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Abstract. — Jacobians of degenerating families of curves are well-understood over 1-
dimensional bases due to work of Néron and Raynaud; the fundamental tool is the Néron
model and its description via the Picard functor. Over higher-dimensional bases Néron models
typically do not exist, but in this paper we construct a universal base change M̃g, n →Mg, n

after which a Néron model Ng, n/M̃g, n of the universal jacobian does exist. This yields a new
partial compactification of the moduli space of curves, and of the universal jacobian over it. The
map M̃g, n →Mg, n is separated and relatively representable. The Néron model Ng, n/M̃g, n

is separated and has a group law extending that on the jacobian. We show that Caporaso’s
balanced Picard stack acquires a torsor structure after pullback to a certain open substack of
M̃g, n.
Résumé. — Les jacobiennes de dégénérescences de courbes au-dessus de bases de dimen-

sion 1 sont bien comprises grâce aux travaux de Néron et Raynaud ; l’outil fondamental est
le modèle de Néron et sa description à l’aide du foncteur de Picard. En général, sur des
bases de dimension supérieure les modèles de Néron n’existent pas, mais dans cet article nous
construisons un changement de base M̃g, n →Mg, n qui est universel pour la propriété qu’un
modèle de Néron Ng, n/M̃g, n de la jacobienne universelle existe. Ceci fournit une nouvelle
compactification partielle de l’espace de modules des courbes et de la jacobienne universelle qui
vit dessus. Le morphisme M̃g, n →Mg, n est séparé et relativement représentable. Le modèle
de Néron Ng, n/M̃g, n est séparé et possède une loi de groupe qui étend celle de la jacobienne.
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1728 D. HOLMES

Nous montrons que le « champ de Picard équilibré » de Caporaso acquiert une structure de
torseur après changement de base à un certain sous-champ ouvert de M̃g, n.

1. Introduction
1.1. Models of the universal jacobian

The jacobian Jg, n of the universal curve overMg, n is an abelian scheme, and comes
with a natural extension as a semiabelian scheme J 0

g, n overMg, n, parametrising line
bundles of degree zero on every component of every fibre. This model J 0

g, n is not
proper, and sections of Jg, n often fail to extend to J 0

g, n, causing many difficulties in
defining linear series on stable curves, compactifying cycles on the moduli space, etc.
This motivates the search for “better” models of Jg, n over Mg, n, which has been
very extensively studied; the literature is too large to describe in detail here, but
highlights include [Cap08, Chi15, Est01, KP19, Mel09]. . .

1.2. Néron models

Ideally, one would like a model of Jg, n overMg, n which is proper and admits a
group structure; properness guarantees that sections extend and intersection theory
makes sense, and the group law gives additional structure to the resulting cycles and
linear series. However, this is too much to ask for, as such models of abelian varieties
generally fail to exist even over Dedekind base schemes. In the 1960s, Néron proved
a beautiful theorem showing that, by replacing properness by the weaker condition
that sections should extend, very nice models could be constructed of 1-dimensional
families of abelian varieties. More precisely, given a Dedekind scheme S, a dense
open U ⊆ S and an abelian variety A/U , Néron showed the existence of a Néron
model; a smooth separated model N/S satisfying the Néron mapping property:

given any smooth morphism T → S and U -morphism f : T ×S U → A,
there is a unique F : T → N extending f .

Néron models automatically inherit group laws from their generic fibres, and have
been by some margin the most widely-used models of abelian schemes over Dedekind
bases in geometry and number theory over the past half-century. However, Néron’s
work cannot in general be directly applied to the universal jacobian, sinceMg, n is
rarely of dimension 1. The definition of the Néron model makes sense over any base
scheme, without restrictions on the dimension, the problem is that Néron’s proof of
existence fails, and indeed Néron models generally fail to exist (see [Hol19]).

1.3. Summary of main results

The universal jacobian rarely admits a Néron model; in this article, we construct
a “universal” stack overMg, n over which a Néron model does exist. Slightly more
formally, we construct a regular integral stack M̃g, n together with a separated
representable map M̃g, n →Mg, n locally of finite presentation, and with the following
properties:
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A Néron model of the universal jacobian 1729

(1) M̃g, n →Mg, n is an isomorphism overMg, n (it is birational);
(2) the universal jacobian Jg, n admits a Néron model over M̃g, n (the universal

Néron model);
(3) If t : T → Mg, n is any morphism such that t∗Jg, n admits a Néron model

over T , then the map t factors uniquely via M̃g, n →Mg, n (a more precise
statement can be found in Section 10).

The map M̃g, n → Mg, n is not proper in general; this is forced upon us by condi-
tion (2) and the results of [Hol19], unless a Néron model already exists overMg, n. In
fact it is not in general quasi-compact, essentially because component groups of Néron
models of test curves inMg, n can be arbitrarily large. The fibres of M̃g, n →Mg, n

are all either single points, or countably infinite disjoint unions of finite-type schemes.
In (3), it is not in general true that the pullback of the Néron model over M̃g, n is
the Néron model over T . Indeed, this would be too much to ask, since e.g. t might
be a ramified cover of its image (in Lemma 12.6 we do prove such a property for a
restricted class of morphisms t.)
Inside M̃g, n there is an important quasi-compact open substack M̃6 1

g, n, which can
be defined as the largest open substack over which the pullback of the universal
curve is regular (more details are given in Section 12). In Proposition 13.2, we show
that Caporaso’s balanced Picard stack Pd, g (described in more detail below) admits
a torsor structure over the universal Néron model, after base-change to M̃6 1

g, n.

1.4. Comparison to results of Caporaso and Chiodo

1.4.1. Caporaso’s balanced Picard stack

Given integers d, g such that gcd(d − g + 1, 2g − 2) = 1, Caporaso constructs
in [Cap08] a model Pd, g/Mg for the degree-d jacobian(1) such that, for every test
curve f : T → Mg transverse to the boundary of Mg, there is an isomorphism of
algebraic spaces from f ∗Pd, g to the Néron model of f ∗Jd, g.
Note that (unless g = 2) the condition gcd(d− g+ 1, 2g− 2) = 1 excludes the case

d = 0. It is therefore nonsensical in general to ask Pd, g to have a group structure,
but it does make sense to ask whether it has a torsor structure. This turns out not
to be the case, as can be verified by an explicit computation in genus 3; the key
point is that, given two test curves through the same point in the boundary, the
special fibres of their Néron models will be isomorphic as schemes but not as group
schemes/torsors. In Proposition 13.2 we will show that Pg, d does acquire a canonical
torsor structure after pullback to the stack M̃6 1

g, n.

1.4.2. Chiodo’s results over the stack of twisted curves

As in the present paper, Chiodo [Chi15] replaces Mg by a different stack living
overMg, in his case the stackMl

g of l-twisted curves (in the sense of Abramovich

(1)The coarse moduli space of line bundles of degree d.
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1730 D. HOLMES

and Vistoli). We will not give the definition of the stack of l-twisted curves here, but
recall that it comes with a non-separated non-representable forgetful map to Mg,
which is an isomorphism over Mg. Chiodo constructs a group scheme Pic0,l

g over
Ml

g, extending the pullback of the universal jacobian. This has the property that, if
f : T →Mg is a test curve transverse to the boundary, then there is a lift of f to
Ml

g such that the pullback of Pic0, l
g is the Néron model of the jacobian.

Chiodo’s approach is thus similar to ours; he replacesMg by a larger stack, and
then obtains a group scheme model with a property related to Néron models. The
key differences are

(1) Chiodo’sMl
g →Mg is not separated or representable, whereas our M̃g, n →

Mg, n has both properties;
(2) Chiodo applies the Néron mapping property along test curves, whereas we

extend the mapping property to larger bases.

1.5. Consequences, and relation to more recent work

1.5.1. The double ramification cycle

In [Hol21], a slight variant of the construction of M̃g, n is used to extend the double
ramification cycle to the boundary of the moduli space of curves. This slight variation
comes about because the double ramification cycle is concerned with extending one
particular section of the universal jacobian, whereas a Néron model must extend
all sections. In a forthcoming joint work of the author with Johannes Schmitt, we
will use this to compute precisely the components and multiplicities of the double
ramification cycle in the meromorphic case.

1.5.2. Enriched structures

In [Mai98], Mainó defines an enriched structure on a stable curve C/k (with
irreducible components C1, . . . , Cr) to be a collection of line bundles L1, . . . , Lr on
C satisfying

(1) for each i,
Li|Ci ∼= OCi (−Ci ∩ Cc

i )(
here Cc

i = ∪j 6=iCi
)
and

Li|Cci ∼= OCci (Ci ∩ Cc
i ) .

(2) ⊗i Li
∼= OC .

In [BH16] we construct a moduli stack of enriched structures overMg, n, resolve
various conjectures of Mainó, and construct an isomorphism between the stack
of enriched structures and the open substack M̃6 1

g, n ↪→ M̃g, n. Combining with
Proposition 13.2, it follows that Caporaso’s balanced Picard stack Pd, g acquires a
torsor structure over the stack of enriched structures.
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A Néron model of the universal jacobian 1731

1.6. A detailed description of the case g = 1, n = 2

The definition of our space M̃g, n is via a universal property concerning Néron
models, which are themselves defined by another universal property. As such, the
reader may suspect our construction to be somewhat abstract and hard to work with.
To provide reassurance, we give here a very detailed description of the structure and
properties of our stack in the case when g = 1, n = 2 (the first interesting case),
working over a field k for simplicity.

fibre of C1, 2

Spec k[[u, v]]

Figure 1.1. Curve overM1, 2

1.6.1. Coordinates at the non-treelike point

The map β : M̃g,n →Mg, n is an isomorphism not only overMg, n, but in fact over
a larger locus, that of “treelike curves”; curves for which the dual graph is a tree
with some self-loops attached. The only non treelike point inM1, 2 is the 2-pointed
2-gon (Figure 1.1), and β is an isomorphism away from that point. The completed
local ring at that point is isomorphic to k[[u, v]], and we choose coordinates u and
v so that local equations for the singularities are given by xy = u and x′y′ = v.
Equivalently, we can write equations; the universal curve over k[[u, v]] is given by the
projectivisation of

y2 =
(
(x− 1)2 − u

) (
(x+ 1)2 − v

)
.

1.6.2. The locus on which the curve is regular

The restriction of β6 1 : M̃6 1
g,n → Mg, n to k[[u, v]] is very easy to describe. First

blow up the closed point of S := Spec k[[u, v]]. Then delete the two points where the
strict transforms of the coordinate axes meet the exceptional curve, and denote the
resulting scheme by S̃/S (cf. figure 2). This S̃/S is exactly the restriction of β6 1 to
S. The fibre over the closed point is isomorphic to Gm.
Write N1, 2 for the universal Néron model over M̃1, 2, and N6 1

1, 2 for its restriction
to M̃6 1

1, 2, The group scheme N6 1
1, 2 over M̃6 1

1, 2 is also easy to describe. We will abuse
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1732 D. HOLMES

notation by writing C1, 2 for the pullback of C1, 2 to S, and similarly for J1, 2. Write
U for the complement of the coordinate axes in S (equivalently, the locus where C1, 2
is smooth over S). Over U we have an Abel–Jacobi isomorphism α : C1, 2|U → J1, 2
via one of the marked sections σ ∈ C1, 2(S). Write Csm

1, 2 ⊆ C1, 2 for the locus where
C1, 2 → S is smooth (note that Csm

1, 2 is larger than C1, 2|U , as it includes smooth
points in fibres which are not everywhere smooth). The pullback of Csm

1, 2 to M̃6 1
1, 2 is

again smooth, and is in fact isomorphic to N6 1
1, 2 . More precisely, applying the Néron

mapping property to α yields a map Csm
1, 2 → N6 1

1, 2 , which is an isomorphism. This
map depends on the choice of the section σ, but the remainder of this discussion
does not depend on that choice.

delete
S

S̃

= exceptional locus

Figure 1.2. S̃ → S

The above discussion gives the structure of N6 1
1, 2 as a scheme, but it remains to

describe the group structure. The most concrete description in this setting is to
check with a computer algebra package that the group structure on J1, 2 extends to
Csm

