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Abstract. — This paper is the first of a series where we study the spectral properties of
Dirac operators with the Coulomb potential generated by any finite signed charge distribution
µ. We show here that the operator has a unique distinguished self-adjoint extension under the
sole condition that µ has no atom of weight larger than or equal to one. Then we discuss the
case of a positive measure and characterize the domain using a quadratic form associated with
the upper spinor, following earlier works [EL07, EL08] by Esteban and Loss. This allows us to
provide min-max formulas for the eigenvalues in the gap. In the event that some eigenvalues
have dived into the negative continuum, the min-max formulas remain valid for the remaining
ones. At the end of the paper we also discuss the case of multi-center Dirac–Coulomb operators
corresponding to µ being a finite sum of deltas.

Résumé. — Dans ce premier article nous étudions les propriétés spectrales d’un opérateur
de Dirac auquel on ajoute le potentiel de Coulomb généré par une distribution de charge µ
quelconque. Nous montrons l’existence d’une unique extension auto-adjointe distinguée, sous
la seule condition que µ ne possède aucun atome de poids supérieur ou égal à un. Ensuite,
lorsque la mesure µ est positive nous caractérisons le domaine à l’aide d’une forme quadratique
pour le spineur haut, suivant une méthode introduite par Esteban et Loss dans [EL07, EL08].
Ceci nous permet de prouver des formules de min-max pour les valeurs propres situées dans
le trou spectral. La formule reste valable même dans le cas où certaines des valeurs propres
ont plongé dans le spectre continu inférieur. À la fin de l’article nous discutons du cas d’une
molécule, ce qui correspond à prendre µ égal à une somme finie de deltas.

1. Introduction

Relativistic effects play an important role in the description of quantum electrons in
molecules containing heavy nuclei, even for not so large values of the nuclear charge.
Without relativity, gold would have the same color as silver [GAD10], mercury would
be solid at room temperature [CPWS13] and batteries would not work [ZEP11]. This
is due to the very strong Coulomb forces experienced by the core electrons, which
can then attain large velocities of the order of the speed of light.
A proper description of such atoms and molecules is based on the Dirac oper-

ator [ELS08, Tha92]. This is an order-one differential operator which has several
famous mathematical difficulties, all associated with important physical features.
For instance the spectrum of the free Dirac operator is not semi-bounded which
prevents from giving an unambiguous definition of a “ground state” and turns out to
be related to the existence of the positron [ELS08]. In addition, the Dirac operator
has a critical behavior with respect to the Coulomb potential 1/|x| which gives a
bound Z 6 137 on the highest possible charge of atoms in the periodic table, for
point nuclei.
This paper is the first in a series where we study the spectral properties of Dirac

operators with the Coulomb potential generated by any finite (signed) measure µ
representing an external charge:

(1.1) D0 − µ ∗
1
|x|

= −i
3∑
j=1

αj∂xj + β − µ ∗ 1
|x|
.
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One typical example is when the measure µ describes the M nuclei in a molecule
and this corresponds to

µ =
M∑
m=1

αZm δRm

where Rm ∈ R3 and Zm ∈ (0,∞) are, respectively, the positions and charges of
the M nuclei, and where α ' 1/137 is the Sommerfeld fine structure constant. For
instance for water (H2O) we have M = 3, Z1 = Z2 = 1 and Z3 = 8. In practice,
one should also take into account the Coulomb repulsion between the electrons. In
mean-field type models such as Dirac–Fock or Kohn–Sham [ES99], this is described
by a nonlinear potential which is often more regular than the nuclear attraction.
This leads us to consider the following class of (signed) measures

µ =
M∑
m=1

αZm δRm + µ̃,

where the measure µ̃ is more regular (for instance absolutely continuous with respect
to the Lebesgue measure).
In this paper, we first quickly recall existing results and then prove the existence

of a distinguished self-adjoint extension for operators of the form (1.1), under the
sole assumptions that

(1.2) |µ|
(
R3
)
<∞ and |µ({R})| < 1 for all R ∈ R3.

In particular we allow an infinite number M = +∞ of atoms but assume that the
total nuclear charge is bounded. We follow well established methods for singular Dirac
operators [Kat83, Kla80, KW79, Nen76, Nen77, Sch72, Wüs73, Wüs75, Wüs77] but
face several difficulties due to the generality of our measure µ. In a second step we
consider the particular case of a positive measure (or more generally a measure so
that the Coulomb potential µ ∗ |x|−1 is bounded from below) and we characterize
the domain using a method introduced in [EL07, EL08] and recently generalized
in [SST20]. This method allows us to provide min-max formulas for the eigenvalues in
the gap (−1, 1), following [DES00a, DES00b, DES03, DES06, ELS19, GS99, MM15,
Mül16, SST20]. In the event that some eigenvalues have dived into the negative
continuum, we prove that the min-max formulas remain valid for the remaining
ones.
In a second article [ELS21] we consider the problem of minimizing the first eigen-

value with respect to the (non-negative) charge distribution µ at fixed maximal
charge ν:

λ1(ν) := inf
µ> 0

µ(R3)6 ν
λ1

(
D0 − µ ∗

1
|x|

)
,

that is, we ask what is the lowest possible eigenvalue of all possible charge distri-
butions with µ(R3) 6 ν. This problem is indeed our main motivation for studying
Dirac operators of the type (1.1) with general measures µ. We prove in [ELS21] that
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1424 M. J. ESTEBAN, M. LEWIN & É. SÉRÉ

there exists a critical coupling constant(1)

2
π
2 + 2

π

< ν1 6 1

such that λ1(ν) > −1 for all 0 6 ν < ν1, that is, the first eigenvalue cannot
attain the bottom of the spectral gap if ν1 − µ(R3) remains positive. In addition,
for 0 6 ν < ν1 we prove the existence of a minimizing measure for λ1(ν) and
show that it concentrates on a set of Lebesgue measure zero. That the optimal
measure is necessarily singular is the main justification for considering general charge
distributions.
It is well known that the first eigenvalue of the non-relativistic Schrödinger operator

is concave in µ, which implies that

inf
µ> 0

µ(R3)6 ν
λ1

(
−∆

2 − µ ∗
1
|x|

)
= λ1

(
−∆

2 −
ν

|x|

)
= −ν

2

2 .

We conjecture that a similar equality holds in the Dirac case, which would imply
ν1 = 1 and λ1(ν) =

√
1− ν2. We mention below some physical implications that the

validity of this conjecture would have for the electronic contribution to the potential
energy surface of diatomic systems and other molecules.
The paper is organized as follows. In the next section we show that the opera-

tor (1.1) has a unique distinguished self-adjoint extension under the assumption (1.2),
whereas in Section 3 we discuss the domain and min-max formulas for the eigenvalues
under the additional condition that µ > 0. The rest of the paper is then devoted to
the proofs of our main results.

2. Distinguished self-adjoint extension for a general charge

In this section we give a meaning to the operator D0 − µ ∗ |x|−1 for the largest
possible class of bounded measures µ. But first we need to clarify some notation.

2.1. Notation

We work in a system of units for which m = c = ~ = 1. The free Dirac operator
D0 is given by

(2.1) D0 = −iα ·∇ + β = −i
3∑

k=1
αk∂xk + β,

where α1, α2, α3 and β are Hermitian matrices which satisfy the following anticom-
mutation relations:

(2.2)


αkα` + α`αk = 2 δk` 1,
αkβ + βαk = 0,

β2 = 1.

(1) In [ELS21] ν1 is simply denoted ν1.
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The usual representation in 2× 2 blocks is given by

β =
(
I2 0
0 −I2

)
, αk =

(
0 σk
σk 0

)
(k = 1, 2, 3) ,

where the Pauli matrices are defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The operator D0 is self-adjoint with domain H1(R3,C4) and its spectrum is
Sp(D0) = (−∞,−1] ∪ [1,∞) [Tha92].

2.2. Distinguished self-adjoint extension

The study of self-adjoint extensions is a classical subject for Dirac-Coulomb oper-
ators. For instance, the one-center Coulomb operator

D0 −
ν

|x|
is known to be essentially self-adjoint on C∞c (R3 \ {0},C4) for 0 6 ν 6

√
3/2, with

domain H1(R3,C4) when 0 6 ν <
√

3/2, whereas it has several possible self-adjoint
extensions for ν >

√
3/2. When

√
3/2 < ν < 1, there is a unique extension which

is distinguished by the property that its domain is included in the ‘energy space’
H1/2(R3,C4). The domain of the extension is always larger than H1(R3,C4) when
ν ∈ [

√
3/2, 1), with a regularity at the origin which deteriorates when ν increases.

When ν = 1 one can also define a distinguished self-adjoint extension (obtained
for instance by taking the limit ν → 1−) but its domain is no longer included in
H1/2(R3,C4). There is no physically relevant extension for ν > 1. This corresponds
to the previously mentioned property that we should work under the constraint
ν = αZ 6 1 which implies the bound Z 6 137 on the maximal possible (integer)
point charge in the periodic table, within Dirac theory.
These relatively simple ODE-type results for the one-center Dirac operator have

been generalized in many directions. Investigating how robust the distinguished
extension is with regard to perturbations has indeed been the object of many works.
A survey of known results, mainly in the one-center case, may be found for instance
in [ELS19, Section 1.3]. A typical result is that Dirac operators in the form

(2.3) DV = D0 + V (x) with |V (x)| 6 ν

|x|
, ν < 1

also have a unique distinguished self-adjoint extension, characterized by the property
that the domain is included in H1/2(R3,C4). Hence a pointwise bound on V is
sufficient, which is rather remarkable for operators which are not semi-bounded. This
extension can also be obtained as a norm-resolvent limit by truncating the singularity
of the potential V . Note that the critical case ν = 1 was handled in [EL07] for V > 0
but the domain is not necessarily included in the energy space H1/2(R3,C4).
There are fewer results about the multi-center case, which is however as physi-

cally important as the atomic case. The intuitive picture is that self-adjointness is
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essentially a local problem at the singularities of the potentials, hence the results
should be similar for multi-center Coulomb potentials. Indeed, Nenciu [Nen77] and
Klaus [Kla80] have proved that there is a unique distinguished self-adjoint extension
for D0 + V under the pointwise assumption that

(2.4) |V (x)| 6
M∑
m=1

νm
|x−Rm|

with Rm 6= R` for m 6= ` and 0 6 νm < 1 for all m = 1, . . . , M . Note that
we can add to V any bounded potential (or even a regular potential in the sense
of [Nen76, Nen77]), without changing the domain of self-adjointness. For other results
on multi-center Dirac operators, see [BH03, Kar85].
One important tool in these works is the Birman-Schwinger-type formula of the

resolvent [Kla80, KW79, Nen76]

(2.5) (D0 + V − z)−1

= (D0 − z)−1 − (D0 − z)−1
√
|V | (1 + SKz)−1 S

√
|V | (D0 − z)−1

where
(2.6) Kz =

√
|V |(D0 − z)−1

√
|V |,

and S = sgn(V ). This formula is valid as long as 1−SKz is invertible with bounded
inverse, and it can serve to define DV via its resolvent. In the one-center case
|V (x)| 6 ν|x|−1 we have for z = 0

‖K0‖ 6 ν

(this was conjectured in [Nen76] and then, proved in [ADV13, Kat83, Wüs77]). This
gives the distinguished self-adjoint extension for 0 6 ν < 1. In the multi-center case
one cannot always use z = 0 since it can be an eigenvalue, when ∑M

j=1 νj is large
and the nuclei are close to each other. But the set of problematic z’s is at most
countable, hence the formula also allows one to define the distinguished self-adjoint
extension [Kla80, Nen77].
The above results do not cover the case where V (x) = −µ ∗ |x|−1 for general

measures µ. Such potentials indeed diverge like µ({R})|x− R|−1 at points R ∈ R3

where µ({R}) > 0, but they can diverge at many other points in space where µ is
not necessarily a delta. In this paper, we prove the following result, which confirms
the intuition that only deltas are problematic with regard to self-adjointness.

