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1. Introduction

For some r > 2, a Z/rZ-spin structure on a closed surface Σg of genus g is a
cohomology class φ ∈ H1(UTΣg,Z/rZ) which evaluates to one on the oriented fibre
of the unit tangent bundle UTΣg → Σg of Σg. Such a spin structure exists for all r
which divide 2g − 2. If r is even, then it reduces to a Z/2Z-spin structure on Σg.
A Z/2Z-spin structure on Σg has a parity, either even or odd. Thus there is a

notion of parity for all Z/rZ-spin structures with r even. If φ, φ′ are two Z/rZ-spin
structures on Σg so that either r is odd or r is even and the parities of φ, φ′ coincide,
then there exists an element of the mapping class group Mod(Σg) of Σg which maps
φ to φ′. Hence the stabilizers of φ and φ′ in Mod(Σg) are conjugate.
Spin structures naturally arise in the context of abelian differentials on Σg. The

moduli space of such differentials decomposes into strata of differentials whose zeros
are of the same order and multiplicity. Understanding the orbifold fundamental
group of such strata requires some understanding of their projection to the mapping
class group. If the orders of the zeros of the differentials are all multiples of the same
number r > 2, then this quotient group preserves a Z/rZ-spin structure φ on Σg.
Hence the orbifold fundamental groups of components of strata relate to stabilizers
Mod(Σg)[φ] of spin structures φ on Σg.
To make such a relation explicit we define

Definition 1.1. — A curve system on a closed surface Σg is a finite collection
of smoothly embedded simple closed curves on Σg which are non-contractible and
mutually not freely homotopic, and such that any two curves from this collection
intersect transversely in at most one point.

A curve system defines a curve diagram which is a finite graph whose vertices are
the curves from the system and where two such vertices are connected by an edge if
the curves intersect.

Definition 1.2. — A curve system on Σg is admissible if it decomposes Σg into
a collection of topological disks and if its curve diagram is a tree.

Using a construction of Thurston and Veech (see [Lei04] for a comprehensive
account), admissible curve systems on Σg give rise to abelian differentials on Σg, and
the component of the stratum and hence the equivalence class of a spin structure
(if any) it defines can be read off explicitly from the combinatorics of the curve
system. This makes it desirable to investigate the subgroup of the mapping class
group generated by Dehn twists about the curves of an admissible curve system.
The main goal of this article is to present a systematic study of stabilizers of

suitably chosen curves in the spin mapping class group Mod(Σg)[φ] and to use this
information to build generators for this group by induction over subsurfaces. As a
main application we obtain the following.
For g > 3 let Cg and Vg be the collections of 2g + 1 nonseparating simple closed

curves on a closed surface Σg of genus g shown in Figure 1.1.
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Figure 1.1.

We show

Theorem 1.3. —
(1) Let φ be an odd Z/2Z-spin structure on a closed surface Σg of genus g > 3.

Then Mod(Σg)[φ] is generated by the Dehn twists about the curves from the
curve system Cg.

(2) Let φ be an even Z/2Z-spin structure on a closed surface Σg of genus g > 4.
Then Mod(Σg)[φ] is generated by the Dehn twists about the curves from the
curve system Vg.

That the spin mapping class group can be generated by finitely many finite products
of Dehn twists is due to Hirose. In [Hir02] he found for any genus g > 2 a generating
set for the stabilizer of an even Z/2Z-spin structure by finitely many finite products
of Dehn twists, and the stabilizer of an odd Z/2Z-spin structure is treated in [Hir05].
For surfaces of genus g > 5, Calderon [Cal20] and Calderon and Salter [CS21]

identified the image of the orbifold fundamental group of most components of strata
in the mapping class group by constructing a different but equally explicit generating
set for the spin mapping class group. Earlier Salter ([Sal19, Theorem 9.5]) obtained a
partial result by identifying for g > 5 a finite generating set of a finite index subgroup
of the spin mapping class group by Dehn twists. Walker [Wal09, Wal10] obtained
some information on the image of the orbifold fundamental group of some strata of
quadratic differentials in the mapping class group using completely different tools.
Theorem 1.3 does not construct generators for the stabilizer of an even Z/2Z-spin

structure on a surface of genus g = 2, 3. Namely, in these cases there is no admissible
curve system with the property that the Dehn twists about the curves from the
system stabilize an even Z/2Z-spin structure and such that the Dehn twists about
these curves generate a finite index subgroup of the mapping class group. This
corresponds to a classification result of Kontsevich and Zorich [KZ03]: There is no
component of a stratum of abelian differentials with a single zero on a surface of
genus 2 and even spin structure. On a surface Σ3 of genus 3, the component of the
stratum of abelian differentials with two zeros of order two and even spin structure is
hyperelliptic and hence the projection of its orbifold fundamental group to Mod(Σ3)
commutes with a hyperelliptic involution and is of infinite index.
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Our results can be used to construct an explicit finite set of generators of the
stabilizer of a Z/rZ-spin structure for any r 6 2g − 2 and any closed surface Σg,
given by Dehn twists, positive powers of Dehn twists and products of Dehn twists
about two simple closed curves forming a bounding pair. Potentially they can also be
used inductively to find generators by Dehn twists about curves from an admissible
curve system. We carry this program only out in a single case, which is the odd
Z/4Z-spin structure on a surface of genus 3.
Consider the system E6 of simple closed curves on the surface Σ3 of genus 3 shown

in Figure 1.2 which is of particular relevance for the understanding of the stratum
of abelian differentials with a single zero on Σ3 [LM14].

Figure 1.2.

We show

Theorem 1.4. — The subgroup of Mod(Σ3) generated by the Dehn twists about
the curves from the curve system E6 equals the stabilizer of an odd Z/4Z-spin
structure on Σ3.

The strategy for the proofs of the main results is as follows.
For some r > 2 let us consider an arbitrary Z/rZ-spin structure φ on a com-

pact oriented surface S of genus g > 2, perhaps with boundary. Following [HJ89]
and [Sal19], the spin structure can be viewed as a Z/rZ-valued function on oriented
closed curves on S which assumes the value one on the oriented boundary of an
embedded disk in S. Changing the orientation of the curve changes the value of φ
on the curve to its negative [HJ89, Sal19].
Define a graph CG+

1 as follows. Vertices are nonseparating simple closed curves c
on S with φ(c) = ±1, and two such vertices d, e are connected by an edge if d, e
can be realized disjointly and if furthermore, S − (d ∪ e) is connected. Thus CG+

1 is
a subgraph of the curve graph of S. The stabilizer Mod(S)[φ] of φ in the mapping
class group of S acts on CG+

1 as a group of simplicial automorphisms.
In Section 2 we show that for any g > 3 and r 6 2g−2 the graph CG+

1 is connected.
We also note that for an odd Z/2Z-spin structure on a surface of genus g = 2, this
is not true. In Section 3 we verify that the action of the group Mod(S)[φ] on the
graph CG+

1 is transitive on vertices.
For a vertex c of CG+

1 we are then led to describing the intersection of Mod(S)[φ]
with the stabilizer of c in Mod(S). Most important is the understanding of the
intersection of Mod(S)[φ] with the so-called disk pushing subgroup, namely the
kernel of the natural homomorphism of the stabilizer of c to the mapping class group
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of the surface obtained from S − c by capping off the two distinguished boundary
components of S − c. This is also carried out in Section 3.
In Section 4 we specialize further to a Z/2Z-spin structure φ. We find a presentation

of Mod(S)[φ] as a quotient of a Z/2Z-extension of the free product of two copies of
the stabilizer of a vertex of CG+

1 , amalgamated over the stabilizer of an edge of CG+
1 .

This is used to prove Theorem 1.3(1) with an argument by induction on the genus
g of the closed surface Σg.
The proof of Theorem 1.3(2) uses similar methods and is contained in Section 5.

A variation of these arguments yield the proof of Theorem 1.4 in Section 6.
The Appendix A contains a technical variation of the main result of Section 2

which is used in Section 5. Its proof follows along exactly the same line as the proof
of the main result of Section 2.
This work is inspired by the article [Sal19] of Salter. However, aside from some

simple constructions using curves and [Sal19, Proposition 4.9], our approach uses
different methods.

Acknowledgements

I am grateful to Dawei Chen, Samuel Grushevsky, Martin Möller and Nick Salter for
useful discussions. Thanks to Susumu Hirose for pointing out the references [Hir02]
and [Hir05]. Finally I am very indebted to the anonymous referee for careful reading
and for suggesting the proof of Proposition 2.12 which largely simplifies my original
argument.

2. Graphs of curves with fixed spin value

In this section we consider a compact surface S of genus g > 2, with or without
boundary. For a number r > 2 we introduce Z/rZ-spin structures on S and use
these structures to define various subgraphs of the curve graph of S. Of primary
interest is a graph GG1 whose vertices are nonseparating simple closed curves with
spin value ±1 and where two such curves are connected by an edge if they can be
realized disjointly. We then study connectedness of this graph.
Small genus of the surface may cause the graph CG1 to have few edges. This

problem leads us to proceed in two steps. In Proposition 2.12 we show connectedness
of CG1 for surfaces of genus g > 3 and r = 2, 4, taking advantage of some special
properties of Z/2Z and Z/4Z spin structures. Proposition 2.16 shows connectedness
of CG1 for surfaces of genus g > 4 and all r, taking advantage of sufficiently large
complexity of the underlying surface. These results are used in Section 3 to study
the stabilizer of a spin structure in the mapping class group of S.
This section is divided into 5 subsections. We begin with summarizing some in-

formation on spin structures. Each of the remaining subsections is devoted to the
investigation of a specific subgraph of the curve graph of S defined by a spin structure
φ on S.
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2.1. Spin structures

The following is taken from [HJ89], see [Sal19, Definition 3.1]. For its formulation,
denote by ι the symplectic form on H1(S,Z).
Definition 2.1 (Humphries–Johnson). — For a number r > 2, a Z/rZ-spin

structure on S is a Z/rZ-valued function φ on isotopy classes of oriented simple
closed curves on S with the following properties.

(1) (Twist linearity) Let c, d be oriented simple closed curves and let Tc be the
left Dehn twist about c; then

φ(Tc(d)) = φ(d) + ι(d, c)φ(c) (mod r).
(2) (Normalization) φ(ζ) = 1 for the oriented boundary ζ of an embedded disk

D ⊂ S.
As an additional property, one obtains that whenever c−1 is obtained from c by

reversing the orientation, then φ(c−1) = −φ(c) ([HJ89, Lemma 2.2]).
Humphries and Johnson [HJ89] (see [Sal19, Theorem 3.5]) also give an alternative

description of spin structures. Namely, for some choice of a hyperbolic metric on S
let UTS be the unit tangent bundle of S. It can be viewed as the quotient of the
complement of the zero section in the tangent bundle of S by the multiplicative
group (0,∞) and hence it does not depend on the metric.
The Johnson lift of a smoothly embedded oriented simple closed curve c on S

is simply the closed curve in UTS which consists of all unit tangents of c defining
the given orientation. The following is [HJ89, Theorem 2.1 and Theorem 2.5] as
formulated in [Sal19, Theorem 3.5].
Theorem 2.2 (Humphries–Johnson). — Let S be a compact surface and let ζ

be the oriented fibre of the unit tangent bundle UTS → S. A cohomology class
ψ ∈ H1(UTS,Z/rZ) with ψ(ζ) = 1 determines a Z/rZ-spin structure via

α→ ψ(α̃)
where α is an oriented simple closed curve on S and α̃ is its Johnson lift. This
determines a 1-1 correspondence between Z/rZ-spin structures and{

ψ ∈ H1(UTS,Z/rZ)
∣∣∣ψ(ζ) = 1

}
.

There is another interpretation as follows; we refer to [Hai95, p. 131] for more
information on this construction. Given a number r > 2 which divides 2g − 2, an
application of the Gysin sequence for the Euler class of UTS yields a short exact
sequence
(2.1) 0→ Z/rZ→ H1(UTS,Z/rZ)→ H1(S,Z/rZ)→ 0.
By covering space theory, an rth root of the tangent bundle of S, viewed as a
complex line bundle for some fixed complex structure, is determined by a homo-
morphism H1(UTS,Z/rZ)→ Z/rZ whose composition with the inclusion Z/rZ→
H1(UTS,Z/rZ) is the identity and therefore
Proposition 2.3. — There is a natural one-to-one correspondence between the

rth roots of the canonical bundle of S and splittings of the sequence (2.1).
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A Z/2Z-spin structure on a compact surface S of genus g with empty or connected
boundary has a parity which is defined as follows.
A geometric symplectic basis for H1(S,Z) is a system a1, b1, . . . , ag, bg of simple

closed curves on S such that ai, bi intersect in a single point and that ai∪bi is disjoint
from aj ∪ bj for i 6= j. Then the parity of the spin structure φ equals
(2.2) Arf(φ) =

∑
i

(φ(ai) + 1) (φ(bi) + 1) ∈ Z/2Z.

This does not depend on the choice of the geometric symplectic basis.

2.2. The graph of nonseparating curves with vanishing spin value

The curve graph CG of S is the graph whose vertices are essential (that is, neither
nullhomotopic nor homotopic into the boundary) simple closed curves in S and
where two such curves are connected by an edge if they can be realized disjointly.
We can use the spin structure φ to introduce various subgraphs of CG and study
their properties. One of the main technical ingredients to this end is the following
result of Salter [Sal19, Corollary 4.3]).

Lemma 2.4 (Salter). — Let Σ ⊂ S be an embedded one-holed torus. Then there
exists a simple closed curve c ⊂ Σ with φ(c) = 0.

Denote by CG0 ⊂ CG the complete subgraph of the curve graph whose vertex set
consists of nonseparating curves c with φ(c) = 0. Note that this is well defined, that
is, it is independent of the choice of an orientation of c. As a fairly easy consequence
of Lemma 2.4 we obtain

Lemma 2.5. — Let φ be a spin structure on a closed surface of genus g > 3. Then
CG0 is connected.

