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Abstract. — We prove that every 2d-regular unimodular random network carries an
invariant random Schreier decoration. Equivalently, it is the Schreier coset graph of an invariant
random subgroup of the free group Fd. As a corollary we get that every 2d-regular graphing
is the local isomorphic image of a graphing coming from a p.m.p. action of Fd.

The key ingredients of the analogous statement for finite graphs do not generalize verbatim
to the measurable setting. We find a more subtle way of adapting these ingredients and prove
measurable coloring theorems for graphings along the way.
Résumé. — Nous démontrons que tout graphe aléatoire unimodulaire 2d-régulier admet

une décoration de Schreier aléatoire invariante. De manière équivalent, c’est le graphe de
Schreier des classes d’un sous-groupe invariant aléatoire du groupe libre Fd. Comme corollaire,
nous obtenons que tout graphage 2d-régulier est localement l’image isomorphe d’un graphage
provenant d’une action de Fd préservant une mesure de probabilité.
Les ingrédients-clé de l’énoncé analogue pour les graphes finis ne se généralisent pas tels

quels au contexte mesurable. Nous trouvons une manière plus subtile d’adapter ces ingrédients,
et nous obtenons en chemin des théorèmes de coloriages mesurables de graphages.
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1. Introduction

It is a nice exercise in combinatorics to show that any 2d-regular finite graph is
a Schreier graph of the free group Fd on d generators. That is, the edges can be
oriented and colored by {1, . . . , d} = [d] such that every vertex has exactly one
incoming and outgoing edge of each color. We call such a coloring and orientation
a Schreier decoration of our graph. We do not want to spoil the argument for the
reader, but will inevitably have to talk about parts of the solution. See [Can13] for
a proof.
The main result of this paper generalizes the above result to unimodular random

rooted graphs, a notion that arises as a natural generalization of a finite graph in
the limit theory of sparse graph sequences.
Theorem 1.1. — Every 2d-regular unimodular random rooted graph has an

invariant random Schreier decoration.
We now introduce unimodularity and invariant random Schreier decorations. For

the precise definitions omitted from the Introduction see Section 2.
Let G2d

◦ denote the space of rooted, connected (possibly infinite) graphs with
degrees bounded by 2d. Similarly, let GSch

◦ denote the space of rooted, connected
Schreier graphs of Fd. There is a natural forgetting map Φ : GSch

◦ → G2d
◦ .

We denote byM(X) the set of Borel probability measures on a topological spaceX.
A measure µ ∈M(G2d

◦ ) is called a unimodular random rooted graph or unimodular
random rooted network if it satisfies an involution invariance property mimicking
reversibility of random walks. The “rooted” is dropped to shorten terminology, unless
we want to explicitly emphasize the presence of a root. A random Schreier graph
is a measure µ′ ∈ M(GSch

◦ ). It is invariant, if it is preserved by the natural action
Fd y GSch

◦ , where generators s ∈ [d] act by moving the root along the unique
outward edge colored by s adjacent to it.
Definition 1.2. — Let µ ∈M(G2d

◦ ) be a unimodular random rooted graph that
is 2d-regular with probability 1. An invariant random Schreier decoration of µ is a
measure µ′ ∈M(GSch

◦ ) that is invariant and has Φ∗µ′ = µ.
The condition Φ∗µ′ = µ expresses that forgetting both the orientation and the
coloring from a random Schreier graph generated by µ′ gives the same random graph
as µ in distribution.
Cannizzo investigated the Schreier decorations of unimodular random rooted

graphs in [Can13]. He showed that for an invariant random Schreier graph µ′ the
pushforward Φ∗µ′ is always unimodular. Moreover, under some assumptions, if a
unimodular random graph has an invariant random Schreier decoration, then it has
uncountably many ergodic ones. Theorem 1.1 complements these results nicely.
Invariant random Schreier graphs are closely related to Invariant Random Sub-

groups (IRS’s) introduced by Abért, Glasner and Virág in [AGV14]. On one hand,
the invariance property of the graph translates to conjugation invariance of the
random subgroup that is the stabilizer of the root. On the other hand, given an IRS
H 6 Fd, the Schreier graph on the coset space Fd/H rooted at H gives an invariant
random Schreier graph.
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Invariant Schreier decorations of unimodular random networks 1707

Keeping this correspondence in mind, Theorem 1.1 can be thought of as a statement
on IRS’s of Fd. Bowen proved in [Bow12] that Fd has a large “zoo” of ergodic IRS’s.
Cannizzo’s work shows that non-unimodularity is a probabilistic obstruction to
finding an IRS with a given factor geometry. Our result shows that it is the only
obstruction.
The proof of the finite case relies on two parts. First, a finite 2d-regular graph has

a balanced orientation. That is, an orientation with equal in- and outdegrees at all
vertices. Second, a d-regular bipartite finite graph can be properly edge-colored with
d colors. This is Kőnig’s line coloring theorem. Our approach to Theorem 1.1 is to
study these questions for graphings instead of graphs.
Graphings are measurable, bounded degree graphs on some standard Borel prob-

ability space (X, ν) as vertex set with an additional measure preserving property.
Their close connection to unimodular random graphs is also explained in Section 2.
For now it suffices to know that any unimodular random graph µ can be encoded
in a single graphing G. We say G represents µ if the connected component in G of
a ν-random vertex is the same as µ in distribution. Such a representing graphing
exists for any unimodular random graph, though the choice is not unique.
Unfortunately neither of the two finite statements directly generalizes to graphings.

In [Lac88] Laczkovich constructed a 2-regular graphing that has no measurable
balanced orientation. Moreover, there are d-regular bipartite graphings that have
no measurable proper edge coloring with d colors [CK13, Section 6]. We substitute
these steps with the next two theorems.
First we claim that representing graphings can be chosen smartly.
Theorem 1.3. — Let µ be a 2d-regular unimodular random rooted graph. Then

there exists a graphing G = (X,E, ν) on a standard Borel space (X, ν) such that G
represents µ, and there is a measurable balanced orientation of the edges of G.
Second, we claim that the coloring can be done with little error. Coloring questions

for Borel graphs and graphings have been extensively studied, see [KM15] for a survey.
We build on the work of Csóka, Lippner and Pikhurko in [CLP16] to derive a version
of Kőnig’s theorem that suits our purposes.
Theorem 1.4. — Let G = (X1, X2, E, ν) be a d-regular bipartite graphing. For

every ε > 0 there is a measurable proper edge coloring of G with d+ 1 colors, such
that the measure of edges of the (d+ 1)th color is at most ε.
Combining Theorems 1.3 and 1.4 with a subsequential weak limit argument gives

the proof of Theorem 1.1.
We can formulate versions of both Theorem 1.1 and 1.4 using local isomorphisms.

We say a graphing G1 = (X1, E1, ν1) is the local isomorphic image of another graphing
G2 = (X2, E2, ν2) if their is a measure preserving map ϕ : X2 → X1 that is a rooted
isomorphism restricted to the connected component of almost all vertices of G2. It
is clear that in this case G1 and G2 represent the same unimodular random graph.
Theorem 1.1 can be reformulated as follows.
Corollary 1.5. — Every 2d-regular graphing G is the local isomorphic image

of some graphing G ′ that comes from a p.m.p. action of Fd. That is, the edges of G ′
have a measurable balanced orientation and coloring with [d].
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1708 L. M. TÓTH

This formulation is a priori stronger, it is easy to see that Corollary 1.5 implies
Theorems 1.1 (and 1.3) directly. The other implication is proved in Section 6.
Similarly, Theorem 1.4 has the following version.
Corollary 1.6. — Let G = (X1, X2, E) be a bipartite graphing with maximum

degree d. Then G is the local isomorphic image of a bipartite graphing that can be
measurably edge-colored with d colors.

