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74 P.-H. LEEMANN & M. DE LA SALLE

formulée en 1976. Les preuves reposent sur des méthodes de marches aléatoires. Une consé-
quence des résultats est que tout groupe de type fini admet un graphe de Cayley dont le groupe
d’automorphismes est dénombrable. Nous obtenons des résultats similaires pour les graphes
dirigés.

1. Introduction

Given a group G and a symmetric generating set S ⊆ G \ {1}, the Cayley graph
Cay(G,S) is the simple unoriented graph with vertex set G and an edge between g
and h precisely when g−1h ∈ S. By construction, the action by left-multiplication
of G on itself induces an action of the group on its Cayley graph, which is free and
vertex-transitive.
We are here interested in the question to decide when S can be chosen so that

these are all the automorphisms of Cay(G,S), or equivalently the automorphism
group of the graph acts freely and transitively on the vertex set. The main result of
this paper is
Theorem 1.1. — Every finitely generated group G that is not virtually abelian

admits a finite degree Cayley graph whose automorphism group is not larger than
G acting by left-translation.
A Cayley graph of G whose automorphism group acts freely on its vertex set is

called a graphical regular representation, or GRR.
The main result in [LS21] is similar to Theorem 1.1, but with the assumption of

not being virtually abelian replaced by having an element of infinite (or sufficiently
large) order and being non-abelian and non-generalized dicyclic (see Section 2 for
definitions). Combining both results, we obtain that the infinite finitely generated
groups that do not admit a GRR are precisely the abelian and the generalized
dicyclic groups.
Together with the results from [ERS70, God81, Het76, Imr69, Imr75, IW76, NW72,

Wat71, Wat72, Wat74] that treated the case of finite groups(1) , we obtain the follow-
ing result. The equivalence between (1) and (3) confirms Watkin’s conjecture [Wat76].
Corollary 1.2. — For a finitely generated group G, the following are equivalent:
(1) G admits a GRR,
(2) G admits a finite degree GRR,
(3) G does not belong to the following list:

• the non-trivial abelian groups different from Z/2Z and (Z/2Z)n for
n > 5,
• the generalized dicyclic groups,
• the following 10 finite groups of cardinality at most 32(2) : the dihedral
groups of order 6, 8, 10, the alternating group A4, the products Q8×Z/3Z

(1)We refer to the introduction of [LS21] and the references therein for a more detailed exposition
of the work on finite groups.
(2)with GAP IDs respectively [6, 1], [8, 3], [10, 1], [12, 3], [24, 11], [32, 26], [16, 13], [16, 6], [18, 4], [27, 3].
The first digit in the GAP ID is the order of the group, and the second is the label of the group
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Cayley graphs with few automorphisms 75

and Q8×Z/4Z (for Q8 the quaternion group) and the four groups given
by the presentations

〈
a, b, c

∣∣∣a2 = b2 = c2 = 1, abc = bca = cab
〉
,〈

a, b
∣∣∣a8 = b2 = 1, b−1ab = a5

〉
,〈

a, b, c
∣∣∣a3 = b3 = c2 = (ac)2 = (bc)2 = 1, ab = ba

〉
,〈

a, b, c
∣∣∣a3 = b3 = c3 = 1, ac = ca, bc = cb, b−1ab = ac

〉
.

1.1. Consequences

Another consequence of our result is the following fact, which was a motivation of
the second-named author for [LS21] and the present work, see [ST19]. This solves a
conjecture raised in [ST19].
Corollary 1.3. — Every finitely generated group admits a finite degree Cayley

graph whose automorphism group is countable.
Recall the classical fact that the topology of pointwise convergence on vertices turns

the automorphism group of a finite degree graph into a locally compact metrizable
group: a sequence (φn)n of automorphisms converges to φ if and only if for every
x, φn(x) = φ(x) for all but finitely many n. For this topology the stabilizer of a
vertex is a compact subgroup, and therefore either finite or uncountable. Therefore
Corollary 1.3 can be equivalently phrased as Every finitely generated group admits a
finite degree Cayley graph whose automorphism group is discrete (equivalently has
finite stabilizers).
Corollary 1.3 has interesting graph-theoretical consequences, that we now explain.

Following [Ben13, Geo17, ST19], given two graphs X and Y and a positive integer R,
we say that Y is R-locally X if every ball of radius R in Y appears as a ball of radius
R in X. A graph X is local to global rigid (LG-rigid) if there is R > 0 such that any
graph that is R-locally X is covered by X.
Corollary 1.4. — Every finitely presented group admits a finite degree Cayley

graph that is LG-rigid.
The existence of a LG-rigid finite degree Cayley graph is actually equivalent to

finite presentability, as a non finitely presented group cannot admit LG-rigid Cayley
graphs, see [ST19].

1.2. About the proof

Theorem 1.1 is only new for groups with bounded exponents: the case of groups
with elements of infinite (or arbitrarily large) order was covered in [LS21]. We have

in GAP’s numbering of groups of that order. For example, the last group in the list is of order 27,
and is the third in GAP’s list of groups of order 27. It is also isomorphic to the free Burnside group
B(2, 3).
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76 P.-H. LEEMANN & M. DE LA SALLE

therefore concentrated our efforts for finitely generated torsion groups, but the proof
that we finally managed to obtain turned out to apply without much more efforts
in the generality of Theorem 1.1.
The proof relies partly on the results from [LS21], and partly on new ideas involving

random walks on groups. In particular we use some recent results by Tointon [Toi20]
on the probability that two independent realizations of the random walk commute.
Necessary background of group theory is presented in Section 2. We discuss the
needed contributions from [LS21] in Section 3. The new aspects, including random
walk reminders are presented in Section 4. In the small Section 5, we deduce the
main theorem and its corollaries, and then in Section 6 we discuss a conjecture that
would significantly simplify our proofs. Finally, in Section 7 we briefly discuss some
directed variants of the GRR problem.