Proof. — We use the following result of Masur–Schleimer [MS06], see [Put08,
Theorem 1.2]. Let SG ⊂ CG be the complete subgraph whose vertex set consists of
separating simple closed curves; then SG is connected. Note that this requires that
g > 3.
Let a, b be vertices of CG0. Choose simple closed curves â, b̂ which intersect a, b

in a single point; such curves exist since a, b are nonseparating. Then the boundary
c, d of a tubular neighborhood of a∪ â and b∪ b̂, respectively, is a separating simple
closed curve which decomposes S into a one-holed torus containing a, b and a surface
of genus g − 1 > 2 with boundary.
Connect c to d by an edge path (ci)06 i6 k ⊂ SG (here c = c0 and d = ck). Construct

inductively an edge path (ai) ⊂ CG0 connecting a = a0 to b = ak such that for each i,
ai is disjoint from ci, as follows. Put a0 = a and assume that we constructed already
such a path for some j < k. Then aj is disjoint from cj.
If aj also is disjoint from cj+1 then define aj+1 = aj. Otherwise aj is contained in

the same component Σ of S−cj as cj+1. Choose a one-holed torus T ⊂ S−Σ. Such a
torus exists since cj decomposes S into two surfaces of positive genus with connected
boundary. By Lemma 2.4, this torus contains a nonseparating simple closed curve
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aj+1 with φ(aj+1) = 0, and this curve is disjoint from both aj and cj+1. This yields
the induction step. �

Remark 2.6. — The proof of Lemma 2.5 extends with a bit more care to compact
surfaces of genus at least 3 with connected boundary. We expect that the Lemma
also holds true for g = 2.

2.3. The graph of nonseparating curves with spin value ±1 on a surface
of genus 2

Define CG1 to be the complete subgraph of CG of all nonseparating simple closed
curves c on S with φ(c) = ±1. Note that this condition does not depend on the
orientation of c and hence it is indeed a condition on the vertices of CG. In this
subsection we discuss the special case g = 2.

Proposition 2.7. — Let φ be an odd Z/2Z-spin structure on a closed surface
S of genus 2. Then any two simple closed nonseparating curves c, d on S with
φ(c) = φ(d) = 1 intersect.

Proof. — Let φ be a Z/2Z-spin structure on S. Let c be a nonseparating simple
closed curve on S with φ(c) = 1. Assume that there is a nonseparating simple closed
curve d with φ(d) = 1 which is disjoint from c. As a surface of genus two does not
admit bounding pairs, the surface S − (c ∪ d) is a four-holed sphere. Thus there
exists a simple closed separating curve e which decomposes S into two one-holed
tori T1, T2 such that c ∈ T1, d ∈ T2.
Denoting by ι the mod two homological intersection form on H1(S,Z/2Z), there

are two nonseparating simple closed curves v ⊂ T1, w ⊂ T2 so that
(2.3) ι(v, c) = 1 = ι(w, d) and ι(w, c) = ι(v, d) = 0.
The curves a1 = c, b1 = v, a2 = d, b2 = w define a geometric symplectic basis for

H1(S,Z). Since φ(a1) = φ(a2) = 1, the formula (2.2) for the Arf invariant shows that
φ is even as claimed. �

2.4. Z/rZ-spin structures for r = 2, 4 on a surface of genus g > 3

In this subsection we study the graph CG1 for a Z/rZ-spin structure on a surface
of genus g > 3 for r = 2, 4. We begin with evoking a result of Salter [Sal19].
Namely, let c, d be disjoint simple closed curves on the compact surface S. Let ε

be an embedded arc in S connecting c to d whose interior is disjoint from c ∪ d. A
regular neighborhood ν of c ∪ ε ∪ d is homeomorphic to a three-holed sphere. Two
of the boundary components of ν are the curves c, d up to homotopy. We choose an
orientation of c, d in such a way that ν lies to the left. The third boundary component
c+ε d, oriented in such a way that ν is to its right, satisfies [c+ε d] = [c] + [d] where
[c] denotes the homology class of the oriented curve c. The following is [Sal19,
Lemma 3.13].
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Lemma 2.8 (Salter). — φ(c+ε d) = φ(c) + φ(d) + 1.
As a consequence, if r = 2, 4 then the boundary of any embedded pair of pants

P ⊂ S contains a simple closed curve c with φ(c) = ±1. To use this fact for our
purpose we introduce another graph related to simple closed curves on surfaces.
Definition 2.9. — Let S be a compact surface of genus g > 2. The graph of

nonseparating pairs of pants NS is the graph whose vertices are pairs of pants in
S whose boundary consists of three pairwise distinct nonseparating simple closed
curves and where two such pair of pants are connected by an edge if their intersection
consists of precisely one boundary component.
By the preceding remark, the graph NS can be used to find paths in the graph
CG1 provided we can show that it is connected. To this end we evoke an observation
of Putman ([Put08, Lemma 2.1]) which we refer to as the Putman trick in the sequel.
Lemma 2.10 (Putman). — Let G be a graph which admits a vertex transitive

isometric action of a finitely generated group Γ and let v be a vertex of G. If for
each element s of a finite generating set S of Γ, the vertex v can be connected to sv
by an edge path in G, then G is connected.
We apply the Putman trick to show
Lemma 2.11. — The graph of nonseparating pairs of pants is connected.
Proof. — If P ⊂ S is a nonseparating pair of pants, then S − P is a connected

surface of genus g−2 with three distinguished boundary components. Thus the pure
mapping class group P Mod(S) of S acts transitively on the vertices of NS. As a
consequence, it suffices to show that there exists a generating set S of P Mod(S)
and a nonseparating pair of pants P ∈ NS which can be connected to its image
ψ(P ) by an edge path in NS for every element ψ ∈ S.
Now P Mod(S) can be generated by Dehn twists Tci

about the collection of simple
closed curves c0, . . . , ck shown in Figure 2.1 (see [FM12, Section 4.4]).

Figure 3Figure 2.1.

Furthermore, the simple closed curves c0, c1, c3 are nonseparating and bound a pair
of pants P . This pair of pants is stabilized by all elements of S with the exception
of the Dehn twists about the simple closed curves c2 and c4.
As the genus of S is at least 3, for i = 2, 4 the complement Ŝ in S of the union of P

with ci is a surface of genus g− 2 > 1 with two distinguished boundary components,
one of which, say the curve c, is a boundary component of P .
The surface Ŝ contains a nonseparating simple closed curve d. As in Lemma 2.8,

choose an embedded arc ε ⊂ Ŝ connecting c to d. A small neighborhood of c ∪ ε ∪ d
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is a nonseparating pair of pants P̂ whose intersection with P equals the curve c.
As P̂ is disjoint from ci, it is left fixed by the Dehn twist ψi about ci and hence
P, P̂ , ψi(P ) is a path of length three in NS connecting P to ψi(P ). Lemma 2.11 now
is an immediate consequence of Lemma 2.10. �
The following is now an easy consequence of Lemma 2.11.
Proposition 2.12. — Let r = 2, 4 and let φ be a Z/rZ spin structure on a

compact surface S of genus g > 3, with or without boundary. Then the graph CG1
is connected.
Proof. — Let c, d be nonseparating simple closed curves with φ(c) = ±1, φ(d) = ±1.

Choose nonseparating pairs of pants P,Q containing c, d in their boundary. By
Lemma 2.11, we can connect P to Q by a path in the graph NS, say the path (Pi)
with P0 = P and Pk = Q.
For each i let ci be a boundary component of Pi with φ(ci) = ±1 and such that

c0 = c, ck = d. Then for each i, either ci = ci+1 or ci and ci+1 are disjoint. Thus (ci)
is a path in CG1 connecting c to d. This shows the proposition. �

2.5. Z/rZ-spin structures on a surface of genus g > 4

In this subsection we investigate the graph CG1 on a surface of genus g > 4 for
an arbitrary r > 2. To show connectedness we use the following auxiliary graph
PS. The vertices of PS are pairs of disjoint separating curves (c, d) which each
decompose S into a surface of genus g − 1 and a one-holed torus. Thus S − (c ∪ d)
is the disjoint union of two one-holed tori and a surface of genus g − 2. Two such
pairs (c1, d1) and (c2, d2) are connected by an edge if up to renaming, c1 = c2 and
d2 is disjoint from c1, d1. Then S − (c1 ∪ d1 ∪ d2) is the disjoint union of a surface
of genus g − 3 with at least three holes and three one-holed tori. In particular, the
graph PS is only defined if the genus of S is at least three.
We use the Putman trick to show
Lemma 2.13. — For a compact surface S of genus g > 4, perhaps with boundary,

the graph PS is a connected Mod(S)-graph.
Proof. — The mapping class group Mod(S) of the surface S clearly acts on PS,

furthermore this action is vertex transitive. Namely, for any two vertices (a1, b1) and
(a2, b2) of PS, the complement S − (ai ∪ bi) is the union of two one-holed tori and a
surface of genus g−2 with k+2 boundary components where k > 0 is the number of
boundary components of S. Hence there exists φ ∈ Mod(S) with φ(a1, b1) = (a2, b2).
Consider again the curve system H shown in Figure 2.1 with the property that

the Dehn twists about these curves generate the mapping class group. Choose a
pair of disjoint separating simple closed curves (a, b) which decompose S into a
surface of genus g− 1 and a one-holed torus X(a), X(b) and such that a curve c ∈ H
intersects at most one of the curves a, b. If it intersects one of the curves a, b, then
this intersection consists of precisely two points. For example, we can choose a to
be the boundary of a small neighborhood of c1 ∪ c2, and b to be the boundary of a
small neighborhood of c5 ∪ c6.
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Now let c ∈ H and let Tc be the left Dehn twist about c. If c is disjoint from a∪ b,
then Tc(a, b) = (a, b) and there is nothing to show. Thus assume that c intersects a.
The image Tc(a) of a is a separating simple closed curve contained in a small

neighborhood Y of X(a) ∪ c. By assumption on c, this surface is a two-holed torus
disjoint from b. As g > 4, the genus of S− (Y ∪X(b)) is at least one and hence there
is a separating curve e ⊂ S − (Y ∪ X(b)) which decomposes S − (Y ∪ X(b)) into
a one-holed torus and a surface S ′. But this means that (a, b) can be connected to
Tc(a, b) = (Tca, b) by the edge path (a, b)→ (e, b)→ (Tca, b). As the roles of a and
b can be exchanged, the lemma now follows from the Putman trick. �

We shall use another auxiliary graph which is defined as follows.

Definition 2.14. — Let S be a compact surface of genus g > 1 with two
distinguished boundary components A1, A2. The nonseparating arc graph is the
graph whose vertices are isotopy classes of embedded arcs in S connecting A1 to A2.
The endpoints of an arc may move freely along the boundary circles A1, A2 in such
an isotopy class. Two such arcs ε1, ε2 are connected by an edge if ε1, ε2 are disjoint
and S − (ε1 ∪ ε2) is connected.

We apply the Putman trick to show

Lemma 2.15. — The nonseparating arc graph A(A1, A2) on a compact surface
S of genus g > 1 with two distinguished boundary components A1, A2 is connected.

Proof. — Clearly the pure mapping class group P Mod(S) of S acts transitively
on the vertices of A(A1, A2), so it suffices to show that there exists a generating set
S of P Mod(S) and an arc ε ∈ A(A1, A2) which can be connected to its image ψ(ε)
by an edge path in A(A1, A2) for every element ψ ∈ S.
There exists two disjoint arcs ε1, ε2 connecting A1 to A2 such that ε1 ∪ ε2 projects

to an essential nonseparating simple closed curve in the surface obtained from S by
capping off the boundary components A1, A2. Furthermore, we may assume that ε1
intersects one of the curves shown in Figure 2.1, say the curve c1, in a single point
and is disjoint from the remaining curves, and c1 is disjoint from ε2.
Then Tci

ε1 = ε1 for i > 2, and ε1 can be connected to Tc1(ε1) by the edge path
ε1, ε2, Tc1ε1. By the Putman trick this implies that A(A1, A2) is connected. �

We are now ready to show

Proposition 2.16. — Let φ be an r-spin structure (r > 2) on a compact surface
S of genus g > 4. Then the graph CG1 is connected.

Proof. — Let S be a compact surface of genus g > 2 and consider the graph PS.
To each of its vertices, viewed as a disjoint pair (c, d) of separating simple closed
curves, we associate in a non-deterministic way a vertex Λ(c, d) of CG1 as follows.
Denote by Σc,Σd the one-holed torus bounded by c, d. If one of the tori Σc,Σd

contains a simple closed curve a with φ(a) = ±1 then define Λ(c, d) = a.
Now assume that none of the tori Σc,Σd contains a simple closed curve a with

φ(a) = ±1. By Lemma 2.4, there are simple closed nonseparating curves a ⊂ Σc, b ⊂
Σd so that φ(a) = 0 = φ(b). Since the tori Σc,Σd are disjoint, the pair (a, b) is
nonseparating, that is, S − (a ∪ b) is connected. Choose an embedded arc ε in S
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connecting a to b. By Lemma 2.8, the curve Λ(c, d) = a+ε b satisfies φ(a+ε b) = ±1,
furthermore it is nonseparating.
Let a be any vertex of CG1 and let b be any simple closed curve which intersects

a in a single point. Such a curve exists since a is nonseparating. Then a tubular
neighborhood of a ∪ b is a torus containing a. Let c be the boundary curve of this
torus and choose a second separating simple closed curve d so that (c, d) ∈ PS.
Let e ∈ CG1 be another vertex. Construct as above a vertex (p, q) ∈ PS so that

e is contained in the one-holed torus cut out by p. Connect (c, d) to (p, q) by an
edge path (ci, di)06 i6 k in PS. We use this edge path to construct an edge path
(aj) ⊂ CG1 connecting a to e which passes through suitable choices aji (i 6 k) of the
curves Λ(ci, di).
Define a0 = a and by induction, let us assume that we constructed already the

path (aj)06 j 6 ji for some i > 0. We distinguish two cases.
Case 1. — One of the tori Σci

,Σdi
contains a curve f with φ(f) = ±1.

By construction, in this case we may assume by renaming that f = aji ⊂ Σci
.

If ci ∈ {ci+1, di+1} then define aji+1 = aji+1 = aji = Λ(ci+1, di+1) and note that
this is consistent with the requirements for the induction step.
Thus we may assume now that ci 6∈ {ci+1, di+1}. If one of the tori Σci+1 ,Σdi+1 , say

the torus Σci+1 , contains a curve h with φ(h) = ±1, then as Σci
is disjoint from Σci+1 ,

the curve h is disjoint from aji and we can define aji+1 = h = aji+1 = Λ(ci+1, di+1).
Thus assume that neither Σci+1 nor Σdi+1 contains such a curve. Since Σci

and
Σci+1 ,Σdi+1 are pairwise disjoint, we can find an embedded arc ε in S−Σci

connecting
a simple closed curve u ⊂ Σci+1 with φ(u) = 0 to a curve h ⊂ Σdi+1 with φ(h) = 0.
We then can define aji+1 = u+ε h = Λ(ci+1, di+1) = aji+1 .
Case 2. — None of the tori Σci

,Σdi
contains a curve f with φ(f) = ±1.