Both corollaries are instances of a more general correspondence between coloring
results for unimodular random networks and graphings. We express this phenomenon
in Theorem 6.3 in Section 6.
Remark. — For graphings being bipartite is a stronger assumption than containing

no odd cycles. This distinction is not relevant for our results, Theorem 1.4 and
Corollary 1.6 hold with the weaker assumption as well. The reason for stating our
results this way is that the relevant graphings arising in this paper are automatically
bipartite.
It is natural to ask if any of these random decorations can be constructed as factor
of i.i.d. (FIID) processes. See for example [CL17] for the definition of FIID for
deterministic graphs, the definition for random graphs is analogous.
Question. — Which 2d-regular unimodular random networks have a factor of

i.i.d. Schreier decoration? Which even degree unimodular random networks have a
factor of i.i.d. balanced orientations?

Note that the bi-infinite line has no FIID balanced orientation.
The structure of the paper is as follows. In Section 2 we give a detailed introduction

to unimodularity, graphings, and explain the connection to Benjamini–Schramm
convergence. We also study the finite statement to motivate our question. We consider
orientations in Section 3 and prove Theorem 1.3. In Section 4 we turn to coloring
the edges and prove Theorem 1.4. We put these together and prove Theorem 1.1 in
Section 5. In Section 6 we prove Corollaries 1.5 and 1.6.

Acknowledgements

The author would like to thank Miklós Abért, Damien Gaboriau, Ferenc Bencs
and Nóra Szőke for inspiring conversations about the topic.

2. Graphings, unimodularity and local convergence

In this section we will introduce the main notions of the paper and provide back-
ground and motivation for Theorem 1.1. A thorough and beautifully written exposi-
tion of the notions introduced here can be found in [Lov12].
Throughout this paper graphs will be simple; they do not contain loops or multiple

edges. We will use standard letters F,G, . . . to denote countable graphs, calligraphic
letters G,H, . . . to denote graphings and G with certain indices to denote spaces of
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graphs. The measures µ, µ′, µ̃, . . . will denote random graphs, while ν, ν ′, ν̃, . . . will
denote measures on vertex or edge sets of graphings. To avoid confusion, decorations
of edges will be colors and decorations of vertices will be labels.
The map Φ will always forget all the decoration of a graph. We do not burden the

notation with indicating what type of decoration we are forgetting, this will always be
clear from context. We consider Schreier graphs to be rooted and connected, unless
explicitly stated otherwise. Properties of random graphs are always understood to
hold with probability 1.

2.1. Local convergence

Recall thatG2d
◦ denotes the space of rooted, connected graphs with degrees bounded

by 2d. For two such graphs (G1, o1), (G2, o2) ∈ G2d
◦ we define their distance as

d
(

(G1, o1) , (G2, o2)
)

= 1
2r ,

where r is the largest integer with BG1(r, o1) ∼= BG2(r, o2). BG(r, o) denotes the
rooted ball in G around o of radius r, and the isomorphism has to map o1 to o2.
Two rooted graphs are close, if they look the same in a large neighborhood of the
root. If the balls above are isomorphic for all r ∈ N, then (G1, o1) and (G2, o2) are
isomorphic, and their distance is defined 0. With this distance G2d

◦ becomes a totally
disconnected compact metric space [Lov12, Section 18.3.1].
Local (or Benjamini–Schramm [BS01]) convergence takes a connected finite graph

F (with degree bound 2d) and by choosing a uniform random root among its vertices
turns it into the random rooted graph (F, o). If the graph is not connected, only the
component of the random root is kept. This way we obtain a probability measure
µF on G2d

◦ . Formally we define the map f : V (F )→ G2d
◦ , f(v) = (CF (v), v), where

CF (v) denotes the component of F containing v. Then µF is simply the pushforward
of the uniform measure on V (F ) onto G2d

◦ by f .
A sequence of graphs (Fn) is convergent, if the corresponding µFn converge weakly

in the spaceM(G2d
◦ ) of probability measures on G2d

◦ . In this case the weak limit µ is
considered to be the limit of the finite graphs Fn. Since G2d

◦ is totally disconnected,
weak convergence is equivalent to the convergence of the measures of the following
clopen sets. For a finite rooted graph (F, v) ∈ G2d

◦ of radius r we define the clopen
set

G(F, v) =
{

(G, o) ∈ G2d
◦

∣∣∣ BG(r, o) ∼= (F, v)
}
.

A sequence of measures µn ∈M(G2d
◦ ) converges weakly to µ if and only if µn(G(F, v))

→ µ(G(F, v)) for all choices of (F, v).
While the µFn are supported on finite rooted graphs, their limit µ can be supported

on infinite graphs as well.
Throughout the paper various spaces of rooted and decorated graphs will appear.

They are all metric spaces with rooted metrics that are analogous to the one on G2d
◦ ,

with isomorphisms required to respect the decoration as well as the graph structure
and the root. We believe that not defining these metrics explicitly will cause no
confusion.
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1710 L. M. TÓTH

2.2. Sofic and unimodular measures

A central question of this limit theory is to determine which measures are limits
of finite graphs. This leads to the notions of sofic and unimodular measures.
Soficity is easy to define: a measure µ ∈M(G2d

◦ ) is sofic if it is the limit of measures
µFn corresponding to finite graphs.
Unimodularity is more subtle, and we will only define it in the regular case. See

for example [Lov12] for a general treatment. Let µ ∈ M(G2d
◦ ) be 2d-regular with

probability 1. It is unimodular if it satisfies the following involution invariance
property. We generate a random instance (G, o) of µ. We then choose a uniform
random neighbor o′ of o in G. We say that µ is unimodular, if the random birooted
graph (G, o, o′) is invariant with respect to inverting the order of the roots.
Formally we introduce the space G2d

◦◦ of connected graphs with degrees bounded by
2d, that have two distinguished vertices, the first and the second root. The topology
is defined similarly to G2d

◦ , two such birooted graphs are close, if the look the same in
large neighborhoods around both roots. There is a natural involution ι : G2d

◦◦ → G2d
◦◦

swapping the roots: ι(G, o, o′) = (G, o′, o). The random rooted graph µ ∈ M(G2d
◦ )

determines a measure µ̃ ∈M(G2d
◦◦) as above, by choosing the second root uniformly

among the neighbors of the original. We say µ is unimodular if ι∗µ̃ = µ̃.
We mention two important facts about unimodularity. First, measures µF coming

from finite graphs are unimodular. (This is true without assuming F to be regular,
but here we only defined unimodularity for regular graphs.) Indeed, unimodularity
is just a reformulation of the simple random walk being not only stationary, but
also reversible with respect to the uniform measure on the vertices of a finite regular
graph.
Second, unimodularity is a closed condition in M(G2d

◦ ) with respect to weak
convergence. The reason is that involution invariance can be checked using only the
local neighborhood probabilities µ(G(F, v)).
These two facts imply that every sofic measure is unimodular. The converse however

is an open question, it is not known whether there is a non-sofic unimodular measure.