Acknowledgements

Both authors thank the anonymous referees for their useful comments and sugges-
tions.

2. Group theory background
This short section sets the group theoretical notation and terminology and contains

some standard group theory results that will be used later. It can be safely skipped
by most readers.
We start with a definition used in the introduction.
Definition 2.1. — A generalized dicyclic group is a non-abelian group with an

abelian subgroup A of index 2 and an element x not in A such that x4 = 1 and
xax−1 = a−1 for all a ∈ A.
A group is said to be of exponent n if every element satisfies gn = 1, and of bounded

exponent if it is of exponent n for some integer n. It is known that finitely generated
groups of exponent n are finite if n ∈ {1, 2, 3, 4, 6}, but can be infinite for large n,
see [Rob95, 14.2].
We shall denote the index of a subgroup H of G by |G : H|.
If A is a subset of a group G, the centralizer of A in G is the subgroup denoted

CG(A) of elements of G commuting with every element of A. The centralizer of G
in G is the center Z(G) of G. If g ∈ G, we write CG(s) for CG({s}).
In the following, by group property we mean of property P that a group G can

have (“G is P”) or not (“G is not P”).
Definition 2.2. — If P and Q are two group properties, we say that a group G

is:
• P -by-Q if it admits a normal subgroup N that is P such that the quotient
group G/N is Q,
• locally P if every finitely generated subgroup of G is P ,
• virtually P if G admits a finite index subgroup H that is P .
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Cayley graphs with few automorphisms 77

Observe that a locally finite group G is finitely generated if and only if it is finite.
A group G is 2-nilpotent (or nilpotent of class 6 2) if it is an extension 1→ N →

G→ K → 1 of abelian groups N,K with N 6 Z(G).
We will use later the following elementary fact:
Lemma 2.3. — If 1→ N → G→ K → 1 is an extension with K virtually abelian

and |G : CG(N)| <∞, then G is virtually 2-nilpotent.
Proof. — If K1 < K is abelian with finite index, then the intersection of the

preimage of K1 in G with the centralizer CG(N) of N in G is the intersection of
two finite index subgroups of G and therefore has finite index in G. It is clearly
2-nilpotent. �
We also need the following folklore variant:
Lemma 2.4. — If a finitely generated group is finite-by-(virtually abelian), then

it is virtually abelian.
Proof. — A finite-by-(virtually abelian) group G0 contains a finite index finite-by-

abelian group G (the preimage in G0 of the finite index abelian subgroup in the
quotient). So let 1 → N → G → K → 1 with N finite and K abelian. Let g ∈ G.
Since K is abelian, the conjugacy class of g is contained in gN and is thus finite;
equivalently CG(g) has finite index in G. If G0 is finitely generated, then so is G. If
S is a finite generating set of G, the center of G is equal to ∩g ∈SCG(g) and therefore
is an abelian subgroup of finite index in G. This proves that G, and hence G0, is
virtually abelian. �
We will make use of the following lemma which is due to Dicman, see for exam-

ple [Rob95, 14.5.7].
Lemma 2.5 (Dicman’s Lemma). — Let G be a group and X ⊆ G be a finite

subset that is invariant by conjugation by elements of G and such that every g ∈ X
is of finite order. Then the normal subgroup 〈X〉G is finite.

3. Constructing Cayley graphs with few automorphisms

We follow the same general strategy for constructing Cayley graphs with few
automorphisms as the one initiated in [ST19] and later developed in [LS21]. There
are two independent steps.
The first step consists in finding a finite symmetric generating set S1 of G in which

the only knowledge of the colour {g−1h, h−1g} ⊆ S1 of every edge {g, h} allows us to
reconstruct the orientation of every edge. To say it in formulas, following [LS21] let
us say that the pair (G,S1) is orientation-rigid if the only permutations φ of G such
that φ(gs) ∈ {φ(g)s, φ(g)s−1} for every g ∈ G and s ∈ S1 are the left-translations
by elements of G.
The second step is, given a finite symmetric generating set S1 ⊆ G, to find

another finite symmetric generating set S1 ⊆ S2 such that every automorphism φ of
Cay(G,S2) induces a colour-preserving automorphism of Cay(G,S1), that is satisfies
φ(gs) ∈ {φ(g)s, φ(g)s−1} for every g ∈ G and s ∈ S1.
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78 P.-H. LEEMANN & M. DE LA SALLE

Clearly, if we are able to perform both steps and we apply the second step for S1
that is orientation-rigid, then we obtain a Cayley graph Cay(G,S2) in which the
only automorphisms are the translations.
For the first step, there is nothing new to do, as we know exactly which groups

admit an orientation-rigid pair (G,S1) with S1 generating. The following is a portion
of [LS21, Theorem 7].

Theorem 3.1. — Let G be a finitely generated group that is neither abelian
[with an element of order greater than 2] nor generalized dicyclic, and S0 ⊆ G \
{1} be a finite symmetric generating set. Then (G,S1) is orientation-rigid where
S1 = (S0 ∪ S2

0 ∪ S3
0) \ {1}.

So all the new work lies in the second step. As in [LS21, ST19], the main tool to
recognize the colour of the edges is by counting triangles. If S is a finite symmetric
subset of a group G, we denote by N3(s, S) the number of triangles in the Cayley
graph Cay(G,S) containing both vertices 1 and s:

N3(s, S) := |S ∩ sS| · 1s∈S.

The relevance of this is the following easy observation that automorphisms preserve
the number of triangles of a given edge: if φ is an automorphism of Cay(G, s), then
for every g, h ∈ G,

N3
(
g−1h, S

)
= N3

(
φ(g)−1φ(h), S

)
.

