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1660 M. ANCONA & T. LETENDRE

Résumé. — Nous étudions le nombre de racines réelles d’un polynôme de Kostlan de degré d
en une variable. Plus généralement, nous nous intéressons à la distribution de la mesure de
comptage de l’ensemble des racines réelles d’un tel polynôme. Nous obtenons l’asymptotique
des moments centrés de ces variables aléatoires, dans la limite des grands degrés. Nous en
déduisons une loi forte des grands nombres et un théorème central limite. En particulier, les
racines réelles d’un polynôme de Kostlan s’équidistribuent presque surement lorsque le degré
tend vers l’infini. De plus, les fluctuations de la mesure de comptage de cet ensemble aléatoire
convergent en distribution vers le bruit blanc gaussien standard. Nos résultats sont valables
plus généralement pour les zéros réels d’une section réelle aléatoire dans le modèle dit de
Fubini–Study complexe.
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1. Introduction

Kostlan polynomials

A real Kostlan polynomial of degree d is a univariate random polynomial of the
form

d∑
k=0

ak

√√√√(d
k

)
Xk,

where the coefficients (ak)06 k6 d are independent N (0, 1) random variables. Here
and in the following we use the standard notation N (m,σ2) for the real Gaussian
distribution of mean m and variance σ2. These random polynomials are also known
as elliptic polynomials in the literature (see [ST04] for example). The roots of such
a polynomial form a random subset of R that we denote by Zd. Kostlan proved
(cf. [Kos93]) that for all d ∈ N, the average number of roots of this random polynomial
is E[Card(Zd)] = d

1
2 , where Card(Zd) is the cardinality of Zd. It was later proved

by Dalmao (see [Dal15]) that Var(Card(Zd)) ∼ σ2d
1
2 as d→ +∞, where σ is some

explicit positive constant. Dalmao also proved that Card(Zd) satisfies a Central Limit
Theorem as d→ +∞.
In this paper, we study the higher moments of Card(Zd) in the large degree

limit. Let p ∈ N, we denote by mp(Card(Zd)) the pth central moment of Card(Zd).
A consequence of our main result (Theorem 1.12) is that, as d→ +∞, we have:

mp (Card(Zd)) = µpσ
pd

p
4 + o

(
d

p
4
)
,

where σ is the constant appearing in Dalmao’s variance estimate, and (µp)p∈N is
the sequence of moments of the standard real Gaussian distribution N (0, 1). This
results allows us to prove a strong Law of Large Numbers: d− 1

2 Card(Zd)→ 1 almost
surely. We also prove that d− 1

2 Card(Zd) concentrates around 1 in probability, faster
than any negative power of d. Finally, we recover Dalmao’s Central Limit Theorem
by the method of moments. The original proof used the Wiener–Ito expansion of the
number of roots. In fact, we improve this result by proving a Central Limit Theorem
for the counting measure of Zd (see Theorem 1.9 below).
Equivalently, one can define Zd as the set of zeros, on the real projective line RP 1,

of the homogeneous Kostlan polynomial
d∑

k=0
ak

√√√√(d
k

)
XkY d−k,

where (ak)06 k6 d are independent N (0, 1) variables. In this setting, an homogeneous
Kostlan polynomial of degree d is a standard Gaussian vector in the space of real
global holomorphic sections of the line bundle O(d) → CP 1, equipped with its
natural L2-inner product (see Section 2.1). Recall that O(d) = O(1)⊗d, where O(1)
is the hyperplane line bundle over CP 1. Then, Zd is the real zero set of this random
section. In this paper, we study more generally the real zeros of random real sections
of positive Hermitian line bundles over real algebraic curves.
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1662 M. ANCONA & T. LETENDRE

Framework and background

Let us introduce our general framework. More details are given in Section 2.1 below.
Let X be a smooth complex projective manifold of dimension 1, that is a smooth
compact Riemann surface. Let E and L be holomorphic line bundles over X . We
assume that X , E and L are endowed with compatible real structures and that the
real locus of X is not empty. We denote byM this real locus, which is then a smooth
closed (i.e. compact without boundary) submanifold of X of real dimension 1.
Let hE and hL denote Hermitian metrics on E and L respectively, that are com-

patible with the real structures. We assume that (L, hL) has positive curvature ω,
so that L is ample and ω is a Kähler form on X . The form ω induces a Riemannian
metric g on X , hence on M . Let us denote by |dVM | the arc-length measure on M
defined by g.
For all d ∈ N, we denote by RH0(X , E ⊗ Ld) the space of global real holomorphic

sections of E ⊗Ld → X . Let s ∈ RH0(X , E ⊗Ld), we denote by Zs = s−1(0)∩M the
real zero set of s. Since s is holomorphic, if s 6= 0 its zeros are isolated and Zs is finite.
In this case, we denote by νs the counting measure of Zs, that is νs = ∑

x∈Zs
δx,

where δx stands for the unit Dirac mass at x. For any φ ∈ C0(M), we denote by
〈νs , φ〉 = ∑

x∈Zs
φ(x). Quantities of the form 〈νs , φ〉 are called the linear statistics

of νs. Note that 〈νs ,1〉 = Card(Zs), where 1 is the constant unit function.
For any d ∈ N, the space RH0(X , E ⊗ Ld) is finite-dimensional, and its dimension

can be computed by the Riemann–Roch Theorem. Moreover, the measure |dVM |
and the metrics hE and hL induce a Euclidean L2-inner product on this space
(see Equation (2.1)). Let sd be a standard Gaussian vector in RH0(X , E ⊗ Ld),
see Section 2.3. Then, νsd

is an almost surely well-defined random Radon measure
on M . We denote by Zd = Zsd

and by νd = νsd
for simplicity. In this setting, the

linear statistics of νd were studied in [Anc21, GW16, Let16, LP19], among others.
In particular, the exact asymptotics of their expected values and their variances are
known.
Theorem 1.1 (Gayet–Welschinger). — For every d ∈ N, let sd be a standard

Gaussian vector in RH0(X , E ⊗ Ld). Then the following holds as d→ +∞:

∀ φ ∈ C0(M), E[〈νd , φ〉] = d
1
2

( 1
π

∫
M
φ |dVM |

)
+ ‖φ‖∞O

(
d−

1
2
)
,

where the error term O(d− 1
2 ) is independent of φ, i.e. d− 1

2E[νd] = 1
π
|dVM |+O(d−1).

Theorem 1.1 is [GW16, Theorem 1.2] with n = 1 and i = 0. See also [Let16,
Theorem 1.3] when E is not trivial. The case the linear statistics is discussed in [Let16,
Section 5.3].
We use the following notation for the central moments of νd.
Definition 1.2 (Central moments of νd). — Let d ∈ N and let sd be a standard

Gaussian vector in RH0(X , E ⊗ Ld). Let νd denote the counting measure of the real
zero set of sd. For all p ∈ N∗, for all φ1, . . . , φp ∈ C0(M) we denote:

mp(νd)(φ1, . . . , φp) = E
[ p∏
i=1

(
〈νd , φi〉 − E[〈νd , φi〉]

)]
.
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For all φ ∈ C0(M), we denote by mp(〈νd , φ〉) = mp(νd)(φ, . . . , φ) the pth central
moment of 〈νd , φ〉. As above, we denote the pth central moment of Card(Zd) by
mp(Card(Zd)) = mp(νd)(1, . . . , 1).

Of course, mp(νd) is only interesting for p > 2. For p = 2, the bilinear form m2(νd)
encodes the covariance structure of the linear statistics of νd. In particular, for all
φ ∈ C0(M), we have m2(νd)(φ, φ) = Var(〈νd , φ〉). The large degree asymptotics of
m2(νd) has been studied in [LP19, Theorem 1.6].

Theorem 1.3 (Letendre–Puchol). — For all d ∈ N, let sd ∈ RH0(X , E ⊗ Ld) be
a standard Gaussian vector. There exists σ > 0 such that, for all φ1 and φ2 ∈ C0(M),
the following holds as d→ +∞:

m2(νd)(φ1, φ2) = d
1
2σ2

∫
M
φ1φ2 |dVM |+ o

(
d

1
2
)
.

Remarks 1.4. —
• In fact, σ = (1+I1, 1

π
) 1

2 , where I1,1 is the constant appearing in [LP19, Theo-
rem 1.6]. Since σ is universal, it is the same as the one appearing in Dalmao’s
variance estimate [Dal15, Theorem 1.1]. An integral expression of σ is given
by [Dal15, Proposition 3.1]. The positivity of σ is non-trivial and is given
by [Dal15, Corollary 1.2]. See also [LP19, Theorem 1.8].
• One can understand how the error term o(d 1

2 ) in Theorem 1.3 depends on
(φ1, φ2) (see [LP19, Theorem 1.6]).

In [Anc21], Ancona derived a two terms asymptotic expansion of the non-central
moments of the linear statistics of νd. As a consequence, he proved the following
(cf. [Anc21, Theorem 0.5]).

Theorem 1.5 (Ancona). — For all d ∈ N, let sd ∈ RH0(X , E⊗Ld) be a standard
Gaussian vector. Let p > 3, for all φ1, . . . , φp ∈ C0(M) we have:

mp(νd)(φ1, . . . , φp) = o
(
d

p−1
2
)
.

Remark 1.6. — In Ancona’s paper the line bundle E is trivial. The results
of [Anc21] rely on precise estimates for the Bergman kernel of Ld. These estimates
still hold if we replace Ld by E ⊗ Ld, where E is any fixed real Hermitian line bun-
dle (see [MM07, Theorem 4.2.1]). Thus, all the results in [Anc21] are still valid for
random real sections of E ⊗ Ld → X .

1.1. Main results

In this paper, we prove a strong Law of Large Numbers (Theorem 1.7) and a Central
Limit Theorem (Theorem 1.9) for the linear statistics of the random measures (νd)d∈N
defined above. These results are deduced from our main result (Theorem 1.12), which
gives the precise asymptotics of the central moments (mp(νd))p> 3 (cf. Definition 1.2),
as d→ +∞.
Recall that all the results of the present paper apply when Zd is the set of real

roots of a Kostlan polynomial of degree d. If one considers homogeneous Kostlan
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1664 M. ANCONA & T. LETENDRE

polynomials in two variables, then Zd ⊂M = RP 1. Since RP 1 is obtained from the
Euclidean unit circle by identifying antipodal points, it is a circle of length π. In this
case, |dVM | is the Lebesgue measure on this circle, normalized so that Vol(M) = π.
If one wants to consider the original Kostlan polynomials in one variable, then
Zd ⊂ M = R, where R is seen as a standard affine chart in RP 1. In this case, the
measure |dVM | admits the density t 7→ (1 + t2)−1 with respect to the Lebesgue of R,
and Vol(M) = π once again.

Theorem 1.7 (Strong Law of Large Numbers). — Let X be a real projective
curve whose real locus M is non-empty. Let E → X and L → X be real Hermitian
line bundles such that L is positive. Let (sd)d> 1 be a sequence of standard Gaussian
vectors in ∏d> 1 RH0(X , E ⊗ Ld). For any d > 1, let Zd denote the real zero set of
sd and let νd denote the counting measure of Zd.
Then, almost surely, d− 1

2νd −−−−→
d→+∞

1
π
|dVM | in the weak-∗ sense. That is, almost

surely:

∀ φ ∈ C0(M), d−
1
2 〈νd , φ〉 −−−−→

d→+∞

1
π

∫
M
φ |dVM | .

In particular, almost surely,

d−
1
2 Card(Zd) −−−−→

d→+∞

1
π

Vol(M)

and
1

Card(Zd)
νd

weak−∗−−−−→
d→+∞

1
Vol(M) |dVM | .

Definition 1.8 (Standard Gaussian White Noise). — The Standard Gaussian
White Noise on M is a random Gaussian generalized function W ∈ D′(M), whose
distribution is characterized by the following facts, where 〈· , ·〉(D′, C∞) denotes the
usual duality pairing between D′(M) and C∞(M):

• for any φ ∈ C∞(M), the variable 〈W ,φ〉(D′, C∞) is a real centered Gaussian;
• for all

φ1, φ2 ∈ C∞(M),E
[
〈W ,φ1〉(D′, C∞) 〈W ,φ2〉(D′, C∞)

]
=
∫
M
φ1φ2 |dVM | .

In particular, we have 〈W ,φ〉(D′, C∞) ∼ N (0, ‖φ‖2
2), where ‖φ‖2 stands for the L2-

norm of φ.

Here and in the following, we avoid using the term “distribution” when talking
about elements of D′(M) and rather use the term “generalized function”. This is to
avoid any possible confusion with the distribution of a random variable.

Theorem 1.9 (Central Limit Theorem). — Let X be a real projective curve
whose real locus M is non-empty. Let E → X and L → X be real Hermitian line
bundles such that L is positive. Let (sd)d> 1 be a sequence of standard Gaussian
vectors in ∏d> 1 RH0(X , E ⊗ Ld). For any d > 1, let Zd denote the real zero set of
sd and let νd denote the counting measure of Zd.
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Then, the following holds in distribution, in the space D′(M) of generalized func-
tions on M :

1
d

1
4σ

νd − d
1
2

π
|dVM |

 −−−−→
d→+∞

W,

where W denotes the Standard Gaussian White Noise on M (see Definition 1.8). In
particular, for any test-functions φ1, . . . , φk ∈ C∞(M), the random vector:

1
d

1
4σ

〈νd , φ1〉 −
d

1
2

π

∫
M
φ1 |dVM |

 , . . . ,
〈νd , φk〉 − d

1
2

π

∫
M
φk |dVM |


converges in distribution to a centered Gaussian vector in Rk of variance matrix(∫

M
φiφj |dVM |

)
16 i, j 6 k

.

Moreover, for all φ ∈ C0(M),

1
d

1
4σ

〈νd , φ〉 − d
1
2

π

∫
M
φ |dVM |

 −−−−→
d→+∞

N
(
0, ‖φ‖2

2

)
in distribution. In particular,

1
d

1
4σVol(M)

Card(Zd)−
d

1
2

π
Vol(M)

 −−−−→
d→+∞

N (0, 1).

Before stating our main result, we need to introduce some additional notations.

Definition 1.10 (Moments of the standard Gaussian). — For all p ∈ N, we
denote by µp the pth moment of the standard real Gaussian distribution. Recall that,
for all p ∈ N, we have µ2p = (2p)!

2pp! and µ2p+1 = 0.

Definition 1.11 (Partitions). — Let A be a finite set, a partition of A is a
family I of non-empty disjoint subsets of A such that ⊔I ∈I I = A. We denote by PA
(resp. Pk) the set of partitions of A (resp. {1, . . . , k}). A partition into pairs of A is a
partition I ∈ PA such that Card(I) = 2 for all I ∈ I. We denote by PPA, (resp. PPk)
the set of partitions into pairs of A (resp. {1, . . . , k}). Note that P∅ = {∅} = PP∅.

