
Annales Henri Lebesgue
4 (2021) 1595-1618

LAURENT THOMANN

GROWTH OF SOBOLEV NORMS
FOR LINEAR SCHRÖDINGER
OPERATORS
CROISSANCE DE NORMES SOBOLEV POUR
DES OPÉRATEURS SCHRÖDINGER
LINÉAIRES

Abstract. — We give an example of a linear, time-dependent, Schrödinger operator with
optimal growth of Sobolev norms. The construction is explicit, and relies on a comprehensive
study of the linear Lowest Landau Level equation with a time-dependent potential.

Résumé. — Nous donnons un exemple d’un opérateur de Schrödinger linéaire, dépendant
du temps, avec une croissance optimale des normes de Sobolev. La construction est explicite,
et s’appuie sur une étude complète de l’équation linéaire de plus bas niveau de Landau avec
un potentiel dépendant du temps.

Keywords: Linear Schrödinger equation, time-dependent potential, growth of Sobolev norms,
reducibility.
2020 Mathematics Subject Classification: 35Q41, 35B08.
DOI: https://doi.org/10.5802/ahl.111
(*) The author is supported by the grants “BEKAM” ANR-15-CE40-0001 and “ISDEEC” ANR-
16-CE40-0013.

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.111


1596 L. THOMANN

1. Introduction and main result
The aim of this paper is to present an example of linear, time-dependent, Schrödin-

ger operator which exhibits optimal polynomial growth of Sobolev norms. Moreover,
this operator takes the form H̃+L (t), where H̃ is an elliptic operator with compact
resolvent and where the perturbation L (t) is a small, time-dependent, bounded
self-adjoint operator. Our construction is actually entirely explicit and it is based
on the study of linear Lowest Landau Level equations (LLL) with a time-dependent
potential.
In Maspero–Robert [MR17], the authors study linear Schrödinger operators, obtain

global well-posedness results and prove very precise polynomial bounds on the pos-
sible growth of Sobolev norms under general conditions (see Assumption 1.1 below).
We show here that these bounds are optimal.
Our setting is the following: consider the 2-dimensional harmonic oscillator

H = −
(
∂2
x + ∂2

y

)
+
(
x2 + y2

)
= −4∂z∂z + |z|2,

where z = x+ iy, ∂z = 1
2(∂x − i∂y). This operator acts on the space

Ẽ =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩S ′(C),

and if we define the Bargmann–Fock space E by

E =
{
u(z) = e−

|z|2
2 f(z) , f entire holomorphic

}
∩ L2(C),

then the so-called special Hermite functions (ϕn)n> 0 given by

ϕn(z) = zn√
πn!

e−
|z|2

2 ,

form a Hilbertian basis of E , and are eigenfunctions of H, namely
Hϕn = 2(n+ 1)ϕn, n > 0.

Let 0 6 τ < 1 and set ρ(τ) = 1
2(1−τ) ∈ [1/2,∞). We define the operator H̃τ =

(H + 1)ρ(τ), which in turn defines the scale of Hilbert spaces (H̃s
τ )s> 0 by

H̃s
τ =

{
u ∈ L2(C), H̃s/2

τ u ∈ L2(C)
}
∩ E , H̃0

τ = E ,
and we denote by L the Lebesgue measure on C.
For X a Banach space, we denote by Cb(R;X) the subspace of C(R;X) composed

of bounded functions:

Cb (R;X) =
{
t 7→ u(t) ∈ C (R;X) : sup

t∈R
‖u(t)‖X < +∞

}
.

Similarly, for all k ∈ N we define the space Ckb (R, X) by
Ckb (R;X) =

{
u ∈ Cb (R;X) : ∂jtu ∈ Cb (R;X) , ∀ 0 6 j 6 k

}
.

Let 0 6 τ < 1 and s > 0. For a family (L (t))t∈R of continuous linear mappings
L (t) : H̃s

τ −→ H̃s
τ ,

we consider the following assumptions :
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Growth of Sobolev norms for linear Schrödinger operators 1597

Assumption 1.1. — (L (t))t∈R is a family of linear operators which satisfies:
(i) One has t 7−→ L (t) ∈ Cb(R;L(H̃s

τ )) for all s > 0.
(ii) For every t ∈ R, L (t) is symmetric w.r.t. the scalar product of H̃0

τ ,∫
C
vL (t)u dL =

∫
C
uL (t)v dL, ∀ u, v ∈ H̃0

τ .

(iii) The family (L (t))t∈R is H̃τ
τ -bounded in the sense that t 7−→ [L (t), H̃τ ]H̃−ττ ∈

Cb(R,L(H̃s
τ )) for all s > 0.

(iv) For all ` ∈ N, one has t 7−→ L (t) ∈ C`b(R;L(H̃s
τ ; H̃s−`τ

τ )) for all s > 0.

Finally, for s > 0, we consider the initial value problem

(1.1)

i∂tu =
(
H̃τ + L (t)

)
u, (t, z) ∈ R× C,

u(t, ·)|t=t0 = u0 ∈ H̃s
τ ,

and we are able to state our main result:

Theorem 1.2. — For any 0 6 τ < 1 and any ε > 0, there exists a family of
linear operators (L (t))t∈R which satisfies Assumption 1.1, so that for all s > 0:

(i) There exists Cs > 0 such that
sup
t∈R
‖L (t)‖L(H̃sτ ) 6 Csε.

(ii) The problem (1.1) is globally well-posed in H̃s
τ : for any u0 ∈ H̃s

τ , there exists
a unique solution u(t) := U(t, t0)u0 such that u ∈ C(R, H̃s

τ ) to (1.1). Moreover,
U has the group property

U(t2, t1)U(t1, t0) = U(t2, t0), U(t, t) = Id, ∀ t, t1, t2 ∈ R,

and U is unitary in H̃0
τ

‖U(t, t0)u0‖H̃0
τ

= ‖u0‖H̃0
τ
, ∀ t ∈ R.

(iii) Any solution to (1.1), with initial condition u0 ∈ H̃s
τ , satisfies for all t ∈ R

‖U(t, t0)u0‖H̃sτ 6 C‖u0‖H̃sτ 〈ε(t− t0)〉
s

2(1−τ) .

(iv) There exists a nontrivial initial condition u0 ∈ ∩k> 1H̃k
τ such that the corre-

sponding solution to (1.1) satisfies for all t ∈ R

‖U(t, t0)u0‖H̃sτ > c‖u0‖H̃sτ 〈ε(t− t0)〉
s

2(1−τ) .

