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(at least locally) towards stationary states. We then establish the link between the continuous
flow and its discretized version. We conclude by conducting a series of numerical experiments
in model situations showing the good performance of the discrete flow to compute stationary
states. Further experiments as well as detailed explanation of our numerical algorithm are
given in a companion paper.

RESUME. — Nous présentons et mettons en ceuvre une méthode de calcul des états station-
naires d’équations de Schrédinger non linéaires sur les graphes métriques. Les états stationnaires
sont obtenus comme des minimiseurs locaux de ’énergie de Schrodinger non linéaire & masse
fixe. Notre méthode est basée sur un flot gradient normalisé pour I'énergie (c’est-a-dire un flot
gradient projeté sur une sphére de masse fixe) adapté au contexte des graphes quantiques non
linéaires. Nous prouvons d’abord que, au niveau continu, le flot gradient normalisé est bien
posé, préserve la masse, diminue 1’énergie et converge (au moins localement) vers des états
stationnaires. Nous établissons ensuite le lien entre le flot continu et sa version discrétisée.
Nous concluons en menant une série d’expériences numériques dans des situations modeles
montrant la bonne performance du flot discret pour calculer les états stationnaires. D’autres
expériences ainsi qu'une explication détaillée de notre algorithme sont présentées dans un
article complémentaire.

1. Introduction

Partial differential equations on (metric) graphs have a relatively recent history.
Recall that a metric graph G is a collection of vertices V and edges £ with lengths
le € (0,00] associated to each edge e € £. One of the earliest account of a partial
differential equation set up on metric graphs is the work of Lumer [Lum80] in 1980
on ramification spaces. Among the early milestones in the development of the theory
of partial differential equations on graphs, one finds the work of Nicaise [Nic85]
on propagation of nerves impulses. Since then, the theory has known considerable
developments, due in particular to the natural appearance of graphs in the modeling
of various physical situations. One may refer to the survey book [DZ06] for a broad
introduction to the study of partial differential equations on networks, with a special
emphasis on control problems.

Among partial differential equations problems set on metric graphs, one has become
increasingly popular: quantum graphs. By quantum graphs, one usually refers to a
metric graph G = (V, €) equipped with a differential operator H often referred to
as the Hamiltonian. The most popular example of Hamiltonian is —A on the edges
with Kirchhoff conditions (conservation of charge and current) at the vertices (see
Section 2 for a precise definition), where A is the Laplace operator. The book of
Berkolaiko and Kuchment [BK13] provides an excellent introduction to the theory
of quantum graphs.

Recently, another topic has gained an incredible momentum: nonlinear quantum
graphs. By this terminology, we refer to a metric graph G = (V, £) equipped with a
nonlinear evolution equation of Schrodinger type

i0u — Hu+ g (\u|2> u =0,

where u = u(t,z) € C is the unknown wave function, ¢ denoting the time variable
and x the position on the edges of G. Whereas the research on linear quantum graphs
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Stationary states on nonlinear quantum graphs 389

is mainly focused on the spectral properties of the Hamiltonian, one of the main
area of investigation for nonlinear quantum graphs is the existence of ground states,
i.e. minimizers of the Schrodinger energy E on fixed mass M, where

1 1 ,
Bw) =5 (Hu) =5 [ G (1), ¢'=g. M@ =lulbg)

Indeed, ground states are considered to be the building blocks of the dynamics for
the nonlinear Schrodinger equation, and being able to obtain them by a minimization
process guarantees in particular their (orbital) stability.

On the theoretical side, the literature concerning ground states on quantum graphs
is already too vast to be shortly summarized. A perfect introduction to the topic is
furnished by the survey paper of Noja [Nojl4] and we only present a few relevant
samples.

Among the model cases for graphs, the simplest ones may be star-graphs, i.e.
graphs with one vertex and a finite number of semi-infinite edges attached to the
vertex (see Figure 1.1).

o0 (0. ¢]

Figure 1.1. Star-graph with N = 6 edges

For this type of graphs with an attractive Dirac type interaction at the vertex,
Adami, Cacciapuoti, Finco and Noja [ACFN14, ACFN16]| established under a mass
condition and for sub-critical nonlinearities the existence of a (local or global) min-
imizer of the energy at fixed mass, with an explicit formula for the minimizer (see
Section 2 for more details and explanations). For more general nonlinear quan-
tum graphs, Adami, Serra and Tilli [AST15, AST16, AST17a] have focused on
the case of Kirchhoff-Neumann boundary conditions for non-compact connected
metric graphs with a finite number of edges and vertices. In particular, they ob-
tained a topological condition (see Assumption (H)) under which no ground state
exists. On the other hand, in some cases, metric properties of the graph and the
value of the mass constraint influence the existence or non-existence of the ground
state [AST16, AST17a, DST20, NP20].

Another particularly interesting study is presented in the work of Marzuola and
Pelinovsky [MP16] for the dumbbell graph. As its name indicates, the dumbbell
graph is made of two circles linked by a straight edge (see Figure 1.2). It is shown
in [MP16] that for small fixed mass, the minimizer of the energy is a constant.
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390 C. BESSE, R. DUBOSCQ & S. LE COZ

As the mass increases, several bifurcations for the ground state occur, in particular a
symmetric (main part located on the central edge) and an asymmetric one (main part
located on one of the circles). Numerical experiments (based on Newton’s iteration
scheme) complement the theoretical study in [Gool9, MP16].

O

Figure 1.2. Dumbbell graph

Among the many other interesting recent results on nonlinear quantum graphs,
we mention the flower graphs studied in [KMPX21], graphs with generals operators
and nonlinearities [Hof19], periodic graphs [PS17], etc.

On the numerical side, however, the literature devoted to nonlinear quantum
graphs is very sparse. Finite differences on graphs have been implemented in a
library developed in Matlab by R. H. Goodman, available in [Goo20] and which has
been used in particular in [Gool9, KPG19]. The work [MP16] is one of the rare work
containing numerical computation of nonlinear ground states on graphs. In our case,
we have implemented a finite difference discretization scheme (see Section 4.2) in
the framework of the Grafidi library [BDLC21a], a Python library which we have
developed for the numerical simulation on quantum graph and which is presented
in the companion paper [BDLC21b].