Theorem 1.12 (Central moments asymptotics). — Let X be a real projective
curve whose real locus M is non-empty. Let E → X and L → X be real Hermitian
line bundles such that L is positive. For all d ∈ N, let sd ∈ RH0(X , E ⊗ Ld) be a
standard Gaussian vector, let Zd denote the real zero set of sd and let νd denote its
counting measure. For all p > 3, for all φ1, . . . , φp ∈ C0(M), the following holds as
d→ +∞:

mp(νd)(φ1, . . . , φp) =
∑
I ∈PPp

∏
{i, j}∈I

m2(νd) (φi, φj) +
( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)

= d
p
4σp

∑
I ∈PPp

∏
{i, j}∈I

(∫
M
φiφj |dVM |

)
+ o

(
d

p
4
)
,
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1666 M. ANCONA & T. LETENDRE

where b·c denotes the integer part, ‖·‖∞ denotes the sup-norm, σ is the same positive
constant as in Theorem 1.3, the set PPp is defined by Definition 1.11, and the error
term O(d

1
2b p−1

2 c(ln d)p) does not depend on (φ1, . . . , φp).
In particular, for all φ ∈ C0(M), we have:

mp (〈νd , φ〉) = µp Var(〈νd , φ〉)
p
2 + ‖φ‖p∞O

(
d

1
2b p−1

2 c(ln d)p
)

= µpd
p
4σp

(∫
M
φ2 |dVM |

) p
2

+ o
(
d

p
4
)
.

Remark 1.13. — If p is odd, then the first term vanishes in the asymptotic
expansions of Theorem 1.12. Indeed, in this case PPp = ∅ and µp = 0. Hence, if p is
odd, for all φ1, . . . , φp ∈ C0(M), we have mp(νd)(φ1, . . . , φp) = O(d p−1

4 (ln d)p). If p
is even, we have mp(νd)(φ1, . . . , φp) = O(d p

4 ) for all φ1, . . . , φp ∈ C0(M).
Other interesting corollaries of Theorem 1.12 include the following.
Corollary 1.14 (Concentration in probability). — In the setting of Theo-

rem 1.12, let (εd)d> 1 denote a sequence of positive numbers and let φ ∈ C0(M).
Then, for all p ∈ N∗, as d→ +∞, we have:

P
(
d−

1
2 |〈νd , φ〉 − E[〈νd , φ〉]| > εd

)
= O

(
(d 1

4 εd)−2p
)
.

In particular, for all p ∈ N∗, as d→ +∞, we have:
P
(
d−

1
2 |Card(Zd)− E[Card(Zd)]| > εd

)
= O

(
(d 1

4 εd)−2p
)
.

Corollary 1.14 and Theorem 1.1 imply that P(Card(Zd) >
√
dC) = O(d− p

2 ) for
any p ∈ N∗ and C > 1

π
Vol(M). In the same spirit, [GW11, Theorem 2] proves that

there exists D > 0 such that

P
(
Card(Zd) >

√
dεd

)
= O

(√
d

εd
e−Dε

2
d

)
for any positive sequence (εd)d> 1 such that εd −−−−→

d→+∞
+∞. In the other direction,

the following corollary bounds the probability that Zd is empty.
Corollary 1.15 (Hole probability). — In the setting of Theorem 1.12, let U

be a non-empty open subset of M . Then, for all p ∈ N∗, as d → +∞, we have
P(Zd ∩ U = ∅) = O(d− p

2 ).

About the proofs

The proof of Theorem 1.12 relies on several ingredients. Some of them are classical,
such as Kac–Rice formulas and estimates for the Bergman kernel of E ⊗ Ld, other
are new, such as the key combinatorial argument that we develop in Section 3.
Kac–Rice formulas are a classical tool in the study of the number of real roots of

random polynomials (see [AT07, AW09] for example). More generally, they allow to
express the moments of local quantities associated with the level sets of a Gaussian
process, such as their volume or their Euler characteristic, only in terms of the
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correlation function of the process. Even if these formulas are well-known, it is the
first time, to the best of our knowledge, that they are used to compute the exact
asymptotics of central moments of order greater than 3. The Kac–Rice formulas
we use in this paper were proved in [Anc21]. We recall them in Proposition 2.23.
They allow us to write the pth central moment mp(νd)(φ1, . . . , φp) as the integral
over Mp of φ : (x1, . . . , xp) 7→

∏p
i=1 φi(xi) times some density function Dpd. Here we

are cheating a bit: the random set Zd being almost surely discrete, the Kac–Rice
formulas yield the so-called factorial moments of νd instead of the usual moments.
This issue is usual (compare [AT07, AW09]), and it will not trouble us much since
the central moments can be written as linear combinations of the factorial ones. For
the purpose of this sketch of proof, let us pretend that we have indeed:

mp(νd) (φ1, . . . , φp) =
∫
Mp

φDpd |dVM |
p .

This simplified situation is enough to understand the main ideas of the proof. The
correct statement is given in Lemma 3.5 below.
The density Dpd is a polynomial in the Kac–Rice densities (Rk

d)16 k6 p appear-
ing in Definition 2.21. As such, it only depends on the correlation function of the
Gaussian process (sd(x))x∈M , which is the Bergman kernel of E ⊗ Ld. This kernel
admits a universal local scaling limit at scale d− 1

2 , which is exponentially decreasing
(cf. [MM07, MM15]). In [Anc21], the author used these Bergman kernel asymptotics
and Olver multispaces (see [Olv01]) to prove estimates for the (Rk

d)16 k6 p in the
large d limit. These key estimates are recalled in Propositions 2.24 and 2.26 below.
They allow us to show that Dpd(x) = O(d p

2 ), uniformly in x ∈ Mp. Moreover, we
show that Dpd(x) = O(d p

4−1), uniformly in x ∈Mp such that one of the components
of x is far from the others. By this we mean that x = (x1, . . . , xp) and there exists
i ∈ {1, . . . , p} such that, for all j 6= i, the distance from xi to xj is larger than bp ln d√

d
,

where bp > 0 is some well-chosen constant.
In order to understand the integral of φDpd, we split Mp as follows. For any point

x = (x1, . . . , xp) ∈Mp, we define a graph (see Definition 3.7) whose vertices are the
integers {1, . . . , p}, with an edge between i and j if and only if i 6= j and the distance
from xi to xj is less than bp

ln d√
d
. The connected components of this graph yield a

partition I(x) ∈ Pp (see Definition 3.8) encoding how the (xi)16 i6 p are clustered
in M , at scale d− 1

2 . An example of this construction is represented on Figure 3.1 in
Section 3.2. Denoting by Mp

I = {x ∈Mp | I(x) = I}, we have:

mp(νd)(φ1, . . . , φp) =
∑
I ∈Pp

∫
Mp
I

φDpd |dVM |
p .

Thanks to our estimates on Dpd, we show that if I contains a singleton then the
integral overMp

I is O(d p
4−1). Hence it contributes only an error term in Theorem 1.12.

Moreover, denoting by |I| the cardinality of I (i.e. the number of clusters), the
volume of Mp

I is O(d
|I|−p

2 (ln d)p). Hence, the integral over Mp
I is O(d

|I|
2 (ln d)p). If

|I| < p
2 , this is also an error term in Theorem 1.12. Thus, the main contribution in

mp(νd)(φ1, . . . , φp) comes from the integral of φDpd over the pieces Mp
I indexed by

partitions I ∈ Pp without singletons and such that |I| > p
2 . These are exactly the
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partitions into pairs of {1, . . . , p}. Finally, if I ∈ PPp, we prove the contribution of
the integral overMp

I to be equal to the product of covariances ∏{i, j}∈Im2(νd)(φi, φj),
up to an error term. When all the test-functions (φi)16 i6 p are equal, the pth moment
µp of the standard Gaussian distribution appears as the cardinality of the set of
partitions of {1, . . . , p} into pairs.
Concerning the corollaries, Corollaries 1.14 and 1.15 follow from Theorem 1.12

and Markov’s Inequality for the 2pth moment. The strong Law of Large Numbers
(Theorem 1.7) is deduced from Theorem 1.12 for p = 6 by a Borel–Cantelli type
argument. The Central Limit Theorem (Theorem 1.9) for the linear statistics is
obtained by the method of moments. The functional version of this Central Limit
Theorem is then obtained by the Lévy–Fernique Theorem (cf. [Fer67]), which is an
extension of Lévy’s Continuity Theorem adapted to generalized random processes.

Higher dimension

In this paper, we are concerned with the real roots of a random polynomial (or
a random section) in an ambient space of dimension 1. There is a natural higher
dimensional analogue of this problem. Namely, one can consider the common zero
set Zd ⊂ RP n of r independent real Kostlan polynomials in n+ 1 variables, where
r ∈ {1, . . . , n}. More generally, we consider the real zero set Zd of a random real
section of E ⊗ Ld → X in the complex Fubini–Study model, where X is a real
projective manifold of complex dimension n whose real locus M is non-empty, L
is a positive line bundle as above, and E is a rank r real Hermitian bundle with
1 6 r 6 n. Then, for d large enough, Zd is almost surely a smooth closed submanifold
of codimension r in the smooth closed n-dimensional manifold M . In this setting, M
is equipped with a natural Riemannian metric that induces a volume measure |dVM |
on M and a volume measure νd on Zd. As in the 1-dimensional case, νd is an almost
surely well-defined random Radon measure on M . In this higher dimensional setting,
we have the following analogues of Theorem 1.1 and 1.3 (see [Let16, Let19, LP19]):

∀ φ ∈ C0(M),E[〈νd , φ〉] = d
r
2

Vol(Sn−r)
Vol(Sn)

∫
M
φ |dVM |+ ‖φ‖∞O

(
d

r
2−1

)
,

∀ φ1, φ2 ∈ C0(M),m2(νd)(φ1, φ2) = dr−
n
2 σ2

n, r

∫
M
φ1φ2 |dVM |+ o

(
dr−

n
2
)
,

where σ
n,r

> 0 is a universal constant depending only on n and r. In [LP19], Letendre
and Puchol proved some analogues of Corollaries 1.14 and 1.15 for any n and r. They
also showed that the strong Law of Large Numbers (Theorem 1.7) holds if n > 3.
Most of the proof of Theorem 1.12 is valid in any dimension and codimension. In

fact, the combinatorics are simpler when r < n. The only things we are missing, in
order to prove the analogue of Theorem 1.12 for any n and r, are higher dimensional
versions of Propositions 2.24 and 2.26. The proofs of these propositions (see [Anc21])
rely on the compactness of Olver multispaces, which holds when n = 1 but fails
for n > 1. This seems to be only a technical obstacle and the authors are currently
working toward the following.
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Conjecture 1.16. — Let sd be a random section in the complex Fubini–Study
model in dimension n and codimension r ∈ {1, . . . , n}. Let νd denote the volume
measure of the real zero set of sd. For all p > 3, for all φ1, . . . , φp ∈ C0(M), the
following holds as d→ +∞:

mp(νd)(φ1, . . . , φp) = d
p
2 (r−n

2 )σpn, r
∑
I ∈PPp

∏
{i, j}∈I

(∫
M
φiφj |dVM |

)
+ o

(
d

p
2 (r−n

2 )
)
.

In particular, for all φ ∈ C0(M),

mp(〈νd , φ〉) = µpd
p
2 (r−n

2 )σpn, r
(∫

M
φ2 |dVM |

) p
2

+ o
(
d

p
2 (r−n

2 )
)
.

Proving this conjecture for n = 2 and p = 4 is enough to prove that the strong
Law of Large Numbers (Theorem 1.7) holds for n = 2, which is the only missing case.
This conjecture also implies the Central Limit Theorem (Theorem 1.9) in dimension
n and codimension r, with the same proof as the one given in Section 4.2. Note
that a Central Limit Theorem for the volume of the common zero set of r Kostlan
polynomials in RP n was proved in [AADL21, AADL18].

1.2. Other related works

The complex roots of complex Kostlan polynomials have been studied in relation
with Physics in [BBL92]. More generally, complex zeros of random holomorphic
sections of positive line bundles over projective manifolds were studied in [SZ99]
and some subsequent papers by the same authors. In [SZ99], they computed the
asymptotics of the expected current of integration over the complex zeros of such
a random section, and proved a Law of Large Numbers similar to Theorem 1.7.
In [SZ10], they obtained a variance estimate for this random current, and proved that
it satisfies a Central Limit Theorem. This last paper extends the results of [ST04]
for the complex roots of a family of random polynomials, including elliptic ones.
In [BSZ00], Bleher, Shiffman and Zelditch studied the p-points zero correlation
function associated with random holomorphic sections. These functions are the
Kac–Rice densities for the non-central pth moment of the linear statistics in the
complex case. The results of [Anc21] are also valid in the 1-dimensional complex
case, see [Anc21, Section 5]. Thus, Theorem 1.12 can be extended to the complex
case, with the same proof.
In Corollaries 1.14 and 1.15, we deduce from Theorem 1.12 some concentration in

probability, faster than any negative power of d. However, our results are not precise
enough to prove that this concentration is exponentially fast in d. In order to obtain
such a large deviation estimate, one would need to investigate how the constants
involved in the error terms in Theorem 1.12 grow with p. Some large deviations
estimates are known for the complex roots of random polynomials. As far as real
roots are concerned, the only result of this kind we are aware of is [BDFZ20].
The Central Limit Theorem (Theorem 1.9) was already known for the roots of

Kostlan polynomials, see [Dal15]. In the wider context of random real geometry,
Central Limit Theorems are known in several settings, see [AADL21, AADL18,
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Ros19] and the references therein. The proofs of all these results rely on Wiener
chaos techniques developed by Kratz–Leòn [KL01]. Our proof of Theorem 1.9 follows
a different path, relying on the method of moments, for two reasons. First, to the
best of our knowledge, Wiener chaos techniques are not available for random sections
of line bundles. Second, these techniques are particularly convenient when dealing
with random models with slowly decaying correlations, for example Random Waves
models. In these cases, one of the first chaotic components, usually the second or
the fourth, is asymptotically dominating. Hence, one can reduce the study of, say,
the number of zeros to that of its dominating chaotic component, which is easier
to handle. In the complex Fubini–Study setting we are considering in this paper,
the correlations are exponentially decreasing, so that all chaotic components of the
number of zeros have the same order of magnitude as the degree goes to infinity. In
order to use Wiener chaoses to prove a Central Limit Theorem in our setting, one
would have to study the joint asymptotic behavior of all the chaotic components,
which seems more difficult than our method.
For real zeros in ambient dimension n = 1, Nazarov and Sodin [NS16] proved a

strong Law of Large Numbers, as R→ +∞, for the number of zeros of a Gaussian
process lying in the interval [−R,R]. Finally, to the best of our knowledge, Theo-
rem 1.12 gives the first precise estimate for the central moments of the number of
real zeros of a family of random processes.

Organization of the paper

This paper is organized as follows. In Section 2 we introduce the object of our study
and recall some useful previous results. More precisely, we introduce our geometric
framework in Section 2.1. In Section 2.2 we introduce various notations that will allow
us to make sense of the combinatorics involved in our problem. The random measures
we study are defined in Section 2.3. Finally, we state the Kac–Rice formulas for higher
moments in Section 2.4 and we recall several results from [Anc21] concerning the
density functions appearing in these formulas. In Section 3, we prove our main
result, that is the moments estimates of Theorem 1.12. Section 4 is concerned with
the proofs of the corollaries of Theorem 1.12. We prove the Law of Large Numbers
(Theorem 1.7) in Section 4.1, the Central Limit Theorem (Theorem 1.9) in Section 4.2
and the remaining corollaries (Corollaries 1.14 and 1.15) in Section 4.3.
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2. Framework and background
We start this section by defining precisely the geometric setting in which we work.