Clearly, N3(s, S) = N3(s−1, S), so counting triangles can never do more than recover
the colour of edges. But if s ∈ S is such that the only elements t of S such that
N3(s, S) = N3(t, S) are s and s−1, then the automorphism group of Cay(G,S)
preserves the colour of every edge corresponding to s. Our main new technical result
is the following.

Proposition 3.2. — Let G be a finitely generated group that is not virtually
abelian and S ⊂ G\{1} be a finite generating set. Then there exists a finite symmetric
generating set S ⊆ S̃ ⊂ G \ {1} of size bounded by 2|S|(|S|+ 14) such that for all
s ∈ S and t ∈ S̃, if N3(s, S̃) = N3(t, S̃) then t = s or t = s−1.
Moreover, S̃ \ S does not have elements of order 2.

The next section is devoted to the proof of the above Proposition.

4. Squares and random walks

The aim of this section is to prove Proposition 3.2. We start with some discussions
on the square map sq : G→ G defined by sq(g) = g2, which will play an important
role in our work. The main result of this section is Proposition 4.4, that will be
proved using random walks.
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4.1. On the squares in finitely generated groups

In our previous work, [LS21], we restricted our attention on groups G with an
element of “big” (possibly infinite) order. In other words, we asked G to have a “big”
cyclic subgroup C. The main advantage of this hypothesis is the fact that in cyclic
groups sq−1(g) consist of at most 2 elements and therefore, for any finite subset F
of G the set sq−1(F ) ∩ C is finite of size at most 2|F |. In order to generalize results
from [LS21] to arbitrary infinite finitely generated groups, we first need to establish
some facts on the map sq and on its fibers. We begin our analysis of the map sq by
showing that infinite finitely generated groups contains infinitely many squares.
As a first consequence of Dicman’s Lemma 2.5, we obtain the following

Lemma 4.1. — Let n be a fixed integer in {1, 2, 3, 4, 6}. If G is an infinite finitely
generated group, then {g2 | g ∈ G, gn 6= 1} is infinite.

Proof. — By contradiction, suppose that the set X = {g2 | g ∈ G, gn 6= 1} is finite.
This set is invariant by conjugation and, since it is finite, contains only elements of
finite order. Hence by Dicman’s Lemma, it generates a finite normal subgroup N .
But then G/N is an infinite finitely generated group in which every element satisfies
gn = 1 or g2 = 1, so is of exponent n′ = n if n is even and n′ = 2n is n is
odd. In both cases, n′ ∈ {1, 2, 3, 4, 6}, so the free Burnside group B(m,n′) being
finite (see for example [Rob95, 14.2]), the group G/N is finite, which is the desired
contradiction. �

Corollary 4.2. — Let G be a finitely generated group. Then G is infinite if
and only if sq(G) is infinite.

The following elementary lemma will be useful.

Lemma 4.3. — Let a, b, s be elements of a group. If a2 = b2 and (sa)2 = (sb)2,
then [ab−1, s] = 1.

Proof. — We have
ab−1s = ab−2s−1(sb)2b−1 = aa−2s−1(sa)2b−1 = sab−1. �

We now state our main new contribution, which can be seen as a much stronger
form of Corollary 4.2, for finitely generated groups that are not virtually abelian. The
next result roughly asserts that, in such a group, not even the half of the elements
can have finitely many squares.

Proposition 4.4. — Let G be a finitely generated group that is not virtually
abelian. Then for every s ∈ G and F ⊂ G finite there are infinitely many g ∈
G \ (sq−1(F ) ∪ s sq−1(F )) such thatg−1sg /∈ F if CG(s) is locally finite

g−1sg = s otherwise.

The fact that G is not virtually abelian is essential in the proposition. For example,
the result is not true for the infinite dihedral group G = Z/2Z ∗ Z/2Z. Indeed, if s
is one of the generators of the free factors, then G = sq−1(1) ∪ s sq−1(1). Another
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80 P.-H. LEEMANN & M. DE LA SALLE

example is provided by a generalized dicyclic group G: if x ∈ G is an element of
order 4 such that the conjugation by x induces the inverse on an index 2 abelian
subgroup A, then G = sq−1(x2) ∪ x sq−1(x2). This example shows that F does not
necessarily contain the identity.
The proof of this proposition will rely on the following lemma, which strengthens

Neumann’s lemma [Neu54, Lemma 4.1].
Lemma 4.5. — Let G be a finitely generated group, s ∈ G and H1, . . . , Hm be

subgroups of G and a1, . . . , am ∈ G. Assume that
(4.1) G = sq−1(1) ∪ s sq−1(1) ∪ a1H1 ∪ . . . ∪ amHm.

Let α := ∑m
i=1

1
|G:Hi| denote the sum of the inverses of the indices of Hi, with the

standard convention 1
∞ = 0.

(1) If α < 3−
√

5
4 ' 0.19, then either G is virtually abelian, or the conjugacy class

of s2 is finite of cardinality less than 4
(3−
√

5−4α)2 .
(2) If s is an involution, and α < (1−α)3

24 (eg α 6 0.035), then G is virtually
abelian.

The proof of the Proposition 4.4 will only use the lemma in the case when the Hi

all have infinite indices, i.e. when α = 0, but we find this quantitative form amusing.
We will prove the above lemma in the next subsection. Let us first explain how

the proposition follows.
Proof of Proposition 4.4. — Let G be a finitely generated group. Suppose that

there exists s ∈ G and F ⊂ G finite such that there are only finitely many g ∈
G \ (sq−1(F ) ∪ s sq−1(F )) such thatg−1sg /∈ F if CG(s) is locally finite

g−1sg = s otherwise.
We will show that such a group is virtually abelian. We will do that in several steps.
First we will show that CG(s) is locally finite. Then by multiple reductions we will
prove that G is virtually 2-nilpotent and finally that G is in fact virtually abelian.