The integrability of the cubic nonlinear Schrédinger equation on graphs is ana-
lyzed in [SMS*10], with some numerical simulation and an appendix discussing the
discretization at the vertices. The fully discrete (Ablowitz—Ladik type) integrable
nonlinear Schrodinger is studied in [NSMS11]. Other model equations on graphs are
considered in [SBMK18, SBM*16]. Extension to transparent vertices conditions is
proposed in [YSA120, YSEM19a, YSEM19b].

Our goal in this paper is to develop numerical tools for the calculation of local
minimizers of the energy at fixed mass m > 0 in the setting of generic metric graphs
with non necessarily Kirchhoff vertex boundary conditions.

The numerical method that we have implemented corresponds to a normalized
gradient flow: at each step of time, we evolve in the direction of the gradient of
the energy and renormalize the mass of the outcome. Such scheme is popular in
the physics literature under the name “imaginary time method”. One of the earliest
mathematical analysis was performed by Bao and Du [BD04]. More recently, in the
specific case of the nonlinear Schrodinger equation on the line R with focusing cubic
nonlinearity, Faou and Jezequel [FJ18] performed a theoretical analysis of the various
levels of discretization of the method, from the continuous one to the fully discrete
scheme.

At the continuous level, by considering a function ¥ (¢,z) on G, the normalized
gradient flow is given by

(CNGF) o = —B'(4) + M@) (E (), ) ¥,

and we establish in Section 3 the main properties of the flow. This is our first main
result, which can be stated in the following informal way.
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MAIN RESULT 1.1 (see Theorem 3.2). — Under Assumptions 2.1 and 3.1, the con-
tinuous normalized gradient flow is well-posed, mass preserving, energy diminishing,
and converges locally towards local minimizers.

Having established the adequate properties of the flow at the continuous level,
we turn to the discretization process. As is explained in Section 4, several time-
discretizations are possible, but the so-called Gradient Flow with Discrete Normal-
ization has proven to be very efficient. It consists into the following process to go
from 9" (an approximation of v (t,,-) at discrete time ¢,) to ¢" ™

ntl_ymn n n|2 n
(GFDN) {ﬁnJrl—tn - _HSO +1++ g (ld} | )(p +1?
7’L+1 o 2n 1
Y o \/ﬁHW’“Hm '

The space discretization can be performed using second order finite differences
inside the edges. The values at the vertices are obtained by approximating by finite
differences the boundary conditions at the vertices.

In our second main result, we establish the link between the continuous normalized
gradient flow and its space-time discretization.

MAIN RESULT 1.2 (see Section 4). — The Gradient Flow with Discrete Nor-
malization (GFDN) is a time-discretization of the Continuous Normalized Gradient
Flow (CNGF). Its space discretization can be obtained by finite differences with a
special treatment at the vertices.

Finally, we illustrate by numerical experiments the efficiency of our technique.
We use as test case the 2-star graph with § and ¢’ boundary conditions at the
vertex connecting the two edges. This test case has been extensively studied from a
theoretical point of view (see [FJ08, FOO08, LCFF*08] for earlier works and [ABR20]
and the references therein for more recent achievements). A sneak peek of the results
presented in Section 5 is offered in Figure 1.3 where the almost perfect agreement
between the theoretical solution and the computed one is shown in the case of a
2-star graph with attractive ¢ condition at the vertex. We also consider other possible
types of graphs. Further numerical experiments as well as a detailed presentation of
our numerical algorithm are given in the companion paper [BDLC21b].

1.2 —— Num. sol.

—— Exact sol.

100 75 —50 -25 00 25 50 75 100
T

Figure 1.3. Comparison of numerical solution to ground state for § interaction.
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Our main achievements in the numerical experiments are summarized in the fol-
lowing statement.

MAIN RESULT 1.3 (see Section 5). — The observed convergence of the discretized
flow is of order 2 in space. In the test case of a nonlinear Schrodinger equation on
a star graph with two edges and attractive 6 or §' interactions at the vertex, the
discretized flow converges towards the explicitly known ground state. Applicability
of the method to generic graphs is illustrated on the sign-post graph and the tower
of bubbles graph.

The rest of this paper is organized in the following way. In Section 2, we present in
details the setting in which we work and give theoretical preliminaries. In Section 3,
we prove that the continuous normalized gradient flow is well-posed, energy dimin-
ishing and converges locally towards a stationary state. In Section 4, we present the
space-time discretization process of the continuous flow. Finally, numerical experi-
ments in a test case and in more elaborate settings are presented in Section 5.

2. Preliminaries

We start with a few preliminaries to give the precise setting in which we would
like to work.

2.1. Linear quantum graphs

Let G be a metric graph, i.e. a collection of edges £ and vertices V. We assume
that G is connected. Two vertices might be connected by several edges and one edge
can link a vertex to itself. Each of the edges e € £ will be identified with a segment
I, =10,l.] if l. € (0,00) or I, = [0,00) if [, = oo, where [, is the (finite or infinite)
length of the edge.