1, 2
∼= N6 1

1, 2 . In general, we construct Néron models as quotients of Picard spaces
(moduli spaces of line bundles), and the group structure is given by tensor product
of line bundles.
A typical test curve in S transversal to the boundary might be defined by the

equation u = λv for some λ ∈ k×. Writing f : T → Spec k[[v, u]] for the inclusion, we
see explicitly that f factors via β6 1. The pullback of N6 1

1, 2 to T is identified with the
pullback of Csm

1, 2 to T . We therefore get a group structure on f ∗Csm
1, 2. By restriction,

we also get a group structure on the restriction of f ∗Csm
1, 2 to the closed point of

T , in other words on Csm
1, 2|u=v=0. Note that the latter scheme is independent of the

choice of parameter λ ∈ k×. The crucial point is that the induced group structure on
Csm

1, 2|u=v=0 does depend non-trivially on λ. This dependence can be made completely
explicit; the scheme Csm

1, 2|u=v=0 is isomorphic to two copies of Gm with a marked
point 1 on one of them, and the choice of λ ∈ k× corresponds to the choice of an
element to act as a square root of 1 on the other copy of Gm. This means that it
is not possible to put a group structure on the whole of Csm

1, 2; if we want a group
structure we must pull back to M̃6 1

1, 2 first.
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1.6.3. Weakly-transversal test curves

For a moment we return to the case of general g and n, to discuss the pullback
of the universal Néron model over test curves not transversal to the boundary. We
have a smooth separated group algebraic space Ng, n over M̃g, n extending β∗Jg, n,
the Néron model of β∗Jg, n.
A non-degenerate test curve is a map from a trait to Mg, n sending the generic

point toMg, n. Any non-degenerate test curve f : T →Mg, n will factor via β, but
we can see already from the 1-dimensional case that we cannot hope that f ∗Ng ,n

will be the Néron model of f ∗Jg, n for all such f . However, we have something nearly
as good. We say f is weakly transversal to the boundary if the greatest common
divisor of the thickness in the singularities of f ∗Cg, n is 1. This certainly includes
the case of test curves transverse to the boundary, since these correspond to all
the thicknesses being 1. We then find that for all test curves f which are weakly
transversal to the boundary, we have that f ∗Ng, n is naturally isomorphic as a group
algebraic space to the Néron model of f ∗Jg, n. We omit the proof of this result; it is
a simple generalisation of Lemma 12.6.

1.6.4. The case g = 1, n = 2 again

We continue in the notation of Section 1.6.1. A typical weakly-transversal test
curve might be defined by the equation un = λvm for λ ∈ k× and m, n coprime
positive integers. These m and n correspond exactly to the thickness of the two
singularities in the curve f ∗C1, 2. This means that the Néron model over T must
have component group cyclic of order m+ n.
This tells us that M̃g, n cannot be quasi-compact, since Ng, n is a finite-type group

space over it, but it has arbitrarily large cyclic groups appearing in the component
group. In fact, M̃g, n can be described by iterating the blowup construction from
Section 1.6, see Section 11 for more details.

1.6.5. Toric description

In terms of toric varieties, we can see S as (the completion of) the toric variety
with fan Q2

> 0, and S̃6 1 as having fan being the union of the rays in Q2
> 0 through

(0, 1), (1, 1) and (1, 0). The fan of S̃ consists of all rays in Q2
> 0 having rational slope,

as is easily deduced from Section 11. This is (imprecisely) illustrated in Figure 1.3.

Figure 1.3. Fans of S, S̃6 1 and S̃ respectively.
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1.7. Outline of the construction

In [Hol19] we defined the condition of alignment on a family of prestable curves,
and showed that this condition was closely related to the existence of a Néron model
of the jacobian — in particular, if the family is aligned and the total space is regular,
then a Néron model exists. In Section 2 we recall the definition, actually introducing
a slight variant which will be more convenient for our construction (the difference is
discussed in detail in Remark 2.6).
Our ultimate goal is to construct a universal stack over which a Néron model exists.

Given a suitable family of prestable curves (it does not need to be the universal
family), in Sections 3 to 7 we define and construct a universal stack over which the
universal curve becomes aligned. This is carried out locally on the base (we spend
quite some time carefully determining how “locally” we need to work), then glueing
affine patches.
To show that the universal aligning scheme in fact admits a Néron model, we

have to show that the universal aligning scheme is regular, and moreover that the
universal curve over it admits a regular model which is still aligned. In Section 8 we
show that, if the singularities of C/S are “mild enough”, then the universal aligning
scheme is indeed regular (in particular, this holds in the universal case). We also
show that the construction of the universal aligning morphism can be made slightly
more explicit in this situation.
In Section 9 we will show that, again if C/S has mild singularities, it is possible to

resolve the singularities of the pulled-back curve over the universal aligning scheme.
In Section 10 we will apply this to show that the universal aligning morphism is in
fact a universal Néron model admitting morphism.
Section 11 contains a worked example, and in Section 13 we relate our results to

some constructions of Caporaso from [Cap08].
In this paper, “algebraic stack” means “algebraic stack in the sense of [Sta13, Tag

026O]”.
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2. Definition and basic properties of aligned curves
In this section we briefly recall the definitions from [Hol19]. For us “monoid” means

“commutative monoid with zero”’. A graph has finitely many edges and vertices, and
is allowed loops, and multiple edges between vertices.
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Definition 2.1. — A cycle in a graph is a path which starts and ends at the
same point, and otherwise does not repeat any edge or vertex.
Let G be a finite graph with edge set E and vertex set V . To any subset E0 ⊆ E

we associate the unique subgraph of G with edges E0 and with no isolated vertices
— we will often fail to distinguish between E0 and the subgraph. We say E0 is cycle-
connected if for every pair e, e′ of distinct edges in E0 there is at least one cycle
γ ⊆ E0 such that e ∈ γ and e′ ∈ γ.

Lemma 2.2. — The maximal cycle-connected subsets of E form a partition of E.

We write Part(G) for this partition. Before giving the proof we discuss a few
examples.

(1) If G is a tree, then the elements of Part(G) consist of single edges (since there
are no cycles).

(2) If G itself is a cycle then Part(G) has cardinality 1 (all the edges are in the
same part).

Proof. — It suffices to show that if two subsets E and E′ of E are both cycle-
connected and both contain an edge e, then the union E∪E′ is also cycle-connected.
If a and b are distinct edges in E∪E′, then let γa denote a cycle in E∪E′ containing
both a and e, and let γb be a cycle in E ∪ E′ containing both b and e.
We will construct a cycle in E∪E′ containing both a and b by “splicing” b into γa.

Let p0 and p1 be the ends of b (necessarily distinct unless a = b = e). Let γ0 be the
shortest sub-path of γb which starts at p0, does not contain b, and which meets γa
(say at a point q0). We define γ1 and q1 similarly: γ1 is the shortest sub-path of γb
which starts at p1, does not contain b, and which meets γa, say at q1. Let γ′ denote
the sub-path of γa which goes between q0 and q1 and which contains a. Then the
union of γ′, γ0, γ1 and b is a cycle containing a and b. �

We can also describe this partition in terms of 2-vertex-connected(2) subgraphs.
For each loop l, {l} ∈ Part(G). For each maximal 2-vertex-connected subgraph H
of the graph obtained from G by deleting loops, Part(G) 3 edges(H) (cf. [Hol19,
remark after Lemma 5.11]).

Definition 2.3. — Let L be a monoid, G a graph, and ` a function assigning
to each edge of G an element of L (we call (G, `) a graph labelled by L). We say
P ∈ Part(G) is aligned (with respect to `) if there exist l ∈ L and positive integers
n(e) for each edge e ∈ P , such that for all e ∈ P the relation

`(e) = ln(e)

holds in L. We say G is aligned (with respect to `) if every P ∈ Part(G) is aligned.

For example, if G is a tree (or if L is free on one generator) then (G, `) is automat-
ically aligned. On the other hand, if L = N2 and G is a 2-gon with edges labelled by
(0, 1) and (1, 0) then (G, `) is not aligned.
Now we turn to prestable curves, by which we mean proper, flat, finitely presented

curves whose geometric fibres are connected and have at worst ordinary double point

(2) i.e. connected and remains connected after removing any one vertex.
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singularities. These were called “semistable curves” in [Hol19]. We recall from [Hol19,
Propositions 2.5 and 2.10] a result on the local structure of such curves:
Proposition 2.4. — Let S be a locally noetherian scheme, C/S a prestable

curve, s a geometric point of S, and c a geometric point of C lying over s. Then
there exists an element α in the maximal ideal of the étale local ring Oet

S, s and an
isomorphism of complete local rings

Ôet
S, s[[x, y]]

(xy − α) → Ô
et
C, c.

The element α is not in general unique, but, the ideal αOet
S, s / Oet

S, s is unique. We
call it the singular ideal of c. If C/S is smooth over a schematically-dense open of S
then the singular ideal is never a zero-divisor.

Definition 2.5. — Let S be a locally noetherian scheme and C/S a prestable
curve. Let s ∈ S be a geometric point, and write Γ for the dual graph(3) of the fibre
Cs. Let Prin(Oet

S, s) be the monoid of principal ideals of Oet
S, s. We label Γ by elements

of Prin(Oet
S, s) by assigning to an edge e ∈ Γ the singular ideal in Prin(Oet

S, s) of the
singular point of Cs associated to e. We denote this element by `(e) ∈ Prin(Oet

S, s).
We say C/S is aligned at s if and only if this labelled graph is aligned. We say

C/S is aligned if it is aligned at s for every geometric point s ∈ S.

For example, a generically-smooth curve over a Dedekind base is always aligned
(since the monoids of principal ideals are free on one generator), and curves of
compact type are always aligned since the graphs contain no cycles. More detailed
examples of aligned and non-aligned curves can be found in [Hol19, § 2.3].
Remark 2.6. — In [Hol19] we used a slightly different definition of alignment,

namely we said a 2-vertex-connected graph (H, `) was aligned if for all pairs of edges
e, e′ there existed positive integers n, n′ such that `(e)n = `(e′)n′ . We said a graph G
was aligned if every 2-vertex-connected subgraph was. When we want to distinguish
between these notions we will call the version from [Hol19] “irregularly aligned” and
the new version in this paper “regularly aligned”.
There are two differences between these definitions. One is superficial, the use of

2-vertex-connected subgraphs instead of the partition from Lemma 2.2. This makes
no actual difference to the definition since the partition in Lemma 2.2 breaks the
graph into maximal 2-vertex-connected subgraphs and loops, and the alignment
condition is vacuous for loops. The other difference is more substantial, where we
switch from imposing relations between labels to imposing that the labels admit a
common multiplicative generator. If C/S is regularly aligned then it is irregularly
aligned, and if S has factorial étale local rings (for example if S is regular) then the
converse holds. We are mainly interested in the case where S is regular, so this is not
of great importance. In this paper, we will construct a universal regularly-aligning
morphism, and a Néron model over it. A universal irregularly-aligning morphism also
exists, but the universal object is not in general regular, and so we cannot construct
a Néron model over it (probably one does not exist).
(3)Defined as in for example [Liu02, 10.3.17].
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Remark 2.7. — The notion of alignment is fppf-local on the target, i.e. it is
preserved under flat base-change and satisfies fppf descent. We sketch a proof of this
fact: let R→ R′ be a faithfully flat ring map, and let r1, r2 ∈ R and a, u1, u2 ∈ R′
with ui units and ri = uia

ni for some ni ∈ Z>0. Suppose the map

R→ R
[
t, u±1

1 , u±1
2

]
/ (r1 − u1t

n1 , r2 − u2t
n2)

becomes an isomorphism after base-change to R′, then by faithful flatness it was an
isomorphism.

Definition 2.8. — Let S be a locally noetherian algebraic stack, and C/S a
prestable curve. Let S ′ → S be a smooth cover by a scheme. We say that C/S is
aligned if and only if C ×S S ′ → S ′ is aligned. This makes sense by Remark 2.7.