Theorem 2.1 (Distinguished self-adjoint extension). — Let µ be any finite signed
Borel measure on R3, such that

|µ({R})| < 1 for all R ∈ R3.

Then the operator
D0 − µ ∗

1
|x|
,

defined first on H1(R3,C4) or on C∞c (R3,C4), has a unique self-adjoint extension
whose domain is included in H1/2(R3,C4). The functions in the domain D(D0 −

ANNALES HENRI LEBESGUE



Dirac–Coulomb operators with general charge distribution I 1427

µ ∗ |x|−1) of the extension have a square-integrable gradient in R3 \ ⋃Kj=1Br(Rj) for
all r > 0, where R1, . . . , RK ∈ R3 are all the points such that |µ({Rj})| > 1/2. The
operator D0−µ∗ |x|−1 is the norm-resolvent limit of D0−µ∗ 1

|x|1(|µ∗ 1
|x| | 6 n) when

n→∞. Its essential spectrum is

Spess

(
D0 − µ ∗ |x|−1

)
= (−∞,−1] ∪ [1,+∞).

The proof of Theorem 2.1 is provided later in Section 4.
Note that in general D(D0−µ ∗ |x|−1) may differ from the domain of the operator

D0−
∑K
j=1 µ({Rj})|x−Rj|−1, because the behavior of µ in the vicinity of the nuclei

also plays a role.
Although we think that there should be a similar result with a larger space than

H1/2(R3,C4) under the weaker condition that |µ({R})| 6 1, we have not investigated
this question in the general setting. More about the critical case can be read in
Section 3.3 where we investigate the particular case of a measure µ which is a pure
sum of deltas, following [ELS19].
One important argument of the proof is to show that the operator

1BR

√
µ̃ ∗ 1
|x|

1
|p| 12

is compact, for every positive measure µ̃ with no atom. Here we have used the
notation p = −i∇ and BR for the ball of radius R centered at the origin. Then, after
separating the region about each nucleus from the rest of space, we show that∥∥∥∥√|Vµ| 1

D0 + is

√
|Vµ|

∥∥∥∥ < 1

for s large enough, where Vµ = µ ∗ |x|−1. This is what is needed to apply Nenciu’s
method [Nen76, Corollary 2.1].

3. Domain and min-max formulas for positive measures

By following a method introduced in [EL07, EL08] and further developed in [ELS19,
SST20], one can describe the distinguished self-adjoint extension more precisely in
the case of a positive measure:

µ > 0.

What we really need in this section is that Vµ be bounded from below, but for
simplicity we require the positivity of µ everywhere. We use the notation

Vµ = µ ∗ 1
|x|

for the Coulomb potential induced by µ.
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3.1. Description of the domain

Following [ELS19], we introduce a new space for the upper component ϕ ∈
L2(R3,C2) of a four-spinor. We define the following norm

(3.1) ‖ϕ‖Vµ :=
(∫

R3

|σ · ∇ϕ(x)|2

1 + Vµ(x) dx+
∫
R3
|ϕ(x)|2 dx

)1/2

which is well defined on H1(R3,C2) and controlled by the H1–norm since (1 + Vµ)−1

6 1. We can in fact replace 1+Vµ by any λ+Vµ with λ > 0 and we get an equivalent
norm. Recall that Vµ > 0.
Like in [ELS19] we need to know whether the completion Vµ of H1(R3,C2) for the

norm in (3.1) is the same as the largest space given by the conditions

ϕ ∈ L2
(
R3,C2

)
,

σ · ∇ϕ
(1 + Vµ)1/2 ∈ L

2
(
R3,C2

)
.

The following answers this question affirmatively.
Theorem 3.1 (The upper-spinor space Vµ). — Let µ > 0 be any finite Borel

measure on R3 so that
µ({R}) < 1 for all R ∈ R3.

We have

(3.2)
‖ϕ‖2

H1/2(R3,C2)

max
(
2, 16µ (R3)

) 6 ‖ϕ‖2
Vµ 6 ‖ϕ‖

2
H1(R3,C2)

for all ϕ ∈ H1(R3,C2). The completion ofH1(R3,C2) for the norm ‖·‖Vµ is a subspace
Vµ of H1/2(R3,C2) satisfying the continuous embeddings in (3.2). It coincides with
the completion of C∞c (R3,C2) for the same norm and is given by

(3.3) Vµ =
{
ϕ ∈ L2

(
R3,C2

)
: ∃ g ∈ L2

(
R3,C2

)
, σ · ∇ϕ = (1 + Vµ)1/2 g

}
where σ · ∇ϕ is understood in the sense of distributions.
The proof of Theorem 3.1 is provided later in Section 5. The first part of the

theorem says that there is a Hardy-type inequality

(3.4)
∫
R3

|σ · ∇ϕ(x)|2

1 + Vµ(x) dx+
∫
R3
|ϕ(x)|2 dx >

∥∥∥(−∆) 1
4ϕ
∥∥∥2

L2(R3,C2)

max
(
2, 16µ (R3)

) ,
for ϕ ∈ H1(R3,C2) and all positive measures µ. The second part says that the space
of functions ϕ ∈ L2(R3,C2) such that (1 + Vµ)−1/2σ · ∇ϕ ∈ L2(R3,C2) (this being
interpreted as in (3.3)), which could a priori be larger than the completion Vµ, is
equal to Vµ. This is an important property for what follows and it allows one to
extend the inequality (3.4) to all such functions ϕ. With regard to (3.3), we remark
that Vµ ∈ L1

loc(R3) for every Radon measure µ, so that (1 + Vµ)1/2g ∈ L1
loc(R3,C2)

is a distribution when g ∈ L2(R3,C2). Moreover, we prove later in Lemma 5.1 that
∇(1 +Vµ)−1/2 ∈ L2(R3) for every µ. This implies that (1 +V )−1/2σ ·∇ϕ makes sense
as a distribution and, in (3.3), it is then equivalent to requiring that this distribution
belongs to L2(R3,C2).
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In the special case of

µ =
M∑
m=1

νmδRm

with 0 < νm < 1, we have by [ELS19]

Vµ =
{
ϕ ∈ L2

(
R3,C2

)
:
∫
R3

M∏
m=1

|x−Rm|
1 + |x−Rm|

|σ · ∇ϕ(x)|2 dx <∞
}
.

In other words, the functions in Vµ must be in H1
loc(R3 \ {R1, . . . , RM},C2) and

behave as stated close to the singularities. In general the space Vµ depends on the
size and location of the singularities of the potential Vµ, which are not necessarily
produced by the atomic part of µ. Recall that the potential Vµ̃ of the non-atomic
part µ̃ of µ can still diverge in some places, namely at all the points R ∈ R3 so that∫

R3

dµ̃(x)
|x−R|

= +∞.

At each of these points, the norm is affected because 1/(1+Vµ) tends to zero, allowing
thereby |σ · ∇ϕ|2 to diverge a bit.
We can now describe the domain of the distinguished self-adjoint extension using

the space Vµ.

Theorem 3.2 (Domain of the distinguished self-adjoint extension for µ > 0). —
Let µ > 0 be any finite Radon measure on R3 so that

µ({R}) < 1 for all R ∈ R3.

Then the domain of the self-adjoint extension from Theorem 3.2 is explicitly given by

(3.5) D(D0 − Vµ) ={
Ψ =

(
ϕ

χ

)
∈ L2

(
R3,C4

)
: ϕ ∈ Vµ, D0Ψ− VµΨ ∈ L2

(
R3,C4

)}

where in the last condition D0Ψ and VµΨ are understood in the sense of distributions.
Moreover, this extension is the unique one included in Vµ × L2(R3,C2). We have

D (D0 − Vµ) ⊂ Vµ × Vµ ⊂ H1/2
(
R3,C4

)
.

In addition, the Birman–Schwinger principle holds: λ ∈ (−1, 1) is an eigenvalue of
D0 − Vµ if and only if 1 is an eigenvalue of the bounded self-adjoint operator

Kλ =
√
Vµ

1
D0 − λ

√
Vµ.

The condition µ > 0 is used to have Vµ > 0 which simplifies the definition of the
space Vµ. If Vµ is bounded-below, then the exact same result is valid with 1 + Vµ
replaced by C + Vµ with a large enough constant C everywhere.
The proof of Theorem 3.2 is provided below in Section 6.
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3.2. Min-max formulas for the eigenvalues

Related to the above characterization of the domain are min-max formulas for
eigenvalues [DES00a, DES00b, DES03, DES06, ELS19, GS99, MM15, Mül16, SST20].
Our main result is the following

Theorem 3.3 (Min-max formulas). — Let µ > 0 be any finite non-trivial Radon
measure on R3 so that

µ({R}) < 1 for all R ∈ R3.