A (complex valued) function ¢ : G — C is a collection of one dimensional maps
defined for each edge e € &:

Ve o I, — C.
We define LP(G) and H*(G) by
L*(G) = P L’ (L), H"G) = D H"(I).
ecé eef
The corresponding norms will be given by
1Dl = Y 1elogy, 1015 = D Iellie,).
ecé& ecé&

The scalar product on L*(G) will be given by
(6 0)2 = X Re [ outheda.

ec&

To denote the duality product between H'(G) and its dual we will use the angle

brackets:
<'7 > - <'7 '>H*1,H1 .
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Note that it is common to include in the definition of H*(G) a continuity condition at
the vertices. In order to consider more general situations, we do not make this restric-
tion here and we will later instead introduce the space H%(G), which corresponds
to the Dirichlet part of the compatibility conditions at the vertices (see (2.3)).
Given u € H?*(G) and a vertex v € V of degree d,, define u(v) € R% as the

column vector
u(v) = (ue(v))enw
where e ~ v denotes the edges incident to the vertex v and u.(v) is the corresponding
limit value of u.. The boundary conditions at the vertex v will be described by
Ayu(v) + Byu'(v) = 0,

where A, and B, are d, X d, matrices and u'(v) is formed with the derivatives along
the edges in the outgoing directions. Consider for example the classical Kirchhoff-
Neumann boundary conditions at the vertex v: we require the conservation of charge,
i.e. for all e and €’ incident to the same vertex v

Ue(V) = Uer (V),
and the conservation of current, i.e.

> ul(v) =0.

e~v

These conditions are expressed in terms of A, and B, by

1 -1 (0)
L 0 ... 0
2.1 A, = , B, =
(2.1) 0 ... 0
1 -1 . .
(0) 0

For the sake of conciseness, we use the notation

u(V) = (u(v))vev,
for the column vector of all values at the end of the edges and the corresponding
boundary conditions matrices are given by

Avl (O) Bv1 (0)
Ay = . , By= .
(0) Ay, (0) By,

The boundary conditions considered are local at the vertices, we refrain here from
taking into account more general boundary conditions.
We now define on the graph a second order unbounded operator H by

H:D(H)C L*G) — L*(G)
where the domain of H is given by
D(H) = {u € H*G) : Apu(V) + Byu/ (V) = 0}
and the action of H on u € D(H) is given by
(Hu)e = —0Opptte
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for every edge e € £. We restrict ourselves to self-adjoint operators, which is known
to be equivalent for H (see e.g. [BK13, Theorem 1.4.4]) to request that at each vertex
v the d, x 2d, matrix (A,|B,) has maximal rank and the matrix A,B; is symmetric.
In that case, for each vertex v there exist three orthogonal and mutually orthogonal
operators Pp, (Dirichlet part), Py, (Neumann part) and Pr, = Id — Pp, — Py,
(Robin part), acting on C% and an invertible self-adjoint operator A, acting on the
subspace Pr,C% such that the boundary values of u € D(H) at the vertex v verify

Ppyu(v) = Py,u'(v) = Pgyu'(v) — Ay Pryu(v) = 0.

Using this expression of the boundary conditions, we can express (see e.g. [BK13,
Theorem 1.4.11]) the quadratic form corresponding to H, which we denote by @ and
is given by

1 1
(2.2) Qu) = 5“1/”%2 + 51);) (AUPR,Uu, PR”UU)(CCIU‘

The domain of @ is given by all functions v € H'(G) such that at each vertex
Pp,u = 0. We denote it by

(2.3) HL(G) = {ue H'(G) YveV, Ppu=0}.

We now consider two examples of boundary conditions: Kirchhoff-Neumann and
o-type. We already recalled what the classical Kirchhoff-Neumann boundary condi-
tions (2.1) are. In terms of the projection operator, the Dirichlet part Pp, in the
Kirchhoff-Neumann case is simply the projection on the kernel of B,, given by

dy—1 =1 - . ~1
. -1 d,—-1 :
PD,v = diy
: d,—1 -1
-1 -1 d,—1
The Neumann part is given by I — Pp,, precisely
. 1 - 1
PN,U = diy )
1 - 1

and there is no Robin part.
We consider now a vertex with a d-type condition of strength a,, € R at the vertex
v, which is defined for u € H*(G) as follows:

u is continuous at v, > u,(v) = ayu(v).
e~v
This vertex condition is analogous to the jump condition appearing in the domain
of the operator for the celebrated Schrodinger operator with Dirac potential (see e.g.
the reference book [AGHKHS8] and Section 2.2.1). In terms of A, and B, matrices,
the condition takes the form

ANNALES HENRI LEBESGUE



Stationary states on nonlinear quantum graphs 395

-1 (0)
0 1 -1 0 0
Av = ) Bv = :
0 0

—a, 0O --- 0 0

When «, = 0, we recover the classical Kirchhoff-Neumann boundary conditions.
When «, # 0, the Dirichlet, Neumann and Robin projectors are given as follows.
The Dirichlet projector Pp, is (as when «, = 0) the projection on the kernel of
B,. There is no Neumann part and the Robin part is given by I — Pp, (which was
the Neumann part for a« = 0). The operator A, = B, LA, on the range of Pg, is
the multiplication by g. Assuming that we have d-type conditions on the whole
graph, the domain H}(G) of the quadratic form @ associated with H is the space
of functions of H'(G) continuous at each vertex, and we thus may write u(v) for
the unique scalar value of u € H}(G) at each vertex. The quadratic form associated
with H then becomes

1 1
Q) =3 Wl + 5 X anlu(o)l®

vey

2.2. Nonlinear quantum graphs

Having established the necessary preliminaries on linear quantum graphs in the
previous section, we now turn to nonlinear quantum graphs. Given a quantum graph
(G, H), we consider the nonlinear Schrédinger equation on the graph G given by

(2.4) i — Hu+ f(u) =0,

where v = u(t,-) € L*(G) is the unknown wave function, ¢ the time variable, and f
is a nonlinearity satisfying the following requirements.

ASSUMPTION 2.1. — The nonlinearity f : C — C verifies the following assump-
tions.

e Gauge invariance: there exists g : [0,00) — R such that f(z) = g(|z|?)z for
any z € C.

e g€ C%[0,+00),R)NC (0, +0),R), g(0) = 0 and lim, o s¢'(s) = 0.

e There exist C' > 0 and 1 < p < oo such that |s*g'(s*)] < CsP~! for s > 1.