In this case there are simple closed curves f ⊂ Σci
, h ⊂ Σdi

with φ(f) = φ(h) = 0,
and there is an embedded arc ε connecting f to h so that

aji = Λ (ci, di) = f +ε h.

Assume without loss of generality that di = di+1.
Let us in addition assume for the moment that the arc ε is disjoint from ci+1. If

furthermore there exists a simple closed curve u ⊂ Σci+1 with φ(u) = ±1, then this
curve is a choice for Λ(ci+1, di+1) which is disjoint from aji and we are done.
Otherwise cut S open along the simple closed curve h ⊂ Σdi

= Σdi+1 and let H1, H2
be the two boundary components of S − h. By renaming, assume without loss of
generality that ε connects the boundary component H1 to the curve f , i.e. it leaves
the curve h from the side corresponding to H1. Now note that M = S − h− ε−Σci

is a connected surface of genus g − 2 > 2 with two distinguished boundary circles,
one of which is the curve H2, and M ⊃ Σci+1 . Therefore there exists an embedded
arc ε′ ⊂M connecting H2 to a simple closed curve u ⊂ Σci+1 with φ(u) = 0. Define
aji+1 = h+ε′ u and note that this definition is consistent with all requirements. This
construction completes the induction step under the additional assumption that the
arc ε is disjoint from ci+1.
We are left with the case that ε is not disjoint from Σci+1 . Cut S open along f ∪ h

and note that the resulting surface Z has genus g − 2 > 2 and four distinguished
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boundary components, say the components F1, F2, H1, H2. Assume that ε connects
F1 to H1.
Consider the nonseparating arc graph A(F1, H1) in Z of arcs connecting F1 to

H1. By Lemma 2.15, this graph is connected. Let εi be a path in A(F1, H1) which
connects ε to an arc ε′ disjoint from Σci+1 . For any two consecutive of such arcs,
say the arcs εj, εj+1, the surface Z − (ε1 ∪ ε2) is connected and hence we can find a
disjoint arc δj connecting F2 to H2. The curves f +εj h, f +δj

h, f +εj+1 h are disjoint
and yield a path in CG1 connecting f +ε h to a curve f +ε′ h which is disjoint from
Σci+1 . We then can apply the construction for the case that the arc connecting f to
h is disjoint from Σci+1 . This completes the proof of the Proposition 2.16. �

For technical reasons we need a stronger version of Proposition 2.12 and Propo-
sition 2.16. Consider a Z/rZ-spin structure φ on a compact surface S of genus g
(with or without boundary) for an arbitrary number r > 2. We introduce another
graph CG+

1 as follows. The vertices of CG+
1 coincide with the vertices of CG1. Any

two such vertices c, d are connected by an edge if c, d are disjoint and if furthermore
S − (c ∪ d) is connected. Thus CG+

1 is obtained from CG1 by removing some of the
edges. In particular, if CG+

1 is connected then the same holds true for CG1. We use
connectedness of CG1 to establish connectedness of CG+

1 .

Lemma 2.17. — If the genus g of S is at least 3 then the graph CG+
1 is connected

provided that CG1 is connected.

Proof. — Let c, d ∈ CG1 be two vertices which are connected by an edge in CG1
and which are not connected by an edge in CG+

1 . This means that c, d are disjoint,
and S − (c ∪ d) is disconnected. We have to show that c, d can be connected in CG+

1
by an edge path.
To this end recall that c, d are nonseparating and therefore the disconnected surface

S−(c∪d) has two connected components S1, S2. The surface S1 has genus g1 > 1 and
at least two boundary components, and the surface S2 has genus g2 = g− g1− 1 > 0
and at least two boundary components.
Choose a simple closed curve di ⊂ Si (i = 1, 2) which bounds with c ∪ d a pair of

pants Pi. Write Σi = Si − Pi; the genus of Σi equals gi. Glue P1 to P2 along c ∪ d
so that the resulting surface Σ0 is a two-holed torus containing c ∪ d in its interior.
Choose a nonseparating simple closed curve e ⊂ Σ0 which intersects both c, d in a
single point. Since φ(c) = ±1 we have φ(Tce) = φ(e)± 1 where Tc is the left Dehn
twist about c. Thus via replacing e by T kc e for a suitable choice of k ∈ Z we may
assume that φ(e) = 1. In other words, we may assume that e is a vertex of CG1.
Assume for the moment that g2 > 1. By Lemma 2.4, there exist simple closed

curves a ⊂ Σ1, b ⊂ Σ2 with φ(a) = φ(b) = 0. Connect a to b by an embedded arc
ε which is disjoint from c ∪ e (and crosses through the curve d). The curve a +ε b
satisfies φ(a +ε b) = 1, and it is disjoint from both c and e. Moreover, the surfaces
S − (c ∪ a +ε b) and S − (e ∪ a +ε b) are connected. As a consequence, c can be
connected to e by an edge path in CG+

1 of length two which passes through a+ε b.
By symmetry of this construction, e can also be connected to d by an edge path

in CG+
1 and hence c can be connected to d by such a path. This completes the proof

in the case that the genus g2 of S2 is positive.
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If the genus of S2 vanishes then the genus of S1 equals g1 = g − 1 > 2. Any
nonseparating simple closed curve in S1 forms with both c, d a nonseparating pair.
To find such a curve e with φ(e) = 1, note that S1 contains two disjoint one-holed
tori T1, T2, and by Lemma 2.4, there are embedded simple closed curves ai ∈ Ti
which satisfy φ(ai) = 0. Then for any arc ε in S1 connecting a1 to a2, the curve
e = a1 +ε a2 is nonseparating, and it is connected with both c, d by an edge in CG+

1 .
This is what we wanted to show. �

Proposition 2.12, Proposition 2.16 and Lemma 2.17 together show

Corollary 2.18. — Let φ be a Z/rZ-spin structure on a closed surface Σ of
genus g > 3. Then the graph CG+

1 is connected.

3. The action of Mod(S)[φ] on geometrically defined graphs

In this section we consider an arbitrary Z/rZ-spin structure φ on a compact surface
S of genus g > 3, possibly with boundary, for some number r > 2. Our goal is to
gain some information on the stabilizer Mod(S)[φ] of φ through its action on the
graph CG+

1 introduced in Section 2.
We begin with some information on the stabilizer of a spin structure φ on a compact

surface S with boundary. Fix a boundary component C of S. Denote by PC Mod(S)
the subgroup of the mapping class group Mod(S) of S which fixes the boundary
component C. Note that as we allow that a mapping class in PC Mod(S) exchanges
boundary components of S different from C, the group PC Mod(S) coincides with
the pure mapping class group of S only if the boundary of S consists of one or two
components.
Write PC Mod(S)[φ] to denote the stabilizer of φ in PC Mod(S). This is a subgroup

of PC Mod(S) of finite index. Let Σ be the surface obtained from S by attaching a
disk to C. There is an embedding S → Σ which induces a surjective homomorphism

Π : PC Mod(S)→ Mod(Σ).
By a result of Johnson, extending earlier work of Birman (see [FM12, Section 4.2.5]),

there is an exact sequence

(3.1) 1→ Z→ ker(Π) Υ−→ π1(Σ)→ 1
where Z is the infinite cyclic central subgroup of PC Mod(S) generated by the Dehn
twists about C and where π1(Σ) is a so-called point pushing group.
For the formulation of the following Lemma 3.1, recall that the integral homology

H1(Σ,Z) of a compact surface Σ of genus g > 2, possibly with boundary, is a free
abelian group Zh for some h > 4. In fact, h = 2g if the boundary of Σ is empty
or connected, and in this case this group is generated by the homology classes of
nonseparating simple closed curves on Σ. If the boundary of Σ is disconnected, then
it is still true that H1(Σ,Z) is generated by simple closed possibly peripheral curves.
For m > 1 let Λm ⊂ π1(S) be the subgroup defined by the exact sequence

0→ Λm → π1(S)→ H1 (S,Z/mZ)→ 0.
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If ζ : π1(S) → H1(S,Z) denotes the natural surjective projection, then Λm is the
preimage under ζ of the lattice in H1(S,Z) generated by m times the simple loop
generators, and it is a subgroup of π1(S) of finite index. Using the notations from
the previous paragraph we have
Lemma 3.1. — Assume that the boundary circle C is equipped with the orienta-

tion induced from the orientation of S.
(1) If φ(C) = −1 then Υ(ker Π ∩ PC Mod(S)[φ]) = π1(Σ).
(2) If φ(C) = 1, then Υ(ker Π∩PC Mod(S)[φ]) = Λm where m = r/2 if r is even,

and m = r otherwise.
Proof. — Choose a basepoint p for π1(Σ) in the interior of the attached disk. Let

α ⊂ Σ be a simple nonseparating loop through the basepoint p. Up to homotopy,
the oriented boundary of a tubular neighborhood of α consists of two simple closed
curves c1, c2 which enclose the circle C. In other words, together with C the curves
c1, c2 bound a pair of pants P in S. We equip the curves ci with the orientation as
boundary curves of P .
By [Sal19, Proposition 3.8], we have

(3.2) φ(C) + φ(c1) + φ(c2) = −1
and hence if φ(C) = −1 then φ(c1) + φ(c2) = 0.
Let as before Td be the left Dehn twist about a simple closed curve d. Let β ⊂ S

be an oriented simple closed curve which crosses through the pair of pants P . As
c1, c2 are disjoint, we have ι(T−1

c2 (β), c1) = ι(β, c1) and therefore Definition 2.1 shows
that

φ
(
Tc1T

−1
c2 (β)

)
= φ

(
T−1
c2 (β)

)
+ ι(β, c1)φ(c1)(3.3)

= φ(β) + ι(β, c1)φ(c1)− ι(β, c2)φ(c2).
On the other hand, as c1+c2 is homologous to the boundary curve C, the homological
intersection number fulfills ι(β, c1 + c2) = 0. Hence from (3.2) we conclude that if
φ(C) = −1 then φ(Tc1T

−1
c2 (β)) = φ(β). Since β was an arbitrary simple closed curve,

this shows that Tc1T
−1
c2 ∈ PC Mod(S)[φ]. But Tc1T

−1
c2 ∈ PC Mod(S) is just the point-

pushing map about α and therefore α is contained in Υ(ker Π ∩ PC Mod(S)[φ]). We
refer to [FM12] for a comprehensive discussion of the various versions of the Birman
exact sequence.
As the point pushing group π1(Σ) is generated by point pushing maps along simple

nonseparating loops, this shows the part (1) of the Lemma 3.1.
To show the part (2) of the Lemma 3.1, assume now that φ(C) = 1. Equation (3.2)

shows that φ(c1) + φ(c2) = −2 and hence by formula (3.3) we have
φ
(
Tc1T

−1
c2 (β)

)
= φ(β) + ι(β, c1)φ(c1) + ι(β, c2)(φ(c1) + 2).

Now let us assume that the oriented simple closed curve β crosses a single time
through c1, say when it enters P . Then ι(β, c1) = −1, ι(β, c2) = 1 and hence
(3.4) φ

(
Tc1T

−1
c2 (β)

)
= φ(β)− φ(c1) + φ(c1) + 2 = φ(β) + 2.

Using this formula r/2 times if r is even, and r times if r is odd, we conclude
that the point pushing map about α is not contained in Mod(S)[φ], but it is the
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case for its r/2th power or rth power, respectively. Namely, putting m = r/2 if r
is even and m = r otherwise, it follows from the above discussion that we have
φ((Tc1T

−1
c2 )m(β)) = φ(β) for every simple closed curve β which either is disjoint

from P or which crosses through P precisely once. As such curves span the first
homology of S, we conclude that the pull-back of φ under (Tc1T

−1
c2 )m coincides with

φ on a collection of simple closed curves which span H1(S,Z). [HJ89, Corollary 2.6]
then shows that indeed, (Tc1T

−1
c2 )m ∈ PC Mod(S)[φ]. Moreover, by equation (3.4),

we know that (Tc1T
−1
c2 )k 6∈ PC Mod(S)[φ] if k is not a multiple of m.

On the other hand, by [Sal19, Lemma 3.15], Dehn twists about separating simple
closed curves in S are contained in Mod(S)[φ]. As the commutator subgroup of π1(Σ)
is generated by simple closed separating curves, and for each such curve α both Dehn
twists Tc1 , Tc2 about the boundary curves of a tubular neighborhood of α as above
are contained in PC Mod(S)[φ], this yields the part (2) of Lemma 3.1. �

Consider again an arbitrary compact surface S of genus g > 2, equipped with a
Z/rZ-spin structure φ for some r > 2. We use Lemma 3.1 to analyze the action of
Mod(S)[φ] on the graph CG+

1 . We begin with the investigation of the stabilizer of
a vertex c of CG+

1 in Mod(S)[φ]. As Mod(S)[φ] is a subgroup of Mod(S) of finite
index, the stabilizer Stab(c)[φ] of c in Mod(S)[φ] is a subgroup of finite index of the
stabilizer Stab(c) of c in Mod(S).
The group Stab(c) can be described as follows. Cut S open along c. The result is a

surface Σ2 of genus g−1 with two distinguished boundary components C1, C2. These
components are equipped with an orientation as subsets of the oriented boundary of
Σ2. To simplify notations, let Mod(Σ2) be the subgroup of the mapping class group
of Σ2 which preserves the subset C1 ∪C2 of the boundary. We allow that an element
of Mod(Σ2) exchanges C1 and C2. The stabilizer Stab(c) of c in the mapping class
group Mod(S) of S can be identified with the quotient of the group Mod(Σ2) by
the relation TC1T

−1
C2 = 1 where TCi

denotes the left Dehn twist about the boundary
circle Ci ([FM12, Theorem 3.18]). In short, we have

Stab(c) = Mod
(
Σ2
)
/Z.

The infinite cyclic subgroup of Stab(c) generated by the Dehn twist about c is
central. The quotient group Stab(c)/Z can naturally be identified with the mapping
class group Mod(Σ2) of a surface Σ2 of genus g − 1 with two punctures and per-
haps with boundary if the boundary of S is non-trivial. We refer to [FM12] for a
comprehensive discussion of these facts.
Let Σ be the surface obtained from Σ2 by forgetting the punctures. Alternatively,

Σ is obtained from Σ2 by attaching a disk to each boundary component. The group
Mod(Σ2) = Stab(c)/Z fits into the Birman exact sequence

(3.5) 1→ π1 (C(Σ, 2)) ρ−→ Stab(c)/Z→ Mod(Σ)→ 1
where π1(C(Σ, 2)) is the surface braid group, that is, the fundamental group of the
configuration space of two unordered distinct points in Σ. In particular, π1(C(Σ, 2))
is a normal subgroup of Stab(c)/Z = Mod(Σ2).
The surjective homomorphism

θ : Stab(c)→ Stab(c)/Z = Mod(Σ2)
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restricts to a homomorphism Stab(c)[φ] → Mod(Σ2). The next proposition gives
some first information on its image under the assumption that φ is a Z/2Z-spin
structure and φ(c) = 1.