Define the min-max values

(3.6) λ(k) := inf
W subspace of F+

dim W=k

sup
Ψ∈ (W ⊕F−)\{0}

〈Ψ, (D0 − Vµ) Ψ〉
‖Ψ‖2 , k > 1 ,

where F is any chosen vector space satisfying

C∞c
(
R3,C4

)
⊆ F ⊆ H1/2

(
R3,C4

)
,

and

F+ :=
{

Ψ =
(
ϕ

0

)
∈ F

}
, F− :=

{
Ψ =

(
0
χ

)
∈ F

}
.

Then we have
(i) λ(k) is independent of the chosen space F ;
(ii) λ(k) ∈ [−1, 1) for all k;
(iii) it is a non-decreasing sequence converging to 1:

(3.7) lim
k→∞

λ(k) = 1.

Let k0 be the first integer so that

λ(k0) > −1.
Then (λ(k))k> k0 are all the eigenvalues of D0 − Vµ in non-decreasing order, repeated
according to their multiplicity, which are larger than −1:

Sp
(
D0 − µ ∗

1
|x|

)
∩ (−1, 1) =

{
λ(k0), λ(k0+1), · · ·

}
.

Finally, if

(3.8) µ(R3) 6 2
π/2 + 2/π ' 0.9,

then we have λ(1) > 0 and there is no eigenvalue in (−1, 0).

The min-max formula (3.6) for the eigenvalues of D0 − Vµ is based on a decompo-
sition of the four-component wavefunction into its upper and lower spinors,

Ψ =
(
ϕ

χ

)
.
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That one can obtain the eigenvalues by maximizing over χ and minimizing over ϕ was
suggested first in the Physics literature by Talman [Tal86] and Datta–Devaiah [DD88].
The min-max is largely based on the fact that the energy 〈Ψ, (D0 − Vµ)Ψ〉 is concave
in χ and more or less convex in ϕ (up to finitely many directions corresponding to
the indices k < k0). This approach is reminiscent of the Schur complement formula,
which is an important ingredient in the proof. Indeed, writing the eigenvalue equation
in terms of ϕ and χ, solving the one for χ and inserting it in the equation of ϕ, one
formally finds that

(3.9)
(
−σ · ∇ 1

1 + λ+ Vµ
σ · ∇+ 1− λ− Vµ

)
ϕ = 0.

The formal operator on the left is associated with the quadratic form

(3.10) qλ(ϕ) :=
∫
R3

|σ · ∇ϕ|2

1 + λ+ Vµ
dx+

∫
R3

(1− λ− Vµ) |ϕ|2

and most of the work is to show that it is bounded from below, and equivalent to the
Vµ–norm squared, up to addition of a constant. This allows one to give a meaning to
the operator in (3.9) by means of the Riesz–Friedrichs method, hence to transform
the (strongly indefinite) Dirac eigenvalue problem into an elliptic eigenvalue problem,
nonlinear in the parameter λ. In the proof of Theorems 3.2 and 3.3 we explain how to
relate any information on the operator Kz in (2.6) to that on the quadratic form qλ
and we then directly apply [DES00a, ELS19, SST20]. Note finally that condition (3.8)
is directly related to an inequality due to Tix [Tix98] used in the proof.

3.3. Application to (critical and sub-critical) multi-center potentials

Let us now discuss the special case of a positive measure made of a finite sum of
deltas,

µ =
M∑
m=1

νmδRm , 0 < νm 6 1,

which describes the nuclear density of a molecule. We always assume that the Rm

are all distinct from each other.
When ν̄ := max νm < 1, Theorem 2.1 provides the self-adjointness of the corre-

sponding multi-center Dirac–Coulomb operator. This was proved before in [Kla80,
Nen77]. Theorem 3.2 gives the domain in terms of the space Vµ which, as we have
already mentioned, is equal to

Vµ =
{
ϕ ∈ L2

(
R3,C2

)
:
∫
R3

M∏
m=1

|x−Rm|
1 + |x−Rm|

|σ · ∇ϕ(x)|2 dx <∞
}
.

This is proved by localizing about each nucleus. One can also give a simple explicit
lower bound on the quadratic form qλ in terms of the νm and of the Rm, which
remains valid in the critical case max νm = 1.
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Lemma 3.4 (Lower bound on qλ for multi-center). — Let µ = ∑M
m=1 νmδRm with

0 6 νm 6 1 and where the Rm are all distinct. Then we have

qλ(ϕ) >
(
1− ν̄2

) ∫
R3

|σ · ∇ϕ|2

2 + Vµ
dx−

(
2λ+ 2(M − 1)ν̄

d
+ κ

d2(1 + λ)

)∫
R3
|ϕ|2 dx

for every ϕ ∈ H1(R3,C2), where ν̄ = max(νm), d = maxk 6= ` |Rk − R`| and κ > 0 is
a universal constant.

By arguing as in [EL07, EL08, ELS19], this allows us to find a self-adjoint extension
distinguished from the property that its domain satisfies

D (D0 − Vµ) ⊂ Wµ × L2
(
R3,C2

)
where Wµ is the space obtained after closing the quadratic form qλ. This space is
larger than Vµ when max(νm) = 1. A simple localization as in the proof of Lemma 3.4
allows to apply the results of [ELS19] and deduce that

(3.11) Wµ =

ϕ ∈ L2
(
R3,C2

)
:
∫
R3

∣∣∣σ · ∇∏M
m=1 |x−Rm|ϕ(x)

∣∣∣2∏M
m=1 |x−Rm| (1 + |x−Rm|)

dx <∞

 .
Arguing like in [ELS19], one can prove that the distinguished self-adjoint extension

is the norm-resolvent limit of the operators obtained after truncating the potential
or after decreasing the critical nuclear charges. One can indeed treat any potential
V so that

0 6 V 6 Vµ
but then the space Wµ has to be modified accordingly. The arguments are exactly
the same as in [ELS19].
In chemistry one is interested in the potential energy surface which, by definition,

is the graph of the first eigenvalue of the multi-center Dirac-Coulomb operator, seen
as a function of the locations of the nuclei at fixed νm and including the nuclear
repulsion:

(R1, . . . , RM) 7→ λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
+

∑
16m<`6M

νmν`
|Rm −R`|

.

The following is an extension of similar results proved before for M = 2 in [BH03,
HK83, Kla80].

Theorem 3.5 (Molecular case). — Assume that R1, . . . , RM are M distinct
points in R3, and that µ = ∑M

m=1 νmδRm with 0 < νm < 1. Let

λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
be the first min-max level as in (3.6). Then,

(i) the map (R1, . . . , RM) 7→ λ1(D0 −
∑M
m=1

νm
|x−Rm|) is a continuous function on

the open set Ω defined as

Ω =
{

(R1, . . . , RM) ∈
(
R3
)M

: λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
> −1

}
.
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(ii) Moreover,

(3.12) lim
mink 6= `|Rk−R`|→∞

λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
=
√

1−max ν2
m.

(iii) If in addition ∑M
m=1 νm < 2(π/2 + 2/π)−1 then

(3.13) lim
maxk 6= `|Rk−R`|→ 0

λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
=

√√√√√1−
(

M∑
m=1

νm

)2

.

The part (iii) of the theorem actually holds for ∑M
m=1 νm < ν1 where ν1 is a

constant defined in the second part [ELS21] of this work (denoted there simply by
ν1). If ν1 = 1 as we believe, then (iii) holds for all ∑M

m=1 νm < 1. In [BH03] the result
is claimed for M = 2 and ν1 = ν2 < 1/2 but we could not fill all the details of the
argument of the proof of [BH03, Lemma 3.1].
For M = 2 it is a famous conjecture that the energy of a diatomic molecule is

always greater than the single atom with the two nuclei merged. This property was
conjectured for two-atoms Dirac operators by Klaus in [Kla80, p. 478] and by Briet–
Hogreve in [BH03, Section 2.4]. Numerical simulations from [ASI+10, McC13] seem
to confirm the conjecture for M = 2, even for large values of the nuclear charges.
We make the stronger conjecture that the same holds for any M .

Conjecture 3.6. — We have

(3.14) λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
> λ1

D0 −

M∑
m=1

νm

|x|

 =

√√√√√1−
(

M∑
m=1

νm

)2

for all M > 2, all R1, . . . , RM ∈ R3 and all νm > 0 so that ∑M
m=1 νm 6 1.

In [ELS21] we discuss a stronger conjecture which implies Conjecture 3.6. Note
that Conjecture 3.6 has been proved in the non-relativistic case, as recalled in the
introduction.

4. Proof of Theorem 2.1

The proof relies on two preliminary lemmas which we first state and show, before
we turn to the actual proof of the theorem.
Loosely speaking, the first lemma asserts that g(x)|p|−sf(x) is compact when f

and g have disjoint supports. Recall that everywhere p = −i∇.

Lemma 4.1 (Compactness for disjoint supports). — Let f ∈ L2(Rd) with support
in a compact set B ⊂ Rd. Let Ω be a (bounded or unbounded) set in Rd so that
d(B,Ω) > 0 and let g ∈ L2

loc(Rd) supported on Ω, such that∫
Ω

|g(x)|2
(1 + |x|)2(d−s) dx <∞ ,
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where 0 < s < d. Then the operator

K = g(x) 1
|p|s

f(x)

is compact and its norm can be estimated by

(4.1) ‖K‖ 6 C ‖f‖L2(B)

(∫
Ω

|g(x)|2
|x|2(d−s) dx

) 1
2

.

where C only depends on s, on the dimension, on d(B,Ω) and on supx∈B |x|.

Proof. — The kernel of the operator K is given by

K(x, y) = κ
1Ω(x)g(x)f(y)
|x− y|d−s

for some constant κ. Since the two functions f and g have supports at a finite
distance from each other, we have |x− y| > d(B,Ω) > 0 and the denominator never
vanishes. Since B is compact, we even have |x− y| > |x| −R where R = maxy ∈B |y|.
In particular, we conclude that |x − y| > c(|x| + 1) for all x ∈ Ω and all y ∈ B.
Therefore, the kernel of K is pointwise bounded by

|K(x, y)| 6 κ

cd−s
|g(x)|

(1 + |x|)d−s |f(y)|.

The right side is a rank-one operator which is bounded under the condition that
f ∈ L2 and g(1 + |x|)s−d ∈ L2. This shows that K is bounded as in (4.1).
To prove the compactness of K we can approximate f and g by functions in C∞c

and use classical compactness results. But we can also argue directly as follows. Let
un ⇀ 0 be any sequence converging weakly to 0 with ‖un‖L2 = 1. We remark that

(Kun)(x) = κ g(x)
∫
B

f(y)un(y)
|x− y|d−s

dy

converges to 0 almost everywhere, since y 7→ f(y)|x − y|s−d belongs to L2 for all
x ∈ Ω. In addition, we have the pointwise bound

|(Kun)(x)| 6 κ

cd−s
|g(x)|

(1 + |x|)d−s ‖f‖L2(B)

which, by the dominated convergence theorem, implies that ‖Kun‖ → 0. �

Using Lemma 4.1 we can show the following result.