Typical examples for f are power type or double power type nonlinearities
flu) = £[ulfru, fu) = [uf ™ — |u|"

where 1 < p,q < co. We will use the real form of the anti-derivative of f, which is
given for every z € C by

F(z)= /0|Z| f(s)ds.
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Using the antiderivative G of g, we may also express F' (as we did in the Introduc-
tion) as
1
F@ZEGWW.
Observe that f is a function defined on C. Its differential df at z € C might be
expressed for h € C by
df (2)h = 2¢' (|z\2> ZRe(zh) + g (|z]2) h.

The functions on which f will be evaluated in the next sections will mostly be real-
valued and for simplicity we will use the following notation when the argument of f
is real: for s € R we define

f'(s) =24 (sQ) s +g (sz) .

Formally, (2.4) is a Hamiltonian system in the form
i0u = E'(u),

where the Hamiltonian, or the energy, E is a conserved quantity defined for any
u € HLH(G) by

ﬂm:@m—éF@m.
It is a C? functional on H}(G) and its derivative is given by
(25 E'(u) = Hu— f(u),

with the slight abuse of notation that H here denotes the corresponding operator
from H'(G) to its dual.

From Noether’s theorem, the gauge symmetry of (2.4) yields another conserved
quantity (see e.g. [BGRN15]), the mass, given by

M (u) = [[ull72(g).

We are interested in this paper in the standing waves solutions for the nonlinear
Schrodinger equation set on the graph. By definition, a standing wave is a solution
u of (2.4) given for all e € € by

ue(t, ) = e'“'e(-),
where w € R and the profile ¢ € H'(G) is independent of time. We refer to the
profile ¢ as stationary state. Substituting into (2.4) leads to the equation of the
profile ¢, given by

(2.6) Ho +wd — f(6) = 0.
Therefore, ¢ is a critical point of the action functional
w
E+ —M.
+ 2

Observe that there is a natural smoothing for ¢: since, with our assumptions, (w¢ —
f(¢)) € L*(G), we have ¢ € D(H).

Strategies abound to find critical points of the action. One particularly interesting
strategy is to minimize the energy on fixed mass, as the obtained minimizer will be
(following the method established by Cazenave and Lions [CL82]) the profile of an
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orbitally stable standing wave of (2.4) (provided minimizing sequences are compact,
which is usually a key step of the proof). More precisely, given m > 0, we will be
looking for ¢ € H},(G) such that

(2.7) M(¢) =m, E(¢)=min{E@): € Hp(G), M) =m}.

The theoretical existence of minimizers for the problem (2.7) has attracted a lot of
attention in the past decade and we will not attempt to give an exhaustive overview
of the existing literature. Some examples have already been shortly mentioned in
Section 1. In what follows, we give a few more details on the case of star graphs with
two or more edges, and on the topological assumption preventing the existence of
ground states.

2.2.1. Star graphs with two or more edges

One of the simplest nontrivial graph is given by two semi-infinite half-lines con-
nected at a vertex, with § type condition on the vertex. In this case, the operator
H is equivalent to the second order derivative on R with point interaction at 0.
In this setting, existence and stability of standing waves for a focusing power-type
nonlinearity was treated by Fukuizumi and co. [FJ08, FOO08, LCFFT08], using
techniques based on Grillakis—-Shatah—Strauss stability theory (see [GSS87, GSS90]
for the original papers and [BGRN15, BRN19] for recent developments).

Various generalizations have been obtained, in particular for a generic point in-
teraction [AN09, AN13, ANV13] (6 or ¢’ boundary conditions) or in the case of
non-vanishing boundary conditions at infinity [ILCR17]. In particular, the following
results have been obtained in [ANV13].

PROPOSITION 2.2. — Assume that G is formed by two semi-infinite edges {ey, e}
connected at the vertex v. Let H : D(H) C L*(G) — L*(G) be the operator —0,,
with one of the following conditions to be satisfied at the vertex.

e Attractive § conditions:
Per (V) = e, (V), 0L, (V) + g, (V) = ap(v), a < 0.
e Attractive §' conditions:
Peq (U) — Pes (U) = 5%2 (U)7 ﬂ < 07 90,61 (U) + 90,62 (U) = 0.
e Dipole conditions:
Pey (V) + T, (V) =0, ¢ (v) + 79, (v) =0, TER
Define for ¢ € Hj(G) the energy

1
E(p) = S Y
() = Q) — — el

where 1 < p < 5. Then for any m > 0 there exists up to phase shift and translation
a unique minimizer to

min { E(¢) : ¢ € HA(G), M(p) =m} .
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A detailed review of these results as well as announcement of new results can be
found in [ABR20]. The minimizer is in fact explicitly known, and we use its explicit
form in Section 5.1 to compare the outcome of our numerical experiences with the
theoretical ground states.

2.2.2. General non-compact graphs with Kirchhoff condition

The existence of ground states with prescribed mass for the focusing nonlinear
Schrodinger equation on non-compact graphs G equipped with Kirchhoff boundary
conditions is linked to the topology of the graph. Actually, a topological hypothesis,
usually referred to as Assumption (H) can prevent a graph from having ground states
for every value of the mass (see [AST17b] for a review). For the sake of clarity, we
recall that a trail in a graph is a path made of adjacent edges, in which every edge
is run through exactly once. In a trail, vertices can be run through more than once.
The Assumption (H) has many formulations (see [AST17b]) but we give here only
the following one.

AssuMPTION (H). — Every x € G lies in a trail that contains two half-lines.

Under Assumption (H), no global minimizer exists, unless G is (up to symmetries)
isomorphic to R (note that this assumption does not prevent the existence of lo-
cal minimizers). Let us consider for example a general N-edges star-graph G (see
Figure 1.1). The N star-graph with N > 2 verifies Assumption (H), so there are
no ground states in this case without adding more constraints. Another example
satisfying Assumption (H) is the triple bridge Bs (represented in Figure 2.1).

00 ------- <> ——————— 00

Figure 2.1. The 3-bridge B3

When we are searching to obtain ground states, we consider graphs violating
Assumption (H), for example the signpost graph or a line with a tower of bubbles
(Figure 2.2).