2.3. Invariance in the finite case

To motivate Theorem 1.1 we explore how the invariance property appears in the
finite case.
Our finite statement takes a connected finite graph F and turns it into an unrooted

Schreier graph F̃ = (F, or, c), where or and c signify the orientation and coloring
respectively. If we then choose a uniform random root, we get the random rooted
Schreier graph (F, o, or, c), where o ∈ V (F ) is uniform random. We denote its
distribution by µ′

F̃
∈ M(GSch

◦ ). The action of any generator s is by a bijection on
V (F ), so the uniform distribution on V (F ) is invariant with respect to the action
Fd y V (F ). This implies that µ′

F̃
is invariant.

The graph structure of µ′
F̃
without the orientation and coloring is the same as µF .

Using our notation, we say Φ∗µ′F̃ = µF . These two phenomena, µ′
F̃
being invariant
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and Φ∗µ′F̃ = µF are what motivate the definition of an invariant random Schreier
decorations.
With this in mind it is relatively easy to prove that sofic random rooted graphs

have invariant random Schreier decorations. Finding Schreier decorations of the finite
approximations, then taking a subsequential weak limit of the corresponding random
rooted Schreier graphs solves the problem. Theorem 1.1 shows that the property of
having an invariant random Schreier decoration does not distinguish soficity and
unimodularity.

Remark. — For a fixed connected, 2d-regular infinite rooted or unrooted graph
finding a Schreier decoration is simply a compactness argument once one knows the
finite version. In fact rooted (possibly infinite), connected Schreier graphs are in
one-to-one correspondence with subgroups of Fd.
If one wants to build an invariant Schreier decoration however, one has to pick the

individual Schreier decorations of the random instances of the unimodular random
graph in a coherent way, so that the whole process becomes invariant. The additional
freedom is that the choice can be random.

2.4. Graphings

Graphings have quite a few equivalent definitions. We are going to stick with
[Lov12].

Definition 2.1 (Graphing). — Let X be a standard Borel space and let ν be a
probability measure on the Borel sets in X. A graphing with degree bound 2d is a
graph G on V (G) = X with Borel edge set E(G) ⊂ X ×X in which all degrees are
at most 2d and

(2.1)
∫
A

deg(x,B) dν(x) =
∫
B

deg(x,A) dν(x)

for all measurable sets A,B ⊆ X, where deg(x, S) is the number of edges from x ∈ X
to S ⊆ X.

Formally the graphing consists of the quadruple G = (X,B, E, ν), where B denotes
the Borel σ-algebra on X. We will suppress B from the notation.
Looking at the connected component of a random vertex will represent a unimod-

ular random rooted graph. Recall that for x ∈ X its connected component in G is
denoted CG(x). It is a basic property of Borel graphs that the map f : X → G2d

◦ ,
defined by f(x) = (CG(x), x) is Borel. This way we can define µG = f∗ν similarly to
the finite graph case.
The measure preserving property (2.1) is closely related to the involution invariance

that we used to define unimodularity. In fact (2.1) implies that µG is unimodular.
In the other direction the connection is a bit more subtle. Fix a unimodular random

rooted graph µ ∈M(G2d
◦ ). We say that a graphing G represents µ if µ = µG.

Theorem 2.2 ([AL07, Ele07]). — Every unimodular random rooted graph is
represented by some graphing.
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As mentioned in the Introduction, the choice of a representing graphing is not
unique. Graphings with distinctly different global measurable structure can represent
the same unimodular random rooted graph.
In [Lov12, Theorem 18.37] a construction of a representing graphing is carefully

explained and motivated. The representing graphings described there always have
the same vertex and edge sets, only the measure changes. The space is a vertex-
labeled version of G2d

◦ , with edges connecting graphs that are the same up to a
displacement of the root to a neighbor. Starting from a unimodular random rooted
graph µ one uses further random vertex labels to break all potential symmetries of
any realizations. This results in a measure ν on the space of vertex-labeled rooted
graphs. The unimodularity of µ implies that (2.1) is satisfied by ν. We will adapt
this construction to our situation in Subsection 3.3.

2.5. Measuring edges of graphings

The property (2.1) of graphings allows one to measure set of edges in a meaningful
way. Let ν̃ be the measure on E ⊆ X ×X obtained the following way. For a Borel
subset C ⊆ E of edges let

ν̃(C) = 1
2

∫
X

degC(x) dν(x).

Here degC(x) denotes the degree of x using the edge set C, that is the number of
edges in C adjacent to x. The normalization accounts for counting edges from both
endpoints. Intuitively equation (2.1) expresses that edges have the same weight from
both endpoints. For the edge set C = E(A,B) of edges between A and B it says
that measuring them from A and B gives the same answer. In our case the measure
ν̃ takes values in [0, 2d].

2.6. Sparse vertex labeling of graphings

We will use vertex labeling to break local symmetries of graphings. Proposition 2.3
below is a basic tool when working with graphings.
We say a labeling of a graph is r-sparse, if vertices of distance at most r always

have distinct labels. A 1-sparse labeling is traditionally called a proper labeling.
Concerning vertex labelings of Borel graphs Kechris, Solecki and Todorcevic

[KST99, Theorem 4.6] show that if the degree is bounded by ∆, then there is a
proper Borel labeling of the vertices with ∆ + 1 labels.
One can also show that introducing additional edges in a Borel graph connecting

vertices at distance at most r gives a Borel graph. This together with the above
coloring result has the following useful corollary.

Proposition 2.3. — For every bounded degree Borel graph G and r ∈ N there
is an r-sparse Borel labeling l : V → [k] for some k ∈ N.

See for example [CLP16, Corollary 3.1] for a more detailed exposition.
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3. Orientation

In this section we prove Theorem 1.3. At first we exhibit a way to choose a random
balanced orientation of rooted, even degree infinite graphs. The important property
will be that for any even degree graph G and vertices v1, v2 the random balanced
orientations of (G, v1) and (G, v2) will be the same in distribution on the edges of G.
We then explain how this allows one to construct a measurably orientable graphing
to represent a unimodular random rooted graph.

3.1. Orienting even degree trees

Let (T, o) be an infinite (connected) rooted tree with even degrees. We describe
a random balanced orientation of (T, o). For all vertices v ∈ V (T ) let deg(v) = 2dv.
We start at the root, and orient do edges inwards and do edges outwards randomly.
We proceed to the neighbors of o. If v is a neighbor of o, then one of the 2dv edges at
v is already oriented, say towards v. So from the 2dv − 1 undirected ones we orient
dv − 1 inwards and dv outwards randomly, independently of the previous choice. We
continue this procedure radially outwards from o, independently randomizing at each
vertex. As T is a tree we will always have exactly 1 already oriented edge at each
vertex. The result of this random procedure is a balanced orientation of (T, o).

Lemma 3.1. — The random orientation described above does not depend on the
choice of root in T . More precisely, if v1 and v2 are two vertices of T , then the random
orientations started at v1 and v2 are the same in distribution.