Lemma 4.2 (Local compactness in the absence of atoms). — Let µ̃ > 0 be a
finite Radon measure on R3, with no atom. Then

1BR

√
µ̃ ∗ 1
|x|

1
|p| 12

is a compact operator for every finite R > 0.
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Note that the operator
√
Vµ̃|p|−1/2 is not compact since at infinity it essentially

behaves like √
µ̃(R3)|x|−1/2|p|−1/2

which is not compact. The characteristic function 1BR is really necessary. In addition,
the corresponding result cannot hold for a measure which comprises some deltas,
due to the lack of compactness at the corresponding centers.
Proof of Lemma 4.2. — First we write µ̃ = µ̃1BN + µ̃1R3\BN where BN is the ball

of radius N , and remark that

(4.2)
∥∥∥∥∥
(√

µ̃ ∗ 1
|x|
−
√

(µ̃1BN ) ∗ 1
|x|

)
1
|p| 12

∥∥∥∥∥
6

∥∥∥∥∥
√(

µ̃1R3\BN

)
∗ 1
|x|

1
|p| 12

∥∥∥∥∥ 6
√
π

2 µ̃ (R3 \BN).

The first inequality holds because
√
Vµ −

√
Vµ1 6

√
Vµ2 pointwise, for µ = µ1 + µ2.

The second uses Kato’s inequality

(4.3) 1
|x|
6
π

2 |p|

which implies that∥∥∥∥∥
√
µ ∗ 1
|x|

1
|p| 12

∥∥∥∥∥ =
∥∥∥∥∥ 1
|p| 12

√
µ ∗ 1
|x|

∥∥∥∥∥ 6
√
π

2
√
µ (R3)

for every bounded measure µ. The right side of (4.2) tends to zero when N → ∞
and this shows that we may assume for the rest of the proof that µ̃ has compact
support.
For r > 0, let us consider two tilings of the whole space R3 with cubes Cj =

3r(j+[−1/2, 1/2)3) and C ′k = r(k+[−1/2, 1/2)3) of side length 3r and r, respectively,
where j, k ∈ Z3. For every k, we call jk the index of the large cube Cjk of which C ′k
is exactly at the center. Let ε > 0. By compactness of the support of µ̃ and the fact
that it has no atom, we can find r > 0 so that µ̃(Cj) 6 ε for every j.
We then write

1
|p| 12

1BR

(
µ̃ ∗ 1
|x|

)
1
|p| 12

=
∑
k

1
|p| 12

1BR∩C′k

(
µ̃
(
1Cjk + 1R3\Cjk

)
∗ 1
|x|

)
1
|p| 12

.

Recall that the sum is finite. The sets C ′k and R3 \ Cjk are at a distance at least
equal to r from each other. Then∣∣∣∣∣1C′k

(
µ̃1R3\Cjk ∗

1
|x|

)∣∣∣∣∣ 6 c

r
.

In particular this function is in Lp(C ′k) for all 1 6 p 6∞ and the operator

1
|p| 12

1BR∩C′k

(
µ̃1R3\Cjk ∗

1
|x|

)
1
|p| 12
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is compact. This is true for instance because |p|−1/2f(x)|p|−1/2 is compact under the
condition that f ∈ L3(R3), by Cwikel’s inequality [Sim05]. Hence, at this step we
have written

1
|p| 12

1BR

(
µ̃ ∗ 1
|x|

)
1
|p| 12

=
∑
k

1
|p| 12

1BR ∩C′k

(
µ̃1Cjk ∗

1
|x|

)
1
|p| 12

+K1

where K1 is compact.
Next, for every k we insert another localization as follows

1
|p| 12

1C′
k

(
µ̃1Cjk ∗

1
|x|

)
1
|p| 12

=
(
1Cjk + 1R3\Cjk

) 1
|p| 12

1C′
k

(
µ̃1Cjk ∗

1
|x|

)
1
|p| 12

(
1Cjk + 1R3\Cjk

)
.

The operator

1R3\Cjk
1
|p| 12

1C′
k

√
µ̃1Cjk ∗

1
|x|

is compact, by Lemma 4.1. Indeed, we have

1C′
k

(
µ̃1Cjk ∗

1
|x|

)
= 1C′

k

(
µ̃1Cjk ∗

1Cjk+C′
k

|x|

)
∈ L1 (C ′k)

so that its square root is in L2(C ′k), and∫
R3\Cjk

dx

(1 + |x|)5 <∞.

This proves that
1
|p| 12

1BR

(
µ̃ ∗ 1
|x|

)
1
|p| 12

=
∑
k

1Cjk
1
|p| 12

1BR∩C′k

(
µ̃1Cjk ∗

1
|x|

)
1
|p| 12

1Cjk +K2

where K2 is compact. By Kato’s inequality (4.3) the first operator is bounded above
as follows:
∑
k

1Cjk
1
|p| 12

1BR∩C′k

(
µ̃1Cjk ∗

1
|x|

)
1
|p| 12

1Cjk

6
π

2
∑
k :

Ck ∩BR 6= ∅

1Cjk µ̃(Cjk) 6 ε
π

2
∑
k :

Ck ∩BR 6= ∅

1Cjk 6
27π
2 ε.

Here we have used that µ̃(Cj) 6 ε for every j by our choice of r. Therefore our
initial operator is the norm-limit of a sequence of compact operators and it must be
compact. �

Now we can provide the
Proof of Theorem 2.1. — Our goal is to show that

(4.4) lim sup
|s|→∞

∥∥∥∥√|Vµ| 1
D0 + is

√
|Vµ|

∥∥∥∥ 6 max
R∈R3

|µ({R})| < 1,
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where we recall that Vµ := µ ∗ |x|−1. We write µ in the form

µ =
∞∑
m=1

νmδRm + µ̃

where it is understood that the Rm are all distinct and where maxm |νm| < 1 by
assumption. The signed measure µ̃ has no atom. Here we allow infinitely many
singularities for simplicity of notation but many of the νm could vanish. We know
that ∑∞m=1 |νm| <∞.
Similarly as in (4.2) we can first write

(4.5) µ =
(

K∑
m=1

νmδRm + µ̃1BN

)
+
 ∑
m>K+1

νmδRm + µ̃1R3\BN

 := µ1 + µ2.

Using Kato’s inequality (4.3) and the fact that |µ2|(R3) is small for K and N large
enough, we see that it suffices to show the limit (4.4) for µ having finitely many
atoms and for µ̃ of compact support, which we assume for the rest of the proof. In
this case we have gained that

|Vµ(x)| =
∣∣∣∣∣
∫
R3

dµ(y)
|x− y|

∣∣∣∣∣ 6 |µ| (R3)
|x| −N

where supp(µ) ⊂ BN . In particular, Vµ is bounded at infinity.
We then write the potential Vµ in the form

Vµ =
K∑
m=1

νm 1Bη(Rm)

|x−Rm|
+ 1BRVµ̃ +

K∑
m=1

νm 1R3 \Bη(Rm)

|x−Rm|
+ 1R3\BRVµ̃

where Bη(Rm) is the ball of radius η centered at Rm. We choose

η < min
16m 6= `6K

|Rm −R`| /2

(half of the smallest distance between the nuclei). Using that
√∑

Vj 6
∑√

Vj, this
shows that

(4.6) |Vµ|
1
2 6

K∑
m=1

√
|νm|1Bη(Rm)

|x−Rm|
1
2

+ 1BR

√
V|µ̃| +

√√√√ K∑
m=1

|νm|
η

+
√
|µ̃| (R3)
R−N

,

because R was chosen larger than N . Next we replace
√
|Vµ| by the function on the

right in ∥∥∥∥√|Vµ| 1
D0 + is

√
|Vµ|

∥∥∥∥ ,
expand everything and estimate all the terms separately.
The dominant terms are the ones close to the singularities

K∑
m=1
|νm|

1Bη(Rm)

|x−Rm|
1
2

1
D0 + is

1Bη(Rm)

|x−Rm|
1
2
.

TOME 4 (2021)



1438 M. J. ESTEBAN, M. LEWIN & É. SÉRÉ

It is time to recall that for Coulomb potentials

(4.7) Sp
(

1
|x| 12

1
α · p+ β

1
|x| 12

)
= Spess

(
1
|x| 12

1
α · p+ β

1
|x| 12

)

= Sp
(

1
|x| 12

1
α · p

1
|x| 12

)
= Spess

(
1
|x| 12

1
α · p

1
|x| 12

)
= [−1, 1]

and that

(4.8)
∥∥∥∥∥ 1
|x| 12

1
α · p+ is

1
|x| 12

∥∥∥∥∥ =
∥∥∥∥∥ 1
|x| 12

1
α · p+ β + is

1
|x| 12

∥∥∥∥∥ = 1

for all s ∈ R. See [ADV13, Kat83, Kla80, Nen76, Wüs77]. This implies immediately
that∥∥∥∥∥∥

K∑
m=1
|νm|

1Bη(Rm)

|x−Rm|
1
2

1
D0 + is

1Bη(Rm)

|x−Rm|
1
2

∥∥∥∥∥∥ 6 max
m
|νm|

∥∥∥∥∥
K∑
m=1

1Bη(Rm)

∥∥∥∥∥ = max
m
|νm| < 1.

Note that the estimate does not depend on K but requires η to be small enough
to guarantee that the balls do not overlap. The choice of η depends on the smallest
distance between the nuclei.
All the other terms are going to be small for s large enough. First, using that

|p| 12
|D0 + is|

= |p| 12√
p2 + 1 + s2 6

1√
2|s|

we see that all the terms involving the constant potential√√√√ K∑
m=1

|νm|
η

+
√
|µ̃| (R3)
R−N

in (4.6) have a norm of the order O(|s|−1/2). The terms involving 1BR
√
Vµ̃ can all

be written in the form √
|Vµ′|

1
|p| 12

|p|
D0 + is

1
|p| 12

√∣∣∣Vµ̃∣∣∣1BR
for some measure µ′. They all tend to 0 in norm when s→ 0. This is because BAsK
tends to zero in norm when B is bounded, K is compact and As → 0 strongly with
‖As‖ 6 C uniformly in s. The operator |p|−1/2

√
|Vµ̃|1BR is compact by Lemma 4.2.

