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EN CAS D’ÉVOLUTION DE LA
DISPERSION

Abstract. — We investigate super-linear spreading in a reaction-diffusion model analogous
to the Fisher-KPP equation, but in which the population is heterogeneous with respect to
the dispersal ability of individuals and the saturation factor is non-local with respect to one
variable. It was previously shown that the population expands as O(t3/2). We identify a
constant α∗, and show that, in a weak sense, the front is located at α∗t3/2. Surprisingly, α∗

is smaller than the prefactor predicted by the linear problem (that is, without saturation)
and analogous problem with local saturation. This hindering phenomenon is the consequence
of a subtle interplay between the non-local saturation and the non-trivial dynamics of some
particular curves that carry the mass to the front. A careful analysis of these trajectories allows
us to characterize the value α∗. The article is complemented with numerical simulations that
illustrate some behavior of the model that is beyond our analysis.

Résumé. — Nous examinons le phénomène de propagation surlinéaire pour un modèle de
réaction-diffusion analogue à l’équation de Fisher-KPP, mais pour lequel la population est
hétérogène vis-à-vis du taux de dispersion de chaque individu, et de plus, le terme de saturation
est non-local par rapport à la variable de dispersion. Il avait été démontré que la population
s’étend comme un O(t3/2). Ici, nous identifions une constante α∗ telle que le front d’expansion
est localisé autour de α∗t3/2, dans un sens faible. Curieusement, la constante α∗ est strictement
inférieure au préfacteur obtenu à partir du problème linéarisé (en omettant la saturation), ce
dernier coïncidant par ailleurs avec celui obtenu à partir du problème avec saturation locale. Ce
phénomène de ralentissement est la conséquence d’une interaction subtile entre la saturation
non-locale et la dynamique non-triviale de certaines trajectoires qui amènent la masse au front
d’invasion. Une analyse très précise de ces courbes particulières nous permet de caractériser
algébriquement la valeur de α∗. En complément de ce travail, des simulations numériques
viennent illustrer le comportement attendu des solutions, au-delà des résultats analytiques.

1. Introduction and Main result

It is commonly acknowledged that the rate of front propagation for logistic reaction-
diffusion equations is determined by the linear problem, that is, without growth
saturation. This is indeed the case for the celebrated Fisher-KPP equation,
(1.1) nt = θnxx + n(1− n).
It is known [AW78, Fis37, KPP37] that the level lines of the solution propagate
asymptotically with speed 2

√
θ, provided the initial data is localized (e.g., compactly

supported). This coincides with the spreading speed of the linear problem n̄t =
θn̄xx + n̄, which can be seen, for instance, from its fundamental solution,

n̄(t, x) = 1
2
√
πθt

exp
(
− t

4θ

[(
x

t

)2
− 4θ

])
.

The linear determinacy of the wave speed for reaction-diffusion equations is a long-
standing question, see e.g. [Cro03, HR75] and [LMN04, Wei12] for recent devel-
opments on scalar homogeneous equations. It has been established in many other
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Non-local competition slows down front acceleration during dispersal evolution 3

contexts, such as for related inhomogeneous models (see, e.g., [BH02, BHN05], and
the recent [NR17] and references therein) as well as for systems under certain condi-
tions (see, e.g. [LLW02, LWL05, WLL02], the recent work in [Gir18a, Gir18b], and
references therein). More recently, linear determinacy has been established for many
non-local equations as well (see, e.g., [ACR13, BJS16, BNPR09, HR14]). This is
necessarily only a small sampling of the enormous body of literature utilizing the re-
lationship between spreading speeds and linearization in reaction-diffusion equations
arising in ecology and evolution.
In the present work, we report on a similar equation, called the cane toads equation,

that describes a population that is heterogeneous with respect to its dispersal ability.
Namely, we consider the population density f(t, x, θ) whose dynamics are described
by the following equation:

(1.2)

ft = θfxx + fθθ + f(1− ρ) in R∗+ × R× (1,∞),
fθ = 0 on R∗+ × R× {1} ,

where ρ(t, x) =
∫∞

1 f(t, x, θ)dθ is the spatial density. The zeroth order term f(1− ρ)
is referred to as the reaction term. The equation is complemented with a measurable
initial datum f0 such that, for some θin, C0 > 1,

(1.3) C−1
0 1(−∞,−C0)×(θin, θin+C−1

0 ) 6 f0 6 C01(−∞, C0)×(1, 1+C0),

up to a set of measure zero.

Equation (1.2) was proposed as a minimal model to describe the interplay between
ecological processes (population growth and migration) and evolutionary processes
(here, dispersal evolution) during the invasion of an alien species in a new environ-
ment, see [BCMV12] following earlier work in [CM07] and [PDA11]. The population
is structured with respect to the dispersal ability of individuals, which is encoded
in the trait θ > 1. Offspring may differ from their parents with respect to mobility.
Deviation of mobility at birth is accounted for as f + fθθ, with Neumann boundary
conditions at θ = 1. Finally, growth becomes saturated as the population density
ρ(t, x) reaches unit capacity locally in space. We note that we use the trait space
θ ∈ (1,∞) for simplicity, but our proof applies to the case when the trait space is
(θ,∞) for any θ > 0.
Problem (1.2) shares some similarities with kinetic equations (see, for example,

the review [Vil02]), as the structure variable θ acts on the higher order differential
operator. However, here the differential operator is of second order, whereas it is of
first order (transport) in the case of kinetic equations.
The goal of this study is to understand spreading in (1.2), and, in particular, to

emphasize the comparison with the rate of propagation of the linearized problem f̄t =
θf̄xx+f̄θθ+f̄ . Indeed, our main results, Theorems 1.2 and 1.3, imply that propagation
in (1.2) is slower than that predicted by the linear problem. This is surprising at
first glance, as, to our knowledge, there are no settings in which linearization in
homogeneous scalar reaction-diffusion equations overestimates the asymptotic wave
speed [Cro03, HR75, LMN04], whereas it does overestimate the spreading rate in
our case study.
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Another noticeable fact is that we are able to characterize algebraically the critical
value for the rate of expansion, despite the fact that the problem becomes genuinely
non-linear because of the impact of competition on spreading.
It is important to note that, although (1.2) and (1.1) seem strongly related at

first, the two have deep structural differences stemming from the interaction of
the non-local saturation term −fρ and the unbounded diffusivity θ ∈ (1,∞). The
most obvious consequence of the former is the fact that (1.2) lacks a comparison
principle. This is a serious technical issue that forces us to rely on and extend
earlier techniques of Bouin, Henderson, and Ryzhik [BHR17b]. There are, however,
further phenomenological differences between the two models, leading to additional
difficulties that are discussed in greater detail below.
One salient feature of (1.2) is the accelerated propagation that results from the

interplay between ecology and evolution. One may heuristically derive the rate of
acceleration from the linear equation as follows: first, we ignore the ecological part, so
that we are reduced to the linear Fisher-KPP equation in the θ direction: f̄t = f̄θθ+ f̄ ,
and we find that θ̄(t) = O(t), where θ̄(t) is roughly the location of the front (with
respect to θ); second, we focus on the ecological part: f̄t = θ̄(t)f̄xx + f̄ , and we
find that x̄(t) = tO(θ̄(t)1/2) = O(t3/2). This heuristic argument can be rephrased
as a “spatial sorting” phenomenon: individuals with higher dispersal abilities travel
far away, where they give birth to possibly better dispersers, yielding sustained
acceleration of the front.
Acceleration was reported in a series of studies about the invasion of cane toads

(Rhinella marina) [PBWS06, UPSS08] after their introduction in the 1930’s in
Queensland, Australia. It is hypothesized that spatial sorting is one of the ma-
jor causes for this acceleration [SBP11]. Our analysis enables us to quantify this
interplay between ecology (species invasion) and dispersal evolution.

Super-linear spreading (front acceleration)

In [BCM+12], Bouin et. al. argued formally that the linear problem (omitting the
quadratic saturation term) should propagate super-linearly as (4/3)t3/2 at the leading
order. This prediction was rigorously confirmed for the local version of (1.2), that is,
when f(1− ρ) is replaced by f(1− f), by Berestycki, Mouhot and Raoul [BMR15],
using probabilistic techniques, and by Bouin, Henderson and Ryzhik [BHR17b], using
PDE arguments (see also Henderson, Perthame and Souganidis [HPS18] for a more
general model). While the local model is unrealistic for the context of spatial sorting,
it allows the difficulties due to the unbounded diffusion to be isolated from those
caused by the non-local saturation. In particular, the comparison principle is not
available for (1.2) but is for the local version.
Due to the inherent difficulties, less precise information is known about the full

non-local model. In [BMR15], the authors investigated and established the same
spreading result for a related model in which the saturation term is limited in range;
that is, ρ is replaced with ρA(t, x, θ) =

∫ θ+A
(θ−A)∨1 f(t, x, θ′)dθ′ for any A > 0. On

the other hand, in [BHR17b], the authors studied (1.2) and showed that the front
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Non-local competition slows down front acceleration during dispersal evolution 5

is located, roughly speaking, between (8/37/4)t3/2 and (4/3)t3/2 in a weak sense
(see [BHR17b, Theorem 1.2]).
Here, we establish that, contrary to previous predictions [BCM+12], the spread-

ing of the population is, in a weak sense, slower than (4/3)t3/2 for (1.2). Namely,
there exists a constant α∗ ∈ (0, 4/3) such that the “front” is located around α∗t3/2,
see Theorem 1.2 for a precise statement. By refining some calculations performed
in [BHR17b], we can prove without too much effort that α∗ > 5/4 > 8/37/4. Charac-
terizing α∗ requires more work. We find eventually that α∗ is the root of an algebraic
equation involving the Airy function and its first derivative. This allows to get a
numerical value for α∗ of arbitrary precision, e.g. α∗ ≈ 1.315135. It is immediate to
check that this value is compatible with all previous bounds. Indeed, we notice that
α∗ is much closer to 4/3 than any of the above lower bounds, so that the relative
difference is below 2%.

ρ = δ

α∗ − ǫ ≤ lim sup

0

B

B

@

Xδ(t)

t3=2

1

C

C

A

ρ = 1

2

lim inf

0

B

B

@

X1=2(t)

t3=2

1

C

C

A
≤ α∗

ρ(t; x)

Figure 1.1. Illustration of Theorem 1.2, by means of a cartoon picture that
cannot be ruled out by Theorem 1.2. The problem is to disprove the fact that
different level sets may propagate at different rates.

Abstract characterization of the critical value α∗

In order to give precise results, we need some notation. Let α ∈ [0, 4/3] and
µ > 1/2. Let Uα,µ denote the value function of the following variational problem:
(1.4)
Uα, µ(x, θ) = inf

{∫ 1

0
Lα, µ

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt : (x(·),θ(·)) ∈ A(x, θ)

}
,

where the Lagrangian is given by

(1.5) Lα, µ (t, x, θ, vx, vθ) = v2
x

4θ + v2
θ

4 − 1 + µ1{x<α t3/2} ,

and A(x, θ) denotes the set of trajectories γ : [0, 1] → R × R+ such that γ(0) =
(0, 0),γ(1) = (x, θ) and the integral quantity in (1.4) is well-defined. We use the
shorter notations Uα and Lα for Uα, 1 and Lα, 1 respectively. It is one of our important
results (see Proposition 3.3) that Uα, µ(x, θ) does not depend on the value of µ, when
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µ > 1/2 and x > α. As a consequence Uα, µ(x, θ) = Uα(x, θ) for all µ > 1/2 and
x > α. In this context, when there is no possible ambiguity, we write Uα and Lα for
Uα, µ and Lα, µ, respectively. The critical value is

(1.6) α∗ = sup
{
α ∈ [0, 4/3] : min

θ
Uα(α, θ) 6 0

}
.

We have the following properties of α∗:

Proposition 1.1. — The constant α∗ is well-defined and it satisfies 5/4 <
α∗ < 4/3.

We refer to Section 3.1 and Section 4 for the proof of this statement.

Exact rate of acceleration (in a weak sense)

In order to state our first result, we introduce the following time-dependent spatial
locations, as in Figure 1.1,

X1/2(t) = min {x : ρ(t, x) 6 1/2} , Xδ(t) = max {x : ρ(t, x) > δ} .
Interestingly, the value α∗ gives a reasonable (but weak) description of the spreading
properties of (1.2).

Theorem 1.2. — Suppose that f satisfies (1.2) with initial data f0 localized in
the sense of (1.3). Then,

lim inf
t→∞

(
X1/2(t)
t3/2

)
6 α∗.

Moreover, for all ε > 0 there exists δ > 0 such that

(1.7) lim sup
t→∞

(
Xδ(t)
t3/2

)
> α∗ − ε.

Roughly, following Theorem 1.2, there exist infinite sequences of times t1, t2, . . . →
∞ and s1, s2, . . . → ∞ such that the level line {ρ = δ} has reached α∗t

3/2
i at ti,

whereas the level line {ρ = 1/2} is no further than α∗s
3/2
i at si. A few comments

are in order. First, as with other non-local Fisher-KPP-type equations that lack
the comparison principle [BNPR09], we are unable to establish spatial monotonicity
of ρ and f . Thus, we cannot rule out that the front oscillates, in contrast to what
is depicted in Figure 1.1. Second, we cannot rule out front stretching, even along
sequences of times (this is the situation depicted in Figure 1.1). The reason is that
the upper threshold value 1/2 cannot be made arbitrarily small in our approach.
Our result is compatible with a monotonic front in which X1/2(t) is moving at rate
(5/4)t3/2 and X1/10(t) is moving at rate (4/3)t3/2, for instance. Getting stronger
results following our approach seems out of reach at present.
The appendix is devoted to numerical computations that indicate that the front

profile is monotonically decreasing and that all level lines move at the same rate.
Together with Theorem 1.2, this suggests that the front propagates at rate α∗t3/2 in
the usual sense.
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Non-local competition slows down front acceleration during dispersal evolution 7

Further characterization of the critical value α∗

We give two other characterizations of α∗. The following definitions are required.
Let Ξ0 ≈ −2.34 be the largest zero of the Airy function Ai. For ξ > Ξ0, we define
the function

(1.8) R(ξ) = −Ai′(ξ)
Ai(ξ) = −d log Ai

dξ
(ξ) .

Note that Ξ0 is a singular point for R, and that R is well-defined and smooth on
(Ξ0,∞). We provide further discussion of these and related functions in Section 7.3.
In addition, we define the following algebraic function V for τ ∈ (0, 1),

(1.9) V (τ) =
[

(1− τ)1/2(2 + τ)
2(1 + τ)3/2

] 1
3

.

Theorem 1.3. — The constant α∗ has the following two characterizations.
(i) For all α ∈ (0, 4/3], we have

(1.10) min
θ
Uα(α, θ) =

(3α
4

)4/3
min
θ
U 4

3

(4
3 , θ

)
− 1 +

(3α
4

)4/3
.

Hence,

α∗ = 4
3

 1
min
θ
U4/3(4/3, θ) + 1

3/4

.

(ii) There is a unique solution τ0 ∈ (0, 1) of

(1.11) V (τ0)2 = R
V (τ0)4 − τ0V (τ0)

(1− τ 2
0 )

1
2


such that the argument of R belongs to (Ξ0,∞). Then,

(1.12) α∗ = 4
3

(2(1− τ0)
2 + τ0

) 1
3 2(1 + τ0)2

2 + 3τ0 − τ 2
0


3
4

.

The main purpose of Theorem 1.3 is to provide an analytic formula for α∗ that
can be easily (numerically) computed. It is from this representation that we obtain
the decimal approximation α∗ ≈ 1.315135 given above.
We mention that, in fact, a stronger scaling relationship than (1.10) holds that takes

into account the scaling in θ. This is straightforward to obtain and Theorem 1.3(i)
follows directly from it. The advantages of Theorem 1.3(i) are twofold. First, it
provides a direct way of determining that α∗ < 4/3. Second, it reduces the task of
finding α∗ to computing only U4/3, instead of the whole range of Uα for α ∈ [0, 4/3].
Theorem 1.3(i) also allows us to simplify the proof of Theorem 1.3(ii).
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Motivation and state of the art

The interplay between evolutionary processes and spatial heterogeneities has a long
history in theoretical biology [CBBB12]. It is commonly accepted that migration of
individuals can dramatically alter the local adaptation of species when colonizing
new environments [MW01]. This phenomenon is of particular importance at the
margin of a species’ range where individuals experience very low competition with
conspecifics, and where gene flow plays a key role. An important related issue in
evolutionary biology is dispersal evolution, see e.g. [Ron07].
An evolutionary spatial sorting process has been described in [SBP11]. Intuitively,

individuals with higher dispersal reach new areas first, and there they produce
offspring having possibly higher abilities. Based on numerical simulations of an
individual-based model, it has been predicted that this process generates biased
phenotypic distributions towards high dispersive phenotypes at the expanding mar-
gin [TD02, TMBD09]. As a by-product, the front accelerates, at least transiently
before the process stabilizes. Evidence of biased distributions and accelerating fronts
have been reported [PBWS06, TBW+01]. It is worth noticing that ecological (species
invasion) and evolutionary processes (dynamics of phenotypic distribution) can arise
over similar time scales.
Equation (1.2) was introduced in [BCMV12] and built off the previous contri-

butions [CM07] and [PDA11]. It has proven amenable to mathematical analysis.
In the case of bounded dispersal (θ ∈ (1, 10), say) Bouin and Calvez [BC14] con-
structed travelling waves which are stationary solutions in the moving frame x− c∗t
for a well-chosen (linearly determined) speed c∗. Turanova obtained uniform L∞

bounds for the Cauchy problem and deduced the first spreading properties, again for
bounded θ [Tur15]. The propagation result was later refined by Bouin, Henderson
and Ryzhik [BHR17a] using Turanova’s L∞ estimate. We highlight this point since
no uniform L∞ bound is known for the unbounded case (1.2). In addition, their
strategy depended on a “local-in-time Harnack inequality” that is not applicable in
our setting. It is also interesting to note that the spreading speed is determined by
the linear problem in the case of bounded θ. The same conclusion was drawn by
Girardin who investigated a general model which is continuous in the space variable,
but discrete in the trait (diffusion) variable [Gir18a, Gir18b].
On the one hand, our work belongs to the wider field of structured reaction-

diffusion equations, which are combinations of ecological and evolutionary processes.
In a series of works initiated by [ACR13], and followed by [ABR17, BJS16, BM15],
various authors studied reaction-diffusion models structured by a phenotypic trait,
including a non-local competition similar to (and possibly more general than) −fρ.
However, in that series of studies, the trait is assumed not to impact dispersion, but
reproduction, as for e.g. ft = fxx + fθθ + f(a(θ)− ρ). In particular, no acceleration
occurs, and the linear determinacy of the speed is always valid. Note that more
intricate dependencies are studied, in particular the presence of an environmental
cline, which results in a mixed dependency on the growth rate a(θ − Bx), as, for
instance, in [ABR17, ACR13] (see also [BM15]).
On the other hand, our work also fits into the analysis of accelerating fronts

in reaction-diffusion equations. We refer to [CR12, CR13] for the variant of the
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Non-local competition slows down front acceleration during dispersal evolution 9

Fisher-KPP equation where the spatial diffusion is replaced with a non-local frac-
tional diffusion operator. In this case, the front propagates exponentially fast, see
also [Mir20, MM15]. The case where spatial dispersion is described by a convolution
operator with a fat-tailed kernel was first analyzed in [Gar11], see also [BGHP18].
The rate of acceleration depends on the asymptotics of the kernel tails. In [BCN15,
BCGN16], the authors investigated the acceleration dynamics of a kinetic variant
of the Fisher-KPP equation, structured with respect to the velocity variable. The
main difference with the current study is that the kinetic model of [BCN15] (see
also [CHS12]) enjoys the maximum principle.
A natural question in front propagation, related to the issue of linear determinacy,

is whether the long-time and long-range behavior can be described via a geometric
equation. This is not always possible – see, for example, [Fre85a, Chapter 6.2]
and [MS94, examples B(i) and B(ii)]. In our setting, finding a PDE governing the
asymptotic behavior of (1.2) remains an interesting open problem (see the discussion
in Section 2).

Notation

We use C to denote a general constant independent of all parameters but θin and
C0 in (1.3). In addition, when there is a limit being taken, we use A = O(B) and
A = o(B) to mean that A 6 CB and A/B → 0 respectively.
We set R± = {x ∈ R : ±x > 0} and R∗± = R± \ {0}. All function spaces are as

usual; for example, L2(X) refers to square integrable functions on a set X.
In order to avoid confusion between trajectories and their endpoints, we denote

trajectories with bold fonts (x,θ). In general, we use x, x, θ, and θ for points and
trajectories in the original variables and y, y, η, and η for points and trajectories in
the self-similar variables, which are introduced in Section 4.3.