0 ® o o ® o

Figure 2.2. Line with a signpost graph (left) and with a tower of bubbles (right).

3. Continuous normalized gradient flow

We want here to show that, when the standing wave profile ¢ is a strict local
minimizer for the energy on fixed mass, the corresponding continuous normalized
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gradient flow (i.e. the gradient flow of the energy projected on the mass constraint)
converges towards ¢.
The continuous normalized gradient flow is defined by

BY o= B+ (B0 L) e =0 -

where ¥ = (¢, ). It is the projection of the usual gradient flow

5t¢ = —E,(¢)
on the L? sphere
Sy = {u€ HH(G)  lull> = [[dollz}

Let ¢ € H},(G) be a standing wave profile solution of (2.6). We define the linearized
action operator L, around ¢ by

L. : D(H) c L*G) — L*(G),

(3:2) ur— Hu+wu— f'(¢)u.

We will assume that the bound state ¢ is a strict local minimizer of the energy on
fixed L?-norm, which translates for L into the following assumption.

ASSUMPTION 3.1. — There exists k > 0 such that for any ¢ € D(H) verifying
(QD’ ¢)L2 = Oa

we have

Ly, 0)12 = kllellin-

Since the pioneering work of Weinstein [Wei85], this assumption is well known to
hold (if one removes translations and phase shifts) in the classical case of Schrodinger
equations on R¢ with subcritical power-nonlinearities (f(p) = |¢|P1p, 1 <p < 1
+4/d). It is has also been established in many different cases, for example in [ILCR17,
LCFFT08] in the case of the 2 branches star graph with § conditions on the vertex
(which is equivalent to the line with a Dirac potential) or in [GLCT17] in the case
of a 1-loop graph with Kirchhoff conditions at the vertex (which is equivalent to an
interval with periodic boundary conditions). Observe that a local minimizer is not
necessarily a global minimizer (see e.g. [PSV21]).

Our main result in this section is the following.

THEOREM 3.2. — Let the nonlinearity f and the bound state ¢ be such that
Assumption 2.1 and Assumption 3.1 hold. Then for every 0 < u < k (where k is the
coercivity constant of Assumption 3.1) there exist ¢ > 0 and C' > 0 such that for
every vy € H},(G) such that

[0 — Ollm < e

the unique solution ) € C([0,T), H5(G)) of (3.1) is global (i.e. T = o) and converges
to ¢ exponentially fast: for every t € [0,00) we have

[(t) = @l < Ce ™[t — |-
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Remark 3.3. — In Theorem 3.2, we may choose any p > 0 such that © < x, where
k is the coercivity constant in Assumption 3.1. Hence the convergence rate towards
the profile ¢ depends on the steepness of the energy well around ¢.

The proof of the Theorem 3.2 is divided into three parts. This is the subject of
the next three subsections.

3.1. Local well-posedness of the continuous normalized gradient flow

Before proving Theorem 3.2, we establish the following local well-posedness result
for the continuous normalized gradient flow (3.1).

PROPOSITION 3.4. — Assume that the nonlinearity f verifies Assumption 2.1.
Then, for any 1y € H1,(G), there exists a unique maximal solution

v € C(0,7m), H}(G)) N C ((0,7), D(H)) N ((0,7™), L*(G))

of the continuous normalized gradient flow (3.1) with T™* € (0, 4o00]. Moreover, the
mass of the solution is preserved and its energy is diminishing, i.e. for all t € (0, T™)
we have

[l 2 = ol 2 BEW(E) = 1072 < 0.

Proof of Proposition 3.4. — Let 1y € Hp(G). We first show the second part of
the statement: preservation of the mass. Let ¢ be a solution of (3.1) as in the first
part of the statement of Proposition 3.4. We have

1 Y Y
*8t 22 - 81: 2 — \ — ! ! s ,

(E'()¥) (¥, 9) 2 = 0.

e+
BREAAR >

The mass is therefore preserved for (3.1). Set
a = [vol|z2.

We now prove the first part of the statement (existence and uniqueness of a
solution). We first consider the intermediate problem

(33 0 = ~E'(4) + 5 (B (0)0) .

The intermediate problem (3.3) can be written more explicitly (using the expres-
sion (2.5) of E'(¢))) as

0 = —Hb+ F0), F) = f0) + 5 (2Q(0) - [ f@)vdz) v,

where @ is the quadratic form associated with H and was defined in (2.2). Recall
that the operator H : D(H) C L*(G) — L*(G) is self-adjoint. Moreover, there exists
A > 0 such that H > —\ (this might be seen from the expression of ) given in (2.2)
and the injection of H'(G) into L>=(G)).
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Since f verifies Assumption 2.1, the nonlinearity f : H5(G) — H}(G) is continuous,

and, as a function f : HL(G) — L*(G), it is Lipschitz continuous on bounded sets.
Indeed, for any zi, zo € C we have

(1) = ()] S (14 [zl 4 2P ) s — 22

Therefore, for any M > 0 and for any 1,19 € H}(G) such that ||t g1 + ||t02]|m
< M, we have

[f (1) = f(2)[l 2 < C(M) ||t — ol g,

and a similar estimate holds for f.

The existence of the desired solution then follows from classical results in the
theory of semilinear parabolic problems (see e.g. [Lunl3, QS19]). More precisely,
there exists a unique

vec([0,7m), Hp(G)) ne((0,7m), D(H)) N ((0,7m), L*(G))

solution of (3.3) with 1(0) = .

Given 9, we now go back to the continuous normalized gradient flow (3.1) by
proving that ¢ — ||¢||.2 is constant along the evolution in time. We have by direct
calculations on (3.3)

1 1
SR = O 0 = (~E' )0} + — (B'W)0) [

= B (Wl —a?).