We are left with the more complicated interaction terms between the balls

(4.9)
1Bη(Rk)

|x−Rk|
1
2

1
D0 + is

1Bη(Rm)

|x−Rm|
1
2

with k 6= m. We have
1

D0 + is
= α · p
p2 + 1 + s2 + β

p2 + 1 + s2 − i
s

p2 + 1 + s2

and the term involving β is easily controlled by |p|−1(1+s2)−1/2 and Kato’s inequality.
Like in Lemma 4.1, our idea to deal with the other two terms is to use pointwise
kernel bounds. Note that operator bounds are not very useful here since we have
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different functions on both sides of (D0 + is)−1. Recall also that |A(x, y)| 6 B(x, y)
implies ‖A‖ 6 ‖B‖. The kernel of the first operator is

α · p
p2 + 1 + s2 (x, y) = i

α · (x− y)
4π|x− y|3 e

−
√

1+s2|x−y| + i
√

1 + s2α · (x− y)
4π|x− y|2 e

−
√

1+s2|x−y|

and it can be bounded by∣∣∣∣∣ α · p
p2 + 1 + s2 (x, y)

∣∣∣∣∣ 6 e−
√

1+s2|x−y|

4π|x− y|2 +
√

1 + s2 e
−
√

1+s2|x−y|

4π|x− y| 6
C

|s| 12 |x− y| 52
.

Similarly, we have∣∣∣∣∣ is

p2 + 1 + s2 (x, y)
∣∣∣∣∣ = |s| e

−
√

1+s2|x−y|

4π|x− y| 6
C

|s| 12 |x− y| 52
.

We obtain that

(4.10)

∥∥∥∥∥∥ 1Bη(Rk)

|x−Rk|
1
2

1
D0 + is

1Bη(Rm)

|x−Rm|
1
2

∥∥∥∥∥∥ 6 C

|s| 12

∥∥∥∥∥∥ 1Bη(Rk)

|x−Rk|
1
2

1
|p| 12

1Bη(Rm)

|x−Rm|
1
2

∥∥∥∥∥∥+ C

|s| 12
.

Using Lemma 4.1 the norm on the right is finite and we conclude that the interactions
between balls are a O(|s|−1/2). This concludes the proof of (4.4).
By the result of Nenciu [Nen76, Corollary 2.1] (see also Klaus [Kla80]) based on the

resolvent expansion (2.5), the estimate (4.4) proves that D0 − Vµ has a unique self-
adjoint extension whose domain is included in H1/2(R3). In addition, D0 − Vµ1(|Vµ|
6 n) converges to D0−Vµ in the norm-resolvent sense when n→∞ [Kla80, KW79].
That the essential spectrum is equal to (−∞,−1] ∪ [1,∞) is also a consequence of
the resolvent formula (2.5) as in [KW79, Nen76]. This is because

1
D0 − z

√
|Vµ|

is compact for z ∈ C \ σ(D0). This follows from the Hausdorff–Young inequality and
the fact that√

|Vµ| ∈
(
L6−ε + L6+ε

) (
R3
)

whereas (α · p+ β − z)−1 ∈ Lr
(
R3
)

for all r > 3, hence belongs to (L6−ε ∩ L6+ε)(R3).
It remains to prove the statement about the gradient of functions in the domain.

We call R1, . . . , RK all the points such that |µ({Rk})| > 1/2 and deduce that for
every x0 ∈ R3 \ {R1, . . . , RK}, we have

lim
r→ 0
|µ|(Br(x0)) < 1

2
where Br(x0) is the ball of radius r centered at x0. Let χ be a smooth function
supported on B1/2(0) and let χr(x) = χ((x − x0)/r). Every Ψ in the domain of
D0 − µ ∗ |x|−1 satisfies

D0Ψ− VµΨ = Φ ∈ L2
(
R3
)

in H−1/2, so that

D0 (χrΨ)− VµχrΨ = χrΦ− i (α · ∇χr) Ψ ∈ L2
(
R3
)
.

TOME 4 (2021)



1440 M. J. ESTEBAN, M. LEWIN & É. SÉRÉ

We decompose µ = µ1Br + µ1R3\Br and use that∣∣∣Vµ1R3\Br

∣∣∣ 6 2|µ| (R3)
r

on Br/2.

This gives (
D0 − Vµ1Br

)
χrΨ ∈ L2

(
R3
)
.

For µ(Br) < 1/2, the operator D0 − Vµ1Br is self-adjoint on H1(R3) by Hardy’s
inequality. This proves, as stated, that χrΨ ∈ H1(R3). Using that µ(R3 \ BR)→ 0
when R→∞ we can prove in a similar manner that (1−χR)Ψ ∈ H1(R3). We obtain
the claim by covering R3 \ ∪Kj=1Br(Rj) with finitely many balls together with the
complement of a large ball. This concludes the proof of Theorem 2.1. �

5. Proof of Theorem 3.1

Step 1 — Proof of the estimate (3.2) on ‖ ·‖Vµ. — The upper bound in (3.2)
follows immediately from the fact that (1+Vµ)−1 6 1 and we concentrate on proving
the lower bound. Let µ be a finite non-negative measure on R3 and Vµ := µ ∗ | · |−1.
Then, by Hardy’s inequality |x|−2 6 4(−∆) 6 4(D0)2, we have∥∥∥∥Vµ 1

D0

∥∥∥∥ 6 2µ(R3).

We also have ∥∥∥∥|p|(β + 1) 1
D0

∥∥∥∥ 6 sup
p∈R3

2|p|√
1 + |p|2

6
√

2.

By the Rellich–Kato theorem, this proves that the operator

D0 −
Vµ

8µ(R3) − |p|
β + 1

4
is self-adjoint on H1(R3) and that 0 is not in its spectrum, with a universal estimate
on the gap around the origin. For the same reason, the operator

D0 −
tVµ

8µ(R3) − |p|
β + 1

4
has a gap around the origin at least as big as when t = 1, for all t ∈ [0, 1]. Note
that |p|(β + 1)/4 only acts on the upper spinor. Restricted to lower spinors, the
quadratic form associated with this operator is just −1− tVµ/(8µ(R3)) 6 −1. From
the min-max principle and a continuation argument in t from [DES00a], the fact
that 0 is never in the spectrum is equivalent to saying that∫

R3

|σ · ∇ϕ(x)|2

1 + Vµ(x)
8µ(R3)

dx >
1

8µ (R3)

∫
R3
Vµ(x)|ϕ(x)|2 dx+ 1

2〈ϕ, |p|ϕ〉 −
1
2 ‖ϕ‖

2
L2(R3)

for all ϕ ∈ H1(R3,C2) and all non-negative finite measures µ over R3. Dropping the
potential term and using the inequality

1
1 + a

>
1

max(1, b)
(
1 + a

b

)
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gives

(5.1)
∫
R3

|σ · ∇ϕ(x)|2

1 + Vµ(x) dx >
〈ϕ, |p|ϕ〉 − ‖ϕ‖2

L2(R3)

2 max
(
1, 8µ (R3)

) , ∀ ϕ ∈ H1
(
R3,C2

)
.

Denoting M = 2 max(1, 8µ(R3)) > 2, we have

M
∫
R3

|σ · ∇ϕ(x)|2

1 + Vµ(x) dx > 〈ϕ, |p|ϕ〉 − ‖ϕ‖2
L2(R3) > 〈ϕ, |p|ϕ〉 − (M − 1) ‖ϕ‖2

L2(R3)

so that

(5.2)
∫
R3

|σ · ∇ϕ(x)|2

1 + Vµ(x) dx+ ‖ϕ‖2
L2(R3) >

〈ϕ, |p|ϕ〉+ ‖ϕ‖2
L2(R3)

M

which is the left side of (3.2). The exact constant in this inequality is not important,
but it is crucial that it only depends on µ through its mass µ(R3).
The quadratic form on the left side of (5.2) defined on C∞c (Rd,C2) is closable in

the Hilbert space L2(R3,C2). This follows from the recent abstract result [SST20,
Lemma 9], which settles a delicate issue neglected in several previous papers on the
subject. An alternative argument in our case is to use that the associated operator

−σ · ∇ 1
1 + Vµ

σ · ∇+ 1

is well defined and symmetric in the domain C∞c (Rd,C2), by Lemma 5.1 below. Then
one can use [RS75, Theorem X.23].
Finally, the domain of the closure is automatically a subspace of H 1

2 (R3,C2)
by (5.2). Due to the upper bound in (3.2), one can also define the quadratic form
on H1(R3,C2) and then close it, without changing the result.

Step 2 — Vµ coincides with the maximal space. Next we prove the for-
mula (3.3) which states that Vµ coincides with the maximal space on which one
can give a meaning to the associated norm (3.1). We start by proving the following
lemma.

Lemma 5.1 (Regularity of (1 +Vµ)α). — Let µ be a non-negative Radon measure
over R3 and Vµ := µ ∗ | · |−1. Then ∇(1 + Vµ)α ∈ L2(R3) for all α < 1/2 and we have

(5.3)
∫
R3
|∇ (1 + Vµ)α|2 6 Cα µ

(
R3
)

for a constant Cα depending only on α. When α = 0 we have the same estimate
with (1 + Vµ)α replaced by log(1 + Vµ).
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Proof. — We write the proof for a non-negative µ ∈ C∞c (R3). The general result
follows from an approximation argument. Let Ω0 := {Vµ < 1} and Ωi := {2i−1

6 Vµ < 2i}. Then we have (with (1 + Vµ)α replaced by log(1 + Vµ) when α = 0)∫
R3
|∇ (1 + Vµ)α|2 = α2

∫
R3

|∇Vµ|2

(1 + Vµ)2−2α

= α2
∞∑
i=0

∫
Ωi

|∇Vµ|2

(1 + Vµ)2−2α

6 α2
∫

Ω0
|∇Vµ|2 + α2

∞∑
i=1

1
(1 + 2i−1)2−2α

∫
Ωi
|∇Vµ|2 .

Since −∆Vµ = 4πµ we have for all i > 0∫
Ωi
|∇Vµ|2 =

∫
R3
∇Vµ · ∇vi = 4π

∫
R3
vi dµ 6 4π2i µ

(
R3
)

where

vi :=

1 (Vµ > 1) + Vµ1 (Vµ < 1) for i = 0,
2i−11 (Vµ 6 2i−1) + 2i1 (Vµ > 2i) + Vµ1 (2i−1 < Vµ < 2i) for i > 1.