Acknowledgements

The authors are grateful to Emmanuel Trélat for shedding light on the connection
with sub-Riemannian geometry and the anonymous referees for their numerous
insightful comments during the revision process. Part of this work was completed
when VC was on temporary leave to the PIMS (UMI CNRS 3069) at the University
of British Columbia.

2. Strategy of proof

This section is intended to sketch the main ideas underlying the proof. As a by-
product, we explain, in rough terms, the reason for slower propagation than linearly
determined.
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Approximation of geometric optics from the PDE viewpoint

Our argument follows pioneering works by Freidlin on the approximation of geo-
metric optics for reaction-diffusion equations [Fre85b, Fre86]. In fact, we follow the
PDE viewpoint of Evans and Souganidis [ES89]. The approach is based on a long-
time, long-range rescaling of the equation that captures the front while “ignoring”
the microscopic details. In our case, this involves defining the rescaled functions

fh(t, x, θ) = f

(
t

h
,
x

h3/2 ,
θ

h

)
and ρh(t, x) = ρ

(
t

h
,
x

h3/2

)
.

Note that this scaling comes from the fact that the expected position of the front
x(t) scales like O(t3/2) and the expected mean phenotypic trait of the population at
the front θ̄(t) scales like O(t). We then use the Hopf–Cole transformation; that is,
we let

(2.1) uh(t, x, θ) = −h log fh(t, x, θ).

Then, after a simple computation,
uh, t + θ|uh, x|2 + |uh, θ|2 + 1− ρh = h (θuh, θθ + uh, xx) in R∗+ × R× (h,∞),
uh =∞ on {0} ×

[(
−∞, C0h

3
2
)
× (h, h(1 + C0))

]c
,

|uh| 6 h| logC0| on {0} ×
(
−∞,−C0h

3
2
)
×
(
hθin, h

(
θin + C−1

0

))
,

where the complement of the set is taken in R × [h,∞). Formally passing to the
limit as h→ 0, we find

(2.2)


ut + θ|ux|2 + |uθ|2 + 1− ρ(t, x) = 0 in R∗+ × R× R∗+,
u =∞ on {0} × [(−∞, 0)× {0}]c,
u = 0 on {0} × (−∞, 0)× {0} ,

where the complement of the set is now taken in R× [0,∞). We note that no bounds
on the regularity of ρ are available in the literature so it is not clear that (2.2) can
be interpreted rigorously.
Another informal candidate for the global limiting Hamilton–Jacobi problem, if

any, is the following equation:

(2.3) ut + θ|ux|2 + |uθ|2 + 1{minθ′ u(t, x, θ′)> 0} = 0 .

It is based on the heuristics that the spatial density ρ saturates to the value 1 at
the back of the front, i.e. when minθ′ u(t, x, θ′) = 0, see Figure A.2 for a numerical
evidence. However, we are lacking tools to address this issue. Actually, the uniform
boundedness of ρ is not yet established to the best of our knowledge (but see [Tur15]
for a uniform L∞ bound in the case of bounded θ). One could also search for
an alternative formulation of (2.3) in the framework of obstacle Hamilton–Jacobi
equations (see, e.g. [BCGN16, ES89]); however, the non-trivial behavior behind the
front complicates this.
Nevertheless, in our proof we are still able to use the toolbox of Hamilton–Jacobi

equations, such as variational representations and half-relaxed limits (see below)
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[BP87] in order to reach our goal. We explain in the next paragraph our strategy to
replace ρ by a given indicator function µ1{x<αt3/2}. This translates into the equation

ut + θ|ux|2 + |uθ|2 + 1− µ1{x<α t3/2} = 0 ,

which admits a comparison principle, together with the variational representa-
tion (1.4).

Arguing by contradiction to obtain the spreading rate

Clearly, ρ is the important unknown here. As we mentioned above, no information
on ρ other than nonnegativity has been established; even a uniform L∞ bound is
lacking. Thus, it is necessary to take an alternate approach, initiated in [BHR17b].
We argue by contradiction:

• On the one hand, suppose that the front is spreading “too fast,” that is,
at least as fast as α1t

3/2 for some α1 > α∗. Roughly, we take this to mean
that ρ is uniformly bounded below by 1/2 behind α1t

3/2 (the value of the
threshold µ = 1/2 matters). With this information at hand, ρ can be replaced
by 0 for x > α1t

3/2 and by 1/2 for x < α1t
3/2, at the expense of f being

a subsolution of the new problem (because the actual ρ is certainly worse
than this crude estimate). In other words, we can replace ρ by 1

21{x<α1t3/2} in
the problem (2.2) as in the definition of the variational solution Uα, µ (1.4).
Therefore, we have limh→0 uh(1, x, θ) > Uα1,

1
2
(x, θ). Letting h = t−1 � 1, we

thus expect

(2.4) f
(
t, xt3/2, θt

)
= fh(1, x, θ) . exp

(
−
Uα1,

1
2
(x, θ)
h

)
.

We then notice that
min
θ
Uα1,

1
2

(α1, θ) > 0

by the very definition of α∗ (1.6). This implies that ρ(t, xt3/2) = ρh(1, x) is
exponentially small around x = α1, which is a contradiction. We recall that
the derivation of the above Hamilton–Jacobi equation was only formal. To
make this proof rigorous, we use the method of half-relaxed limits that is due
to Barles and Perthame [BP87].
• On the other hand, suppose that the front is spreading “too slow,” that is,
no faster than α2t

3/2 for some α2 < α∗. Roughly, we take this to mean that
ρ is uniformly bounded above by some small δ ahead of α2t

3/2. With this
information at hand, ρ can be replaced by δ for x > α2t

3/2 and +∞ for
x < α2t

3/2, at the expense of f being a supersolution of the new problem
(because the actual ρ is certainly better than this crude estimate). In other
words, we can replace −1+ρ(t, x) by −1+δ+∞1{x<α2t3/2} in the variational
problem above. This property implies that limh→ 0 uh(1, x, θ) 6 Uα2(x, θ) + δ.
Choosing δ small enough, with a similar reasoning as in the previous item,
we get another contradiction, since then the front should have emerged ahead

TOME 5 (2022)



12 V. CALVEZ, C. HENDERSON, S. MIRRAHIMI, O. TURANOVA & T. DUMONT

of α2t
3/2 because minθ Uα2(α2, θ) + δ < 0. While the arguments to prove

the emergence of the front are still based on the variational problem, we
do not study directly the function uh. Instead, we build subsolutions on
moving, widening ellipses – these are actually balls following geodesics in the
Riemannian metric associated to the diffusion operator – for the parabolic
problem (1.2) following the optimal trajectories in (1.4), using the “time-
dependent” principle eigenvalue problem of [BHR17b].

Three important comments are to be made. First, this argument is made of two
distinct pieces: the rigorous connection between the variational formulation (1.4) and
the parabolic problem (1.2) and the precise characterization of Uα(α, θ) in order to
determine α∗. Second, the effective value of ρ is always small on the right side of αt3/2
in both cases (either 0 or small δ), but it takes very different values on the left hand
side (either 1/2 or +∞). Note that ρ is assigned a +∞ value in the absence of any L∞
bound. At first glance, it is striking that the same threshold α∗ could arise in both
arguments. What saves the day is that the value of Uα, µ(α, θ) does not depend on µ
provided that µ > 1/2. With our method, the latter bound could be lowered at the
expense of more complex computations, but certainly not down to any arbitrary small
number. Finally, we make a technical but useful comment. To study the variational
problem (1.4) we often use the following self-similar variables t = es, x = t3/2y, and
θ = tη and study the problem written in terms of such variables. One immediate
advantage, beyond the compatibility with the problem, is that µ1{x<α t3/2}, the
indicator function in (1.4), becomes µ1{y <α}, which is stationary. Now, the problem
can be seen as the propagation of curved rays in a discontinuous medium with index
µ on the left side, {y < α}, and 0 (or small δ) on the right side {y > α}.

Optimal trajectories

In the sequel, the qualitative and quantitative descriptions of the trajectories
in (1.4) play an important role. We say that a trajectory (x,θ) ∈ A(x, θ) is optimal
if it is a minimizer in (1.4) with endpoint (x, θ). We note that the existence and
uniqueness of these minimizers is not obvious since the Lagrangian is discontinuous;
however, we establish this fact below using lower semi-continuity (see Lemma 3.1).
Why is it that Uα, µ(α, θ) does not depend on (large) µ? The answer lies in the

optimal trajectories associated with the variational problem (1.4). It happens that the
optimal trajectories in (1.4) cannot cross, from right to left, the interface {y = α} if
the jump discontinuity is too large (µ > 1/2). In short, we prove that the trajectories
having their endpoint on the right side of the interface (including the interface itself)
resemble exactly Figure 2.1. The nice feature is that they never fall into the left-side
of the interface, but they “stick to it” for a while. During the proof, we can, thus,
replace the minimization problem (1.4) by the state constraint problem where the
curves are forced to stay on the right-side of the interface, so that the actual value
of µ does not matter.
In fact, we obtain analytical expressions for the optimal trajectories that lead to

the formula for α∗ involving polynomials of Airy functions.
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η = θ=t

y = x=t3=2

(x; θ)

ρ ≪ 1

(α; θ∗)

ρ ≥ µ

α

1
 

t

0
 

t
Figure 2.1. Typical optimal trajectories of (1.4) depicted in the self-similar vari-
ables plane (y, η) = (x/t3/2, θ/t). The endpoint at time t = 1 is (x, θ). The line
{y = α} acts as a barrier due to the jump discontinuity in ρ in our argumenta-
tion by contradiction. The trajectories with endpoints on the left side of the line
{y = α} may come from the right side (not shown). However, the trajectories
with endpoints on the right side never visit the left side. Moreover, for times
t → 0, they stick to the line {y = α}, together with η → +∞. This behavior
holds true if α 6 4

3 and µ > 1
2 .

Evidence for the hindering phenomenon

We now explain why the non-local and local saturation act differently. It is useful
to begin by discussing why in the local saturation problem the speed of propagation
is determined by the linear problem. Recall that the linear problem is subject to
the same asymptotics as (1.4) but with the choice of µ = 0 everywhere, simply
because saturation has been ignored. The optimal curves of the linear problem were
computed in [BCM+12]. Rather than giving formulas, we draw them in self-similar
variables, see Figure 2.2. Beneath the trajectories, we also draw the zero level line
of the value function U0, which separates small from large values of f̄ (the solution
of the linear problem). An important observation is that an optimal trajectory with
ending point at the zone where f̄ is small, remains on the good side of the curved
interface at all intermediate times. This means that the trajectory stays in the
unsaturated zone where the growth is f(1 − f) ≈ f . Hence, the trajectory only
“sees” the linear problem implying that the optimal trajectories of the linear and the
nonlinear problem coincide.
In the non-local problem (1.2), the characterization of the interface does not

involve θ. Indeed, the saturated region is given by ρ ≈ 1 and the unsaturated region
by ρ � 1 (or, better, by minθ U0(x, θ) = 0 and minθ U0(x, θ) > 0 respectively).
However, the trajectories of the linear problem with ending points on the saturated
zone cannot remain on the right side of any stationary interface as illustrated in
Figure 2.2. Therefore, the saturation term does matter, and it is expected that
the location of the interface is a delicate balance between growth, dispersion and
saturation.
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Figure 2.2. Illustration of the hindering phenomenon. The green shaded area
represents the saturation zone, and the bold lines represent a sampling of opti-
mal trajectories ending beyond the saturation zone. (A) In the case of a local
saturation, that is, when f(1 − ρ) is replaced by f(1 − f) in (1.2), the sat-
uration zone {f > δ}, for a small δ > 0, is genuinely a curved area in the
phase plane (x/t3/2, θ/t). The optimal trajectories associated with (1.4) with-
out saturation (µ = 0) are curved in a similar way. It can be shown that they
do not intersect the saturation zone if their endpoint is outside the saturation
zone [BHR17b, BMR15]. (B) In the case of a non-local saturation, the saturation
zone {ρ > δ} is a strip along the vertical direction. The main observation is
that the optimal trajectories without saturation (µ = 0) intersect the saturation
zone. This yields a contradiction as they are computed by ignoring the effect
of saturation. (C) The optimal trajectories of the nonlocal problem with high
enough saturation (µ > 1/2) do not intersect the saturation zone. Instead, they
stick to the interface for some interval of time. The discrepancy between the
“local” trajectories (A) and the “non-local” trajectories (C) induces a change in
the value function Uα, which itself is responsible for the lowering of the critical
value from 4/3 (in the local version) to α∗ ≈ 1.315 (in the non-local version).
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This impeding phenomena could be rephrased in a more sophisticated formulation,
saying that Freidlin’s (N) condition [Fre85b] is not satisfied. Indeed the optimal
trajectories of the linear problem ending ahead of the front do not stay ahead at all
intermediate times. Therefore, they must have experienced saturation at some time,
and so it is not possible to ignore it.
What is more subtle in our case (and leads to explicit results), is that the optimal

trajectories of the non-local problem hardly experience saturation, as can be viewed
on Figure 2.2(C): they get deformed by the presence of the putative saturated area,
but they do not pass through it so that a uniform lower bound ρ > 1/2 in the
saturation zone is sufficient to compute all important features explicitly.

Connection with sub-Riemannian geometry

The connection between f and Uα that is seen, for example, in (2.4) solicits some
comment about a connection with geometry that was first leveraged in [BCHK18].
We ignore the zeroth order term in (1.2) and focus on the diffusion part of the
equation. Anticipating the details of the proof in Section 3, let t ∈ [0, T ] for T � 1
(fixed), and consider the rescaling t = T 2τ , x = T 3/2X and θ = TΘ. Notice the
anomalous T 2 in the change of time, so that τ is small, τ 6 1/T . The diffusion part
of the equation (1.2) does not change due to the homogeneity of the second order
operator,

(2.5) Fτ = ΘFXX + FΘΘ , τ ∈ (0, 1/T ] , X ∈ R , Θ ∈ (1/T,∞) ,

and the initial data shrinks to the indicator function 1(−∞,O(1/T 3/2)]× (0,O(1/T )). In
particular, the problem is not uniformly elliptic in the limit T → +∞. However, it
is hypoelliptic in the sense of Hörmander. Moreover, it is a Grushin operator as the
sum of the squares of

√
Θ∂X and ∂Θ respectively. In particular, it satisfies the strong

Hörmander condition of hypoellipticity.
Therefore, after appropriate rescaling, our problem relies on short time asymptotics

of the hypoelliptic heat kernel (2.5). Precise results are known since the 1980’s. In
particular, from Léandre [Léa87a, Léa87b], see also [BA88], we find

lim
τ→ 0
−τ logP

(
τ, (X1,Θ1), (X0,Θ0)

)
= dist

(
(X1,Θ1), (X0,Θ0)

)2
,

where P is the heat kernel associated to (2.5) and dist is the geodesic distance
associated with the appropriate sub-Riemannian metric, which coincides with (1.4)
up to the zeroth order terms. In particular, we find, at τ = 1/T , which is equivalent
to t = T ,

F (τ,X,Θ) ≈ exp
(
−dist((X,Θ), (0, 0))2

τ

)
= exp

−T dist
((

x

T 3/2 ,
θ

T

)
, (0, 0)

)2
 .

Notice that this is the formulation of (2.4) but in the absence of reaction terms.
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3. The propagation rate

3.1. Some basic properties of trajectories and the proof of
Proposition 1.1

In this subsection, we collect some results about Uα along with the associated
optimal trajectories. In particular, we state two lemmas, which are the main elements
of the proof of Proposition 1.1. We also state a proposition that is crucial in the proof
of Theorem 1.2. The proofs of these facts may be found in Section 4 and Section 5.
First, we note that minimizing trajectories exist. The uniqueness of the minimizer

associated with an endpoint (x, θ) ∈ [α,∞)× R∗+ is addressed in Section 6.

Lemma 3.1. — Fix any α ∈ [0, 4/3] and µ > 0. Fix any endpoint (x, θ) ∈
[α,∞) × R∗+. There exists a minimizing trajectory (x,θ) ∈ A(x, θ) of the action
Uα, µ(x, θ).

Second, we provide a lemma that implies Proposition 1.1.

Lemma 3.2. — For α ∈ [0, 4/3] and x > α, the map Uα(x, θ) is increasing in α
and is strictly increasing in x. Hence, minθ Uα(α, θ) is strictly increasing in α. Further
minθ U4/3(4/3, θ) > 0 and minθ U5/4(5/4, θ) < 0.

Next, we show that the optimal trajectories with endpoints on the right side of
the front always stay to the right of the front. This is crucial, since, if this were not
true, a uniform upper bound on ρ would be required in order to proceed.

Proposition 3.3. — Let α ∈ [0, 4/3] and µ > 1/2. Let (x, θ) be the endpoint
of a minimizing trajectory (x,θ) with x > α and θ > 0. Then, for all t ∈ [0, 1],
x(t) > αt3/2. As a consequence, Uα, µ(x, θ) = Uα(x, θ) for all x > α and µ > 1

2 .

For the purposes of the proof in the next section, we also mention a technical result
that is established after a careful description of the minimizing trajectory associated
with any endpoint (α, θ). We show (cf. Lemma 7.10) that the optimal trajectories
are such that, for t� 1,

(3.1)


x(t) = αt3/2

θ(t) ∼ 3
2α

2/3 t| log t|1/3
as t→ 0.

We make two comments. First, such an anomalous scaling is not obvious at first
glance. In fact, it arises when the optimal trajectory comes into contact with the
barrier {x = αt3/2}. Second, we do not believe such an elaborate result is required
in the proof in the following section; however, as the result was readily available, we
use it.
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3.2. Proof of the lower bound in Theorem 1.2

The proof of the lower bound (1.7) in Theorem 1.2 follows almost along the lines
of the work in [BHR17b].

Proof.
Step 1. — Definition of some useful trajectories. Fix ε > 0. Using the

definition of α∗ and Lemma 3.2, there exists r > 0 and x,θ, depending only on ε,
such that x(0) = 0, θ(0) = 0, x(1) = α∗ − ε/2, and

(3.2)
∫ 1

0
Lα∗− ε2

(
s,x(s),θ(s), ẋ(s), θ̇(s)

)
ds 6 −r.

One may worry about the behavior of the integral as s � 1, but we see that the
peculiar behavior (3.1) guarantees that Lα∗− ε2 (s,x(s),θ(s), ẋ(s), θ̇(s)) is integrable
at s = 0. By a density argument, up to reducing the value of r > 0, we may assume
that x,θ ∈ C2([0, 1]), keeping the behavior θ(t) > Ct for some constant C > 0 as
t → 0 (the asymptotics for t � 1 for the regularized trajectory are possible due
to (3.1)). In addition, from Proposition 3.3 we get that

(3.3) x(s) > (α∗ − ε/2)s3/2 for all s ∈ [0, 1].

For T > 0, x0 ∈ R, θ0 > 1, and t ∈ [0, T ], define the scaled functions,

(3.4) XT, x0(t) = T 3/2x
(
t

T

)
+ x0 and ΘT, θ0(t) = Tθ

(
t

T

)
+ θ0.

The parameters x0 and θ0 are determined in the sequel. For notational ease, we refer
to XT, x0 and ΘT, θ0 simply as X and Θ in the sequel.
Noticing that Θ > Tθ( t

T
), then changing variables in (3.2) from the definition of

Lα∗− ε2 (1.5), we get the crucial fact,

(3.5)
∫ T

0

∣∣∣Ẋ(t)
∣∣∣2

4Θ(t) +

∣∣∣Θ̇(t)
∣∣∣2

4 dt 6 T − rT.

Further, we may assume without loss of generality that Θ̇(t) > 0 for all t ∈ [0, T ];
indeed, if not, we may replace Θ(t) by∫ t

0
max

{
0, Θ̇(s)

}
ds+ θ0,

which only decreases the left hand side of (3.5). In fact, the above argument shows
that the optimal trajectory associated with the minimum value of Uα (with respect
to θ) is decreasing in its second argument. We note, however, that it is not true that
all optimal trajectories are non-decreasing in the second argument.
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Step 2. — A subsolution in a Dirichlet ball along the above trajectories.
Let

δ = r/3.
We now argue by contradiction. Assume that (1.7) does not hold. Then there exists
t0 such that, for all t > t0,
(3.6) ρ(t, x) < δ for all x > (α∗ − ε)t3/2.
We may assume, by simply shifting in time, that t0 = 0 and that f0 is positive
everywhere. Further, using (3.6), we have,

(3.7) ft > θfxx + fθθ + f
(

(1− ρ)1{x< (α∗−ε)t3/2} + (1− δ)1{x> (α∗−ε)t3/2}
)
.