Actually, items (ii) and (iii) directly follow from [MR17, Theorem 1.5]. The novelty
in our work is item (iv) which shows that the upper bounds obtained in [MR17,
Theorem 1.5] are optimal without further assumptions, even for small perturbations
L (t), see item (i).
It seems that the example of Theorem 1.2 is the first one which covers all the possi-

ble values of 0 6 τ < 1, and it is noticeable the result of Theorem 1.2 is obtained for
any value of 0 6 τ < 1, by essentially the same example, written in different scales of
Hilbert spaces. An example of such growth was given in [Del14] in the case τ = 0
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1598 L. THOMANN

(see also [Mas19] for an alternative proof), and in [BGMR18, Appendix A] in the
case τ = 1/2, but it seems that the other cases were left open.
We stress that our example is an operator which takes the form H̃τ + L (t), where

H̃τ is a (time independent) elliptic operator with compact resolvent and L (t) a
bounded self-adjoint operator. Moreover, this perturbation is small and satisfies
indeed for all ` > 0

sup
t∈R

∥∥∥∂`tL (t)
∥∥∥
L(H̃sτ ; H̃s−`ττ ) 6 Cs, `ε.

If one allows unbounded perturbations, it is simpler to obtain growth of Sobolev
norms, as it is shown by an elementary example given in Appendix A. In this latter
context, growth of Sobolev norms can occur even with time-independent operators.
Observe that the ϕn are the eigenfunctions of H̃τ , namely

H̃τϕn = 2ρ(τ)(n+ 1)ρ(τ)ϕn, n > 0.
Hence in our example, we see an exact correspondence between the asymptotics of
the eigenvalues of H̃τ and the rate of growth for (1.1). If ρ > 1 (which corresponds
to τ > 1/2), the operator H̃τ satisfies a gap condition, but in our example, ∂`t L (t)
is not regular enough (see item (iv) in Assumption 1.1) to meet the hypotheses
of [MR17, Theorems 1.8 and 1.9], in which better upper bounds are obtained.
Let us recall the following characterization of the Sobolev spaces H̃s

τ . By [GGT19,
Lemma C.1], for any s > 0, there exist c, C > 0 such that for all u ∈ H̃s

τ

c
∥∥∥〈z〉sρ(τ)u

∥∥∥
L2(C)

6 ‖u‖H̃sτ 6 C
∥∥∥〈z〉sρ(τ)u

∥∥∥
L2(C)

, 〈z〉 =
(
1 + |z|2

)1/2
.

As a consequence, in the Bargmann–Fock space, a growth of Sobolev norm cor-
responds to a transfer of energy in the physical space. In our example, the growth
will be induced by a traveling wave. This is in contrast to the previous known exam-
ples [BGMR18, Del14, Mas19], where the growth was inherited by a time-periodic
phenomenon.
We end this section by reviewing some results on the growth of linear Schrödinger

equations on manifolds with time-dependent potentials
(1.2) i∂tu+ ∆u+ V (t, x)u = 0.
In [Bou99b] Bourgain proves a polynomial bound of the Sobolev norm for (1.2),

when V (t, x) is a bounded (real analytic) potential. Moreover, when the potential is
quasi-periodic in time he obtains in [Bou99a] a logarithmic bound (see also [Del10,
FZ12, GPT13, Wan08a], for more results on norm inflation phenomena in various
settings). Delort [Del14] constructs an example with polynomial growth for the
harmonic oscillator perturbed by a (time-periodic) pseudo-differential operator of
order zero. In [BGMR18], the authors give the example of a time-periodic order one
perturbation of the harmonic oscillator which induces polynomial growth. In [ANS19],
the authors prove exponential growth of the energy norm for a linear (and nonlinear)
harmonic oscillator perturbed by the angular momentum operator (see [ANS19,
Theorem 4.5]). We refer to [HM20, Mas19] for more examples with growth of norms
and to [BGMR21] for bounds on abstract linear Schrödinger equations. Let us
mention the article [LZZ21] in which the authors obtain very precise results on the
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Growth of Sobolev norms for linear Schrödinger operators 1599

dynamics of a family of perturbations of the harmonic oscillator. Finally, in the
recent paper [FR20], Faou and Raphaël give examples of solutions to perturbed
harmonic oscillators which grow like (log t)α. Interestingly, although being different
to ours, one of their approach relies on the study of the so-called continuous resonant
equation (CR) which contains the dynamics of the LLL equation.

2. The linear LLL equation with time-dependent potential

We now present our example more in details. Let W ∈ L∞(R × C,R) be a real-
valued time-dependent potential and consider the linear equation

(2.1)
{
i∂tu− δHu = Π (W (t, z)u) , (t, z) ∈ R× C, δ ∈ R,
u(t, ·)|t=t0 = u0 ∈ E ,

where Π is the orthogonal projector on the space E (the kernel of Π is very explicit,
see (2.13) below). The equation (2.1) is the linearization of the Lowest Landau Level
equation
(2.2)
which is used in the modeling of fast rotating Bose–Einstein condensates. See e.g. the
introduction of [GGT19] for physical motivation, and we refer to [ABN06, BBCE17,
BBE19, GGT19, Nie07, ST21] for the study of (2.1). Equation (2.1) is a natural
mathematical toy model, for which we can try to exhibit some particular dynamics.
The dispersion parameter δ ∈ R does not play a role in the dynamics of equa-

tion (2.2). Actually, u solves (2.2) if and only if v = eiδtHu solves (2.2) with δ = 0.
This comes from the crucial property

e−itHΠ
(
eitHa eitHb eitHc

)
= Π

(
a b c

)
, ∀ a, b, c ∈ E ,

see [GHT16, Lemma 2.4 and Corollary 2.5]. However, the transformation v = eiδtHu
does not preserve the left hand side of (2.1), that is why we must keep the parameter
δ ∈ R in our study (nonetheless we will see that it does not affect the dynamics of
equation (2.1), excepted in the reducibility result stated in Appendix A where we
need δ 6= 0).
In the sequel, by a time translation, we restrict to the case t0 = 0.
In this section, we state global well-posedness results with optimal bounds on the

growth of the Sobolev norms for (2.1). We are also able to obtain reducibility results
for (2.1), when W is a small quasi-periodic potential, but these results are direct
applications of [GT11], thus we have postponed the statements to the Appendix A.

2.1. Statement of the results

Our first result concerns the global well-posedness of such an equation under
general conditions on W . For s > 0, we denote by

(2.3) L2, s =
{
u ∈ L2(C), 〈z〉su ∈ L2(C)

}
, 〈z〉 =

(
1 + |z|2

)1/2
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1600 L. THOMANN

the weighted Lebesgue space and L2 s
E = L2, s ∩ E . Then our well-posedness result

reads:

Theorem 2.1. — Let δ ∈ R and W ∈ L∞(R×C,R). For all u0 ∈ E , there exists
a unique solution u ∈ C(R, E) to equation (2.1). Moreover, for every t ∈ R,∫

C
|u(t, z)|2 dL(z) =

∫
C
|u0(z)|2 dL(z).

Furthermore, if for some s > 0, u0 ∈ L2, s
E , then u(t) ∈ L2, s

E for every t ∈ R.

A natural question is the control of higher order Sobolev norms of the solution
for large times and this will be achieved, under some additional conditions on W .
The notation W ∈ C∞bt (R × R2,R) means that W is continuous and bounded in t
and smooth in the variables (x, y). We stress that derivation in the time variable
is not needed. For notational convenience, we sometimes identify (x, y) ∈ R2 and
z = x + iy ∈ C. In particular, for a function of the variables (x, y) we use the
notations

(2.4) ∂z = 1
2 (∂x − i∂y) , ∂z = 1

2 (∂x + i∂y) .