4.1.1. CG(s) is locally finite.

Suppose that CG(s) is not locally finite. By Corollary 4.2, CG(s) has infinitely many
squares. This implies that CG(s)\(sq−1(F )∪s sq−1(F )) is infinite for any finite subset
F ⊂ G, as otherwise this would imply that all but finitely many g ∈ CG(s) satisfy
g2 ∈ F or g2 = s2(s−1g)2 ∈ s2F , i.e. CG(s) has finitely many squares.

4.1.2.

We know that CG(s) is locally finite. By assumption, there exist finite subsets
E,F ⊂ G such that
(4.2) G = sq−1(F ) ∪ s sq−1(F ) ∪ CG(s)E.
We will now prove that G is virtually 2-nilpotent.
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4.1.3. Reduction to F = {1}

Let F1 ⊆ F be the subset of elements with finite conjugacy class (the intersection
of F with the FC-center of G).
The set of g ∈ G such that g(F \ F1)g−1 ∩ F 6= ∅ is a finite union of cosets of

the groups CG(f) for f ∈ F \ F1. So it is a finite union of cosets of infinite-index
subgroups. By Neumann’s lemma [Neu54, Lemma 4.1], this finite union is a strict
subset of G, and there is g0 ∈ G such that g0(F \F1)g−1

0 ∩F = ∅. For such a g0 and for
every h ∈ sq−1(F \ F1) we have g0hg

−1
0 /∈ sq−1(F ), so g0hg

−1
0 ∈ s sq−1(F ) ∪ CG(s)E.

This implies that, on g0 sq−1(F \F1)g−1
0 \CG(s)E, both maps g 7→ g2 and g 7→ (s−1g)2

take finitely many values, so by Lemma 4.3 we obtain
g0 sq−1(F \ F1)g−1

0 \ CG(s)E ⊆ CG(s)E1

for some finite set E1, or equivalently
sq−1(F \ F1) ⊆ g−1

0 CG(s)(E ∪ E1)g0.

In particular, we deduce from (4.2) that
G = sq−1(F1) ∪ s sq−1(F1) ∪ ACG(s)B

for some finite subsets A,B ⊂ G.
Denote by N the subgroup generated by the finite set FG

1 := ∪g ∈GgF1g
−1. Then

N is normal, and its centralizer in G, which is the intersection of the centralizers of
f for f ∈ FG

1 , is a finite intersection of finite index subgroups, so has finite index.
Let G′ = G/N , and s′, A′, B′, H ′ be the images of s, A,B,CG(s) in G′ respectively.

In the quotient, the previous equation becomes
(4.3) G′ = sq−1(1) ∪ s′ sq−1(1) ∪ A′H ′B′.
By Lemma 2.3, either G is virtually 2-nilpotent and we are done, or G′ is not virtually
abelian. We can therefore suppose that G′ is not virtually abelian and hence infinite.

4.1.4. Reduction to s′2 = 1

Observe that H ′, the image of the locally finite group CG(s) in the quotient G/N ,
is locally finite, so it cannot have finite index since G′ is finitely generated and infinite
and so are its finite index subgroups. We deduce by (1) in Lemma 4.5 that s′2 has
finite conjugacy class. Moreover, CG(s) being locally finite, s′2 has finite order. By
Dicman’s Lemma, the normal subgroup M generated by s′2 is finite. Let G̃ := G′/M .
Then G̃ = sq−1(1)∪ s̃ sq−1(1)∪ ÃH̃B̃ with s̃2 = 1, H̃ an infinite index subgroup and
Ã and B̃ finite subsets.

4.1.5. The group G is virtually 2-nilpotent

By a direct application of (2) in Lemma 4.5, we obtain that G̃ is virtually abelian.
This implies that G′ is finite-by-(virtually abelian) and, since it is finitely generated,
virtually abelian (see Lemma 2.4). This is the desired contradiction.
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4.1.6. The group G is virtually abelian

We already know that G is finitely generated and virtually 2-nilpotent. Let H be
a finite index subgroup of G that is 2-nilpotent.
By definition, the derived subgroup 〈ghg−1h−1 | g, h ∈ H〉 of H is contained in the

center of H. Since H is nilpotent, we also know that the subset of torsion elements
is a subgroup of H (see for example [Rob95, 5.2.7]) and that all subgroups of H,
and also of G, are finitely generated (see for example [Rob95, 5.4.6]). In particular,
since CG(s) is locally finite, it is finite. By (4.2), this implies that there exists a finite
F ′ ⊂ G such that

G = sq−1(F ′) ∪ s sq−1(F ′).
We claim that there exists n ∈ N such that sgns−1 = g−n for every g in G. Indeed,
let n := lcm{k | 1 6 k 6 3|F |}. Then if g has order at most 3|F ′| we have gn = 1
and the desired identity holds. On the other hand, let g be of order at least 3|F ′|+ 1.
For such a g, there exists at most 2|F ′| integers 1 6 k 6 3|F ′|+ 1 such that g2k is in
F ′. Therefore, there is at least |F ′|+ 1 integers 1 6 k 6 3|F ′|+ 1 with (sgk)2 ∈ F ′.
By the pigeonhole principle, we have 1 6 k 6= l 6 3|F ′| + 1, which is less than the
order of g, such that (sgk)2 = (sgl)2 and hence sgk−ls−1 = g−(k−l) and the desired
identity holds. For every g, h ∈ G, we have

(4.4)
(gnhn)n = s (gnhn)−n s−1 =

(
sgns−1shns−1

)−n
=
(
g−nh−n

)−n
= (hngn)n .