Proposition 3.2. — Let φ be a Z/2Z-spin structure on S and let c be a simple
closed curve with φ(c) = 1. Then ρ(π1(C(Σ, 2))) ⊂ θ(Stab(c)[φ]).

Proof. — Let π1(PC(Σ, 2)) be the intersection of the fibre of the Birman exact
sequence (3.5) with the subgroup of Mod(Σ2) which fixes each of the two distin-
guished punctures. Following [FM12, Section 4.2.5], the group π1(PC(Σ, 2)) can be
described as follows.
Let C1, C2 be the distinguished boundary components of the surface Σ2 = S − c.

Let Σ1 be the surface obtained from Σ2 by attaching a disk to the boundary circle C1.
Let P Stab(c) and P Mod(Σ2) be the index two subgroup of Stab(c) and Mod(Σ2)
which preserves each of the two boundary components C1, C2 of S− c. The inclusion
Σ2 → Σ1 induces a surjective homomorphism

Ξ : P Stab(c)/Z→ Pc2 Mod
(
Σ1
)
/Z

where as before Pc2 Mod(Σ1) is required to fix the boundary component C2 of Σ1

and where the group Z acts as the group of Dehn twists about c and about C2. The
kernel ker(Ξ) of this homomorphism is isomorphic to π1(Σ1) (see [FM12] for more
information on this version of the Birman exact sequence).
The spin structure φ pulls back to a spin structure φ̂ on Σ2. Since φ is a Z/2Z-spin

structure on S and φ(c) = 1, the value of φ̂ on each of the two boundary circles
C1, C2 coincides with the value of a spin structure on the boundary of an embedded
disk. This implies that φ̂ induces a spin structure φ′ on Σ1. Or, equivalently, φ̂ is
the pull-back of a spin structure φ′ on Σ1 via the inclusion Σ2 → Σ1. By Lemma 3.1,
the group ker(Ξ) = π1(Σ1) stabilizes φ̂, that is, we have ker(Ξ) ⊂ Mod(Σ2)[φ̂].
Apply Lemma 3.1 a second time to the homomorphism Pc2 Mod(Σ1)/Z→ Mod(Σ)

where Σ is obtained from Σ1 by attaching a disk to C2. As the group π1(PC(Σ, 2))
can be described as the quotient by its center Z2 of the kernel of the homomorphism
P Mod(Σ2) → Mod(Σ) which is obtained by applying the Birman exact sequence
twice, first to a map which caps off the boundary component C1, followed by the
map which caps off C2, this shows that π1(PC(Σ, 2)) ⊂ θ(Stab(c)[φ]). As exchanging
C1 and C2 also preserves φ̂ the Proposition 3.2 follows. �

We are now ready to give a complete description of the stabilizer in Mod(S)[φ] of
a nonseparating simple closed curve c on S with φ(c) = 1 where as before, φ is a
Z/2Z-spin structure on a compact surface S of genus g > 3, with empty or connected
boundary.
Cut S open along c and write Σ2 = S−c. The spin structure φ of S pulls back to a

Z/2Z-spin structure φ̂ on Σ2. Denote as before by Σ the surface of genus g − 1 with
empty or connected boundary obtained from Σ2 by capping off the two distinguished
boundary components. We have

Proposition 3.3. — The Z/2Z-spin structure φ on S induces a Z/2Z-spin struc-
ture φc on Σ whose parity coincides with the parity of φ. If Π : Stab(c)/Z→ Mod(Σ)
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denotes the surjective homomorphism induced by the inclusion S − c→ Σ then

Π−1 Mod(Σ)[φc] = Stab(c)[φ]/Z.

Proof. — As φ is a Z/2Z-spin structure, the value of φ on a boundary circle of
S − c corresponding to a copy of c coincides with the value of a Z/2Z-spin structure
on the boundary of a disk. Thus φ induces a spin structure φc on Σ.
To compare the parities of the spin structures φ and φc, assume that Σ is ob-

tained from S − c by attaching disks D1, D2 to the two boundary components of
S which correspond to the two copies of c. Choose a geometric symplectic basis
a1, b1, . . . , ag−1, bg−1 for Σ, consisting of simple closed oriented curves which do not
intersect the disks D1, D2. Then a1, b1, . . . , ag−1, bg−1 can be viewed as a system of
curves in Σ2 = Σ−(D1∪D2) which maps to a curve system with the same properties
in S by the map Σ2 → S. This curve system can be extended to a geometric sym-
plectic basis for S containing the curve c, equipped with any orientation. As φ(c) = 1
we have φ(c) + 1 = 0. The claim now follows from the fact that φc(u) = φ(û) for
u ∈ {a1, b1, . . . , ag−1, bg−1} where û is the image of u under the inclusion Σ2 → S,
together with the formula (2.2) for the Arf invariant.
We are left with showing that Stab(c)[φ]/Z = Π−1 Mod(Σ)[φc]. Observe first that

as φc is induced from φ, we have Π Stab(c)[φ]/Z ⊂ Mod(Σ)[φc].
To show that in fact equality holds let Σ2 be the surface obtained from S − c by

replacing the boundary components by punctures. The group Stab(c)[φ]/Z can be
identified with a subgroup Γc of Mod(Σ2). We view the punctures of Σ2 as marked
points p1, p2 in Σ.
Let θ be any diffeomorphism of Σ which preserves φc. Then θ is isotopic to a

diffeomorphism of Σ which equals the identity on a disk D ⊂ Σ containing both
points p1, p2. Thus θ lifts to a diffeomorphism θ′ of Σ2 which preserves the pull-back
of φc to a spin structure on Σ2.
The boundary circle ∂D of D can be viewed as a simple closed curve in S − c.

Via the projection S − c → S which identifies the two distinguished boundary
components of S − c, the curve ∂D projects to a separating simple closed curve in
S which decomposes S into a one-holed torus T containing c and a surface of genus
g − 1 with connected boundary. The diffeomorphism θ′ lifts to a diffeomorphism Θ
of S which is the identity on T .
Then Θ∗φ is a spin structure on S which defines the same function on H1(S,Z)

as φ. Using once more the result of Humphries and Johnson [HJ89] (see [Sal19,
Theorem 3.9]), this implies that Θ stabilizes φ. As Θ projects to the mapping class
of Σ defined by the diffeomorphism θ, this shows surjectivity of the homomorphism
Π : Stab(c)[φ]/Z→ Mod(Σ)[φc].
On the other hand, by Proposition 3.2 the kernel of the homomorphism Π also is

contained in Stab(c)[φ]/Z. Together this completes the proof of the Proposition 3.3.
�

The next observation uses [Sal19, Proposition 4.9]. For its formulation, recall from
Section 2 the definition of the graph CG+

1 . Its vertices are nonseparating simple
closed curves with prescribed value ±1 of the spin structure. The graph CG1

+ is well
defined if the genus g of S is at least two although it may not have edges.

ANNALES HENRI LEBESGUE



Spin mapping class group 1637

Note that in the statement of Proposition 3.4, we allow that the surface S has
non-empty boundary, and we consider Z/rZ-spin structures where r may be larger
than 2g− 2. This is crucial for an inductive approach towards higher spin structures
via cutting surfaces open along separating simple closed curves, and it is used in the
proof of Theorem 1.4.
Proposition 3.4. — Let φ be a Z/rZ-spin structure on a compact surface S of

genus g > 2 with empty or connected boundary. Then for any two directed edges
e1, e2 of the graph CG+

1 there exists a mapping class ζ ∈ Mod(S)[φ] with ζ(e1) = e2.
In particular, the action of Mod(S)[φ] on CG+

1 is vertex transitive.

Proof. — The proof consists of an adjustment of the argument in the proof of [Sal19,
Proposition 4.9].
Recall that a geometric symplectic basis for S is a set {a1, b1, . . . , a2g, b2g} of

simple closed curves on S such that ai, bi intersect in a single point, and ai ∪ bi is
disjoint from aj ∪ bj for j 6= i.
A vertex of CG+

1 is a simple closed curve c on S with φ(c) = ±1. In the sequel we
always orient such a vertex c in such a way that φ(c) = 1. For a given directed edge
e of CG+

1 with ordered endpoints c, d, we aim at constructing a geometric symplectic
basis B(e) such that a1 = c, a2 = d, φ(ai) = 0 for i > 3, φ(bi) = 0 for i 6 g − 1
and φ(bg) = 0 or 1 as predicted by the parity of φ. If such a basis B(e1),B(e2) can
be found for any two directed edges e1, e2 of CG+

1 with ordered endpoints c1, d1 and
c2, d2, then there exists a diffeomorphism ζ of S which maps B(e1) to B(e2) and
maps c1, d1 to c2, d2. The pullback ζ∗φ of φ is a spin structure on S whose values on
B(e1) coincide with the values of φ. By a result of Humphries and Johnson [HJ89],
see [Sal19, Theorem 3.9], this implies that ζ∗φ = φ and hence the isotopy class of ζ
is contained in Mod(S)[φ] and maps the directed edge e1 to the directed edge e2.
To simplify further, choose any geometric symplectic basis

B = {α1, β1, . . . , αg, βg}
for S with α1 = c, α2 = d. A small tubular neighborhood of αi ∪ βi is a one-holed
torus Ti embedded in S. By Lemma 2.4, for all i > 3 we may replace αi by an
oriented simple closed curve in Ti, again denoted by αi, which satisfies φ(αi) = 0.
Assume that βi (i = 1, 2) is oriented in such a way that ι(βi, αi) = 1 where ι

is the symplectic form. As φ(Tαi
(βi)) = φ(βi) + 1, via perhaps replacing βi by its

image under a suitably chosen power of a Dehn twist about αi we may assume that
φ(βi) = 0. Therefore for the construction of a geometric symplectic basis B(e) with
the required properties, it suffices to modify successively the curves βi (i > 3) while
keeping αj (j > 1) and βk for k < i fixed such that φ assumes the prescribed values
on the modified curves.
We follow the proof of [Sal19, Proposition 4.9]. For 1 6 i 6 g let δi be the boundary

curve of the torus Ti which is a small tubular neighborhood of αi ∪ βi, equipped
with the orientation as an oriented boundary circle of S−Ti (i > 1). By homological
coherence ([Sal19, Proposition 3.8]), we have φ(δi) = 1 for all i.
Thus if ε is an embedded arc in S connecting β3 to δ1 whose interior is disjoint

from α3 and all δj for j 6= 3, then φ(β3 +ε δ1) = φ(β3) + 2. Moreover, β3 +ε δ1 is
disjoint from δj for all j 6= 3.
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A small tubular neighborhood of α3∪(β3+εδ1) is a one-holed torus T̂ 3 disjoint from
the tori Ti for i 6= 3. Thus we can repeat this construction with an arc connecting
β3 +ε δ1 to δ1 which is disjoint from α3 and whose interior is disjoint from all δj
for j 6= 3. Repeating further if necessary, we can find a simple closed curve β′3
intersecting α3 in a single point and disjoint from the curves δj for j 6= 3 so that
φ(β′3) ∈ {0, 1}.
Let δ′3 be the boundary of a tubular neighborhood of α3 ∪ β′3. Then δ′3 is disjoint

from all the curves δj for j 6= 3. As in the proof of [Sal19, Proposition 4.9], repeat
this procedure with the curve β4 and the curves δ1, δ2, δ

′
3, . . . , δg. In finitely many

steps we can change the geometric symplectic basis B to a geometric symplectic basis
B′ = {α1, β1, α2, β2, α3, β

′
3, . . . , αg, β

′
g} which fulfills φ(β′j) = 0 or 1 for all 3 6 j 6 g.

It remains to further alter β′j for 3 6 j 6 g − 1 to a nonseparating simple closed
curve β′′j with φ(β′′j ) = 0, and to alter β′g to a simple closed curve β′′g with φ(β′′g ) = 0
or 1 depending on the parity of the Z/rZ-spin structure φ. This construction is
carried out in detail in the proof of [Sal19, Proposition 4.9] and will not be presented
here as it would require the introduction of a significant amount of new notation. It
takes place in a subsurface of S of genus g − 2 which is disjoint from α1, β1, α2, β2
and contains αi, βi for 3 6 i 6 g. The resulting geometric symplectic basis has the
properties we are looking for. �

Remark 3.5. — The proof of Proposition 3.4 can also be used to show the following.
Under the assumption of the proposition, let c, d ⊂ S be two nonseparating simple
closed curves with φ(c) = φ(d) = 0; then there exists some ζ ∈ Mod(S)[φ] with
ζ(c) = d. In fact, this case is more explicitly covered by [Sal19, Proposition 4.2 and
Proposition 4.9].

The next statement is an extension of Proposition 3.4 to surfaces with more than
one boundary component under some restrictions on the spin structure.

Corollary 3.6. — Let φ be a Z/rZ-spin structure on a compact surface S
of genus g > 2 with non-empty boundary which is induced from a spin structure
φ′ on a compact surface Σ of genus g with empty or connected boundary by an
inclusion S → Σ which maps each boundary component of S to the boundary of an
embedded disk in Σ. Then for any two vertices c, d of CG+

1 there exists a mapping
class ζ ∈ Mod(S)[φ] with ζ(c) = d. In particular, the action of Mod(S)[φ] is transitive
on the vertices of CG+

1 .