Remark 2.9. — We will make frequent use of the Picard spaces of our semistable
curves. Let C/S be a prestable curve, then we write PicC/S for the sheafified rel-
ative Picard functor of C/S as in for example [BLR90, Chapter 8]; it is relatively
representable by an algebraic space. We write Pic0

C/S for the fibrewise connected
component of identity (an open subgroup space), which coincides with the subspace
of line bundles having degree 0 on every component of every geometric fibre. We
write Pic[0]

C/S for the open subgroup space of PicC/S corresponding to line bundles
which have total degree 0 on every fibre. If C/S has connected geometric fibres then
Pic0

C/S ↪→ Pic[0]
C/S is an isomorphism.

3. Universal aligning morphisms

Definition 3.1. — Let S be a locally noetherian and reduced algebraic stack,
and C/S a prestable curve. Let U ↪→ S be the largest open over which C is smooth.

(1) We say C/S is generically smooth if U is dense in S.
(2) Let f : T → S be a morphism of algebraic stacks. We say that f is non-

degenerate if T is reduced and U ×S T is dense in T .
(3) Let f : T → S be a non-degenerate morphism of locally-noetherian stacks.

We say f is aligning if the prestable curve C×S T → T is aligned in the sense
of Definition 2.8.

(4) The category of aligning morphisms is defined as the full sub-2-category of
stacks over S whose objects are aligning morphisms.

(5) A universal aligning morphism is a terminal object in the 2-category of
aligning morphisms over S.

Remark 3.2. —
(1) From now until the end of Section 7 we will be working to construct the

universal aligning morphism. After that, we will show that it is actually the
universal Néron model admitting morphism.

(2) We will show that the universal aligning morphism is in fact a separated
algebraic space locally of finite type over S.
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4. Quasisplit curves

In order to construct the universal aligning morphism by descent, we will make use
of the notion of a “quasisplit” prestable curve. This differs from (though is somewhat
similar to) the notion of a split prestable curve in [Jon96]; neither is stronger than
the other.

Definition 4.1. — Let S be a scheme, and let C/S be a prestable curve. We
write Sing(C/S) for the closed subscheme of C where C → S is not smooth (more
precisely, it is the closed subscheme cut out by the first fitting ideal of the sheaf of
relative 1-forms of C/S). We say C/S is quasisplit if the following two conditions
hold:
(4.1.1) the morphism Sing(C/S)→ S is an immersion Zariski-locally on the source

(for example, a disjoint union of closed immersions);
(4.1.2) for every field-valued fibre Ck of C/S, every irreducible component of Ck is

geometrically irreducible.

Remark 4.2. — Given a quasisplit prestable curve C/S and a geometric point s̄
of S with image s ∈ S, the graph Γs̄ depends only on s and not on s̄. As such, it
makes sense to talk about the dual graph of Cs for s ∈ S a point. Moreover, the
labels on such a graph, which a-priori live in the étale local ring at s̄, are easily seen
to live in the henselisation of the Zariski local ring, by condition 4.1.2. Applying
condition 4.1.1, we see that the labels in fact live in the Zariski local ring at s. For
the remainder of this paper, we will use this without further comment.

Lemma 4.3. — Let S be a locally noetherian scheme and C/S a prestable curve.
Then there exists an étale cover f : S ′ → S such that f ∗C → S ′ is quasisplit.

Proof. — By [Sta13, Tag 04GL] and standard reductions, we deduce the existence
of an étale cover over which the non-smooth locus is a disjoint union of closed immer-
sions. Since the smooth locus admits sections étale locally, we can arrange a section
through every irreducible component of every fibre; these irreducible components
are then automatically geometrically irreducible. �

5. Specialisation maps between labelled graphs for quasisplit
curves

Definition 5.1. — A morphism of graphs sends vertices to vertices, and sends
edges to either edges or vertices (thinking of the latter as “contracting an edge”),
such that the obvious compatibility conditions hold.
A morphism of edge-labelled graphs

φ : (Γ, ` : edges(Γ)→ L)→ (Γ′, `′ : edges(Γ′)→ L′)
is a pair consisting of a morphism of graphs Γ→ Γ′ and a morphism of monoids from
L to L′ such that the labellings on non-contracted edges match up. An isomorphism
is a morphism with a two-sided inverse.
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Let S be a locally noetherian scheme, and let C/S be a quasisplit prestable curve.
Let s, ζ ∈ S be two points such that ζ specialises to s (i.e. s ∈ {ζ}). Write Γs and
Γζ for the corresponding labelled graphs — recall from Remark 4.2 that this makes
sense without choosing separable closures of the residue fields, and moreover that
the labels of Γs and Γζ may be taken to lie in the Zariski local rings at s and ζ
respectively. Write
(5.1) sp: OS, s ↪→ OS, ζ
for the canonical (injective) map, which induces a map from principal ideals of OS, s
to principal ideals of OS, ζ .
We will define a map of labelled graphs

φ : Γs → Γζ ,
writing φV for the map on vertices and φE for the map on edges (the map on
monoids is that induced by (5.1)). First we define the map on vertices. Let v ∈ Vζ
be a vertex of Γζ . Then v corresponds to an irreducible component v of the fibre
over ζ. Let V denote the Zariski closure of this component in C. Then V ×S s is a
union of irreducible components of Cs, call them v1, · · · , vn. We define φV (vi) = v
for 1 6 i 6 n. To obtain a well-defined map φV : Vs → Vζ we need to check that
each irreducible component of Cs arises in this way from exactly one vertex of Γζ .
That every irreducible component of Cs arises from at least one component of Cζ
follows from the flatness of C/S. For the uniqueness, note that if the closures of two
irreducible components of Cζ both contain some irreducible component v of Cs then
this would contradict the smoothness of C → S at the generic point of v.
Next we define the map on edges. Write Z = {ζ} ⊆ S for the closure of ζ. Let

e ∈ Es be an edge of Γs. Then there are exactly two possibilities(4) :
(Case 1) there exists an open neighbourhood s ∈ Z0 ⊆ Z and a unique section ẽ : Z0 →

Sing(CZ0/Z0) such that (ẽ)s = e. Then define φE(e) = (ẽ)ζ ;
(Case 2) Case 1 does not hold and (writing v1, v2 for the endpoints of e) we have that

φV (v1) = φV (v2). Then map e to φV (v1).
Locally around e, the curve CZ is the spectrum of OZ [x, y]/(xy− l′(e)) where l′(e) ∈
OZ is a representative of l(e). From this local structure we see that case 2 holds if
and only if the label l(e) becomes a unit at ζ; in other words, if and only if l′(e) is
non-zero in OZ .

Definition 5.2. — We call the map Γs → Γζ constructed just above the special-
isation map.

A more intuitive description of the specialisation morphism φ : Γs → Γζ on labelled
graphs may be given as follows: starting with Γs, first replace each label by its image
under sp. Then contract every edge whose label is a unit. This is exactly the labelled

(4)To see this, note first that a section in CZ0(Z0) as in Case 1 is unique if it exists. Suppose we
have φV (v1) 6= φV (v2). Then v1 is contained in some irreducible component T1 of CZ , and v2 is in
a component T2, with T1 6= T2. In this situation observe that e ∈ T1 ∩ T2, and (by considering the
local structure of the singularities of a quasisplit prestable curve) we find that T1 ∩ T2 is locally on
Z a union of sections, so Case 1 must hold.
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graph Γζ . Given that such a simple description is available, why did we give the
long-winded definition above? Essentially this is because it is otherwise not a-priori
clear that the labelled graph resulting from this simple description is (naturally)
isomorphic to the labelled graph Γζ .

6. Controlled curves

Definition 6.1. — Let C/S be a prestable curve. A point s ∈ S is called a
controlling point for C/S if all of the following conditions hold:

(1) S is affine and noetherian, and C/S is quasisplit;
(2) for each edge e of Γs, the intersection of `(e) with OS(S) inside the local ring
OS,s is a principal ideal;

(3) for every point s in S, there exists a point ηs ∈ S such that
(a) both s and s are in the closure of ηs;
(b) the specialisation map Γs → Γηs is an isomorphism on the underlying

graphs.

The intuition behind this definition is that for every point s ∈ S, the labelled
graph Γs should be obtained from the labelled graph Γs by a suitable specialisation
map. However, this cannot be exactly true, as in general s will not lie in the closure
of s. The specialisation is then mediated by the point ηs, which we can think of as
the generic point of the stratum containing s, where S is stratified by the labels of
edges.
By (2), we can think of the labels of Γs as being principal ideals in OS(S). We will

generally reserve lowercase fraktur letters s and t for controlling points.
Definition 6.2. — Let C/S be a prestable curve over a locally noetherian

scheme. Let τ be in {smooth, étale}. A controlled τ -cover of C/S consists of a
collection (Si, si)i∈ I of pointed schemes and a map ⊔i∈ I Si → S such that

(1) ⊔i∈ I Si → S is a cover in the τ -topology;
(2) for each i, the point si is a controlling point for C ×S Si.

Lemma 6.3. — Let C/S be a quasisplit curve over a locally noetherian scheme,
and s ∈ S a point. Then there exists an open neighbourhood V of s in S such that
s is a controlling point for CV /V .

Proof. — Shrinking S, we may assume that S is affine and that every label on the
graph Γs is generated by an element of OS(S) (i.e. these locally-principal ideals are
principal). Then delete from S every irreducible component that does not contain s.
Let Σ denote the smallest collection of (reduced) closed subsets of S which is closed

under:
• pairwise intersections;
• taking irreducible components;

and which contains the image in S of Sing(C/S). Note that Σ is finite; each time we
form intersections or take irreducible components we add in only finitely many new
closed subsets. Since every infinite tree has an infinite branch, if Σ were infinite then
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we would find an infinite strictly decreasing chain of closed subsets, contradicting
the fact that S is noetherian.
Now set

Z :=
⋃
{σ ∈ Σ | s /∈ σ} ,

the union of all elements of Σ which don’t contain s. Note this is a closed subset
since Σ is finite. Let V denote the complement of Z in S.
Now let s ∈ V be any point. Suppose first that Γs consists of a single vertex and no

edges - this is equivalent to saying that s is not contained in any element of Σ, or to
saying that Cs/s is smooth. Now the locus where CV /V is smooth is open in V and
is non-empty (since it contains s). Observe that every irreducible component of V
contains s by construction. Let ηs be the generic point of an irreducible component of
V containing both s and s; then Cηs/ηs is smooth and both s and s are specialisations
of ηs.
Suppose now that Cs/s is not smooth. Let σ ∈ Σ be the smallest element of Σ

which contains s. It is clear that σ must be irreducible, and that σ contains s. Let
ηs be the generic point of σ. Then both s and s are contained in the closure of ηs. It
remains to see that the specialisation map

sp: Γs → Γηs
is an isomorphism on the underlying graphs. This is equivalent to checking that no
label of Γs is mapped to a unit in OS, ηs . Well, any label l on an edge of Γs which
becomes a unit at ηs will cut out a proper closed subscheme of σ containing s, but
this is impossible by the definition of σ. �
Combining Lemmas 4.3 and 6.3 yields
Lemma 6.4. — Let C/S be a prestable curve over a locally noetherian base. Then

there exists an étale controlling cover for C/S.

7. Construction of universal aligning morphisms

7.1. The case of controlled curves

Throughout this section we fix a prestable curve C/S and a controlling point s ∈ S.
The universal aligning morphism over S will be built by glueing together (infinitely
many) affine patches. These affine patches will be indexed by thickness functions:
Definition 7.1. — Let E denote the set of edges of the graph Γs. A thickness

function is a function
M : E → Z> 0

satisfying the following condition:
Let ΓM be the graph obtained from Γs by contracting every edge e such that

M(e) = 0. We then require that for each set E ∈ Part(ΓM), we have gcd(M(E)) = 1.
This definition makes sense for any graph, but we will only apply it to the graph

over a controlling point. We now give three examples of controlled curves and the
possible thickness functions.
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Example 7.2. — Let S = SpecC[[u, v]], and let s be the closed point. Assume s is
a controlling point, and suppose the graph over s is

e2

e1

with `(e1) = (u), `(e2) = (v). Then thickness functions are exactly those functions
which send the two edges to non-negative coprime integers, e.g.