Next we find a subsolution of (3.7) in a Dirichlet ball that moves along the above
trajectories. To this end, we define, for any (x, θ) and R,

Ex, θ,R :=
{

(x′, θ′) : |x′ − x|2 /θ + |θ′ − θ|2 6 R2
}
.

We use the following lemma, which is very similar to [BHR17b, Lemma 4.1] (see
also [BCHK18, Lemma 13]). Its proof is postponed, but we use it now to conclude
the proof of the Theorem 1.2.
Lemma 3.4. — Let δ, X, and Θ be as above. There exists positive constants

C(δ), C(R, δ), and ω(R) such that, for all R > C(δ), θ0 > C(R, δ), and T > C(R, δ),
and for all x0 ∈ R, there is a function v satisfying

(3.8)


vt 6 θvxx + vθθ + (1− δ)v, (t, x, θ) ∈ (0, T )× EX(t),Θ(t), R,

v(t, x, θ) = 0, (t, x, θ) ∈ [0, T ]× ∂EX(t),Θ(t), R,

v(0, x, θ) 6 1, (x, θ) ∈ Ex0, θ0, R,

such that v(T, x, θ) > ω(R)eδT for all (x, θ) ∈ EX(T ),Θ(T ), R/2.
We aim to apply Lemma 3.4. To that end, choose R > max{1, C(δ)} and then

θ0 > C(δ, R). Let T > C(δ, R) be arbitrary.
Next, we find x0 that is independent of T such that, for all t ∈ [0, T ],

(3.9) EX(t),Θ(t), R ⊂
{

(t, x, θ)
∣∣∣ (α∗ − ε) t3/2 6 x

}
.

Let (x, θ) ∈ EX(t),Θ(t), R. Then,
X(t)−R(Θ(t))1/2 6 x.

Hence, for (3.9) to hold it is enough to show that, for all t ∈ [0, T ],
(3.10) (α∗ − ε) t3/2 6 X(t)−R(Θ(t))1/2.

From (3.3) and (3.4), we see that
(3.11) (α∗ − ε/2) t3/2 + x0 6 X(t) for all t ∈ [0, T ].
Since θ is Lipschitz continuous, then there exists a constant A, independent of t and
T , such that Θ(t) 6 At + θ0. Thus, we can choose x0 large enough, independently
of t and T , such that

− ε2t
3/2 +R(Θ(t))1/2 6 x0 for all t ∈ [0, T ].
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The combination of this and (3.11) implies (3.10), and hence (3.9) holds.
Step 3. — Obtaining a contradiction. With the choice of x0 such that (3.9)

holds, we then define

β = 1
2

(
min

Ex0, θ0, R
f(0, x, θ)

)
> 0,

and the subsolution vβ = βv given by Lemma 3.4.
According to (3.9) and (3.7), f is a supersolution to the linear parabolic equation

satisfied by vβ in (3.8). In addition,

f(t, x, θ) > vβ(t, x, θ), for (t, x, θ) ∈
(
[0, T ]× ∂EX(t),Θ(t), R

)
∪ ({0} × Ex0, θ0, R) .

From the comparison principle we deduce that f > vβ in [0, T ] × EX(t),Θ(t), R. In
particular,

f(T, x, θ) > βω(R)eδT in EX(T ),Θ(T ), R/2 .

The previous line, together with the definitions of ρ and EX(t),Θ(t), R/2, yields,

ρ(T,X(T )) >
∫ Θ(T )+R/2

Θ(T )−R/2
βω(R)eδT dθ = βω(R)ReδT .

As the constant ω(R) depends only on R, we can enlarge the value of T such that
ρ(T,X(T )) > βω(R)ReδT > 2δ. This is a contradiction, as the combination of (3.6)
and (3.9), evaluated at t = T , implies that ρ(T,X(T )) < δ. �

Finally, we establish Lemma 3.4. The proof is very similar to those of [BHR17b,
Lemma 4.1] and [BCHK18, Lemma 13]; however, it does not immediately follow
from either, so we provide a sketch. To this end, we need the following auxiliary
lemma.

Lemma 3.5. — Let δ > 0. Let

A(t, y, η) = y

2
Θ̇(t)
Θ(t) − η

Ẋ(t)
(Θ(t))3/2 , D(t, y, η) = 1 + η

Θ(t) ,

and Lt = A∂y +D∂yy + ∂ηη.

There exists a constant C ′(δ) such that, for all R > C ′(δ), θ0 > C ′(δ), and T > C ′(δ),
then there is a function w(t, y, η) satisfying

∂tw − Ltw 6 δw in (0, T )×BR(0, 0),(3.12)
w(t, y, η) = 0 on [0, T ]× ∂BR(0, 0),(3.13)
w(0, y, η) 6 1 on BR(0, 0),(3.14)

and

(3.15) min
(y, η)∈BR/2(0, 0)

w(T, y, η) > ω′(R),

where ω′(R) depends only on R.

Proof. — This is essentially a restatement of [BHR17b, p. 745], which in turn
uses [BHR17b, Lemmas 5.1, 5.2]. What we denote w here is denoted by wT,H
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in [BHR17b]. The only thing we need to verify is that the hypothesis of [BHR17b,
Lemma 5.1] holds in our situation. That is, we must verify

lim
|T |+|θ0|→∞

‖A‖L∞((0, T )×BR(0, 0)) + ‖D − 1‖L∞((0, T )×BR(0, 0)) = 0 for all R.

We show that the second term in A converges to zero; the rest are handled similarly
(in fact, more easily). Using the definitions of X and Θ (3.4), we find,

(3.16) Ẋ(t)
(Θ(t))3/2 = T 1/2ẋ (t/T )

(Tθ (t/T ) + θ0)3/2 .

Next, according to the choice of the reference trajectory (x,θ), there exists a constant
C such that
(3.17) x(t) = (α∗ − ε/2)t3/2 , and θ(t) > Ct as t→ 0.

When t/T is small, we use Young’s inequality to see that t1/3θ2/3
0 6 t/3 + 2θ0/3 and,

thus, find
Ẋ(t)

(Θ(t))3/2 6 C
T 1/2 (t/T )1/2

(T (t/T ) + θ0)3/2 = C
t1/2

(t+ θ0)3/2 6
C

θ0
.

Notice that this tends to zero as θ0 → ∞. When t/T is away from 0, θ(t/T ) is
uniformly strictly positive, and so (3.16) converges to zero as T →∞. �

Proof of Lemma 3.4. — Before beginning, we point out that, using (3.17), as in
the proof of Lemma 3.5, we find that there exists a constant C̄(R) that depends only
on R such that

(3.18) 1
2

∥∥∥∥∥y Ẋ(t)
(Θ(t))1/2 + ηΘ̇(t)

∥∥∥∥∥
L∞((0, T )×BR(0, 0))

6 C̄(R).

Let w be as given by Lemma 3.5. Define, for (y, η) ∈ BR(0, 0),

ṽ(t, y, η) = w(t, y, η) exp
(
−1

2

(
y

Ẋ(t)
(Θ(t))1/2 + ηΘ̇(t)

)
− C̄(R)− g(t)

)
,

where

g(t) = −t+ 2δt+
∫ t

0

∣∣∣Ẋ∣∣∣2
4Θ

+

∣∣∣Θ̇∣∣∣2
4 +R


∣∣∣Ẍ∣∣∣

2Θ1/2 +

∣∣∣ẊΘ̇
∣∣∣

4Θ3/2 +

∣∣∣Ẋ∣∣∣2
4Θ2 +

∣∣∣Θ̈∣∣∣
2

 dt′.

A direct computation, together with the fact that w is a subsolution of (3.12), shows
that ṽ is a subsolution of

ṽt −
(
y

2
Θ̇
Θ

+ Ẋ
Θ1/2

)
ṽy − Θ̇ṽη 6 Dṽyy + ṽηη + (1− δ)ṽ.

In addition, according to (3.13) we have ṽ ≡ 0 on ∂BR(0, 0). Also, by the definition
of ṽ, the fact that g(0) = 0, (3.14), and (3.18), we have, for (y, η) ∈ BR(0, 0),

ṽ(0, y, η) 6 exp
(
−1

2

(
y
Ẋ(0)
θ

1/2
0

+ ηΘ̇(0)
)
− C̄(R)

)
6 1.
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Next we find a lower bound for ṽ(T, y, η) on BR/2(0, 0), for which we first bound
g(T ) from above. Using (3.5), it follows that

g(T ) 6 −rT + 2δT +R
∫ T

0

∣∣∣Ẍ∣∣∣
2Θ1/2 +

∣∣∣ẊΘ̇
∣∣∣

4Θ3/2 +

∣∣∣Ẋ∣∣∣2
4Θ2 +

∣∣∣Θ̈∣∣∣
2 dt.

Applying again (3.17) in the manner of the proof of Lemma 3.5, there is another
constant C̄(R) (that we do not relabel) such that,

g(T ) 6 −rT + 2δT + C̄(R).

Together with (3.18), the definition of ṽ, and (3.15), we find, for (y, η) ∈ BR/2(0, 0),

ṽ(T, y, η) > w(T, y, η) exp
(
(r − 2δ)T − C̄(R)

)
> ω′(R) exp

(
(r − 2δ)T − C̄(R)

)
.

Finally, we recover that v is the desired subsolution of (3.8) by making the change
of variables from ṽ to v in the moving frame; that is, we let

v(t, x, θ) = ṽ

(
t,
x−X(t)
(Θ(t))1/2 , θ −Θ(t)

)
.

We recover the last conclusion in Lemma 3.4 by letting ω(R) = ω′(R)e−C̄(R), con-
cluding the proof. �

3.3. Proof of the upper bound in Theorem 1.2

Proof. — We wish to prove by contradiction that, for all ε > 0,

lim inf
t→∞

(
X1/2(t)
t3/2

)
6 α∗ + ε.

Suppose on the contrary that there exists ε > 0 and t0 such that, for all t > t0 and
all x 6 (α∗ + ε)t3/2,

(3.19) ρ(t, x) > 1/2.

In this case, we see that, for all t > t0,

(3.20) ft 6 θfxx + fθθ +
(

1− 1
21{x< (α∗+ε)t3/2}

)
f.

The work in [BHR17b, Section 3] implies that there exists a constant C, depending
only on C0 in (1.3), such that

f(t, x, θ) 6 C exp
(
t− ψ(x, θ)

4(t+ 1)

)
.

Here ψ is a positive function, defined piecewise in [BHR17b, Section 3], whose exact
form is unimportant, but which is positive when max{x, θ} > 0 and satisfies, for any
h > 0,

h2ψ
(
xh−3/2, θh−1

)
= ψ(x, θ).
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We use this particular scaling for two purposes. First, up to shifting in time, we may
assume, without loss of generality, that t0 = 0 and that there is a constant C0 > 0
such that, for all (x, θ) ∈ R× (1,∞),

(3.21) f(t, x, θ) 6 C0 exp
(
t− ψ(x, θ)

(t+ C0)

)
.

Second, for any small parameter h > 0, we define

(3.22) fh(t, x, θ) = f

(
t

h
,
x

h3/2 ,
θ

h

)
, and uh = h log fh.

Then, due to (3.21), uh satisfies both the bound

(3.23) uh(t, x, θ) 6 h logC0 −
ψ(x, θ)

C(t+ hC0) ,

and, due to (3.20), the equation
uht − θ|uhx|2 − |uhθ |2 − hθuhxx − huhθθ 6 1− 1

21{x< (α∗+ε)t3/2}
in (0,∞)× R× (h,∞),

uhθ = 0 on (0,∞)× R× {h} .

We define the half-relaxed limit u∗ = lim suph→ 0 u
h. We claim that, for any δ > 0,

u∗ satisfies (in the viscosity sense)

(3.24)



u∗t − θ|u∗x|2 − |u∗θ|2 − 1 + 1
21{x< (α∗+ε/2)t3/2} 6 0

in (0,∞)× R× (0,∞),

min
(
−u∗θ, u∗t − θ |u∗x|

2 − |u∗θ|
2 − 1 + 1

21{x< (α∗+ε/2)t3/2}
)
6 0

on (0,∞)× R× {0} ,
u∗0 6 −∞1Dc

δ
on {0} × R× (0,∞),

where
Dδ =

{
(x, θ) ∈ R× R+ : max {x, 0}2 + θ2 6 δ2

}
.

We point out that we have reduced ε to ε/2. The first two inequalities follow from
standard arguments in the theory of viscosity solutions, see, e.g., [HPS18, Section 3.2]
for a similar setting. The third inequality follows directly from the upper bound (3.23)
and the fact that ψ(x, θ) is positive for max{x, θ} > 0. The restriction to the outside
of a ball of radius δ (for arbitrary δ > 0) might look unnecessary. However, in [CLS89],
which is applied in the sequel, only “maximal functions” with support on smooth,
open sets are considered.
Using (3.24) along with theory of maximal functions [CLS89] (see also [HPS18] for

a discussion of the boundary conditions and the degeneracy in the Hamiltonian near
the boundary {θ = 0}, both of which are not considered in [CLS89]), along with the
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Lax–Oleinik formula [Lio82, Chapter 11], we see, for all (x, θ) ∈ R× R+,

u∗(t, x, θ) 6 − inf


∫ t

0

 |ẋ(s)|2

4θ(s) +

∣∣∣θ̇(s)
∣∣∣2

4 −
(

1− 1
21(−∞, (α∗+ε/2)s3/2)(x(s))

) ds
: x(·),θ(·) ∈ H1, (x(0),θ(0)) ∈ Dδ(0, 0), (x(t),θ(t)) = (x, θ)

}
.

Taking the limit δ → 0 and setting t = 1, we find

u∗(1, x, θ) 6 − inf


∫ 1

0

 |ẋ(s)|2

4θ(s) +

∣∣∣θ̇(s)
∣∣∣2

4 −
(

1− 1
21(−∞, (α∗+ε/2)s3/2)(x(s))

) ds
: (x,θ) ∈ A(x, θ)} = −Uα∗+ε/2, 1/2(x, θ).

Fix any x > α∗ + ε/2. Using Proposition 3.3, the trajectory (x,θ) satisfies x(s) >
(α∗+ ε/2)s3/2 for all s ∈ [0, 1]. It follows that Uα∗+ε/2, 1/2(x, θ) = Uα∗+ε/2(x, θ), which
implies,

u∗(1, x, θ) 6 −Uα∗+ε/2(α∗ + ε/2, θ).
For notational ease, let r = minθ′ Uα∗+ε/2(α∗+ ε/2, θ′). According to Lemma 3.2 and
the definition of α∗, we have r > 0; thus, we find

u∗(1, x, θ) 6 −r < 0.

We now use the negativity of u∗ to show that f is small beyond (α∗ + ε)t3/2 for
large times, which provides a contradiction. From the definition of u∗, it follows
that there exists h0 > 0 such that if h 6 h0, then, for all x ∈ (α∗ + 2ε/3, 2) and all
θ ∈ (h, 4),

f

(
1
h
,
x

h3/2 ,
θ

h

)
= exp

(
uh(1, x, θ)

h

)
6 exp

(
− r

2h

)
.

Hence, if t > 1/h0, x ∈ ((α∗ + 2ε/3)t3/2, 2t3/2) and θ ∈ (1, 4t), then

f(t, x, θ) 6 exp
(
−rt2

)
,

which implies,

(3.25)
∫ 4t

1
f(t, x, θ)dθ 6 (4t− 1) exp

(
−rt2

)
.

On the other hand, by [BHR17b, Equation (3.5)], there exists a positive constant C,
depending only on the initial data f0 such that f(t, x, θ) 6 Cet−θ

2/4t, for all (t, x, θ).
Hence,

(3.26)
∫ ∞

4t
f(t, x, θ)dθ

6
∫ ∞

4t
C exp

(
t− θ2

4t

)
dθ = Cet

∫ ∞
4t

exp
(
−θ

2

4t

)
dθ 6 Ce−3t.
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To obtain the final inequality, we have used that
∫∞
z e−θ

2/zdθ 6 e−z/2 holds for any
z > 0. This fact can be verified as follows, using first the fact that 1/θ is decreasing
and then a change of variables:∫ ∞

z
e−

θ2
z dθ =

∫ ∞
z

2θz−1

2θz−1 e
− θ

2
z dθ 6

1
2zz−1

∫ ∞
z

2θz−1e−
θ2
z dθ = 1

2

∫ ∞
z

e−ydy = 1
2e
−z.

The combination of (3.25) and (3.26) implies

lim sup
t→∞

 sup
x∈ ((α∗+2ε/3)t3/2, 2t3/2)

ρ(t, x)

 = 0.

To rule out the other part of the domain, we apply [BHR17b, Theorem 1.2], which
implies,

lim sup
t→∞

 sup
x> (4/3)t3/2

ρ(t, x)
 = 0.

Combining these two estimates yields

lim sup
t→∞

 sup
x> (α∗+2ε/3)t3/2

ρ(t, x)
 = 0.

This contradicts (3.19), since the latter condition implies that

lim inf
t→∞

(
min

x6 (α∗+ε)t3/2
ρ(t, x)

)
> 1/2.

The proof is complete. �

4. Basic properties of the minimizing problem Uα, µ

In this section we prove some basic properties of the trajectories. Namely, we give
the proofs of Lemma 3.1, and Lemma 3.2. We also conclude with the reformulation
of the minimization problem in the self-similar variables.

4.1. The existence of a minimizing trajectory – Lemma 3.1

The existence of minimizers is a delicate issue due to the discontinuity in the
Lagrangian Lα, µ. From our qualitative analysis in the sequel, we show that optimal
trajectories eventually stick to the line of discontinuity for periods of time. Therefore,
the value of the Lagrangian on this line matters. As an illustration of the subtlety
of this issue, notice that replacing 1{x<αt3/2} by 1{x6αt3/2} would break down the
existence of minimizers. In the latter case, a minimizing sequence would approach
the line without sticking to it (details not shown).
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Proof. — Take any minimizing sequence (xn,θn) ∈ A(x, θ) such that

Uα, µ(x, θ) = lim
n→∞

∫ 1

0
Lα, µ

(
t,xn(t),θn(t), ẋn(t), θ̇n(t)

)
dt.

We now establish that xn and θn are bounded in H1((0, 1);R×R+), uniformly in n.
Without loss of generality, we take n large enough so that,∫ 1

0
Lα, µ

(
t,xn(t),θn(t), ẋn(t), θ̇n(t)

)
dt 6 Uα, µ(x, θ) + 1.

We use the previous line and the definition of Lα, µ to find,

(4.1)
∫ 1

0

ẋn(t)2

4θn(t) + θ̇n(t)2

4 dt 6 Uα, µ(x, θ) + 2.

For t ∈ [0, 1], we have,

θn(t)− θ =
∫ t

0
θ̇n(s)ds 6 t1/2

(∫ t

0
θ̇2
n(s)ds

)1/2
6 (4Uα, µ(x, θ) + 8)1/2 ,

where the last inequality follows from (4.1). Using the previous line to bound the
first term in the integrand on the left-hand side of (4.1) yields,∫ 1

0
ẋn(t)2 + θ̇n(t)2dt 6 Cα, µ, x, θ.

Thus xn and θn are bounded in H1((0, 1);R× R+), uniformly in n.
Due to the uniform H1 bound on (xn,θn), we find, up to extraction of a subse-

quence, (xn,θn) ⇀ (x,θ) for some trajectory (x,θ) ∈ H1. This convergence is strong
in C0 due to the Sobolev embedding theorem. In order to take advantage of this
extraction, we examine the properties of Lα, µ. We split it into two parts:

Lα, µ (t, x, θ, vx, vθ) = L̃α, µ (θ, vx, vθ)− 1 + µ1{x<αt3/2},

where (i) L̃α, µ(θ, vx, vθ) = v2
x

4θ + v2
θ

4 is convex (possibly taking value +∞), as can be
seen readily from the Hessian of the function F (v, θ) = v2/(4θ), namely

D2F (v, θ) =
 1

2θ − v
2θ2

− v
2θ2

v2

2θ3

 ,

and (ii) 1{x<αt3/2} is lower semi-continuous, due to the choice 1{x<αt3/2} rather than
1{x6αt3/2}. Therefore, the functional

(x,θ) 7→
∫ 1

0
Lα,µ

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt

combines a contribution that involves derivatives, which is convex, and a contribution
that involves x only, which is genuinely lower semi-continuous.
We now establish the lower semi-continuity of both terms, beginning with the first

term. We claim that this term is lower semi-continuous with respect to the strong
topology; this is postponed until the conclusion of this proof. Then, due to [Bre11,
Corollary 3.9], which states that convexity and lower semi-continuity in the strong
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topology (for H1) implies lower semi-continuity in the weak topology, we conclude
that

lim inf
n→+∞

∫ 1

0
L̃α, µ

(
θn(t), ẋn(t), θ̇n(t)

)
dt >

∫ 1

0
L̃α, µ

(
θ(t), ẋ(t), θ̇(t)

)
dt .