Proof. — Let F ⊆ T be a saturated finite subtree containing both v1 and v2 as
internal vertices. By saturated we mean that vertices of F are either leaves of F , or
have all their neighbors in F as well. The internal vertices of F are the non-leaves.
Fix any orientation or of the edges of F that is balanced at internal vertices. We
compute the probability of getting or of F when starting our procedure at v1. List
the internal vertices of F in a radially expanding order: {u1, u2, . . . , un}, specifically
u1 = v1. At u1 we have to match 1 out of(

2du1

du1

)
possible orientations. At each later ui we have to match 1 out of the possible(

2dui − 1
dui

)
orientations of the remaining edges. Note that this does not depend on whether
the edge already oriented at ui is inwards or outwards. In total, the probability of
generating our fixed orientation from v1 is

1(
2du1
du1

) n∏
i=2

1(
2dui−1
dui

) .
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Using that
(

2du1
du1

)
= 2 ·

(
2du1−1
du1

)
, we can rewrite this as

1
2

n∏
i=1

1(
2dui−1
dui

) .
Notice that this later expression does not change if we reorder the ui, so starting

from v2 we will get the same probability.
This holds for all finite subtrees F and orientations or as above. Let Cyl(F, or)

denote the set of all orientations of T (not necessarily balanced) that coincide with
or at internal vertices of F . We proved that the two random orientations assign equal
measure to all such Cyl(F, or). (This holds also if or is not balanced at all internal
vertices of F ; then both random orientations assign measure 0 to Cyl(F, or).)
The sets Cyl(F, or) form a base of the product topology on the set of (not neces-

sarily balanced) orientations of T . Therefore the two random processes are the same
in distribution. �

3.2. Orienting even degree graphs

We now define a random balanced orientation of rooted, bounded even degree
infinite graphs. Again, the random orientation will not depend on the choice of root
in distribution.
Given such a graph (G, o), we will first orient cycles as long as there are any.

Our procedure will consist of countably many stages, with each stage consisting
of countably many steps. During the procedure, we will have both oriented and
undirected edges. We say that at a certain point a cycle is undirected, if all its edges
are undirected. Two cycles of the same length are neighbors, if they share an edge.
After stage n, with probability 1 there will be no undirected cycles of length at

most n. At every step of stage n we consider currently undirected cycles of length
n, and randomize a uniform [0, 1] label for each. If an undirected cycle has a higher
label than all of its neighbors, then it gets oriented, randomly in one of the two
possible directions.
Since our graph has bounded degree, the number of neighbors of an undirected

cycle considered during stage n is bounded. So as long as it remains undirected, it
has a positive probability (bounded away from 0) to get a higher label than all its
neighbors at every step. Therefore staying undirected after countably many steps
happens with probability 0.
At every step the partial orientation is balanced. That is, the indegrees and outde-

grees of vertices are the same. Clearly the undirected degree of each vertex is always
even. By the end of our procedure with probability 1 the undirected edges contain
no cycle, so they span a disjoint union of even degree trees. We can randomly orient
these trees by choosing a root in each component: for example the closest one to o
in G, or if there are multiple ones, then picking one uniformly at random. Then we
use the random orientation described in Subsection 3.1 for the rooted trees.
We call the random balanced orientation of (G, o) described above the canonical

random balanced orientation of (G, o). The distribution on the edges does not depend
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on the choice of o. This is obvious for the cycle removal, and the random orientation of
the trees was shown to be invariant under changing the root. In the next subsection
we show how the canonical random orientation allows us to build a measurably
orientable graphing for any unimodular random network.

3.3. Constructing orientable graphings

Theorem 2.2 states that any unimodular random network can be represented by a
graphing. The construction thoroughly explained in [Lov12, Theorem 18.37] can be
adapted to our situation. We outline our construction and the key ideas, but do not
burden the reader with lengthy exposition.
The set of vertices of our graphing will be the space of 2d-regular, oriented, con-

nected rooted graphs with labels from [0, 1] on each vertex. That is, every node is a
2d-regular rooted graph (H, v) with an orientation or : E(H)→ V (H) and a vertex
labeling l : V (H)→ [0, 1]. Let Gor, l

◦ denote the set of such quadruples.
The Borel structure is generated by the following cylinder sets: for any r > 0, we

fix the oriented isomorphism type of the ball with radius r about the root, and also
for every vertex in the ball we specify a Borel set in [0, 1] from which the weight is
to be chosen.
For a node (H, v, or, l) we introduce an edge to the nodes (H, v′, or, l), where v′

runs through the neighbors of v in H. In other words, (H, v, or, l) and (H ′, v′, or′, l′)
are connected if there is an isomorphism (of unrooted graphs) η : H → H ′, that
preserves the orientation and the vertex labels, and η(v) ∼H′ v′. (The ∼G symbol
indicates being neighbors in the graph G.)
Starting from a unimodular measure µ on G2d

◦ we construct a measure µ̄ on Gor, l
◦ .

We first choose (G, o) according to µ, then put i.i.d. [0, 1] labels on the vertices, and
randomize an orientation according to the canonical balanced orientation of (G, o).

Proposition 3.2. — The Borel graphGor, l
◦ with the measure µ̄ is a graphing, and

it represents the unimodular random rooted graph µ. Moreover, it has a measurable
balanced orientation.

Proof. — The measure µ̄ will be involution invariant on Gor, l
◦ , because µ is invo-

lution invariant on G2d
◦ , and both the orientation an the labels are chosen in a way

that is in distribution the same regardless of the position of the root. This makes
sure that (Gor, l

◦ , µ̄) is indeed a graphing.
The labeling breaks all symmetries of (G, o, or) almost surely, which makes sure

that (Gor, l
◦ , µ̄) represents µ.

Finally by construction the edges of Gor, l
◦ can be measurably oriented. The edge

between (H, v, or, l) and (H, v′, or, l) is oriented towards (H, v, or, l) if and only if
(v, v′) is oriented towards v in (H, v, or). �

This finishes the proof of Theorem 1.3.
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4. Measurable colorings of bipartite graphings

In this section we prove Theorem 1.4. We will repeatedly make use of two results
of Csóka, Lippner and Pikhurko [CLP16, Theorems 1.9 and 4.2]. Their main result
is the following

Theorem 4.1. — For every d > 1 there is r0 = r0(d) such that if G = (X1, X2, E,
ν) is a bipartite graphing with maximum degree at most d+ 1 such that the set J of
vertices of degree d+ 1 is r0-sparse, then there is a measurable proper edge coloring
of G with d+ 1 colors.

During the proof of Theorem 4.1 they use the following theorem as an inductive
step.

Theorem 4.2. — For every d > 2 and r > 1, there is r1 = r1(d, r) such that the
following holds. Let G = (X1, X2, E, ν) be a bipartite graphing with degree bound
d+ 1 that has no finite components. If the set J ⊆ X1∪X2 of vertices of degree d+ 1
is r1-sparse, then there is a Borel matching M such that, up to removing a null-set,
G \M has maximum degree at most d and its set of degree-d vertices is r-sparse.

We will follow the induction and make sure the color (d+ 1) is used rarely. Note
that vertices of high degree being sparse does not immediately imply that they have
small density, there might be small connected components. However, if a component
contains at least 2 such vertices, then the density can be bound in terms of the
sparsity. Ruling out components with exactly one high degree vertex is key to our
proof of Theorem 1.4.
We start by proving two lemmas to take care of finite components in graphings.

Lemma 4.3. — LetG = (S, T,E) be a finite bipartite graph with degrees bounded
by (d+ 1), and such that

(1) the vertices of degree (d+ 1) are 3-sparse, and
(2) there are at most ρ · |V (G)| vertices of degree (d+ 1) in total, (0 6 ρ 6 1).

Then there is a proper edge coloring of G with (d+ 1) colors such that there are at
most ρ · |V (G)| edges of color (d+ 1).