M(e1) = 2, M(e2) = 3

or

M(e1) = 0, M(e2) = 1.

Example 7.3. — Let S = SpecC[[u, v, w]], and let s be the closed point. Assume
s is a controlling point, and suppose the graph over s is

e2e1

e3

with `(e1) = (u), `(e2) = (v) and `(e3) = (w). Then again the thickness functions
are exactly those functions which send the three edges to non-negative integers with
no common factor, e.g.

M(e1) = 2, M(e2) = 3, M(e3) = 5

or

M(e1) = 0, M(e2) = 2, M(e3) = 3

or

M(e1) = 0, M(e2) = 0, M(e3) = 1.

Example 7.4. — Let S = SpecC[[u, v, w]], and let s be the closed point. Assume
s is a controlling point, and suppose the graph over s is

e3

e1

e2
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with `(e1) = (u), `(e2) = (v) and `(e3) = (w). Then every function M which sends
the three edges to positive integers with no common factor is a thickness function,
but if M sends one of the ei to 0 then the other two ej become loops in the graph
ΓM obtained by contracting ei, and so must be sent to 0 or 1. Thickness functions
are exactly those sending the ei to positive coprime integers, and those sending
(e1, e2, e3) to some permutation of (0, 1, 1), (0, 0, 1) or (0, 0, 0).

Now that we have thickness functions to index the affine patches of our universal
aligning morphism, we will start to explicitly construct the affine patches themselves.
We first set up some notation which we will use repeatedly for the remainder of this
paper.

Setup 7.5. —
(1) C/S is a prestable curve with controlling point s;
(2) We write R = OS(S);
(3) U ↪→ S is the largest open in S over which C is smooth, and we assume U is

dense in S;
(4) M is a thickness function, and ΓM is the graph obtained from Γs by contracting

every edge e such that M(e) = 0;

The next definition is crucial, as it gives us the building blocks for the affine patches
of our universal aligning morphism.

Definition 7.6. — Notation as in Setup 7.5, and let E ∈ Part(ΓM). Write
M(e) = me, and write `(e) ∈ R for some generator of the label of an edge e. Let
n? : E → Z be a function such that ∑e∈E neme = 1 — this is possible by the
coprimality condition. Define

R′E = R [a, u±1
e : e ∈ E]

(`(e)− ameue : e ∈ E, 1−∏e∈E unee ) .

This depends on the ne (so the notation is not good). However, this dependence
will turn out not to matter (see Proposition 7.14). To simplify the notation, we will
assume that a choice of ne has been made once-and-for-all for every collection of me.

Remark 7.7. — For example, suppose we are in the setup of Section 1.6, so
S = SpecR with R = k[[u, v]]. The graph over the origin is a 2-gon, so the partition
is {{e1, e2}}. Suppose we take the thickness function taking the value 1 on both
edges. Then we can take n1 = 1 and n2 = 0, and the ring R′E is given by

R′E =
R
[
a, u±1

1 , u±1
2

]
(u− au1, v − au2, 1− u1)

∼=
R
[
a, u±1

2

]
(u− a, v − au2)

∼=
R
[
u±1

2

]
(v − uu2)

which is just an affine patch of the blowup of R at the origin, with a point deleted.

Lemma 7.8. — Let AE = SpecZ[xe : e ∈ E]. There is a natural map from S to
AE, corresponding to the ring homomorphism sending xe to `(e). Then R′E is the
coordinate ring of the pullback to S of the toric variety over AE whose fan is the ray
in QE

>0 through the point (me : e ∈ E).
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Proof. — This is almost obvious from the definition, the only point where we must
take care is that toric varieties (in the sense of [Ful93]) are by definition normal, so
a-priori the toric variety associated to the ray spanned by the me is the normalisation
of the spectrum of

Z [xe : e ∈ E] [a, u±1
e : e ∈ E]

(xe − ameue : e ∈ E, 1−∏e∈E unee ) .

But the coprimality of the me guarantees that this ring is in fact already normal. �
This toric interpretation will be very useful in Section 8.1 when we come to show

that these patches are non-singular.

Lemma 7.9. — We have an R-algebra map
= φ : R′E → OU(U)

a 7→
∏
e∈E

`(e)ne

ue 7→ `(e)φ(a)−me .

We call the element a ∈ R′E the aligning element of R′E.
Proof. — Note that OU(U) is a localisation of R and that each `(e) is a unit in U .

To check that the map is well-defined we need to show that it sends 1 − ∏e∈E u
ne
e

and each of the `(e)− ameue to zero. The latter is easy, the former requires a small
calculation:

φ

1−
∏
e∈E

unee

 = 1−
∏
e∈E

(
`(e)neφ(a)−mene

)

= 1−
∏
e∈E

`(e)ne
φ(a)

∑
e∈ E−mene

= 1− φ(a)φ(a)−1 = 0. �

Definition 7.10. — Notation as in Setup 7.5. Define
R′M =

⊗
E∈Part(ΓM )

R′E.

By Lemma 7.9 and the universal property of the tensor product we get a natural
map

R′M → OU(U),
and we define RM to be the image of R′M under the above map. Set SM = SpecRM

(in other words, SM is the closure of the image of U in SpecR′M under the given
map). Write aE for the image in RM of the aligning element in R′E, then define a
sequence a := (aE)E∈Part(ΓM ) — this will be used in Lemmas 8.10 and 8.2.

Remark 7.11. — In the above definition, the procedure of “take the product, then
take the image of the result in OU(U)’ is essentially a way to “splice together” all
the rings of relations R′E without worrying about how the relations they capture are
connected to each other. In general this image RM is not very explicit (for example, it
is not immediately apparent how to write down generators and relations for it, given
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the same for the RE). On the other hand, if the singularities of C/S are “mild enough”
(for example, in the universal case) then we find that RM = R′M , see Remark 8.7
and Lemma 8.10.

Definition 7.12. — Notation as in Setup 7.5. Let f : T → S be a non-degenerate
morphism. We say f is M -aligning if for all E ∈ Part(ΓM) there exists aE ∈ OT (T )
such that for all e ∈ E we have f ∗`(e) = (aE)M(e) as ideals in OT (T ). We define
the universal M -aligning morphism to S to be a terminal object in the category of
M -aligning morphisms to S.

Lemma 7.13. — Notation as in Setup 7.5. Let f : T → S be an aligning morphism.
Then there exists an étale cover ⊔i∈ I Ti → T , and for each i a thickness function Mi,
such that each Ti → S is Mi-aligning.

Proof. — By Lemma 4.3 we may assume T is quasisplit. Let t ∈ T be any point.
Shrinking T , we may assume by Lemma 6.3 that t is a controlling point for f ∗C/T .
We are done if we can find a thickness function M such that, after possibly shrinking
T further, we have that CT/T is M -aligning.
Let Lunits denote the set of labels of edges of Γs which are units at f(t) ∈ S —

this is exactly the same as the set of labels of edges of Γs which are contracted by
the natural map to Γf(t) (cf. Definition 5.2). Because t is controlling for f ∗C/T , we
see that Lunits is also exactly the set of labels of edges of Γs which pull back to
units on T (recalling that we can think of the labels of Γs as principal ideals in R).
The thickness function M we will construct will take the value 0 exactly on edges
in Lunits.
Because f is aligning, we know that for each set E ∈ Part(Γt) there exists a

principal ideal aE /OT, t such that every edge in E is labelled by some power of aE
- write `(e) = ameE . Moreover, replacing aE by some positive power, we may assume
for each E that

gcd {me : e ∈ E} = 1.
Define M(e) = me if `(e) /∈ Lunits, and M(e) = 0 otherwise.
Now shrinking T we may assume that each aE stays a principal ideal in OT (T ),

and moreover that for every E and every e ∈ E, the relation `(e) = a
M(e)
E holds

globally on T . �

Proposition 7.14. — Notation as in Setup 7.5. The natural map SM → S is a
universal M -aligning morphism.

Proof. — First we need to check that fS : SM → S is M -aligning. Fix E ∈
Part(ΓM), and let aE be as in Definition 7.10. Then it is easy to see from the
construction in Definition 7.6 that for every e ∈ E we have f ∗S`(e) = (aE)M(e), so the
definition of M -alignment is satisfied.
Now we need to show that any other M -aligning morphism f : T → S factors

uniquely via SM → S. The uniqueness of a factorisation of f via SM is clear as f
is non-degenerate and SM → S is affine and hence separated. For the existence, it
suffices to construct a factorisation φ : T → SpecR′M ; indeed, then φ(f−1U) ⊆ SM ,
and f−1U is by assumption dense in T (which is reduced), hence φ factors via SM .
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Fix E ∈ Part(ΓM); by the universal property of the fibre product it is enough to
construct a factorisation of f via SpecR′E.
Write R[1/`] for the ring obtained from R by inverting the labels of all edges

of Γs. Then the canonical map OT (T ) → OT (T ) ⊗R R[1/`] is injective since T is
non-degenerate. Hence we can talk about whether various products of labels with
integer exponents lie in OT (T ), even though OT (T ) may not be a domain.
By definition of f being M -aligning, there is an element t ∈ OT (T ) such that for

all e ∈ E, we have f ∗`(e) = (t)M(e) as ideals in OT (T ). Choose integers ne for e ∈ E
such that ∑e∈EM(e)ne = 1. Choose also for each e a generator `(e) ∈ R of the label
of e. Note that ∏e∈E f

∗`(e)ne ∈ OT (T ), indeed it differs from t by multiplication
by some unit. Similarly, f ∗`(e)/tM(e) is a unit in OT (T ) for each e. We define an
R-algebra map

R′E → OT (T )
a 7→ t

ue 7→ f ∗`(e)/tM(e)

which is well-defined by a verification similar to that in the proof of Lemma 7.9. This
yields a map T → SpecR′E as required. �

For a given thickness function M we have now constructed a universal M -aligning
morphism SM → S. Our goal in the remainder of this section will be to glue together
these SM as M runs over different thickness functions, to construct a universal
aligning morphism to S. The next definition and lemma will show how to glue.

Definition 7.15. — Notation as in Setup 7.5. Let M , N be two thickness func-
tions. Define

δM =
⋃{

E ∈ Part(ΓM) : ∃ e ∈ E with M(e) 6= N(e)
}

and
δN =

⋃{
E ∈ Part(ΓN) : ∃ e ∈ E with M(e) 6= N(e)

}
.

The set of edges of ΓM is naturally a subset of the edges of Γ, and similarly for ΓN .
We then set δM,N = δM ∪ δN , with the union taken inside the set of edges of Γ. Then
define

SM,N = Spec
(
RM

[
`(e)−1 : e ∈ δM,N

])
.

Here we are writing RM [`(e)−1 : e ∈ δM,N ] for the localisation of RM at the principal
ideals `(e) as e runs over the edges in δM,N . Formally these labels are principal ideals
rather than elements of R, but we can effectively “invert” such a principal ideal by
choosing a generator and inverting that. We see that SM,N is an open subscheme
of SM .

It is clear that SM,N → S is M -aligning, since it factors via SM → S. Part of the
point of the definition is that we also have:

Lemma 7.16. — In the above notation:
(1) The morphism SM,N → S is N -aligning;
(2) The induced map SM,N → SN factors via SN,M → SN .
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Proof. —
(1) Let E ∈ Part(ΓN). We want to show that there exists an element a ∈ R

such that for all e ∈ E, we have `(e) = (a)N(e). Well, if M |E 6= N |E then
E ⊆ δM,N so we may take a = 1. On the other hand, if M |E = N |E then
there exists EM ∈ Part(ΓM) such that E ⊆ EM , and we may take the same
aligning element a as works for EM .

(2) The map SN,M → SN is a localisation; more precisely, we invert exactly those
`(e) for which e ∈ δN,M . For a morphism from a scheme T to SN to factor
via the open immersion SN,M → SN is exactly equivalent to checking that
each of these `(e) maps to a unit in OT (T ) (this is the universal property
of localisation). We apply this principle to the morphism SM,N → SN ; we
need to check that each `(e) for e ∈ δN,M maps to a unit in SM,N , but this
is immediate since δM,N = δN,M , and since these labels all come by pullback
from S.