We now consider the second term. This contribution is lower-continuous for the
topology of strong convergence by Fatou’s lemma, hence

lim inf
n→+∞

∫ 1

0
1{xn(t)<αt3/2} dt >

∫ 1

0
1{x(t)<αt3/2} dt .

We conclude by merging both contributions, that is

Uα, µ(x, θ) = lim inf
n→+∞

∫ 1

0
Lα, µ

(
t,xn(t),θn(t), ẋn(t), θ̇n(t)

)
dt

>
∫ 1

0
Lα, µ

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt > Uα, µ(x, θ) .

The last inequality follows from the definition of Uα,µ. Hence, the inequalities must
all be equalities above, implying that (x,θ) is truly a minimizing trajectory.
The proof is now concluded after showing the lower semi-continuity of the first

term with respect to the strong topology. We fix terms carefully here. Define

I : H1 ×H1 → (−∞,∞] defined by I(x,θ) =
∫ 1

0
L̃α, µ

(
θ, ẋ, θ̇

)
dt.

We show the lower semi-continuity of I. Fix any xn,θn,x, θ ∈ H1 such that xn → x
and θn → θ in H1. Note that this implies that θn → θ in C0, which we use strongly
below. Fix any ε > 0. Then

I (xn,θn) >
∫ 1

0
L̃α, µ

(
θn, ẋn, θ̇n

)
1{θ>ε}dt.

Since ẋn → ẋ and θ̇n → θ̇ in L2 and since θ−1
n 1{θ>ε} → θ−11{θ>ε} in L∞, it follows

that

lim inf
n→∞

I (xn,θn) > lim inf
n→∞

∫ 1

0
L̃α, µ

(
θn, ẋn, θ̇n

)
1{θ>ε}dt

=
∫ 1

0
L̃α, µ

(
θ, ẋ, θ̇

)
1{θ>ε}dt.

Applying the monotone convergence theorem, we find

lim inf
n→∞

I (xn,θn) > lim
ε↘0

∫ 1

0
L̃α, µ

(
θ, ẋ, θ̇

)
1{θ>ε}dt =

∫ 1

0
L̃α, µ

(
θ, ẋ, θ̇

)
dt = I(x,θ).

Hence, I is lower semi-continuous as claimed. �

4.2. Proof that α∗ is well-defined – Lemma 3.2

Proof. — First we observe that the Uα(x, θ) is increasing in α simply because Lα
is increasing in α. To see the fact that it is strictly increasing in x when x > α,
we fix x > α, θ > 0 and any h > 0. Consider an admissible minimizing trajectory
(xh(s),θh(s)) such that (xh(0),θh(0)) = (0, 0) and (xh(1),θh(1)) = (x+ h, θ).
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Define sh = sup{s : xh(s) = x}. Notice that sh is well-defined due to the continuity
of xh established above, along with the fact that xh(0) < x < xh(1). Moreover, the
continuity of x implies that for s > sh we have xh(s) > x. Recalling that we have
fixed x > α, this therefore implies xh(s) > α > αs3/2 for all s ∈ [sh, 1].
We construct a trajectory connecting the origin and the point (x, θ). Let x(s) =∫min{s, sh}

0 ẋh(s′)ds′. It follows from the definition of sh that x(1) = x, xh(s) = x(s)
for all s 6 sh, and xh(s) = x > αs3/2 for all s ∈ [sh, 1]. Further, it is clear that
(x,θh) ∈ A(x, θ). Hence,

Uα(x, θ) 6
∫ 1

0
Lα

(
s,x(s),θh(s), ẋ(s), θ̇h(s)

)
ds

=
∫ sh

0
Lα

(
s,xh,θh(s), ẋh(s), θ̇h(s)

)
ds+

∫ 1

sh


∣∣∣θ̇h(s)∣∣∣2

4 − 1

 ds
=
∫ 1

0
Lα

(
s,xh,θh(s), ẋh(s), θ̇h(s)

)
ds−

∫ 1

sh

|ẋh(s)|2

4θh(s)
ds.

(4.2)

Since xh(1) = x+ h > x = xh(sh) and since sh < 1, it follows that∫ 1

sh

|ẋh(s)|2

4θh(s)
ds > 0.

Using these two facts to bound the right-hand side of the last line in (4.2) from
above yields

Uα(x, θ) <
∫ 1

0
Lα

(
s,xh(s),θh(s), ẋh(s), θ̇h(s)

)
ds = Uα(x+ h, θ),

finishing the proof that Uα is strictly increasing with respect to x > α.
We now prove that minθ U4/3(4/3, θ) > 0. For this, we first recall the particular

trajectories that were computed in [BHR17b], in the case without growth saturation,
i.e., when α = 0 (those computations were originally derived for [BCM+12], though
they are not explicitly written there, so we provide [BHR17b] as a reference instead).
It was shown that the minimum of U0(4/3, ·) is reached at θ = 1, with U0(4/3, 1) = 0.
Let (x0,θ0) be the optimal trajectory associated with the endpoint (4/3, 1). Then,
x0 has the following simple expression:

x0(t) = 4
3

(3− t
2

)
t2.

A crucial observation is that x0 is always to the left of the barrier associated with
α = 4/3, i.e.,

(4.3) x0(t) < 4
3t

3/2 for all t ∈ (0, 1).

Indeed,
4
3t

3/2 − x0(t) = 4
3t

3/2 − 4
3

(3− t
2

)
t2 = 2

3t
3/2
(
t1/2 − 1

)2 (
t1/2 + 2

)
> 0.
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Next, let (x,θ) be a minimizing trajectory associated with α = 4/3, that is,

min
θ
U4/3(4/3, θ) =

∫ 1

0
L4/3

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt.

There are two options. On the one hand, assume that (x,θ) = (x0,θ0). Then, we
deduce from (4.3) that saturation is always at play, hence

min
θ
U4/3(4/3, θ) =

∫ 1

0

 |ẋ(t)|2

4θ(t) +

∣∣∣θ̇(t)
∣∣∣2

4

 dt > 0.

On the other hand, assume that (x,θ) 6= (x0,θ0). Then

min
θ
U4/3(4/3, θ) >

∫ 1

0

 |ẋ(t)|2

4θ(t) +

∣∣∣θ̇(t)
∣∣∣2

4 − 1

 dt

>
∫ 1

0

 |ẋ0(t)|2

4θ0(t) +

∣∣∣θ̇0(t)
∣∣∣2

4 − 1

 dt = 0.

Here, the strict inequality follows from the uniqueness of the minimizing trajectory
(x0,θ0) for the associated minimizing problem. This concludes the proof of the
positivity of minθ U4/3(4/3, θ).
The last step consists in proving that minθ U5/4(5/4, θ) < 0. To this end, we define

a particular trajectory (x,θ) ∈ A(5/4, 1) by,

x(t) = 5
4t

3/2, θ(t) =


3
2t for 0 6 t <

1
3 ,

3
4t+ 1

4 for 1
3 < t 6 1.

We establish

(4.4)
∫ 1

0
L5/4

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt < 0,

which allows us to conclude.
By construction, we have

1(−∞, (5/4)t3/2)(x(t)) = 0 for all t, and ẋ(t) = (15/8)t1/2,

and

θ̇(t) =


3
2 for 0 6 t <

1
3 ,

3
4 for 1

3 < t 6 1.

Using this in the definition of L5/4 yields,

L5/4
(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
=


52 · 3 + 32 · 23

27 − 1 for 0 6 t <
1
3 ,(15

8

)2 t

3t+ 1 + 32

26 − 1 for 1
3 < t 6 1.
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Integrating and then rearranging gives,∫ 1

0
L5/4

(
t,x(t),θ(t), ẋ(t), θ̇(t)

)
dt

= 1
3

(
52 · 3 + 32 · 23

27

)
+ 2

3
32

26 +
(15

8

)2 ∫ 1

1/3

t

3t+ 1 dt− 1

= 61
27 + 52

82 (2− ln 2)− 1 = 25
64

(33
50 − ln 2

)
(≈ −.01) < 0

Hence (4.4) holds. This concludes the proof of the Lemma 3.2. �

4.3. Reformulation of the minimization problem in the self-similar
variables

In (3.4) and (3.22) we use the scaling properties of our problem. Here, we go a step
further, as we reformulate the minimization problem (1.4) in self-similar coordinates.
We transform each trajectory (x(t),θ(t)) for t ∈ (0, 1) into the new (y(s),η(s)),
s ∈ (−∞, 0) as follows x(t) = t3/2y(log t),

θ(t) = tη(log t).
Note that the endpoint is not changed: (y(0),η(0)) = (x, θ). The minimization
problem (1.4) is equivalent to the following one:
(4.5)
Uα, µ(x, θ) = inf

{∫ 0

−∞
Lα, µ (y(s),η(s), ẏ(s), η̇(s)) es ds : (y(·),η(·)) ∈ A (x, θ)

}
,

where the autonomous Lagrangian Lα, µ is given by

(4.6) Lα, µ(y, η, vy, vη) = 1
4η

(
vy + 3

2y
)2

+ 1
4 (vη + η)2 − 1 + µ1{y <α} ,

and the set of admissible trajectories is given by

(4.7) A (x, θ) ={
(y,η) : R− → R× R+ : Lα, µ (y(s),η(s), ẏ(s), η̇(s)) es is integrable,

and lim
s→−∞

e3s/2y(s) = 0 , lim
s→−∞

esη(s) = 0 , (y(0),η(0)) = (x, θ)
}
.

In view of the discontinuity in the Lagrangian along the line {y = α}, we expect
interesting dynamics as y(s) approaches α. We prove in the next section that the line
{y = α} acts as a barrier for the optimal trajectories that end in the area {y > α},
provided that µ is not too small and α is not too large, as stated in Proposition 3.3.
Due to the natural scaling of the problem, it is often convenient notationally to let

(4.8) α = 3α
4 .
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5. Qualitative properties of trajectories – Proposition 3.3

The next result is a reformulation of Proposition 3.3 using the self-similar coordi-
nates introduced in Section 4.3.
Lemma 5.1. — Suppose that 2µ > α4/3. Let (x, θ) ∈ R×R∗+ be an endpoint such

that x > α. Then any optimal trajectory (y,η) ∈ A (x, θ) of (4.5) satisfies y(s) > α
for all s ∈ (−∞, 0].
That is, if y ends beyond the line {y = α}, then it never crosses the line. It is clear

that this is a consequence of the following two lemmas.
Lemma 5.2 (No single crossing). — With the same assumptions as in Lemma 5.1,

consider a trajectory which crosses the line {y = α} only once, that is, there exists
s0 such that for all s ∈ [s0, 0), y(s) > α and for all s < s0, y(s) < α. Then it cannot
be an optimal one.

η

y

(x; θ)

ρ = 0

η(s1)

η(s0)

ρ = µ

Figure 5.1. Sketch of a C-turn as the trajectory crosses the line twice. From
Lemma 5.2, we see that this trajectory cannot be optimal.

Lemma 5.3 (No C-turn). — With the same assumptions as in Lemma 5.1, con-
sider a trajectory (y,η) ∈ A (x, θ), which crosses the line {y = α} at least twice (see
Figure 5.1), i.e. there exists s1 < s0 6 0 such that y(s0) = y(s1) = α and y(s) < α
for all s ∈ (s1, s0). Then it cannot be an optimal one.
The proof of Lemma 5.3 uses the following result that deals with the monotonicity

of η for any optimal trajectory:
Lemma 5.4 (Monotonicity of η). — If (y,η) is an optimal trajectory for (4.5),

then η is nonincreasing over (−∞, 0).
The proof of Lemma 5.4 is a direct consequence of the Hamiltonian dynamics

associated with (4.5). We review it briefly in the next section. The other two state-
ments require additional conditions on α and µ, as in Lemma 5.1. They are proved
in Section 5.2.
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5.1. A brief overview of Hamiltonian dynamics

In this section we provide some elements of the computation of the optimal tra-
jectories that we use in the article. To this end, it is instructive to briefly recall the
basics of calculus of variations in a smooth setting. Let L(X, V ) be some smooth La-
grangian function. Consider, for some admissible set of trajectories A with endpoint
at x ∈ Rd, the following problem:

(5.1) U(x) = inf
X ∈A

∫ 0

−∞
L
(
X(s), Ẋ(s)

)
es ds .

We begin with the following important property of optimal curves. This will be
used repeatedly to restrict the arguments to portions of curves in the sequel.

Lemma 5.5 (Optimality on sub-intervals). — Suppose X is an optimal curve for
the minimizing problem (5.1), and let s0 6 0. Then, the restriction X(s′ + s0) for
s′ < 0 is also an optimal curve for the problem with endpoint at X(s0).

Proof. — Suppose that X(· + s0) is not optimal. There exists Z with a strictly
smaller cost such that Z(0) = X(s0):∫ 0

−∞
L
(
Z(s′), Ż(s′)

)
es
′
ds′ <

∫ 0

−∞
L
(
X (s′ + s0) , Ẋ (s′ + s0)

)
es
′
ds′ ,

or, equivalently, after translating time and using specifically the exponential weight,∫ s0

−∞
L
(
Z(s− s0), Ż(s− s0)

)
es ds <

∫ s0

−∞
L
(
X(s), Ẋ(s)

)
es ds ,

Consequently, the concatenation of Z(s−s0) on (−∞, s0) then X on (s0, 0) performs
better than X on (−∞, 0) (the possible discontinuity in the derivative at s0 does
not provide an additional cost). �

When L is smooth, one can write the Euler–Lagrange equation,
d

ds

(
DVL

(
X(s), Ẋ(s)

)
es
)

= DXL
(
X(s), Ẋ(s)

)
es ,

for an optimal trajectory X. As usual, the Hamiltonian H(X,P ) and the Lagrangian
L(X, V ) are related by the following convex duality:

H(X,P ) = sup
V

(V · P − L(X, V )) and L(X, V ) = sup
P

(V · P −H(X,P )).

Hence, the action variable, defined as P (s) = DVL(X(s), Ẋ(s)), satisfies the follow-
ing Hamiltonian system, together with the trajectory X(s),

(5.2)

Ẋ(s) = DPH(X(s), P (s))
Ṗ (s) + P (s) = DXL

(
X(s), Ẋ(s)

)
= −DXH(X(s), P (s)).

Then, the evolution of the Hamiltonian function H(X(s), P (s)) along the character-
istic lines, when there is enough regularity, is:

d

ds

(
H(X(s), P (s))

)
= DXH · Ẋ +DPH · Ṗ

= −(Ṗ + P ) ·DPH +DPH · Ṗ = −P ·DPH.
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From our choice of P along with the representation formula for L, we see that
H(X,P )+L(X,DPH(X,P )) = P ·DPH(X,P ), so that the above becomes Ḣ+H+
L = 0, or, equivalently,

(5.3) d

ds
(Hes) + Les = 0 .

We deduce from (5.3) and (5.1) that U(X(0)) = −H(X(0), P (0)).
Finally, we point out a nice relationship between DXU and P :

(5.4) P (0) = DXU(X(0)).
Indeed, if we perturb the optimal trajectory X by a constant velocity εV on the last
portion of the time interval (−ε, 0), we find by the minimization property (5.1):

U(x+ ε2v)− U(x) 6
∫ 0

−ε

(
L
(
X(s) + (s+ ε)εV, Ẋ(s) + εV )− L(X(s), Ẋ(s)

))
esds

6 ε
∫ 0

−ε

(
DVL

(
X(s), Ẋ(s)

)
· V +O(ε)

)
es ds.

Next, dividing both sides by ε2, then letting ε → 0, we find that DXU(x) · V 6
DVL(X(0), Ẋ(0)) · V , for any V . Hence, we have DXU(x) = DVL(X(0), Ẋ(0)),
which is equivalent to (5.4) by definition.
In our setting, the Hamiltonian associated with (1.4), is

(5.5) Hα, µ(y, η, p, q) = −3
2yp− ηq + η|p|2 + |q|2 + 1− µ1{y <α} .

This follows from (4.6), where we solve for the Lagrangian. Thus, the Hamiltonian
system (5.2) is, for the portion of the trajectories on either of the half-spaces {y < α}
and {y > α},

(5.6)


ẏ = −3

2y + 2ηp, ṗ = 1
2p,

η̇ = −η + 2q, q̇ = −|p|2.
Here we use the fact that 1{y <α} is constant on each half space. The connection
between the two half-spaces must be handled with care, see below for details. The
general solution of (5.6) on any interval of free motion, i.e. avoiding the line {y = α},
for trajectories ending at (x, θ) at s = 0, is, for some constants A and B,

(5.7)



p(s) = Ae
1
2 s,

q(s) = B + A2 (1− es) ,
η(s) = θe−s + 2B (1− e−s) + A2 (2− es − e−s) ,
y(s) = xe−

3
2 s + 2θA

(
e−

1
2 s − e− 3

2 s
)

+ 2BA
(
e

1
2 s + e−

3
2 s − 2e− 1

2 s
)

+2
3A

3
(
e−

3
2 s − 3e− 1

2 s + 3e 1
2 s − e

3
2 s
)
.

Due to (4.6) and (5.6), the running cost on each half-space {y < α} and {y > α} is
then given by:

Lα, µ (y(s),η(s), ẏ(s), η̇(s)) = η(s)|p(s)|2 + |q(s)|2 − 1 + µ1(−∞, α)(y(s)) .
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An immediate computation yields that this quantity is constant on each half-space
{y < α} and {y > α}. In particular, on some interval (s0, 0) such that y(s) stays on
the same side of the line, the running cost is

(5.8) Lα, µ (y(s),η(s), ẏ(s), η̇(s)) = θ0A
2 +B2 − 1 + µ1(−∞, α)(y(s)) .

We now investigate the portions of (y(s),η(s)) when y(s) = α for an open interval
of time s ∈ (s1, s0). It is convenient to extract the dynamics from the Lagrangian
function (4.6) when the trajectory has been confined to the line. When confined to
this line, the Lagrangian is

(5.9) L{y=α}(η, vη) = α2

η
+ 1

4 (vη + η)2 − 1 ,

which is obtained from (4.6) by setting vy = 0, and y = α, and µ1(−∞, α)(y) = 0.
Recall that, as given by (4.8), α = 3α/4. The corresponding Hamiltonian function
is obtained through the Legendre transform with respect to the partial velocity
variable vη:

H{y=α}(η, q) = −α
2

η
− ηq + |q|2 + 1 .

The corresponding Hamiltonian dynamics are computed exactly as above:

(5.10) η̇ = −η + 2q , and q̇ = −α
2

η2 .

Moreover, similarly to above, we also obtain

(5.11) d

ds

(
H{y=α}e

s
)

+ L{y=α}e
s = 0 .

5.2. Better stay on the right side – Lemma 5.1

We now establish that any trajectory that ends to the right of the line {y = α}
must always be to the right of this line. Our approach, in each lemma, is a careful
analysis of the minimizing trajectories, which we can write down semi-explicitly
thanks to the computations performed in Section 5.1. In each case, we show that,
were the undesired behavior to occur, we may construct a related trajectory with a
lower cost, contradicting the fact that the offending trajectory was a minimizer.
We first prove the monotonicity of optimal trajectories in η. This is an important

step in establishing Lemma 5.3.
Proof of Lemma 5.4. — Let (y,η) ∈ A (x, θ) be the optimal trajectory. Note that,

by definition of y, η in terms of x, θ, and the fact that x,θ ∈ H1((0, 1);R × R+)
(see proof of Lemma 3.1), we deduce y,η ∈ H1

loc((−∞, 0);R × R∗+). We begin by
obtaining a differential inequality for the second derivative η̈ in the distributional
sense. We note that we have not established the continuity of η̇ or any regularity of
η̈, so we are forced to work with this distributional inequality.
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Fix any ε > 0 and any 0 6 φ ∈ C∞c (R∗−). Notice that (y,η + εe−sφ) ∈ A (x, θ).
Thus, we have,

∫ 0

−∞
Lα, µ(y,η, ẏ, η̇)esds = Uα, µ(x, θ)

6
∫ 0

−∞
Lα, µ

(
y,η + εe−sφ, ẏ, η̇ + ε

(
e−sφ̇− e−sφ

))
esds.

Writing out the expressions and re-arranging the terms, we see,

0 6
∫ 0

−∞


(
ẏ(s) + 3

2y(s)
)2

4 (η(s) + εe−sφ(s)) −

(
ẏ(s) + 3

2y(s)
)2

4η(s) + ε

2e
−sφ̇(s) (η̇(s) + η(s))

 esds
+O

(
ε2
)
.