This is the purpose of Section 2.1. In Section 2.2, we introduce the counting measures
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that we study and explain how they can be split in terms that are easier to handle.
Section 2.3 is dedicated to the definition of the model of random sections we consider.
Finally, we recall the Kac–Rice formulas we need in Section 2.4, as well as several
useful estimates for the density functions appearing in these formulas.

2.1. Geometric setting

In this section, we introduce our geometric framework, which is the same as that
of [Anc21, GW16, Let16, Let19, LP19]. See also [BSZ00, SZ99, SZ10], where the
authors work in a related complex setting. A classical reference for some of the
material of this section is [GH94].

• Let (X , cX ) be a smooth real projective curve, that is a smooth complex projec-
tive manifold X of complex dimension 1, equipped with an anti-holomorphic
involution cX . We denote by M the real locus of X , that is the set of fixed
points of cX . Throughout the paper, we assume that M is not empty. In this
case, M is a smooth compact submanifold of X of real dimension 1 without
boundary, that is the disjoint union of a finite number of circles.
• Let (E , cE) and (L, cL) be two real holomorphic line bundles over (X , cX ).
Denoting by πE (resp. πL) the bundle projection, this means that E → X
(resp. L → X ) is an holomorphic line bundle such that πE ◦ cE = cX ◦ πE
(resp. πL ◦ cL = cX ◦ πL) and that cE (resp. cL) is anti-holomorphic and
fiberwise C-anti-linear. For any d ∈ N, we denote by cd = cE ⊗ cLd . Then,
(E ⊗ Ld, cd) is a real holomorphic line bundle over (X , cX ).
• We equip E with a real Hermitian metric hE . That is (E , hE) is an Hermitian
line bundle, and moreover c∗EhE = hE . Similarly, let hL denote a real Hermitian
metric on L. For all d ∈ N, we denote by hd = hE ⊗ hdL, which defines a real
Hermitian metric on E ⊗ Ld → X . We assume that (L, hL) is positive, in
the sense that its curvature form ω is a Kähler form. Recall that ω is locally
defined as 1

2i∂∂ ln(hL(ζ, ζ)), where ζ is any local holomorphic frame of L. The
Kähler structure defines a Riemannian metric g = ω(·, i·) on X , hence on M .
The Riemannian volume form on X associated with g is simply ω. We denote
by |dVM | the arc-length measure on M associated with g. For all k ∈ N∗, we
denote by |dVM |k the product measure on Mk.
• For any d ∈ N, we denote by H0(X , E ⊗ Ld) the space of global holomorphic
sections of E⊗Ld. This is a complex vector space of complex dimension Nd. By
the Riemann–Roch Theorem, Nd is finite and diverges to infinity as d→ +∞.
We denote by:

RH0
(
X , E ⊗ Ld

)
=
{
s ∈ H0

(
X , E ⊗ Ld

)∣∣∣s ◦ cX = cd ◦ s
}

the space of global real holomorphic sections of E → Ld, which is a real vector
space of real dimension Nd. Let x ∈M , the fiber (E ⊗ Ld)x is a complex line
equipped with a C-anti-linear involution cd(x). We denote by R(E ⊗Ld)x the
set of fixed points of cd(x), which is a real line. Then, R(E ⊗ Ld) → M is a
real line bundle and, for any s ∈ RH0(X , E ⊗ Ld), the restriction of s to M
is a smooth section of R(E ⊗ Ld)→M .
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• The volume form ω and the Hermitian metric hd induce an Hermitian L2-inner
product 〈· , ·〉 on H0(X , E ⊗ Ld). It is defined by:

(2.1) ∀ s1, s2 ∈ H0
(
X , E ⊗ Ld

)
, 〈s1 , s2〉 =

∫
X
hd(s1, s2)ω.

The restriction of this inner product to RH0(X , E ⊗ Ld) is a Euclidean inner
product.
• For any section s ∈ RH0(X , E ⊗ Ld), we denote by Zs = s−1(0) ∩M its real
zero set. Since s is holomorphic, if s 6= 0 its zeros are isolated. In this case,
Zs is finite by compactness of M , and we denote by νs = ∑

x∈Zs
δx, where δx

stands for the unit Dirac mass at x ∈M . The measure νs is called the counting
measure of Zs. It is a Radon measure, that is a continuous linear form on the
space (C0(M), ‖ · ‖∞) of continuous functions equipped with the sup-norm. It
acts on continuous functions by: for all φ ∈ C0(M), 〈νs , φ〉 = ∑

x∈Zs
φ(x).

Example 2.1 (Kostlan scalar product). — We conclude this section by giving
an example of our geometric setting. We consider X = CP 1, equipped with the
conjugation induced by the one in C2. Its real locus is M = RP 1. We take E to be
trivial and L to be the dual of the tautological line bundle {(v, x) ∈ C2×CP 1|v ∈ x},
that is L = O(1). Both E and L are canonically real Hermitian line bundle over CP 1,
and the curvature of L is the Fubini–Study form, normalized so that Vol(CP 1) = π.
The corresponding Riemannian metric on RP 1 is the quotient of the metric on the
Euclidean unit circle, so that the length of RP 1 is π.
In this setting, H0(X , E ⊗Ld) (resp. RH0(X , E ⊗Ld)) is the space of homogeneous

polynomials of degree d in two variables with complex (resp. real) coefficients. If
s ∈ RH0(X , E ⊗ Ld) is such a polynomial, then Zs is the set of its roots in RP 1.
Finally, up to a factor (d + 1)π which is irrelevant to us, the inner product of
Equation (2.1) is defined by:

〈P ,Q〉 = 1
π2d!

∫
C2
P (z)Q(z)e−‖z‖

2
dz,

for any homogeneous polynomials P and Q of degree d in two variables. In particular,
the family 

√√√√(d
k

)
XkY d−k

∣∣∣∣∣∣ 0 6 k 6 d


is an orthonormal basis of RH0(X , E ⊗ Ld) for this inner product.

2.2. Partitions, products and diagonal inclusions

In this section, we introduce some notations that will be useful throughout the pa-
per, in particular to sort out the combinatorics involved in the proof of Theorem 1.12
(see Section 3). In all this section, M denotes a smooth manifold.
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Notation 2.2. — Let A be a finite set.
• We denote by Card(A) or by |A| the cardinality of A.
• We denote by MA the Cartesian product of |A| copies of M , indexed by the
elements of A.
• A generic element of MA is denoted by xA = (xa)a∈A. If B ⊂ A we denote
by xB = (xa)a∈B.
• Let (φa)a∈A be continuous functions on M , we denote by φA = �a∈Aφa the
function on MA defined by: φA(xA) = ∏

a∈A φa(xa), for all xA = (xa)a∈A.
If A is clear from the context or of the form {1, . . . , k} with k ∈ N∗, we use the
simpler notations x for xA and φ for φA.

Recall the we defined the set PA (resp. Pk) of partitions of a finite set A (resp. of
{1, . . . , k}) in the introduction, see Definition 1.11.

Definition 2.3 (Diagonals). — Let A be a finite set, we denote by ∆A the large
diagonal of MA, that is:

∆A =
{

(xa)a∈A ∈MA
∣∣∣ ∃ a, b ∈ A such that a 6= b and xa = xb

}
.

Moreover, for all I ∈ PA, we denote by

∆A,I =
{

(xa)a∈A ∈MA
∣∣∣ ∀ a, b ∈ A, (xa = xb ⇐⇒ ∃ I ∈ I, a ∈ I and b ∈ I)

}
.

If A = {1, . . . , k}, we use the simpler notations ∆k for ∆A, and ∆k, I for ∆A, I .

Definition 2.4 (Diagonal inclusions). — LetA be a finite set and let I ∈ PA. The
diagonal inclusion ιI : MI →MA is the function defined, for all yI = (yI)I ∈I ∈MI ,
by ιI(yI) = (xa)a∈A, where for all I ∈ I, for all a ∈ I, we set xa = yI .

Remark 2.5. — With the previous definitions, we have MA = ⊔
I ∈PA

∆A, I and
∆A = ⊔

I ∈PA \{I0(A)}∆A, I , where we denoted by I0(A) = {{a}|a ∈ A}. Moreover, ιI
is a smooth diffeomorphism from MI \∆I onto ∆A, I ⊂MA. Note that ∆A, I0(A) is
the configuration space MA \∆A of |A| distinct points in M . In the following, we
avoid using the notation ∆A, I0(A) and use MA \∆A instead.

Let us now go back to the setting of Section 2.1, in which M is the real locus
of the projective manifold X . Let d ∈ N and let s ∈ RH0(X , E ⊗ Ld) \ {0}. In
Section 2.1, we defined the counting measure νs of the real zero set Zs of s. More
generally, for any finite set A, we can define the counting measures of the sets
ZA
s = {(xa)a∈A ∈ MA| ∀ a ∈ A, xa ∈ Zs} and ZA

s \ ∆A. The latter is especially
interesting for us, since this is the one that appears in the Kac–Rice formulas, see
Proposition 2.23 below.

Definition 2.6 (Counting measures). — Let d ∈ N and let A be a finite set. For
any non-zero s ∈ RH0(X , E ⊗ Ld), we denote by:

νAs =
∑

x∈ZA
s

δx and ν̃As =
∑

x∈ZA
s \∆A

δx,

where δx is the unit Dirac mass at x = (xa)a∈A and ∆A is defined by Definition 2.3.
These measures are the counting measures of ZA

s and ZA
s \∆A respectively. Both νAs
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and ν̃As are Radon measure on MA. They act on C0(MA) by: for any φ ∈ C0(MA),〈
νAs , φ

〉
=

∑
x∈ZA

s

φ(x) and
〈
ν̃As , φ

〉
=

∑
x∈ZA

s \∆A

φ(x).

As usual, if A = {1, . . . , k}, we denote νks for νAs and ν̃ks for ν̃As .
We have seen in Remark 2.5 that MA splits as the disjoint union of the diagonals

∆A, I , with I ∈ PA. Taking the intersection with ZA
s yields a splitting of this set.

Using the diagonal inclusions of Definition 2.4, this can be expressed in terms of
counting measures as follows.
Lemma 2.7. — Let d ∈ N and let A be a finite set. Then, for any section

s ∈ RH0(X , E ⊗ Ld) \ {0}, we have:

νAs =
∑
I ∈PA

(ιI)∗
(
ν̃Is
)
.

Proof. — Recall that MA = ⊔
I ∈PA

∆A, I . Then, we have:

νAs =
∑

x∈ZA
s

δx =
∑
I ∈PA

 ∑
x∈ZA

s ∩∆A, I

δx

 .
Let I ∈ PA, recall that ιI defines a smooth diffeomorphism from MI \∆I onto ∆A, I .
Moreover, ιI(ZIs \∆I) = ZA

s ∩∆A, I (see Definition 2.3 and 2.4). Hence,∑
x∈ZA

s ∩∆A, I

δx =
∑

y ∈ZIs \∆I

διI(y) =
∑

y ∈ZIs \∆I

(ιI)∗δy = (ιI)∗ν̃Is . �

2.3. Zeros of random real sections

Let us now introduce the main object of our study: the random Radon measure νd
encoding the real zeros of a random real section sd ∈ RH0(X , E ⊗ Ld). The model
of random real sections we study is often referred to as the complex Fubini–Study
model. It was introduced in this generality by Gayet and Welschinger in [GW11].
This model is the real counterpart of the model of random holomorphic sections
studied by Shiffman and Zelditch in [SZ99] and subsequent articles.
Definition 2.8 (Gaussian vectors). — Let (V, 〈· , ·〉) be a Euclidean space of

dimension N , and let Λ denote a positive self-adjoint operator on V . Recall that a
random vector X in V is said to be a centered Gaussian with variance operator Λ if
its distribution admits the following density with respect to the normalized Lebesgue
measure:

v 7→ 1
(2π)N

2 det(Λ) 1
2

exp
(
−1

2
〈
v ,Λ−1v

〉)
.

We denote by X ∼ N (0,Λ) the fact that X follows this distribution. If X ∼ N (0, Id),
where Id is the identity of V , we say that X is a standard Gaussian vector in V .
Remark 2.9. — Recall that if (e1, . . . , eN) is an orthonormal basis of V , a random

vector X ∈ V is a standard Gaussian vector if and only if X = ∑N
i=1 aiei where the

(ai)16 i6N are independent identically distributed N (0, 1) real random variables.
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In the setting of Section 2.1, for any d ∈ N, the space RH0(X , E ⊗Ld) is endowed
with the Euclidean inner product 〈· , ·〉 defined by Equation (2.1). We denote by sd
a standard Gaussian vector in RH0(X , E ⊗Ld). Almost surely sd 6= 0, hence its real
zero set and the associated counting measure are well-defined. For simplicity, we
denote by Zd = Zsd

and by νd = νsd
. Similarly, for any finite set A, we denote by

νAd = νAsd
and by ν̃Ad = ν̃Asd

(see Definition 2.6).

Example 2.10 (Kostlan polynomials). — In the setting of Example 2.1, we have
M = RP 1, and RH0(X , E ⊗Ld) is the set of real homogeneous polynomials of degree
d in two variables endowed with the Kostlan inner product. In this case, the standard
Gaussian vector sd ∈ RH0(X , E ⊗ Ld) is the homogeneous Kostlan polynomial of
degree d defined in Section 1.
Note that the rotations of the circle M = RP 1 are induced by orthogonal trans-

formations of R2. The group O2(R) acts on the space of homogeneous polynomials
in two variables of degree d by composition on the right. Example 2.1 shows that
the Kostlan inner product is invariant under this action, hence so is the distribution
of sd. In other terms, the random process (sd(x))x∈M is stationary.

Example 2.11. — Let us give another example showing that the complex Fubini–
Study model goes beyond Kostlan polynomials. Let X be a Riemann surface embed-
ded in CP n. We assume that X is real, in the sense that it is stable under complex
conjugation in CP n. Note that, in our setting, we can always realize X in such a way
for some n large enough, by Kodaira’s Embedding Theorem. Then M = X ∩RP n is
the disjoint union of at most g+1 smooth circles in RP n, where g is the genus of X .
Figure 2.1 below shows two examples of this geometric situation.

(a) M is a circle even though X has
genus 2.

(b) X is connected but M has
three connected components M1,
M2 and M3.

Figure 2.1. Two examples of a real Riemann surface X embedded in CP n and
its real locus M .
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We choose E to be trivial and L to be the restriction to X of the hyperplane line
bundle O(1) → CP n. Then, the elements of RH0(X , E ⊗ Ld) are restrictions to X
of homogeneous polynomials of degree d in n + 1 variables with real coefficients.
This space is equipped with the inner product (2.1). In Equation (2.1), the Kähler
form ω is the restriction X of the Fubini–Study form on CP n. However, the domain
of integration is X , so that (2.1) is not the analogue in n+ 1 variables of the Kostlan
inner product of Example 2.1.