�
From this lemma and symmetry we obtain a canonical isomorphism SM,N

∼→ SN,M
for all pairs of thickness functions M , N . We can now define the universal aligning
morphism (in Lemma 7.19 we will verify that it actually satisfies the universal
property).

Definition 7.17. — Notation as in Setup 7.5. Define β : S̃ → S to be the result
of glueing together all the SN as N runs over all thickness functions, along the open
subschemes SN,N ′ .

For this glueing to make sense we must check a cocycle condition, see [Sta13, Tag
01JC]; the first part is immediate from the definition of the δM,N , and the second
follows from the fact that these patches are all reduced and map birationally to S.
Before verifying that S̃ → S has the universal property of the universal aligning

morphism, we verify that it is separated.

Proposition 7.18. — The map β : S̃ → S is separated.

Proof. — The map β : S̃ → S is quasi-separated because S̃ is locally noetherian,
so it is enough to check the valuative criterion for separatedness. Let V denote the
spectrum of a valuation ring, with generic point η and closed point v. Let f, g : V → S̃
be morphisms which agree on η and such that the composites with the canonical
map S̃ → S agree — in particular, f ∗`(e) = g∗`(e) for every edge e of Γs. We will
show that f = g, verifying the valuative criterion.
First, the SN form an open cover of S as N runs over thickness functions, so there

exist thickness functions M and N such that f factors via SM → S and g factors
via SN → S. If M = N then the result is clear since SM → S is affine and hence
separated. Thus we may as well assume that M 6= N .
We will show that both f and g factor via SM,N , which is affine over S and so

f = g. To do this, we need to show that for every edge e ∈ δM,N we have that f ∗`(e)
is a unit on V . Well, fix some e0 ∈ δM,N . Then (perhaps switchingM and N) we may
assume that there exists E ∈ Part(ΓM) such that e ∈ E and such that N |E 6= M |E
(and note that M does not vanish on any edge in E). Since f is M -aligning (it
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factors via SM), we know there exists a ∈ OV (V ) such that for all e ∈ E, we have
f ∗`(e) = (a)M(e).
Observe that f ∗`(e0) 6= 0, otherwise we cannot have f(η) ∈ SM,N , which contra-

dicts the fact that f and g agree on η. Since M(e0) 6= 0, this tells us that a 6= 0.
We now divide into two cases:

(Case 1) There exists e′ ∈ E such that N(e′) = 0. Then g∗`(e′) is a unit, so aM(e′) is a
unit, so a is a unit, so all the f ∗`(e) for e ∈ E are units as required.

(Case 2) N does not vanish on any e ∈ E. Then there exists EN ∈ Part(ΓN) such
that E ⊆ EN , so there exists b ∈ OV (V ) such that for all e ∈ EN we have
g∗`(e) = (b)N(e), so certainly the same holds for E. Now since M |E 6= N |E and
M does not vanish on E, there exist integers ce for e ∈ E such that

d :=
∑
e∈E

ceM(e) 6= 0 and
∑
e∈E

ceN(e) = 0.

Moreover, a similar argument to that above tells us that b 6= 0. It is enough
to show that a is a unit on V .
Pick a generator `(e) of the principal ideal `(e) for each e ∈ E. Then we

find that, up to multiplication by units on V , we have∏
e∈E

f ∗`(e)ce =
∏
e∈E

aceM(e) = ad

and ∏
e∈E

g∗`(e)ce =
∏
e∈E

bceN(e) = 1.

The left hand sides are equal, so ad is a unit on V , so a is a unit on V and
we are done. �

Lemma 7.19. — Notation as in Setup 7.5. Then β : S̃ → S is a universal aligning
morphism for C/S. The map β is locally of finite presentation.

Proof. — Let f : T → S be aligning. The uniqueness of a factorisation of f via
β holds because f is non-degenerate and β is separated by Proposition 7.18. For
existence, by Lemma 7.13 we can choose an étale cover T ′ := ⊔

i Ti → Y and for
each i a thickness function Mi such that Ti → S is Mi-aligning. By Lemma 7.14
each Ti → S factors via SMi

→ S; in particular, the disjoint union T ′′ → T factors
(uniquely) via the S̃ → S. We need to descend this to a morphism T → S̃, which
comes down to verifying that two morphisms T ′ ×T T ′ → S̃ coincide. But this is
immediate from the uniqueness observed above.
Local finite presentation holds because the SM are clearly of finite presentation. �

7.2. Universal aligning morphisms: the general case

Theorem 7.20. — Let C/S be a generically smooth prestable curve over a
reduced locally noetherian algebraic stack. Then a universal aligning morphism for
C/S exists, and is a separated algebraic space locally of finite presentation over S.
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Proof. — The stack S admits a smooth cover by a scheme (which is necessarily
reduced and locally noetherian). A universal aligning morphism will descend along
a smooth cover (as will the property of being an algebraic space) since it is defined
by a universal property, and descent for algebraic spaces is effective. As such, it
is enough to consider the case where S is a scheme. Similarly, by Lemma 6.4 we
can assume that C/S has a controlling point s. The existence then follows from
Lemma 7.19. Separatedness and local finite presentation follow by étale descent of
those properties, and the same lemma. �

8. Regularity and normal crossings

In the previous section we built a universal aligning morphism for a generically
smooth prestable curve. Next we will show that the universal aligning morphism is
in fact the universal Néron model admitting morphism. While this will be formalised
later, we present here the basic outline of the argument. Let T → S be a non-
degenerate morphism and C/S a prestable curve. We know from [Hol19] that if the
jacobian of CT/T admits a Néron model then CT/T is aligned, so T → S will factor
uniquely via the universal aligning morphism S̃ → S.
This is not enough, as we still need to show the existence of a Néron model over

S̃. To apply the results of [Hol19] to guarantee the existence of a Néron model for
the jacobian of CS̃/S̃, we need that CS̃/S̃ is aligned and that CS̃ is regular. The
alignment is immediate from the defining property of S̃, but regularity generally
fails. We have two main tasks:

(1) Show that S̃ is regular (otherwise we have little hope of making CS̃ regular);
(2) Show that we can resolve the singularities of CS̃ in such a way that CS̃ remains

aligned.
For both of these steps we will need to impose some more constraints on the singu-
larities of C/S. Here we will consider two variants; one a “toric” version where we
assume S comes with the structure of a smooth toric variety, and one an “absolute”
version where we assume only that the non-smooth locus of C lies over a normal
crossings divisor in S (these will be described more precisely in their respective
sections). The absolute cases subsumes the toric one, so logically we are free to only
treat the former. On the other hand, the proofs are very much simpler in the toric
case, and this case is also sufficient to treat our application to the moduli space of
curves. We treat also the absolute version since it seems interesting for example to
apply these results to integral models of elliptic fibrations coming from K3 surfaces;
but we recommend the reader to stick to the proof in the toric case, at least the first
time around.

8.1. The toric case

In this section we work over a fixed regular base scheme Λ; for example, Λ = SpecC
or SpecZ. Notation as in Setup 7.5. Recalling that E is the set of edges of the graph
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Γ, we set AE = Λ[xe : e ∈ E]. There is then a natural map φ : S → AE corresponding
to mapping xe to `(e) (cf. Lemma 7.8). We say C/S is toric if the map φ is smooth.
Lemma 8.1. — Fix E ∈ Part(ΓM). Then the scheme SpecR′E from Definition 7.6

is smooth over Λ.
Proof. — From [Ful93, § 2.1] one deduces that an affine toric variety coming from

a cone σ is smooth over Λ if and only if σ can be generated by a subset of some
lattice basis. In this case our cone is a ray (Lemma 7.8), so this is automatic. Then
R′E is smooth over Λ, since the induced map to the affine toric variety associated to
the ray is also smooth. �
Showing SM to be regular needs slightly more work, as we take a fibred product

and then a Zariski closure. However, the fibred product is not hard to handle, and
we will see that the resulting scheme is smooth, so taking the closure is not necessary
in this case.
For each E ∈ Part(ΓM) we have a vector mE := (me : e ∈ E) ∈ ZE

> 0, whose span
is the cone of the toric variety associated to R′E. Write mE for the unique vector in
ZE> 0 which projects to mE ∈ ZE

> 0, and to the zero vector in every other coordinate
direction. Then the span σ′M of the vectors mE : E ∈ Part(ΓM) is the cone associated
to the ring R′M . As in Lemma 7.8, this is almost obvious from the construction,
but we should verify that the resulting monoid is saturated; this is so because its
projection to each of the ZE

> 0 is saturated. We see thus that SpecR′M comes with a
smooth map to a normal toric variety. In particular, the open orbit is dense, and so
we see RM = R′M .
Lemma 8.2. — The scheme SM is smooth over Λ, and the sequence (aE)E∈Part(ΓM )

from Definition 7.10 is a relative normal crossings divisor.

Proof. — In Lemma 8.1 we verified that each mE can be extended to a lattice
basis for ZE

> 0, write BE for such a basis. Lifting each element of BE to ZE> 0 by filling
in the other coordinates with zeros, and repeating for each element of the partition
Part(ΓM) yields a lattice basis for ZE> 0 containing all the aE. This verifies that SM
is smooth over Λ. The elements of the sequence aE correspond to the vectors aE;
together these form a subset of a lattice basis and span the cone of SM , hence they
correspond to a relative normal crossings divisor. �

8.2. The absolute case

Definition 8.3 (Normal crossings singularities). — Notation as in Setup 7.5.
We say C/S has normal crossings singularities if the sequence (`(e) : e ∈ Γs) has
normal crossings — in other words, if for every set J ⊆ edges(Γs), we have that the
closed subscheme

V (`(e) : e ∈ J) ⊆ S

is regular and has codimension #J in S at every point in that subscheme.

Definition 8.4 (étale normal crossings singularities). — Let C/S be a prestable
curve over a locally noetherian scheme. We say C/S has étale normal crossings
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singularities if for every geometric point s̄ of S, and for every subset J ⊆ edges(Γs̄),
the closed subscheme

V (`(e) : e ∈ J) ⊆ SpecOetS, s̄
is regular and has codimension #J .

Note that having étale normal crossings singularities is smooth-local on the target,
and so makes sense when S is an algebraic stack. The Deligne–Mumford–Knudsen
moduli stack of stable curves (over a regular base) is an example of a family of curves
with étale normal crossings singularities.

Lemma 8.5. — Let C/S be a prestable curve over an excellent scheme with étale
normal crossings singularities. Then there exists an étale controlled cover ⊔i∈ I Si → S
(with controlling points si ∈ Si) such that the pullback of C to each Si has normal
crossings singularities.

Proof. — This is clear by Lemma 6.3, the finiteness of the sets of edges, and the
openness of the regular locus in an excellent scheme. �

Suppose C/S has étale normal crossings singularities. In particular, by taking the
indexing set J to be empty, we deduce that S must be regular. It is then easy to check
that C is also regular, by looking at the local equations at the non-smooth points. On
the other hand, C can be regular without having étale normal crossings singularities
— for example if S is a trait and C has multiple non-smooth points. Finally, note that
the universal stable curveMg, n+1 →Mg, n has étale normal crossings singularities.
In the next lemma we will show some regularity properties for rings of the form

we considered in Definition 7.6 while constructing the universal aligning morphism.

Lemma 8.6. — Let R be a ring, and x1, · · · , xd ∈ R a collection of elements
such that for all J ⊆ {1, · · · , d}, the quotient

R/ (xj : j ∈ J)
is regular. Let m1, · · · , md be non-negative integers with gcd(m1, · · · , md) = 1, and
let n1, · · · , nd be integers such that ∑d

i=1mini = 1. Define

R′ =
R
[
a, u±1

1 , · · · , u±1
d

]
(xi − amiui : (1 6 i 6 d) , 1−∏i u

ni
i ) .

Then R′ and R′/a are regular.