Expanding the first term and dividing by ε yields,

O(ε) 6
∫ 0

−∞

−φ(s)
(
ẏ(s) + 3

2y(s)
)2

2η(s)(η(s) + εe−sφ(s)) + φ̇(s) (η̇(s) + η(s))

 ds.
Applying the monotone convergence theorem, we get,

∫ 0

−∞
η
(
φ̈− φ̇

)
6
∫ 0

−∞

−φ(s)
(
ẏ(s) + 3

2y(s)
)2

2η(s)2 ds 6 0.

Since this is true for all φ, it follows that η̈ + η̇ 6 0 in the sense of distributions,
from which it follows that d

ds
(esη̇) 6 0 holds in the sense of distributions.

We now conclude the proof by choosing an appropriate test function. If η is not
non-increasing, then there exists a 0 6 ψ ∈ C∞c (R∗−) such that

∫
η̇ψesds = γ > 0

and
∫
ψds = 1. Fix any s′ < inf supp(ψ) and ε > 0 such that ε < −s′. Let φε be a

standard mollifier with suppφε ⊂ (−ε,+ε). Then, define the smooth test function

χε(s) =
(∫ s

−∞
φε(s′ − s̄)ds̄

)
+
(∫ 0

s
ψ(s̄)ds̄

)
− 1.

Note that from our choice of s′ and ε, the above test function is positive and compactly
supported in R∗−. From our choice of φε and ψ along with the differential inequality
established above,

−
∫ 0

−∞
esη̇(s)φε(s′ − s)ds+ γ = −

∫ 0

−∞
esη̇(s)

(
φε (s′ − s)− ψ(s)

)
ds

= −
∫ 0

−∞
esη̇(s)χ̇ε(s)ds 6 0.
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Multiplying both sides by e−s′ and integrating over (s1, s0) for any s0 < inf supp(ψ),
we find

−
∫ 0

−∞
esη̇(s)

∫ s0

s1
e−s

′
φε(s′ − s)ds′ds

= −
∫ s0

s1
e−s

′
∫ 0

−∞
esη̇(s)φε(s′ − s)dsds′ 6 γ

(
e−s0 − e−s1

)
.

We may take ε→ 0 in the interior integral on the left hand side to obtain

η(s1)− η(s0) = −
∫ s0

s1
η̇(s)ds 6 γ

(
e−s0 − e−s1

)
.

Hence η(s1) → −∞ as s1 → −∞, which contradicts the fact that η > 0, by
definition. This concludes the proof of Lemma 5.4. �

Proof of Lemma 5.2. — We argue by contradiction. Suppose that a trajectory
crossing the line {y = α} only once is optimal. Let s0 be the time such that y(s) < α
for all s < s0 and y(s) > α for all s ∈ (s0, 0), and let denote θ0 = η(s0). By
Lemma 5.5, we can assume without loss of generality that (y(0),η(0)) = (α, θ0)
and that (y,η) is a minimizing trajectory in A (α, θ0). By assumption, we note that
y(s) < α for all s < 0. Then, it is a global solution of the system (5.6) with x = α.
From (5.7) we have

η(s) = θ0e
−s + 2B (1− e−s) + A2 (2− es − e−s) , and

y(s) = αe−
3
2 s + 2θ0A

(
e−

1
2 s − e− 3

2 s
)

+ 2BA
(
e

1
2 s + e−

3
2 s − 2e− 1

2 s
)

+2
3A

3
(
e−

3
2 s − 3e− 1

2 s + 3e 1
2 s − e

3
2 s
)

for some A,B ∈ R. On the one hand, multiplying the first and second equality in
the previous line by, respectively, es and e 3s

2 , and then taking the limit s→ −∞ and
using the conditions in (4.7) implies the following equations:

(5.12)


θ0 = 2B + A2 , and

α = 2θ0A− 2BA− 2
3A

3,

which is equivalent to


θ0 = 2B + A2 , and

α = θ0A+ 1
3A

3.

Since A 7→ θ0A + 1
3A

3 is increasing, A is uniquely determined. On the other hand,
computing ẏ(0) and using the condition ẏ(0) > 0 implies
(5.13) θ0A > α,

where we recall that α = 3α/4. Finally, from (5.8), the global cost of the trajectory
equals the (constant) running cost:

Lα, µ (y,η, ẏ, η̇) = θ0A
2 +B2 + µ− 1 = θ0A

2 + (θ0 − A2)2

4 + µ− 1

= θ0A
2

2 + θ2
0
4 + A4

4 + µ− 1.
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This global cost can be compared with the cost of the steady trajectory located at
the same endpoint. Indeed, let (ỹ(s), η̃(s)) = (α, θ0) for all s ∈ (−∞, 0). It is clear
that (ỹ, η̃) ∈ A (α, θ0). From (5.9), the associated cost is

Lα, µ

(
ỹ, η̃, ˙̃y, ˙̃η

)
= α2

θ0
+ θ2

0
4 − 1 .

This trajectory is by no means globally optimal; however, it has a lower cost than
the trajectory (y(s),η(s)) under the assumptions of Lemma 5.1. Indeed, we wish to
show that Lα, µ(y,η, ẏ, η̇) > Lα, µ(ỹ, η̃, ˙̃y, ˙̃η), which contradicts the fact that (y,η)
is a minimizing trajectory. This is equivalent to showing that

(5.14) θ0A
2

2 + A4

4 −
α2

θ0
> −µ.

According to (5.12) and (5.13), we have the following constraints on the values of A:

(5.15) θ0A

α
> 1 and 3θ0A

4α + A3

4α = 1.

This suggests that we use the new variables a and b such that

a = θ0A

α
, b = A

α1/3 ,
3a
4 + b3

4 = 1 .

According to the definition of a, and by (5.13) and (5.15), we have

a ∈
[
1, 4

3

]
and b ∈ [0, 1] .

With the definitions of a and b, the inequality (5.14) is equivalent to

(5.16) α4/3

µ

(
ab

2 + b4

4 −
b

a

)
> −1.

We now prove (5.16), which finishes the proof. Since b3 = 4− 3a, then

(5.17)
(
ab

2 + b4

4 −
b

a

)
= b

(
1− a

4 −
1
a

)
= (4− 3a)1/3

(
1− a

4 −
1
a

)
.

The right hand side of this expression is increasing for a ∈ (1, 4
3): its derivative with

respect to a is

(4− 3a)−2/3

a2

(
4− 2a− 2a2 + a3

)
= (4− 3a)−2/3

a2 (2− a)
(
2− a2

)
> 0.

Thus, we may bound the right hand side of (5.17) by its value at a = 1, which
implies that (

ab

2 + b4

4 −
b

a

)
> (4− 3a)1/3

(
1− a

4 −
1
a

) ∣∣∣∣∣
a= 1

= −1
4 .

Hence, we obtain
α4/3

µ

(
ab

2 + b4

4 −
b

a

)
> −α

4/3

4µ > −1,
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where we used the condition α4/3 < 4µ in the last inequality. Hence, we have
established (5.14), contradicting the fact that (y,η) is a minimizing trajectory. This
concludes the proof of Lemma 5.2. �

Note that we have used the weaker condition α4/3 < 4µ instead of α4/3 6 2µ. In
fact the next proof requires a more stringent condition on the parameters.
Proof of Lemma 5.3. — To proceed with the non-optimality of the C-turn, we

make the following reduction. As above, by Lemma 5.5 we may suppose, without
loss of generality, that s0 = 0 and s1 < 0 (see Figure 5.1).
Since the trajectory does not cross the line {y = α} during the time interval

(s1, 0), the optimal trajectory (y,η) is given by (5.7), with x = α, for some constants
A,B ∈ R. We point out that, by Lemma 5.4,

(5.18) θ0 = η(0) 6 η(s1).

Further, since y(0) = α and y(s) < α for s ∈ (s1, 0), it follows that ẏ(0) > 0.
Hence (5.13) is valid. There seems to be no natural way to compare the trajectory
with a steady trajectory as in the proof of Lemma 5.2. Alternatively, we compare
the trajectory (y(s),η(s)) to the trajectory (ỹ(s),η(s)), where we define

ỹ(s) =

y(s) for s < s1,

α for s1 6 s < 0.

In short, (ỹ,η) is obtained by projecting the portion between s1 and 0, the C-turn,
onto the line. It is clear that (ỹ,η) ∈ A (α, θ0).
To show that (ỹ,η) has a lower cost than (y,η), it is enough to compare the

partial costs on the interval (s1, 0). The cost for (y,η) is, via (5.8),

Jorig :=
∫ 0

s1
Lα, µ (y,η, ẏ, η̇) ds =

∫ 0

s1

(
θ0A

2 +B2 + µ− 1
)
esds.

The cost of (ỹ,η) on (s1, 0) is,

Jnew :=
∫ 0

s1
Lα, µ

(
ỹ,η, ˙̃y, η̇

)
ds =

∫ 0

s1

(
α2

η(s) + 1
4 |η̇(s) + η(s)|2 − 1

)
es ds

=
∫ 0

s1

(
α2

η(s) +
∣∣∣B + A2 (1− es)

∣∣∣2 − 1
)
es ds,

where we have obtained the second equality by using the expression for η in (5.7)
and computing η̇. We now consider the difference Jorig − Jnew. The above formulas
imply

(5.19) Jorig − Jnew

=
∫ 0

s1

[
A2es

(
θ0e
−s − 2B

(
e−s − 1

)
− A2

(
e−s − 2 + es

))
− α2

η(s) + µ

]
es ds

=
∫ 0

s1

[
A2esη(s)− α2

η(s)

]
es ds+ µ (1− es1) ,
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where to obtain the last equality we have used the expression for η in (5.7). Since
the integrand is increasing with respect to η, it is fruitful to bound η(s) from below.
In view of (5.7), this amounts to bounding B from above. In parallel with the proof
of Lemma 5.2, we shall use the information at s = s1 in order to gain an estimate
for B. Evaluating at s1 the expression for η in (5.7), and then using (5.18), yields

2B
(
e−s1 − 1

)
= θ0e

−s1 − η(s1) + A2
(
2− es1 − e−s1

)
6 θ0

(
e−s1 − 1

)
+ A2

(
2− es1 − e−s1

)
.

Notice (2− es1 − e−s1) = (e−s1 − 1)(es1 − 1). Using this, along with the bound above,
we see, for all s ∈ (s1, 0),

η(s) = θ0e
−s + 2B

(
1− e−s

)
+ A2 (1− es)

(
1− e−s

)
> θ0e

−s +
(
θ0 + A2 (es1 − 1)

) (
1− e−s

)
+ A2 (1− es)

(
1− e−s

)
= θ0 + A2

(
(es1 − 1)

(
1− e−s

)
+ (1− es)

(
1− e−s

))
= θ0 + A2 (es1 − es)

(
1− e−s

)
.

(5.20)

Let
I := 1

1− es1

∫ 0

s1

[
A2
(
θ0e

s + A2 (es − es1) (1− es)
)
− α2

θ0

]
es ds .

In view of (5.20), along with (5.19), we find
Jorig − Jnew > I + µ,

where we have used the bound (5.20) for the first occurrence of η(s) in (5.19), but
the less precise estimate η(s) > θ0 for the second occurrence. Thus, in order to
control the sign of Jorig − Jnew, it is sufficient to show I > −µ.
We now establish the lower bound on I. An explicit computation yields

I = θ0A
2

2 (1 + es1) + A4

6 (1− es1)2 − α2

θ0
.

Recall that, due to (5.13), θ0A > α. Hence,

I >
α2

2θ0
(1 + es1) + α4

6θ4
0

(1− es1)2 − α2

θ0
= − α

2

2θ0
(1− es1) + α4

6θ4
0

(1− es1)2 .

The quantity on the right hand side is minimized (with respect to θ0) when θ3
0 =

4α2(1− es1)/3. Thus, we have

I > −34/3 (1− es1)2/3 α4/3

211/3 .

Recall that α4/3 6 2µ. Also, notice that 1− es1 6 1. Hence,

I > −µ2 · 34/3(1− es1)2/3

211/3 > −µ
(3

4

)4/3
> −µ.

In view of the definition of I, this implies that Jorig − Jnew > 0. Thus (y,η) cannot
be a minimizer, since the cost of (ỹ,η) is strictly smaller. This concludes the proof
of Lemma 5.3. �
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6. The explicit characterization of α∗ – Theorem 1.3

En route to proving Theorem 1.3, the exact shape of the function Uα must be
deciphered, at least when restricted to endpoints (α, θ). This involves a careful
handling of the connection between the portions of the trajectory that move freely
in (α,∞)× R∗+, and those that stick to the line {y = α}.
In order to begin the discussion, we first establish the uniqueness of optimal

trajectories. The proof also establishes the convexity of Uα(x, θ) on the domain
[α,∞)× R∗+. This is the content of the following lemma.

Lemma 6.1. — If α ∈ [0, 4/3], then Uα(x, θ) is strictly convex on the domain
[α,∞) × R∗+. Moreover, for all (x, θ) in [α,∞) × R∗+ there is a unique optimal
trajectory.

Knowing that optimal trajectories are unique allows us to completely characterize
them. This characterization relies on good properties of an auxiliary function Q :
R∗+ → R, (see Section 7 for a precise definition). Here, we rely only on the useful
properties that Q(θ)

θ
is strictly increasing, and therefore

(6.1) there exists a unique θ� such that Q(θ�) = θ�

4 ,

which separates those trajectories that make an excursion to the right versus those
that “stick” to the line {y = α} (see Proposition 6.2(iii) for a precise statement of
the latter property). From Q and θ�, we also define the entire family:

(6.2) Qα(θ) = α2/3Q
(

θ

α2/3

)
and θ�α = α2/3θ�,

where recall from (4.8) that ᾱ = 3α/4. In particular, we have Q ≡ Q4/3.
The next Proposition 6.2 gathers useful properties of the optimal trajectories.

Useful notations are illustrated in Figure 6.1 for the reader’s sake.

Proposition 6.2. — xLet θ > 0 and let (y,η) be the optimal trajectory in
A (α, θ). Then (y,η) satisfies the following conditions:

(i) There exists s` = s`(θ) 6 0 such that y(s) = α if and only if s 6 s` and,
further, θ 7→ η (s`(θ)) is a continuous function;

(ii) We have η(s`(θ)) > θ�;
(iii) s` = 0 if and only if θ > θ�;
(iv) For s ∈ (s`, 0), (y,η,p,q) solves (5.6) and is such that (5.3) holds with

the Hamiltonian given by (5.5). For s ∈ (−∞, s`), (η,q) solves (5.10) and
is such that (5.11) holds. In the interval (−∞, s`), we may continue p as
p = α/η in order to be consistent with (y, ẏ) = (α, 0) in (5.6). With this
convention, (y,η,p,q) is continuous in (−∞, 0] and we have Uα(α, θ) =
−Hα(α, θ,p(0),q(0));

(v) For all s 6 s`, we have q(s) = Qα(η(s));
(vi) If s ∈ (s`, 0], then (y,η) solves (5.7) with

A = α

η(s`)
e−

1
2 s` and B = Qα(η(s`))− A2 (1− es`) .
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η

y

(α; θ)

(α; θ⋄)

α

s = 0

s = s` q(s`) = Q(η(s`))

Figure 6.1. Illustration of the qualitative behavior of optimal trajectories outlined
by Proposition 6.2. Let (α, θ) be some endpoint on the line {y = α}. There
exists a contact time s` 6 0 such that the trajectory sticks to the line if s 6 s`.
Moreover, s` = 0 if and only if θ > θ�, where θ� is some threshold value on the
η coordinate. Finally, at the time s`, and beyond s < s`, there is a nonlinear
relationship between q(s) and η(s), solutions of (5.10), involving the function
Q which only depends on the value of α (see Proposition 6.2(v)).

We postpone the proof of this important list of results to Section 7. However,
we can make a few comments about some quantitative statements there. Firstly,
we find that the optimal trajectory sticks precisely to the line {y = α} for some
interval (−∞, s`], with s` 6 0 (in fact, s` = 0 if and only if θ > θ�). We refer to
s` as the contact time. Secondly, and quite importantly, q and η are linked by the
relationship Proposition 6.2.(v) when s 6 s`. It turns out that the constraint at
s = −∞, η(s) = o(e−s), selects one branch of the family of solutions, and we can
identify and describe this explicitly using the identity q = Qα(η).
To be able to identify the contact time with an analytical equation, we also need

the following technical lemma on real functions, which is going to be used with the
change of unknown τ = exp(s/2) = t1/2 ∈ (0, 1).

Lemma 6.3. — Let R be defined by (1.8), and V be defined by (1.9). Define the
function ξ by

(6.3) ξ(τ) = (1− τ 2)
1
2

τV (τ) .

Then
(6.4) V (τ)2 = Q(ξ(τ))
if and only if

(6.5) V (τ)4 − ξ−1(τ) > Ξ0 and V (τ)2 = R
(
V (τ)4 − ξ−1(τ)

)
hold. Moreover, there is at most one τ0 ∈ (0, 1) such that (6.4) holds.
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0 0.2 0.4 0.6 0.8 1

τ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q(ξ)/ξ (decreasing)
V 2/ξ (increasing)

Figure 6.2. The curves τ 7→ Q(ξ(τ))
ξ(τ) (in blue), and τ 7→ V (τ)2

ξ(τ) (in red), have a
unique intersection time τ0 due to opposite monotonicity.

The uniqueness of τ0 is proved by a monotonicity argument: dividing each side
of the equation by ξ(τ), we find that the left-hand side V (τ)2/ξ(τ) and the right-
hand side Q(ξ(τ))/ξ(τ) have opposite monotonicity, as illustrated in Figure 6.2. The
difficulty arises in showing the monotonicity of θ 7→ Q(θ)/θ.
We prove Lemma 6.1, Proposition 6.2 and Lemma 6.3 in Section 7. We now show

how to conclude Theorem 1.3 from these three results.

6.1. The homogeneity of Uα – Theorem 1.3(i)

We begin by establishing the homogeneity of Uα. While this neither relies on
Lemma 6.1, Proposition 6.2, nor Lemma 6.3, it is used to establish Theorem 1.3(ii).
Proof of Theorem 1.3(i). — Fix any α0, α1 ∈ (0, 4/3]. Let θ > 0. Let (x1,θ1) ∈
A(α1, θ) be an optimal trajectory. Then

Uα1(α1, θ) =
∫ 1

0
Lα1

(
t,x1,θ, ẋ1, θ̇1

)
dt.

Let β = α0/α1. Define a new trajectory (x0,θ0) = (βx1, β
2/3θ1). Then (x0,θ0) ∈

A(α0, β
2/3θ). By definition, it follows that

Uα0

(
α0, β

2/3θ
)
6
∫ 1

0
Lα0

(
t,x0,θ0, ẋ0, θ̇0

)
dt

=
∫ 1

0

β4/3

 |ẋ1|2

4θ1
+

∣∣∣θ̇1

∣∣∣2
4

− 1 + 1(−∞, α0t3/2) (βx1(t))

 dt.
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By Proposition 3.3, we know that, for all t ∈ [0, 1], x1(t) > α1t
3/2 and, hence,

βx1(t) > α0t
3/2. Using this, we see that

Uα0

(
α0, β

2/3θ
)
6
∫ 1

0

β4/3

 |ẋ1|2

4θ1
+

∣∣∣θ̇1

∣∣∣2
4

− 1

 dt

= β4/3
∫ 1

0

 |ẋ1|2

4θ1
+

∣∣∣θ̇1

∣∣∣2
4 − 1

 dt− 1 + β4/3

= β4/3Uα1 (α1, θ)− 1 + β4/3.

By symmetry, we have

Uα1 (α1, θ) 6 β−4/3Uα0

(
α0, β

2/3θ
)
− 1 + β−4/3.

Using both inequalities together, we find

Uα0

(
α0, β

2/3θ
)

= β4/3Uα1 (α1, θ)− 1 + β4/3.

Taking the minimum with respect to θ ∈ R∗+ on both sides, we obtain:

min
θ
Uα0 (α0, θ) =

(
α0

α1

)4/3
min
θ
Uα1 (α1, θ)− 1 +

(
α0

α1

)4/3
.

This concludes the proof. �

Remark 6.4 (Scaling of optimal trajectories). — The argument above, together
with the uniqueness of trajectories (Lemma 6.1), clearly shows that the optimal
trajectory (x1,θ1) ending at (α1, θ1), with parameter α1, is bound to the optimal
trajectory (x0,θ0) ending at (α0, β

2/3θ1), with parameter α0, as follows:

(6.6) θ0(s)
α

2/3
0

= θ1(s)
α

2/3
1

.