Proof. — Let Ψ : S → Σ be the natural embedding. Let c, d be vertices of the
graph CG+

1 for the spin structure φ on S. Then c, d are nonseparating simple closed
curves and hence their images Ψ(c),Ψ(d) are nonseparating simple closed curves
on Σ. Furthermore, as φ is the pull-back of a spin structure φ′ on Σ, we have
φ′(Ψ(c)) = φ′(Ψ(d)) = 1.
By Proposition 3.4, there exists a mapping class θ ∈ Mod(Σ)(φ′) which maps

Ψ(c) to Ψ(d). We can choose a diffeomorphism of Σ representing θ which equals the
identity on each component of Σ− S. Thus there exists a lift Θ of θ to a mapping
class of S. This mapping class is contained in Mod(S)[φ], and it maps the simple
closed curve c to a simple closed curve d′ whose image under Ψ is isotopic to Ψ(d).
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Using once more the Birman exact sequence, this implies that there exists a
mapping class β in the kernel of the homomorphism Mod(S)→ Mod(Σ) which maps
d′ to d. But by an iterated application of Lemma 3.1, this kernel is contained in
Mod(S)[φ] and hence c can be mapped to d by an element of Mod(S)[φ]. �

The augmented Teichmüller space T (S) of the compact surface S is the union
of the Teichmüller space with so-called boundary strata. Each of these boundary
strata is defined by a non-empty system C of pairwise disjoint essential simple
closed curves. The stratum defined by such a curve system can be thought of as the
Teichmüller space of the surface obtained from S by shrinking each component of C
to a node. In other words, such a stratum is a complex manifold which is naturally
biholomorphic to the Teichmüller space of the surface obtained by cutting S open
along the components of C and replacing each boundary component of the resulting
bordered surface by a puncture.
Using Fenchel Nielsen coordinates, the augmented Teichmüller space can be equip-

ped with a natural topology. For this topology, the usual Teichmüller space embeds
into T (S) as an open dense subset. Furthermore, the inclusion of the Teichmüller
space of a punctured surface defined by the curve system C onto a boundary stratum
of T (S) also is an embedding. We refer to [Wol10] for an detailed description and
for a discussion of the following

Theorem 3.7. — The augmented Teichmüller space T (S) is a non locally com-
pact stratified space. The mapping class group Mod(S) of S acts on T (S), with
quotient the Deligne Mumford compactification of the moduli space of curves of
genus g.

Fix again a Z/2Z-spin structure φ on a surface S of genus g > 2. Define the
spin Teichmüller space Tspin(S) to be the Teichmüller space of S together with this
spin structure. The group Mod(S)[φ] acts on Tspin(S) as a group of biholomorphic
transformations, with quotient the spin moduli space Mφ = T (S)/Mod(S)[φ].
We can define an augmented spin Teichmüller space T spin(S) as the union of spin

Teichmüller space with all strata of augmented Teichmüller space which are defined
by systems of nonseparating simple closed curves c on S with φ(c) = 1. Equipped
with the subspace topology, this is a subspace of T (S) which is invariant under
the action of the spin mapping class group. As a corollary of the discussion in this
section, we have

Corollary 3.8. — The quotient T spin(S)/Mod(S)[φ] is a partial bordification
of the spin moduli space Tspin(S)/Mod(S)[φ]. Its boundary contains the spin mod-
uli space of the same parity on a surface of genus g − 1 with two marked points
(punctures) as an open dense subset.

Remark 3.9. — Corollary 3.8 can be thought of as describing a specific subset
of a Deligne Mumford compactification of the moduli space of curves with a fixed
spin structure. Such a Deligne Mumford compactification was constructed by Cor-
nalba [Cor89].
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4. Structure of the spin mapping class group of odd parity

The goal of this section is to prove the Theorem 1.3(1).
We begin with some additional information on the spin mapping class group. Fix a

Z/rZ-spin structure φ on a closed surface Σg of genus g for some r > 2. For a simple
closed curve c on Σg with φ(c) = ±1, this spin structure restricts to a spin structure
on the surface Σ2

g−1 of genus g − 1 with two boundary circles c1, c2 obtained by
cutting Σg open along c. We denote this spin structure again by φ. Define the group
Γ2
g−1 to be the following quotient of the spin mapping class group Mod(Σ2

g−1)[φ].
The group Mod(Σ2

g−1)[φ] contains a rank two free abelian central subgroup gen-
erated by the rth powers of the left Dehn twists Tc1 , Tc2 about the boundary circles
c1, c2 of Σ2

g−1. Define Γ2
g−1 = Mod(Σ2

g−1)[φ]/Z where the infinite cyclic subgroup Z is
generated by T rc1T

−r
c2 . Then Γ2

g−1 is isomorphic to the stabilizer in Mod(Σg)[φ] of the
curve c. Note that up to isomorphism, the group Γ2

g−1 does not depend on the vertex
c ∈ CG1. Namely, by Proposition 3.4, the stabilizers in Mod(Σg)[φ] of nonseparating
simple closed curves c with φ(c) = ±1 are all conjugate and hence isomorphic.
Observe that the group Γ2

g−1 is an infinite cyclic central extension of a finite index
subgroup of the mapping class group of a surface Σg−1, 2 of genus g − 1 with two
punctures. Thus it makes sense to talk about its action on isotopy classes of essential
curves on the surfaces Σg−1, 2 and Σ2

g−1. The map Σ2
g−1 → Σg−1, 2 which contracts

each boundary component to a puncture defines a bijection on such isotopy classes.
We have

Proposition 4.1. — Let φ be a Z/rZ-spin structure on a closed surface Σg of
genus g > 3. There is a commutative diagram

(4.1)
Γ2
g−1 Γ2

g−1 ∗A Γ2
g−1 o Z/2Z

Mod(Σg)[φ]

ι1

ι2
ρ

where the homomorphisms ι1, ι2 are inclusions, and the homomorphism ρ is surjective.
The subgroup A of Γ2

g−1 is the stabilizer in Γ2
g−1 of a nonseparating simple closed

curve d on Σ2
g−1 with φ(d) = ±1. The group Z/2Z acts on Γ2

g−1∗AΓ2
g−1 by exchanging

the two factors, and it acts as an automorphism on A.

Proof. — Fix a pair of nonseparating simple closed disjoint curves c, d on Σg with
φ(c) = φ(d) = ±1 which are connected by an edge in the graph CG+

1 , that is, so that
Σg−(c∪d) is connected. Let Γc,Γd ⊂ Mod(Σg)[φ] be the stabilizers of c, d in the spin
mapping class group of Σg. By Corollary 3.6, these groups are naturally isomorphic
to the group Γ2

g−1, and they intersect in the index two subgroup A = Γc ∩ Γd of the
stabilizer of c ∪ d in Mod(Σg)[φ] consisting of all elements which preserve both c, d
individually. The full stabilizer of c∪ d in Mod(Σg)[φ] is a Z/2Z extension of Γc∩Γd,
where the generator Φ of Z/2Z acts as involution on A = Γc∩Γd exchanging c and d.
This involution extends to an involution of Γc ∗A Γd exchanging the two subgroups
Γc,Γd.
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By the universal property of free amalgamated products, there is a homomorphism

ρ : Γ = Γc ∗A Γd o Z/2Z→ Mod(Σg)[φ].

All we need to show is that ρ is surjective, that is, that ρ(Γ) = Mod(Σg)[φ].
As Mod(Σg)[φ] acts transitively on the vertices of the graph CG+

1 , for this it
suffices to show that its subgroup ρ(Γ) acts transitively on the vertices of CG+

1 as
well. Namely, by construction, the stabilizer of the vertex c of CG+

1 in ρ(Γ) coincides
with its stabilizer in Mod(Σg)[φ]. As ρ(Γ) is a subgroup of Mod(Σg)[φ], this then
implies equality.
To show transitivity of the action of ρ(Γ) on the vertices of CG+

1 let v ∈ CG+
1 be

any vertex. By Corollary 2.18, the graph CG+
1 is connected and hence we can find an

edge path (ci) ⊂ CG+
1 connecting c0 = c to ck = v. We also may assume that c1 = d.

By the assumption φ(d) = ±1, for one of the two boundary components d1, d2
of Σg − d, equipped with the orientation as a boundary component of Σg − d, say
the component d1, we have φ(d1) = −1. Thus we can attach a disk D to c1 and
obtain a surface Σ′ with spin structure φ′ which induces the spin structure φ on
Σg − d. As a consequence, the restriction of φ to Σg − d fulfills the hypothesis in
Corollary 3.6. As c = c0 and c2 are nonseparating simple closed curves in Σg−d with
φ(c) = φ(c2) = ±1, Corollary 3.6 shows that there exists an element Ψ1 ∈ Γd ⊂ ρ(Γ)
such that Ψ1(c) = c2. Then the stabilizer of c2 in Mod(Σg)[φ] equals Ψ1ΓcΨ−1

1 and
hence it is contained in ρ(Γ). Thus we can apply Corollary 3.6 to Ψ1ΓcΨ−1

1 and find
an element Ψ2 ∈ ρ(Γ) which maps c1 to c3. Proceeding inductively and using the
fact that Γc is conjugate to Γd in ρ(Γ) by the generator of the subgroup Z/2Z, this
completes the proof of the Proposition 4.1. �

Recall from the introduction the definition of an admissible curve system on a
closed surface Σg of genus g > 2. The mapping class group of Σg naturally acts on
the family of all admissible curve systems on Σg. Recall also that the curve diagram
of an admissible curve system is a finite tree.
Since the curve diagram of an admissible curve system C is connected, each curve

c ∈ C intersects at least one other simple closed curve on Σg transversely in a single
point and hence it is nonseparating.
We need some technical information on admissible curve systems. To this end

let C be any admissible curve system on an oriented surface S. We require that
the boundary of S is empty, but we allow for the moment that S has punctures.
For admissibility, we require that all complementary components of C are either
topological disks or once punctured topological disks.
The union ∪{c | c ∈ C} is an embedded graph G in S whose vertices are the

intersection points between the curves from C. Choose a basepoint x ∈ G which is
contained in the interior of an edge of G. This edge is contained in a simple closed
curve c0 ∈ C which defines a distinguished vertex v0 in the curve diagram of C.
Construct inductively a family L of homotopy classes of loops in G based at x as

follows. Let L0 be the family consisting of the two based loop which go once around
the simple closed curve c0 ∈ C containing x in either direction. Assume by induction
that for some k > 1 we defined a system of based loops Lk−1. Let {ck1 , . . . , cks} ⊂ C
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be the curves in C whose distance in the curve diagram to the distinguished vertex
v0 equals k. Define

Lk =
{
T±1
cku
d
∣∣∣u 6 s, d ∈ Lk−1

}
and let L = Lb where b > 1 is the maximal distance of a vertex in the curve diagram
of C to the distinguished vertex v0.
The following appears implicitly in [PV96] and explicitly as [Sal19, Lemma 9.3].

Lemma 4.2. — The loops from the system L generate the fundamental group
π1(S, x) of S.

As a consequence we obtain (see [Sal19, Lemma 9.4]).

Lemma 4.3. — Let C be an admissible curve system on a surface S, possibly with
punctures. Let p be a puncture of S and assume that there are two curves c1, c2 ∈ C
which bound a once punctured annulus, with p as puncture. Then the subgroup Γ
of Mod(S) generated by the Dehn twists about the curves from the curve system C
contains the kernel of the homomorphism Mod(S)→ Mod(Σ) where Σ is obtained
from S by forgetting p.

For a closed surface Σg of genus g > 2 consider the system Sg of 3g − 2 simple
closed curve on Σg shown in Figure 4.1.

Figure 4.1.

The following is well known but hard to locate in the literature.

Lemma 4.4. — For g = 2, Dehn twists about the curves from the curve system
Sg generate the stabilizer of an odd spin structure in Mod(Σ2).

Proof. — S2 is just a chain of 4 curves which are invariant under the hyperelliptic
involution. The subgroup Γ of Mod(Σ2) generated by the Dehn twists about these
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curves fixes one of the Weierstrass points, that is, one of the fixed points of the
hyperelliptic involution.
Replacing the Weierstrass point by a small disk shows that we may view Γ as

a subgroup of the quotient by its center of the symmetric mapping class group of
a surface of genus 2 with connected boundary, which equals the braid group in 5
strands ([FM12, Theorem 9.2]). This group is known to be generated by the Dehn
twists about the curves from the curve system S2 (see [FM12, Section 9.1]) and hence
Γ ⊂ Mod(Σ2) equals the stabilizer of one of the Weierstrass points. This Weierstrass
point defines a Z/2Z-spin structure on Σ2 whose stabilizer in Mod(Σ2) equals the
stabilizer of the Weierstrass point. This shows the Lemma 4.4. �

Lemma 4.5. — The Dehn twists about the curves from the system Sg preserve
an odd Z/2Z-spin structure on Σg.
Proof. — There exists a cyclic subgroup G of the diffeomorphism group of Σg of

order g−1 which preserves Sg and acts freely on Σg as a group of rotations about the
center curve c0. The group G cyclically permutes the complementary components
of Sg.
As a consequence, the curve system Sg descends to a curve system on a closed

surface Σ2 of genus 2. The curve diagram of this system is just a line segment of
length 4 and hence the Dehn twists about these curves preserve an odd spin structure
on Σ2 (see Lemma 4.4). This spin structure lifts to a spin structure on Σg which is
invariant under the Dehn twist about the curves from Sg. The parity of this spin
structure is odd, as can also easily be checked explicitly using the formula (2.2). This
is what we wanted to show. �
We use Lemma 4.3 and Proposition 4.1 to show
Proposition 4.6. — Let φ be an odd Z/2Z-spin structure on a surface Σg of

genus g > 2. Then the group Mod(Σg)[φ] is generated by the Dehn twists about the
curves from the curve system Sg.
Proof. — Lemma 4.5 shows that the subgroup Γ of Mod(Σg) generated by the