Proof. — For each vertex of degree (d+ 1) choose an arbitrary adjacent edge and
color it with (d+ 1). As these points are 3-sparse, this coloring is so far proper. We
colored at most ρ · |V (G)| edges with color (d+ 1). The remaining graph has degrees
at most d, so by Kőnig’s line coloring theorem it can be properly colored with d
colors. Notice that if ρ = 0 the statement is simply Kőnig’s theorem. �

Lemma 4.4. — Let G = (X1, X2, E, ν) be a bipartite graphing with all connected
components finite and satisfying the conditions of Lemma 4.3. Then it has a Borel
proper edge coloring with (d + 1) colors such that the ν̃-measure of edges of color
(d+ 1) is at most ρ.

Proof. — For i = 1, 2, . . . we edge color the components with exactly i+1 vertices.
For each i we fix an i-sparse Borel labeling l : X1 ∪ X2 → [ki]. In components of
size i+ 1 all vertices have different label. For each isomorphism type of such labeled
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graphs choose a way to color its edges as in Lemma 4.3, and apply this coloring
consistently everywhere. At each step the color classes are Borel, and there are
countably many steps, so the color classes in the end are also Borel.
At each step the measure of edges colored by (d+1) is at most ρ times the measure

of vertices with components of size i+ 1. As µ(X1 ∪X2) = 1, the measure of edges
colored (d+ 1) in the end is at most ρ. �

Remark. — Lemma 4.4 can also be proved using uniformization, specificly the
Lusin-Novikov Uniformization Theorem.

The following proposition is the first step of our inductive procedure to prove
Theorem 1.4.

Proposition 4.5. — Let G = (X1, X2, E, ν) be a bipartite graphing with degrees
2 or 3. Assume that the vertices of degree 3 are r-sparse for r > r0(3), where r0 is
the constant from Theorem 4.1. Then it has a measurable proper edge coloring with
3 colors such that the ν̃-measure of edges of the 3rd color is at most 4/r.

Proof. — We will use 3 colors: red, blue and purple, with as few purple edges as
possible. It suffices to prove the theorem when G only has finite components, and also
when it only has infinite components. In general G can be split into two measurable
parts according to the components being finite or infinite, and measurably coloring
each side with few purple edges.

Suppose all components are finite. Finite components that contain no vertices
of degree 3 are even cycles, and can be properly edge-colored with red and blue, no
purple edges needed.
We also claim that finite components that contain a degree 3 vertex contain at

least two. Indeed, the sum of degrees has to be even. This implies that the size of
such a finite component is at least r + 1, as degree 3 vertices are r-sparse. We claim
that the density of degree 3 vertices is at most 2/r. Indeed, because of the sparsity
the balls of radius r/2 around the degree 3 points are disjoint, and these balls contain
at least r/2 points each. By Lemma 4.4 we have a Borel proper edge coloring with
only 2/r proportion of edges colored purple.

Now assume that all components are infinite. We simply apply Theorem 4.1.
We get a measurable proper edge coloring c : E → {red, blue, purple}. We will
modify this coloring in finitely many steps so that purple edges become sparse.
Call a purple edge standard, if both of its endpoints have degree 2. Our procedure

will consist of r + 1 steps. In step 0 we will make sure that the neighbors of stan-
dard purple edges have different color. Standard purple edges that are between two
blue edges can be recolored red. We will now argue that this recoloring maintains
measurability.
Let R, B, and P denote the edge sets c−1({red}), c−1({blue}), and c−1({purple})

respectively. For a measurable set of edges F let VF denote the set of endpoints of
F , that is

VF = {x ∈ X1 ∪X2 | ∃ y ∈ X1 ∪X2 s.t. (x, y) ∈ F} .
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If F is Borel, then so is VF since degrees in G are finite. Moreover, ν̃(F ) = 0 implies
ν(VF ) = 0 by the definition of ν̃. Consequently if F is ν̃-measurable, then VF is
ν-measurable.
Let A ⊆ X1 ∪X2 denote the set of vertices that are the endpoints of a blue and

a standard purple edge. Measurability of A is shown by A = VP ∩ VB \ VR. The set
of standard purple edges between two blue edges is A2 ∩ P , which is measurable.
Therefore the recoloring preserves measurability. Similarly, standard purple edges
between two red edges can be recolored blue. This finishes step 0.
Generally for n > 1, during step n we make sure that there are no standard purple

edges at distance at most n. Since steps 1 through n− 1 are already done, a path
between two standard purple edges at distance n is colored by red and blue in an
alternating way. Step 0 has made sure that the neighbors of these purple edges are
colored differently.

bluepurple bluepurpleredred

Figure 4.1. Path between standard purple edges at distance 2.

So swapping the colors on the path between the purple edges results in them having
neighbors of the same color, and then we can recolor them red or blue according to
the color of their neighbors. The case of n = 2 is illustrated in Figures 4.1 and 4.2.

red blue red blue red blue

Figure 4.2. Path recolored.

As before, we do not loose measurability. We execute steps 0, 1, . . . , r, and esti-
mate the measure of purple edges at the end. Purple edges are either standard, or
have an endpoint of degree 3. We divide the set P = {e ∈ E | c(e) = “purple′′}
accordingly: P1 = {e ∈ P | e is standard}, P2 = P \P1 = {e = (x, y) ∈ P | deg(x) =
3 or deg(y) = 3}.
As points of degree 3 are r-sparse in infinite components they have measure at

most 2/r. Each such point has exactly one edge from P2, so ν̃(P2) 6 2/r. Edges in
P1 are also r-sparse, so ν̃(P1) 6 2/r. We indeed proved that ν̃(P ) 6 4/r. �
Proof of Theorem 1.4. — The idea is to use Theorem 4.2 (d− 2) times to remove

matchings from the edge set, coloring each one with a unique color. Whenever
removing those matchings creates finite components we color those using Lemma 4.4.
In the end we will apply Proposition 4.5 to the remaining graphing.
Instead of re-normalizing every time we split our graphings, we will talk about

density of (d+ 1)-color edges. This means their ν̃-measure divided by the ν-measure
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of the vertex set of the graphing in question. At each step the density of (d+1)-color
edges will be at most ε, so in the end their density will still be at most ε, and this
coincides with their ν̃-measure.
To be precise we start by picking r2 > r0(3) such that 4/r2 6 ε. Looking to apply

Theorem 4.2 repeatedly we define ri > r1(i, ri−1) for i = 3, . . . d, also assuming
ri−1 6 ri.
The graphing G has no vertices of degree (d+ 1), so in particular vertices of degree

(d+ 1) are rd-sparse. The finite components can be colored with [d] using Lemma 4.4
(choosing ρ = 0). So without loss of generality we can assume that all components
are infinite. Then G satisfies the conditions of Theorem 4.2, so we find a measurable
matching M1 ⊆ E(G), such that the set of vertices of degree d in G1 = G \M1 is
rd−1-sparse. We color M1 with color d, and turn our attention to G1. Notice that all
degrees in G1 are either d or d− 1.
We claim that all finite components of G1 that contain a vertex of degree d contain

at least two. Assume towards contradiction that there was a finite component G =
(S, T,E ′), with a unique vertex x of degree d. Without loss of generality we can
assume x ∈ S. Double counting the edges we get (d− 1)|S|+ 1 = (d− 1)|T |, which
is not possible if d > 3, as the right hand side is divisible by (d− 1), while the left
hand side is not. This proves our claim.
This rules out small components with vertices of degree d. We use this to argue

that in the finite components vertices of degree d are not only sparse, but have small
density as well. Components having degree d vertices have size at least rd−1 +1, since
they have at least two vertices at distance at least rd−1. The rd−1/2 balls around
degree d vertices are disjoint, and have size at least rd−1/2 as the component has at
least rd−1 + 1 points. So the density of degree d points in finite components of G1 is
at most 2/rd−1.
We split G1 into the disjoint union G1 = F1 ∪ G ′1, where F1 is the part with finite