6.2. The analytical value of α∗ – Theorem 1.3(ii)

In this subsection, we show how to get an algebraic equation for α∗. In order
to compute this value, due to Theorem 1.3(i), it is enough to fix α = 4/3, and
to compute minθ U4/3(4/3, θ). We first show that such a minimum is attained at
a unique point θmin. We then identify the optimal trajectory ending at (4/3, θmin).
The identification of this trajectory relies on the computation of the contact time
s`(θmin). Once the optimal trajectory is characterized, we can compute the value of
U4/3(4/3, θmin), hence Uα(α, θmin) by homogeneity. Figure 6.3 represents the function
Uα(α, ·) at α = α∗, for the sake of illustration.
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θ
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U
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,
θ
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Figure 6.3. The function θ 7→ Uα(α, θ) for the critical value α = α∗. The portion
of the curve where s`(θ) < 0 is in plain line, whereas the portion where s`(θ) = 0
is in dashed line, that is θ > θ�.

Proof of Theorem 1.3(ii).
Step 1. — # Existence and uniqueness of a minimum in θ: To ensure

the existence of an interior minimum point of θ 7→ U4/3(4/3, θ), we seek an interior
critical point in θ. The strict convexity of U4/3 in θ given by Lemma 6.1 implies that
any critical point in θ is the unique minimum of U4/3. To find such a critical point,
we produce a θ0 such that,
(6.7) θ0 ∈ (0, θ�), s`(θ0) < 0, and q(0) = 0.
Indeed, if we have a point θ0 such that (6.7) holds, and (y,η) is the optimal trajectory
with endpoint at (4/3, θ0), we find,

∂θU4/3(4/3, θ0) = ∂θU4/3(y(0),η(0)) = q(0) = 0,
where the second equality follows by (5.4). This is precisely the characterization of
a critical point of U4/3(4/3, ·), implying that θ0 is indeed the unique minimum of
U4/3(4/3, ·) as desired.
We now prove that there is indeed such a point θ0 satisfying (6.7). Note first that by

Proposition 6.2(iii), θ < θ� implies that s`(θ) < 0. Moreover, by Proposition 6.2(vi),
we obtain that q(s) = B + A2(1 − es) holds for s ∈ (s`, 0]. Thus, q(0) = 0 is
equivalent to B = 0, which, by Proposition 6.2(vi) is equivalent to,

(6.8) Q(η(s`)) = e−s` − 1
η(s`)2 ,

(recall α = 1).
We use the intermediate value theorem to find a θ0 ∈ (0, θ�) satisfying (6.8). For

θ = θ�, we have s`(θ�) = 0, and η(s`(θ�)) = η(0) = θ�, by Proposition 6.2(iii).
Hence, the left hand side of (6.8) is Q(θ�) = θ�/4 > 0 (we have used (6.1), the
definition of θ�), whereas the right hand side is zero. Next, we show that the left
hand side is smaller than the right hand side as θ → 0. To this end, we use the
combination of (5.7) (at s = s`) and Proposition 6.2(vi) to get,

TOME 5 (2022)



44 V. CALVEZ, C. HENDERSON, S. MIRRAHIMI, O. TURANOVA & T. DUMONT

η(s`) = θe−s` + 2B
(
1− e−s`

)
+ A2

(
2− es` − e−s`

)
= θe−s` + 2

(
Q(η(s`))−

e−s` − 1
η(s`)2

)(
1− e−s`

)
− 1

η(s`)2

(
e−s` − 1

)2
.

Therefore, we have:

2
(
e−s` − 1
η(s`)2 −Q(η(s`))

)
= − θe−s`

e−s` − 1 + η(s`)
e−s` − 1 + e−s` − 1

η(s`)2 .

To conclude, it is enough to show that the right hand side in the latter expression
has a positive limit as θ → 0. To this end, we first claim that lim infθ→ 0 s`(θ) < 0
holds. Indeed, if this were not the case, then we would find, using the continuity of
η, that lim infθ→0 η(s`(θ)) = 0, which is impossible, according to Proposition 6.2(ii).
Therefore, we find that the right hand side of the previous line indeed has a positive
limit as θ → 0, and therefore, in view of the discussion above, an interior minimum
occurs at some θmin ∈ (0, θ�) since we can solve (6.8).

Step 2. — # Identification of the contact time s`(θmin): Letting (y,η) be
the optimal trajectory ending at (α, θmin), we have an explicit expression for (y,η) in
terms of A and B. In addition, we know B = 0 from the discussion preceding (6.8).
For notational ease, let θ` = η(s`), and τ` = es`/2 ∈ (0, 1). (The latter is the square
root of the contact time in the original t variable). We shall show that τ` is exactly
the τ0 defined by (1.11).
Recall that y(s`) = α = 4/3 by definition. Then, by Proposition 6.2(vi), (y,η)

are given by (5.7) with A = (θ`τ`)−1 and B = 0. The fourth line (multiplied by e 3
2 s)

and the third line (multiplied by es) of (5.7) yield,

(6.9)


4τ 3
`

3 = y(s`)τ 3
` = 4

3 − 2θminA
(
1− τ 2

`

)
+ 2

3A
3
(
1− τ 2

`

)3
and

τ`
A

= θ`τ
2
` = η(s`)τ 2

` = θmin − A2
(
1− τ 2

`

)2
,

which, upon rearranging, imply,

(6.10) A =
(

(1− τ`)2(2 + τ`)
2(1− τ 2

`)3

) 1
3

.

We point out that, according to the definitions of the functions V and ξ given by (1.9)
and (6.3), we have

(6.11) A = V (τ`)
(1− τ 2

`)1/2 and 1
Aτ`

= (1− τ 2
`)

1
2

τ`V (τ`)
= ξ(τ`).

In addition, the expression for q in (5.7), Proposition 6.2(iv), which guarantees the
continuity of q, and Proposition 6.2(vi) yields

A2
(
1− τ 2

`

)
= q(s`) = Q(θ`).

Recalling A = (θ`τ`)−1, the previous line can be reformulated as:

A2
(
1− τ 2

`

)
= Q

(
(Aτ`)−1

)
.
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According to (6.11), the previous line is equivalent to,

V (τ`)2 = Q(ξ(τ`)).

Applying Lemma 6.3, we deduce that τ` ∈ (0, 1) is the unique τ0 such that (6.5),
and hence (1.11), hold.

Step 3. — # Computing α∗ in terms of τ`: With the knowledge of θmin in
hand, via s`(θmin), we now compute α∗ using Theorem 1.3(i), which means that we
need only to compute U4/3(4/3, θmin). Here we use the discussion in Section 5.1 and
Proposition 6.2(iv). Again, denote by (y,η) the optimal trajectory in A (α, θmin) as-
sociated with the costate variables (p,q). It follows from (5.5) and Proposition 6.2(iv)
that

U4/3(4/3, θmin) = −Hα

(
y(0),η(0),p(0),q(0)

)
= −Hα (4/3, θmin, A, 0) = 2A− θminA

2 − 1.

Rearranging the second line in (6.9) yields θmin = τ`/A+A2(1− τ 2
`)2. Using this on

the right-hand side of the previous line we find,

U4/3(4/3, θmin) = 2A−A2
(
τ`
A

+ A2
(
1− τ 2

`

)2
)
− 1 = A(2− τ`)−A4

(
1− τ 2

`

)2
− 1.

Next, using the expression for A given by (6.10), we obtain,

U4/3(4/3, θmin) + 1

= (2− τ`)
(

(1− τ`)2 (2 + τ`)
2 (1− τ 2

`)
3

) 1
3

−


(
(1− τ`)2(2 + τ`)

) 1
3

2 1
3 (1− τ 2

`)


4 (

1− τ 2
`

)2

= (2− τ`)
(

(1− τ`)2(2 + τ`)
2 (1− τ 2

`)
3

) 1
3

−

(
(1− τ`)2(2 + τ`)

) 4
3

2 4
3 (1− τ 2

`)
2 .

Hence, using Theorem 1.3(i), we see,

α∗ = 4
3

(2− τ`)
(

(1− τ`)2(2 + τ`)
2 (1− τ 2

`)
3

) 1
3

−

(
(1− τ`)2(2 + τ`)

) 4
3

2 4
3 (1− τ 2

`)
2


− 3

4

,

which, upon simplifying, is equivalent to (1.12). �

7. Characterizing the optimal trajectories

Proposition 6.2 is proved piecemeal throughout the sequel. We do not make note
immediately when any portion is proved. Instead, we compile the proof in the last
Section 7.6.
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7.1. Uniqueness of minimizing trajectories – Lemma 6.1

We switch back to the original variables for the proof of this lemma.
Proof of Lemma 6.1. — Fix (x0, θ0), (x1, θ1) ∈ [α,∞)× (0,∞), and two optimal

trajectories (x0,θ0) ∈ A(x0, θ0) and (x1,θ1) ∈ A(x1, θ1) respectively. Let λ ∈ (0, 1).
According to Proposition 3.3, we have

(7.1) x0(t) > αt3/2, and x1(t) > αt3/2,

and hence (1− λ)x0(t) + λx1(t) > αt3/2 for all t ∈ (0, 1). It is clear that (1− λ)x0 +
λx1 ∈ A((1− λ)x0 + λx1, θ). Thus, recalling the definitions of Uα and Lα, as well as
the convex function F (v, θ) = v2/(4θ) used in Lemma 3.1, we find

(7.2) Uα
(
(1− λ)x0 + λx1, (1− λ)θ0 + λθ1

)
6
∫ 1

0
Lα
(
t, (1− λ)x0 + λx1, (1− λ)θ0 + λθ1, (1− λ)ẋ0 + λẋ1, (1− λ)θ̇0 + λθ̇1

)
dt

6
∫ 1

0

(1− λ)F (ẋ0,θ0) + λF (ẋ1,θ1) + (1− λ)

∣∣∣θ̇0

∣∣∣2
4 + λ

∣∣∣θ̇1

∣∣∣2
4

 dt− 1

= (1− λ)
∫ 1

0

F (ẋ0,θ0) +

∣∣∣θ̇0

∣∣∣2
4 − 1

 dt+ λ
∫ 1

0

F (ẋ1,θ1) +

∣∣∣θ̇1

∣∣∣2
4 − 1

 dt
= (1− λ)

∫ 1

0
Lα

(
t,x0,θ0, ẋ0, θ̇0

)
dt+ λ

∫ 1

0
Lα

(
x1,θ1, ẋ1, θ̇1

)
dt

= (1− λ)Uα (x0, θ0) + λUα (x1, θ1) .

We have used the convexity of F to obtain the second inequality, and in the second-
to-last line, we have again used (7.1) and the definitions of Lα and Uα. In the last
line, we used that x0 and x1 are minimizing. Thus, Uα is convex.
Now, suppose that (x0,θ0) and (x1,θ1) have the same endpoint (x, θ). Then, the

series of inequalities in (7.2) are all equalities because they coincide on each side.
By the strict convexity of quadratic functions, it must be that θ̇0 = θ̇1, and thus
θ0 = θ1. Since F is strictly convex in the v variable, we also have ẋ0 = ẋ1. We
conclude that (x0,θ0) = (x1,θ1). Hence, optimal trajectories are unique.
The strict convexity of Uα follows immediately from a similar argument. As such,

we omit it. �

7.2. Trajectories have at most one interval of free motion

We refer to each portion of the trajectory not intersecting the line {y = α} as “free
motion.” A preliminary observation is that free motion for all time is not permitted.

Lemma 7.1. — Suppose θ ∈ R∗+ and (y,η) ∈ A (α, θ) is the optimal trajectory
for Uα(α, θ). Then there exists a negative time s0 ∈ R∗− such that y(s0) = α.
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Proof. — We proceed by contradiction. Suppose that y(s) > α for all s < 0.
By (5.7), we have both, as s→ −∞,

(7.3)

y(s) =e−3s/2
(
α− 2θA+ 2BA+ 2

3A
3
)

+ e−s/2
(
2θA− 4BA− 2A3

)
+O

(
es/2

)
η(s) =e−s

(
θ − 2B − A2

)
+O(1).

The growth conditions in the definition (4.7) of A (α, θ) imply,

α = 2θA− 2BA− 2
3A

3, and θ = 2B + A2.

Returning to (7.3), these conditions imply the strong asymptotic behavior y(s) =
O(es/2)→ 0, as s→ −∞. This obviously violates the hypothesis that y(s) > α for
all s. �

We now investigate the dynamics of a trajectory as it comes into contact with the
line. If s0 < 0 is a contact time, we expect that ẏ(s0) = 0, since y(s0) = α is a local
minimum. To obtain this, we need to establish sufficient regularity of the optimal
trajectories. From (5.6), this allows us to define p(s0) = α/η(s0) in a continuous
way. Regularity is the purpose of the next statement.

Lemma 7.2 (Continuity of ẏ). — Let the assumptions of Lemma 7.1 hold. Then
y ∈ C1, 1

2
loc (−∞, 0). In particular, if s0 ∈ (−∞, 0) is such that y(s0) = α, then ẏ(s0) = 0

and p(s0) = α/η(s0). In addition, q is a continuous function.

The proof relies on a preliminary Lipschitz bound on η. We state and prove this
now, and then continue with the proof of Lemma 7.2.

Lemma 7.3 (Lipschitz bounds on η). — Under the assumptions of Lemma 7.1,
η ∈ W 1,∞

loc (−∞, 0). In addition, q is locally bounded.

Proof. — We begin by smoothing the Lagrangian, in order to use classical theory.
For any ε ∈ (0, 1), let

χε(y) = 1
ε
((y − α)−)2 .

It is non-negative, convex, twice differentiable, and it takes value 0 if y > α. Then
define

L ε
α (y, η, vy, vη) = 1

4η

(
vy + 3

2y
)2

+ 1
4 (vη + η)2 − 1 + χε(y).

The Lagrangian L ε
α approximates Lα,+∞ with the state constraint condition that

trajectories must lie on the set {y > α}. Let us consider the variational problem
associated with L ε

α, with endpoint (α, θ), in the original variables. Following an
argument similar to the proof of Lemma 3.1, one can prove that there exists a
minimizing trajectory (xε, θε) to this variational problem. Moreover, such minimizing
trajectories are bounded in H1((0, 1);R×R+), uniformly in ε. It follows that (xε, θε)
converges, along subsequences, strongly in L2 and weakly in H1 to a trajectory
(x, θ), which is the minimizing trajectory associated with Lα. We next go back to
the variational problem with self-similar variables. Let the trajectories (yε, ηε) and
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(y, η) be the trajectories in the self-similar formulation of the problem corresponding
respectively to (xε, θε) and (x, θ). Note that thanks to the bounds on (xε, θε) and (x, θ)
we deduce that (yε, ηε) and (y, η) are bounded in H1

loc((−∞, 0);R× R+), uniformly
in ε.
Since L ε

α is smooth, we use (5.6) to write the Hamiltonian system for (yε,ηε,pε,qε):

(7.4)

ẏε = −3
2yε + 2ηεpε, ṗε = 1

2pε + χ′ε (yε) ,
η̇ε = −ηε + 2qε, q̇ε = − |pε|2 .

Since χε is regular, each of the quantities above is well-defined. Further, we obtain

η̈ε + η̇ε = 2q̇ε.

First we show that qε ∈ W 1, 1
loc (R∗−), with bounds in this space independent of ε. In

the sequel, by saying that a sequence fε is “bounded uniformly in Xloc,” we mean
that for every compact set K ⊂ (−∞, 0], there is a constant CK , depending only on
K, such that ‖fε‖X(K) 6 CK for all ε ∈ (0, 1).
From (7.4), we get

pε = 1
2ηε

(
ẏε + 3

2yε
)
.

From the first contribution in the formula of L ε
α and the fact that (yε, ηε) is a

trajectory minimizing a variational problem similar to (4.5) but replacing Lα by L ε
α,

it follows that es/2√ηεpε is bounded in L2 uniformly in ε. An argument similar to
the one in the proof of Lemma 5.4 shows that η̇ε 6 0 and, hence, ηε(s) > θ for all s.
In fact, this is easier to prove since (7.4) is a smooth Hamiltonian system. From the
above, we conclude that pε is uniformly bounded in L2

loc. This, in turn, implies that
q̇ε is uniformly bounded in L1

loc, by the last identity in 7.4.
From the second contribution in the formula of L ε

α, we deduce that ∂s(esηε) =
2esqε(s) is bounded uniformly in L2

loc, and, thus, in L1
loc as well. First, we conclude

that qε belongs to W 1, 1
loc as claimed above. Hence it is locally uniformly bounded,

independently of ε, and so is q after taking the limit ε → 0. Next, it follows from
differentiating (7.4) and using the bound on q̇ε that ∂s(esη̇ε) is bounded uniformly
in L1

loc. Lastly, we observe that esηε is bounded uniformly in L∞loc as a consequence:

|esηε(s)| =
∣∣∣∣θ +

∫ s

0
∂s(es

′
ηε(s′))ds′

∣∣∣∣ 6 θ + ‖∂s (e·ηε)‖L1([s, 0]) .

Combining all three bounds, we see that esηε is uniformly bounded in W 2, 1
loc .

The Sobolev embedding theorem then implies that esηε(s) is uniformly bounded
in W 1,∞

loc . From this, it follows that ηε and η̇ε + ηε are bounded uniformly in L∞loc.
Taking a linear combination of these two locally bounded functions, we find that η̇ε

is uniformly bounded in L∞loc. Passing to the limit ε → 0 yields the local Lipschitz
bound on η, and the proof is completed. �

With the local L∞ bound on η̇ from Lemma 7.3, we are ready to tackle of the
continuity of ẏ.
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Proof of Lemma 7.2. — We follow the same lines as in the previous proof. However,
we differentiate the first equation in (7.4) so as to get:

ÿε = −3
2 ẏε + 2η̇εpε + 2ηεṗε

= −3
2

(
−3

2yε + 2ηεpε
)

+ 2 (−ηε + 2qε) pε + 2ηε
(1

2pε + χ′ε (yε)
)
.

All terms on the right hand side are bounded except the last one. To handle it, we
multiply by ÿε/ηε on both sides to get

|ÿε|2

ηε
= f ε

ÿε

ηε
+ 2χ′ε (yε) ÿε ,

where f ε is uniformly bounded in L2
loc(R∗−). As noted above, ηε is non-increasing.

Therefore, dividing by ηε on a compact sub-interval of R∗− is not an issue. To conclude,
multiply by a given test function φ ∈ C∞c (R−), and integrate by parts:

∫ 0

−∞

|ÿε|2

ηε
φ ds =

∫ 0

−∞
f ε

ÿε

ηε
φ ds+ 2

∫ 0

−∞
χ′ε (yε) ÿεφ ds

6

(∫ 0

−∞

(f ε)2

ηε
φ ds

)1/2 (∫ 0

−∞

|ÿε|2

ηε
φ ds

)1/2

− 2
∫ 0

−∞

d

ds
(χ′ε(yε)φ) ẏε ds

6

(∫ 0

−∞

(f ε)2

ηε
φ ds

)1/2 (∫ 0

−∞

|ÿε|2

ηε
φ ds

)1/2

− 2
∫ 0

−∞
χ′′ε (yε) |ẏε|2 φ ds− 2

∫ 0

−∞

d

ds
(χε (yε)) φ̇ ds

6

(∫ 0

−∞

(f ε)2

ηε
φ ds

)1/2 (∫ 0

−∞

|ÿε|2

ηε
φ ds

)1/2

+ 2
∫ 0

−∞
χε (yε) φ̈ ds .

We conclude by noticing that
∫ 0
−∞ χε(yε)φ̈ ds is bounded uniformly in ε as it appears

in integral form in the variational problem associated with L ε
α. As a result, ÿε is

in L2
loc independent of ε. Therefore, yε is indeed bounded in H2

loc((−∞, 0);R× R+),
uniformly in ε. Passing to the limit, we get that y is also in H2

loc, which implies
thanks to the Sobolev embedding theorem that

y ∈ C1, 1
2

loc (−∞, 0).
Now, if s0 < 0 is such that y(s0) = α, then ẏ(s0) = 0 since s0 is the location of a

minimum of y. On the other hand, since (5.6) is satisfied whenever y(s) > α, then
we find,

lim
s→ s0,y(s)>α

p(s) = α

η(s0) .

This concludes the proof of the continuity of y and ẏ.
The continuity of q is a consequence of this. Indeed, the local boundedness of yε

and ẏε, (7.4), Lemma 7.3, and the fact that ηε is non-increasing imply that pε is
uniformly bounded in L∞loc. Since q̇ε = −|pε|2, then q̇ε is uniformly bounded in L∞loc
as well. This, together with the fact that ηε is uniformly bounded in W 1,∞

loc (see the
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proof of Lemma 7.3), implies that qε is uniformly bounded in W 1,∞
loc . We deduce that

qε converges, along subsequences as ε→ 0, locally uniformly to q which is Lipschitz
continuous. �

y

(x; θ)

η(s1)

η(s0)

Figure 7.1. Sketch of a right D-turn between two negative times. This trajectory
cannot be optimal.