Dehn twists about the curves from the curve system Sg is a subgroup of Mod(Σg)[φ].
We have to show that it coincides with Mod(Σg)[φ].
We proceed by induction on the genus. By Lemma 4.4, the claim of the proposition

holds true for g = 2. Thus let us assume that the proposition is known for some
g − 1 > 2. Consider the curve system Sg on a surface of genus g. Using the labeling
from Figure 4.1, let a1 be the simple closed curve on Σg which intersects the curve
c1 in a single point and is disjoint from any other curve from Sg. We know that
φ(a1) = 1. We aim at showing that Γ ∩ Stab(a1) = Mod(Σg)[φ] ∩ Stab(a1).
To this end cut Σg open along a1. The resulting surface is a surface Σ2

g−1 of genus
g − 1 with two boundary components. Replace these two boundary components by
punctures and let Σg−1, 2 be the resulting twice punctured surface. As before, the
spin structure φ descends to a spin structure, again denoted by φ, on the surface
Σg−1 obtained by closing the punctures, and to a spin structure on Σg−1, 2. The curve
system Sg descends to the curve system Sg−1 on Σg−1.
By induction hypothesis, the Dehn twists about the curves from the curve system
Sg−1 generate the spin mapping class group Mod(Σg−1)[φ]. On the other hand, we
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can apply Lemma 4.3 to each of the two punctures of Σg−1, 2 as each of these two
punctures is contained in a once punctured annulus bounded by two curves from the
restriction of Sg to Σg−1, 2. We conclude that the point pushing maps about these
punctures are contained in the group Γ ∩ Stab(a1). As a consequence, the group
Γ ∩ Stab(a1) surjects onto the index two subgroup of Mod(Σg−1, 2)[φ] which fixes
each of the two punctures.
We have to show that there also is an element of Γ ∩ Stab(a1) which exchanges

the two boundary components of Σg − a1. For this it suffices to find an element of Γ
which fixes the curves c1, c2 and exchanges d1, d2.
If g = 3 then consider the hyperelliptic involution of the surface Σ2 obtained by

cutting Σ3 open along the simple closed curve a1 and removing the punctures. This
element can be represented as an explicit word in the Dehn twists about the curves
c2, c0, c4, c3 (or, rather, their projection to Σ2). The mapping class ψ, viewed as an
element of the mapping class group of Σ3, preserves the curves ci and exchanges d1
and d2.
For g > 4 the same argument can be used. Namely, the element ψ still acts as an

involution on Σg which preserves the curves c1, c2 and exchanges d1 and d2. However
this involution does not preserve the curve system Sg.
To summarize, we showed so far that Γ∩Stab(a1) surjects onto Stab(a1)[φ]/Z. Thus

to show that Γ∩Stab(a1) = Mod(Σg)[φ]∩Stab(a1) it suffices to show that Γ contains
the square T 2

a1 of the Dehn twist about a1. For an application of Proposition 4.1,
we have to show furthermore that Γ contains an involution Ψ which exchanges the
curve a1 with a curve disjoint from a1. We show first that Γ contains an involution
which maps a1 to a2.
To this end consider again first the case g = 3. The curve system S3 contains a

curves system E6 ⊂ S3 obtained from S3 by deleting the curve d2. This is the curve
system shown in Figure 1.2 in the introduction. By [Mat00, Theorem 1.4], there
exists an explicit word c(E6) in the Dehn twists about the curves from the system
E6, the image of the so-called Garside element of the Artin group of type E6, which
acts as a reflection on the curve diagram of E6 exchanging the curves c1 and c3. Then
this reflection exchanges a1 and a2 and hence it has the desired properties.
As before, this reasoning extends to any g > 4. Namely, the element c(E6), viewed

as an element of the mapping class group of Σg, still acts as an involution on Σg

which exchanges a1 and a2 and preserves the subsurface of Σg filled by the curves
c1, c2, c0, c4, c3, d2.
For an application of Proposition 4.1, we are left with showing that the square of

the Dehn twist about a1 is contained in Γ. By the above discussion, we know that
Γ ∩ Stab(a1) surjects onto Mod(Σg−1, 2)[φ]. In particular, Γ contains T 2

a2 , viewed as
an element of Stab(a1) ⊂ Mod(Σg). Since a1 is the image of a2 under an involution
contained in Γ, it follows that T 2

a1 ∈ Γ.
To summarize, we showed that Γ∩Stab(a1) = Mod(Σg)[φ]∩Stab(a1), furthermore

Γ contains an involution Ψ which exchanges a1 and a2. Proposition 4.1 now shows
that Γ = Mod(Σg)[φ]. This completes the proof of the Proposition 4.6. �
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We use Proposition 4.6 as the base case for the proof of Theorem 1.3 from the
introduction. The curve system Cg is shown in Figure 1.1 in the introduction. Note
that we have C3 = S3.

Theorem 4.7. — Let φ be an odd Z/2Z-spin structure on a surface Σg of genus
g > 3. Then the group Mod(Σg)[φ] is generated by the Dehn twists about the curves
from the curve system Cg.

Proof. — The curve system Cg is obtained from the curve system Sg by deleting
the curves d3, . . . , dg−1. Let Γ be the subgroup of Mod(Σg)[φ] generated by the Dehn
twists about the curves from the curve system Cg. By Proposition 4.6, it suffices to
show that the Dehn twists Tdi

for i = 3, . . . , g − 1 are contained in Γ. Moreover, as
D3 = C3, we may assume that g > 4.
Let ai be the simple closed curve which intersects c2i−1 in a single point and does

not intersect any other curve from Sg. We first claim that T 2
a1 ∈ Γ.

To show the claim consider the subsurface Σ1
2 of Σg which is filled by the curves

a1, c0, c1, c2, d1, d2. This is a surface of genus 2 with connected boundary. The curves
d1, d2 bound a one-holed annulus containing the boundary circle C of Σ1

2.
By homological coherence ([Sal19, Proposition 3.8]), we have φ(C) = 1. Thus the

spin structure φ descends to a spin structure on Σ1
2, on the surface Σ2, 1 obtained

from Σ1
2 by replacing the boundary component by a puncture and on the surface Σ2

obtained from Σ2, 1 by forgetting the puncture, again denoted by φ. The curves of
the curve system Cg which are contained in Σ1

2 define a curve system F on Σ1
2 which

descends to a curve system on Σ2. The curve diagram of this system is just a line
segment of length 4. By Lemma 4.4, the group generated by Dehn twists about the
curves from F projects onto Mod(Σ2)[φ].
On the other hand, F also contains two simple closed curves which enclose

the boundary component of Σ1
2. It now follows from Lemma 4.3 that the sub-

group of Mod(Σ2, 1) generated by the Dehn twists about the curves from F equals
Mod(Σ2, 1)[φ]. In particular, this group contains T 2

a1 and therefore T 2
a1 ∈ Γ.

We claim next that T 2
a2 ∈ Γ. To this end consider the subsurface Σ1

3 of Σg which
is filled by the system of curves G = {c1, c2, c0, c4, c3, d1, d2, d3}. This is a surface
of genus 3 with connected boundary. The curves d1, d3 bound a one-holed annulus
containing the boundary circle A of Σ1

3.
The subsurface Σ1

3 of Σg contains the curves c1, c2, c0, c4, c3, d2 whose curve diagram
is the Dynkin diagram of type E6 (see Figure 1.2 in the introduction). There is an in-
volution of Σ1

3 which fixes the curves c0, d2 and exchanges c2, c4 and a1, a2. By [Mat00,
Theorem 1.4], this involution is contained in the subgroup of the mapping class group
of Σ1

3 which is generated by the Dehn twists about the curves c1, c2, c0, c4, c5, d2. As
a consequence, there is an element of Γ which exchanges a1 and a2. This implies that
T 2
a2 ∈ Γ.
By the chain relation for Dehn twists of surfaces (see [FM12, p. 108]), we have

(T 2
a2Tc3Tc4)3 = Td2Td3 . Since Td2 ∈ Γ, we conclude that Td3 ∈ Γ.
Now repeat this argument, replacing the curves cj by cj+2 and the curve ai by ai+1

where the first step discussed above is the case i = 1. In finitely many such steps we
find that indeed Tdi

∈ Γ for all i. This is what we wanted to show. �
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5. Structure of the spin mapping class group of even parity

The goal of this section is to prove the Theorem 1.3(2). Our strategy is to reduce
this result to the Theorem 1.3(1) by a change of parity construction.
Consider for the moment an arbitrary Z/rZ-spin structures φ on a compact surface

S of genus g > 4. In the Appendix A we introduce a graph CG+
2 whose vertices are

ordered pairs (a, b) of nonseparating simple closed curves which intersect in a single
point and hence they fill a one-holed torus T (a, b). Furthermore, it is required that
φ(a) = 2 and φ(b) = 0. The spin structure on S restricts to a spin structure φ̂ on
Σ(a, b) = S − T (a, b).
By homological coherence ([Sal19, Proposition 3.5]), if we orient the boundary

circle c of Σ(a, b) as the oriented boundary of Σ(a, b) then we have φ(c) = 1. Thus if
r = 2 then φ descends to a spin structure φ̂ on the surface Σ obtained from Σ(a, b)
by capping off the boundary. This spin structure φ̂ has a parity, either even or odd.

Lemma 5.1. — A Z/2Z-spin structure φ on S induces a Z/2Z-spin structure φ̂
on the surface Σ whose parity is opposite to the parity of φ.

Proof. — Choose a geometric symplectic basis a1, b1, . . . , ag−1, bg−1 for Σ. This
basis then lifts to a curve system on the surface Σ(a, b) = S − T (a, b). Using the
inclusion Σ(a, b) → S, this basis can be extended to a geometric symplectic basis
of S by adding a, b. As φ(a) = φ(b) = 0, the parity of φ is opposite to the parity
of φ̂. �

The next observation is an analog of Proposition 3.4. Note that we only require
g > 3 here.

Proposition 5.2. — Let φ be a Z/rZ-spin structure on a compact surface S of
genus g > 3 with empty or connected boundary. Then for any two vertices c, d of the
graph CG+

2 there exists a mapping class ζ ∈ Mod(S)[φ] with ζ(c) = d. In particular,
the action of Mod(S)[φ] is transitive on the vertices of the graph CG+

2 .

Proof. — The proof is very similar to the proof of Proposition 3.4 and will be
omitted. �

Consider again a Z/rZ-spin structure φ on a closed surface Σg of genus g > 3.
Let c be a separating simple closed curve on Σg which is the boundary of a small
neighborhood of a vertex (a, b) ∈ CG+

2 . Then c decomposes Σg into a one holed torus
Σ1

1 and a surface Σ1
g−1 of genus g − 1 with connected boundary. The spin structure

restricts to a spin structure on Σ1
1. If r is even then this spin structure has a parity,

and this parity is odd.
Since c is separating, the group Mod(Σ1

g−1)[φ]×Mod(Σ1
1)[φ] contains a rank two

free abelian central subgroup generated by the left Dehn twists Tc1 , Tc2 about the
boundary circles c1, c2 of Σ1

g−1,Σ1
1. Define

Γ2
g−1, 2 = Mod

(
Σ1
g−1

)
[φ]×Mod

(
Σ1

1

)
[φ]/Z

where the infinite cyclic subgroup Z is generated by Tc1T
−1
c2 . Then Γ2

g−1, 2 is isomorphic
to the stabilizer in Mod(Σg)[φ] of the curve c. Note that up to isomorphism, the group
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Γ2
g−1, 2 does not depend on c since by Proposition 5.2, the stabilizers in Mod(Σg)[φ]

of vertices of CG+
2 are all conjugate and hence isomorphic.

Observe that the group Γ2
g−1, 2 is an infinite cyclic central extension of the product

of a finite index subgroup of the mapping class group of a surface Σg−1, 1 of genus
g−1 with one puncture and a once punctured torus Σ1, 1. Thus it makes sense to talk
about its action on isotopy classes of essential curves on the surfaces Σg−1, 1 and Σ1, 1.
The map Σ1

g−1
∐Σ1

1 → Σg−1, 1
∐Σ1, 1 which contracts each boundary component to

a puncture defines a bijection on such isotopy classes.
The following observation is the analog of Proposition 4.1.

Proposition 5.3. — Let φ be a Z/rZ-spin structure on a closed surface Σg of
genus g > 4. There is a commutative diagram

(5.1)
Γ2
g−1, 2 Γ2

g−1, 2 ∗A Γ2
g−1, 2 o Z/2Z

Mod(Σg)[φ]

ι1

ι2
ρ

where the homomorphisms ι1, ι2 are inclusions, and the homomorphism ρ is surjective.
The subgroup A of Γ2

g−1, 2 is the stabilizer in Γ2
g−1, 2 of a separating simple closed curve

d on Σ2
g−1 which is defined by a vertex of the graph CG+

2 . The curve d decomposes Σ1
g−1

into a one-holed torus and a surface of genus g − 2 with two boundary components.
The group Z/2Z acts on Γ2

g−1, 2 ∗A Γ2
g−1, 2 by exchanging the two factors, and it acts

as an automorphism on A.

Proof. — Fix a pair of vertices of the graph CG+
2 which are connected by an edge.

These two vertices then determine a pair of disjoint separating simple closed curves
c, d on Σg which cut from Σg a one-holed torus each. These tori are disjoint. Let
Γc,Γd ⊂ Mod(Σg)[φ] be the stabilizers of c, d in the spin mapping class group of Σg.
By Corollary 3.6, these groups are naturally isomorphic to the group Γ2

g−1, 2, and
they intersect in the index two subgroup A = Γc ∩ Γd of the stabilizer of c ∪ d in
Mod(Σg)[φ] consisting of all elements which preserve both c, d individually. The full
stabilizer of c∪ d in Mod(Σg)[φ] is a Z/2Z extension of Γc ∩ Γd, where the generator
Φ of Z/2Z acts as involution on A = Γc ∩ Γd exchanging c and d. This involution
extends to an involution of Γc ∗A Γd exchanging the two subgroups Γc,Γd.
By the universal property of free amalgamated products, there is a homomorphism

ρ : Γ = Γc ∗A Γd o Z/2Z→ Mod(Σg)[φ].
All we need to show is that ρ is surjective, that is, that ρ(Γ) = Mod(Σg)[φ].
As Mod(Σg)[φ] acts transitively on the vertices of the graph CG+

2 , for this it
suffices to show that its subgroup ρ(Γ) acts transitively on the vertices of CG+

2 as
well. Namely, by construction, the stabilizer of the vertex c of CG+

1 in ρ(Γ) coincides
with its stabilizer in Mod(Σg)[φ]. As ρ(Γ) is a subgroup of Mod(Σg)[φ], this then
implies equality.
To show transitivity of the action of ρ(Γ) on the vertices of CG+

2 let v ∈ CG+
2 be

any vertex. By Proposition A.3, the graph CG+
2 is connected and hence we can find
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an edge path (ci) ⊂ CG+
2 connecting c0 = c to ck = v. We also may assume that

c1 = d.
By Proposition 5.2, there exists an element Ψ1 ∈ Γd ⊂ ρ(Γ) such that Ψ1(c0) = c2.

Then the stabilizer of c2 in Mod(Σg)[φ] equals Ψ1ΓcΨ−1
1 and hence it is contained in

ρ(Γ). Thus we can apply Corollary 3.6 to Ψ1ΓcΨ−1
1 and find an element Ψ2 ∈ ρ(Γ)

which maps c1 to c3. Proceeding inductively and using the fact that Γc is conjugate
to Γd in ρ(Γ) by the generator of the subgroup Z/2Z, this completes the proof of
the Proposition 5.3. �

For a surface S of genus g > 3 consider the following system Ug of 3g − 2 simple
closed curve on S.

Figure 5

Figure 5.1.

Note that for g = 3, the system Sg is just a chain of 7 curves which are invariant
under a hyperelliptic involution. It follows from Lemma 4.5 and Lemma 5.1 that the
Dehn twists about these curves preserve an even Z/2Z-spin structure on Σg.
We use Lemma 4.3 and Proposition 4.1 to show

Proposition 5.4. — Let φ be an even Z/2Z-spin structure on a surface Σg of
genus g > 4. Then the group Mod(Σg)[φ] is generated by the Dehn twists about the
curves from the curve system Ug.