We obtain ∫
R3
|∇(1 + Vµ)α|2 6 4πα2

(
1 +

∞∑
i=1

2i

(1 + 2i−1)2−2α

)
µ
(
R3
)
,

where the series is finite since α < 1/2. �

The lemma says that for ϕ ∈ L2(R3), (1+V )−1/2σ·∇ϕmakes sense as a distribution.
It is then equivalent to require the existence of g ∈ L2 such that σ ·∇ϕ = (1+Vµ)1/2g
or to ask that the distribution (1 + Vµ)−1/2σ · ∇ϕ belongs to L2. In the following we
freely use any of the two formulations.
Next we turn to the proof that any function ϕ such that g := (1 +Vµ)−1/2σ ·∇ϕ ∈

L2(R3,C2) can be approximated by a sequence ϕn in C∞c (R3,C2) for the norm ‖·‖Vµ ,
that is, such that ϕn → ϕ in L2(R3,C2) and (1 + Vµ)−1/2σ · ∇ϕn → g in L2(R3,C2).
First we truncate the sequence in space. We define ϕn(x) := ϕ(x)χ(x/n) where

χ ∈ C∞c is such that χ(0) = 1. We have of course ϕn → ϕ in L2(R3,C2). In addition,
we have in the sense of distributions,

σ · ∇ϕn = χ(·/n)σ · ∇ϕ+ ϕ
(σ · ∇χ) (·/n)

n

= (1 + Vµ)
1
2

χ(·/n)g + ϕ
(σ · ∇χ) (·/n)
n (1 + Vµ)

1
2


where the function in parenthesis has a compact support and converges to g in
L2(R3). This proves that functions of compact support are dense. In the following
we assume, without loss of generality, that ϕ and g both have a compact support.
Next we approximate ϕ by a sequence in H1 by arguing as in [ELS19]. Let u ∈

Ḣ1(R3) such that ϕ = −iσ · ∇u. Then we have in the sense of distributions

−iσ · ∇ϕ = −∆u = (1 + Vµ)
1
2 g.
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We have

u = 1
4π

(
(1 + Vµ)

1
2 g
)
∗ 1
|x|
, ϕ = i

1
4π

(
(1 + Vµ)

1
2 g
)
∗ σ · x

|x|3
.

Next we define

uε = 1
4π

(
(1 + Vµ)

1
2 1

(
Vµ 6 ε−1

)
g
)
∗ 1
|x|
, ϕε = −iσ · ∇uε

which satisfies

−iσ · ∇ϕε = −∆uε = (1 + Vµ)
1
2 gε = i

1
4π

(
(1 + Vµ)

1
2 gε

)
∗ σ · x

|x|3

where gε = g1(Vµ 6 ε−1). Since (1 + Vµ) 1
21(Vµ 6 ε−1)g ∈ L2(R3) and g has compact

support, we have (1 + Vµ) 1
21(Vµ 6 ε−1)g ∈ L6/5(R3). From the Hardy–Littlewood–

Sobolev inequality, this shows that ϕε ∈ L2(R3). From the definition we also have
σ · ∇ϕε ∈ L2(R3), hence ∇ϕε ∈ L2(R3) and ϕε ∈ H1(R3). From the dominated
convergence theorem, we have gε → g in L2(R3) and we now have to show that
ϕε → ϕ in L2 as well. We have, again by the Hardy–Littlewood–Sobolev inequality,∫

R3
|ϕ− ϕε|2 6 C

∥∥∥(1 + Vµ)
1
2 1

(
Vµ > ε−1

)
g
∥∥∥2

L6/5(R3)

6 C ‖g‖2
L2(B)

(∫
B

(1 + Vµ)
3
2 1

(
Vµ > ε−1

)) 2
3

where supp(g) ⊂ B. The right side tends to zero when ε → 0 and this shows that
ϕε → ϕ for the norm ‖ · ‖Vµ . The density of C∞c is then proved using the fact that
‖ · ‖Vµ is dominated by the H1 norm and this concludes the proof of (3.3), hence of
Theorem 3.1. �

6. Proof of Theorems 3.2 and 3.3

We consider the quadratic form

(6.1) qλ(ϕ) :=
∫
R3

|σ · ∇ϕ|2

1 + λ+ Vµ
dx+

∫
R3

(1− λ− Vµ) |ϕ|2

defined (first) on H1(R3) and show that it is coercive for the norm of Vµ, after
adding C ‖ϕ‖2

L2(R3) for an appropriate constant C. For this the estimate (3.2) on the
first term is not enough because we also have to control the negative Coulomb part
involving Vµ. Our proof will be based on Theorem 2.1, where we have shown that

(6.2)
∥∥∥∥√Vµ 1

D0 + is

√
Vµ

∥∥∥∥ < 1

for s large enough. We will explain here how this can be used to get some information
on the quadratic form qλ in (3.10). More precisely, we will use a similar argument
as in the previous section and show that

(6.3) max Sp
√Vµ 1

D0 + C−ε |p|
2 (β + 1)

√
Vµ

 < 1
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for C large enough and ε small enough. Recall that C(β + 1)/2 has the effect of
only translating the upper component by C, that is, to push the upper part of the
essential spectrum. Like in the previous section, the estimate (6.3) implies that

(6.4) q0(ϕ) > ε
∥∥∥|p| 12ϕ∥∥∥2

L2(R3)
− C ‖ϕ‖2

L2(R3)

for all ϕ ∈ H1(R3). This is the relation between the method of Nenciu et al [Nen76]
based on estimates for the operator Kλ, and the method initiated by Esteban-
Loss [EL07, EL08] based on the quadratic form qλ. To our knowledge, this is the
first time that such a link is established.

Step 1 — Proof of (6.3). The proof of (6.3) is based on the following lemma.

Lemma 6.1 (Relating resolvents). — For every 0 6 ε 6 1 and C > 0, we have
the operator bound

(6.5) 1
D0 + C−ε|p|

2 (β + 1)
6

1
2

(
1

α · p+ β + i
√
C

+ 1
α · p+ β − i

√
C

)
+ 8ε(1 + C)

|p|
.

Proof. — We start with the case ε = 0. Note that we have

D0 + C

2 (β + 1) = α · p+
(

1 + C

2

)
β + C

2
whose spectrum is given by the values of the functions

±
√
|p|2 +

(
1 + C

2

)2
+ C

2 .

The upper function is clearly bounded from below by 1 + C whereas the lower
function is bounded above by −1. The gap is (−1, 1 + C). For large p, the new
operator behaves like D0. This allows us to compute the resolvent, which we express
in the form

(6.6)

1
D0 + C

2 (β + 1)
=
α · p+

(
1 + C

2

)
β − C

2

|p|2 +
(
1 + C

2

)2
− C2

4

= α · p
|p|2 + 1 + C

+ β

|p|2 + 1 + C
+ C

2
β − 1

|p|2 + 1 + C
.

Inserting
α · p

|p|2 + C + 1 = 1
2

(
1

α · p+ β + i
√
C

+ 1
α · p+ β − i

√
C

)
− β

|p|2 + 1 + C

we obtain the relation
1

D0 + C
2 (β + 1)

= 1
2

(
1

α · p+ β + i
√
C

+ 1
α · p+ β − i

√
C

)
+ C

2
β − 1

|p|2 + 1 + C
.

Since β 6 1 the last term is non-positive hence we find the simple inequality

(6.7) 1
D0 + C

2 (β + 1)
6

1
2

(
1

α · p+ β + i
√
C

+ 1
α · p+ β − i

√
C

)
.

ANNALES HENRI LEBESGUE



Dirac–Coulomb operators with general charge distribution I 1445

Next we consider the case 0 < ε 6 1 and note first that

D0 + C − ε|p|
2 (β + 1) = α · p+

(
1 + C − ε|p|

2

)
β + C − ε|p|

2

has the spectrum given by the values of the functions

±

√√√√|p|2 +
(

1 + C − ε|p|
2

)2

+ C − ε|p|
2

= ±

√√√√|p|2 + 1 + C − ε|p|+
(
C − ε|p|

2

)2

+ C − ε|p|
2 .

Noticing that

|p|2 + 1 + C − ε|p| > |p|2 + 1 + C − |p| > |p|
2

2 + 1
2 + C > 0.

we see that the two eigenvalues do not approach the origin, hence the operator is
invertible. We can next estimate the difference by

(6.8)

∣∣∣∣∣∣ 1
D0 + C−ε|p|

2 (β + 1)
− 1
D0 + C

2 (β + 1)

∣∣∣∣∣∣
= ε|p|

2

∣∣∣∣∣∣ 1
D0 + C−ε|p|

2 (β + 1)
(β + 1) 1

D0 + C
2 (β + 1)

∣∣∣∣∣∣
6

ε|p|∣∣∣D0 + C−ε|p|
2 (β + 1)

∣∣∣ ∣∣∣D0 + C
2 (β + 1)

∣∣∣ .
From (6.6) we have

1∣∣∣D0 + C
2 (β + 1)

∣∣∣ 6 |p|+ 1 + C

|p|2 + 1 + C
6

1 +
√

1+C
2

|p|
6

3
√

1 + C

2|p| .

On the other hand, using (6.6) with C replaced by C − ε|p| we obtain

1∣∣∣D0 + C−ε|p|
2 (β + 1)

∣∣∣ 6 |p|+ 1 + C + ε|p|
|p|2 + 1 + C − ε|p|

6
2|p|+ 1 + C
|p|2
2 + 1

2 + C
6

4 +
√

1 + C

|p|
6

5
√

1 + C

|p|
.

Inserting this bound in (6.8) gives the claimed inequality. The constants are not at
all optimal and they are only displayed for concreteness. �
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Using Lemma 6.1 and Kato’s inequality, we obtain

max Sp
√Vµ 1

D0 + C−ε|p|
2 (β + 1)

√
Vµ

 6 4πε(1 + C)µ
(
R3
)

+ 1
2

(∥∥∥∥∥√Vµ 1
α · p+ β + i

√
C

√
Vµ

∥∥∥∥∥+
∥∥∥∥∥√Vµ 1

α · p+ β − i
√
C

√
Vµ

∥∥∥∥∥
)
.

We have shown in the proof of Theorem 2.1 that the two operator norms are less
than 1 for C large enough. Taking ε small enough then concludes our proof of (6.3).