Theorem 2.2. — Let δ ∈ R and s > 0. Assume that W ∈ C∞bt (R×R2,R) is such
that

(2.5) sup
06 k6 dse

∥∥∥∂kzW (t, ·)
∥∥∥
L∞(C)

6 C0, t ∈ R,

then any solution to (2.1), with initial condition u0 ∈ L2,s
E , satisfies for all t ∈ R

(2.6) ‖〈z〉su(t)‖L2(C) 6 C ‖〈z〉su0‖L2(C) 〈C0t〉s,

where the constant C > 0 only depends on s > 0.

Condition (2.5) is rather natural in the space E . For instance, it is satisfied by
the following class of potentials: assume that V (t, ·) ∈ E , uniformly in t ∈ R, then
W = |V |2 satisfies (2.5) for all k > 0, by Lemma C.2 and (2.15). We stress that
in (2.5) one needs the operator ∂z (not ∂x or ∂y).
This bound is indeed optimal as shown by the next result:

Theorem 2.3. — Let δ ∈ R. For all ε > 0, there exists Wε ∈ S (R × R2,R)
such that for all 1 6 p 6 ∞, ‖Wε(t, ·)‖Lp(C) 6 ε, and such that for all k, j > 0 and
uniformly in time

(2.7)
∥∥∥∂jz∂kzWε(t, ·)

∥∥∥
L∞(C)

6 εCjk, t ∈ R,

and there exists a nontrivial initial condition u0 ∈
⋂
k> 0 L

2, k
E such that the corre-

sponding solution to (2.1) satisfies for all s > 0 and t ∈ R

(2.8) ‖〈z〉su(t)‖L2(C) > cs ‖〈z〉su0‖L2(C) 〈εt〉
s.

Moreover, we have the following equivalence, when t −→ ±∞

(2.9) ‖〈z〉su(t)‖L2(C) ∼ csεs|t|s‖u0‖L2(C).
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The inequality (2.8) is stated like that in order to give a counterpart to (2.6).
Actually, as shown in (2.9), the coefficient of the leading order of the lower term
depends on ‖u0‖L2(C) (and not on ‖〈z〉su0‖L2(C)). The inequality (2.8) holds true
since u0 ∈

⋂
k> 0 L

2, k
E is here fixed, and the constant cs > 0 depends on u0.

Observe that using the notations (2.4), the condition (2.7) can be rephrased as∥∥∥∂jx∂kyWε(t, ·)
∥∥∥
L∞(C)

6 εCjk, t ∈ R.

The result of Theorem 2.3 is a direct consequence of [ST21, Theorem 1.5 and
Corollary 1.6] and we can make the explicit choices

u0 =
√
ε

(
1
2ϕ0 + i

√
3

2 ϕ1

)
, α =

√
3

32πε,

and

(2.10) Wε(t, z) = ε

4π
∣∣∣1− i√3

(
e−2iδtz + αt

)∣∣∣2 e−|e−2iδtz+αt|2 .

Actually, in [ST21, Theorem 1.5 and Corollary 1.6] (see also [ST21, equation (2.4)]),
unbounded trajectories where constructed for the system

(2.11)


i∂tu− δHu = Π

(
|v|2u

)
, (t, z) ∈ R× C,

i∂tv − δHv = −Π
(
|u|2v

)
,

u(0, ·) = u0, v(0, ·) = v0,

and the idea is here to consider the second equation in (2.11) as given, and to
interpret the term |v|2 in the first line as a given time-dependent potential.
Notice that the growth of Sobolev norms is not obtained by a periodic potential

as in [BGMR18, Del10]. Here, as it is shown in (2.10), the growth is exhibited by a
time translation (more precisely, by a magnetic translation in the Bargmann–Fock
space).
In general, growth of Sobolev norms is a phenomenon which happens due to

resonances of the equation. Recall that the dynamics of the cubic LLL equation
i∂tu = Π(|u|2u) is included in the so-called cubic resonant (CR) equation, which was
derived in [FGH16] as a resonant approximation of NLS (we also refer to [GHT16]
for a comprehensive study of the (CR) equation).
In the last result of this section we show that if W has additional spacial decay,

then the possible growth of the solution of (2.1) enjoys better controls:

Theorem 2.4. — Let δ ∈ R and s > 0 and let W ∈ C∞bt (R× R2,R).
(i) Assume that

sup
16 j 6 k6 dse

∥∥∥z2k−j∂jzW (t, ·)
∥∥∥
L∞(C)

6 C1, t ∈ R,

then any solution to (2.1), with initial condition u0 ∈ L2,s
E , satisfies for all

t ∈ R
‖〈z〉su(t)‖L2(C) 6 C ‖〈z〉su0‖L2(C) 〈C1t〉1/2 ,

where the constant C > 0 only depends on s > 0.
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(ii) Let ε > 0. Assume that for all k > 1 and uniformly in time

(2.12)
∥∥∥〈z〉2k∂kzW (t, ·)

∥∥∥
L∞(C)

6 Ck, t ∈ R,

then any solution to (2.1), with initial condition u0 ∈ L2, s
E , satisfies for all

t ∈ R
‖〈z〉su(t)‖L2(C) 6 C ‖〈z〉su0‖L2(C) 〈t〉

ε,

where the constant C > 0 depends on W , s > 0 and ε > 0.
This result is the analogous to [Bou99b, Del10] in which similar bounds are obtained

for the linear Schrödinger equation with time-dependent potential, but in our case
the proof is much simpler.
The result of Theorem 2.4 shows that growth of Sobolev norms can occur only if

W is concentrated in the region |z| � 1 when t −→ ±∞. This is typically the case
with the example of the traveling wave exhibited in Theorem 2.3 (see (2.10)).
Under additional conditions on W (analyticity in time and quasi-periodicity) one

can show the solutions are indeed bounded, see Theorem B.1.

2.2. Plan of the paper

The rest of the paper is organized as follows. We end this section by giving some
notations. In Section 3 we study the linear LLL equation (2.1). We are then able to
apply these results to prove Theorem 1.2 in Section 4. In Appendix A we give an
another example of Schrödinger operator with unbounded orbits and in Appendix B
we state a reducibility result for (2.1).

2.3. Some recalls and notations

The harmonic oscillator H is defined by
H = −4∂z∂z + |z|2,

with the classical notations z = x+ iy and

∂z = 1
2 (∂x − i∂y) , ∂z = 1

2 (∂x + i∂y) .

Recall that the family of the special Hermite functions (ϕn)n> 0 is given by

ϕn(z) = zn√
πn!

e−
|z|2

2 .