When g, h ∈ H, a := [gn, hn] belongs to the center of H, so (4.4) shows that
an = 1. The subgroup K < Z(H) of elements of the center that are of finite order
is finite. In the quotient H/K, the subgroup H ′ generated by {gn | g ∈ H/K} is
abelian. Moreover, the quotient (H/K)/H ′ is a finitely generated nilpotent group of
exponent n, so is finite (see for example [Rob95, 5.2.18]). This implies that H, and
therefore also G, is virtually abelian. �

4.2. Random walks and proof of Lemma 4.5

The proof of Lemma 4.5 will use random walk techniques, and in particular the
recent result of Tointon [Toi20] generalizing to infinite groups a classical result by
P. Neumann [Neu89] roughly saying: a finite group in which the probability that two
randomly chosen elements commute is large is almost abelian. We fix a symmetric
probability measure µ on G whose support is finite, generates G and contains the
identity. In particular, in this subsection G will always be a finitely generated group.
Let gn and g′n be two independent realizations of the random walk on G given by µ,
that is two independent random variables with distribution µ∗n, the nth convolution
power of µ. We will use two facts. The first is very easy(3) and asserts that if H is a
subgroup of G and a ∈ G, then
(3)The law of a reversible aperiodic transitive random walk on a set V equidistributes if V is finite,
and converges σ(`1(V ), c0(V )) to 0 if V is infinite.
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(4.5) lim
n

P(gn ∈ aH) = 1
|G : H| .

In particular, if H has infinite index, limn P(gn ∈ aH) = 0. Actually, more is known:
the above convergence is uniform in a and H. In the vocabulary of [Toi20], µ∗n
measures indices uniformly, see [Toi20, Theorem 1.11]. To illustrate the power of
random walks on groups, observe that (4.5) allows to give a transparent proof (for
finitely generated groups) of Neumann’s lemma: if G = a1H1 ∪ . . . amHm is a finite
union of cosets of subgroups, then we have

m∑
i=1

1
|G : Hi|

= lim
n

m∑
i=1

P (gn ∈ aiHi) > lim
n

P (gn ∈ ∪iaiHi) = 1.

The second fact we will use, [Toi20, Theorem 1.9], asserts that, whenever G is not
virtually abelian

(4.6) lim
n

P (gn and g′n commute) = 0.

We start with an easy consequence of (4.6), that we will use in the proof. It is
natural to expect that the result holds with

√
5−1
2 replaced by an arbitrary positive

number, see Section 6.

Lemma 4.6. — If lim infn P(g2
n = 1) >

√
5−1
2 , then G is virtually abelian.

Proof. — Denote cn := P(g2
n = 1). Observe that

P
(
g2
n = g′n

2 = (gng′n)2 = 1
)

= P
(
g2
n = g′n

2 = 1
)
−P

(
g2
n = g′n

2 = 1 6= (gng′n)2)
> P

(
g2
n = g′n

2 = 1
)
−P

(
(gng′n)2 6= 1

)
= c2

n − (1− c2n) .

In the last line, we used that gng′n is distributed as g2n.
So, if c = lim infn cn, we obtain

lim inf
n

P
(
g2
n = g′n

2 = (gng′n)2 = 1
)
> c2 + c− 1,

which is positive if and only if c >
√

5−1
2 . To conclude using (4.6), it remains to

observe that g2
n = g′n

2 = (gng′n)2 = 1 implies that gn and g′n commute. �

We now proceed to prove Lemma 4.5.
Proof of Lemma 4.5(1). — Let G, s,m,Hi, ai satisfying (4.1).
Assume that α < 3−

√
5

4 .
By (4.1), for every g ∈ G such that g2 6= 1, we have

(sg)2 = 1 or sg ∈ a1H1 ∪ . . . ∪ amHm

and (
s−1g

)2
= 1 or g ∈ a1H1 ∪ . . . ∪ amHm.
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In particular, if g2 6= 1 and g /∈ {1, s−1}(a1H1 ∪ . . . ∪ amHm), we have (sg)2 =
(s−1g)2 = 1, which implies

g−1s2g =
(
g−1s

)
(sg) =

(
s−1g

) (
g−1s−1

)
= s−2.

Therefore we obtain
P
(
g−1
n s2gn = s−2

)
> P

(
g2
n 6= 1 and gn /∈

{
1, s−1

}
(a1H1 ∪ . . . ∪ amHm)

)
.

If c := lim infn P(g2
n = 1) >

√
5−1
2 , we know by Lemma 4.6 that G is virtually abelian.

So we can as well assume that c 6
√

5−1
2 . By (4.5) we can bound

lim sup
n

P
(
g−1
n s2gn = s−2

)
> 1− c− 2

m∑
i=1

1
|G : Hi|

>
3−
√

5− 4α
2 .

Observe that 3−
√

5−4α
2 > 0 by our assumption on α. Now, if g−1

n s2gn = s−2 and
g′n
−1s2g′n = s−2, then gng′n and s2 commute, or equivalently gng′n ∈ CG(s2). Therefore,

since gng′n is distributed as g2n, we obtain

lim sup
n

P
(
g2n ∈ CG

(
s2
))
>

(
3−
√

5− 4α
2

)2

.

By (4.5), the left-hand side is equal to 1
|G:CG(s2)| and the claim is proven. �

Proof of Lemma 4.5(2). — Let G, s,m,Hi, ai satisfying (4.1), with s2 = 1 and
α < (1−α)3

24 .
Our main goal will be to prove that two randomly chosen elements of G (for well-

chosen probability measures on G that are not exactly random walks but mixtures of
random walks) commute with non-vanishing probability. By [Toi20], we will deduce
that G is virtually abelian. We proceed by contradiction, and assume that G is not
virtually abelian.
The element s having order 2, we can as well assume that the probability measure µ

is s-left-invariant, that is it satisfies µ(sg) = µ(g) for every g ∈ G. By (4.1) and (4.5),
we know that

lim inf
n

P
(
gn ∈ sq−1(1) ∪ s sq−1(1)

)
> 1− α.

By the s-invariance of µ, P(gn ∈ sq−1(1)) = P(gn ∈ s sq−1(1)),so lim infn P(g2
n = 1)

> 1−α
2 .