components, and G ′1 is the one with infinite components. To F1 we apply Lemma 4.4
with ρ = 2/rd−1 6 4/r2 6 ε. We use the colors {1, . . . , d− 1} for most edges, and
(d+ 1) with density at most ε.
To G ′1 we apply Theorem 4.2, and find a measurable matching M2 such that
G2 = G ′1 \M2 has maximum degree (d − 1), and degree (d − 1) vertices in G2 are
rd−2-sparse. We color M2 with color d− 1. Notice that all vertices in G2 are of degree
either d− 2 or d− 1.
As long as i < d − 2 we will split the graphing Gi into the finite and infinite

component parts Fi and G ′i. We argue that degree d − i + 1 vertices in Fi are not
only sparse, but also of small density. The divisibility argument works, as we have
(d − i)|S| + 1 = (d − i)|T | being impossible. We color Fi using Lemma 4.4 with
colors {1, . . . , d − i} and (d + 1) used with density at most 2/rd−i 6 4/r2 6 ε.
Then we apply Theorem 4.2 to G ′i to find a measurable matching Mi+1 such that
Gi+1 = Gi \ Mi+1 has maximum degree d − 1 and its degree (d − i) vertices are
rd−i-sparse. We color Mi+1 with (d− i).
After coloring d− 2 matchings we end up with Gd−2. This satisfies the conditions

of Proposition 4.5, which finishes the coloring using colors 1, 2 and (d+ 1), the later

TOME 4 (2021)



1720 L. M. TÓTH

with density at most 4/r2 6 ε. Color conflicts cannot arise as the Mi are matchings,
and Proposition 4.5 also provides a proper edge coloring. �

5. Proof of the main Theorem

In this section we complete the the proof of Theorem 1.1. Take any unimodular
random rooted graph (G, o) with distribution µ ∈ M(G2d

◦ ) that is 2d-regular with
probability one. By Theorem 1.3 we choose a graphing G = (X,E, ν) representing µ
that can be measurably oriented in a balanced way. This balanced orientation is a
measurable way of choosing a terminus of each edge, that is a symmetric measurable
map or : E → X such that for all edges e = (u, v) ∈ E we have or(e) ∈ {u, v}.
Using the orientation we construct a d-regular bipartite graphing by doubling

the vertex set and placing edges according to their orientation. To be precise let
Y = X × {1, 2}, Xi = X × {i} and consider the product measure ν ′ on Y , that is
ν ′ = ν×u{1, 2}, where u{1, 2} is the uniform distribution on {1, 2}. We build a bipartite,
undirected graphing H on the space (X1, X2, ν

′). We set ((u, 1), (v, 2)) ∈ E(H) if
and only if (u, v) ∈ E(G) and or(u, v) = v.
We set 1/n as the amount of error we allow with our coloring. By Theorem 1.4

we have a measurable proper edge coloring cn0 : E(H) → [d + 1] using the last
color infrequently, i.e. ν̃ ′(c−1

0 (d + 1)) 6 1/n. The measure ν̃ ′ is the edge measure
on the graphing H. The coloring cn0 gives a coloring cn : E(G) → [d + 1], as every
oriented edge of G is represented as exactly one edge of H. For an edge e = (u, v) ∈
E(G) let or−(e) denote its source, that is or−(e) = {u, v} \ or(e). We set cn(e) =
cn0 ((or−(e), 1), (or(e), 2)). Note that cn is not a proper edge coloring. Instead it has
the property that vertices have at most one incoming and one outgoing edge of
each color.
We managed to measurably orient and color the edges of G, although the number

of colors is (d+1) instead of the desired d. We now look at the connected component
of a ν-random point x in G, together with the orientation and coloring of edges, we
get a random rooted, oriented and colored graph. Our next two lemmas claim that
these are almost Schreier graphs and by passing to a weakly convergent subsequence
we get an invariant random Schreier graph.

Lemma 5.1. — Let (Gn, on, orn, cn) denote the rooted, oriented, edge-colored
component of a ν-random vertex on in Gn = (X, ν, or, cn). Then

P
[
all edges around the root on are colored by [d]

]
> 1− 4

n
.

Proof. — Let Yd+1 ⊆ Y denote vertices of H that encounter an edge colored d+ 1.

Yd+1 =
{
y ∈ X1 ∪X2

∣∣∣ ∃ y′ ∼H y with cn0
(
(y, y′)

)
= d+ 1

}
.

Our assumption of (d+ 1)-colored edges being infrequent implies ν(Yd+1) 6 2/n.
Similarly, set

Xd+1 =
{
x ∈ X

∣∣∣ ∃ x′ ∼G x with cn
(
(x, x′)

)
= d+ 1

}
.
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By construction we have x ∈ Xd+1 if and only if (x, 1) ∈ Yd+1 or (x, 2) ∈ Yd+1. This
gives ν(Xd+1) 6 4/n.
The set X \ Xd+1 is exactly the vertices that have all edges connected to them

colored by [d], so we have

P
[
all edges around the root on are colored by [d]

]
= ν(X \Xd+1) > 1− 4

n
. �

By passing to a subsequence we can assume that (Gn, on, orn, cn) weakly converges
to some random rooted, oriented, colored graph. Note that for all n the undirected,
uncolored rooted graph (Gn, on) is the same as (G, o) in distribution, so the same
holds for the limit. We will denote the limit by (G, o, or, c), which highlights the fact
that it is a random orientation and coloring of the random rooted graph (G, o) we
began with.

Remark. — In our notation logically µ′Gn should denote the distribution of (Gn, on,
orn, cn), and µ′ the subsequential weak limit. Notice however, that µ′Gn /∈M(GSch

◦ ).
The weak convergence µ′Gn → µ′ takes place in the larger spaceM(G2d, or, c

◦ ). Here
G2d, or, c
◦ denotes the space of rooted, connected graphs with degree bound 2d, with a

balanced orientation and a coloring of the edges by d+ 1 colors, each vertex having
at most one in- and outedge of each color. The forgetting function Φ : G2d, or, c

◦ → G2d
◦

still makes sense, and our construction ensured Φ∗(µ′(Gn)) = µ. This implies Φ∗µ′ = µ,
which we shorthanded into the notation (G, o, or, c).
A priori we do not know that µ′ ∈M(GSch

◦ ), and Fd only partially acts on G2d, or, c
◦ .

This makes the statement of our next lemma somewhat cumbersome.

Lemma 5.2. — With probability 1 the root in (G, o, or, c) has one incoming and
one outgoing edge of each color in [d]. For any s ∈ [d] we define s.o as the unique
neighbor v of o with the edge (o, v) colored s and oriented towards v. Such a vertex
exists almost surely. We claim that (G, o, or, c) and (G, s.o, or, c) are the same in
distribution.

In the lemma we only claim that edges at the root have the right colors. Together
with the invariance however this implies that all edges have the right colors, so
Lemma 5.2 finishes the proof of Theorem 1.1.
Proof. — The first part of the statement follows easily from Lemma 5.1. The prob-

ability of seeing one incoming and one outgoing edge of each color in [d] adjacent to
o in (G, o, or, c) is the limit of the probabilities of the same event for (Gn, on, orn, cn),
which is clearly 1.
To show invariance with respect to moving the root, let α denote a finite (connected)

rooted, oriented, [d+ 1] colored graph of radius r. Assume also that the 2d edges at
the root are properly oriented an colored.
We have to show

P(G, o, or, c)
[
BG(r, o) ∼= α

]
= P(G, s.o, or, c)

[
BG(r, s.o) ∼= α

]
.