Proof. — It is easy to check that R′/a is regular; it is even smooth over R/(xi :
mi > 0), which is regular by assumption. We need to show R′ itself is regular; this
will take more care, since it is not in general smooth over its image — it resembles
an affine patch of a blowup.
Let p ∈ SpecR′ be any point, and write q for the image of p in SpecR. Localising

R at q, we may assume that R is local, with closed point q. Re-ordering the xi, we
may assume that x1, · · · , xe ∈ q and xe+1, · · · , xd /∈ q for some 0 6 e 6 d. Writing
D = dimR, our normal crossings assumptions imply that there exist g1, · · · , gD−e ∈
R such that

q = (x1, · · · , xe, g1, · · · , gD−e) .
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Now if e = 0 then we will now show that R→ R′ is an isomorphism, so the result is
clear. Indeed, an inverse to the structure map R→ R′ is given by a map f : R′ → R
sending a 7→ ∏

i x
ni
i and ui 7→ xif(a)−mi (these make sense because e = 0 implies

that the xi are units). Checking that this is well-defined works just as in the proof
of Lemma 7.9, and it is clear that the composite R → R′ → R is the identity. We
need to check that R′ → R → R′ is also the identity. It clearly sends ui to ui, and
sends a to ∏i x

ni
i , so we need to check that a = ∏

i x
ni
i in R. Well,∏

i

xnii =
∏
i

(amiui)ni = a
∑

i
mini

∏
i

unii = a1 · 1 = a.

It remains to treat the case e > 1. It then follows that mi = 0 for every e < i 6 d,
otherwise R′/qR′ is empty, contradicting the existence of p. Again reordering, we
may assume that 1 6 m1 6 m2 6 · · · 6 me. We find that

R′/qR′ =
R/q

[
a, u±1

1 , · · · , u±1
d

]
(am1 , xe+1 − ue+1, · · · , xd − ud, 1−

∏
16 i6 d u

ni
i ) .

We then see that
R′

((a) + q)R′ =
R/q

[
a, u±1

1 , · · · , u±1
d

]
(a, xe+1 − ue+1, · · · , xd − ud, 1−

∏
16 i6 d u

ni
i )

is regular and of dimension e − 1. From this we deduce that there exist elements
f1, · · · , fe−1 ∈ R′ such that

p = (a, f1, · · · , fe−1, x1, · · · , xe, g1, · · · , gD−e)
= (a, f1, · · · , fe−1, g1, · · · , gD−e) ,

so p can be generated byD elements. Now it is clear that every irreducible component
of R′ has dimension at least D (count generators and relations), and hence it follows
that R′ is regular at p and has pure dimension D. �

Remark 8.7. — The reader should probably skip the next two Lemmas (8.8
and 8.9) together with part (2) of Lemma 8.10, at least at a first reading. Part (1)
of Lemma 8.10 is all that is needed for the main results of the article, and the proof
is quite a bit easier.
The point of Lemmas 8.8 and 8.9 is to allow us to prove part (2) of Lemma 8.10,

which is used to make the construction of the universal Néron model admitting
morphism more explicit. In Definition 7.10 there is an annoying step where we have
to take the closure of the image of U to build the ring RM from the ring R′M (the
latter being given by a nice presentation). What we get from part (2) of Lemma 8.10
is exactly that we can skip this step — the image of U is already dense in SpecR′M , so
taking the closure does nothing (at least in the case of normal-crossings singularities).

Lemma 8.8. — In the notation of Lemma 8.6, assume also that R is local, with
maximal ideal m. Assume that at least one of the xi lies in m. The following are
equivalent:

(1) R′/m is connected;
(2) R′/m is non-zero;
(3) for all 1 6 i 6 d, we have that (xi ∈ R× =⇒ mi = 0).
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Proof. — The implication 1 =⇒ 2 is from the definition of a connected ring.
Suppose 3 fails, so (say) x1 ∈ R× and m1 6= 0, so a becomes a unit in R′/m. We also
know some xi /∈ R×, say xd /∈ R×. Then in R′/m we find that 0 = xd = amdud is a
unit, so R′/m = 0. This shows 2 =⇒ 3.
For 3 =⇒ 1 we must work a little harder. A little more notation: let k = R/m,

and assume that x1, · · · , xe /∈ R× and that xe+1, · · · , xd ∈ R× for some e > 0. Then

R′/m =
k
[
a, u±1

1 , · · · , u±1
d

]
(
u1am1 , · · · , ueame , xe+1 − ue+1, · · · , xd − ud, 1−

d∏
i=1

unii

)

=
k
[
a, u±1

1 , · · · , u±1
e

]
(
am1 , · · · , ame , 1−

e∏
i=1

unii
d∏

i=e+1
xnii

) .

Quotienting by (a) will not affect whether this ring is connected, so it is enough to
show that

k[u±1
1 , · · · , u±1

e ](
1−

e∏
i=1

unii
d∏

i=e+1
xnii

)

is connected. We will in fact show that this ring is a domain. Perhaps extending
the field k, we can absorb the xi. Moreover since ∑d

i=1mini = ∑e
i=1mini = 1 we

know that ni have no common factor. Perhaps swapping ui and u−1
i for some i, we

may assume all ni > 0. Moreover, the localisation of a domain is a domain. So it is
enough to show the ring

k [u1, · · · , ue](
1−

e∏
i=1

unii

)

is a domain, i.e. we must show P := 1−∏e
i=1 u

ni
i is irreducible.

Without loss of generality assume n1 6= 0. Think of P as a polynomial in x1, and for
any i 6= 1 write NPxi(P ) for the Newton polygon of P with respect to the valuation
coming from xi. The single edge of the Newton polygon NPxi(P ) has slope ni/n1,
so we see that if h is a factor of P then degx1(h) ni

n1
∈ Z, i.e.

n1

gcd(n1, ni)

∣∣∣∣ degx1(h).

Since the ni have no common factor, this implies that degx1(P ) = n1 | degx1(h), and
we are done. �
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Lemma 8.9. — In the notation of Lemma 8.6. Let U ⊆ SpecR be dense open
such that every xi is a unit on U . Define φ : U → SpecR′ by

R′ → OU(U)
a 7→

∏
i

xnii

ui 7→ xiφ(a)−mi

(cf. Lemma 7.9). Then the image of φ is dense in SpecR′.

Proof. — Without loss of generality, we may assume U is given by U = SpecR0
where R0 = R[1/xi : 1 6 i 6 d]. Set S = SpecR, and S ′ = SpecR′. First, we want
to show that the natural map U → S ′ ×S U is an isomorphism, in other words that
R′ ⊗R R0 → R0 is an isomorphism. Since not all mi = 0 we find that a becomes a
unit in R′ ⊗R R0, and the result then follows by elementary manipulations.
Now let p ∈ S ′ \U be a point, with image q ∈ S. So q /∈ U , so some xi is contained

in q. Localising R at q, the hypotheses are preserved, but now we also have that
R is local and R′/q is non-zero (since p exists). By Lemma 8.8 this implies that
the closed fibre S ′q is connected. Write φ(U) for the closure of the image of U in S ′.
I claim that the fibre φ(U)q is non-empty. Suppose for now that the claim is true.
Then p lies in the same connected component of S ′ as φ(U). But S ′ is regular by
Lemma 8.6, so every connected component of S ′ is irreducible, so p ∈ φ(U) and the
lemma is proven.
It remains to verify the claim that φ(U)q 6= ∅. For this, let f : T → S be a map

from the spectrum of a discrete valuation ring to S sending the closed point to q
and such that for all 1 6 i 6 d we have

ordT f ∗xi = mi.

This is possible because the non-unit xi form a regular sequence in R, and because

xi ∈ R× =⇒ mi = 0,

otherwise the point p could not exist (by Lemma 8.8).
We then find that ∏d

i=1(f ∗xi)ni is a uniformiser on T , and that for all i the element
f ∗xi/a

mi is a unit on T . We can therefore lift the map f to a map f ′ : T → S ′ by
R′ → OT (T )
a 7→

∏
i

(f ∗xi)ni

ui 7→ f ∗xia
−mi .

(8.1)

The image of the closed point of T under f ′ lies over q. The image of T under f ′ is
integral, and the image of the generic point lies over U , so the closure of φ(U) has
non-empty fibre over q as required. �

Lemma 8.10. — Notation as in Setup 7.5, and assume C/S has normal crossings
singularities. For each E ∈ Part(ΓM), let aE denote the image of the aligning element
of R′E in R′M . Then
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(1) The sequence (aE : E ∈ Part(ΓM)) form a normal-crossings divisor in R′M (in
particular they are distinct);

(2) We have RM = R′M .

Proof. — If Part(ΓM) has only one element then (1) follows immediately from
Lemma 8.6, and (2) from Lemma 8.9. Fortunately the general case can be treated
with similar ease, only the notation is worse. Choose an ordering on Part(ΓM), say
Part(ΓM) = {E1, · · · , Er}. Set R0 = R, and Ri = ⊗i

j=1R
′
Ej . We will prove the claim

by induction on i. The case i = 0 is exactly the assumption that C/S has normal
crossings singularities (in particular U is dense in R). Suppose we know the result
for some Ri, then claim 1 (respectively claim 2) for Ri+1 is exactly what we get
by applying Lemma 8.6 (respectively Lemma 8.9) to the ring Ri and the sequence
aE1 , · · · , aEi , with suitably chosen m? and n?. �

Theorem 8.11. — Notation as in Setup 7.5, and assume C/S has normal cross-
ings singularities. Let β : S̃ → S be the universal aligning morphism. Then S̃ is
regular. Moreover, the set {β∗`(e) : e ∈ edges(Γs)} has normal crossings in S̃, i.e. for
every J ⊆ edges(Γs), the underlying reduced subscheme of

V (β∗`(e) : e ∈ J) ⊆ S̃

is regular.

Proof. — The claim is local on S̃, so we can fix a thickness function M and check
the claim on SM . The result is then immediate from Lemma 8.10 (or Lemma 8.2 for
the toric case, in which case “regular” can be replaced by “smooth over Z”). �

9. Resolving singularities over the universal aligning scheme

For the motivation behind the results in this section we refer to the discussion at
the start of Section 8. In brief, in order to apply the results of [Hol19] to prove the
existence of a Néron model for the jacobian of the universal curve over the universal
aligning scheme, we need the curve to have a regular aligned model. Alignment is
already built in; in this section we prove that we can resolve the singularities to give
a regular model, without disturbing the alignment.

Definition 9.1. — Let S be a scheme, U ⊆ S a dense open, and C/U a smooth
proper curve. A model for C/U is a proper flat morphism C̄ → S together with
an isomorphism C̄ ×S U

∼−→ C. This isomorphism will often be suppressed in the
notation.

Lemma 9.2. — Notation as in Setup 7.5, and assume C/S has normal crossings
singularities. Then the pull-back of CU to SM = SpecRM has a prestable regular
aligned model.

Note that C is regular since C/S has normal crossings singularities.
Proof. — Let f : SM → S be the structure map. Note that SM is regular by

Theorem 8.11. Write C0 = C ×S SM , this is an aligned prestable curve. We will
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resolve the singularities of C0 by blowing up, taking care to preserve alignment as
we do so.
For i = 0, 1, · · · , we define Zi ⊆ Ci to be the reduced closed subscheme where Ci

is not regular, and then define Ci+1 to be the blowup of Ci at Zi.
It is enough to show:
(1.1) each Ci is a prestable curve over SM ;
(1.2) some CN is regular;
(1.3) each Ci is aligned over SM .
Let x ∈ OS(S) be a label of an edge in Γs. From part (1) of Lemma 8.10 we see

that x is a power of a (unique) irreducible element x′, and that V (x′) is a regular
subscheme of SM . The curve C0 is the regular at the corresponding point if and only
if x = x′, and a local calculation shows that the blowup is again a prestable curve,
whose singularities have the same simple structure. Hence each Ci is a prestable
curve. This establishes (1.1).
Write P for the (finite) set of generic points of the union of the closed subschemes

V (f ∗x) as x runs over labels of Γs. Note that each p ∈ P is a codimension 1 point
on the regular scheme SM , and moreover (again by Theorem 8.11) that the quotient
R/p is also regular. Write ordp for the corresponding (Z ∪ {∞})-valued discrete
valuation on the local ring at p. Given i > 0, define a non-negative integer

δi =
∑
p∈P

∑
q∈Ci

singular

(ordp `(q)− 1) ;

here the second sum runs over non-smooth points q in the fibre over p. Such a point
corresponds to an edge of the graph Γp, and `(q) denotes the label of the edge of the
dual graph; `(q) lives in the étale local ring at p. It is enough to show:
(2.1) if δi > 0 then δi > δi+1;
(2.2) if δi = 0 then Ci is regular;
(2.3) each Ci is aligned (this holds for C0 by assumption).
We first show item (2.1). Let i be such that δi > 0. Let p ∈ P , and let q ∈ Ci be a

non-smooth point lying over p, with ordp `(q) = t. Let p be a generator for p. The
completed local ring on Ci at q is given by

ÔCi, q ∼=
ÔSM , p[[u, v]]
(uv − pt) .