As before, since g2 = h2 = (gh)2 implies that g and h commute, (4.6) implies that

lim
n

P
(
g2
n = g′n

2 = (gng′n)2 = 1
)

= 0.

On the other hand, gng′n being distributed as g2n, we have

lim inf
n

P
(
(gng′n)2 = 1 or (sgng′n)2 = 1

)
> 1− α.

Let now g(1)
n , g(2)

n and g(3)
n be three independent copies of the random walk on G

given by µ. Let An be the event

An =
{
∀ 1 6 i 6= j 6 3,

(
g(i)
n

)2
= 1 and

(
sg(i)

n g
(j)
n

)2
= 1

}
.
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It follows from the preceding discussion that the difference of {∀ 1 6 i 6 3, (g(i)
n )2

= 1} and An has probability 6 3α + o(1), so

lim inf
n

P(An) > lim inf
n

P
(
∀ 1 6 i 6 3,

(
g(i)
n

)2
= 1

)
− 3α > (1− α)3

8 − 3α.

This is strictly positive by assumption.
But on An, for every 1 6 i, j 6 3, we have

sg(i)
n g

(j)
n s−1 =

(
g(i)
n g

(j)
n

)−1
= g(j)

n g(i)
n

and therefore(
sg(1)

n

)
g(2)
n g(3)

n

(
sg(1)

n

)−1
= sg(1)

n g(2)
n s−1sg(3)

n g(1)
n s−1 = g(2)

n g(1)
n g(1)

n g(3)
n = g(2)

n g(3)
n .

To say it differently, sg(1)
n commutes with g(2)

n g(3)
n . We deduce

P
([
sg(1)

n , g(2)
n g(3)

n

]
= 1

)
> P(An).

Using that µ is s-invariant, sg(1)
n is distributed as g(1)

n and

P
([
g(1)
n , g(2)

n g(3)
n

]
= 1

)
= P

([
sg(1)

n , g(2)
n g(3)

n

]
= 1

)
.

We can rewrite this as
lim inf

n
µ∗n ⊗ µ∗2n ({(g, h) ∈ G×G | [g, h] = 1}) > 0.

Denote by νn the probability 1
2(µ∗n +µ∗2n). We clearly have νn⊗ νn > 1

4(µ∗n⊗µ∗2n),
so

lim inf
n

νn ⊗ νn
(
{(g, h) ∈ G|[g, h] = 1}

)
> 0.

On the other hand, it follows from [Toi20, Theorem 1.11] that the sequences of
measures µ∗n and µ∗2n (and therefore also νn) measure index uniformly, hence the
preceding is a contradiction with [Toi20, Theorem 1.9]. So our starting assumption
that G is not virtually abelian is absurd. This concludes the proof of the Lemma 4.5.

�

4.3. Counting triangles

We now state and prove a lemma on the augmentation of the number of triangles
(in Cayley graphs of G) containing some s0 ∈ G. It complements results of [ST19,
Lemma 9.2] and [LS21, Lemma 31] which where valid for groups with elements of
infinite (respectively very large) order. The conclusion of Lemma 4.7 is also cleaner
than in [LS21, ST19].

Lemma 4.7. — Let G be a finitely generated group that is not virtually abelian,
and let S ⊂ G \ {1} be a finite symmetric generating set.
Then for each s0 in S, there exists S ⊂ S ′ ⊂ G a finite symmetric generating set

such that
(1) ∆ := S ′ \ S has at most 4 elements;
(2) ∆ does not contain elements of order at most 2;
(3) ∆ ∩ {s2 | s ∈ S} = ∅;
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(4) N3(s, S ′) 6 6 for all s ∈ ∆;
(5) N3(s, S ′) = N3(s, S) for all s ∈ S \ {s0, s

−1
0 };

(6) the value of N3(s0, S
′)− N3(s0, S) is equal to

1 if s2
0 6= 1 and CG(s0) is locally finite,

2 if s2
0 = 1 and CG(s0) is locally finite,

2 if s2
0 6= 1 and CG(s0) is not locally finite,

4 if s2
0 = 1 and CG(s0) is not locally finite.

Proof. — Let g be an element of G and ∆g := {g, g−1, s−1
0 g, g−1s0}. We will show

that there exists some g in G such that S ′ = S ′g := S ∪∆g works. Observe that for
all g, the set S ′g satisfies Condition 1 of the lemma, and that it satisfies 2 if and only
if g2 6= 1 and (s−1

0 g)2 6= 1, or equivalently g /∈ sq−1(1) ∪ s0 sq−1(1).
We first restrict our attention to elements g such that the following two conditions

hold

|g|S > 3(4.7) ∣∣∣s−1
0 g

∣∣∣
S
> 3(4.8)

where |g|S is the word length of g relative to the generating set S.
Since S is finite, the number of g ∈ G such that one of the conditions (4.7)-(4.8) do

not hold is finite. Also, for a g satisfying Conditions (4.7) and (4.8) the intersection
∆g∩S is empty and Condition (3) is automatically satisfied. Moreover, in the Cayley
graph of G relative to S ′g, a triangle with a side labelled by s ∈ ∆g has at least another
side labelled by an element of ∆g, otherwise s would have S-length at most 2. This
implies that any edge labelled by s ∈ ∆g belongs to at most 6 triangles in Cay(G,S ′),
which is Condition (4). Indeed, if one edge e is labelled by s ∈ ∆g, there are at most
three possibilities to put an edge labelled by t ∈ ∆g \ {s−1} at each extremity of e,
thus giving a maximum number of 2 · 3 = 6 triangles containing e. This also shows
that for any s ∈ S we have

N3
(
s, S ′g

)
− N3(s, S) =

∣∣∣{t ∈ ∆g

∣∣∣ s−1t ∈ ∆g

}∣∣∣ = |∆g ∩ s∆g| .