We now show that situations as in Figure 7.1 cannot occur. This is the last step in
proving the preliminary heuristic statement that optimal trajectories must look like
those in Figure 2.1: they stick to the line {y = α} until a critical time s0 ∈ (−∞, 0],
when they possibly detach to make an excursion in {y > α} (if s0 < 0) until reaching
the endpoint (x, θ).

Lemma 7.4 (The only D-turn occurs at s = 0). — Assume that the conditions
of Lemma 7.1 hold. Let θ ∈ R∗+ and (y,η) ∈ A (α, θ) be an admissible trajectory
such that y(s) > α for all s ∈ (s1, s0) with s1 < s0 < 0 and y(s0) = y(s1) = α. Then
(y,η) cannot be an optimal trajectory.

Proof. — We argue by contradiction. Since y(s) > α for all s ∈ (s1, s0), it follows
that (y,η) satisfies (5.7); however, it remains to determine the matching conditions
for p. The fact that s1, s0 < 0 enables us to use Lemma 7.2 to get that ẏ(s0) =
ẏ(s1) = 0 and

(7.5) lim
s↗s0

p(s) = α

η(s0) and lim
s↘s1

p(s) = α

η(s1) .

Let us introduce θ0 = η(s0). Up to a translation in time, we may assume that s0 = 0
and accordingly, ẏ(0) = 0 and p(0) = α/θ0.
We shall obtain a contradiction by considering the local convexity of the trajectory

y as it comes in contact with the line. During free motion, y is smooth. Since
y(0) = α is a local minimum and ẏ(0) = 0, it must be that

(7.6) lim sup
s↗0

ÿ(s) > 0.
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We note that we may not conclude that ÿ(0) > 0 since we have not established
the global C2 regularity of y. The weaker claim (7.6) does not require this extra
smoothness and is sufficient for our purposes. We now use (5.6) on the free portion,
s ∈ (s1, 0), to collect some identities that we use to contradict (7.6).
We introduce τ1 = es1/2, the square root of the contact time in the original variables.

Then, using (5.7) along with (7.5), we see that

(7.7) A = p(0) = α

θ0
and Aτ1 = Aes1/2 = p(s1) = α

η(s1) .

In particular, we have θ0 = η(s1)τ1. Looking at the (y,η) component of the trajec-
tory (5.7) at s = s1, we get

θ0τ1 = τ 2
1 η(s1) = θ0 − 2B

(
1− τ 2

1

)
− A2

(
1− τ 2

1

)2
, and

4α
3 τ 3

1 = τ 3
1 y(s1) = 4α

3 − 2θ0A
(
1− τ 2

1

)
+ 2BA

(
1− τ 2

1

)2
+ 2

3A
3
(
1− τ 2

1

)3
.

Solving for B and using the identity A = α/θ0 yields
4α
3 τ 3

1 = 4α
3 − 2α

(
1− τ 2

1

)
+ α(1− τ1)

(
1− τ 2

1

)
− 1

3

(
α

θ0

)3 (
1− τ 2

1

)3
.

Collecting all terms that are linear in α, the previous line becomes

(7.8)
(
α

θ0

)3 (
1− τ 2

1

)3
= α (1− τ1)3 .

We now compute lim sups↗0 ÿ(s) explicitly, using the identities above and using
the trajectories given by (5.6). Indeed, using (5.6) along with the fact that ẏ(0) = 0,
we have

lim sup
s↗0

ÿ(s) = lim sup
s↗0

(
−3

2 ẏ(s) + 2
(
− η(s) + 2q(s)

)
p(s) + η(s)p(s)

)
= 0 + 2(−θ0 + 2B)A+ θ0A = (4B − θ0)A.

From above we have A = α/θ0 and B = (θ0(1− τ1)− A2(1− τ 2
1 )2)/(2(1− τ 2

1 )). We
use these identities, along with (7.8), to find

lim sup
s↗0

ÿ(s)

= (4B − θ0)A =
(

4
(
θ0

1− τ1

2 (1− τ 2
1 ) −

1
2A

2
(
1− τ 2

1

))
− θ0

)(
α

θ0

)

=
(
θ0

2
1 + τ1

− 2
(
α

θ0

)2 (
1− τ 2

1

)
− θ0

1 + τ1

1 + τ1

)(
α

θ0

)

=
(
θ0

1− τ1

1 + τ1
− 2

(
α

θ0

)2 (
1− τ 2

1

))( α
θ0

)
=
(
θ0

1− τ1

1 + τ1
− 2θ0

(1− τ1)3

(1− τ 2
1 )2

)(
α

θ0

)

=
(

1− τ1

1 + τ1
− 2(1− τ1)

(1 + τ1)2

)
α =

(
1− τ 2

1
(1 + τ1)2 −

2(1− τ1)
(1 + τ1)2

)
α = −

(1− τ1

1 + τ1

)2
α.

This contradicts (7.6) as τ1 < 1. This closes the proof of Lemma 7.4. �
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7.3. The Airy function and related ones

The goal of this subsection is to construct the function Q involved in Proposition 6.2
that plays a key role in establishing Theorem 1.3. Figure 7.2 provides an illustration
of Q.
For that purpose, we need to collect some facts about the Airy function Ai, and

introduce several auxiliary functions that are useful to prove monotonicity properties
of Q. First, we recall that Ai satisfies
(7.9) Ai′′(ξ) = ξAi(ξ).
We know the precise asymptotics of Ai as ξ → ∞. Indeed, from [AS64, Equa-
tions 10.4.59, 10.4.61],

Ai(ξ) = 1
2π1/2ξ1/4 exp

(
−2

3ξ
3/2
)(

1− 15
216

(2
3ξ

3/2
)−1

+ oξ→∞
(
ξ−3/2

))

Ai′(ξ) = − ξ1/4

2π1/2 exp
(
−2

3ξ
3/2
)(

1 + 21
216

(2
3ξ

3/2
)−1

+ oξ→∞
(
ξ−3/2

))
,

and, for R defined by (1.8),

(7.10) R(ξ) = ξ1/2 + 1
4ξ
−1 − 5

32ξ
−5/2 + 15

64ξ
−4 + oξ→∞

(
ξ−4

)
.

Recall that Ξ0 is the largest zero of Ai. The asymptotics of R near Ξ0 are also known.
In particular,

lim
ξ↘Ξ0

R(ξ) = −∞ and lim
ξ↘Ξ0

R′(ξ) = −∞.

7.3.1. The auxiliary function E = R′

Next we introduce one more function. For ξ ∈ (Ξ0,∞), let
E(ξ) = R(ξ)2 − ξ.

By the definition of R in (1.8) and by (7.9), we have

(7.11) R′(ξ) = −
(

Ai(ξ) Ai′′(ξ)− (Ai′(ξ))2

Ai(ξ)2

)
= R2(ξ)− ξ = E(ξ).

We summarize further facts in the next lemma.

Lemma 7.5. — We have,

(7.12) lim
ξ↘Ξ0

E(ξ) = +∞ and E(ξ) = 1
2ξ
−1/2 +O

(
ξ−2

)
, as ξ → +∞.

For ξ > Ξ0, we have,
E ′(ξ) = 2R(ξ)E(ξ)− 1,(7.13)
E ′′(ξ) = 2E(ξ)2 + 2R(ξ)E ′(ξ).(7.14)

Finally, for all ξ ∈ (Ξ0,∞), we have E ′(ξ) < 0 and E(ξ) > 0.
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Proof. — The behavior at ∞ claimed in (7.12) follows from the asymptotics
in (7.10). Equation (7.13) follows from the definition of E and (7.11). Finally, (7.14)
is obtained by differentiating (7.13) and again using (7.11).
Next, we prove that E ′(ξ) < 0 for all ξ. For the sake of contradiction, suppose that

there is a critical point, ξ0, of E . Then, by (7.14), we have

E ′′(ξ0) = 2E(ξ0)2.

In addition, (7.13) informs us that E(ξ0) 6= 0. Therefore, ξ0 is a strict local minimum.
The limiting behavior of E at ∞ implies that there is also a local maximum

ξM ∈ (ξ0,∞). On the other hand, the argument that showed that ξ0 is a strict local
minimum applies to ξM as well. We conclude that ξM is both a local maximum and
a strict local minimum, which is a contradiction. Hence, there is no critical point,
and we have E ′ < 0, and E > 0. �

7.3.2. The auxiliary function F

Lemma 7.6. — For ξ > Ξ0, define F via

(7.15) F(ξ) = E(ξ)2 + 2R(ξ)2E(ξ)−R(ξ) .

We have F(ξ) > 0 for all ξ.

Proof. — To begin, we notice that F(ξ) → ∞ as ξ ↘ Ξ0. Next, we figure out
the behavior of F(ξ) as ξ → ∞. Using (7.10) and the definition of E , we have, as
ξ →∞,

E(ξ) = 1
2ξ
−1/2 − 1

4ξ
−2 + 25

64ξ
−7/2 + oξ→∞

(
ξ−7/2

)
,

and

E(ξ)2 = 1
4ξ
−1 − 1

4ξ
−5/2 + oξ→∞

(
ξ−5/2

)
.

Using the relationship R2(ξ) = E(ξ) + ξ in the second term of (7.15) gives F(ξ) =
3E(ξ)2 + 2ξE(ξ)−R(ξ). Then a straightforward computation yields,

F(ξ) = 3
16ξ

−5/2 + oξ→∞
(
ξ−5/2

)
.

Hence, F(ξ) is positive for all sufficiently large ξ.
We argue by contradiction to prove that F(ξ) > 0 everywhere. Suppose that F

hits zero at ξ1 > Ξ0. Since F(ξ) > 0 when ξ ↘ Ξ0 or ξ � 1, then there exists ξ0 > ξ1
such that F(ξ0) = 0 and F ′(ξ0) > 0. Evaluating (7.15) at ξ0 yields that

(7.16) E(ξ0)2 = R(ξ0)− 2R(ξ0)2E(ξ0).

The derivative of F (7.15) can be calculated using the relations (7.11) and (7.13):

F ′(ξ) = 2E(ξ) (2R(ξ)E(ξ)− 1) + 4R(ξ)E(ξ)2 + 2R(ξ)2 (2R(ξ)E(ξ)− 1)− E(ξ)
= 8R(ξ)E(ξ)2 + 4R(ξ)3E(ξ)− 2R(ξ)2 − 3E(ξ).
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Evaluating at ξ0, we can simplify further using (7.16):

F ′(ξ0) = 8R(ξ0)E(ξ0)2 + 2R(ξ0)(R(ξ0)− E
(
ξ0)2

)
− 2R(ξ0)2 − 3E(ξ0)

= 3E(ξ0) (2R(ξ0)E(ξ0)− 1) = 3E(ξ0)E ′(ξ0) < 0.
This is a contradiction. �

7.3.3. Definition and properties of Q

We are now ready to introduce Q.

0 1 2 3 4 5

θ

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Q
(θ
)

(a)

0 1 2 3 4 5

θ

-2

-1.5

-1

-0.5

0

0.5

Q
(θ
)

θ

1/4

θ
⋄

(b)

Figure 7.2. Sketch of Q. Notice that both Q and Q(θ)/θ are increasing in θ.

Lemma 7.7. — The following pair of properties holds true:
(i) For each θ > 0, there is a unique solution of q = R (q2 − θ−1) such that

q2 − θ−1 > Ξ0. We define the function Q(θ) as the root of this equation.
Alternatively speaking, Q(θ) is defined via the following implicit relationship,

(7.17) Q(θ) = R
(
Q(θ)2 − θ−1

)
.

(ii) The function θ 7→ Q(θ)/θ is strictly increasing, continuously differentiable,
and it converges to 1/2 as θ → +∞.

Proof. — We begin with the proof of (i). First, from Lemma 7.5, E(ξ) = R(ξ)2− ξ
is a bijective function from (Ξ0,∞) to (0,∞). Therefore, for each θ, there is a unique
ξ0 ∈ (Ξ0,∞) such that R(ξ0)2 − ξ0 = θ−1.
If R(ξ0) > 0, we let q0 = (ξ0 + θ−1)1/2. It is clear that q0 is a root of q =
R (q2 − θ−1). In order to see that q0 is unique, suppose that q1 = R(q2

1 − θ−1) and
q2

1 − θ−1 > Ξ0. Then, letting ξ1 = q2
1 − θ−1, we find R(ξ1)2 − ξ1 = θ−1. The fact

that R(ξ)2 − ξ is bijective implies that ξ1 = ξ0. It then follows that q1 = R(ξ1) =
R(ξ0) = q0. If, on the other hand, R(ξ0) < 0, then the proof is similar, after choosing
q0 = −

√
ξ0 + θ−1.
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We now present the proof of (ii). The fact that Q is continuously differentiable is
a simple result of the implicit function theorem and Lemma 7.5, in which we prove
that 2RR′ = 2RE < 1 everywhere.
We now establish that θ 7→ Q(θ)/θ is strictly increasing. It is equivalent to the

positivity of θQ′(θ)−Q(θ). Letting ξ0 = Q(θ)2−θ−1 and differentiating (7.17) yields,

Q′(θ) = R′(ξ0)
(

2Q(θ)Q′(θ) + 1
θ2

)
,

which, upon rearranging becomes,

θQ′(θ) = R′(ξ0)
θ (1− 2Q(θ)R′(ξ0)) .

Now, recall the following relationships previously established:

Q(θ) = R(ξ0) , 1
θ

= Q(θ)2 − ξ0 = R(ξ0)2 − ξ0 = E(ξ0) , and R′(ξ0) = E(ξ0) .

Using these, we find,

θQ′(θ)−Q(θ) > 0 if and only if E(ξ0)2

1− 2R(ξ0)E(ξ0) −R(ξ0) > 0 .

Recall, from Lemma 7.5 and (7.13), that 0 > E ′(ξ) = 2R(ξ)E(ξ) − 1 holds for all
ξ ∈ (Ξ0,∞). Thus, together with the definition of F in (7.15) we find the equivalence,

θQ′(θ)−Q(θ) > 0 if and only if F(ξ0) > 0.
The result follows from Lemma 7.6.
Finally, we need to check that Q(θ)/θ converges to 1/2 as θ → +∞. First, we

establish,
(7.18) Q(θ) > 0 for θ large enough.
We recall that Ai′ has a largest zero, which we denote Ξ1 (Ξ1 ≈ −1.02), such that
Ξ0 < Ξ1 < 0. We have R(ξ) > 0 for ξ > Ξ1. Therefore, for θ > |Ξ1|−1, we have
q2 − θ−1 > Ξ1, and hence R(q2 − θ−1) > 0 for all q. Recalling the definition of Q
concludes the proof of (7.18).
Since Q(θ)/θ is increasing, it follows that Q(θ) tends to infinity with θ. We are

then justified in using the asymptotic expansion (7.10) in (7.17):

Q(θ) =
(
Q(θ)2 − 1

θ

)1/2
+ 1

4

(
Q(θ)2 − 1

θ

)−1
+ oθ→∞

(
Q(θ)2 − 1

θ

)−1
.

Dividing by θ and expanding the first and second terms on the right hand side, we
see that
Q(θ)
θ

= Q(θ)
θ

(
1− 1

2θQ(θ)2 +Oθ→∞

(
1

θ2Q(θ)4

))
+ 1

4
1

θQ(θ)2 + oθ→∞

(
1

θQ(θ)2

)
.

Since Q(θ)→ +∞ as θ → +∞, it follows that

0 = − 1
2θ2Q(θ) + 1

4θQ(θ)2 + oθ→∞

(
1

θQ(θ)2

)
,

from which we obtain, after multiplying this by 2θQ(θ)2,
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Q(θ)
θ

= 1
2 + oθ→∞(1),

which concludes the proof of Lemma 7.7. �

We next prove Lemma 6.3, which crucially relies on the monotonicity of Q(θ)/θ.
Proof of Lemma 6.3. — We recall that, according to Lemma 7.7(i), Q(θ) =
R(Q(θ)2 − θ−1). The equivalence of (6.4) and (6.5) follows directly from this after
taking θ = ξ(τ) as long as V (τ)4 − ξ−1(τ) > Ξ0.
Next, elementary calculations yield

ξ(τ) =
(

1 + 1
τ

) (1− τ) 1
3

(1 + τ/2) 1
3
,

and, hence, ξ is strictly decreasing in τ .
We now claim that V (τ)2/ξ(τ) is strictly increasing in τ . Indeed, a short compu-

tation implies
V (τ)2

ξ(τ) = τ(1 + τ/2)
(1 + τ)2 = 1

2

(
1− 1

(1 + τ)2

)
.

This, combined with the fact that ξ is strictly decreasing, and Lemma 7.7.(ii) implies
that Q(ξ(τ))/ξ(τ)− V (τ)2/ξ(τ) is strictly decreasing in τ . This implies that there
is at most one τ such that (6.4) holds. See Figure 6.2. �

7.4. The dynamics on the line

With Lemma 7.4 at hand, we know that trajectories make at most one excursion to
the right of the line {y = α}. In the sequel, we show that this excursion occurs if and
only if the endpoint (α, θ) is such that θ ∈ (0, θ�), where we refer to the threshold
θ� given in (6.1), which, according to Lemma 7.7, is uniquely defined. One key step
to understanding this is the dynamics on the line. It should be noted, however, that
the results in this section are used for more than this one consequence.
In order to prepare the computation of the trajectory off the line (Section 7.5),

two constants of integration are needed: A and B, see e.g. (5.7). In the sequel, we
gather enough additional equations at the junction with the line in order to resolve
the problem. The cornerstone is the relation between q(s`) and η(s`), which is
established in Lemma 7.9 below. This enables us to bring the condition at s = −∞
in the definition of A (α, θ) in (4.7) down to a condition at the contact time s = s`.
Note that the latter is well defined by Lemma 7.1 and Lemma 7.4:

Definition 7.8 (Contact time). — Suppose θ > 0, and let (y,η) ∈ A (α, θ) be
the optimal trajectory. There exists a unique s` = s`(θ) 6 0 such that y(s) = α if
and only if s 6 s`.

Lemma 7.9. — Suppose θ > 0, and let (y,η) ∈ A (α, θ) be the optimal trajectory.
Let s` ∈ R− be the contact time. Then q and Qα, defined by (5.10) & (6.2), satisfy,
for s < s`,
(7.19) q(s) = Qα (η(s)) .

ANNALES HENRI LEBESGUE



Non-local competition slows down front acceleration during dispersal evolution 57

Proof. — In this proof, we assume that α = 1 without loss of generality. The
appropriate relationship (7.19) can be recovered afterwards from the scaling η(s) =
α2/3η4/3(s), see Remark 6.4.
As above, we may also assume without loss of generality that s` = 0 up to a time

shift of the trajectory. First, we recall that (y,η) ∈ A (α, θ) implies
(7.20) lim

s→−∞
esη(s) = 0.

Second, due to Lemma 5.4, we recall that η is non-increasing. In view of (5.10), this
implies η > 2q.
The first conclusion we make from these two facts is that q and η both tend to

infinity. Indeed, first suppose that η is bounded. Since η is monotonic, then there
exists η∞ such that η(s) ∈ (θ, η∞) for all s < 0. It follows that q(s) remains bounded
from above as well. From (5.10), we find

q(s) = q(0) +
∫ 0

s

1
η(s′)2ds

′ > q(0) +
∫ 0

s

1
η2
∞
ds′.

After taking s → −∞, we see that q(s) → ∞, which contradicts the boundedness
of η.
Similarly, if q is bounded, there exists q∞ such that q(s) 6 q∞ for s < 0. Since η

tends to infinity, choose S > 0 large enough so that η(−S) > 2q∞. Then, using this
as well as (5.10), we obtain, for s < 0,

η(s− S)es−S = η(−S)e−S −
∫ −S
s−S

d

ds′

(
η(s′)es′

)
ds′

= η(−S)e−S −
∫ −S
s−S

2q(s′)es′ ds′ > η(−S)e−S − 2q∞
∫ −S
s−S

es
′
ds′

= η(−S)e−S − 2q∞
(
e−S − es−S

)
.

By taking the asymptotic limit, we find:
lim inf
s→−∞

es−Sη(s− S) > (η(−S)− 2q∞) e−S > 0,

where the second inequality follows from our choice of S. However, this is impossible
due to (7.20). Thus, q cannot be uniformly bounded.
In addition, the second equation in (5.10) implies that q is monotonic. We conclude

that the following limits hold true,
(7.21) lim

s→−∞
η(s) = lim

s→−∞
q(s) = +∞.

Now, consider the combination of η and q given by

(7.22) ξ(s) = q(s)2 − 1
η(s) .