Assume t > 2 (this holds for some p and q, otherwise δi = 0). The blowup of ÔCi, q
at q = (u, v, p) has three affine patches:
(2.1.1) “ui = 1’, given by:

ÔSM , p[[u, v]][v1, p1]
(v1 − ut−2pt1, v − uv1, p− up1)

which is regular (a calculation, or cf. [Jon96, § 3.4]);
(2.1.2) “v1 = 1”, which is also regular by symmetry;
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(2.1.3) “p1 = 1”, given by

ÔSM , p[[u, v]][u1, v1]
(u1v1 − pt−2, u− pu1, v − pv1) .

This patch is regular if t = 2. If t > 2 then the patch is regular except at
q′ := (u1, v1, p). In the latter case we see that ordp q

′ = t− 2; it has dropped
by 2.

As such, we see that at most one non-regular point q′ of Ci+1 maps to q, and if q′
exists we have ordp q

′ = ordp q − 2. This shows that δi+1 < δi.
Next we show item (2.2). Let i be such that δi = 0. Let c ∈ Ci lie over s ∈ SM .

We will show Ci is regular at c. If Ci → SM is smooth at c we are done, so assume
this is not the case. Then the completed local ring of Ci at c is given by

ÔSM , s[[u, v]]
(uv − `c)

where `c ∈ OS, s is an element which (by definition) generates the label of the graph
Γs at the edge ec corresponding to the point c.
Let p ∈ P be such that `c ∈ p (such p exists by construction). The specialisation

map
Γs → Γp

does not contract ec; rather it sends it to an edge labelled by the ideal generated by
sp(`c), where

sp: OSM , s → OSM , p
is the specialisation map. By our assumption that δi = 0, it follows that (sp `c) = p,
so the closed subscheme V (`c) ⊆ SpecOSM , s is regular.
Write dimOSM , s = d. By the above regularity statement, we can find elements

g1, · · · , gd−1 such that
ms = (`c, g1, · · · , gd−1) .

Hence the ideal corresponding to c can be generated by

(u, v, `c, g1, · · · , gd−1) = (u, v, g1, · · · , gd−1) ,

in other words it can be generated by d + 1 elements. Since dimcCM = d + 1, this
proves that CM is regular at c.
Finally, we show item (2.3). We proceed by induction on i. For i = 0 the result

is one of our starting assumptions. Let i > 1, and assume the result for i − 1. Let
s ∈ SM be any point, and for each j let Γjs be the graph of Cj over s. Then the
labelled graph Γis can be constructed from the labelled graph Γi−1

s by the following
recipe:

(1) for each edge e such that `(e) = a2 for some irreducible element a ∈ Oet
SM , s

,
replace e by two edges both with label a;

(2) for each edge e such that `(e) = an for some irreducible element a ∈ Oet
SM , s

and integer n > 2, replace e by three edges with labels a, an−2 and a in that
order.
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In pictures:

a2

a a

an

a an−2 a

Our induction hypothesis is that the graph Γi−1 is aligned; equivalently, for every
part P ∈ Part(Γi−1) there exists `(P ) ∈ OSM , s and positive integers n(e) for e ∈ P ,
such that for all e ∈ P we have `(e) = `(P )n(e). By the same argument as in the
proof of item (1.1) we may and do assume that `(P ) is irreducible.
We need to show that Γi is aligned, so let P ′ ∈ Part(Γi). Then either P ′ consists

of a single edge (in which case there is nothing to check), or P ′ is obtained by
subdivision from some part P ∈ Part(Γi−1). In that case, the element `(P ) will
satisfy the conditions of alignment for P ′. Hence Γi is aligned as required. �

Remark 9.3. — The author is grateful to Giulio Orecchia for pointing out that
the above construction of a regular model is an entirely canonical procedure, and
commutes with smooth base-change. Indeed, the non-regular locus is stable under
smooth base change, and the blowups are stable under flat base change. Combining
this observation with étale descent, we obtain a canonical desingularisation C̃g, n

of the universal stable curve over the universal Néron-model-admitting-morphism
M̃g, n (see Corollary 10.5).

10. Existence of Néron models over universal aligning
schemes

Definition 10.1. — Let C/S be a generically smooth prestable curve over a
regular algebraic stack, and write U ⊆ S for the largest open substack over which
C is smooth. Write J for the jacobian of CU/U ; this is an abelian scheme over U .
A Néron-model-admitting morphism for C/S is a morphism f : T → S of algebraic
stacks such that:

(10.1.1) T is regular;
(10.1.2) U ×S T is dense in T ;
(10.1.3) f ∗J admits a Néron model over T .
We define the category of Néron-model-admitting morphisms as the full sub-2-
category of the 2-category of stacks over S whose objects are Néron-model-admitting
morphisms.
A universal Néron-model-admitting morphism for C/S is a terminal object in the

2-category(5) of Néron-model-admitting morphisms; it is unique up to isomorphism
unique up to unique 2-isomorphism if it exists. We write β : S̃ → S for a universal
Néron-model-admitting morphism, and Ñ/S̃ for the Néron model of J .
(5)Since this is a 2-category, care must be taken with terminal objects. However, since our categories
are fibred in groupoids there is no ambiguity in the definition of terminal object. All our proofs
will be by descent from the case of schemes, so this issue will also not arise in the proofs.
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Remark 10.2. — Note that Ñ is a smooth, separated group algebraic space over
S̃ (if the latter exists).

Theorem 10.3. — Let S be an algebraic stack locally of finite type over an
excellent scheme. Let C/S be a prestable curve such that C/S has étale normal
crossings singularities (in particular, C is generically smooth; write U ↪→ S for the
largest open over which C is smooth). Let β : S̃ → S denote the universal aligning
morphism (note β is an isomorphism over U). Then S̃ is a universal Néron-model-
admitting morphism for C/S, and moreover the Néron model Ñ is of finite type over
S̃, and its fibrewise-connected-component-of-identity is semi-abelian.

Note that the universal aligning morphism exists as an algebraic space over S by
Theorem 7.20. Before giving the proof we briefly recall the key theorem of [Hol19]
on which we depend:

Theorem 10.4. — Let S be a regular algebraic scheme, and U ↪→ S a dense
open subscheme. Let C/S be a prestable curve, smooth over U . We have:

(1) if the jacobian J/U admits a Néron model over S then C/S is aligned;
(2) if C is regular and C/S is aligned then the jacobian J/U admits a Néron

model over S.
Moreover, this Néron model is of finite type over S, and its fibrewise-identity-
component is a semi-abelian scheme.

Proof. — This is essentially [Hol19, Theorem 1.2], but with some small modifica-
tions and additions:

(1) Our notion of alignment is slightly different from that in [Hol19], but when
the base is regular these notions coincide; see Remark 2.6;

(2) That the fibrewise-identity-component is a semi-abelian scheme follows from
the third point in [Hol19, Remark 6.3];

(3) That the Néron model is of finite type is the main result of [Hol17]. �

Proof of Theorem 10.3. — Let f : S ′ → S be a smooth cover by a scheme, then
f ∗C/S ′ has étale normal crossings singularities, and S ′ is excellent because it is
locally of finite type over an excellent scheme. So by Lemma 8.5 we find that S
has a smooth cover by schemes Si for i in some indexing set I, such that each
CSi → Si has a controlling point si and normal crossings singularities. Formation
of the universal aligning morphism S̃ → S commutes with smooth base-change(6) ,
so by Theorem 8.11 we find that S̃ is regular, and by Lemma 9.2 we find that S̃
has a smooth cover by schemes Si,M such that on each Si,M the curve CSi,M has a
prestable regular aligned model.
By item (2) of Theorem 10.4 we then know that the jacobian of CU/U has a Néron

model over each Si,M (changing the model of the curve does not change the jacobian
over U , so the existence of a regular aligned model implies that the jacobian admits
a Néron model). By the same result we know that this Néron model is of finite
type and has semi-abelian fibrewise-connected-component-of-identity. Néron models
(6)Even fppf base-change, since alignment is fppf local (see Remark 2.7).
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descend along smooth covers by [Hol19, Lemma 6.1], so a Néron model exists over S̃
(and the properties mentioned also descend). This shows that β : S̃ → S is a Néron
model admitting morphism.
Finally, we need to show that any other Néron-model-admitting morphism factors

via S̃. Let f : T → S be a Néron-model-admitting morphism. Since T is reduced
and β is separated, a factorisation of f via β will descend along a smooth cover of
T ; as such, (and using that a scheme smooth over a regular base is regular) we may
assume T is a scheme. Then by item (1) of Theorem 10.4 and the fact that f ∗CU has
a Néron model over T , we know that f ∗C/T is aligned, and hence f factors uniquely
via the universal aligning morphism as required.

From now on, we work relative to a fixed base scheme Λ which we assume to be
regular and excellent — the basic examples to keep in mind are SpecZ and the
spectrum of a field. Let g, n be non-negative integers such that 2g − 2 + n > 0.
We writeMg, n for the moduli stack of smooth proper connected n-pointed curves
of genus g over Λ, and Mg,n for its Deligne–Mumford–Knudsen compactification.
By [Knu83, Theorem 2.7] we know thatMg, n is a smooth proper Deligne–Mumford
stack over Λ, and the boundary Mg, n \ Mg, n is a divisor with normal crossings
relative to Λ in the sense of [DM69, Definition 1.8]. We write Jg, n for the jacobian
of the universal curve Mg, n+1 ×Mg,n

Mg, n over Mg, n; this is an abelian scheme
overMg, n.
A straightforward application of the previous theorem (together with Lemma 8.2

for the smoothness) now yields our main result about the Néron model of the
universal jacobian.

Corollary 10.5. — A universal Néron-model-admitting morphism for Mg, n

exists and is an algebraic space locally of finite type overMg, n, and is smooth over Λ.
The Néron model over it is of finite type, and its fibrewise-connected-component-of-
identity is semi-abelian.

Proposition 10.6. — These objects also satisfy the following properties:

(1) the morphism β : M̃g, n →Mg, n is separated and locally of finite presentation;
(2) the morphism β : M̃g, n →Mg, n satisfies the valuative criterion for properness

for morphisms from traits toMg, n which map the generic point of the trait
toMg, n.

Proof. —

(1) Follows from the same properties for the universal aligning scheme (Theo-
rem 7.20) and the fact that these properties descend along fppf morphisms.

(2) Immediate from the definition of the universal Néron-model-admitting scheme
because Néron models always exist over traits (alternatively, because generi-
cally smooth prestable curves over traits are always aligned).
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11. A worked example

We return to the example of a non-aligned prestable curve considered in Section 1.6.
We compute its universal aligning scheme, and describe the Néron model of its
jacobian over the universal aligning scheme.
Construct a stable 2-pointed curve over C by glueing two copies of P1

C at (0 : 1)
and (1 : 0), and marking the point (1 : 1) on each copy. Then define C/S to be
the universal deformation as a 2-pointed stable curve. Choose coordinates such that
S = SpecC[[x, y]], and C is smooth over the open subset U = D(xy). Call the sections
p and q.
Now the graph over the closed point of S is a 2-gon, with one edge labelled by (x)

and the other by (y). The graph over the generic point of (x = 0) is a 1-gon with
edge labelled by (y), and similarly the graph over the generic point of (y = 0) is a
1-gon with edge labelled by (x). All other fibres are smooth. In particular, C/S is
aligned except at the closed point, which is a controlling point.