Proof. — We observed above that the subgroup Γ of Mod(Σg) generated by the
Dehn twist about the curves from the curve system Ug is a subgroup of Mod(Σg)[φ].
We have to show that it coincides with Mod(Σg)[φ].
To this end we proceed by induction on the genus, beginning with genus 4. Let a

be the separating simple closed curve which intersects c3 in two points and is disjoint
from the remaining curves from the system U4. It decomposes U4 into a one holed
torus Σ1

1 containing the curves c1, c2, and a surface Σ1
3 of genus 3 with connected

boundary which contains the curve system S3. As we are looking at a Z/2Z-spin
structure we know that the pair (c1, c2) and hence the curve a defines a vertex in
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CG+
2 . The spin structure φ induces a spin structure on Σ1

3 and Σ1
1, again denoted by

φ. It also induces a spin structure on the closed surface Σ3 of genus 3 obtained from
Σ1

3 by capping off the boundary, again denoted by φ.
It is well known that the mapping class group of one holed tori is generated by

a pair of Dehn twists about simple closed curves which intersect in a single point.
Thus we have Mod(Σ1

1) ⊂ Γ ∩ Stab(a).
On the other hand, by Proposition 4.6, the Dehn twists about the curves from

the system S3 generate the spin mapping class group Mod(Σ3)[φ] of Σ3. Thus the
projection of Γ to Mod(Σ3)[φ] is surjective.
To apply Proposition 5.3 we have to show that the point pushing group of

Mod(Σ3,1)[φ] is contained in the projection of Γ ∩ Stab(a). We use once more
Lemma 4.3 to this end.
Consider the curves c0, c7, c6, d1, c5 which define a curve system on the surface Σ3,1

whose curve diagram is the Dynkin diagram D5. By [Mat00, Theorem 1.5], there
exists an explicit word in the Dehn twists about these curves which defines the
product T 3

a4Ta′4 where a4 is a simple closed curve in Σ1
3 which intersects c4 in a single

point and is disjoint from all other curves and where a′4 is the simple closed curve
which bounds together with a4 a once punctured annulus in Σ1

3.
On the other hand, the chain relation [FM12] yields that T ′a4Ta4 = (Tc1Tc2Tc3)4.

Since Ta4 , Ta′4 commute we deduce that

(
T ′a4

)−2
T−2
a4 T

3
a4Ta′4 = Ta4T

−1
a′4
∈ Γ .

As a consequence, the group Γ ∩ Stab(a) contains the point pushing map Ta4T
−1
a′4

about the based loop α in Σ3 which is homotopic to the common projection of a4, a
′
4.

Lemma 4.3 now shows that Γ ∩ Stab(a) contains indeed the point pushing group of
Mod(Γ3,1)[φ].
By Proposition 5.3, we are left with finding an element Ψ ∈ Γ which maps a to a

curve disjoint from a. However, the curve system U4 contains a subsystem consisting
of the curves ci (i = 0, . . . , 7). The Dehn twists about these curves are well known
to generate the stabilizer of a Weierstrass point in the hyperelliptic mapping class
group, that is, the subgroup of the mapping class group which commutes with a
hyperelliptic involution ([FM12] and compare Lemma 4.4). This group is isomorphic
to the quotient of the Artin braid group in 2g + 1 strands by its center, and it
contains an element ψ which maps a to a disjoint curve, e.g. the boundary of a small
neighborhood of c0 ∪ c5. The proposition for g = 4 now follows from Proposition 5.3.
By induction, let us now assume that the Proposition 5.4 is known for some

g − 1 > 4. Consider the curve system Ug on a surface of genus g. Using the labeling
from Figure 5.1, let a7 be the simple closed curve on Σg which intersects the curve
c7 in a single point and is disjoint from any other curve from Ug. We know that
φ(a7) = 1. We aim at showing that Γ ∩ Stab(a7) = Mod(Σg)[φ] ∩ Stab(a7).
To this end cut Σg open along a7. The resulting surface is a surface Σ2

g−1 of genus
g − 1 with two boundary components. Replace these two boundary components by
punctures and let Σg−1, 2 be the resulting twice punctured surface. As before, the spin
structure φ descends to a spin structure, again denoted by φ, on the surface Σg−1
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obtained from Σg−1, 2 by closing the punctures, and to a spin structure on Σg−1, 2.
The curve system Ug descends to the curve system Ug−1 on Σg−1.
By the induction hypothesis, the Dehn twists about the curves from the curve

system Ug−1 generate the spin mapping class group Mod(Σg−1)[φ]. On the other
hand, we can apply Lemma 4.3 to each of the two punctures of Σg−1, 2 as each of
these two punctures is contained in a once punctured annulus bounded by two curves
from the restriction of Ug to Σg−1, 2. We conclude that the point pushing maps about
these punctures are contained in the group Γ∩Stab(a7). As a consequence, the group
Γ ∩ Stab(a7) surjects onto Mod(Σg−1, 2)[φ].
To summarize, we showed so far that Γ surjects onto Stab(a7)[φ]/Z where Z is

the intersection of Mod(Σg)[φ| with the infinite cyclic group of Dehn twists about
a7. Thus to show that Γ ∩ Stab(a) = Mod(Σg)[φ] ∩ Stab(a) it suffices to show that
Γ contains the square T 2

a7 of the Dehn twist about a7. We also have to find as well
as an involution Ψ which exchanges a7 with a simple closed curve disjoint from a7.
To find an involution Ψ as required, consider first the case g = 4. The curve

system U4 contains a curve system E6 ⊂ U4 consisting of the curves c7, c6, c0, d1, c5, c4.
By [Mat00, Theorem 1.4], there exists an explicit word c(E6) in the Dehn twists
about the curves from the system E6, the image of the so-called Garside element of
the Artin group of type E6, which acts as a reflection on the curve diagram of E6
exchanging the curves c7 and c4. Then this reflection maps a7 to a disjoint curve a′7
and hence it has the desired properties.
This reasoning extends to any g > 5. Namely, the element c(E6), viewed as an

element of the mapping class group of Σg, still acts as an involution on Σg which
maps a7 to a disjoint curve a′7 and preserves the subsurface of Σg filled by the curves
c7, c6, c0, d1, c5, c4. Thus there always exists an involution Ψ ∈ Γ which maps a7 to a
disjoint curve a′7.
For an application of Proposition 4.1, we are left with showing that the square of

the Dehn twist about a7 is contained in Γ. By the above discussion, we know that
Γ ∩ Stab(a7) surjects onto Mod(Σg−1, 2)[φ]. In particular, Γ contains T 2

a′7
, viewed as

an element of Stab(a7) ⊂ Mod(Σg). Since a7 is the image of a′7 under an involution
contained in Γ, it follows that T 2

a7 ∈ Γ.
To summarize, we showed that Γ∩Stab(a7) = Mod(Σg)[φ]∩Stab(a7), furthermore

Γ contains an involution Ψ which exchanges a7 and a′7. Proposition 4.1 now shows
that Γ = Mod(Σg)[φ]. This completes the proof of the Proposition 5.4. �

We use Proposition 4.6 as the base case for the proof of the second part of Theo-
rem 1.3 from the introduction. The curve system Vg is defined as in the Theorem 1.3.
Note that we have V3 = U3.

Theorem 5.5. — Let φ be an even Z/2Z-spin structure on a surface Σg of genus
g > 4. Then the group Mod(Σg)[φ] is generated by the Dehn twists about the curves
from the curve system Vg.

Proof. — The curve system Vg is obtained from the curve system Ug by deleting
the curves d2, . . . , dg−2.
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Let Γ be the subgroup of Mod(Σg)[φ] generated by the Dehn twists about the
curves from the curve system Vg. By Proposition 4.6, it suffices to show that the
Dehn twists Tdi

for i = 2, . . . , g − 2 are contained in Γ.
To see that Tdg−2 ∈ Γ, note that dg−2 is the image of d1 under the hyperelliptic

involution of the surface of genus 3 with connected boundary filled by the curves
d1, dg−2, c0, c1, c2, c3, c4.
Consider the surface S filled by c1, . . . , c6, d1, d2, dg−2. This is a surface of genus 4

with connected boundary. The union of the system Vg with the curve dg−2 intersects
S in a curve system of type U4. By Proposition 5.4 and what we have proved so far,
the stabilizer of the surface S in the group Γ surjects onto the spin mapping class
group of the surface obtained from S by capping off the boundary. In particular,
if we denote by e1, e3 the nonseparating simple closed curves which intersect c4 in
a single point, do not intersect any other curve and form a bounding pair, then
Te1T

−1
e2 ∈ Γ.

Now by [Mat00, Theorem 1.4], the stabilizer in Γ of the surface of genus 3 with
two boundary components obtained from S by removing the one-holed torus T filled
by c1, c2 contains a half-twist which exchanges the two boundary components of the
surface. Let S ′ be the surface obtained from S − T by replacing two boundary com-
ponents by punctures. Lemma 4.3, applied to the Dehn twists about the curves e1, e2
enclosing the boundary component of T , shows that the subgroup of the mapping
class group of S ′ which is the point pushing group of the puncture corresponding to
the boundary of T is contained in the projection of the stabilizer of S − T in Γ. But
then the same holds true for the point pushing group of the second puncture of S ′.
This shows that we have Td2T

−1
dg−2 ∈ Γ. As Tdg−2 ∈ Γ, we conclude that the same

holds true for Td2 . To generate the remaining twists about the curves di we argue as
in the proof of Theorem 4.7, using the Dehn twists Td1 and Td2 . �

6. Generating the Z/4Z-spin mapping class group in genus 3
The goal of this section is to prove Theorem 1.4 from the introduction. Our strategy

is similar to the strategy used in Section 4. We first introduce one more graph of
curves which will be useful to this end.
Consider an odd Z/2Z-spin structure φ on a surface Σ3 of genus 3. A separating

simple closed curve a on Σ3 decomposes Σ3 into a one-holed torus T and a surface
Σ1

2 of genus 2 with connected boundary. By homological coherence ([Sal19, Proposi-
tion 3.15]), we have φ(a) = 1. In particular, φ induces a spin structure on the surface
Σ1

2 which has a parity. Define a to be odd if this parity is odd. Note that a vertex of
the graph CG+

2 defined in the appendix and used in Section 5 defines a separating
simple closed curve which is even, that is, it is not odd.
Let OS be the graph whose vertices are odd separating simple closed curves on

(Σ3, φ) and where two such curves are connected by an edge if they are disjoint. Let
Φ be a Z/4Z-spin structure on Σ3 whose Z/2Z-reduction equals φ. The stabilizer
Mod(Σ3)[φ] and its subgroup Mod(Σ3)[Φ] act on OS as a group of simplicial au-
tomorphisms. The following observation is similar to Proposition 3.4. It uses some
special properties of Z/4Z-spin structures.
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Lemma 6.1. —
(1) The group Mod(Σ3)[Φ] acts transitively on the vertices of OS.
(2) Let a ∈ OS be any vertex. Then the stabilizer of a in Mod(Σ3)[Φ] acts

transitively on the edges of OS issuing from a.

Proof. — A vertex a of OS decomposes Σ3 into a one-holed torus T and a surface
Σ3−T of genus 2 with connected boundary and odd spin structure. Since the parity
of the spin structure of φ on Σ3 is odd, the torus T contains a simple closed curve c
with φ(c) = 1 and hence Φ(c) = ±1. Via perhaps changing the orientation of c we
may assume that Φ(c) = 1, furthermore there is a simple closed curve d in T which
intersects c in a single point and satisfies Φ(d) = 0.
By homological coherence ([Sal19, Proposition 3.15]), if we orient a as the oriented

boundary of the surface V = Σ3−T then we have Φ(a) = 1. Since the spin structure
induced on V is odd, a geometric symplectic basis for V consists of simple closed
curves a1, b1, a2, b2 with φ(a1) = 1 and hence Φ(a1) = ±1 (up to ordering). A tubular
neighborhood T ′ of a1∪b1 is an embedded bordered torus in V . Choose an orientation
for a1 so that Φ(a1) = 1. After perhaps replacing b1 by its image under a multiple
of a Dehn twist about a1 we may assume that Φ(b1) = 0.
Consider the pair of curves a2, b2. Since the spin structure on V is odd, we have

φ(a2) = φ(b2) = 0 and hence Φ(a2),Φ(b2) ∈ {0, 2}. Our goal is to modify a2, b2 so
that Φ vanishes on the modified curves. Thus assume without loss of generality that
Φ(a2) = 2. Connect a2 to the boundary curve a of V by an embedded arc ε which is
disjoint from T ′ and b2, and connect b2 to the boundary δ of T ′ by an embedded arc
η which is disjoint from ε and a2. Since Φ(a) = 1 for the orientation as a boundary
curve of V , we obtain that Φ(a2 +ε a) = 0, furthermore this curve is disjoint from
T ′ and intersects b2 in a single point. Replace a2 by a2 +ε a. Similarly, if Φ(b2) = 2
then we replace b2 by b2 +η δ. This process yields a geometric symplectic basis for
Σ3 consisting of simple closed curves disjoint from a.
Given any other odd separating curve a′ on Σ3 we can find in the same way a

geometric symplectic basis for Σ3 consisting of curves disjoint from a′. Then there is
a mapping class which maps a to a′ and identifies the geometric symplectic bases in
such a way that the values of Φ on these curves match up. By the result of Humphries
and Johnson [HJ89], this implies that this mapping class is contained in Mod(Σ3)[Φ].
In other words, there is an element of Mod(Σ3)[Φ] which maps a to a′. This shows
the part (1) of the Lemma 6.1.
The proof of the part (2) of the lemma is completely analogous but easier and will

be omitted. �

Lemma 6.2. — The graph OS is connected.