This is a first order linear ordinary differential equation in |[¢||?, which may be
solved explicitly:

9t
9013 = 02 + (10(0) 1 — o) exp (25 [ (E((s))(s) ds).
Since ||tz = «, this indeed gives

[ (®)][72 = o®

for any ¢t € [0, 7™*). Therefore 1 is also a solution of (3.1). Uniqueness of such a
solution is a direct consequence of the uniqueness for (3.3) and the preservation of
the mass.
Finally, we establish the energy diminishing property. Using (3.1) to replace E'(1)),
we have
1

@E(w(t)) = (El(w)aﬂMH = - @”Wt@y - ||¢||2L2

= _HaﬂﬂHQH < 07

where we have used the conservation of the mass in the form (v, 9;¢);» = 0 to obtain
the last equality. This concludes the proof of Proposition 3.4. U

(E"(0)¥) ($0)) 12

Having established local well posedness of the continuous normalized gradient
flow (3.1), we turn our attention to the evolution for initial data in the vicinity of
the bound state ¢.
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3.2. The normal part of the continuous normalized gradient flow

Given the bound state ¢ € H},(G), we define a Hilbert subspace W of HL(G) by
W= {we Hy(G) : (w,0) =0}
We define the coordinates-to-data map y : R x W — H}(G) by
x(r,w) = (14+7r)p+ w.

The map x is smooth and has bounded derivatives. Its inverse is the data-to-
coordinates map x ! : H5(G) — R x W which is explicitly given by

— (wv ¢>L2 (wv ¢>L2
Ba) ) = (r.ew) = 5).
( ) 16117 16117
As x, the map x " is smooth and has bounded derivatives.
The second step of the proof of Theorem 3.2 is to decompose the continuous
normalized gradient flow (3.1) by projecting it on W and ¢, as is done in the
following proposition.

PROPOSITION 3.5. — Let T > 0 and ¢ € C((0,T), D(H)) N C*((0,T), L*(G)) be
a solution of (3.1) such that ||¢||r2 = ||¢||L2 and decompose 1) using the data-to-
coordinates map x "' ((t)) = (r(t),w(t)) € R x D(H) given by (3.4):

v(t) = (1+7(t))¢ +w(t).

_1’¢_

1

Then we have
Ow=—Lyw+o(w), nW' —and r=0 (le|%2) ,
where W' is the dual of W and L, was defined in (3.2).

The proof of Proposition 3.5 is divided into three steps. In the first step we will
consider the orthogonal decomposition of the flow along ¢ and W. In the second
step we will project this orthogonal decomposition on the L2?-sphere. The third and
last step will make the link between the projected normalized energy derivative and
the linearized action operator L. .

3.2.1. Step 1: Orthogonal Decomposition

We first consider the orthogonal decomposition of the energy.
Consider the functional Fry : R x W — R defined for (r,w) € R x W by

Erw (r,w) = (E o x)(r,w) = E(x(r,w)).

LEMMA 3.6 (Orthogonal decomposition of the energy). — The functional Egry
is differentiable and we have the following estimates

D, Epw (r,w) = —wl|¢[7. — (’wf(¢) - f’(¢)¢)L2 +O(r) +o([lwlz2),
DyEgw(r,w) = Hw — f'(¢)w + O(r) + o(w).
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Remark 3.7. — D,Egrw(r,w) is an operator acting on W C Hp(G). For any
element h € W, we will note indifferently D, Erw (r,w)h or (D, Egrw (r,w), h) the
image of h by D, Erw (r, w).

Proof. — Since E and y are differentiable, the functional Ery is also differentiable
and we have

(35) DTERW(T7 w) =L (X(T7w)> ° DTX(Tv w) = <E,(X<7ﬁ7 w))¢> )
(3.6) Dy Erw (r,w) = E'(x(r,w)) o Dyx(r,w) = (E'(x(r,w)), Idw()) .

We now recall that ¢ € H}(G) satisfies (2.6). Given r € R and w € W, using (2.5),
we have

E'(x(r,w)) = Hx(r,w) — f(x(r,w))
=1 +r)H¢+ Huw — f(8) — f(¢)(ré +w) + o(ré + w)
= (14+7)(f(¢) —we) — f(#) + Hw — f'(®)w —1f'($)¢ + o(rd + w)
= —wo+ Hw — f'(¢)w + O(r) + o(w).

We have used here the fact that f € C! for the Taylor expansion, and that ¢ is
bounded. We may now use this estimate in (3.5) to obtain

Dy Egw (r,w) = (E'(x(r,w))¢)
= —w[[6l|7> + (Hw — f(9)w, ) + O(r) + o (|lwl12)

The operator H — f'(¢) is self-adjoint and Ho — f'(¢)p = —wo + f(o) — f'(9)o.
Using w € W (i.e. (w, ¢);. = 0) we obtain

Dy Egyw (r,w) = —w|gll7> — (w, f(6) = f'(6)9) 2 + O(r) + of|w]]2),

which proves the first part of the statement.
From (3.6), for h € W we get

DB (r,w)h = (E'(x(r, w))h)
— —w (6B} + (Hw — [/(6)wh) + (O(r) + o(w)h)
= (Huw — f'(@)wh) +{O(r) + o(w)h)

where to get the last line we have used that h € W and thus (¢, h) = (¢, h);. =
This proves the second part of the statement. 0

3.2.2. Step 2: Projection on the L2-sphere

We now make the link between the orthogonal decomposition and the mass nor-
malization constraint.
We denote the L? sphere of radius ||@||z2 by

Sy ={ve Hh(G) : [vll2 = [I¢llz2} -
Consider the open subset of W given by

Ow ={w e W:[lw|[r2 <[]z} -
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We define the functional ry : Oy — R for any w € Oy, by the implicit relation
Ix(rw (w), w)|[ > = [[9]] 2

The functional ry can be made explicit by a direct calculation on the above equality
and is given for w € Oy by

vty =11 (e

In particular, ry is well defined and smooth. Moreover, we have in the open set Oy,
the estimate

(3.7) rww)l < <||||Z||||f§ ) '

Thus, we have a local parametrization of S, around ¢ given by

Ow +— S¢,
w — x(rw(w), w).
Introduce the functional Ey : Oy — R defined by
Eyw(w) = Bpw (rw(w),w) = E(x(rw(w),w)) = E((1+ rw(w))é + w).