• On Figure 2.1a, the curve M is connected hence diffeomorphic to RP 1. How-
ever, E ⊗ Ld → X is not an avatar of O(d) → CP 1 for some d > 1, since
X 6' CP 1. In particular, the previous construction gives a random homoge-
neous polynomial sd on M ' RP 1, which is Gaussian and centered but is not
a Kostlan polynomial of some degree. Unlike what happens in Example 2.10,
rotations in M are not obtained as restriction of isometries of X (generically,
the only isometries of X are the identity and the complex conjugation). Thus,
there is no reason why the process (sd(x))x∈M should be stationary.
• On Figure 2.1b, the real locus M had several connected components while X
is connected. Since the inner product (2.1) is defined by integrating on the
whole complex locus X , the values of sd in different connected components
of M are a priori correlated.

Lemma 2.12 (Boundedness of linear statistics). — Let d > 1 and sd ∼ N (0, Id)
in RH0(X , E ⊗ Ld). For all φ ∈ C0(M), the random variable 〈νd , φ〉 is bounded. In
particular, it admits finite moments of any order.

Proof. — We have | 〈νd , φ〉 | = |
∑
x∈Zd

φ(x)| 6 ‖φ‖∞Card(Zd). Hence it is enough
to prove that Card(Zd) is a bounded random variable.
The cardinality of Zd is the number of zeros of sd in M , which is smaller than

the number of zeros of sd in X . Now, almost surely, sd 6= 0, and the complex zero
set of sd defines a divisor which is Poincaré-dual to the first Chern class of E ⊗ Ld
(see [GH94, pp. 136 and 141]). Hence, almost surely:

Card(Zd) 6 Card {x ∈ X | sd(x) = 0} 6
∫
X
c1
(
E ⊗ Ld

)
= d · deg(L) + deg(E). �

Remark 2.13. — In the case of polynomials, the proof is clearer: the number of
real roots of a non-zero polynomial of degree d is bounded by the number of its
complex roots, which is at most d.

2.4. Kac–Rice formulas and density functions

In this section, we recall some important facts about Kac–Rice formulas. These
formulas are classical tools in the study of moments of local quantities such as the
cardinality, or more generally the volume, of the zero set of a smooth Gaussian process.
Classical references for this material are [AT07, AW09]. With a more geometric point
of view, the following formulas were proved and used in [Anc21, GW16, LP19], see
also [Let16]. In the same spirit, Lerario and Stecconi derived a Kac–Rice formula for
sections of fiber bundles, see [LS19, Theorem 23, point 6].

ANNALES HENRI LEBESGUE



Roots of Kostlan polynomials 1677

Remark 2.14. — In some of the papers we refer to in this section, the line bundle
E is taken to be trivial. That is the authors considers random real sections of Ld
instead of E ⊗Ld. As we already explained (see Remark 1.6), the proofs of the results
we cite below rely on asymptotics for the Bergman kernel of E ⊗ Ld, as d → +∞.
These asymptotics do not depend on E , see [MM07, Theorem 4.2.1] and [MM15,
Theorem 1]. Hence the results established in the case of a trivial line bundle E can
be extended to the case of a general E without modifying the proofs.
Definition 2.15 (Jacobian). — Let V and V ′ be two Euclidean spaces of di-

mension N and N ′ respectively. Let L : V → V ′ be a linear map and let L∗ denote
its adjoint. We denote by

∣∣∣det⊥(L)
∣∣∣ = det(LL∗) 1

2 the Jacobian of L.

Remark 2.16. — If N ′ 6 N , an equivalent definition of the Jacobian is the
following: | det⊥(L)| is the absolute value of the determinant of the matrix of L,
restricted to ker(L)⊥, in orthonormal bases. Note that, in any case, | det⊥(L)| > 0 if
and only if L is surjective.
Let us now consider the geometric setting of Section 2.1.
Definition 2.17 (Evaluation map). — Let k ∈ N∗, for any d ∈ N and any

x = (x1, . . . , xk) ∈Mk, we denote by:

evdx : RH0
(
X , E ⊗ Ld

)
−→

k⊕
i=1

R
(
E ⊗ Ld

)
xi

the evaluation map at x, defined by s 7→ (s(x1), . . . , s(xk)).
Lemma 2.18 ([Anc21, Proposition 2.11]). — Let k ∈ N∗, there exists dk ∈ N

such that, for all d > dk, for all x ∈ Mk \∆k, the evaluation map evdx is surjective
(i.e. det⊥(evdx) > 0).
Remark 2.19. — The dimension Nd of RH0(X , E ⊗ Ld) does not depend on k,

while the dimension of the target space of evdx equals k. In particular, for any d, the
linear map evdx can only be surjective if k 6 Nd. This shows that dk −−−−→

k→+∞
+∞.

Moreover, (dk)k> 1 is non-decreasing.
Remark 2.20. — If sd ∼ N (0, Id) in RH0(X , E ⊗ Ld), then the random vector

evdx(sd) = (sd(x1), . . . , sd(xk)) is a centered Gaussian in ⊕k
i=1 R(E ⊗ Ld)xi

whose
variance operator is evdx(evdx)∗. If d > dk, then for all x ∈ Mk \ ∆k, this variance
operator is positive and evdx(sd) is non-degenerate.
Definition 2.21 (Kac–Rice density). — Let k ∈ N∗, for any d > dk (see

Lemma 2.18), we define the density function Rk
d : Mk \∆k → R as follows:

∀ x = (x1, . . . , xk) ∈Mk \∆k, Rk
d(x) = (2π)− k

2

E
[
k∏
i=1
‖∇xi

sd‖
∣∣∣∣∣evdx(sd) = 0

]
|det⊥(evdx)|

.

Here, ∇ is any connection on E ⊗ Ld and

E
[
k∏
i=1
‖∇xi

sd‖
∣∣∣∣∣evdx(sd) = 0

]
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stands for the conditional expectation of ∏k
i=1 ‖∇xi

sd‖ given that evdx(sd) = 0.
Remark 2.22. — Recall that if s is a section and s(x) = 0, then the derivative ∇xs

does not depend on the choice of the connection ∇. In the conditional expectation
appearing at the numerator in Definition 2.21, we only consider derivatives of sd at
the points x1, . . . , xk, under the condition that sd vanishes at these points. Hence
Rk
d does not depend on the choice of ∇.
We can now state the Kac–Rice formula we are interested in, see [Anc21, Propo-

sitions 2.5 and 2.9]. See also [LP19, Theorem 5.5] in the case k = 2. Recall that ν̃kd
was defined by Definition 2.6 and is the counting measure of (s−1

d (0) ∩M)k \∆k.
Proposition 2.23 (Kac–Rice formula). — Let k ∈ N∗ and let d > dk. Let

sd ∼ N (0, Id) in RH0(X , E ⊗ Ld), for any φ ∈ C0(Mk), we have:

E
[〈
ν̃kd , φ

〉]
=
∫
x∈Mk

φ(x)Rk
d(x) |dVM |k .

where Rk
d is the density function defined by Definition 2.21.

Let k > 2 and d ∈ N. If x ∈ ∆k, then the evaluation map evdx can not be surjective.
Hence, the continuous map x 7→ | det⊥(evdx)| from Mk to R vanishes on ∆k, and one
would expect Rk

d to be singular along the diagonal. Yet, Ancona showed that one
can extend continuously Rk

d to the whole of Mk and that the extension vanishes
on ∆k, see [Anc21, Theorem 4.7]. Moreover, he showed that d− k

2Rk
d is uniformly

bounded on Mk \∆k as d→ +∞. We will use this last fact repeatedly in the proof
of Theorem 1.12, see Section 3 below.
Proposition 2.24 ([Anc21, Theorem 3.1]). — For any k ∈ N∗, there exists a

constant Ck > 0 such that, for all d large enough, for all x ∈ Mk \ ∆k, we have
d−

k
2Rk

d(x) 6 Ck.
Let d > 1 and let sd ∈ RH0(X , E ⊗ Ld) be a standard Gaussian. A fundamental

idea in our problem is that the values (and more generally the k-jets) of sd at two
points x and y ∈ M are “quasi-independent” if x and y are far from one another,
at scale d− 1

2 . More precisely, (sd(x))x∈M defines a Gaussian process with values in
R(E⊗Ld) whose correlation kernel is the Bergman kernel Ed of E⊗Ld. Recall that Ed
is the integral kernel of the orthogonal projection from the space of square integrable
sections of E⊗Ld ontoH0(X , E⊗Ld), for the inner product defined by Equation (2.1).
In particular, for any x, y ∈ X , we have Ed(x, y) ∈ (E ⊗ Ld)x ⊗ (E ⊗ Ld)∗y. For our
purpose, it is more convenient to consider the normalized Bergman kernel

ed : (x, y) 7→ Ed(x, x)− 1
2Ed(x, y)Ed(y, y)− 1

2 .

For any x ∈ X , the map Ed(x, x) is an endomorphism of the 1-dimensional space
(E ⊗ Ld)x, hence can be seen as a scalar. Note that ed is the correlation kernel of
the normalized process (Ed(x, x)− 1

2 sd(x))x∈M , which has unit variance and the same
zero set as (sd(x))x∈M .
The normalized Bergman kernel ed admits a universal local scaling limit at scale d− 1

2

around any point of X (cf. [MM07, Theorem 4.2.1]). Moreover, the correlations are
exponentially decreasing at scale d− 1

2 , in the sense that there exists C > 0 such
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that ‖ed(x, y)‖ = O(exp(−C
√
dρg(x, y))) as d→ +∞, uniformly in (x, y), where ρg

is the geodesic distance. Similar estimates hold for the derivatives of ed with the
same constant C. We refer to [MM15, Theorem 1] for a precise statement. These
facts were extensively used in [Anc21, Let19, LP19] and we refer to these papers
for a more detailed discussion of how estimates for the Bergman kernel are used in
the context of random real algebraic geometry. An important consequence of these
estimates that we use in the present paper is Proposition 2.26 below.

Definition 2.25. — Let p ∈ N, we denote by bp = 1
C

(1 + p
4), where C > 0 is the

same as above. That is C is the constant appearing in the exponential in [MM15,
Theorem 1, Equation (1.3)].

Proposition 2.26 ([Anc21, Proposition 3.2]). — Let p > 2. Recall that ρg
denotes the geodesic distance and that bp is defined by Definition 2.25. The following
holds uniformly for all k ∈ {2, . . . , p}, for all A and B ⊂ {1, . . . , k} disjoint such
that A tB = {1, . . . , k}, for all x ∈Mk \∆k such that for all a ∈ A and b ∈ B we
have ρg(xa, xb) > bp

ln d√
d
:

Rk
d(x) = R|A|d (xA)R|B|d (xB) +O

(
d

k
2−

p
4−1

)
.

Here we used the notations defined in Section 2.2 (see Notation 2.2), and by conven-
tion R0

d = 1 for all d.

Proof. — Proposition 2.26 is the same as [Anc21, Proposition 3.2] but for two
small points. We refer to [Anc21] for the core of the proof of this proposition. Here,
let us just explain what the differences are between Proposition 2.26 and [Anc21,
Proposition 3.2], and how these differences affect the proof.

• Here we consider a line bundle of the form E ⊗ Ld, while in [Anc21] the
author only considers Ld, which corresponds to the case where E is trivial.
In the proof of [Anc21, Proposition 3.2], the geometry of line bundle Ld only
appears through the leading term in the asymptotics of its Bergman kernel,
as d → +∞. More precisely, the necessary estimates are those of [MM07,
Theorem 4.2.1] and [MM15, Theorem 1]. One can check that, if we replace
Ld by E ⊗ Ld in the estimates of [MM07, MM15], we obtain estimates of the
same form for the Bergman kernel of E ⊗ Ld. Thus, the addition of the line
bundle E does not affect the proof, except in a typographical way.
• In the statement of [Anc21, Proposition 3.2], the constant bp is replaced by

1
C

= b0 and the error term is replaced by

O
(
d

k
2−1

)
.

Let us explain how using bp instead of b0 yields an error term of the form
O(d k

2−
p
4−1). The error term in Proposition 2.26 and [Anc21, Proposition 3.2]

comes from the off-diagonal decay estimate of [MM15, Theorem 1]. More
precisely, in both cases, the term:∣∣∣Rk

d(x)−R|A|d (xA)R|B|d (xB)
∣∣∣
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is bounded from above by some constant (that does not depend on x and d)
times the Ck-norm of the normalized Bergman kernel ed of E ⊗ Ld restricted
to {(x, y) ∈M2 | ρg(x, y) > L}, where

L = min
(a, b)∈A×B

ρg(xa, xb).

By [MM15, Theorem 1], this term is O(d k
2 e−C

√
dL). In the setting of [Anc21,

Proposition 3.2], we have L > 1
C

ln d√
d
, which gives an error term of the form

O
(
d

k
2−1

)
.

In Proposition 2.26, we have L > 1
C

(1+ p
4) ln d√

d
, so that the error term is indeed

O
(
d

k
2−

p
4−1

)
. �

Remarks 2.27. — We conclude this section with some comments for the reader
who might be interested in the proof of [Anc21, Proposition 3.2].

• In [Anc21], estimates for the Bergman kernel (i.e. the correlation function
of the random process under study) are obtained using peak sections. This
alternative method yields the necessary estimates without having to use the
results of [MM07, MM15].
• [Anc21, the proof of Proposition 3.2] is written for k = 2 and |A| = 1 = |B|,
for clarity of exposition. The extension to k > 2 is non-trivial, and the proof
for k > 2 requires in fact the full power of the techniques developed in [Anc21,
Section 4]. More recently, the authors developed similar techniques for smooth
stationary Gaussian processes in R, see [AL21, Theorem 1.14].

3. Asymptotics of the central moments

The goal of this section is to prove Theorem 1.12. In Section 3.1 we derive an
integral expression of the central moments we want to estimate, see Lemma 3.5
below. Then, in Section 3.2, we define a decomposition of the manifolds MA, where
M is as in Section 2.1 and A is a finite set. In Sections 3.3, 3.4 and 3.5, we compute
the contributions of the various pieces of the decomposition defined in Section 3.2 to
the asymptotics of the integrals appearing in Lemma 3.5. Finally, we conclude the
proof of Theorem 1.12 in Section 3.6.

3.1. An integral expression of the central moments

The purpose of this section is to derive a tractable integral expression for the central
moments of the form mp(νd)(φ1, . . . , φp), defined by Definition 1.2 and appearing
in Theorem 1.12. This is done in Lemma 3.5 below. Before stating and proving this
lemma, we introduce several concepts and notations that will be useful to deal with
the combinatorics of this section and the following ones.
Recall that we already defined the set PA of partitions of a finite set A (see

Definition 1.11). The next concept we need to introduce is that of induced partition.
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Definition 3.1 (Induced partition). — Let B be a finite set, let A ⊂ B and let
I ∈ PB. The partition I defines a partition IA = {I ∩ A|I ∈ I, I ∩ A 6= ∅} of A,
which is called the partition of A induced by I.
In this paper, we will only consider the case where I ∈ PB and A is the reunion

of some of the elements of I, that is: for any I ∈ I, either I ⊂ A or I ∩A = ∅. This
condition is equivalent to IA ⊂ I, and in this case we have IA = {I ∈ I | I ⊂ A}.
Another useful notion is the following order relation on partitions.
Definition 3.2 (Order on partitions). — Let A be a finite set and let I,J ∈ PA.