The family (ϕn)n> 0 forms a Hilbertian basis of E (see [Zhu12, Proposition 2.1]), and
the ϕn are the eigenfunctions of H,

Hϕn = 2(n+ 1)ϕn, n > 0.
We can show (see [GGT19]) that Π, the orthogonal projection on E , is given by the
formula

(2.13) (Πu)(z) = 1
π
e−
|z|2

2

∫
C
ewz−

|w|2
2 u(w) dL(w),
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where L stands for Lebesgue measure on C.
Recall (see (2.3)) that for s > 0, the weighted Lebesgue space L2, s is defined by

L2, s =
{
u ∈ L2(C), 〈z〉su ∈ L2(C)

}
, 〈z〉 =

(
1 + |z|2

)1/2

and L2, s
E = L2, s ∩ E . For s > 0, we define the harmonic Sobolev spaces by

Hs =
{
u ∈ L2(C), Hs/2u ∈ L2(C)

}
∩ E ,

equipped with the natural norm ‖u‖Hs = ‖Hs/2u‖L2(C). Then by [GGT19, Lem-
ma C.1], we have Hs = L2, s

E with the equivalence of norms
(2.14) c ‖〈z〉su‖L2(C) 6 ‖u‖Hs 6 C ‖〈z〉su‖L2(C) , ∀ u ∈ L2, s

E .

Recall the hypercontractivity estimates (see [Car91] or [ST21, Lemma A.2] for the
bounds without the optimal constants which will be enough for our purpose) : for
all 1 6 p 6 q 6 +∞ and u ∈ Ẽ

(2.15)
(
q

2π

)1/q
‖u‖Lq(C) 6

(
p

2π

)1/p
‖u‖Lp(C).

In this paper c, C > 0 denote universal constants the value of which may change
from line to line.

3. Study of the linear LLL equation
3.1. Global existence

To solve equation (2.1) we find a fixed point in a ball of E to

F : u 7−→ e−iδtHu0 − i
∫ t

0
e−iδ(t−s)H

(
Π(Wu)(s)

)
ds.

Let us sketch the proof: since eiτH is unitary in L2, we have

‖F (u)(t)‖L2 6 ‖u0‖L2 +
∫ t

0
‖Π(Wu)(s)‖L2ds

6 ‖u0‖L2 + Ct sup
s∈ [0, t]

‖u(s)‖L2‖W‖L∞ ,

where we used the continuity of Π in L2 in the last line (for continuity results for Π
we refer to [GGT19, Proposition 3.1]). Contraction estimates are obtained similarly,
and this gives a local in time solution. Globalization can be obtained by the Grönwall
inequality since the equation is linear. The L2 norm of a solution is a conserved
quantity, since the potential W is real valued.
If moreover u0 ∈ L2, s

E , we can prove the wellposedness in L2, s
E , thanks to the

following lemma, which we quote for future reference:
Lemma 3.1. — Let W ∈ L∞(C) and v ∈ L2, s

E , then
(3.1) ‖〈z〉sΠ (Wv)‖L2(C) 6 C‖W‖L∞(C) ‖〈z〉sv‖L2(C) ,

and
(3.2)

∥∥∥〈z〉seiτHv∥∥∥
L2

= ‖〈z〉sv‖L2 .
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Proof. — The bound (3.1) is a consequence of [GGT19, Proposition 3.1]. For (3.2),
we first observe that for all u ∈ E = L2, 0

E , we have eiτHu(z) = e2iτu(e2iτz), as can be
seen by testing on the complete family (ϕn)n> 0. Then (3.2) follows from the change
of variables z 7→ e−2iτz. �

3.2. Bounds on Sobolev norms: proof of Theorem 2.2

Now that equation (2.1) is well-posed, let us inspect the behaviour of the norms of
the solutions. For this we need a result, which is an consequence of [ST21, Lemma 2.1]:
Lemma 3.2. — Let k ∈ N and let W ∈ Ck(R× R2,R) be a real valued function.

Assume that u ∈ L2, k
E satisfies

i∂tu− δHu = Π (Wu) .
Then

(3.3) d

dt

∫
C
|z|2k |u(t, z)|2dL(z)

= −2
k∑
j=1

(−1)j
(
k

j

)
Im

∫
C
zkzk−j|u(t, z)|2

(
∂jzW (t, z)

)
dL(z).

Proof. — We compute
d

dt

∫
C
|z|2k |u|2dL = 2Re

∫
C
|z|2ku∂tudL

= 2Im
∫
C
|z|2kuΠ(Wu)dL+ 2δIm

∫
C
|z|2kuHudL.

Let us first show that Im
∫
C |z|2kuHudL = 0. Since H = −4∂z∂z + |z|2, it remains

to show that Im
∫
C |z|2ku∂z∂zudL = 0. Write u(z) = f(z)e− 1

2 |z|
2 , then

Im
∫
C
|z|2ku∂z∂zudL = Im

∫
C
|z|2kfe−

1
2 |z|

2
∂z∂z

(
fe−

1
2 |z|

2)
dL

= −1
2Im

∫
C
|z|2kf

(
f + z∂zf −

1
2 |z|

2f
)
e−|z|

2
dL

= −1
2Im

∫
C
zk+1zkf (∂zf) e−|z|2dL

= 0,
by integrating by parts, hence the result. To complete the proof, we apply [ST21,
Lemma 2.1]. �
We are now able to prove Theorem 2.2. By linearity, it is enough to consider the

case ‖〈z〉ku0‖L2(C) = 1. We use the identity (3.3). Then, since ‖∂jzW‖L∞(C) 6 C0 for
all 1 6 j 6 k, we deduce by Hölder

d

dt

∫
C
|z|2k|u|2dL 6 CC0

∫
C
〈z〉2k−1|u|2dL

6 CC0

(∫
C
〈z〉2k|u|2dL

)1− 1
2k
(∫

C
|u|2dL

) 1
2k
,
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therefore, using the conservation of the mass,
d

dt

∥∥∥〈z〉ku∥∥∥2

L2(C)
6 CC0

∥∥∥〈z〉ku∥∥∥2− 1
k

L2(C)
,

which in turn implies, by time integration,∥∥∥〈z〉ku(t)
∥∥∥
L2(C)

6
(∥∥∥〈z〉ku0

∥∥∥1/k

L2(C)
+ CC0|t|

)k
6 C (1 + C0|t|)k ,

hence the result when k is an integer. The general case follows by interpolation.

3.3. Bounds on Sobolev norms: proof of Theorem 2.4

Proof. — The proof is similar, excepted that now we have better controls on W .
(i) Again, by interpolation, it is enough to consider the case s = k is an integer.

By (3.3) we have
d

dt

∫
C
|z|2k |u|2dL 6 CC1

∫
C
|u|2dL,

which implies the result by time integration :∥∥∥〈z〉ku∥∥∥2

L2(C)
6
∥∥∥〈z〉ku0

∥∥∥2

L2(C)
+ CC1|t|‖u0‖2

L2(C).

(ii) We assume that the stronger condition (2.12) holds. We use here interpolation
theory for linear operators. Fix s > 0, ε > 0 and set k ∈ N such that s/k < ε. Then
from (i) we have ∥∥∥〈z〉ku(t)

∥∥∥
L2(C)

6 C〈t〉1/2
∥∥∥〈z〉ku0

∥∥∥
L2(C)

.