Step 2 — Proof of (6.4) and equivalence of quadratic forms. Let us truncate
Vµ into Wn = Vµ1(Vµ 6 n) and notice that, by Step 1,

(6.9) max Sp
√Wn

1
D0 + C−ε|p|

2 (β + 1)

√
Wn


6 max Sp

√Vµ 1
D0 + C−ε|p|

2 (β + 1)

√
Vµ

 < 1

since Wn 6 Vµ pointwise, for C large enough and ε small enough. For the bounded
potential Wn, the min-max formula and the Birman-Schwinger principle are well
known. The previous condition implies that

D0 − tWn + C − ε|p|
2 (β + 1)

has no eigenvalue in (−1, 0) for every t ∈ [0, 1]. From the min-max principle and a
continuation argument in t from [DES00a], this is equivalent to saying that

q0,Wn(ϕ) > −C ‖ϕ‖2
L2 + ε

∥∥∥|p| 12ϕ∥∥∥2

L2

for all ϕ ∈ H1(R3,C2), where of course q0,Wn denotes the quadratic form with Vµ
replaced by Wn. Passing to the limit n→∞ we obtain (6.4). This is not yet enough
to show that q0 is equivalent to the norm of Vµ. Now using Kato’s inequality, for
η < 1 we write

q0(ϕ) + C ‖ϕ‖2
L2 > η

∫
R3

|σ · ∇ϕ|2

1 + µ ∗ |x|−1 dx− η
∫
R3
Vµ|ϕ|2 + (1− η)ε

∥∥∥|p| 12ϕ∥∥∥2

> η
∫
R3

|σ · ∇ϕ|2

1 + µ ∗ |x|−1 dx+
(

(1− η)ε− π

2 ηµ
(
R3
)) ∥∥∥|p| 12ϕ∥∥∥2

.

After taking
η <

ε

ε+ π
2µ(R3)

we see that the quadratic form q0 + C‖ · ‖2
L2 is equivalent to the square of the norm

of the space Vµ. This quadratic form is thus closable on H1(R3,C2) and its closure
is equivalent to the norm of Vµ.
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Step 3 — Domain and min-max principle. Now we can apply the results
of [EL07, EL08, SST20] to the operator D0 + C(β + 1)/2 − Vµ and we obtain a
unique self-adjoint extension, distinguished from the property that its domain is
included in Vµ × L2(R3,C2). This relies on the fact that the multiplication operator
−1+Vµ is essentially self-adjoint on C∞c (R3,C2) [SST20]. The domain is as described
in the statement of the theorem. Of course, the same holds forD0−Vµ since C(β+1)/2
is bounded.
Next we prove that the domain is included in Vµ × Vµ. Let Ψ = (ϕ, χ) ∈ Vµ ×

L2(R3,C2) be in the domain. Then we have(1− Vµ)ϕ+ σ · pχ = f ∈ L2 (R3,C2) ,
− (1 + Vµ)χ+ σ · pϕ = g ∈ L2 (R3,C2) ,

where the terms on the left side are interpreted as distributions. Since ϕ ∈ Vµ ⊂
H1/2(R3,C2), we have (1 + Vµ)1/2ϕ ∈ L2(R3,C2), by Kato’s inequality. But the first
equation can then be written in the form

σ · pχ = (Vµ + 1)
1
2

(Vµ + 1)
1
2 ϕ+ f − 2ϕ

(Vµ + 1)
1
2

 ,
where the function in parenthesis belongs to L2(R3,C2). By the characterization (3.3)
of Vµ, this gives immediately that χ ∈ Vµ. Therefore we have shown that

D (D0 − Vµ) ⊂ Vµ × Vµ ⊂ H1/2
(
R3,C4

)
.

By uniqueness in H1/2 we conclude that this extension must be the same as the one
from Theorem 2.1. The Birman–Schwinger principle was shown in [Kla80, Nen76].
This concludes the proof of Theorem 3.2.
The validity of the min-max formulas was shown for one-center Dirac operators

in [DES00a] in the domain of the distinguished extension and then in H1/2(R3)
in [MM15, Mül16]. This was later extended to all spaces between C∞c (R3,C4) and
H1/2(R3,C4) in [ELS19]. Here we can follow the same approach. The min-max is
valid in H1/2(R3,C4) and the density of C∞c (R3,C4) in Vµ allows to conclude that
the formula must hold in all spaces in between, following the argument of [ELS19].
In particular, the numbers λ(k)

F are independent of the chosen space F . One notable
difference is that in those works it is often assumed that λ(1) > −1 but it was
explained in [DES06] how to handle the case where we only have λ(k0) > −1 for
some k0 > 1.
Step 4 — Proof of λ(k) ↗ 1. Let us first prove that for any positive integer k,

λ(k) < 1 if µ 6= 0. For every k we choose a k-dimensional subspace of radial functions
in C∞c (R3,C2), denoted by Wk. Let UR(f) = R−3/2f(·/R) be the unitary operator
which dilates the function by a factor R. Introduce Wk,R := URWk. Then for every
normalized ϕR = URϕ ∈ Wk,R, we have

qλ(ϕR) = 1
R2

∫
R3

|σ · ∇ϕ(x)|2

1 + λ+ Vµ(Rx) dx+
∫
R3

(1− λ− Vµ(Rx)) |ϕ(x)|2 dx .
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Decomposing µ = µ1Bη + µ1Bcη with a large but fixed η, we have
∣∣∣∣∫

R3
Vµ(Rx) |ϕ(x)|2 dx−

∫
R3
Vµ1Bη (Rx) |ϕ(x)|2 dx

∣∣∣∣ 6 µ (R3 \Bη) π
2R ‖ϕ‖2

H
1
2 (R3)

.

On the other hand, after passing to Fourier variables and using |µ̂1Bη(k)− µ̂1Bη(0)|
6 Cη|k|, we find∣∣∣∣∣

∫
R3
Vµ1Bη (Rx) |ϕ(x)|2 dx− µ(Bη)

R

∫
R3

|ϕ(x)|2

|x|
dx

∣∣∣∣∣ 6 Cη

R2 ‖ϕ‖
2
H1(R3) .

In our finite-dimensional space, all the norms are equivalent, hence we obtain∫
R3
Vµ(Rx)|ϕ(x)|2 dx >

(
c
µ(Bη)− Cµ(R3 \Bη)

R
− Cη

R2

)
‖ϕ‖2

L2(R3)

for some c > 0 depending on Wk. Choosing η large enough and λ = 1 − ε/R with
ε > 0 small enough, we deduce that q1−ε/R(ϕR) < 0 on Wk,R for R large enough.
The min-max formula (3.6) can be reformulated in terms of the quadratic form qλ
as in [DES00a, SST20]

(6.10) λ(k) = inf {λ :∃ W ⊂ Vµ, dim(W ) = k : qλ(ϕ) 6 0, ∀ ϕ ∈ W} .

Using the characterization on the first line, this proves that λ(k) 6 1− ε/R, as we
wanted.
Next we prove that λ(k) → 1 when k →∞. Note that k 7→ λ(k) is non-decreasing

and < 1 by the previous step. In addition, recall that

Spess (D0 − Vµ) = (−∞,−1] ∪ [1 ∪∞)

by Theorem 2.1. From this we conclude that if we have λ(k0) > −1 for some k0,
then λ(k) is an eigenvalue of D0 − Vµ and it can only converge to 1. Let us argue
by contradiction and assume that λ(k) = −1 for all k > 1. By the characterization
in (6.10) we conclude that there exists a sequence of spaces Wk ⊂ Vµ of dimension
dim(Wk) = k and εk → 0+ such that q−1+εk is negative on Wk. By monotonicity
with respect to λ, we conclude that q0 is also negative on Wk. After extraction this
provides a sequence ϕn ∈ Vµ such that ‖ϕn‖L2 = 1, ϕn ⇀ 0 weakly and q0(ϕn) < 0.
By (6.4) we know that

q0(ϕn) > ε
∥∥∥|p| 12ϕn∥∥∥2

L2(R3)
− Cλ ‖ϕn‖2

L2(R3)

and this proves that the sequence {ϕn} is bounded in H1/2(R3). Using Kato’s inequal-
ity for the negative term involving Vµ in q0 and again the fact that q0(ϕn) < 0, we
finally obtain that the sequence (ϕn) is bounded in Vµ. Next we pick a localization
function χR(x) = χ(x/R) where χ ∈ C∞c (R3, [0, 1]), χ ≡ 1 on B1 and χ ≡ 0 on
R3 \ B2 and let ηR :=

√
1− χ2

R. We use the pointwise IMS formula for the Pauli
operator [BDE08] which states that
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(6.11)

∑
k

|σ · ∇(Jkϕ)|2 =
∑
k

3∑
i, j=1

〈
∂i(Jkϕ), σiσj∂j(Jkϕ)

〉
C2

= |σ · ∇ϕ|2 +
∑
k

3∑
i, j=1
〈ϕ, σiσjϕ〉C2∂iJk∂jJk

+ 2<
∑
k

3∑
i, j=1
〈∂iϕ, σiσjϕ〉C2Jk∂jJk

= |σ · ∇ϕ|2 + |ϕ|2
∑
k

|∇Jk|2

for any real partition of unity ∑k J
2
k = 1. We have used that σiσj + σjσi = 0 for

i 6= j in the second term of the second equality and that 2∑k Jk∂jJk = ∂j
∑
k J

2
k = 0

for the last term. We obtain

q0(ϕn) =
∫
R3

|σ · ∇ (χRϕn)|2

1 + Vµ
−
∫
R3
Vµχ

2
R|ϕn|2 + 1

+
∫
R3

|σ · ∇ (ηRϕn)|2

1 + Vµ
−
∫
R3
Vµη

2
R|ϕn|2 −

∫
R3

|∇χR|2 + |∇ηR|2

1 + Vµ
|ϕn|2.

For the first two terms involving χR we use that q0 is bounded from below by (6.4),
which yields ∫

R3

|σ · ∇ (χRϕn)|2

1 + Vµ
−
∫
R3
Vµχ

2
R|ϕn|2 > −C

∫
R3
χ2
R|ϕn|2.

Hence we obtain

(6.12) q0(ϕn) > 1− C
∫
R3
χ2
R|ϕn|2 −

∫
R3
Vµη

2
R|ϕn|2 −

C

R2 .