The event BG(r, s.o) ∼= α can be seen by the r + 1 neighborhood of the root in
(G, o). So we collect all connected, rooted, oriented and [d+ 1]-colored finite graphs
β = (Fβ, oβ, orβ, cβ) of radius at most r + 1, where BFβ(r, s.oβ) ∼= α. We implicitly
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assumed that s.oβ makes sense. Let B denote the set of all such β. Now we can
express the right hand side of the above as

P(G, s.o, or, c)
[
BG(r, s.o) ∼= α

]
= P(G,o, or, c)

[
BG(r + 1, o) ∈ B

]
.

Since these events correspond to clopen sets in the space of rooted, oriented, colored
graphs we have

P(G, o, or, c)
[
BG(r, o) ∼= α

]
= lim

n→∞
P(Gn, on, orn, cn)

[
BGn(r, on) ∼= α

]
,

P(G, o, or, c)
[
BG (r + 1, o) ∈ B

]
= lim

n→∞
P(Gn, on, orn, cn)

[
BGn (r + 1, on) ∈ B

]
.

To compare the events BGn(r, on) ∼= α and BGn(r + 1, on) ∈ B we introduce the
sets

Xα
n =

{
x ∈ X

∣∣∣ B(G, cn)(r, x) ∼= α
}
,

Xs
n = {x ∈ X | there is an outward s-edge of (G, or, cn) at x} ,

XB
n =

{
x ∈ X

∣∣∣ B(G, cn)(r + 1, x) ∈ B
}
.

We also introduce the partial bijection ϕsn defined on Xs
n, setting ϕsn(x) = y if (x, y)

is the s-colored edge of (G, or, cn) oriented towards y. As G is a graphing, this partial
bijection is measure preserving from Xs

n to ϕsn(Xs
n). Also XB

n = {x ∈ Xs
n | ϕsn(x) ∈

Xα
n}, so

µ
(
XB
n

)
= µ

(
(ϕsn)−1 (ranϕsn ∩Xα

n )
)

= µ (ranϕsn ∩Xα
n ) .

We can rewrite the probabilities as follows:
P(Gn, on, orn, cn)

[
BGn (r, on) ∼= α

]
= µ (Xα

n ) ,

P(Gn, on, orn, cn)
[
BGn (r + 1, on) ∈ B

]
= µ

(
XB
n

)
= µ (ranϕsn ∩Xα

n ) .

We have µ(Xα
n )− µ(ranϕsn ∩Xα

n ) 6 1− µ(ranϕsn) = 1− µ(Xs
n)→ 0, so

lim
n→∞

P(Gn, on, orn, cn)
[
BGn (r, on) ∼= α

]
= lim

n→∞
P(Gn, on, orn, cn)

[
BGn (r + 1, on) ∈ B

]
.

By the equalities above this implies
P(G, o, or, c)

[
BG(r, o) ∼= α

]
= P(G, o, or, c)

[
BG(r + 1, o) ∈ B

]
= P(G, s.o, or, c)

[
BG(r, s.o) ∼= α

]
,

which finishes the proof of Lemma 5.2. �

6. Graphings from Fd actions

In this section we consider probability measure preserving (p.m.p.) actions of Fd,
and prove Corollary 1.5.
Given a p.m.p. action of Fd on a standard Borel probability space (X, ν) the

associated Schreier graph Sch(Fd y X,S) with the standard generating set S is a
2d-regular graphing. The action of Fd provides a measurable orientation and coloring
of the edges.
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Not all 2d-regular graphings come from p.m.p. actions of Fd. In fact finding a
measurable orientation and coloring for the edges of a 2d-regular graphing G =
(X,E, ν) is equivalent to finding such a p.m.p. action Fd y (X, ν) with Sch(Fd y
X,S) = G as unlabeled graphings.
When two graphings G1 and G2 represent the same unimodular random rooted

graph, that is µG1 = µG2 we say that they are locally equivalent. Recall that a graphing
G1 = (X1, E1, ν1) is the local isomorphic image of another graphing G2 = (X2, E2, ν2)
if there is a measure preserving map ϕ : X2 → X1 such that ϕ∗ν2 = ν1, and(
CG2(x), x

) ∼= (
CG1(ϕ(x)), ϕ(x)

)
for ν2-almost all x ∈ X2. It is clear that if G1 is

a local isomorphic image of G2, then they are locally equivalent. However, local
isomorphisms are not invertible in general. To this end we introduce a symmetric
relation, bi-local isomorphism. We say G1 and G2 are bi-locally isomorphic if they are
both local isomorphic images of some graphing G3.
Clearly, bi-local isomorphism implies local equivalence. We will exploit the fact

that the converse also holds.

Theorem 6.1. — Two graphings are locally equivalent if and only if they are
bi-locally isomorphic.

See [Lov12, Theorem 18.59] for a detailed proof. Most of the argument is also
present in [HLS14].
Proof of Corollary 1.5. — Let G be an arbitrary 2d-regular graphing. By The-

orem 1.1 the corresponding unimodular random rooted graph µG has an invariant
random Schreier decoration µ′. We use µ′ to build a graphing that is locally equivalent
to G with measurable orientation and coloring of the edges.
Let GSch, l

◦ denote the space of Schreier graphs of Fd with vertices labeled by [0, 1].
The Borel structure and the edges are defined as in Subsection 3.3. By choosing
uniform i.i.d. vertex labels for a µ′-random Schreier graph, we get a measure µ̄ on
GSch, l
◦ that turns it into a graphing locally equivalent to G. The graphing property

holds because µ′ is invariant, and (GSch, l
◦ , µ̄) is locally equivalent to G because

Φ∗µ̄ = Φ∗µ′ = µG. It is clear that (GSch, l
◦ , µ̄) has a measurable orientation and

coloring, as by construction it carries a p.m.p. action of Fd.
By Theorem 6.1 the graphings G and (GSch, l

◦ , µ̄) are bi-locally isomorphic, so they
are both local isomorphic images of some graphing G ′ = (X ′, E ′, ν ′). The measurable
orientation and coloring can be pulled back by the local isomorphism ϕ : X ′ → GSch, l

◦ ,
so G ′ satisfies the requirements of the Corollary 1.5. �

6.1. Unimodular decorations

The argument in the previous subsection can be generalized to arbitrary decorations
of graphs. To define an abstract decoration, letD1, . . . Dn be compact standard Borel
spaces serving as labels; this allows finite sets as well. Let k1, . . . , kn be natural
numbers. We use Di to label ki-tuples of vertices.
A decoration of the graph G = (V,E) is a finite set of functions C = {c1, . . . , cn}

with ci : V (G)ki → Di. The decorated graph consists of the pair (G, C).
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Fix the sets of labels D = (D1, . . . , Dn), the size of tuples k = (k1, . . . , kn) and a
degree bound ∆. The space G∆,D,k

◦ of rooted, connected, decorated graphs (G, o, C)
with degree bound by ∆ is a compact standard Borel space as before.
The Borel structure is generated by the following cylinder sets. For any r > 0 we

fix the isomorphism type of the ball with radius r about the root. Also for every
i and every ki-tuple of vertices in the fixed ball we specify a Borel set in Di from
which its label is to be chosen.
Unimodular measures µ ∈ M(G∆,D,k

◦ ) can be defined exactly as before, by the
involution invariance of the bi-rooted measure µ̃ ∈ M(G∆,D,k

◦ ◦ ) obtained by taking
a step with the simple random walk on a µ-random sample of G∆,D,k

◦ .

