review
some further detail here. In Table 5.1 we explain how to convert the constructions
appearing in this section into the notation of [Yu01].
First, Yu introduces
(Y3) compact groups Ji ⊂ ◦K, for i = 0, . . . d, such that ◦Ki = J0 · · · Ji and, for

i = 0, . . . d−1, a natural action of ◦Ki on Ji+1 defining the groups ◦KinJi+1.

(5.2)

1

◦Ki ∩ Ji+1

1 Ji+1
◦Ki n Ji+1

◦Ki 1

◦Ki+1

1

πi+1

pi

Next, Yu defines a group homomorphism (in fact, a quotient) Ji+1 → Vi+1 where
Vi+1 is a finite abelian group, the latter also given the structure of a k-vector space.
The vector space Vi+1 is then equipped with a symplectic pairing 〈 , 〉i+1 : Vi+1 ×
Vi+1 → Zi+1, where Zi+1 is a one-dimensional vector space over k, itself equipped
with an additive character ψi+1 : Zi+1 → C×. This, in turn, is used to define a
map Ji+1 → V ]

i+1, where V
]
i+1 is the Heisenberg group determined by Vi+1, Zi+1,

〈 , 〉i+1 and ψi+1, as in Section 5.2. In fact, the quotient Ji+1 → V ]
i+1 factors

through a quotient Ji+1 → Hi+1 and an isomorphism ji+1 : Hi+1 → V ]
i+1, where

Hi+1 is a Heisenberg p-group in the sense of [Yu01]. Finally, Yu constructs a group
homomorphism fi+1 : ◦Ki → Sp(Vi+1) such that the pair (fi+1, ji+1) is a symplectic
action of ◦Ki on Hi+1 in the sense of [Yu01]. Taken together, this defines
(Y4) a group homomorphism hi+1 : ◦Ki n Ji+1 → Sp(Vi+1) n V ]

i+1 making the
following diagram commute.

1 Ji+1
◦Ki n Ji+1

◦Ki 1

1 V ]
i+1 Sp(Vi+1) n V ]

i+1 Sp(Vi+1) 1

hi+1

pi

fi

We can now recall how Yu uses all this to construct the types ( ◦Ki, ◦ρi); see [Yu01,
§ 4, 15]. The representations ◦ρi are defined recursively. For the base case i = 0,
set ◦ρ0 := ◦ρ0 ⊗ ϕ0; see (Y1) above. Now fix i. Let Wi+1 be the Heisenberg–Weil
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Table 5.1. Notation conversion chart.

this paper Jiu-Kang Yu, Construction of tame [Yu01]
supercuspidal representations

◦K0 ◦K0 = G0(F )y [Yu01, § 15]
◦Ki+1 ◦Ki+1 = ( ◦K0)~G(i+1)(F )y, (0, s0, ..., si) [Yu01, § 15]
◦ρ0 ◦ρ0 [Yu01, § 15]
◦ρi+1

◦ρi+1 [Yu01, § 15]
ϕi φi| ◦Ki [Yu01, § 3]
Ji+1 J i+1 = (Gi, Gi+1) (F )y, (ri, si) [Yu01, § 3]
Vi+1 J i+1/J i+1

+ = (Gi, Gi+1) (F )y, (ri, si)/ [Yu01, § 3]
(Gi, Gi+1) (F )y, (ri, s+

i )

V ]
i+1 (Gi, Gi+1) (F )y, (ri, si)/ ker

(
φ̂i

∣∣∣∣∣(Gi, Gi+1)(F )
y,(ri, s+

i )

)
[Yu01, § 4]

Zi+1 ker
(
V ]
i+1 → Vi+1

)
[Yu01, § 11]

(fj+1, ji+1) (f, j) [Yu01, §11]
〈 , 〉i+1 〈 , 〉 [Yu01, § 11]

representation of the Jacobi group Sp(Vi+1) n V ]
i+1, whose restriction to V ]

i+1 has
central character ψi+1. Pull-back along hi+1 to form h∗i+1(Wi+1), a representation of
◦Ki n Ji+1. Write inf( ◦ρi) for the representation of ◦Ki n Ji+1 obtained by pulling
back ◦ρi along ◦Ki n Ji+1 → ◦Ki. Consider the representation

(5.3) ◦ρi+1 :=h∗i+1(Wi+1)⊗ inf( ◦ρi)

of ◦KinJi+1. By [Yu01], the representation ◦ρi+1 of ◦KinJi+1 is trivial on ◦Ki∩Ji+1
so ◦ρi+1 descends to ◦Ki+1. Set ◦ρi+1 = ◦ρi+1 ⊗ ϕi+1. This completes the recursive
definition of the Yu ( ◦Ki, ◦ρi) for i = 0, . . . , d. By [Yu15, Proposition 10.2] there is
a sequence