We now turn our attention on the set ∆g ∩ s∆g. Its cardinality is equal to the
number of pairs (u, v) ∈ ∆g such that u = sv. By replacing u and v by the words
g, g−1, s−1

0 g and g−1s0, this gives us 16 equations in the group. Among these 16
equations, 4 imply that s = 1. The 12 remaining equations for elements of ∆g ∩ s∆g

are shown in Table 4.1.
In particular, if g is as in the conclusion of Proposition 4.4 for F = S ∪ s0S ∪ s−1

0 S
and s = s0, we see that only the first two lines in this Table occur if CG(s0) is
locally finite, and only the first four occur otherwise. This implies Condition (5).
Also, Condition 2 holds in this case since 1 belongs to s−1

0 S ⊆ F , and Condition (6)
is automatically satisfied. The fact that there are infinitely many g in the conclu-
sion of Proposition 4.4 imply that we can find such g satisfying also conditions
(4.7)-(4.8). �

We are now ready to prove Proposition 3.2.
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Table 4.1. Possible elements of ∆g ∩ s∆g, where sq(g) = g2.

Possible elements of ∆g ∩ s∆g Occurs if
g = ss−1

0 g s = s0

s−1
0 g = sg s = s−1

0

g−1s0 = sg−1 s = g−1s0g

g−1 = sg−1s0 s = g−1s−1
0 g

g = sg−1 sq(g) = s

g−1 = sg sq(g) = s−1

s−1
0 g = sg−1 sq(g) = s0s

g−1 = ss−1
0 g sq(g) = s0s

−1

g = sg−1s0 sq
(
s−1

0 g
)

= s−1
0 s

g−1s0 = sg sq
(
s−1

0 g
)

= s−1
0 s−1

s−1
0 g = sg−1s0 sq

(
s−1

0 g
)

= s

g−1s0 = ss−1
0 g sq

(
s−1

0 g
)

= s−1

Proof of Proposition 3.2. — The proof will be by successive applications of
Lemma 4.7. To prove the proposition, it is enough that all elements of S belong to
at least 7 S̃-triangles (to distinguish them from the newly added elements which will
belong to at most 6 S̃-triangles) and that the numbers N3(s±1, S̃) for s in S are all
distinct.
Let S0 = S ∪ S−1, so that |S0| 6 2|S|. Let s1, . . . , sn be any enumeration of the

elements of S. Apply successively Lemma 4.7 at most 7 times with s1, to get a set S1
containing S and such that N3(s1, S1) is larger than 7. Then, applying Lemma 4.7
for s2 at most 8 times, we can bring N3(s2, S2) to another value > 7. Doing the same
for each element of S, we finally obtain a set S̃ as in the lemma, after a total number
of 6 7 + 8 + · · ·+ (|S|+ 6) = |S|(|S|+ 13)/2 successive applications of Lemma 4.7.
At the end, we have∣∣∣S̃∣∣∣ 6 |S0|+ 4 |S|(|S|+ 13)

2 6 2|S|(|S|+ 14). �

5. Proofs of the main results

We collect here for completeness the straightforward proofs of the results from the
introduction.
Proof of Theorem 1.1. — Let G be as in Theorem 1.1, and S0 be a finite gener-

ating set. Let S1 = (S0 ∪ S2
0 ∪ S3

0) \ {1}, and S2 be the generating set S̃ given by
Proposition 3.2 for S = S1. By Proposition 3.2 and the discussion preceding it, every
automorphism of Cay(G,S2) preserves the S1-colours: φ(gs) ∈ {φ(g)s, φ(g)s−1} for
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every g ∈ G and s ∈ S1. By Theorem 3.1, φ is a left-translation by an element
of G. �

Proof of Corollary 1.2. — If G is finite, the equivalence is the content of [God81].
We can assume that G is infinite and finitely generated. The implication (2) =⇒ (1)
is obvious, and the implication (1) =⇒ (3) is known and very easy, see [Wat71]. For
the reader’s convenience, we recall the argument. If an infinite finitely generated
group G is either abelian or generalized dicyclic then there is a nontrivial permutation
φ of G satisfying φ(gh) ∈ {φ(g)h, φ(g)h−1} for every g, h ∈ G: take for φ the inverse
map if G is abelian, and the map that is the identity on A and the inverse on G \A
if G is generalized dicyclic and x,A are as in Definition 2.1. In particular, φ induces
an automorphism of every Cayley graph of G, different from a translation. Observe
that this argument even rules out the existence of a non-locally finite GRR.
We have to justify (3) =⇒ (2). If G is not virtually abelian, then (2) is the

conclusion of Theorem 1.1. Otherwise, G admits an element of infinite order (a
torsion abelian finitely generated group is finite), and [LS21, Theorem 2] applies and
proves (2). �

Proof of Corollary 1.3. — If G is not virtually abelian, this is a particular case of
Theorem 1.1. Otherwise, as explained in the proof of Corollary 1.2, G has an element
of infinite order and [ST19, Theorem J] applies. �

Proof of Corollary 1.4. — Combine Corollary 1.3 with [ST19, Theorem E]. �

6. A conjecture on the squares of a random walk

We mentionned before Lemma 4.6 that we expect that the following conjecture
holds.

Conjecture 6.1. — Let G be a finitely generated group that is not virtually
abelian, µ be a symmetric probability measure on G with finite and generating
support containing the identity, and (gn) a realization of the random walk on G
given by µ. Then

(6.1) ∀ a ∈ G, lim
n

P
(
g2
n = a

)
= 0.