We denote by J 6 I and we say that J is finer than I if J is obtained by subdividing
the elements of I. That is, for any J ∈ J there exists I ∈ I such that J ⊂ I. If
J 6 I and J 6= I, we say that J is strictly finer than I, which we denote by
J < I.
One can check the following facts. Given a finite set A, the relation 6 defines

a partial order on PA such that I 7→ |I| is decreasing. The partially ordered set
(PA,6) admits a unique maximum equal to {A}. It also admits a unique minimum
equal to {{a}|a ∈ A}, that we denote by I0(A) as in Remark 2.5. If A is of the form
{1, . . . , k}, we use the simpler notations I0(k) = I0(A). Finally, note that J 6 I if
and only if J = ⊔

I ∈I JI .
The last thing we need to define is the notion of subset adapted to a partition. A

subset A of a finite set B is adapted to the partition I ∈ PB if B \ A is a union of
singletons of I. That is, A is adapted to I if and only if I = IA t {{i} | i ∈ B \A},
or equivalently if and only if I 6 {A} t I0(B \ A). Here is the formal definition.
Definition 3.3 (Subset adapted to a partition). — Let B be a finite set and let
I ∈ PB, we denote by:

SI = {A ⊂ B|∀ I ∈ I, if |I| > 2, then I ⊂ A} .
A subset A ∈ SI is said to be adapted to I.
The set SI will appear as an index set in the integral expression derived in

Lemma 3.5 below. The only thing we need to know about it is the following natural
result.
Lemma 3.4. — Let B be any finite set, then the map (A, I) 7→ (A, IA) defines a

bijection from {(A, I) | I ∈ PB, A ∈ SI} to {(A,J ) | A ⊂ B,J ∈ PA}.
Proof. — The inverse map is given by (A,J ) 7→ (A,J t {{i} | i ∈ B \ A}). �
We can now derive the integral expression of the central moments we are looking

for. We will make use of the various notations introduced in Section 2.2.
Lemma 3.5. — Let p > 2 and let φ1, . . . , φp ∈ C0(M). Let dp ∈ N be given by

Lemma 2.18, for all d > dp we have:

mp(νd) (φ1, . . . , φp) =
∑
I ∈Pp

∫
xI ∈MI

ι∗Iφ (xI) DId (xI) |dVM ||I| ,

where, for any finite set B, any I ∈ PB and any xI = (xI)I ∈I ∈MI ,

DId (xI) =
∑
A∈SI

(−1)|B|−|A|R|IA|
d

(
xIA

) ∏
i /∈A
R1
d

(
x{i}

)
.
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Here, SI is the one we defined in Definition 3.3.

Proof. — By definition, mp(νd)(φ1, . . . , φp) is the expectation of a linear combi-
nation of integrals over sets of the form Zk

d , with k ∈ {1, . . . , p}. We subdivide each
Zk
d according to the various diagonals in Mk. The corresponding splitting of the

counting measure νkd of Zk
d was computed in Lemma 2.7. We can then apply the

Kac–Rice formula to each term. The result follows by carefully reordering the terms.
We start from the definition of mp(νd), see Definition 1.2. Developing the product,

we get:

mp(νd)(φ1, . . . , φp) =
∑

A⊂{1, ..., p}
(−1)p−|A|E

[∏
i∈A
〈νd , φi〉

] ∏
i /∈A

E[〈νd , φi〉]

=
∑

A⊂{1, ..., p}
(−1)p−|A|E

[〈
νAd , φA

〉] ∏
i /∈A

E[〈νd , φi〉]

=
∑

A⊂{1, ..., p}

∑
I ∈PA

(−1)p−|A|E
[〈
ν̃Id , ι

∗
IφA

〉] ∏
i /∈A

E[〈νd , φi〉] ,

where the last equality comes from Lemma 2.7. By the Kac–Rice formulas of Propo-
sition 2.23, this equals:∑

A⊂{1, ..., p}

∑
I ∈PA

(−1)p−|A|
(∫

MI
(ι∗IφA)R|I|d |dVM |

|I|
) ∏
i /∈A

(∫
M
φiR1

d |dVM |
)
.

By Lemma 3.4, we can exchange the two sums and obtain the following:
∑
I ∈Pp

∑
A∈SI

(−1)p−|A|
(∫

MIA

(
ι∗IA

φA
)
R|IA|
d |dVM ||IA|

) ∏
i /∈A

(∫
M
φiR1

d |dVM |
)

=
∑
I ∈Pp

∑
A∈SI

(−1)p−|A|
∫
xI ∈MI

ι∗Iφ (xI)R
|IA|
d

(
xIA

) ∏
i /∈A
R1
d

(
x{i}

)
|dVM ||I|

=
∑
I ∈Pp

∫
xI ∈MI

ι∗Iφ (xI) DId (xI) |dVM ||I| ,

which concludes the proof. �

Before going further, let us try to give some insight into what is going to happen.
Our strategy is to compute the large d asymptotics of the terms of the form

(3.1)
∫
xI ∈MI

ι∗Iφ (xI)DId (xI) |dVM ||I|

appearing in Lemma 3.5. In the case where p is even, which is a bit simpler to
describe, many of these terms will contribute a leading term of order d p

4 , and the
others will only contribute a smaller order term. Terms of the form (3.1) can all be
dealt with in the same way, hence we will not make any formal difference between
them in the course of the proof. Note however, that the term indexed by I0(p) is
simpler to understand, as shown in Example 3.6 below. This term is the one we
considered in our sketch of proof in Section 1. At each step in the following, we
advise the reader to first understand what happens for this term, before looking at
the general case.
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Example 3.6 (Term indexed by I0(p)). — Recall that I0(p) = {{i} | 1 6 i 6 p}.
Identifying I0(p) with {1, . . . , p} through the canonical bijection i 7→ {i}, the map
ιI0(p) : MI0(p) → Mp is the identity of Mp, see Definition 2.4. Hence, the term
indexed by I0(p) in Lemma 3.5 is:∫

(x1, ..., xp)∈Mp

( p∏
i=1

φi(xi)
)
DI0(p)
d (x1, . . . , xp) |dVM |p .

Then, SI0(p) is just the set of all subsets of {1, . . . , p}, see Definition 3.3. Further-
more, for any A ⊂ {1, . . . , p} the induced partition I0(p)A equals {{i} | i ∈ A},
hence is canonically in bijection with A. Finally, we obtain that:

DI0(p)
d : (x1, . . . , xp) 7−→

∑
A⊂{1, ..., p}

(−1)p−|A|R|A|d (xA)
∏
i /∈A
R1
d(xi).

3.2. Cutting MA into pieces

In this section, we define a way to cut the Cartesian product MA into disjoint
pieces, for any finite subset A. The upshot is to use this decomposition of MA with
A = I ∈ Pp, in order to obtain the large d asymptotics of integrals of the form (3.1).
For this to work, we need to define a splitting ofMA that depends on the parameters
p ∈ N and d > 1.

Definition 3.7 (Clustering graph). — Let A be a finite set and let p ∈ N. For
all d > 1, for all x = (xa)a∈A ∈MA, we define a graph Gp

d(x) as follows.
• The vertices of Gp

d(x) are the elements of A.
• Two vertices a and b ∈ A are joined by an edge of Gp

d(x) if and only if
ρg(xa, xb) 6 bp

ln d√
d
and a 6= b, where ρg is the geodesic distance in M and bp

is the constant defined by Definition 2.25.

The clustering graph Gp
d(x) contains more information than we need. What we are

actually interested in is the partition of A given by the connected components of
Gp
d(x). This partition, defined below, encodes how the components of x are clustered

in M at scale bp ln d√
d
. An example of this construction is given on Figure 3.1 below,

for A = {1, . . . , 6} and M a circle.

Definition 3.8 (Clustering partition). — Let A be a finite set and let p ∈ N.
For all d > 1, for all x ∈MA, we denote by Ipd(x) the partition of A defined by the
connected components of Gp

d(x). That is a and b ∈ A belong to the same element of
Ipd(x) if and only if they are in the same connected component of Gp

d(x).

Given p ∈ N and d > 1, we divide the points of MA according to their clustering
partition at scale bp ln d√

d
. This yields a splitting of MA into pieces indexed by PA.

Definition 3.9. — Let A be a finite set, let I ∈ PA, let p ∈ N and let d > 1, we
define:

MA, p
I, d =

{
x ∈MA

∣∣∣ Ipd(x) = I
}
.
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x1

x2 x3

x4

x5

x6

(a) A configuration x = (x1, . . . , x6) of six
distinct points on a circle. The length of
the segment is the cut-off distance bp

ln d√
d
.

1 2 3 4 5 6

(b) The clustering graph Gp
d(x) associ-

ated with x and the cut-off distance rep-
resented on the left.

Figure 3.1. Example of a configuration of six points on a curveM . The clustering
partition of x = (x1, . . . , x6) is the partition of {1, . . . , 6} according to the
connected components of Gp

d(x). Here it equals Ipd(x) = {{1, 2, 4}, {3, 6}, {5}}.

Remarks 3.10. —
• For any p ∈ N and d > 1, we have: MA = ⊔

I ∈PA
MA, p
I, d .

• Let I ∈ PA and let (xa)a∈A ∈ MA, p
I, d . For all I ∈ I, for any a and b ∈ I, the

geodesic distance from xa to xb satisfies: ρg(xa, xb) 6 (|I|−1)bp ln d√
d
6 |A|bp ln d√

d
.

• Recalling Definitions 2.3 and 3.2, if d > 1 the set MA, p
I, d is a neighborhood

of the diagonal ∆A, I minus some neighborhood of ⊔J > I ∆A,J . If d = 1, we
have MA, p

I, 1 = ∆A, I .

In the course of the proof of Theorem 1.12, we will make use of the following two
auxiliary results concerning the sets MA, p

I, d defined above.

Lemma 3.11. — Let A be a finite set, let I ∈ PA, let p ∈ N and let d > 1. Let
B ⊂ A be a union of elements of I, i.e. for all I ∈ I we have either I ⊂ B or
I ∩B = ∅. Then, for all xA ∈MA, p

I, d , we have xB ∈MB, p
IB , d

.

Proof. — Let x = (xa)a∈A ∈ MA, p
I, d , recall that xB = (xa)a∈B ∈ MB. By Defini-

tion 3.9, we want to prove that Ipd(xB) = IB, where IB = {I ∈ I | I ⊂ B} is the
partition of B induced by I, see Definition 3.1.
Recalling Definitions 3.7 and 3.8, the partition Ipd(xB) is defined by the connected

components of Gp
d(xB). The graph Gp

d(xB) is a subgraph of Gp
d(xA), obtained by

erasing the vertices indexed by a ∈ A \B and the edges having at least one endpoint
in A \ B. If B was any subset of A, two vertices a, b ∈ B in the same connected
component of Gp

d(xA) could end up in different connected components of Gp
d(xB). In

terms of clustering partitions, if I ∈ Ipd(xA), then I ∩B might be a disjoint union of
several elements of Ipd(xB), neither empty nor equal to I. Our hypothesis that B is
a union of elements of I ensures that this does not happen.
To conclude the proof it is enough to show that, for all I ∈ I such that I ⊂ B, we

have I ∈ Ipd(xB). Let I ∈ I such that I ⊂ B. Since I ∈ I = Ipd(xA), the elements
of I are the vertices of one of the connected components of Gp

d(xA), which is equal
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to Gp
d(xI). This connected component is not modified when we erase the vertices in

A \ B and the corresponding edges from Gp
d(xA). Thus, Gp

d(xI) is still a connected
component in Gp

d(xB), and I ∈ Ipd(xB). �

Lemma 3.12. — Let A be a finite set, let I ∈ PA, let p ∈ N and let d > 1, we
have the following inclusion between subsets of MA:

MA, p
I, d ⊂

∏
I ∈I

M I, p
{I}, d ⊂

⊔
J > I

MA, p
J , d.

Proof. — Let xA = (xa)a∈A ∈ MA, p
I, d . We know that the components of xA are

clustered in M according to I. Informally, if we remember that the points indexed
by each I ∈ I are close together, but we forget about the distances between points
in different clusters, then all we can say is that xA ∈

∏
I ∈IM

I, p
{I}, d. More formally, let

I ∈ I, then I is a union of elements of I, and II = {I}. By Lemma 3.11, we have
xI ∈M I, p

{I}, d for any I ∈ I. Hence xA = (xI)I ∈I ∈
∏
I ∈IM

I, p
{I}, d. This proves the first

inclusion in Lemma 3.12.
Let us now prove the second inclusion. Let xA ∈

∏
I ∈IM

I, p
{I}, d ⊂MA, we want to

recover its clustering partition Ipd(xA). We know that the components of xA indexed
by a given I ∈ I are close together in M , hence belong to the same cluster. However,
given I and J ∈ I, the points indexed by I and those indexed by J might be close
enough in M that they belong to the same cluster. Thus, all we can say is that the
clusters of xA are indexed by unions of elements of I, that is Ipd(xA) > I. This shows
that xA ∈

⊔
J > IM

A, p
J , d and concludes the proof of Lemma 3.12. �

We conclude this section by bounding from above the volume of MA, p
I, d . What we

are interested in is an asymptotic upper bound as d→ +∞ with A, I and p fixed.

Lemma 3.13 (Volume bound). — Let A be a finite set, let I ∈ PA and let p ∈ N.
As d→ +∞, we have:

Vol
(
MA, p
I, d

)
= O

( ln d√
d

)|A|−|I| .
Proof. — For all I ∈ I, we fix a preferred element aI of I. Let x = (xa)a∈A ∈MA, p

I, d .
For all I ∈ I, for all a ∈ I \ {aI}, the point xa belongs to the geodesic ball of center
xaI

and radius |A|bp ln d√
d
. Since M is 1-dimensional, this ball has volume 2|A|bp ln d√

d
.

Hence,

Vol
(
MA, p
I, d

)
6 Vol(M)|I|

∏
I ∈I

(
2 |A| bp

ln d√
d

)|I|−1

= O

∏
I ∈I

(
ln d√
d

)|I|−1
 .

The result follows from ∑
I ∈I(|I| − 1) = |A| − |I|. �

3.3. An upper bound on the contribution of each piece

Let p > 2, given I ∈ Pp and test-functions (φi)16 i6 p, we want to estimate the
integral (3.1) as d → +∞. This is done by splitting MI as in Section 3.2 and
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estimating the contribution of each piece. One difficulty is that I ∈ Pp, and the
pieces of our decomposition of MI are indexed by partitions of I, seen as a finite
set. Hence we need to consider partitions of partitions.
Let J ∈ PI , we are interested in the large d asymptotics of:

(3.2)
∫
xI ∈M

I, p
J , d

ι∗Iφ (xI) DId (xI) |dVM ||I| .