G0 → G1 → · · · → Gd = G

of morphisms of affine smooth group schemes of finite type over R such that, on
R-points it gives the sequence ◦K0 ⊆ ◦K1 ⊆ · · · ⊆ ◦Kd above. Indeed, this is the
main result of [Yu15].
As explained in [Yu15, § 10.4], there is morphism of affine smooth group schemes

of finite type over R
J i → G,

for each i = 0, . . . d, such that J i(R) = Ji as a subgroup of G and such that the
image of the R-points under the multiplication map J0 × · · · × J i → G is ◦Ki, for
i = 0, . . . , d. There is a natural action of Gi on J i+1 in the category of smooth affine
group schemes over R so that the group scheme
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Gi n J i+1 gives
(
Gi n J i+1

)
(R) = ◦Ki n Ji+1.

Write J i+1
k for the special fibre J i+1×Spec(R) Spec(k) of J i+1. The vector space Vi+1

may realized as the k-points on a variety V i+1 over k, where V i+1, appears as a
quotient J i+1

k → V i+1 of algebraic groups over k. Then the quotient Ji+1 → Vi+1 is
realized as the composition

J i+1(R)→ J i+1(k) = J i+1
k (k)→ V i+1(k) = Vi+1.

Likewise, the Heisenberg p-group Hi+1, appearing in Section 5.3, may be realized as
a quotient of algebraic groups, and J i+1

k → H i+1 as the composition

J i+1(R)→ J i+1(k) = J i+1
k (k)→ H i+1

k (k) = Hi+1.

Finally, the group homomorphism fi : J0 · · · Ji → Sp(Vi+1) may be made geometric
in much the same way. Writing Gi

k for the special fibre Gi×Spec(R) Spec(k) of Gi, and
writing Gi, red

k for the reductive quotient of Gi
k, there is a quotient of algebraic groups

Gi, red
k → W i+1

k so that fi : J0 · · · Ji → Sp(Vi+1) is realized as the composition

Gi(R)→ Gi(k) = Gi
k(k)→ Gi, red

k (k)→ W i+1
k (k) = Sp(Vi+1).

With all this, we may revisit the quotients appearing in Section 5.3:

1 J i+1 Gi n J i+1 Gi 1

1 J i+1
k Gi

k n J i+1
k Gi

k 1

1 V ]
i+1 Sp(Vi+1) n V ]

i+1 Sp(Vi+1) 1,

where the last two rows are now understood as forming a diagram in the category of
algebraic groups over k. This realizes the Jacobi group Sp(Vi+1)n V ]

i+1 as a quotient
of the special fibre of the smooth group scheme Gi n J i+1 over R.
We may now revisit the ingredients in the construction of the representation ρ of

G(R) along the lines indicated by Yu and recalled in Section 5.3.
(M0) The compact groups ◦Ki appearing in (Y0) have been replaced by the smooth

group schemes Gi.
(M1) The continuous representation ◦ρ0 of ◦K0 appearing in (Y1) may be inter-

preted as a representation of G0(R) obtained by inflation along G0(R) →
G0(k) from a representation %0 of G0(k) = G0

k(k). In fact, %0 is itself obtained
by pulling back a representation %red

0 ; this is a consequence of [Yu15, § 10.5(i)].
(M2) The quasicharacters ϕi appearing in (Y2) are now quasicharacters of Gi(R),

for i = 0, . . . , d. In fact, if ri is the level of ϕi, as it appears in Section 5.1,
then ϕi is obtained by pulling back a quasicharacter ϕi :=ϕiri of the smooth
group scheme Gi :=Gi

ri
:= GrRri(G

i) along Gi → Gi.
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(M3) Diagram (5.2) in (Y3) is now replaced by the following diagram of smooth
group schemes over R.

(5.4)

1

Gi ×G J i+1

1 J i+1 Gi n J i+1 Gi 1

Gi+1

1

(M4) The representation h∗i+1(Wi+1) appearing in (Y4) is now obtained by pulling
back a representation along(

Gi n J i+1
)

(R)→
(
Gi n J i+1

)
(k).

Let wi+1 be that representation of (GinJ i+1)(k) = (Gi
knJ i+1

k )(k). Then wi+1
is itself obtained by pulling back the representation Wi+1 along the k-points
of the quotient

Gi
k n J i+1

k → Sp(Vi+1) n V ]
i+1.

This brings us back to the point made in [Yu15, § 10.5] as quoted in the Introduction
to this paper.