Next, the L2−conservation yields ‖u(t)‖L2(C) 6 ‖u0‖L2(C). Then by interpolation, we
get that for all 0 6 θ 6 1∥∥∥〈z〉θku(t)

∥∥∥
L2(C)

6 Cθ〈t〉θ/2
∥∥∥〈z〉θku0

∥∥∥
L2(C)

.

The result then follows by taking θ = s/k. �

3.4. Growth of Sobolev norms: proof of Theorem 2.3

Let us define the magnetic translations by the formula
Rα : (u, v)(z) 7→

(
u(z + α)e 1

2 (zα−zα), v(z + α)e 1
2 (zα−zα)

)
, α ∈ C,

as well as the space rotations
Lθ : (u, v)(z) 7→

(
u
(
eiθz

)
, v
(
eiθz

))
, θ ∈ T.

As it can be checked on the (ϕn)n> 0, we have eitH = e2itL2t for all t ∈ R. Now we
refer to [ST21, Section 1.7.2]. The system

i∂tu− δHu = Π
(
|v|2u

)
, (t, z) ∈ R× C,

i∂tv − δHv = −Π
(
|u|2v

)
,

u(0, z) = u0(z), v(0, z) = v0(z),
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admits the following explicit solutions:

(u, v) =
(
e−iλte−iδtHRαtU, e

−iµte−iδtHRαtV
)

=
(
e−i(λ+2δ)tL−2δtRαtU, e

−i(µ+2δ)tL−2δtRαtV
)
,

with

U =
√
ε

(
1
2ϕ0 + i

√
3

2 ϕ1

)
, V =

√
ε

(
1
2ϕ0 − i

√
3

2 ϕ1

)
,

and

λ = 7ε
32π , µ = − 7ε

32π , α =
√

3
32πε.

It remains to check thatW := |v|2 and u satisfy the assumptions and the conclusions
of Theorem 2.3.
On the one hand, for all t ∈ R, ‖u(t)‖L2 =

√
ε, and for s > 0,

(3.4) ‖〈z〉su0‖L2 = ‖〈z〉sU‖L2 6 cs
√
ε.

Let us prove that there exists cs > 0 such that for all t ∈ R

(3.5) ‖〈z〉su(t)‖L2 > cs
√
ε〈εt〉s.

We have

‖〈z〉su(t)‖2
L2 = ‖〈z〉sRαtU‖2

L2 = ‖〈z − αt〉sU‖2
L2 =

∫
C

(
1 + |z − αt|2

)s
|U(z)|2dL(z).

Therefore,

(3.6) ‖〈z〉su(t)‖2
L2 >

1
2

∫
C

(
1 + |z − αt|2s

)
|U(z)|2dL(z).

• By the triangle inequality we have

|αt|2s 6 (|z − αt|+ |z|)2s 6 4s
(
|z − αt|2s + |z|2s

)
,

which in turn implies

|z − αt|2s > 4−s|αt|2s − |z|2s.

As a consequence, by (3.4) and (3.6)

(3.7)

‖〈z〉su(t)‖2
L2 > c|αt|2s

∫
C
|U(z)|2 dL(z)− C

∫
C
|z|2s |U(z)|2 dL(z)

>
(
c|αt|2s − C

)
ε

>
(
c|εt|2s − C

)
ε,

where the constants c, C > 0 have varied from line to line. From (3.7) we
deduce that there exists C0 > 0 such that if |εt| > C0 we have

‖〈z〉su(t)‖L2 > c〈εt〉s
√
ε.
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• In the regime |εt| 6 C0, we use the inequality (3.6) to write

‖〈z〉su(t)‖L2 > c‖U‖L2 = c
√
ε > c〈εt〉s

√
ε.

As a consequence, we have proven (3.5).
On the other hand, we have the explicit expression

W (t, z) = ε

4π
∣∣∣1− i√3

(
e−2iδtz + αt

)∣∣∣2 e−|e−2iδtz+αt|2 = |L−2δtRαtV (z)|2 .

Therefore we have

‖W‖L1 = ‖L−2δtRαtV ‖2
L2 = ‖V ‖2

L2 = ε

and from (2.15) we have

‖W‖L∞ = ‖L−2δtRαtV ‖2
L∞ = ‖V ‖2

L∞ 6 ε.

Moreover, from Lemma C.2, we deduce∥∥∥∂jz∂kzW∥∥∥
L∞(C)

=
∥∥∥∂jz∂kz (|L−2δtRαtV |2

)∥∥∥
L∞(C)

6 Cjk ‖L−2δtRαtV ‖2
L∞ 6 εCjk,

which was the claim.

4. Proof of Theorem 1.2

4.1. Some notations

For 0 6 τ < 1 we set ρ(τ) = 1
2(1−τ) > 0 and we define the operator H̃τ = (H+1)ρ(τ),

where H is the harmonic oscillator defined by

H = −4∂z∂z + |z|2.

We then define the family of Hilbert spaces (H̃s
τ )s> 0 by

H̃s
τ =

{
u ∈ L2(C), H̃s/2u ∈ L2(C)

}
∩ E , H̃0

τ = E .

Recall that, by [GGT19, Lemma C.1], we have

c
∥∥∥〈z〉sρ(τ)u

∥∥∥
L2(C)

6 ‖u‖H̃sτ 6 C
∥∥∥〈z〉sρ(τ)u

∥∥∥
L2(C)

, 〈z〉 =
(
1 + |z|2

)1/2
.

Observe also that

(4.1) H̃s
τ = Hsρ(τ)

where Hσ stands for the harmonic Sobolev space based on the harmonic oscillator
H, and we have

(4.2) c ‖〈z〉su‖L2(C) 6 ‖u‖Hs 6 C ‖〈z〉su‖L2(C) .

In the sequel, in order to alleviate notations, we simply write H̃ = H̃τ and H̃s = H̃s
τ .
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4.2. Definition of the operator L (t)

Define the potential W0(t, z) as follows:

V =
√
ε

(
1
2ϕ0 − i

√
3

2 ϕ1

)
,

W0(t, z) = |RαtV (z)|2 = ε

4π
∣∣∣1− i√3(z + αt)

∣∣∣2 e−|z+αt|2 ,
α =

√
3

32πε,

and with Lemma C.2, we show that all the derivatives of W0 are bounded uniformly
in t ∈ R:

(4.3)
∥∥∥∂jz∂kzW0(t)

∥∥∥
L∞(C)

=
∥∥∥∂jz∂kz (|RαtV |2

)∥∥∥
L∞(C)

6 Cjk ‖RαtV ‖2
L∞ = Cjk‖V ‖2

L∞ 6 εCjk.

Now we define the mapping

(4.4)
L (t) :H̃s −→H̃s

u 7−→e−itH̃Π
(
W0(t)eitH̃u

)
= e−it(H+1)ρΠ

(
W0(t)eit(H+1)ρu

)
,

and we consider the initial value problem

(4.5)

 i∂tu =
(
H̃ + L (t)

)
u, (t, z) ∈ R× C,

u(t)|t=t0 = u0 ∈ H̃s.