Note that the integral (3.1) is the sum over J ∈ PI of the terms of the form (3.2).
Hence, the central moment mp(νd)(φ1, . . . , φp) we are interested in is the double
sum of these terms over I ∈ Pp and J ∈ PI , see Lemma 3.5. As far as the order of
magnitude of the integral (3.2) is concerned, we can think of the test-function ι∗Iφ
as being constant. This order of magnitude will then result from the competition
between two things: the order of the typical values of DId and the volume of MI, p

J , d.
In this section, we compute an asymptotic upper bound as d → +∞ for the

contribution of the integral (3.2). This upper bound shows that, if |J | < p
2 , then the

integral (3.2) only contributes an error term in the estimates of Theorem 1.12. This
is not surprising since in this case the volume of MI, p

J , d is comparatively small, see
Lemma 3.13.

Lemma 3.14. — Let p > 2 and let φ1, . . . , φp ∈ C0(M). Let I ∈ Pp, for all
J ∈ PI , we have:∫

xI ∈M
I, p
J , d

ι∗Iφ (xI) DId (xI) |dVM ||I| =
( p∏
i=1
‖φi‖∞

)
O
(
d
|J |

2 (ln d)|I|−|J |
)
,

where the error term does not depend on (φ1, . . . , φp).

Proof. — We have ‖ι∗Iφ‖∞ 6 ‖φ‖∞ 6
∏p
i=1 ‖φi‖∞. Besides, by the definition of DId

(see Lemma 3.5) and Proposition 2.24, the density DId is bounded uniformly on MI

by O(d
|I|
2 ). Integrating this estimate over MI, p

J , d yields:∣∣∣∣∣
∫
xI ∈M

I, p
J , d

ι∗Iφ (xI) DId (xI) |dVM ||I|
∣∣∣∣∣ 6

( p∏
i=1
‖φi‖∞

)
O
(
d
|I|
2

)
Vol

(
MI, p
J , d

)
.

Then the result follows from the volume estimate of Lemma 3.13. �

3.4. Contribution of the partitions with an isolated point

In this section, we still work with a fixed p > 2 and some fixed I ∈ Pp. Lemma 3.14
seems to say that the main contribution to the integral (3.1) should be given by terms
of the form (3.2) where |J | is large, i.e. J defines many small clusters. However, by
looking more carefully at DId , we can prove that the contribution of MI, p

J , d is also
small if J contains an isolated point. In particular, for such a J , the integral (3.2)
will only contribute an error term in the estimates of Theorem 1.12. The main result
of this section is Corollary 3.17 below.
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Lemma 3.15. — Let p > 2 and I ∈ Pp. We assume that there exists j ∈
{1, . . . , p} such that {j} ∈ I. Then, for all J ∈ PI such that {{j}} ∈ J , we
have:

∀ xI ∈MI, p
J , d, DId (xI) = O

(
d

p
4−1

)
,

as d→ +∞, uniformly in xI ∈MI, p
J , d.

Remark 3.16. — This statement and its proof are typically easier to understand
when I = I0(p). In this case, we can identify I with {1, . . . , p} canonically as in
Example 3.6. Then J ∈ Pp, and our hypothesis simply means that J contains a
singleton {j}. The statement of the lemma becomes that: if x = (xi)16 i6 p ∈ Mp

is such that xj is far from the other components of x, meaning at distance greater
than bp ln d√

d
, then

DI0(p)
d (x) = O

(
d

p
4−1

)
.

Proof of Lemma 3.15. — Recall that we defined SI in Definition 3.3. Since {j} ∈ I,
we can split SI into the subsets A ∈ SI that contain j, and those that do not.
Moreover, A 7→ A t {j} is a bijection from {A ∈ SI | j /∈ A} to {A ∈ SI | j ∈ A}.
Let xI = (xI)I ∈I ∈ MI, p

J , d and let A ∈ SI be such that j /∈ A. We regroup the
terms corresponding to A and A t {j} in the sum defining DId (xI), see Lemma 3.5.
Since we have IAt{j} = IA t {{j}}, we obtain:

(3.3) (−1)p−|A|R|IA|
d (xIA

)
∏
i/∈A
R1
d(x{i})

+ (−1)p−|A|−1R|IA|+1
d

(
xIA

, x{j}
) ∏
i /∈At{j}

R1
d

(
x{i}

)
= (−1)p−|A|−1

(
R|IA|+1
d

(
xIA

, x{j}
)
−R|IA|

d

(
xIA

)
R1
d

(
x{j}

)) ∏
i /∈At{j}

R1
d

(
x{i}

)
,

where we used the fact that R|IA|+1
d is a symmetric function of its arguments, cf. Def-

inition 2.21. Recall that R0
d = 1 for all d > 1 by convention.

Since {{j}} ∈ J , the point x{j} is far from the other coordinates of xI by definition
of MI, p

J , d, see Definition 3.9. More precisely, we have ρg(xI , x{j}) > bp
ln d√
d
for all

I ∈ I \ {{j}}. Then, by Proposition 2.26, the term on the right-hand side of
Equation (3.3) is O(d 1

2 (|IA|−|A|)+ p
4−1), uniformly in xI ∈ MI, p

J , d. Since IA ∈ PA, we
have |IA| 6 |A|. Hence, the previous term is O(d p

4−1). We conclude the proof by
summing this estimates over {A ∈ SI | j /∈ A}. �

Corollary 3.17. — Let p > 2 and let I ∈ Pp. We assume that there exists
j ∈ {1, . . . , p} such that {j} ∈ I. Then, for all J ∈ PI such that {{j}} ∈ J , we
have:

∀ φ1, . . . , φp ∈ C0(M),
∫
xI ∈M

I, p
J , d

ι∗Iφ(xI)DId (xI) |dVM ||I|

=
( p∏
i=1
‖φi‖∞

)
O
(
d

p
4−1

)
,
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where the error term does not depend on (φ1, . . . , φp).
Proof. — We obtain this corollary by integrating the estimate of Lemma 3.15 over

MI, p
J , d, using the fact that ‖ι∗Iφ‖∞ 6

∏p
i=1 ‖φi‖∞. �

3.5. Contribution of the partitions into pairs

Let p > 2 and let φ1, . . . , φp be test-functions. Recall that mp(νd)(φ1, . . . , φp) is
the sum of the integrals (3.2) for I ∈ Pp and J ∈ PI , and that our final goal is to
prove Theorem 1.12. This theorem gives the asymptotics of mp(νd)(φ1, . . . , φp) as d
goes to infinity, up to an error term of the form

O
(
d

1
2b p−1

2 c(ln d)p
)
.

We proved in Lemma 3.14 that the integral (3.2) only contributes an error term if
|J | < p

2 . Besides, we proved in Corollary 3.17 that the integral (3.2) also contributes
an error term if there exists j such that {{j}} ∈ J , in particular if |J | is too large.
This last point will be made more precise in Section 3.6 below.
In this section, we study the integrals of the form (3.2) that will contribute to the

leading term in the asymptotics of mp(νd)(φ1, . . . , φp). These integrals are indexed
by couples of partitions (I,J ) satisfying the following technical condition: the double
partitions into pairs. Recall that we denoted by PPA the set of partition into pairs
of the finite set A, see Definition 1.11, and that we denoted by IS the partition of
S ⊂ A induced by a partition I ∈ PA, see Definition 3.1.
Definition 3.18 (Double partition into pairs). — Let A be a finite set, let I ∈ PA

and let J ∈ PI . We say that a couple (I,J ) is a double partition into pairs of A if
there exists S ⊂ A such that:

(1) IS = {{s} | s ∈ S} and I \ IS = IA\S ∈ PPA\S;
(2) JIS

∈ PPIS
and J \ JIS

= JI\IS
= {{I} | I ∈ I \ IS}.

We denote by CA the set of such double partitions into pairs of A. If A = {1, . . . , p}
we simply denote Cp = CA.
Let us take some time to comment upon this definition. Note that we will mostly

use it with A = {1, . . . , p}. However, the general case will be useful in Lemmas 3.21
and 3.22 below. Condition (1) in Definition 3.18 simply means that I only contains
singletons and pairs. The singletons are exactly those of the form {s} with s ∈ S, and
the pairs are formed of elements of A \ S. Note that S is the union of the singletons
in I. In particular, it is uniquely defined by (I,J ). Similarly, Condition (2) means
that J only contains singletons and pairs with some additional constraints. The
singletons in J are exactly of the form {I} where I /∈ IS (i.e. I is itself a pair of
elements of A \ S) and the pairs are of the form {{s}, {t}} with s, t ∈ S distinct.
That is, J contains only pairs of singletons and singletons of pairs. . .
Remark 3.19. — Let A be a finite set and let (I,J ) ∈ CA. Let S be as in

Definition 3.18. We have |S| = |IS|, and since IS admits a partition JIS
into pairs,

this cardinality is even. Similarly, since I \ IS is a partition into pairs of A \ S, we
have |A| = |S|+ 2|I \ IS|, so that |A| is even. Thus, CA is empty if |A| is odd.
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Example 3.20. — Let A be a finite set of even cardinality, the following are
examples of double partitions into pairs showing that CA is not empty.

• Taking S = ∅, we have IS = ∅ and I = I \ IS can be chosen as any
element of PPA. Then there is only one possibility for J , we must have
J = JI\IS

= {{I} | I ∈ I}.
• Taking S = A, we must have I = IS = {{a} | a ∈ A}. Identifying canonically
I with A, we can choose any J ∈ PPI ' PPA.

In the remainder of this section, we study the large d asymptotics of integrals of
the form (3.2) where (I,J ) ∈ Cp. For this, we need to show that the function DId
defined in Lemma 3.5 factorizes nicely on MI, p

J , d, up to an error term. The first step
is Lemma 3.21 where we factor the contribution from the pairs of singletons in J ,
i.e the elements of JIS

.

Lemma 3.21. — Let A be a finite set. For all (I,J ) ∈ CA, let S ⊂ A be as in
Definition 3.18. Then, the following holds uniformly for all xI ∈MI, p

J , d:

DId (xI) = DI\IS

d

(
xI\IS

) ∏
J ∈JIS

DJd (xJ)
+O

(
d
|I|
2 −

p
4−1

)
.

Proof. — Recall that, as discussed in Remark 3.19, the set CA is empty if |A| is
odd. Hence Lemma 3.21 is true in this case. If |A| is even, the proof is by induction
on (one half of) |A|.

Base case. If |A| = 0, we have A = ∅, hence I = ∅, hence J = ∅. Recalling the
definition of DId in Lemma 3.5 and our convention that R0

d = 1, we have DId = 1 and
similarly DI\IS

d = 1. The product over JIS
is indexed by the empty set, hence also

equal to 1. Thus, the result is tautologically true.

Inductive step. Let A be a finite set of even positive cardinality. Let us assume
that the result of Lemma 3.21 holds for any finite set B of cardinality |A| − 2. Let
(I,J ) ∈ CA and let S be as in Definition 3.18. Let J ∈ JIS

, there exists s, t ∈ S
distinct such that J = {{s}, {t}}. The key part of the proof is to show that, the
following holds uniformly for all xI ∈MI, p

J , d:

(3.4) DId (xI) = DI\Jd

(
xI\J

)
DJd (xJ) +O

(
d
|I|
2 −

p
4−1

)
.

Let us assume for now that Equation (3.4) holds. Let us denote by B = A \ {s, t}.
Then we have I \ J = I \ {{s}, {t}} ∈ PB and J \ {J} ∈ PI\J . One can check that
(I \ J,J \ {J}) ∈ CB. Indeed, the partition I \ J only contains pairs and singletons,
and the union of its singletons is T = S \{s, t}. Then we have (I \J)T = IS \J , and
(J \ {J})IS\J = JIS

\ {J} is a partition into pairs of IS \ J . Moreover, the pairs in
I \ J are the same as the pairs in I. Since |B| = |A| − 2, we can apply the induction
hypothesis for (I \ J,J \ {J}) ∈ CB.
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Note that I \ J is the union of the elements of J \ {J}. Then, by Lemma 3.11,
if xI ∈ MI, p

J , d we have xI\J ∈ M
I\J, p
J\{J}, d. Hence, by induction, the following holds

uniformly for all xI ∈MI, p
J , d:

DI\Jd

(
xI\J

)
= DI\IS

d

(
xI\IS

) ∏
K ∈JIS

\{J}
DKd (xK)

+O
(
d
|I|
2 −

p
4−2

)
.

We use this relation in Equation (3.4). SinceDJd is uniformlyO(d) by Proposition 2.24,
the conclusion of Lemma 3.21 is satisfied for (I,J ) ∈ CA. This concludes the
inductive step.
Proof of Equation (3.4). — In order to complete the proof of Lemma 3.21, we need

to prove that Equation (3.4) holds. The proof of this fact is in the same spirit as the
proof of Lemma 3.15. We start from the definition of DId (xI), given in Lemma 3.5,
and regroup the terms in the sum in fours. For each of these quadruples of summands
we apply Proposition 2.26, using the fact that xI ∈ MI, p

J , d. This yields the result,
keeping in mind the uniform upper bound of Proposition 2.24.
Recall that DId is defined as a sum indexed by SI , and that the elements of SI are

the subsets of {1, . . . , p} adapted to I (see Definition 3.3). Since {s} and {t} ∈ I,
we can decompose SI as the following disjoint union:

SI =
⊔

{A∈SI | s /∈A, t /∈A}
{A,A t {s}, A t {t}, A t {s, t}} .

Let A ∈ SI be such that A ⊂ {1, . . . , p} \ {s, t}. Given xI ∈ MI , we regroup
the four terms corresponding to A, A t {s}, A t {t} and A t {s, t} in the sum
definingDId (xI). Keeping in mind that the Kac–Rice densities (Rk

d)k> 1 are symmetric
functions of their arguments, we obtain:

(3.5) (−1)p−|A|
(
R|IA|
d

(
xIA

)
R1
d

(
x{s}

)
R1
d

(
x{t}

)
−R|IA|+1

d

(
xIA

, x{s}
)
R1
d

(
x{t}

)
−R|IA|+1

d

(
xIA

, x{t}
)
R1
d

(
x{s}

)
+R|IA|+2

d

(
xIA

, x{s}, x{t}
)) ∏

i /∈At{s, t}
R1
d

(
x{i}

)
If xI ∈ MI, p

J , d, then for any I ∈ I \ {{s}, {t}} we have ρg(xI , x{s}) > bp
ln d√
d
and

ρg(xI , x{t}) > bp
ln d√
d
by definition. Applying Propositions 2.24 and 2.26 in Equa-

tion (3.5), we obtain:

(−1)p−|A|
 ∏
i /∈At{s, t}

R1
d

(
x{i}

)R|IA|
d

(
xIA

)
DJd (xJ) +O

(
d
|IA|+p−|A|

2 − p
4−1

)
.

Since A is adapted to I, we have I = IAt{{i} | i /∈ A} by Definition 3.3. This implies
that |I| = |IA|+p−|A|. Hence the error term in the previous equation is O(d

|I|
2 −

p
4−1).