Proof. — Consider the curve system C3 on the surface Σ3. Using the labels for the
curves shown in Figure 4.1, there is an odd separating simple closed curve a which
intersects the curve c2 in two points and is disjoint from the remaining curves from
the system C3. Using the Putman trick, Theorem 4.7 and the first part of Lemma 6.1,
all we need to show is that the curve a can be connected to Tc2(a) by an edge path
in OS.
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However, the curve a′ which intersects the curve c4 in two points and is disjoint
from the remaining curves from the system C3 is separating and odd, and it is disjoint
from both a and Tc2(a). Thus a, a′, Tc2(a) is an edge path in OS which connects a
to Tc2(a). �
Using the labels from Figure 1.2 from the introduction, let d be the separating

simple closed curve on Σ3 which intersects the curve c2 in two points and is disjoint
from the remaining curves from the system E6. We show
Lemma 6.3. — The subgroup Γ of Mod(Σ3) which is generated by the Dehn

twists about the curves from the curve system E6 equals the stabilizer Mod(Σ3)[Φ]
of an odd Z/4Z-spin structure Φ on Σ3 if and only if its intersection with Stab(d)
coincides with Stab(d) ∩Mod(Σ3)[Φ].
Proof. — Since Γ is a subgroup of Mod(Σ3)[Φ], the condition is clearly necessary,

so we have to show sufficiency. Thus assume that Γ∩Stab(d) = Mod(Σ3)[Φ]∩Stab(d).
Consider again the graph OS. Lemma 6.2 shows that OS is connected. Moreover,

by Lemma 6.1, the group Mod(Σ3)[Φ] acts transitively on the directed edges of OS
as a group of simplicial automorphisms. The curve d is odd and hence a vertex
of OS.
By [Mat00, Theorem 1.4], the group Γ contains an involution which induces a

reflection in the curve diagram of the curve system E6 at the edge connecting the
vertices c0 and c3. It maps the simple closed curve d to the separating simple closed
curve d′ which intersects c4 in two points and is disjoint from all other curves from
the system. Since d is odd, the same is true for d′.
We use this as follows. Let e be any vertex of OS and let d = d0, d1, d2, . . . , dm = e

be an edge path in OS which connects d to e. We may assume that d1 = d′. Since
there exists an element of Γ which maps d to d′, the stabilizer of d′ in Γ is conjugate
to the stabilizer of d and hence by our assumption, it coincides with the stabilizer
of d′ in Mod(Σ3)[Φ]. In particular, by the part (2) of Lemma 6.1, there exists an
element of Γ which fixes d′ and maps d0 to d2. Arguing inductively as in the proof of
Proposition 4.1, we conclude that Γ acts transitively on the odd separating curves
in Σ3. As Γ is a subgroup of Mod(Σ3)[Φ] and furthermore the stabilizer of a vertex
in Γ coincides with its stabilizer in Mod(Σ3)[Φ], it has to coincide with Mod(Σ3)[Φ].
The Lemma 6.3 follows. �
Our final goal is to show that the group Γ fulfills the assumption in Lemma 6.3,

which completes the proof of Theorem 1.4. We proceed in two steps.
Let a1, a5 be the nonseparating simple closed curves on Σ3 which intersect c1, c5 in

a single point and are disjoint from the remaining curves from the system E6. We have
Φ(aj) = ±1, in particular, by [Sal19, Lemma 3.13], the intersection of Mod(Σ3)[Φ]
with the infinite cyclic group of Dehn twists about the curve aj is generated by T 4

aj
.

Lemma 6.4. — For j = 1, 5, the group Γ contains T 4
aj
.

Proof. — Consider the subsystem Dj5 (j = 1, 5) obtained from the curve system E6
by removing the curve cj. By [Mat00, Theorem 1.3(d)], the mapping class T 4

aj
can

be represented as an explicit word in the Dehn twists about the curves from this
curve system. Thus we have T 4

aj
∈ Γ. �
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Lemma 6.4 is used in the proof of the final step towards Theorem 1.4.

Lemma 6.5. — The stabilizer in Γ of the curve d coincides with the stabilizer of
d in Mod(Σ3)[Φ].

Proof. — Let T be the one-holed torus component of Σ3 − d. The stabilizer
Stab(d)[Φ] of d in Mod(Σ3)[Φ] is the quotient of the product of two subgroups
G1, G2 by an infinite cyclic central subgroup. The group G1 is the group of all iso-
topy classes of diffeomorphisms of Σ3 which fix the bordered surface S = Σ3 − T
pointwise and preserve the spin structure Φ. It is isomorphic to the subgroup of the
mapping class group of a one-holed torus which preserves the spin structure Φ. The
group G2 is the group of all isotopy classes of diffeomorphisms of Σ3 which fix T
pointwise and preserve the spin structure Φ. The center of Stab(d)[Φ] is generated
by a Dehn twist Td about d.
Consider the curve system A4 ⊂ E6 which consists of the curves c0, c3, c4, c5. It is

contained in the subsurface Σ1
2 = Σ3 − T of Σ3 of genus 2 which is bounded by d.

The Dehn twists about these curves generate a subgroup A(A4) of Γ ∩ G2 which
is isomorphic to the braid group in five strands (see [FM12] or [Mat00] for the last
statement). By [Mat00, Theorem 1.4], the Dehn twist Td can be represented as an
explicit word in the Dehn twists about the curves from the curve system A(A4). In
particular, we have Td ∈ Γ.
Let Σ2, 1 be the surface obtained from Σ1

2 = Σ3−T by replacing the boundary com-
ponent by a puncture, and let Σ2 be obtained from Σ2, 1 by forgetting the puncture.
Let φ be the Z/2Z-reduction of the spin structure Φ. The spin structure φ induces an
odd spin structure on Σ2, 1 and Σ2, again denoted by φ. By Lemma 4.4, the subgroup
A(A4) of Γ∩G1 surjects onto the spin mapping class group Mod(Σ2). Consequently
the restriction of the puncture forgetful homomorphism G2 → Mod(Σ2)[φ] to Γ∩G2
is surjective.
By homological coherence, if we orient d as the oriented boundary of the surface

Σ3−T , then we have Φ(d) = 1. Thus by Lemma 3.1, the intersection of the point push-
ing group π1(Σ2) with the stabilizer of Φ in Mod(Σ2, 1) is the preimage of the sublat-
tice Λ ofH1(Σ2,Z) generated by squares of primitive homology classes of oriented sim-
ple closed curves under the natural homomorphism π1(Σ2)→ H1(Σ2,Z). Or, equiva-
lently, it equals the kernel of the surjective homomorphism π1(Σ2)→ H1(Σ2,Z/2Z).
In particular, Mod(Σ2, 1)[Φ] ∩ π1(Σ2) contains the commutator subgroup of π1(Σ2).
We claim first that the square of the point pushing map along a simple closed

curve α with Φ(α) = ±1 is contained in Γ. To this end note that as Φ(α) = ±1 if and
only if we have φ(α) = 1 where φ is the Z/2Z-reduction of Φ, the group Mod(Σ2)[φ]
and hence Γ acts transitively on these curves. Thus by equivariance, it suffices to
verify this claim for a single such curve.
Consider again the simple closed curve a5 ⊂ Σ2, 1 with Φ(a5) = ±1 which intersects

c5 in a single point and is disjoint from all other curves from the curve system E6.
Let a′ be the simple closed curve which bounds with a5 and the boundary circle C
of Σ2, 1 a pair of pants, that is, a5 and a′ bound a holed annulus in Σ1

2. By the chain
relation in the mapping class group (see [FM12]), we have

(Tc0Tc3Tc4)6 = Ta5Ta′ = ζ ∈ Γ.
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On the other hand, Lemma 6.4 shows that T 4
a5 ∈ Γ. As Ta5 and Ta′ commute, we have

T−4
a5 ζ

2 = T−2
a5 T

2
a′ ∈ Γ, and this is just the square of the point pushing transformation

(via replacing the boundary circle C by a puncture) along a5. Thus the square of the
point pushing transformation about a5 is contained in Γ, which is what we wanted
to show.
Now the sublattice Λ ⊂ H1(Σ2,Z) is additively generated by elements of the form

2b where b is an oriented simple closed curve with φ(b) = 1 and hence we conclude
that Γ ∩ π1(Σ2) surjects onto Λ.
We are left with showing that the point pushing map along any element in the

commutator subgroup of π1(Σ2) is contained in Γ. The commutator subgroup of
π1(Σ2) is generated by separating simple closed curves. Note that Mod(Σ2)[φ] acts
transitively on separating simple closed curves in Σ2. Namely, as the parity of φ is odd,
the formula (2.2) for the Arf invariant shows that any separating simple closed curve c
on Σ2 decomposes Σ2 into two one holed tori T1, T2 such that up to exchanging T1 and
T2, there is a geometric symplectic basis α1, β1 for T1 with φ(α1) = 1, φ(β1) = 0, and
a geometric symplectic basis α2, β2 for T2 with φ(α2) = φ(β2) = 0. Then transitivity
of the action of Mod(Σ2)[φ] on separating simple closed curves follows once again
from [HJ89]. Thus it suffices to show the following: there exists a separating simple
closed curve e in Σ2 such that the point pushing map along e in Σ2 is contained in Γ.
Now by [Mat00, Theorem 1.4], the Dehn twist about the separating simple closed

curve d′ which intersects c4 in two points and is disjoint from the remaining curves
from E6 is contained in Γ. This separating curve is odd in the sense described above.
The second separating curve which bounds together with the boundary circle C and
d′ a pair of pants is the boundary of a tubular neighborhood of c0 ∪ c1. As the Dehn
twists about c0, c1 are contained in Γ, the same holds true for the Dehn twist about
that curve. We conclude that the point pushing maps about separating simple closed
curves is contained in Γ.
To summarize, the quotient of Γ ∩G2 by the infinite cyclic group of Dehn twists

about the boundary curve d contains a generating set for the point pushing subgroup
of G2/Z and hence it contains this point pushing subgroup. As Γ ∩G2 surjects onto
the quotient G2/Z by the point pushing subgroup, we conclude that Γ surjects onto
G2/Z. But Γ contains the infinite cyclic center of G2 and hence Γ ∩G2 = G2.
To complete the proof of the Lemma 6.5 we are left with showing that the subgroup

G1 of Mod(Σ3)[Φ] is contained in Γ. But conjugation by the involution in Γ which
acts as an involution on the curve diagram of the curve system E6 and exchanges c1
and c5 and c2 and c4 maps G1 to a subgroup of G2 and hence to a subgroup of Γ. Thus
G1 ⊂ Γ as well and we conclude that indeed, Γ∩Stab(d) = Mod(Σ3)[Φ]∩Stab(d). �
Remark 6.6. — Theorem 1.4 classifies connected components of the preimage in

the Teichmüller space of abelian differentials of the odd component of the stratum of
abelian differentials on a surface Σ3 of genus 3 with a single zero. Those components
correspond precisely to odd Z/4Z-spin structures on Σ3.
Remark 6.7. — The results in this article give a general recipe for finding gen-

erators of spin mapping class groups. This recipe is motivated by the recent work
on compactifications of strata of abelian differentials in [BCG+18] and the goal to
obtain a topological interpretation of this compactification.
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Appendix A. Additional graphs of nonseparating curves
with fixed spin value

In this appendix we complement the main result in Section 2 by studying connect-
edness of some additional geometrically defined graphs related to spin structures. The
proofs do not use new ideas. We use the assumptions and notations from Section 2.
We begin with adding more constraints to the graph CG+

1 . Define a graph CG++
1

as follows. Vertices of CG++
1 are ordered pairs (c, d) of nonseparating simple closed

curves c, d such that φ(c) = ±1, φ(d) = 0 and that c, d intersect in a single point.
Then c ∪ d fills a one-holed torus T (c, d) ⊂ S. Two such pairs (c, d), (c′, d′) are
connected by an edge if and only if the tori T (c, d) and T (c′, d′) are disjoint. We use
Corollary 2.18 to show
Lemma A.1. — For g > 4 the graph CG++

1 is connected.
Proof. — Let (a, b), (c, d) be two vertices in the graph CG++

1 . Then a, c are vertices
in the graph CG+

1 . Connect a = a0 to c = ak by an edge path (ai) in CG+
1 ; this is

possible by Corollary 2.18. Our goal is to construct inductively a path (cj, dj) ⊂ CG++
1

connecting (a, b) to (c, d) which passes through vertices (cji , dji) with cji = ai.
To this end observe that if the curve b is disjoint from a1, then we can find a curve

d̂1 which intersects a1 in a single point and is disjoint from (a, b). In particular, a∪ b
is disjoint from c1 ∪ d̂1.
We can not expect in general that φ(d̂1) = 0. However, as before, there exists some

k ∈ Z such that φ(T ka1(d̂1)) = 0. Define c1 = a1 and d1 = T kc1(d̂1) and note that d1
is disjoint from a ∪ b and intersects c1 in a single point. Thus the pair (c1, d1) is a
vertex in CG++

1 which is connected to (a, b) by an edge.
Let us now assume that b is not disjoint from a1. Since b intersects a in a single

point, it determines a vertex in the nonseparating arc graph A(A1, A2) of S−a; here
A1, A2 are the two boundary components of S − a which glue back to a. Denote this
arc by b0.
Connect b0 to an arc b′ disjoint from a1 by an edge path (bi) in A(A1, A2). This is

possible by Lemma 2.15. Cut S − a open along b0. The result is a surface of genus
g − 1 > 3 with connected boundary, and S − (b ∪ b1) is a surface of genus g − 2 > 2
with two boundary components.
A surface of genus at least 2 contains a nonseparating curve u with φ(u) = 1,

and in fact it contains a pair (u, v) ∈ CG++
1 . In other words, there exists a vertex

of CG++
1 which is disjoint from a, b, b1. Connect (a, b) to (a, b1) by the edge path

(a, b)→ (u, v)→ (a, b1) and proceed by induction. �
Define a graph D as follows. Vertices are ordered pairs (x, y) where x is a vertex in
CG++

1 and where y is a disjoint simple closed nonseparating curve with φ(y) = 0. Two
such pairs are connected by an edge if they can be realized disjointly. The following
observation is a straightforward application of Lemma A.1 and the tools used so far.
Its proof will be omitted.
Lemma A.2. — For g > 4 the graph D is connected.
Define now a graph CG+

2 as follows. Vertices are pairs (x, y) where x is a nonsepa-
rating simple closed curve on S with φ(x) = 2 and where y is a simple closed curve
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with φ(y) = 0 intersecting x in a single point. Two such vertices are connected by
an edge of length one if and only if they can be realized disjointly.
We use the above constructions to show

Proposition A.3. — For g > 4 the graph CG+
2 is connected.

Proof. — Given a pair of disjoint simple closed curves (c, d) with φ(c) = ±1 and
φ(d) = 0, cut S open along c, d and denote the boundary components of the resulting
surface by C1, C2, D1, D2. For one of the two choices of C1, C2, say for C1, the curve
c +ε d defined by any embedded arc ε connecting C1 to either of D1, D2 satisfies
φ(c+ε d) = ±2.
As a consequence, to any vertex (c, d) ∈ D we can associate in a non-deterministic

way a vertex in CG+
2 by replacing the simple closed curve a with φ(a) = ±1 in the

pair which defines a vertex of CG++
1 to the simple closed curve component of the

pair which defines a vertex in D.
Adjacent vertices may not give rise to disjoint curves, but this issue can be re-

solved using a path in the nonseparating arc graph. Using the fact that the surface
obtained by removing from S a torus and cutting the resulting surface open along a
nonseparating simple closed curve has genus at least 2, we find for any two such arcs
a disjoint curve e with φ(e) = ±1. Connect b to this curve with a disjoint arc. �
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