4.3. Verification of Assumption 1.1

We now prove that L (t) satisfies the required properties.
Proof of Assumption 1.1. —
(i) Let us check that L ∈ Cb(R,L(H̃s)), with norm ‖L (t)‖L(H̃s) 6 Csε. First,

by (4.1) it is equivalent to show that L ∈ Cb(R,L(Hs)). Then, since eit(H+1)ρ is
unitary in Hs, and by (4.2)∥∥∥e−it(H+1)ρΠ

(
W0(t)eit(H+1)ρu

)∥∥∥
Hs

=
∥∥∥Π (

W0(t)eit(H+1)ρu
)∥∥∥

Hs

6 C
∥∥∥〈z〉sΠ (

W0(t)eit(H+1)ρu
)∥∥∥

L2(C)
.

Next, by (3.1) and (3.2)∥∥∥〈z〉sΠ (
W0(t)eit(H+1)ρu

)∥∥∥
L2(C)

6 C‖W0(t)‖L∞(C)

∥∥∥〈z〉seit(H+1)ρu
∥∥∥
L2(C)

= C‖W0(t)‖L∞(C) ‖〈z〉su‖L2(C)

6 C‖W0(t)‖L∞(C)‖u‖Hs .
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Recall that W0(t) = |RαtV |2, where V ∈ E , then ‖W0(t)‖L∞(C) = ‖V ‖2
L∞ 6 Cε.

Putting all the previous estimates together, we obtain∥∥∥e−it(H+1)ρΠ
(
W0(t)eit(H+1)ρu

)∥∥∥
Hs
6 Csε‖u‖Hs ,

hence the announced bound. The time-continuity of L follows from the previous
estimates together with the continuity of the translations for the Lebesgue measure
and the fact that eitH̃ ∈ Cb(R,L(H̃s)).
(ii) The symmetry of L , w.r.t. the scalar product of H̃0 = E , is a consequence of

the symmetry of Π, the conjugation by the unitary operator eit(H+1)ρ and the fact
that W0 is a real valued function.
(iii) Let us check that [H̃,L (t)] is H̃τ -bounded. By Lemma C.1, the operators H

and Π commute, thus[
H̃,L (t)

]
H̃−τ = [(H + 1)ρ,L (t)] (H + 1)−ρτ

= e−it(H+1)ρΠ [(H + 1)ρ,W0(t)] (H + 1)−ρτeit(H+1)ρ .

Recall that Π is bounded in all the Hs spaces, as well as the operators e−it(H+1)ρ .

• Case s = 0. Let us first prove that Π[(H + 1)ρ,W0(t)](H + 1)−ρτ : E −→ E
is bounded, uniformly in t ∈ R. For that, we use the Weyl–Hörmander pseudo-
differential calculus (we refer to [Hel84, Rob87] or to [Par10, Chapter 3] for a review
of this theory). Denote by z = x1 + ix2, ξ = ξ1 + ξ2, and consider the metric

(4.6) dx2
1 + dx2

2 + dξ2
1 + dξ2

2
1 + |z|2 + |ξ|2 .

The Planck function associated to the metric (4.6) is given by h(x1, x2, ξ1, ξ2) =
(1 + |z|2 + |ξ|2)−1/2 and for m ∈ R, the symbol class Sm is

Sm =
{
a ∈ C∞

(
R4;C

)
:
∣∣∣∂α1
x1 ∂

α2
x2 ∂

β1
ξ1 ∂

β2
ξ2 a(x1, x2, ξ1, ξ2)

∣∣∣
6 Cα, β 〈|z|+ |ξ|〉m−β1−β2 , ∀ α, β ∈ N2

}
.

For a ∈ Sm, we define its Weyl-quantization by the formula

aw(x,D)u(x) = 1
(2π)2

∫
R2

∫
R2
ei(x−y)·ξa

(
x+ y

2 , ξ
)
u(y)dydξ, u ∈ S

(
R2
)
.

First, using the functional calculus associated to the operator H, we obtain that
(H + 1)ρ is a pseudo-differential operator with symbol in S2ρ. By (4.3), W0(t) ∈ S0

uniformly in t ∈ R, and therefore the commutator [(H + 1)ρ,W0(t)] is a pseudo-
differential operator with symbol in S2ρ−1, which in turn implies that

[(H + 1)ρ,W0(t)] (H + 1)−ρτ

is a pseudo-differential operator with symbol in S0 (because 2ρ−1−2ρτ = 0), hence
it is bounded.
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• The proof in the general case s > 0 is similar.
(iv) From (4.4), a direct computation gives

(4.7)
∂tL (t) = e−itH̃Π (∂tW0(t)) eitH̃ − ie−itH̃Π

[
H̃,W0(t)

]
eitH̃

= e−itH̃Π (∂tW0(t)) eitH̃ − i
[
H̃,L (t)

]
.

From the expression ofW0, we deduce that supt∈R ‖∂`tW0(t)‖L∞(C) 6 C` for all ` > 0.
In particular, the first term in the right hand side of (4.7) is bounded H̃s −→ H̃s.
In item (iii) we have shown that [H̃,L (t)] : H̃s −→ H̃s−τ is bounded, uniformly in
t ∈ R. As a consequence, for all s > 0, L ∈ C1

b (R;L(H̃s; H̃s−τ )). The general case
` > 0 is obtained by induction. �

4.4. Proof of Theorem 1.2

Proof. — We are now ready to complete the proof of Theorem 1.2. Consider the
problem (4.5) and for convenience, assume that t0 = 0. By (4.4), the equation (4.5)
is equivalent to  i∂tv = Π (W0(t)v) , (t, z) ∈ R× C,

v(0, ·) = u0 ∈ H̃s = Hρs,

with the change of unknown v = eit(H+1)ρu. As a consequence we can directly apply
the results of Section 2 (case δ = 0) to this model.
(i) The fact that ‖L (t)‖L(H̃s) 6 Csε has already been shown in the previous

paragraph.
(ii) For all s > 0, the problem (4.5) is globally well-posed, in H̃s by Theorem 2.1.

The group property of U is a consequence of uniqueness, and its unitarity follows
from the conservation of the L2 norm.
(iii) The upper bound is given by Theorem 2.2, namely, for all t ∈ R

‖u(t)‖H̃s 6 C ‖〈z〉ρsu(t)‖L2(C) 6 C ‖〈z〉ρsu0‖L2(C) 〈εt〉
ρs 6 C‖u0‖H̃s〈εt〉

ρs,

where ρ = 1
2(1−τ) .

(iv) Consider the function u0 ∈ ∩k> 1L
2, k
E = ∩k> 1H̃k given by Theorem 2.3, (see

paragraph 3.4) then ‖u0‖H̃s 6 C
√
ε and

‖u(t)‖H̃s > c ‖〈z〉ρsu(t)‖L2(C) > c
√
ε〈εt〉ρs > c‖u0‖H̃s〈εt〉

ρs,

hence the result.
Notice that the items (ii) and (iii) also directly follow from the general result [MR17,

Theorem 1.5]. �
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Appendix A. A non-perturbative & time-independent
example

In this section, we give another example of linear Schrödinger operator which yields
unbounded dynamics, and which meets the assumptions (H0)-(H3) of [MR17]. This
example differs from the one exhibited in Theorem 1.2 in two main aspects:

• it is a non-perturbative example: it is not a lower order perturbation of a
time-independent elliptic differential operator;
• it is time-independent.