Summing these terms over the subsets A ∈ SI such that A ⊂ {1, . . . , p} \ {s, t}, we
proved that Equation (3.4) is satisfied uniformly for all xI ∈MI, p

J , d. �

ANNALES HENRI LEBESGUE



Roots of Kostlan polynomials 1691

With the same notations as in Lemma 3.21, the second step in our factorization
of DId is to factor the contributions from the singletons in J , that is from the
{{I} | I ∈ I \ IS}. This is the purpose of the following lemma.

Lemma 3.22. — Let A be a finite set, let (I,J ) ∈ CA and let S ⊂ A be as in
Definition 3.18. Then, the following holds uniformly for all xI ∈MI, p

J , d:

DId (xI) =
 ∏
I ∈I\IS

R1
d (xI)

 ∏
J ∈JIS

DJd (xJ)
+O

(
d
|I|
2 −

p
4−1

)
.

Proof. — Applying first Lemma 3.21, uniformly for all xI ∈MI, p
J , d we have:

(3.6) DId (xI) = DI\IS

d

(
xI\IS

) ∏
J ∈JIS

DJd (xJ)
+O

(
d
|I|
2 −

p
4−1

)
.

By Condition (1) in Definition 3.18, the partition I \ IS is a partition into pairs of
A \ S. Recalling Definition 3.3, we have SI\IS

= {A \ S} hence DI\IS

d = R|I\IS |
d .

Let xI ∈ MI, p
J , d, by Condition (2) in Definition 3.18, for all I ∈ I \ IS we have

{I} ∈ J , hence xI is far from the other components of xI . In particular, for all
I, J ∈ I \ IS distinct we have ρg(xI , xJ) > bp

ln d√
d
. Applying Proposition 2.26 several

times, we obtain:

(3.7) DI\IS

d

(
xI\IS

)
= R|I\IS |

d

(
xI\IS

)
=

∏
I ∈I\IS

R1
d(xI) +O

(
d
|I\IS |

2 − p
4−1

)
,

where the error term is obtained by using the uniform bound of Proposition 2.24.
By Proposition 2.24 once again, for any J ∈ JIS

we have DJd (xJ) = O(d) uniformly
on MJ . Since, JIS

is a partition into pairs of IS, we have |IS| = 2|JIS
|. Hence, we

have uniformly:

(3.8)
∏

J ∈JIS

DJd (xJ) = O
(
d
|IS |

2

)
.

Since |I| = |IS|+|I \IS|, the result follows from Equations (3.6), (3.7) and (3.8). �
Finally, we derive the asymptotics of the integrals of the form (3.2) for (I,J ) ∈ Cp,

which is the main result of this section.

Lemma 3.23. — Let p > 2, let (I,J ) ∈ Cp and let S be as in Definition 3.18.
Then, for any φ1, . . . , φp ∈ C0(M), we have:∫

xI ∈M
I, p
J , d

ι∗Iφ (xI)DId (xI) |dVM ||I| = ∏
{i, j}∈I\IS

∫
M
φiφjR1

d |dVM |
 ∏

J ∈JIS

∫
MJ

φJDJd |dVM |
2


+
( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
,
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where the constant involved in the

O
(
d

1
2b p−1

2 c(ln d)p
)

is independent of (φ1, . . . , φp).

Proof. — The idea of the proof is to use the factorization obtained in Lemma 3.22
for the density function DId . The test-function ι∗Iφ also factorizes, hence we can
write the integrand (ι∗Iφ)DId as a nice product. The difficulty is that the domain of
integration MI, p

J , d is not a Cartesian product. To deal with this, we use Lemma 3.12
to show that we can replace MI, p

J , d by a product of domains of dimension 1 or 2, up
to an error term.

Factorization of the integrand. Recall that, by Condition (1) in Defini-
tion 3.18, the partition I only contains singletons and pairs and S is the union of
the singletons of I. Let xI ∈MI , we have:

ι∗Iφ (xI) = φ (ιI (xI))

=
∏
I ∈I

∏
i∈ I

φi(xI) =
 ∏
{i, j}=I ∈I \IS

φi(xI)φj(xI)
 ∏

{i}∈IS

φi
(
x{i}

) .
Let F Id : MI → R be the function defined by:

(3.9) F Id (xI) =
 ∏
{i, j}= I ∈I\IS

φi(xI)φj(xI)R1
d(xI)

 ∏
J ∈JIS

φJ (xJ)DJd (xJ)


for all xI ∈ MI . Here we use Notation 2.2, hence for any J = {{i}, {j}} ∈ J
we have:

φJ (xJ) = φ{i}
(
x{i}

)
φ{j}

(
x{j}

)
= φi

(
x{i}

)
φj
(
x{j}

)
.

Note that since I ∈ Pp, we have |I| 6 p so that |I|2 −
p
4 − 1 6 p

4 − 1 < 1
2

⌊
p−1

2

⌋
.

Applying Lemma 3.22, we obtain:

(3.10) ι∗Iφ (xI)DId (xI) = F Id (xI) +
( p∏
i=1
‖φi‖∞

)
o
(
d

1
2b p−1

2 c
)
,

where the error term does not depend on xI or (φi)16 i6 p. Thus, up to an error term,
the quantity we are interested in is the integral of F Id over MI, p

J , d.

Changing the domain of integration. By Lemma 3.12, we have:

MI, p
J , d ⊂

∏
J ∈J

MJ, p
{J}, d ⊂

⊔
K>J

MI, p
K, d,

hence

(3.11)
∏
J ∈J

MJ, p
{J}, d = MI, p

J , d t
⊔
K>J

MI, p
K, d ∩

∏
J ∈J

MJ, p
{J}, d

 .

ANNALES HENRI LEBESGUE



Roots of Kostlan polynomials 1693

We want to prove that the integral of F Id over MI, p
J , d is equal to its integral over∏

J ∈J M
J, p
{J}, d, up to an error term. Let K ∈ PI be such that K > J . We can bound

the integral of F Id over
ΩK = MI, p

K, d ∩
∏
J ∈J

MJ, p
{J}, d,

using the same method as in the proof of Lemma 3.14. We have:∣∣∣∣∣
∫
xI ∈ΩK

F Id (xI) |dVM ||I|
∣∣∣∣∣ 6

∫
xI ∈ΩK

∣∣∣F Id (xI)
∣∣∣ |dVM ||I| 6 ∫

xI ∈M
I, p
K, d

∣∣∣F Id (xI)
∣∣∣ |dVM ||I| .

Using Proposition 2.24 in Equation (3.9), we prove that the function F Id is bounded
uniformly over MI by (∏p

i=1 ‖φi‖∞)O(d
|I|
2 ). Then, by Lemma 3.13, we have:

(3.12)
∣∣∣∣∣
∫
xI ∈ΩK

F (xI) |dVM ||I|
∣∣∣∣∣ 6 ∥∥∥F Id ∥∥∥∞Vol

(
MI, p
K, d

)
=
( p∏
i=1
‖φi‖∞

)
O
(
d
|K|
2 (ln d)|I|−|K|

)
.

Recall that K > J , so that |K| < |J |, as discussed after Definition 3.2. Since
(I,J ) ∈ Cp, by Definition 3.18 we have:

|J | = 1
2 |IS|+ |I \ IS| =

1
2 |S|+

1
2 (p− |S|) = p

2 .

Thus, we have |K| 6 |J |−1 = p
2−1 6

⌊
p−1

2

⌋
. On the other hand, |I|−|K| 6 |I| 6 p.

Finally, using Equations (3.11) and (3.12), we obtain:

(3.13)
∫
MI, p
J , d

F Id |dVM |
|I|

=
∫∏

J ∈J M
J, p
{J}, d

F Id |dVM |
|I| +

( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
.

By Condition (2) in Definition 3.18, if J ∈ J \JIS
then J = {I} for some I ∈ I\IS,

so that MJ, p
{J}, d = M . Bearing this in mind, Equations (3.9), (3.10) and (3.13) yield:

(3.14)
∫
xI ∈M

I, p
J , d

ι∗Iφ (xI)DId (xI) |dVM ||I| = ∏
{i, j}∈I\IS

∫
M
φiφjR1

d |dVM |
 ∏

J ∈JIS

∫
MJ, p
{J}, d

φJDJd |dVM |
2


+
( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
.

Conclusion of the proof. In order to conclude the proof, we need to replace
the integral over MJ, p

{J}, d by an integral over MJ in Equation (3.14), for all J ∈ JIS
.

Let J ∈ JIS
, there exists i and j ∈ S such that J = {{i}, {j}}. Then, PJ has

exactly two elements: {J} and I0(J) = {{{i}}, {{j}}}. By Proposition 2.26 and the
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definition of DJd (see Lemma 3.5), we have the following uniform estimate for all
xJ ∈MJ, p

I0(J), d:

DJd (xJ) = R2
d

(
x{i}, x{j}

)
−R1

d

(
x{i}

)
R1
d

(
x{j}

)
= O

(
d−

p
4
)
.

Since MJ = MJ, p
{J}, d tM

J, p
I0(J), d, we obtain:∫

MJ, p
{J}, d

φJDJd |dVM |
2 =

∫
MJ

φJDJd |dVM |
2 + ‖φJ‖∞O

(
d−

p
4
)
.

Then, using one last time the upper bound of Proposition 2.24, the leading term on
the right-hand side of Equation (3.14) equals: ∏

{i, j}∈I\IS

∫
M
φiφjR1

d |dVM |
 ∏

J ∈JIS

∫
MJ

φJDJd |dVM |
2


+
( p∏
i=1
‖φi‖∞

)
O
(
d
|I\IS |

2 +|JIS |−1− p
4

)
.

The conclusion follows using that (I,J ) ∈ Cp. Indeed, by Definition 3.18, we have:
|I \ IS|

2 + |JIS
|−1− p4 = p− |S|

4 + |IS|2 −
p

4−1 = |S|4 −1 6 p

4−1 < 1
2

⌊
p− 1

2

⌋
. �

3.6. Proof of Theorem 1.12

In this section, we conclude the proof of our main result, that is the moments esti-
mates of Theorem 1.12. The key argument is that the leading term in the asymptotics
of the mp(νd)(φ1, . . . , φp) comes from integrals of the form (3.2), where (I,J ) ∈ Cp
is one of the double partitions into pairs studied in Section 3.5. The integrals of the
form (3.2) with (I,J ) /∈ Cp only contribute an error term. This last fact is proved
in the following lemma.
Lemma 3.24. — Let p > 2, let I ∈ Pp and let J ∈ PI be such that (I,J ) /∈ Cp.

Then, for all φ1, . . . , φp ∈ C0(M) we have:∫
xI ∈M

I, p
J , d

ι∗Iφ (xI)DId (xI) |dVM ||I| =
( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
,

where the error term does not depend on (φi)16 i6 p.

Proof. — Since p
4−1 = 1

2(p−2
2 −1) < 1

2

⌊
p−1

2

⌋
, we already know that the result holds

if there exists i ∈ {1, . . . , p} such that {i} ∈ I and {{i}} ∈ J , by Corollary 3.17.
Assuming that this is not the case, we will show in Lemma 3.25 below that: if I ∈ Pp
and J ∈ PI , then |J | 6 p

2 , and equality holds if and only if (I,J ) ∈ Cp. Since we
assumed that (I,J ) /∈ Cp, we have |J | < p

2 . Moreover, since |J | is an integer, we
have in fact |J | 6

⌊
p−1

2

⌋
. The result follows from Lemma 3.14, since |I| 6 p. �

Lemma 3.25. — Let p > 2, let I ∈ Pp and let J ∈ PI . We assume that, for all
i ∈ {1, . . . , p}, if {i} ∈ I then {{i}} /∈ J . Then |J | 6 p

2 . Moreover, |J | = p
2 if and

only if (I,J ) ∈ Cp.
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Proof. — We will use notations consistent with those introduced in Definition 3.18.
Let IS = {I ∈ I, |I| = 1} denote the set of singletons in I. We set S = ⊔

I ∈IS
I,

so that IS is indeed the partition of S induced by I. Then I \ IS is the partition
of {1, . . . , p} \ S induced by I, and its elements have cardinality at least 2. Since
{1, . . . , p} = ⊔

I ∈IS
I t ⊔I ∈I\IS

I, we have:

(3.15) |IS|+ 2 |I \ IS| 6 p.

Moreover, equality holds in Equation (3.15) if and only if I \ IS is a partition into
pairs, that is if and only if Condition (1) of Definition 3.18 is satisfied.
Let us denote by I ′ = {I ∈ I | {I} ∈ J }. Under our assumptions, if I ∈ I ′ it can

not be a singleton, i.e. I ′ ⊂ I \ IS. Hence, we have:

(3.16) |I ′| 6 |I \ IS| ,

and equality holds in Equation (3.16) if and only if I ′ = I \ IS.
By definition of I ′, we have JI′ = {{I} | I ∈ I ′} ⊂ J . Moreover, JI\I′ = J \ JI′

is partition of I \ I ′ in subsets of cardinality at least 2. This yields:

(3.17) |J | = |JI′ |+|J \ JI′| = |I ′|+
∣∣∣JI\I′∣∣∣ 6 |I ′|+ 1

2 (|I| − |I ′|) = 1
2 (|I|+ |I ′|) .

Moreover, equality holds in Equation (3.17) if and only if JI\I′ is a partition into
pairs of I \ I ′.
By Equations (3.15), (3.16) and (3.17), we have:

(3.18) |J | 6 1
2 (|I|+ |I ′|) 6 1

2 (|I|+ |I \ IS|) = 1
2 (|IS|+ 2 |I \ IS|) 6

p

2 .

Moreover, we have |J | = p
2 if and only if equality holds in (3.15), (3.16) and (3.17).

Equality in (3.15) means that Condition (1) in Definition 3.18 is satisfied. If equality
holds in (3.16) then I ′ = I \ IS. If in addition equality holds in Equation (3.17),
we have that JI\IS

= JI′ = {{I} | I ∈ I \ IS} ⊂ J and that JI\I′ = JIS
is

a partition of IS into pairs. Hence, Condition (2) in Definition 3.18 is satisfied.
Finally, if |J | = p

2 then (I,J ) ∈ Cp. Conversely, if (I,J ) ∈ Cp, equality holds in
Equations (3.15), (3.16) and (3.17) and |J | = p

2 . �

We conclude this section with the proof of Theorem 1.12.
Proof of Theorem 1.12. — Let p > 3 and φ1, . . . , φp ∈ C0(M). Let d ∈ N be large

enough, let sd ∈ RH0(X , E ⊗ Ld) be a standard Gaussian vector and let νd denote
the counting measure of the real zero set of sd.
By Lemma 3.5 and the fact that MI = ⊔

J ∈PIM
I, p
J , d for all I ∈ Pp, we have:

mp(νd)(φ1, . . . , φp) =
∑
I ∈Pp

∑
J ∈PI

∫
xI ∈M

I, p
J , d

ι∗Iφ (xI)DId (xI) |dVM ||I| .