It follows from (5.10) that ξ̇ = −1/η. Let φ(s) = R(ξ(s))− q(s). First notice that,
using (7.22), along with (7.10), it follows that φ(s) → 0 as s → −∞. Second, we
find,

d

ds
R(ξ(s)) = R′(ξ)ξ̇ = −

(
R(ξ)2 − ξ

) 1
η

= −R(ξ)2

η
+ q2

η
− 1

η2 ,
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where we have used (7.11) to obtain the second equality. Thus, we obtain,

φ̇(s) = −
(
R(ξ(s))2 − q2(s)

η(s)

)
= −φ(s)

(
R(ξ(s)) + q(s)

η(s)

)
.

For any s < 0, integrating this from s to 0 yields the identity

(7.23) φ(s) = φ(0) exp
(∫ 0

s

(
R(ξ(s′)) + q(s′)

η(s′)

)
ds′
)
.

The definition of ξ in (7.22) and (7.21) imply that lims→−∞ ξ(s) = +∞. This,
together with the asymptotics for R in (7.10), and (7.21), imply that R(ξ(s′))+q(s′)
is positive for s′ < S negative enough (it even tends to infinity). We deduce that

(7.24) lim inf
s→−∞

exp
(∫ 0

s

(
R(ξ(s′)) + q(s′)

η(s′)

)
ds′
)

> exp
(∫ 0

S

(
R(ξ(s′)) + q(s′)

η(s′)

)
ds′
)
> 0.

The fact that φ(s) → 0 as s → −∞, along with (7.23) and (7.24), imply φ(0) = 0.
Using this information, with (7.23) again, shows that φ(s) = 0 for all s < 0. Thus,
according to the definition of φ, we have,

q(s) = R(ξ(s)) = R
(

q(s)2 − 1
η(s)

)
,

which is equivalent to q(s) = Q (η(s)). This concludes the proof of Lemma 7.9. �
We conclude this section with a relatively precise description of the behavior as

s→ −∞ (or, equivalently, t→ 0).

Lemma 7.10 (Anomalous behavior as s→ −∞). — The following asymptotics
hold for optimal trajectories:

y(s) = α

η(s) ∼ 3
2α

2/3|s|1/3
as s→ −∞.

Note that (3.1), the anomalous scaling in the original variables, follows from
Lemma 7.10.
Proof. — We may assume α = 1 up to a scaling argument (6.6), as in the previous

proof.
The first item is obvious by definition of s` > −∞. The second one can be deduced

from a combination of Lemma 7.9, (7.22), and (5.10). Indeed, we have the following
asymptotics:

q̇ = − 1
η2 = −

(
q2 − ξ

)2
= −

(
R(ξ)2 − ξ

)2

= −
(1

2ξ−1/2 + os→−∞
(
ξ−1/2

))2
∼ − 1

4q2 .
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Hence, we see that

q(s) ∼
(3

4

)1/3
|s|1/3 as s→ −∞ .

Similarly, we deduce that

η(s) ∼ 2
(3

4

)1/3
|s|1/3 as s→ −∞ . �

7.5. The dynamics off the line

In this subsection, we fix θ > 0 and the associated optimal trajectory (y,η) ∈
A (α, θ). Recall (6.1), the definition of the threshold value θ� such that θ� = 4Qα(θ�).
The first step is to show that the contact time is non zero (s` < 0) if θ < θ�.

Alternatively speaking, for endpoints below the threshold, the trajectory makes a
free motion excursion in {y > α}.

Lemma 7.11. — There cannot exist s1 < s0 6 0 such that y(s) = α and η(s) < θ�

for all s ∈ (s1, s0).

Proof. — We argue by contradiction. Suppose there exist such times s1 < s0. Then,
we test the optimality (y,η) against a perturbation (y + ε,η) compactly supported
in (s1, s0), and such that ε > 0 in order to preserve the condition y + ε > α. Then,
by the optimality of the trajectory with respect to the Lagrangian (4.6),

0 6
∫ 0

−∞

1
η(s)

(
ε̇(s) + 3

2ε(s)
)
es ds.

Integration by parts yields

0 6
∫ 0

−∞

(
η̇(s)
η(s)2 + 1

2η(s)

)
ε(s)es ds .

Since ε is compactly supported in (s0, s1) and since (y,η) satisfies (5.6) on (s1, s0),
it follows that η̇ + η = 2q. Hence,

0 6
∫ 0

−∞

(
4q(s)− η(s)

) ε(s)
2η(s)2 e

s ds .

By the arbitrariness of ε > 0, it follows that 4q(s) > η(s) for all s ∈ (s0, s1).
However, using Lemma 7.9, this implies that 4Qα(η(s)) > η(s), which cannot hold
if η(s) < θ� by the definition of θ� in (6.1) and the monotonicity established in
Lemma 7.7. �

We set some notation. Given θ > 0, let θ`(θ) = η(s`(θ)) be the value of η at the
contact time, where (y,η) is the optimal trajectory associated to (α, θ). We had
used this notation already in the proof of Theorem 1.3(ii).
We continue with a characterization of θ` at the contact time. We remark that the

map θ 7→ θ`, defined on the line {y = α}, connects the two values η(0) and η(s`) at
the two extremities of the free excursion.

Lemma 7.12. — The maps θ 7→ s`(θ) and θ 7→ θ` = η(s`(θ)) are continuous.
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Proof. — Let (α, θn) → (α, θ) be a sequence of endpoints, with the associated
sequence of optimal trajectories (yn,ηn). Examining the proof of Lemma 7.3 we
find a locally uniform H1

loc bound on both (yn) and (ηn). By a diagonal extraction
argument, we can extract a subsequence such that (ynk ,ηnk) converges to some
trajectory (y,η) weakly in H1

loc. Fatou’s lemma and the lower semi-continuity of Lα

enables us to conclude, as in the proof of Lemma 3.1, that

∫ 0

−∞
Lα (y,η, ẏ, η̇) esds 6 lim inf

n→∞
Uα (α, θn) .

Since (y,η) ∈ A (x, θ), then the left hand side is no smaller than Uα(α, θ). On
the other hand, the convexity of Uα implies its continuity and, hence, it implies
that lim infn→∞ Uα(α, θn) = Uα(α, θ). Taken together, this implies that (y,η) is the
minimizing trajectory associated to (α, θ).
Next, for the sake of contradiction, consider a subsequence (s`(θnk)) converging

to some s0 6= s`(θ). For any δ > 0, we have ynk(s) = α on (−∞, s0 − δ) for all k
sufficiently large. Passing to the limit k →∞, and then δ → 0, we get that y(s) = α
on (−∞, s0), and therefore s0 6 s`(θ).
We use the rigidity of the expression of the optimal trajectories from (5.7) in order

to rule out possible jumps. Indeed, suppose that s0 < s`(θ). Then, passing to the
limit on the parameters Ank and Bnk (up to another extraction), we get a polynomial
function (in the variable τ = es/2) which coincides with α on (s0, s`), due to the
convergence of ynk to y. This can only happen if A = B = 0. In this case, s`(θ) = 0.
On the other hand, we find that Ank , Bnk → 0, and, thus, s`(θnk)→ 0. This implies
that s0 = 0 = s`(θ), which is a contradiction. We conclude that the whole sequence
(s`(θn)) converges to s`(θ). Therefore, θ 7→ s`(θ) is continuous.
The same conclusion holds for θ 7→ η(s`(θ)) since η is a continuous function. �

As already discussed to motivate the statement in Lemma 7.11, we have s` < 0 if
the endpoint is such that θ < θ�. In fact, the converse is true.

Lemma 7.13. — If θ > θ�, then s` = 0.

Proof. — We consider α = 1 without loss of generality. To begin with, we collect
some useful identities at the time of contact. By definition, we have y(s`) = α and
η(s`) = θ`. By (5.7), Lemma 7.2, and Lemma 7.9, we have,

Aes`/2 = p(s`) = 1
θ`
, and B + A2 (1− es`) = q(s`) = Q(θ`),

which, with the usual notation τ` = es`/2, yields,

(7.25) A = 1
τ`θ`

, and B = Q(θ`)−
1

θ2
`τ

2
`

(
1− τ 2

`

)
.
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On the one hand, since y(s`) = 4/3, the expression for y in (5.7) implies,
4
3τ

3
` = y(s`)τ 3

` = 4
3 + 2θA

(
τ 2
` − 1

)
+ 2BA

(
1− τ 2

`

)2
+ 2

3A
3
(
1− τ 2

`

)3

= 4
3 + 2θ 1

θ`τ`

(
τ 2
` − 1

)
+ 2

(
Q(θ`)−

1
τ 2
`θ

2
`

(
1− τ 2

`

)) 1
τ`θ`

(
1− τ 2

`

)2

+ 2
3

( 1
τ`θ`

)3 (
1− τ 2

`

)3
.

Multiplying both sides by τ`/(2(1− τ 2
`)) and re-arranging the terms implies,

(7.26) θ

θ`
= 2

3
τ` − τ 4

`
(1− τ 2

`)
+ Q(θ`)

θ`

(
1− τ 2

`

)
− 2

3
1

τ 2
`θ

3
`

(
1− τ 2

`

)2
.

On the other hand, since η(s`) = θ`, we have, from the expression for η in (5.7)
and (7.25),

τ 2
`θ` = τ 2

`η(s`) = θ − 2
(
1− τ 2

`

)(
Q(θ`)−

(
1− τ 2

`

) 1
θ2
`τ

2
`

)
− 1
θ2
`τ

2
`

(
1− τ 2

`

)2
.

Re-arranging this to obtain an expression for the ratio θ/θ`, and then plugging it
into (7.26) yields

(7.27) 3Q(θ`)
θ`

= 1
τ 2
`θ

3
`

(
1− τ 2

`

)
+ τ`(τ` + 2)

(1 + τ`)2 .

It is a direct consequence of Lemma 7.11 that θ`(θ) > θ� for all θ. Otherwise the
optimal trajectory with the endpoint (α, θ`) would stick to the line {y = α} with
values η < θ�, in contradiction with the statement of the lemma.
In particular, we have θ`(0) > θ�. We deduce from Lemma 5.5 that the curve

(y(s′+ s`(0)),η(s′+ s`(0))) with endpoint (α, θ`(0)) is optimal, and by construction
it sticks to the line {y = α} for all time. Consequently, we find that s`(θ`(0)) = 0,
hence θ`(θ`(0)) = θ`(0). From this observation, we can define θ0 = inf{θ | θ`(θ) = θ}.
We have θ`(θ0) = θ0 by continuity of the map θ 7→ θ` established in Lemma 7.12.

Therefore, s`(θ0) = 0 by uniqueness of optimal trajectories. We also deduce, again
from Lemma 7.11, that θ0 = θ`(θ0) > θ�. Our goal is to show that θ0 = θ�.
We consider a sequence of points θn ↗ θ0. Note from the choice of θ0 that s`(θn) <

0, for all n. Then, (7.27) implies that

3Q (θ`(θn))
θ`(θn) = 1

τ 2
`(θn)θ`(θn)3

(
1− τ 2

`(θn)
)

+ τ`(θn) (τ`(θn) + 2)
(1 + τ`(θn))2 .

We then let n→∞ and use the continuity of τ`, θ` and Q to obtain that

3Q(θ0)
θ0

= 1(1 + 2)
(1 + 1)2 = 3

4 .

Due to the definition of θ� in (6.1), this implies that θ0 = θ�, as claimed. Finally,
it follows from the optimality of sub-trajectories of the one ending at (α, θ�) that
y(s) = α for all s ∈ (−∞, 0] when θ > θ�. This concludes the proof that s`(θ) = 0
for all θ > θ�. �
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7.6. The complete picture of the trajectories - Proposition 6.2

Proof of Proposition 6.2. — There are a number of items to check.
(i) The existence of the contact time s` is a consequence of Lemma 7.1 and

Lemma 7.4. The continuity of the map θ 7→ η (s`(θ)) is the purpose of
Lemma 7.12.

(ii) The property η(s`(θ)) > θ� is a consequence of Lemma 7.11.
(iii) The fact that s` = 0 if and only if θ > θ� is a consequence of Lemma 7.11

and Lemma 7.13.
(iv) We can separate the dynamics on and off the line, respectively for s ∈

(−∞, s`) and (s`, 0). On each interval, the Lagrangian is continuous and
so the classical theory can be applied. Moreover, (y,η,p,q) is globally
continuous provided we define p(s) = α/η(s) for s 6 s`, as shown in
Lemma 7.2. As a by-product of the classical theory, we have in particular
Uα(α, θ) = −Hα(α, θ,p(0),q(0)).

(v) The derivation of the first integral of motion q(s) = Qα(η(s)) is the purpose
of Lemma 7.9.

(vi) The formula for A at the contact time is clear (see, e.g., (7.7)). The formula
for B follows from the continuity of q along with the matching condition at
s = s` coming from the combination of (5.7) and Lemma 7.7. �

8. Conclusion and perspectives

We have shown a weak propagation result for the cane toad equation (1.2). More
precisely, we have proven that the front spreads slower than the linear problem
without saturation. In fact, the linear problem was previously shown to spread as
(4/3)t3/2, in contrast to the rate α∗t3/2, where α∗ ≈ 1.315, obtained here. However,
our spreading result is quite weak, and oscillatory behavior could not be ruled out.
Dumont performed intensive numerical computations on a large domain to investi-

gate the long time asymptotics of (1.2). The methods and the results are described
in the following appendix. He does not report any oscillatory behavior. The spatial
density ρ appears to be monotonic non-increasing with respect to the space variable.
In addition, all level lines propagate at the same rate O(t3/2) with the same prefactor.
Furthermore, the numerical spatial density converges to a Heaviside function with
unit saturated value 1{x<αht3/2} in the self-similar spatial variable x/t3/2, for some
numerical critical value αh.
This suggests that Theorem 1.2 could be strengthened towards a strong spreading

result stating that all level lines propagate as α∗t3/2. Accordingly, we conjecture that
the value function Uα, 1 is a good candidate to describe the asymptotic behavior asso-
ciated with the exponential ansatz discussed in Section 2 as t→∞. An alternative
would be to seek a stationary profile adapted to the various scales of the problem,
as discussed in Figure A.2.
We are not aware of any other reaction-diffusion problem related to the Fisher-KPP

equation where the saturation term hinders the propagation at first order. Usually,
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the non-linear term acts on the next order correction of the front location, as in
the Bramson logarithmic delay [BHR17a, Bra83, HNRR13, Pen18]. Our analysis
unravels the interplay between unbounded diffusion, curved trajectories due to the
twisted Laplacian θ∂2

x+∂2
θ , and non-local competition among individuals at the same

location, but having different dispersal abilities, as shown in Figure 2.2. We believe
that the methodology developed here could be extended to other related problems.

Appendix A. Numerical computations of the long time
asymptotics, by Thierry Dumont
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Figure A.1. One level line of the function U = −t log f is plotted for successive
times t = 100, 200, 300, 400, 500, 600, 700 with respect to the original variables
(x, θ) in (A) or with respect to the self-similar variables (x/t3/2, θ/t) in (B).
One clearly sees the joint propagation in (x, θ) towards larger x and higher θ.
Moreover, the function U seems to converge to a stationary profile in the self-
similar variables, in agreement with the heuristic argument of Section 2 that
uh → u where uh is given by (2.1), u solves (2.2), and u and U are connected by
a change of variables as in Section 4.3.

The numerical approximation of the Cauchy problem (1.2) raises several challenges:
(1) Handling the non-local reaction term with an implicit scheme would result in

full non-linear systems to be solved at each time step.
(2) But as time t increases, diffusion triggers faster and faster time scales as the

solution propagates in x. Therefore, an implicit stable discretization seems
necessary [HW10].

(3) Experience shows that a large domain and a thin discretization is necessary
to achieve good spreading numerical results. Thus, the numerical simulation,
whatever the method opted for, requires a large amount of computing time,
even with a parallel procedure. A strategy for reducing the computing time
appears to be necessary.
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Figure A.2. Spatial propagation. (A) The numerical function ρ(t, x) is plotted
for successive times at regular intervals. (B) The spatial density converges to
a Heaviside function in the self-similar variable x/t3/2, in agreement with the
analysis performed in the article. (C) The same curves are plotted, but in the
frame centered at the abscissa X1/2(t) corresponding to the value ρ = 1/2.
Increasing times are figured by an arrow. The front flattens as time increases.
(D) By playing with scales, I found that the typical width of the front is of order
t1/2, as all curves are superposed in this frame.

A.1. Methods

I opted for standard operator splitting techniques. These techniques date back
to the 1950’s. However, it has been shown recently that they are well adapted to
difficult and even very stiff problems [Des00, DBM+12]. Being given an initial value
and a time step h for the problem df/dt = Lf + R(f), decomposed into the linear
(diffusion) part and the non-linear (reaction) part, I advance from time nh to time
(n + 1)h by solving only partial problems: Lh : df/dt = Lf and Rh : df/dt = R(f)
during the time step h. Denoting by fn the numerical solution at time nh, the Strang
scheme [Str68]
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fn+1 = Lh/2 ◦Rh ◦ Lh/2 (fn)

is of order 2 provided Lh/2 and Rh are also approximated by numerical schemes of
order 2. It can be generalized to three operators [DBM+12], keeping order 2. Define
the three partial problems as: Lxh : df/dt = θ∂2f/∂x2, Lθh : df/dt = ∂2f/∂θ2, and
Rh : df/dt = R(f), and the corresponding Strang scheme as follows

fn+1 = Lxh/2 ◦ Lθh/2 ◦Rh ◦ Lθh/2 ◦ Lxh/2 (fn).

A.1.1. Numerical computation of each sub-problem

I approximated the operators Lxh and Lθh using the Crank–Nicolson method, which
is of order 2 and A-stable [HW10]. The non-local reaction term Rh is non-stiff and
was approximated by a second order explicit Runge–Kutta method (RK2) [HNW93].
The spatial discretization was made via second order finite differences, on an

uniform grid of size Nx × Nθ. Notice that Lxh and Lθh can be decomposed further
in independent sub-problems acting respectively on the rows and on the columns
of the finite difference grid. Hence, each sub-problem boils down to solving banded
tridiagonal linear systems. Hence the cost of advancing one step in time these two
discrete operators reduces to only O(Nx × Nθ). Moreover the sub-problems of Lxh
and Lθh can be computed in parallel.
The non-local reaction term Rh involves the rate of growth 1 − ρ(t, x) = 1 −∫∞

1 f(t, x, θ)dθ which does not depend on θ. Hence, it can be computed in parallel
for each value of x on the grid.

A.1.2. Time step control

I used the first order Euler splitting scheme in order to compute

f ∗n+1 = Lxh ◦ Lθh ◦Rh (fn).

I used the quantity ‖f ∗n+1− fn+1‖L2 = O(h2) as an error indicator to adapt the time
step h, as usually done for solving ordinary differential equations [HNW93].

A.1.3. Implementation

The code was implemented in C++, OpenMP parallel (in shared memory). The
size of the domain was (x, θ) ∈ [0, 4.5E4] × [0, 1.6E3]. The size of the grid was
Nx = 28125 and Nθ = 1000 (∆x = ∆θ = 1.6). The time step was adapted at
each iteration for small time t, then every 5 steps afterwards. The total wall clock
computing time of the simulation was approximately 4 days, on a 32 cores (2.2 Ghz
clock frequency) computer.
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A.2. Results

Starting from an initial datum as in (1.3), but restricted to the positive values
of x, the spatial propagation was observed in the long term with rate O(t3/2). The
numerical value of the prefactor seems to converge to a value lying between 1.34 and
1.35 (up to 2.6% of relative error). This discrepancy may be explained by the size
of the meshgrid, which is of order one to cope with computing limitations. For the
sake of comparison, the same numerical procedure was implemented for the standard
Fisher-KPP equation (1.1) with similar numerical parameters (∆x = 1, adaptive
time step). The actual wave speed (c = 2) was overestimated by 1.9% of relative
error.
The analysis performed in this article suggests that accurate numerical schemes

should be developed on the auxiliary function u = −t log f , in the self-similar vari-
ables, in order to match with the ansatz in Section 2 and Section 4.3. I checked that
the numerical approximation of u = −t log f did converge in self-similar variables
to a stationary function (Figure A.1). This stationary solution is likely to be an
approximation of the value function Uα. There is indeed a good match (comparison
not shown).
To investigate further the consistency of the analysis performed in the article, I

checked whether the spatial density ρ(t, x) resembles a Heaviside function µ1{x<αt3/2}.
First, I noticed that, despite the lack of maximum principle, the numerical spatial
density ρ(t, x) remains below the unit carrying capacity: ρ 6 1. Moreover, it is
monotonic non-increasing in space, and non-decreasing in time, see Figure A.2. The
numerical results suggest that the spatial density indeed converges to the Heaviside
function 1{x<αht3/2}, where the critical value αh depends on the numerical approxi-
mation of the scheme.
No stationary profile seems to be reached in the long term asymptotics (Fig-

ure A.2C). More precisely, the shape of the front flattens as time increases. The
typical width appears to be of order O(t1/2), see Figure A.2D.
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