We will prove that the negative terms on the right side are all small in the limit,
which gives q0(ϕn) > 0, a contradiction. We start with the second negative term. We
decompose µ = µχ2

R/4 + µη2
R/4 and remark that Vµχ2

R/4
η2
R 6 C/R whereas∫

R3
Vµη2

R/4
η2
R|ϕn|2 6

π

2µ
(
R3 \BR/2

)
‖ηR ϕn‖2

H1/2 6 Cµ
(
R3 \BR/2

)
by Kato’s inequality. Hence∫

R3
Vµη

2
R|ϕn|2 6 C

( 1
R

+ µ
(
R3 \BR/2

))
.

We may therefore choose R large enough such that∫
R3
Vµη

2
R|ϕn|2 + C

R2 6
1
2

in (6.12). But, due to the weak convergence ϕn ⇀ 0 in H1/2, we have for this fixed R

lim
n→∞

∫
R3
χ2
R|ϕn|2 = 0

and this proves, as we claimed, that q0(ϕn) > 0 for n large.
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Step 5 — Proof that λ(1) > 0 under condition (3.8). We claim that for every
finite positive measure µ

(6.13) ‖K0‖ 6 µ
(
R3
) π

2 + 2
π

2 where K0 :=
√
Vµ

1
D0

√
Vµ.

Then, the statement that λ(1) > 0 and that there are no eigenvalue in (−1, 0)
follows from the resolvent formula (2.5) and the Birman–Schwinger principle in
Theorem 3.2. To estimate the norm of K0 we introduce the free Dirac spectral
projections P±0 = 1R±(D0) and write

−
√
Vµ

P−0√
1−∆

√
Vµ 6

√
Vµ

1
D0

√
Vµ 6

√
Vµ

P+
0√

1−∆

√
Vµ.

We obtain ∥∥∥∥√Vµ 1
D0

√
Vµ

∥∥∥∥ 6 max
τ ∈{±}

∥∥∥∥∥√Vµ P τ
0√

1−∆

√
Vµ

∥∥∥∥∥ .
By charge-conjugation the two norms on the right are equal in the maximum. One
can bound them by∥∥∥∥∥√Vµ P+

0√
1−∆

√
Vµ

∥∥∥∥∥ =
∥∥∥∥∥ P+

0

(1−∆) 1
4
Vµ

P+
0

(1−∆) 1
4

∥∥∥∥∥
6 µ

(
R3
) ∥∥∥∥∥ P+

0

(1 + |p|2) 1
4

1
|x|

P+
0

(1 + |p|2) 1
4

∥∥∥∥∥ = µ
(
R3
) π

2 + 2
π

2 .

The inequality is by convexity in µ and by translation-invariance of P+
0 (1−∆)−1/4.

The last equality is due to Tix [Tix98]. �

7. Proof of Theorem 3.5

We investigate here the case

µ =
M∑
m=1

νmδRm , Vµ(x) =
M∑
m=1

νm
|x−Rm|

and start by providing the
Proof of Lemma 3.4. — We assume M > 2, otherwise the result has already been

proved before in [DES00a] with d = 0. We follow arguments from [BDE08] and
introduce a smooth partition of unity ∑M+1

k=1 J2
k = 1 so that Jk ≡ 0 outside Bdk/2(Rk)

and Jk ≡ 1 in Bdk/4(Rk) for k = 1, . . . , M , where dk = min` 6= k |Rk − R`| is the
distance from the other nuclei. Setting

d := min
k 6= `
|Rk −R`|

the smallest distance between the nuclei, we may assume that

(7.1)
M+1∑
k=1
‖∇Jk‖2

∞ 6
κ

d2

ANNALES HENRI LEBESGUE



Dirac–Coulomb operators with general charge distribution I 1451

for a universal constant κ. By the IMS formula (6.11) we have∫
R3

|σ · ∇ϕ|2

1 + λ+ Vµ
dx =

M+1∑
k=1

∫
R3

|σ · ∇ (Jkϕ)|2

1 + λ+ Vµ
dx−

∫
R3

M+1∑
k=1
|∇Jk|2

|ϕ|2

1 + λ+ Vµ
dx

>
M+1∑
k=1

∫
R3

|σ · ∇ (Jkϕ)|2

1 + λ+ Vµ
dx− κ

d2(1 + λ)

∫
R3
|ϕ|2 dx .

We can write, similarly as in [ELS19, Section 1.4],∫
R3

|σ · ∇ (Jkϕ)|2

1 + λ+ Vµ
dx =

(
1− ν2

k

) ∫
R3

|σ · ∇ (Jkϕ)|2

1 + λ+ Vµ
dx+ ν2

k

∫
R3

|σ · ∇ (Jkϕ)|2

1 + λ+ Vµ
dx ,

and use the following Hardy-type inequality which was proved in [DELV04, DES00a]:

(7.2) ∀ a > 0,
∫
R3

|σ · ∇ϕ(x)|2

a+ 1/|x| dx+
∫
R3

(
a− 1
|x|

)
|ϕ(x)|2 dx > 0.

Using the fact that

Vµ 6
νk

|x−Rk|
+ (M − 1)ν̄

d

on the support of Jk for k = 1, . . . , M , with ν̄ := max(νm) we obtain
(7.3)

ν2
k

∫
R3

|σ · ∇(Jkϕ)|2

1 + Vµ + λ
dx > ν2

k

∫
R3

|σ · ∇(Jkϕ)|2

1 + νk |x−Rk|−1 + (M−1)ν̄
d

+ λ
dx

>
∫
R3

(
νk

|x−Rk|
− 1− λ− (M − 1)ν̄

d

)
|Jkϕ|2 dx

>
∫
R3
Vµ |Jkϕ|2 dx−

(
1 + λ+ 2(M − 1)ν̄

d

)∫
R3
|Jkϕ|2 dx

for k = 1, . . . , M . For k = M + 1 we use that∫
R3
Vµ |JM+1ϕ|2 dx 6

Mν̄

d

∫
R3
|JM+1ϕ|2 dx.

Since −1 < λ < 1 and 2(M − 1) >M for M > 2, we obtain

(7.4)
∫
R3

|σ · ∇ϕ|2

1 + λ+ Vµ
dx+

∫
R3

(1− λ+ V ) |ϕ|2 dx

>
(
1− ν̄2

) M∑
k=1

∫
R3

|σ · ∇(Jkϕ)|2

2 + Vµ
dx+

∫
R3

|σ · ∇ (JM+1ϕ)|2

2 + Vµ
dx

−
(

2λ+ 2(M − 1)ν̄
d

+ κ

d2(1 + λ)

)∫
R3
|ϕ|2 dx

>
(
1− ν̄2

) ∫
R3

|σ · ∇ϕ|2

2 + Vµ
dx−

(
2λ+ 2(M − 1)ν̄

d
+ κ

d2(1 + λ)

)∫
R3
|ϕ|2 dx. �
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We are now ready to provide the
Proof of Theorem 3.5. — To prove (i), let us fix some R1, . . . , RM all distinct

from each other and let d := minj 6= k |Rj −Rk| > 0. Let χ ∈ C∞c (Bd/4) be a function
such that χBd/8 ≡ 1 and denote by χm := χ(x − Rm) the function centered at the
mth nucleus. Let finally η := 1 −∑M

m=1 χm be the function which localizes outside
of the M nuclei. Next we consider some new positions R′1, . . . , R′M ∈ R3 such that
|Rm −R′m| 6 ε 6 d/10 and define the following deformation of space

Tx =
M∑
m=1

χm(x) (x+R′m −Rm) + η(x)x = x+
M∑
m=1

χm(x) (R′m −Rm)

which sends each nucleus Rm onto R′m and does not move the points located at a
distance > d/4 away from the nuclei. We have |Tx− x| 6 ε and

|DT (x)− 13| 6 Cε1

(
d

8 6 δ(x) 6 d

4

)
, δ(x) := min

m
|x−Rm|

hence T is a C∞–diffeomorphism for ε small enough. For a function ϕ ∈ C∞c (R2,C2)
we define ϕT (x) := ϕ(T−1x). Denoting by qλ and q′λ the quadratic forms correspond-
ing respectively to the nuclear positions Rm and R′m we find after a change of variable
in the integrals

qλ(ϕT ) 6 q′λ(ϕ) + Cε
∫
d
8 6 δ6

d
4

|∇ϕ|2 + |ϕ|2 6 q′λ−Cε(ϕ)

for ε small enough and λ far enough from −1. By (6.10) this proves that

λ1

(
D0 −

M∑
m=1

νm
|x−Rε

m|

)
6 λ1

(
D0 −

M∑
m=1

νm
|x−R′m|

)
+ C ε

for ε small enough. We get the reverse inequality by using the inverse transformation.
To prove (ii), we assume for simplicity of notation that max νm = νM . We then

use the pointwise bound
M∑
m=1

νm
|x−Rm|

>
νM

|x−RM |

and the monotonicity of λ(1) with respect to the potential to deduce that

λ1

(
D0 −

M∑
m=1

νm
|x−Rm|

)
6 λ1

(
D0 −

νM
|x−RM |

)
=
√

1− ν2
M .

The reverse inequality in the limit |Rj −Rk| → ∞ is proved by localizing exactly as
in [BDE08, Corollary 4.7].
Finally, we discuss the proof of (iii). After a translation we may assume that R1 = 0

and that Rm → 0 for all m = 2, . . . , M . We denote by qR,λ and q0, λ the quadratic
forms associated to the potentials VR = ∑M

m=1 νm|x−Rm|−1 and V0 = ∑M
m=1 νm|x|−1,

respectively. We denote by λ1(R) and λ1(0) the corresponding min-max values. From
Theorem 3.3 it is known that λ1(R) > 0 for all R whenever

M∑
m=1

νm 6
2

π/2 + 2/π ,
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as was assumed in the statement. By a continuation principle as in [DES00a] we
know that the first min-max value λ(1) is non-negative and coincides with the first
eigenvalue. Moreover, we recall from (6.13) that

‖KR, 0‖ 6
π/2 + 2/π

2

M∑
m=1

νm < 1,

where

KR, 0 :=
√
VR

1
D0

√
VR →

√
V0

1
D0

√
V0 := K0, 0

strongly. Then we have (1 − KR, 0)−1 → (1 − K0, 0)−1 strongly. Since (D0)−1√VR
converges in norm, this proves using (2.5) that (D0− VR)−1 → (D0− V0)−1 in norm,
hence that the eigenvalues converge. Note that the other parts of the statement also
follow from this argument, when ∑M

m=1 νm < 2(π/2 + 2/π)−1. �
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