By Lemma 3.24, up to an error term of the form( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
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we need only consider the terms in this double sum indexed by (I,J ) ∈ Cp. The
expression of these terms is given by Lemma 3.23. Thus, mp(νd)(φ1, . . . , φp) equals:

(3.19)
∑

(I,J )∈Cp

 ∏
{i, j}∈I\IS

∫
M
φiφjR1

d |dVM |
 ∏

J ∈JIS

∫
MJ

φJDJd |dVM |
2


+
( p∏
i=1
‖φi‖∞

)
O
(
d

1
2b p−1

2 c(ln d)p
)
,

where we used the same notations as in Definition 3.18. In particular, recall that
S ⊂ {1, . . . , p} is the union of the singletons appearing in I.
Let (I,J ) ∈ Cp and let us denote by S ⊂ {1, . . . , p} the union of the singletons

in I. Since IS = {{i} | i ∈ S}, there is a canonical bijection i 7→ {i} from S to IS.
This first bijection induces a second one between PPS and PPIS

. Using this second
bijection, JIS

∈ PPIS
corresponds to a partition into pairs of S, that we abusively

denote by JS in the following. Explicitly, we have JS = {{i, j} | {{i}, {j}} ∈ JIS
} ∈

PPS.
Let J = {{i}, {j}} ∈ JIS

and let I = {i, j} denote the corresponding pair in JS.
Using Notation 2.2, we have: φJ = φ{i} � φ{j} = φi � φj = φI . Moreover, under the
canonically identification MJ 'M I , for all (x, y) ∈M I we have:

DJd (x, y) = R2
d(x, y)−R1

d(x)R1
d(y) = DId(x, y).

Hence ∫
MJ

φJDJd |dVM |
2 =

∫
MI

φIDId |dVM |
2 ,

and the leading term on the right-hand side of Equation (3.19) equals:

(3.20)
∑

(I,J )∈Cp

 ∏
{i, j}∈I\IS

∫
M
φiφjR1

d |dVM |
 ∏

I ∈JS

∫
MI

φIDId |dVM |
2

 .
We want to rewrite (3.20) as a sum over {(Π,Σ) | Π ∈ PPp,Σ ⊂ Π}, by a change

of variable. To this end, we define a bijection from Cp to {(Π,Σ) | Π ∈ PPp,Σ ⊂ Π}.
• Let Φ : Cp → {(Π,Σ) | Π ∈ PPp,Σ ⊂ Π} be the map defined by:

Φ : (I,J ) 7→ ((I \ IS) t JS,JS) .
For any (I,J ) ∈ Cp, we have I \ IS ∈ PP{1, ..., p}\S and JS ∈ PPS. Hence,
(I \ IS) t JS is indeed a partition of {1, . . . , p} into pairs that contains JS.
• We now define a map Ψ : {(Π,Σ) | Π ∈ PPp,Σ ⊂ Π} → Cp as follows.
Let Π ∈ PPp and Σ ⊂ Π, we denote by S = tI∈ΣI. We define a partition
I = (Π \ Σ) t {{i} | i ∈ S} ∈ Pp, so that I{1, ..., p}\S = I \ IS = Π \ Σ is
partition into pairs of {1, . . . , p} \ S and IS = {{i} | i ∈ S}. Then we define
J ∈ PI by:

J =
{
{I}

∣∣∣ I ∈ I \ IS} t {{{i}, {j}} ∣∣∣ {i, j} ∈ Σ
}
.

Then JI\IS
= {{I} | I ∈ I \ IS} = J \ JIS

and JIS
is a partition into pairs

of IS. Hence (I,J ) ∈ Cp, and we set Ψ(Π,Σ) = (I,J ). Note that we have
JS = Σ.
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By construction, Φ is a bijection from Cp to {(Π,Σ) | Π ∈ PPp,Σ ⊂ Π} such that
Ψ = Φ−1. Using this bijection to change variables, the sum written in Equation (3.20)
becomes:

(3.21)
∑

Π∈PPp

∑
Σ⊂Π

 ∏
{i, j}∈Π \Σ

∫
M
φiφjR1

d |dVM |
∏

I ∈Σ

∫
MI

φIDId |dVM |
2

 .
On the other hand, by Lemma 3.5 applied with p = 2, for any i and j ∈ {1, . . . , p}

distinct we have:

m2(νd) (φi, φj) =
∫
MI

φIDId |dVM |
2 +

∫
M
φiφjR1

d |dVM | ,

where we denoted I = {i, j}. Thus,∑
Π∈PPp

∏
{i, j}∈Π

m2(νd) (φi, φj)

is equal to the term in Equation (3.21), hence is the leading term in Equation (3.19).
This proves the first claim in Theorem 1.12. We obtain the second expression of
mp(νd)(φ1, . . . , φp) in Theorem 1.12 by replacing m2(νd) by its asymptotics, com-
puted in Theorem 1.3.
Let φ ∈ C0(M). Using what we just proved with φi = φ for all i ∈ {1, . . . , p}, we

have:
mp (〈νd , φ〉) = mp(νd)(φ, . . . , φ)

= Card (PPp) (m2(νd)(φ, φ))
p
2 + ‖φ‖p∞O

(
d

1
2b p−1

2 c(ln d)p
)
.

By definition, m2(νd)(φ, φ) = Var(〈νdφ〉). Besides, the cardinality of PPp is equal to
2− p

2 (p2)−1p! if p is even and to 0 otherwise. In both cases Card(PPp) = µp (see Defini-
tion 1.10). This proves the first expression of mp(〈νd , φ〉) stated in Theorem 1.12. We
obtain the second expression of mp(〈νd , φ〉) by using the expression of Var(〈νd , φ〉)
given by Theorem 1.3. �

4. Proof of the corollaries of Theorem 1.12

In this section, we prove the corollaries of Theorem 1.12. The strong Law of
Large Numbers (Theorem 1.7) is proved in Section 4.1. The Central Limit Theorem
(Theorem 1.9) is proved in Section 4.2. Finally, we prove Corollaries 1.14 and 1.15
in Section 4.3.

4.1. Proof of the strong Law of Large Numbers (Theorem 1.7)

The purpose of this section is to prove the strong Law of Large Numbers (The-
orem 1.7). This result follows from the moments estimates of Theorem 1.12 by a
Borel–Cantelli type argument, using the separability of C0(M). This method was
already used in [Let19, LP19, SZ99], for example.
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We follow the notation of Section 2. In particular, recall that (sd)d> 0 is a sequence
of random vectors such, for all d > 0, sd ∼ N (0, Id) in RH0(X , E ⊗Ld). Then, Zd is
the real zero set of sd and νd is the counting measure of Zd.
Proof of Theorem 1.7. — We first consider the case of one test-function φ ∈ C0(M).

We have:

E

∑
d> 1

(
〈νd , φ〉 − E[〈νd , φ〉]

d
1
2

)6
 =

∑
d> 1

d−3m6(νd)(φ, . . . , φ).

By Theorem 1.12 this sum is finite. Indeed, m6(νd)(φ, . . . , φ) = O(d 3
2 ). Then, almost

surely, we have: ∑
d> 1

(
〈νd , φ〉 − E[〈νd , φ〉]

d
1
2

)6

< +∞,

hence d− 1
2 (〈νd, φ〉 − E[〈νd, φ〉]) −−−−→

d→+∞
0. Thus, for all φ ∈ C0(M), we have almost

surely:
d−

1
2 〈νd , φ〉 = d−

1
2E[〈νd , φ〉] + o(1) = 1

π

∫
M
φ |dVM |+ o(1).

Applying this the constant unit function φ = 1 yields:

d−
1
2 Card(Zd) −−−−→

d→+∞

1
π

Vol(M)

almost surely.
Now, recall that (C0(M), ‖·‖∞) is separable. Let (φk)k> 0 denote a dense sequence

in this space such that φ0 = 1. Almost surely, we have

d−
1
2 〈νd , φk〉 −−−−→

d→+∞

1
π

∫
M
φk |dVM | for all k > 0.

Let s = (sd)d> 1 ∈
∏
d> 1 RH0(X , E ⊗ Ld) denote a fixed sequence belonging to the

probability 1 event on which this condition holds. For every φ ∈ C0(M) and k ∈ N,
we have:∣∣∣∣d− 1

2 〈νd , φ〉 −
1
π

∫
M
φ |dVM |

∣∣∣∣
6 d−

1
2 |〈νd , φ− φk〉|+

∣∣∣∣d− 1
2 〈νd , φk〉 −

1
π

∫
M
φk |dVM |

∣∣∣∣+ 1
π

∫
M
|φ− φk| |dVM |

6 ‖φ− φk‖∞

(
d−

1
2 Card(Zd) + Vol(M)

π

)
+
∣∣∣∣d− 1

2 〈νd , φk〉 −
1
π

∫
M
φk |dVM |

∣∣∣∣ .
Since φ0 = 1, the sequence (d− 1

2 Card(Zd))d> 1 converges, hence is bounded by some
K > 0. Let ε > 0, there exists k ∈ N such that ‖φ− φk‖∞ < ε. Then, for every d
large enough, we have:∣∣∣∣d− 1

2 〈νd , φk〉 −
1
π

∫
M
φk |dVM |

∣∣∣∣ < ε,

hence ∣∣∣∣d− 1
2 〈νd , φ〉 −

1
π

∫
M
φ |dVM |

∣∣∣∣ < ε

(
1 +K + Vol(M)

π

)
.
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Thus, for all φ ∈ C0(M), we have d− 1
2 〈νd , φ〉 −−−−→

d→+∞
1
π

∫
M φ |dVM |, which concludes

the proof. �

4.2. Proof of the Central Limit Theorem (Theorem 1.9)

In this section, we prove the Central Limit Theorem (Theorem 1.9). The result
follows from Theorem 1.12 by the method of moments, see [Bil95, Chapter 30]. This
method allows to prove the Central Limit Theorem for any fixed continuous test-
function. Then, we apply the Lévy–Fernique Theorem [Fer67, Theorem III.6.5], which
is the analogue of Lévy’s Continuity Theorem for random generalized functions. Using
this theorem, we prove the convergence in distribution to the Standard Gaussian
White Noise in D′(M), the space of generalized functions on M .

Proof of Theorem 1.9. —
Central Limit Theorem for a fixed test-function. Let φ ∈ C0(M) \ {0}.

We define a sequence (Xd) of centered and normalized real random variables by:

Xd = 〈νd , φ〉 − E[〈νd , φ〉]
Var(〈νd , φ〉)

1
2

.

Note that since φ 6= 0, by Theorem 1.3, Var(〈νd, φ〉) = m2(νd)(φ, φ) is positive for
d large enough. Hence Xd is well-defined for d large enough, and we want to prove
that Xd −−−−→

d→+∞
N (0, 1) in distribution. By Theorem 1.3 and 1.12, for any integer

p > 3, we have:

E[Xp
d ] = mp(νd)(φ, . . . , φ)

Var(〈νd , φ〉)
p
2
−−−−→
d→+∞

µp,

where µp is the pth moment of an N (0, 1) variable (recall Definition 1.10). By the
Theorem of Moments (cf. [Bil95, Theorem 30.2]), this implies

Xd −−−−→
d→+∞

N (0, 1)

in distribution. Replacing the expectation and the variance of 〈νd , φ〉 by their asymp-
totics (Theorem 1.1 and Theorem 1.3), we get:

Xd = 1
d

1
4σ

(∫
M
φ2 |dVM |)

)− 1
2

〈νd , φ〉 − d
1
2

π

∫
M
φ |dVM |

+ o(1).

Hence,
1
d

1
4σ

〈νd , φ〉 − d
1
2

π

∫
M
φ |dVM |

 −−−−→
d→+∞

N (0, ‖φ‖2
2),

in distribution, where ‖φ‖2
2 =

∫
M φ2 |dVM |. Of course, this also holds for φ = 0.

Taking φ = 1 yields the Central Limit Theorem for the cardinality of Zd.
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Central Limit Theorem in D′(M). Let us now consider the random measure

Td =
(
d

1
4σ
)−1 (

νd − d
1
2 |dVM |

)
.

For all d > 1, Td defines a random generalized function. Recall that the characteristic
functional of this random generalized function is the map

χd : φ 7→ E
[
exp

(
i 〈Td , φ〉(D′, C∞)

)]
from C∞(M) to C.

Let φ ∈ C∞(M), we just proved that

〈Td , φ〉(D′, C∞) = 〈Td , φ〉 −−−−→
d→+∞

N
(
0, ‖φ‖2

2

)
.

Hence,

χd(φ) = E
[
ei〈Td ,φ〉

]
−−−−→
d→+∞

e−
1
2‖φ‖

2
2 ,

where we recognized the characteristic function of 〈Td , φ〉 evaluated at 1. Thus, the
sequence (χd) converges pointwise to χ : φ 7→ e−

1
2‖φ‖

2
2 , which is the characteristic

functional of the Standard Gaussian White Noise W (recall Definition 1.8). Then,
by the Lévy–Fernique Theorem (cf. [Fer67, Theorem III.6.5]), we have Td −−−−→

d→+∞
W

in distribution, as random variables in D′(M).

Central Limit Theorem for a family of smooth test-functions. Let
φ1, . . . , φk ∈ C∞(M), by the Continuous Mapping Theorem, we have:(
〈Td , φ1〉(D′, C∞) , . . . , 〈Td , φk〉(D′,C∞)

)
−−−−→
d→+∞

(
〈W ,φ1〉(D′, C∞) , . . . , 〈W ,φk〉(D′,∞)

)
in distribution, as random vectors in Rk. This yields the joint Central Limit Theorem
for a family of smooth test-functions. �

4.3. Proof of Corollaries 1.14 and 1.15

We first prove Corollary 1.14, that is the concentration in probability. This is just
an application of Markov’s Inequality.
Proof of Corollary 1.14. — Let (εd)d> 1 be a positive sequence and let p ∈ N∗. By

Markov’s inequality for the 2pth moment, we have:

P
(
d−

1
2 |〈νd , φ〉 − E[〈νd , φ〉]| > εd

)
6 ε−2p

d d−pm2p(νd)(φ, . . . , φ).

By Theorem 1.12, the term on the right-hand side is

O
(
(d 1

4 εd)−2p
)
.

As usual, one obtains the statement about Card(Zd) by specializing the result for
φ = 1. �

The proof of Corollary 1.15, that is of the Hole probability, uses Corollary 1.14
with the right test-function. It is similar to the proof of [Let19, Corollary 1.10].
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Proof of Corollary 1.15. — Let U be a non-empty open subset of M , and let
φU : M → R be a continuous function such that for all x ∈M , φU(x) > 0 if x ∈ U ,
and φU(x) = 0 otherwise. Let ε > 0 be such that ε < 1

π

∫
M φU |dVM |. By Theorem 1.1,

for all d large enough we have d− 1
2E[〈Zd , φU〉] > ε. For a degree d such that this

condition holds, we have:

P (Zd ∩ U = ∅) = P (〈Zd , φU〉 = 0) 6 P
(
d−

1
2
∣∣∣〈Zd , φU〉 − E[〈Zd , φU〉]

∣∣∣ > ε
)
.

By Corollary 1.14, the right-hand side is O(d− p
2 ) for all p ∈ N∗. �
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