5.4. Geometrization of characters of certain types

We may now give the main result of Section 5, Theorem 5.2. Since Yu’s theory
refers to complex representations, and since our geometrization uses `-adic sheaves,
we grit our teeth and fix an isomorphism C ≈ Q̄`.
As we recalled in Section 5.3, a Yu type datum consists of compact groups ◦Ki, a

representation ◦ρ0 of ◦K0 and quasicharacters ϕi of ◦Ki, for i = 0, . . . , d; see (Y0),
(Y1) and (Y2). In Section 5.3 we also saw how a Yu type datum determines smooth
group schemes Gi, a representation %red

0 of the reductive quotient (G0)red
k of the

special fibre G0
k of G0, and quasicharacters ϕi of the group of k-rational points on

the level-ri Greenberg transform Gi of Gi; see (M0), (M1) and (M2). Theorem 5.2
places the following conditions on the Yu type datum:
(H1) for each i = 0, . . . , d, either

(a) Gi is reductive, or
(b) the quasicharacter ϕi of Gi is trivial on Gi, der(k).
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Hypothesis (H1a) may be used to geometrize each quasicharacter ϕi inside the
Grothendieck group KQ̄Db

c,Gi
(Gi; Q̄`). Alternatively, Hypothesis (H1b) allows us to

use Proposition 5.1 to geometrize each quasicharacter ϕi using local systems on Gi,
or more precisely, using commutative character sheaves on Gi. Using Sections 4.1
and 4.2 we see that, in both cases, the resulting geometrization may be interpreted as
an element in KQ̄Db

c,Gi
(Gi; Q̄`). Note that when Hypothesis (H1b) applies, it provides

a considerably simpler geometrization than when Hypothesis (H1a) applies.
We give examples illustrating Hypothesis (H1b): first, an example of a quasi-

character that does not vanish on Gi, der(k), and then a class of Yu data where it is
always satisfied. Let G = SL2 over Q2. Then the hyperspecial maximal compact ◦K0

reduces to SL2(Z/2d+1Z) at depth d. The derived subgroup of SL2(Z/2Z) has index 2,
while it has index 4 in positive depth. There is therefore a character ϕ0 of K of order
4 and depth 1 factoring through the quotient of SL2(Z/4Z) by its derived subgroup.
Taking the trivial representation for ◦ρ0 gives a datum not satisfying (H1b). Note
that this datum does not satisfy (H1a) either since the depth 1 Greenberg transform
of the hyperspecial ◦K0 is not reductive.
In contrast, there is a broad class of representations that automatically sat-

isfy (H1b). Recall that a representation is toral ([Adl98] and [Kal19, § 6]) if it
arises from a Yu datum of the form (S ⊂ G, ◦ρ0 = 1, (ϕd−1, 1)) where S is an elliptic
maximal torus and ϕd−1 is G-generic character of S(F ) of positive depth. Since S is
abelian, it has trivial derived subgroup and thus (H1b) is satisfied. Toral represen-
tations include epipelagic representations [RY14] and the representations considered
by Reeder in [Ree08].

Theorem 5.2. — Let ( ◦Ki, ◦ρ0, ϕi, d) be a Yu type datum that satisfies Hypothe-
ses (H1), and let ◦ρi be the representation of ◦Ki constructed from it in Section 5.3.
Then for each i = 0, . . . , d there is an element Fi ∈ KQ̄`D

b
c,Gi(Gi; Q̄`) such that

tFi = Tr( ◦ρi).

Proof. — Recall that Gi(k) = Gi(R) = ◦Ki, canonically. Let ri be the level of ϕi
as defined in Section 5.1. Set r = max{ri | i = 0, . . . , d}.
By [Lus04, Theorem 21.21], there is A ∈ KQ̄`D

b
c, (G0)red

k
((G0)red

k ; Q̄`) such that

tA = Tr %red
0 .

Let A0 ∈ KQ̄Db
c, (G0)k

((G0)k; Q̄`) be obtained by pullback along the quotient (G0)k
→ (G0)red

k . Then

tA0 = Tr %0.

The special fibre (G0)k of the smooth group scheme G0 is itself a smooth group
scheme, and may be identified with the Greenberg transform Q0 = GrR0 (G0) [CR18,
§ 4.3]. With r ∈ N as above, let A0

r be the equivariant Weil sheaf on the algebraic
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group Gi
r obtained by pull-back from A0 along the affine morphism Gi

r → Q0. Factor

(5.5)
G0(k) Q̄`

G0
r(k)

Tr( ◦ρ0)

Tr( ◦ρ0)r

Observe that Tr( ◦ρ0)r may be recovered from A0
r:

tA0
r

= Tr( ◦ρ0)r

Consider the Jacobi group Sp(Vi+1)nV ]
i+1 and the Heisenberg–Weil representation

Wi+1 appearing in Section 5.3. Let Ki+1 be the conjugation equivariant Weil sheaf
on the Jacobi group, recalled in Section 5.2, such that

tKi+1 = Tr(Wi+1).