11.1. The universal aligning morphism

We now describe the universal aligning morphism. We will not follow through the
construction given in Definition 7.17, but will instead give a more geometric picture
via a sequence of blowups of S.
Set S0 = S, and letD0 and E0 be the divisors given by x = 0 and y = 0 respectively.

Let Z0 denote the locus where D0 ∪ E0 is singular (i.e. the closed point of S). Let
U0 = S0 \ Z0.
Now set S1 to be the blowup of S0 at Z0, and let D1 and E1 be the pullbacks of D0

and E0 to S1. Let Z1 be the locus where D1∪E1 is singular, and let U1 = S1 \Z1. Let
φ1 : U0 → U1 be the unique S-morphism (an open immersion). We proceed like this,
inductively defining an infinite chain of blowups Si+1 → Si and open immersions
φi : Ui → Ui+1. Then the universal aligning morphism S̃ → S is the colimit of the
open immersions φi. The morphism S̃ → S is separated, locally of finite type, is an
isomorphism outside the closed point of S, but is not quasi-compact. More precisely,
the closed fibre is an infinite union of copies of Gm, which can be indexed by pairs
of positive coprime integers. We assign D0 the label (0, 1) and E0 the label (1, 0),
and then the exceptional curve of the blowup of components labelled (a, b) and (c, d)
is given label (a+ c, b+ d). So the exceptional curve of the first blowup is labelled
(1, 1), and two exceptional of the second blowup are labelled (1, 2) and (2, 1), etc (cf.
the Farey sequence). Note that S̃ is integral and is smooth over C.

11.2. The Néron model

We now describe the Néron model of the jacobian of CU/U over the universal
aligning scheme S̃. Marking the section p, we find that CU/U is an elliptic curve, so
is canonically isomorphic to its jacobian. Over S, the fibrewise-connected component
of p in Csm is isomorphic to Pic0

C/S, and its pullback to S̃ is the “identity component”
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of the Néron model. Let E be one of the copies of Gm lying over the origin in S,
indexed by the pair (a, b) of coprime positive integers. Then the component group
is constant over E, and is a cyclic group of order a+ b.

12. Bounded-thickness substacks of M̃g, n

In some applications it can be useful to consider only a part of the stack M̃g, n —
in particular, in applications where quasi-compactness is important. In this section
we define certain open substacks of M̃g, n with good universal properties.
We write Γ′ for the graph obtained from Γ by deleting all loops.

Definition 12.1. — Let S be a scheme, C/S a prestable curve, and s ∈ S a
geometric point. Write G1, · · · , Gn for the elements of the partition Part(Γ′s) of the
graph Γ′s. Let e > 0 be an integer. We say C/S is e-strongly aligned at s if there
exists a sequence a1, · · · , an of non-zero elements of OetS, s such that

(1) for every subset J ⊆ {1, · · · , n}, the subscheme
V (aj : j ∈ J) ⊆ SpecOetS, s

is regular (this is a weak version of having normal-crossings singularities);
(2) for each i and each edge c of Gi, there exists 0 6 r 6 e such that

`(c) = (ai)r.
We say C/S is e-strongly aligned if it is e-strongly aligned at s for all geometric
points s of S.

Remark 12.2. — If C/S is 1-strongly aligned then C is regular; if c is a non-
smooth point lying over s then `(c) = (ai) for some i, and ai must be contained in
the maximal ideal of OetS, s but not in its square. Then C/S is isomorphic étale-locally
at the non-smooth point c to

OetS, s[x, y]
(xy − ai)

.

Writing m for the maximal ideal at the origin of OetS, s[x, y] we see that xy − ai ∈ m

and that xy − ai /∈ m2, so C is regular at c by [Liu02, Corollary 4.2.12].

Definition 12.3. — Let g, n be non-negative integers such that 2g − 2 + n > 0.
Let e > 0 be an integer. Choose an étale cover ⊔i∈ I Si →Mg, n by a scheme such
that on each Si the curve has a controlling point si. For each i ∈ I, write M6 ei for
the set of thickness functions on Csi which take values in {0, · · · , e − 1, e} ⊆ Z> 0.
Now define S̃i6 e to be the open subscheme of S̃i covered by the SM as M runs
over M6 ei . Define M̃6 e

g, n to be the image of ⊔i∈ I S̃6 ei under the natural étale map⊔
i∈ I S̃i → M̃g, n.

Remark 12.4. —
(1) A-priori the definition of M̃6 e

g,n depends on the choice of cover ⊔i∈ I S̃i →
Mg, n, but we will see in Lemma 12.5 that this is not the case;
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(2) Note that each S̃6 ei → Si is quasi-compact, since M6 ei is finite. By étale
descent of quasi-compactness, the same holds for M̃6 e

g, n →Mg, n.
Lemma 12.5. — Fix integers g, n, e as above. Then the category of e-strongly

aligned stable n-pointed curves of genus g has a terminal object. This terminal object
has a natural map to M̃g, n (since e-strongly aligned implies aligned), and this map
is an open immersion, whose image is exactly M̃6 e

g, n.
Proof. — In this proof we retain the notation from Definition 12.3 (in particular

the cover ⊔i∈ I S̃i →Mg, n).
The property of being e-strongly aligned is local in the étale topology, since the

definition concerns only the étale local rings of S. Observe that the pullback of the
canonical stable curve over Si to S̃6 ei is e-strongly aligned, by definition of S̃6 ei and
the fact that the universal curve overMg, n (and hence over Si) has étale normal-
crossings singularities. Combining these observations, we see that the pullback of
the universal stable curve overMg, n to M̃6 e

g, n is itself e-strongly aligned.
Let f : T →Mg, n be a non-degenerate morphism, with resulting stable curve C/T .

Suppose that C is e-strongly aligned. In particular, C/T is aligned, and so f factors
(uniquely) via M̃g, n. If we can show that f in fact factors via M̃6 e

g, n, then we are
done.
Since being e-strongly-aligned is étale local, we may assume that f factors via the

étale cover ⊔i∈ I S̃i →Mg, n. Then it is clear from the construction of the S6 ei that
f factors via ⊔i∈ I S̃6 ei and hence via M̃6 e

g, n, as required.
Finally, we observe that the universal Néron model has a particularly nice universal

property for 1-strongly-aligned curves:
Lemma 12.6. — Let C/S be stable, 1-strongly aligned and smooth over a dense

open. Let f : S → M̃g, n be the tautological map. Write Ng, n for the Néron model
over M̃g, n. Then f ∗Ng, n is the Néron model of the jacobian of C.
Proof. — A stable curve which is 1-strongly-aligned is necessarily regular by Re-

mark 12.2, hence the pullback of the universal stable curve Cg, n to M̃g, n is itself
regular, so coincides with its desingularisation C̃g, n (see Remark 9.3).
As usual we write Pic[0]

C/S for the total-degree-zero part of the relative Picard space
of C/S (cf. Remark 2.9), and we find

f ∗ Pic[0]
C̃g,n/M̃g,n

= Pic[0]
C/S .

If we write EC/S for the closure of the unit section in Pic[0]
C/S and Ẽ for the closure of

the unit section in Pic[0]
Cg,n/M̃g,n

we find that f ∗Ẽ = EC/S since Ẽ is flat over M̃g, n.
Hence by [Hol19, Theorem 6.2] we find

f ∗Ng, n = f ∗

Pic[0]
C̃g,n/M̃g,n

Ẽ

 =
Pic[0]

C/S

EC/S
,

the latter being the Néron model of the jacobian of C/S, again using that C is
regular since it is 1-strongly-aligned.
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13. Relation to the stack Pd,g of Caporaso

Let g > 3, and let d be an integer such that gcd(d − g + 1, 2g − 2) = 1. Ca-
poraso [Cap08] constructs a smooth morphism of stacks p : Pd, g → Mg and an
isomorphism from Pd, g ×Mg

Mg to the degree-d Picard scheme of the universal
curve overMg. This morphism p is relatively representable by schemes, and satisfies
the following property:

given a trait B with generic point η and a regular stable curve X → B,
write f : B →Mg for the moduli map. Then f ∗Pd, g is the Néron model
of PicdXη/η.

More concisely, we might say that Pd, g gives a partial compactification of the degree-
d universal jacobian Jg which has a good universal property for test curves B inMg

which meet the boundary with “low multiplicity” (this is equivalent to the given
stable curve X/B being regular). In contrast, in this paper we construct a partial
compactification Ng of the universal jacobian Jg, with a natural group structure, and
which has a good universal property for all test curves to (even aligned morphisms
to)Mg, but at the price of “blowing up the boundary” ofMg. In the remainder of
this section, we will make the comparison more precise.
Note that the condition gcd(d− g + 1, 2g − 2) = 1 precludes the possibility that

d = 0 (unless g = 2), and so to compare Caporaso’s construction to M̃g we must
consider Néron models of degree-d parts of the jacobian for d 6= 0. These are not
group schemes, but the Néron mapping property still makes sense, so we define a
Néron model to be a smooth separated model satisfying the Néron mapping property.
This presents no new difficulties:

Theorem 13.1. — Let S be a regular separated stack, and C/S an aligned
prestable curve, smooth over a dense open U ↪→ S. Assume that C is regular. Fix
d ∈ Z, and let Jd/U denote the degree-d jacobian of C over U . Then Jd admits a
Néron model over S.

Proof. — The closure of the unit section in PicC/S coincides with the closure of the
unit section in Pic[0]

C/S, since the latter is open and closed in PicC/S. In particular, the
closure of the unit section in PicC/S is flat over S, and so the quotient N of PicC/S
by the closure of the unit section exists as an algebraic space over S. It is easily
verified that N is the Néron model of PicCU/U — the proof of the main theorem
of [Hol19] carries over almost verbatim. Then the closure of Jd inside N is exactly
the Néron model of Jd that we seek.
The next proposition shows that the restriction of the Néron model of the uni-

versal jacobian to the open substack M̃6 1
g is given by the pullback of Caporaso’s

construction.

Proposition 13.2. — Let g > 3 and d be integers such that gcd(d− g + 1, 2g
− 2) = 1. Write P̃ for the pullback of Pd, g to M̃6 1

g , and write Ng for the Néron
model of Jg over M̃6 1

g . Then the canonical map h : P̃ → Ng given by the Néron
mapping property is an isomorphism.

ANNALES HENRI LEBESGUE



A Néron model of the universal jacobian 1765

Proof. — It is enough to check the map h is an isomorphism on every geometric
fibre over M̃6 1

g . Let p be a geometric point of M̃6 1
g . Then there exists a trait T

with geometric closed point t, and a morphism g : T →Mg such that
(1) the given stable curve X → T is regular;
(2) the map g factors via a map g̃ : T → M̃6 1

g ;
(3) this factorisation g̃ maps t to p.

Such a T can be constructed by choosing a trait in M̃6 1
g through p which is transver-

sal to the boundary divisor of the universal curve over M̃6 1
g . This is certainly possible

as the boundary has normal crossings, and one then takes g to be the composite of
the inclusion of this trait with the structure map M̃g →Mg We need to verify that
it satisfies these three conditions:

(1) Write Cg, n for the pullback of the universal stable curve over M̃6 1
g . Then

Cg, n is regular by Remark 12.2, and since T meets the boundary transversally
we see that the pullback over T is also regular.

(2 & 3) These are clear by construction and the valuative criterion for separatedness
applied to M̃6 1

g →Mg.
Now since X is regular, we find (as in the proof of Theorem 13.1) that g̃∗Ng is

the Néron model of the jacobian of the generic fibre of X → T , and the same holds
for g̃∗P̃ = g∗P. In particular, this shows that the fibres of Ng and of P̃ over p are
isomorphic. Moreover, the given map between them is an isomorphism; this is true
because it is so over the generic point of T (apply the uniqueness part of the Néron
mapping property).
In particular, this shows that, after pullback along the morphism M̃6 1

g → Mg,
the stack Pd, g admits a natural torsor structure extending that overMg.
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