However, with a change of unknown, we can obtain a time-dependent perturbation
of a constant coefficient self-adjoint elliptic operator, see Remark A.3 below.
This example is very simple, and that is why we decided to develop it here. Actually

the mechanism involved in the norm inflation is the same as in Theorem 1.2: it is a
traveling wave measured in a weighted L2 space. Actually, our example is close to
the one developed in [BGMR18, Appendix A], after change of variables.
On L2(R) we define the usual harmonic oscillator H = −∂2

x + x2. For 0 6 τ < 1,
we set ρ(τ) = 1

2(1−τ) ∈ [1/2,∞). We define the operator H̃ = (H + 1)ρ(τ) and the
scale of Hilbert spaces (H̃s)s> 0 by

H̃s =
{
u ∈ L2(C), H̃s/2u ∈ L2(R)

}
, H̃0 = L2(R),

endowed with the natural norm ‖u‖H̃s := ‖H̃s/2u‖L2(R). By [YZ04, Lemma 2.4], we
have the following equivalence of norms

(A.1) ‖u‖H̃s ≡ ‖〈x〉
ρsu‖L2(R) +

∥∥∥∥(−∂2
x

)ρs/2
u
∥∥∥∥
L2(R)

.

Now, for ε > 0, we consider the problem,

(A.2)

i∂tu = −iε∂xu, (t, x) ∈ R× R,
u(0, ·) = u0 ∈ H̃s.

In this framework, we are able to prove the following result for the operator iε∂x
in the spaces H̃s:
Lemma A.1. —
(i) One has iε∂x ∈ L(H̃s+1/ρ, H̃s)) for all s > 0, and

‖iε∂x‖L(H̃s+1/ρ, H̃s) 6 Csε.

(ii) The operator iε∂x is symmetric on H̃1/ρ w.r.t. the scalar product of H̃0,∫
R
v (iε∂xu) dx =

∫
R
u(iε∂xv) dx, ∀ u, v ∈ H̃1/ρ.

(iii) The operator iε∂x is H̃τ -bounded in the sense that [iε∂x, H̃]H̃−τ ∈ L(H̃s) for
all s > 0.

Therefore the operator i∂x satisfies the assumptions (H0)-(H3) of [MR17].
On the other hand, we have the following elementary result:
Proposition A.2. — Let s > 0, then
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(i) The problem (A.2) is globally well-posed in H̃s, and the solution is explicitly
given by

u(t, x) = u0(x− εt).
(ii) The following bounds hold true : for all u0 ∈ H̃s and for all t ∈ R

(A.3) c〈εt〉
s

2(1−τ)‖u0‖H̃s 6 ‖u(t)‖H̃s 6 C〈εt〉
s

2(1−τ)‖u0‖H̃s .

This result is directly obtained using (A.1) and the expression ρ(τ) = 1
2(1−τ) .

Remark A.3. — Notice that the function v(t) = e−itH̃u(t) is solution to i∂tv − H̃v = −iε
(
e−itH̃∂xe

itH̃
)
v, (t, x) ∈ R× R,

v(0, ·) = v0 = u0 ∈ H̃s,

and satisfies the conclusions of Lemma A.1 and the bounds (A.3). This yields an
example in the spirit of the one exhibited in Theorem 1.2, but in the present case,
the perturbation is of order 1/ρ ∈ (0, 2] instead of being of order 0.

Proof of Lemma A.1. — Item (i) is a direct consequence of (A.1) and (ii) is
elementary.
(iii) It is convenient to introduce the Sobolev space based on the harmonic oscilla-

tor (s > 0)

Hs =
{
u ∈ L2(R), Hs/2u ∈ L2(R)

}
, H0 = L2(R).

Thanks to the pseudo-differential calculus associated to H (see also paragraph 4.3),
we first prove that for all r > 0,
(A.4)

[
i∂x, (H + 1)r

]
(H + 1)−r+ 1

2 ∈ L
(
L2(R)

)
.

Here the symbol class Sm reads
Sm =

{
a ∈ C∞

(
R2;C

)
:
∣∣∣∂αx∂βξ a(x, ξ)

∣∣∣ 6 Cα,β〈|x|+ |ξ|〉m−β, ∀ α, β ∈ N
}
.

The symbol of [i∂x, (H + 1)r], modulo terms in S2r−1, is given by the formula

−i
{
ξ,
(
x2 + ξ2 + 1

)r}
= −i∂ξ(ξ)∂x

((
x2 + ξ2 + 1

)r)
+ i∂x(ξ)∂ξ

((
x2 + ξ2 + 1

)r)
= −i2rx

(
x2 + ξ2 + 1

)r−1
∈ S2r−1.

Since the symbol of (H + 1)−r+ 1
2 belongs to S−2r+1, we deduce (A.4).

Next, for ρ > 0 and s > 0

(H + 1) s2
[
i∂x, (H + 1)ρ

]
(H + 1)−ρ+ 1

2 (H + 1)− s2

= −
[
i∂x, (H + 1) s2

]
(H + 1)− s2 + 1

2 +
[
i∂x, (H + 1) s2 +ρ

]
(H + 1)−( s2 +ρ)+ 1

2 ,

and by applying (A.4) twice, we deduce that for all s > 0

(A.5)
[
i∂x, (H + 1)ρ

]
(H + 1)−ρ+ 1

2 ∈ L (Hs) .

Finally recall that H̃ = (H + 1)ρ, thus (A.5) is equivalent to[
i∂x, H̃

]
H̃−τ ∈ L

(
H̃s
)
,
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since τ = 1− 1/(2ρ), which was the claim. �

Appendix B. On the reducibility of the linear LLL equation

We state here a reducibility result for the linear LLL equation. It turns out that
the abstract reducibility result obtained in [GT11] can be applied to this model,
which is close in many aspects to the usual 1D cubic quantum harmonic oscillator
with time-dependent potential. We consider the linear equation

(B.1)

 i∂tu− δHu = εΠ(W (tω, z)u), (t, z) ∈ R× C,
u(0, z) = u0(z),

where δ 6= 0, where ε > 0 is small and where the parameter ω ∈ [0, 2π)n is the
frequency vector, for some given n > 1. Up to a rescaling, we can assume that δ = 1.
We assume in the sequel that the potential

W : Tn × C −→ R Tn := (R/2πZ)n

(θ, z) 7−→ W (θ, z),
is analytic in θ on |Im θ| < τ for some τ > 0, and C2 in x, y (where z = x+ iy), and
we suppose moreover that there exists γ > 0 and C > 0 so that for all θ ∈ Tn and
z ∈ C
(B.2) |W (θ, z)| 6 C〈z〉−γ,

∣∣∣∂jz∂`zW (θ, z)
∣∣∣ 6 C,

for any 0 6 j, ` 6 1.
When ω = 0, all the solutions to (B.1) are almost periodic in time. This can be

proved by constructing a Hilbertian basis(1) (ψk)k> 0 of E composed of eigenfunctions
of the operator u 7→ Hu+ εΠ(W (0, z)u), such that

Hψk + εΠ
(
W (0, z)ψk

)
= λkψk, k > 0.