Better, there should be a function f : (0, 1]→ N such that, in a group G, if

∃ a ∈ G, lim sup
n

P
(
g2
n = a

)
> ε,

then G admits an abelian subgroup of index 6 f(ε). This is known to be true for
finite groups [Man18, Man94].
The main case of the conjecture is when a = 1: indeed with similar methods as

the reduction to F = {1} in the proof of Proposition 4.4, one can show that the case
a = 1 in Conjecture 6.1 implies the full conjecture for G not virtually 2-nilpotent.
Let us mention here that this conjecture would allow to greatly simplify our proofs,

as it would imply immediately the following variant of Proposition 4.4, which also
implies the main Theorem 1.1 by the same argument.
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Lemma 6.2. — If Conjecture 6.1 holds for G, then for every s ∈ G and F ⊂ G
finite there are infinitely many g ∈ G \ (sq−1(F ) ∪ s sq−1(F )) such thatg−1sg /∈ F if CG(s) has infinite index inG

g−1sg = s otherwise.

Proof. — We prove the stronger fact that the probability that g = gn satisfies
the conclusion of the lemma is 1− o(1) when |G : CG(s)| =∞, and 1

|G:CG(s)| − o(1)
otherwise.
It follows from (6.1) that

lim
n

P
(
gn ∈ sq−1(F )

)
= 0.

It also implies that

lim
n

P
(
gn ∈ s sq−1(F )

)
= 0.(6.2)

To justify this, we need to introduce an independant copy (g′n)n> 0 of the random
walk (gn). Since the support of µ is symmetric and generates G, there is a k such
that P(g′k = s−1) > 0. So using that gn+k is distributed as g′kgn, we obtain

P
(
gn+k ∈ sq−1(F )

)
> P

(
s−1gn ∈ sq−1(F ) and g′k = s−1

)
= P

(
gn ∈ s sq−1(F )

)
P
(
g′k = s−1

)
.

This proves (6.2). Moreover, it follows from (4.5) thatlimn P (g−1
n sgn /∈ F ) = 1 if |G : CG(s)| =∞

limn P (g−1
n sgn = s) = 1

|G:CG(s)| otherwise.

The conclusion follows. �

7. Directed and oriented graphs

A natural variation of Cayley graphs is the concept of Cayley digraph (directed
graph). Given a groupG and a (not necessarily symmetric) generating set S ⊆ G\{1},
the Cayley digraph −−→Cay(G,S) is the digraph with vertex set G and with an arc
(directed edge) from g to h if and only if g−1h ∈ S.
A Cayley digraph −−→Cay(G,S) of G whose automorphism group acts freely on its ver-

tex set is called a digraphical regular representation, or DRR. If moreover −−→Cay(G,S)
has no bigons (that is if S ∩ S−1 = ∅) then we speak of an oriented graphical regular
representation, or ORR.
We have the directed equivalent of Corollary 1.2:

Proposition 7.1. — For a finitely generated group G, the following are equiva-
lent:

(1) G admits a DRR,
(2) G admits a finite degree DRR,
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(3) G is neither the quaternion group Q8, nor any of (Z/2Z)2, (Z/2Z)3, (Z/2Z)4,
(Z/3Z)2.

Proof. — If G is finite, the equivalence is the content of [Bab80]. We can assume
that G is infinite and finitely generated. The implication (2) =⇒ (1) is obvious, and
the implication (1) =⇒ (3) is empty for infinite groups. We have to justify (3) =⇒ (2).
Let S be a finite generating set of G. Using Proposition 3.2 and [LS21, Lemma 32]

we obtain a finite generating set S ⊆ S̃ ⊂ G such that for all s ∈ S and t ∈ S̃,
if N3(s, S̃) = N3(t, S̃) then t = s or t = s−1. By [LS21, Lemma 5] and [LS21,
Proposition 6] there exists a generating set T ⊆ S̃ such that −−→Cay(G, T ) is a DRR.
Moreover, T ∩ T−1 consist only of elements of order 2. �
Observe that the equivalence of (1) and (3) was the content of [Bab78, Bab80].
We will conclude with the oriented equivalent of Corollary 1.2 and thus an-

swer [Bab80, Problem 2.7]. Recall that a generalized dihedral group G is the semi-
direct product A o Z/2Z where A is an abelian group and Z/2Z acts on A by
inversion.
Proposition 7.2. — For a finitely generated group G, the following are equiva-

lent:
(1) G admits an ORR,
(2) G admits a finite degree ORR,
(3) G does not belong to the following list:

• the non-trivial generalized dihedral groups,
• the following 11 finite groups of cardinality at most 64: Q8, Z/4Z×Z/2Z,

Z/4Z× (Z/2Z)2, Z/4Z× (Z/2Z)3, Z/4Z× (Z/2Z)4, (Z/3Z)2, Z/3Z×
(Z/2Z)3, D4 ◦ D4 (the central product of two dihedral groups of order
8, which has order 32) and the three groups (of respective orders 16, 16
and 32) given by the presentations〈
a, b

∣∣∣∣ a4 = b4 = (ab)2 =
(
ab−1

)2
= 1

〉
,〈

a, b, c
∣∣∣∣ a4 = b4 = c4 = (ba)2 =

(
ba−1

)2
= (bc)2 =

(
bc−1

)2
= 1

a2c−2 = a2b−2 = cac−1a−1 = 1
〉
,〈

a, b, c
∣∣∣∣ a4 = b4 = c4 = (ab)2 =

(
ab−1

)2
= (ac)2 =

(
ac−1

)2
= 1

(bc)2 =
(
bc−1

)2
= a2b2c2 = 1

〉
.

Proof. — If G is finite, the equivalence is the content of [MS18], while every
generating set of a generalized dihedral group contains an element of order 2 (namely
any element not in A). Once again, we have to justify (3) =⇒ (2) for G infinite.
Let G be a finitely generated group which is not generalized dihedral. Then

by [Bab78, Proposition 5.2] there exists a finite generating set S of G without
elements of order 2. Then the generating set S̃ given by Proposition 3.2 and [LS21,
Lemma 32] has also no elements of order 2. This implies that for T given by [LS21,
Lemma 5] and [LS21, Proposition 6] the DRR −−→Cay(G, T ) is actually an ORR. �
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