Definition 6.2. — Let µ ∈ G∆
◦ be a unimodular random rooted graph. A uni-

modular random decoration of µ is a measure µ′ ∈M(G∆,D,k
◦ ) that is unimodular,

and Φ∗µ′ = µ.

This notion has been studied in the context of Schreier decorations by Biringer and
Tamuz in [BT17]. They show that for a random rooted Schreier graph unimodularity
is equivalent to invariance. Cannizzo also proves this in [Can13]. The equivalence
shows how Definition 6.2 is a generalization of Definition 1.2 in the Introduction.
When decorating a graphing G the only formal difference is requiring measurability

of the maps ci : V (G)ki → Di. Each connected component becomes a decorated graph
when restricting the decoration.
Since we are only interested in the connected components, the values of the ci only

matter on ki-tuples where the vertices are in the same component. As the graph is
measurable, changing the value on all tuples that are not contained in connected
components does not change measurability of the ci. So we can assume the ci to be
constant on such irrelevant tuples.
The following theorem translates between the two languages.

Theorem 6.3. — Let P be a property of rooted graphs, and Q be a property of
rooted, decorated graphs. The following are equivalent.

(i) Every unimodular random rooted graph µ that has property P almost surely
has a unimodular random decoration µ′ that has property Q almost surely.

(ii) Every graphing G with almost every component having property P is the
local isomorphic image of a graphing G ′ that has a measurable decoration
with almost every component having property Q.

Proof. — The (ii) implies (i) part is the easy one. We pick G to represent µ, then
G ′ also represents µ. Together with the measurable decoration it defines µ′ = µ′(G, C).
The (i) implies (ii) part is proved exactly like Corollary 1.5. Starting from G

we use (i) for µG to find a locally equivalent graphing G0 that can be measurable
decorated, and use Theorem 6.1 to find G ′ that has local isomorphisms into both.
The decoration can be pulled back from G0 to G ′. �

We now proceed to prove Corollary 1.6.
Proof of Corollary 1.6. — Our idea is to show that the unimodular random graph

µG has a unimodular random proper edge coloring with d colors, and then use the
correspondence in Theorem 6.3.
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First we add vertices and edges to our bipartite graphing G, so that it remains
bipartite and becomes d-regular. This can always be done. Then we color the edges
using Theorem 1.4 with smaller and smaller weight of (d + 1)-color edges. The
colorings cn restricted to G give unimodular random colored graphs µ(G, cn) when
looking at the component of a random point. A subsequential weak limit will be a
unimodular random edge coloring of µG.
We also want to make sure that the graphing we get in the end is bipartite. This

is equivalent to the existence of a measurable proper vertex labeling with 2 labels.
So we start with such a labeling l : V (G) → {1, 2}, and retain the information in
the random graph, that is we consider µ(G, cn, l). Now a subsequential weak limit will
still be unimodular random, carrying both edge and vertex decoration. This makes
sure that the graphing G ′ that has G as a local isomorphic image is both bipartite
and the edges can be measurably colored. �

BIBLIOGRAPHY

[AGV14] Miklós Abért, Yair Glasner, and Bálint Virág, Kesten’s theorem for invariant random
subgroups, Duke Math. J. 163 (2014), no. 3, 465–488. ↑1706

[AL07] David J. Aldous and Russell Lyons, Processes on unimodular random networks, Electron.
J. Probab. 12 (2007), 1454–1508. ↑1711

[Bow12] Lewis Bowen, Invariant random subgroups of the free group, https://arxiv.org/abs/
1204.5939v1, 2012. ↑1707

[BS01] Itai Benjamini and Oded Schramm, Recurrence of Distributional Limits of Finite Planar
Graphs, Electron. J. Probab. 6 (2001), article no. 23. ↑1709

[BT17] Ian Biringer and Omer Tamuz, Unimodularity of invariant random subgroups, Trans. Am.
Math. Soc. 369 (2017), no. 6, 4043–4061. ↑1724

[Can13] Jan Cannizzo, On invariant Schreier structures, https://arxiv.org/abs/1309.5163v1,
2013. ↑1706, 1724

[CK13] Clinton T. Conley and Alexander S. Kechris, Measurable chromatic and independence
numbers for ergodic graphs and group actions, Groups Geom. Dyn. 7 (2013), no. 1,
127–180. ↑1707

[CL17] Endre Csóka and Gabor Lippner, Invariant random perfect matchings in Cayley graphs,
Groups Geom. Dyn. 11 (2017), no. 1, 211–244. ↑1708

[CLP16] Endre Csóka, Gabor Lippner, and Oleg Pikhurko, Kőnig’s line coloring and Vizing’s
theorems for graphings, Forum Math. Sigma 4 (2016), article no. e27. ↑1707, 1712, 1716

[Ele07] Gábor Elek, On limits of finite graphs, Combinatorica 27 (2007), no. 4, 503–507. ↑1711
[HLS14] Hamed Hatami, László Lovász, and Balázs Szegedy, Limits of locally–globally convergent

graph sequences, Geom. Funct. Anal. 24 (2014), no. 1, 269–296. ↑1723
[KM15] Alexander S. Kechris and Andrew S. Marks, Descriptive graph combinatorics,

2015, preprint available at http://www.math.caltech.edu/~kechris/papers/
combinatorics20book.pdf. ↑1707

[KST99] Alexander S. Kechris, Slawomir Solecki, and Stevo Todorcevic, Borel chromatic numbers,
Adv. Math. 141 (1999), no. 1, 1–44. ↑1712

[Lac88] Miklós Laczkovich, Closed sets without measurable matching, Proc. Am. Math. Soc. 103
(1988), no. 3, 894–896. ↑1707

[Lov12] László Lovász, Large networks and graph limits, Colloquium Publications, vol. 60, Amer-
ican Mathematical Society, 2012. ↑1708, 1709, 1710, 1711, 1712, 1715, 1723

TOME 4 (2021)

https://arxiv.org/abs/1204.5939v1
https://arxiv.org/abs/1204.5939v1
https://arxiv.org/abs/1309.5163v1
http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf
http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf


1726 L. M. TÓTH

Manuscript received on 25th March 2020,
revised on 25th January 2021,
accepted on 5th February 2021.

Recommended by Editor D. Aldous.
Published under license CC BY 4.0.

This journal is a member of Centre Mersenne.

László Márton TÓTH
Chair of Ergodic and
Geometric Group Theory,
EPFL SB MATH EGG, Station 8,
1015 Lausanne, (Switzerland)
laszlomarton.toth@epfl.ch

ANNALES HENRI LEBESGUE

https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/item/AHL_2021__4__1705_0
mailto:laszlomarton.toth@epfl.ch

	1. Introduction
	Acknowledgements

	2. Graphings, unimodularity and local convergence
	2.1. Local convergence
	2.2. Sofic and unimodular measures
	2.3. Invariance in the finite case
	2.4. Graphings
	2.5. Measuring edges of graphings
	2.6. Sparse vertex labeling of graphings

	3. Orientation
	3.1. Orienting even degree trees
	3.2. Orienting even degree graphs
	3.3. Constructing orientable graphings

	4. Measurable colorings of bipartite graphings
	5. Proof of the main Theorem
	6. Graphings from Fd actions
	6.1. Unimodular decorations

	References