Then (B.1) can be solved by

u(t, z) =
+∞∑
k=0

cke
−itλkψk(z), u0(z) =

+∞∑
k=0

ckψk(z),

which shows that any solution to (B.1) is an infinite superposition of periodic func-
tions, hence it is an almost-periodic function in time.
For ω 6= 0, the reducibility theory addresses the question if, by the means of a

time quasi-periodic transformation, one can reduce to the previous case. It turns out
that for (B.1), it is the case for a large set of values ω ∈ Λε :

Theorem B.1. — Assume that W satisfies (B.2). Then there exists ε0 such
that for all 0 6 ε < ε0 there exists a set Λε ⊂ [0, 2π)n of positive measure and
asymptotically full measure: Meas(Λε) → (2π)n as ε → 0, such that for all ω ∈ Λε,
the linear equation (B.1) reduces, in E , to a linear equation with constant coefficients.

(1)Such a Hilbertian basis exists, since u 7→ Hu + εΠ(W (0, z)u) is a self-adjoint operator with
compact resolvent in E .
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We refer to [GT11, Theorem 7.1] for a more precise statement, giving in particular
more information on the transformation.
Assume that (θ, z) 7→ V (θ, z) is analytic in θ on |Im θ| < τ , that V (θ, ·) ∈ E for

all θ ∈ Tn, and satisfies, for some γ > 0, the bound |V (θ, z)| 6 C〈z〉−γ uniformly
in θ ∈ Tn. Then, by Lemma C.2, W = |V |2 satisfies (B.2). Such a potential even
satisfies |∂jz∂`zW (θ, z)| 6 C for all k, ` ∈ N (without additional assumptions on
V ∈ E).
We also have the following result on the dynamics of the solutions of (B.1) :

Corollary B.2. — Assume thatW is C∞ in x, y with all its derivatives bounded
and satisfying (B.2). Let s > 0 and u0 ∈ Hs. Then there exists ε0 > 0 so that for
all 0 < ε < ε0 and ω ∈ Λε, there exists a unique solution u ∈ C

(
R ; Hs

)
of (B.1) so

that u(0) = u0. Moreover, u is almost-periodic in time and we have the bounds

(1− εC)‖u0‖Hs 6 ‖u(t)‖Hs 6 (1 + εC)‖u0‖Hs , ∀ t ∈ R,

for some C = C(s, ω).

The result of Theorem B.1 can also be formulated in term of the Floquet operator.
Consider the Floquet Hamiltonian operator, defined on E ⊗ L2(Tn) by

K := i
n∑
k=1

ωk∂θk +H + εΠ
(
W (θ, z) ·

)
,

then we can state

Corollary B.3. — Assume that W satisfies (B.2). There exists ε0 > 0 so that
for all 0 < ε < ε0 and ω ∈ Λε, the spectrum of the Floquet operator K is pure point.

We refer to [GT11, Section 7], where similar results are proven for the 1D quantum
harmonic oscillator.
For the reducibility of the periodic Schrödinger equation, we refer to [EK09] and for

the reducibility of the quantum harmonic oscillator in any dimension to [BGMR18,
GP19, LW19] and we refer to [Bam17, Bam18, BM18] for the reducibility for 1-d
operators with unbounded perturbations. For references on the theory of Floquet
operators, see [Eli01, Wan08b].
Finally, let us mention that, concerning the nonlinear cubic LLL equation, the

abstract KAM result of [GT11] was applied in [GGT19, Theorem 4.3] in order to
show the existence of invariant torii, and that the result of [GIP09] was applied
to show an almost global existence result for the cubic LLL equation. We refer
to [GGT19, Section 4.2] for more details.
The arguments of [GT11, Section 7] can be directly applied to the equation (B.1),

and we address the reader to this latter paper for the proofs of the previous results.
Let us just sketch the idea : we expand u and ū on the basis given by the special
Hermite functions

u =
∑
j > 0

cjϕj, u =
∑
j > 0

cjϕj.
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Then equation (B.1) reads as an autonomous Hamiltonian system in an extended
phase space

(B.3)



ċj = −2i(j + 1)cj − iε∂c̄jQ(θ, c, c̄) j > 0
˙̄cj = 2i(j + 1)c̄j + iε∂cjQ(θ, c, c̄) j > 0

θ̇j = ωj j = 0, . . . , n

Ẏj = −ε∂θjQ(θ, z, z̄) j = 0, . . . , n
where Q is a quadratic functional in (c, c̄) given by

(B.4) Q(θ, c, c̄) =
∫
C
W (θ, z)

∑
j > 0

ckϕk(z)
∑

j > 0
cjϕj(z)

dL(z),

and the Hamiltonian of the system (B.3) is
n∑
j=1

ωjYj + 2
∑
j > 0

(j + 1)cjcj +Q(θ, c, c̄).

Then, we can check that (B.4) satisfies the assumptions of [GT11, Theorem 7.1].
The dispersive estimate ‖ϕn‖L∞(C) 6 Cn−1/4 satisfied by the (ϕn)n> 0, is the key
ingredient which allows to follow the lines of [GT11, Section 7].

Appendix C. Some technical results

Lemma C.1. — The operators H and Π commute.

Proof. — Recall that

[Πu](z) = 1
π
e−
|z|2

2

∫
C
ewz−

|w|2
2 u(w) dL(w),

and that
H = −4∂z∂z + |z|2.

On the one hand, by integration by parts(
Π∂z∂zu

)
(z) = 1

π
e−
|z|2

2

∫
C
ewz−

|w|2
2 ∂w∂wu(w) dL(w)

= 1
π
e−
|z|2

2

∫
C
∂w∂w

(
ewz−

|w|2
2

)
u(w) dL(w)

= −1
2Πu(z)− 1

2zΠ(wu)(z) + 1
4Π

(
|w|2u

)
(z),

thus
ΠHu(z) = 2Πu(z) + 2zΠ(wu)(z).

On the other hand

∂zΠu(z) = − 1
π

z

2e
− |z|

2
2

∫
C
ewz−

|w|2
2 u(w) dL(w) + 1

π
e−
|z|2

2

∫
C
ewz−

|w|2
2 wu(w) dL(w)

= −z2Πu(z) + Π
(
zu
)
(z),
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then
∂z∂zΠu(z) = −1

2Πu(z) + 1
4 |z|

2Πu(z)− z

2Π(wu)(z),

and we get that
HΠu(z) = 2Πu(z) + 2zΠ(wu)(z) = ΠHu(z),

which was the claim. �

We recall a short version of [ST21, Lemma A.2]:

Lemma C.2. — For all j, k > 0 there exists C > 0 such that for all 1 6 p 6 ∞
and v ∈ E , ∥∥∥∂jz∂kz (|v|2)∥∥∥Lp(C)

6 C‖v‖2
L2p(C).
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