Recall from Section 5.3 that Sp(Vi+1) n V ]
i+1 is a quotient of the special fibre of the

smooth group scheme Gi n J i+1. Let Ki+1
0 be the Weil sheaf on the special fibre

of Gi n J i+1 obtained from Wi+1 by pullback. Let Ki+1
r be the equivariant Weil

sheaf on GrRr (Gi n J i+1) obtained from Ki+1
0 by pullback along the affine morphism

GrRr (Gi n J i+1)→ GrR0 (Gi n J i+1).
We now defineAir ∈ KQ̄Db

c,Gir
for i = 0, . . . , d recursively, following the construction

of the representations ◦ρi, as reviewed in Section 5.3. First, set A0
r = A0

r and note
that (5.5) commutes with Tr( ◦ρ0)r replaced by tA0

r
. Using Hypothesis (H1), let Li

be the geometrization of the quasicharacter ϕi :=ϕiri appearing in (M2). If (H1a)
applies, then Li ∈ KQ̄`D

b
c,Gi

(Gi; Q̄`), using [Lus04, Theorem 21.21]; if (H1b) applies,
then Li ∈ CCS(Gi), using Proposition 5.1. In either case, Li ∈ KQ̄`D

b
c,Gi

(Gi; Q̄`) and

tLi = ϕi.

For each i, let Lir be the pull-back of Li along Gi
r → Gi; then Lir is a linear character

sheaf and

tLir = ϕir.

Now, suppose Air on Gi
r is defined such that

Gi(k) Q̄`

Gi
r(k)

Tr( ◦ρi)

tAir
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commutes. Applying the Greenberg functor GrRr to (5.4) gives

(5.6)

1

Gi
r ×Gr J i+1

r

1 J i+1
r Gi

r n J i+1
r Gi

r 1

Gi+1
r

1

πi+1
r

pir

where J i+1
r := GrRr (J i+1) and Gi

r := GrRr (Gi). By [BGA18, Proposition 14.2], the
sequences are exact. Consider Bi+1

r ∈ KQ̄`D
b
c,GirnJ

i+1
r

(Gi
r n J i+1

r ; Q̄`) defined by

Bi+1
r :=Ki+1

r ⊗
(
pir
)∗ (
Air ⊗ Lir

)
.

Comparing with (5.3), we see that tBi+1
r

is precisely the function obtained by factoring
the character of ◦ρi+1 through (GinJ i+1)(R)→ (GinJ i+1)(Rr) using the canonical
identification (Gi

r ×Gr J i+1
r )(k) = (Gi n J i+1)(Rr). In particular, tBi+1

r
is constant

on (Gi
r ×Gr J i+1

r )(k), taking the value dim ◦ρi+1. With reference to the morphism
πi+1
r : Gi

r n J i+1
r → Gi+1

r from (5.6), define

Ci+1
r :=

(
πi+1
r

)
!

(
Bi+1
r

)
.

Then Ci+1
r ∈ KQ̄`D

b
c,Gi+1

r
(Gi+1

r ; Q̄`) and

tCi+1
r

(x) =
∑

y ∈ (πi+1
r )−1

(x)

tBi+1
r

(y).

Since tBi+1
r

is constant on (Gi
r ×Gr J i+1

r )(k), it follows that

tCi+1
r

= ntBi+1
r

on Gi+1
r (k) with n equal to the product of #(Gi

r ×Gr J i+1
r )(k) and dim ◦ρi+1. Let

Ai+1
r be the element of KQ̄Db

c,Gi+1
r

(Gi+1
r ; Q̄`) given by Ai+1

r = 1
n
Ci+1
r . This completes

the inductive definition of Air so that the following diagram commutes.

Gi+1(k) Q̄`

Gi+1
r (k)

Tr( ◦ρi+1)

t
Ai+1
r
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Now set F ir = Air ⊗ Lir, for i = 0, . . . , d. Then F ir ∈ KQ̄`D
b
c,Gir

(Gi
r; Q̄`) such that

Gi(k) Q̄`

Gr(k)

Tr( ◦ρi)

tFir

commutes. Define F i ∈ KQ̄Db
c,Gi(Gi; Q̄`) by pulling back F ir along Gi → Gi

r. Then
tFi = Tr( ◦ρi),

as desired. �
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