This functional can be used to describe the dynamics of the projected part of the
normalized flow, as is done in the following lemma.

LeEMMA 3.8 (Gradient flow in local variables). — Let w be as in Proposition 3.5.
Then w is a solution of

(DyEw(w),w)
o172

Proof. — Observe first that ry and Ey, are differentiable on Oy,. Their differen-
tials are given, for w € Oy and h € W such that w + h € Oy, by

(Durw(w)h) = (w, ) (1_ <||w||L2> ) _ (w, h) g 1

(3.8) 0w = =Dy Ew (w) + w, in W',

el 191l 2 l6lEe 1+ rw(w)’

and

(DuEw (w)h) = (E'(x(rw(w), w))h) + (Duyrw (w)h) (B (x(rw (w), w))é) .
Using the derivatives of Ery (given in (3.5)-(3.6)) and r, we might express D, Ey (w)
in the following way:
(DTERW)(TW(U})JU)) 1

5 w
[edly® L+ rw(w)

Recall that v € C([0,T), H;(G)) NC'((0,T), L*(G)) is a solution of the continuous
normalized gradient flow (3.1) such that ||¢||zz = ||¢||z2 and that ¢ is decomposed
using the data-to-coordinates map x~'(¢(t)) = (r(t),w(t)) € R x W given by (3.4)
in the following way:

(3.9)  DyEw(w) = (DywErw) (rw(w),w) —

() = (1 +7r(t)¢ + w(t).
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Since r(t) = (¢(t), )2 — 1 = rw(w(t)), the function 7 of ¢ is C*. The regularity of
w in t is the same as the regularity of ¢». We have

[}, = @+ r@)2 1112 + w2,

which, by conservation of the L?norm for ¢ implies that for all ¢ € [0, T] we have

—1<r(t) <0 and Jw(®)]72 < |97

We want to convert the continuous normalized gradient flow (3.1) in ¢ into a closed
equation for w (r can be directly deduced from w by preservation of the L? norm).
Observe first that

aﬂﬁ = (;53,9“ + 3tw.
To obtain the evolution equation for w, we take h € W and compute:
(Qywh) = (O — @Oyrh) = (Opbh) .
Since v is a solution of the normalized gradient flow (3.1), we get

("))

(Owph) = (=E'(¥)h) + TR

CHOR

Since h € W, we have
(=E'(¢)h) = =Dy Egrw (r,w)h.
We also have

(E'()¢) = (1+7) (E'(¥)9) + (E'($)w)
= (1 + T)DTERI/V(T, U}) + <DwERw(T, w)w> .

Using (¢, h) = (w, h), we get the following equation:
(Oyw, h) = — Dy Erw (r,w)h

1
o ((1 + 1) Dy By (r, ) + (Do By (1, w)w>) (w, h).
L2
Since the previous equation holds for any h € W, it can be rewritten as

Oyw = =Dy Egw (1, w)
1
1117

By conservation of the L2-norm in the normalized gradient flow (3.1), r might be
inferred from w and we have for w the following closed equation

+ ((1 +7)DEgw (r,w) + (D Erw (r, w)w) )w, in W',

(3.10) Ow = —(DywErw)(rw(w), w)

+ ol ( (1 +7rw(w)) (DyErw) (rw(w), w) + < (DwEgrw) (rw (w), w)w>>w.
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Using (3.9) to replace (Dy, Egw ) (rw(w),w) in (3.10), we obtain
(DT‘ERW> (T’V[/(U)),U)) 1

Diw = — Dy Eyy (w) —
i ww) 1oIE. Ty

||¢T| (L +rw(w)) (DrErw) (rw(w), w) w
(D Egw) (rw (w), w) 1 w,w ) w

R e e
= —DyEw(w) + H¢H (Do By (w), w) w

(DyErw) (rw(w), w) 1

oI, l‘1+rw<w>w+<1+rw<w»w
1 ||w||%zw]
T+ rw(w) 912

b bty 4 DuBw(w)e)
= DB

where to get the last line we have used the expression of [|w|[%. in terms of
rw(w), ie.
2
lwllz2 = [[¢l17 (1= (1 + rw(w))?).
This concludes the proof of Lemma 3.8. O

3.2.3. Step 3: Link with the linearized action

To conclude the proof of Proposition 3.5, it remains to make the link between
Dy Ew(w) and L.

LEMMA 3.9. — The differential D, Eyw (w) can be approximated in the following
way:
D, Ew(w) = Lyw + o(w),
where L, has been defined in (3.2).
Proof. — We already have obtained in (3.9) the identity

DBy (w) = (DwErw) (rw (w), w) - (D’"Emﬂ)asigf(w)’ S ok

From the estimates on (D, Erw)(rw(w),w) and (D, Egw)(rw (w),w) obtained in
Lemma 3.6, we have

_(DT‘ERW) (rw(w),w) 1

w=ww+ O(r)+o(||w|r),

fratli® L4 rw (w)
where we have used the classical power series expansion l—ir =1—7r+4---. Finally,
we obtain
DyEw(w) = Hw + ww — f'(¢)w + O(r) + o(w) = Ly + o(w)
(since from (3.7), we have r = O(||w||3.)). This concludes the proof. O
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Proposition 3.5 is a direct consequence of Lemmas 3.6, 3.8, 3.9 and bound (3.7).

3.3. Convergence of the normal part of the continuous normalized
gradient flow

The second step of the proof of Theorem 3.2 is to prove convergence to 0 of the
projected part w of the solution ¢ of the continuous normalized gradient flow (3.1),
provided ||wo||g1 is small (i.e. ¥y is close enough to the bound state ¢). This is the
object of the following proposition.

PROPOSITION 3.10 (Convergence of the flow). — For every 0 < u < k (where k is
the coercivity constant of Assumption 3.1) there exist ¢ > 0 and C' > 0 (independent
of €) such that for any wy € W verifying ||wo||g: < € the associated solution w
of (3.8) is global and for all t € [0, 00) verifies

Jw(®)|[ g < Cllwoll e ™.

Since |r(w)| < C||wl|?2 (see (3.7)), Theorem 3.2 is a direct consequence of Propo-
sitions 3.5 and 3.10.

Proof of Proposition 3.10. — Denote
Dy Ew (w), w)
16117

(3.11) R(w) = Dy Ew(w) — < w— Lyw = o(w).

We remark that, for any ¢t € (0,7),

(¢a w(t))L2 =0 = (Qb, Gtw(t))Lg =0.

Thus, by denoting Py the orthogonal projector on W, since L is self-adjoint and
Oyw € W verifies (3.8), we have

i<L+w(t)w<t)> = 2(Low(t)Pwdaw(t)) = 2( Py Lyw(t)0nw(t) )

(3.12) dt
— _2<L+w(t)L+w(t)> + 2<R(w(t))w(t)>,

where R is given by (3.11). By the coercivity estimate in Assumption 3.1 and Cauchy-
Schwartz inequality, we have

Allwlf < (Lyw,w) < || Lywl|zz]lw] e,
which implies in particular that
llwllam < || Lywl|ze.
Coming back to (3.12), we get
d

(3.13) dt<L+w(t>w<t)> < 262w ()72 + 2| R(w(®)) || 2 llw(t) 2

< =26 [lw(®)]|32 + o (Jw(®)]3:)
Assume that ||wg||z: < & where € > 0 is chosen such that

~26 o3z + o ([lwoll72) < —2kpfjwo] 3z,
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(recall that 0 < pu < k)). Since w is continuous, there exists Ty > 0 such that for any
t € [0,Tp], we have

(3.14) =267 lw(t)l[72 + o (Jw(t)172) < —2kullw(®)|7-.
For t € [0, Ty] we integrate (3.13) in time from 0 to t and use (3.14) to obtain

(Lw(eo(®)) — (Lwoun) < ~2p [ ()| ds.

Defining the constant Cy = (L, wg, wo) /k and using again the coercivity estimate
of Assumption 3.1, we get

(e < Co =200 [ ol e,
which by Gronwall inequality gives
lw(®) |7 < Coe™"
and therefore

lw(®)[|m < /Coe ™.

Note that there exists a constant C' > 0 independent of wy such that
Cy = <L+w0w0>//<a < Ollwol|3,

thanks to (2.2) and Sobolev embeddings. This concludes the proof of Proposition 3.10.
O

4. Space-time discretization of the normalized gradient flow
4.1. Time discretization

The discretization scheme of the continuous normalized gradient flow (3.1) must
provide a numerical method to obtain a minimizer of (2.7). We first consider the
semi-discretization in time. The time step 6t > 0 is chosen to be fixed and the
discrete times t,, are defined as t, = ndt, n > 0. The semi-discrete approximation
of any unknown function ¥ (-, x), = € G, at time ¢, is denoted by ¢"(x). In order to
present the numerical schemes, we recall that the nonlinearity verifies Assumption 2.1
and that it is of the form

F@) =g (1¢F) ¢,

where g is continuous. We also introduce the variable ,,, usually referred to as the
chemical potential,

@) = AE'W)0) . m= [l

Dropping the dependence on (¢,z) € [0, +00) x G and using (2.5), the continuous
normalized gradient flow (3.1) can therefore be rewritten as

(4.1) o =— (H =g (I61?)) ¥ + pn (), (t = 0) = ¥,

where [|¢||3. = m.
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Several numerical methods can be considered for discretizing (4.1). For example, if
the nonlinearity is f(¢) = [¢|?%, a standard Crank-Nicolson scheme would consist in

n+1 n n+1|2 n|2 1
w 5t - (-H‘l— |¢ ’2_'_ |w ‘ _l_,u2j2> ¢n+%’

where the intermediate values at ¢, 11 are given by

A TS S o
Dty — 20 (¢n+%) <H‘¢n+1‘ ¢n+1 + HW) | ¢n+ >

This method can be proved to be energy diminishing. However, in the above dis-
cretization, we need to solve a fully nonlinear system at every time step, which is
time- and resource-consuming in practical computation.

Bao and Du introduced in [BD04] a more efficient solution: the Gradient Flow with
Discrete Normalization (GFDN) method, which consists into one step of classical
gradient flow followed by a mass normalization step. By setting 1)° = )y, it is given by

+1 _ wn
T _ _ngnﬂ +g <|¢n|2) 90n+17
(4.2) 1 o1
Y =/m
IIsO”+1 22

It is not clear at first sight that (4.2) is indeed a discretization of (4.1), but we have
the following result.

PROPOSITION 4.1. — The GFDN method (4.2) is a time-discretization of the
continuous normalized gradient flow (4.1).

Some arguments are given in [Bao07, BD04] for m = 1, we provide here a proof
with additional details and extend the result for any m > 0.

Proof of Proposition 4.1. — The starting point is to apply a first order splitting,
also known as Lie splitting, to (4.1). Assuming that the approximation ¢" of ¢ at
time ¢, of mass ||¢¥"||2. = m, is known, the steps of the splitting scheme are as
follows.

(Step 1) Solve

(4.3) O = —Ho+g([v]*) vty <t <oy,
v(tn) = ?/)"
(Step 2) Solve
(4.4) Ow = pp(wWw, by <t < s,
w(tn) =v(thg1).

After the two steps, we simply define " = w(t,1).
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(Step 1) requires to solve a nonlinear parabolic type partial differential equation.
Following [BD04], we approximate (4.3) by a semi-implicit time discretization:

n+1 _ /n
v (O

(4.5) =

—Ho"t 4 g (|wn’2) "L
So, we have " = "1 The interest of having a semi-implicit scheme stems from
its stability property.

The equation involved in (Step 2) is an ordinary differential equation. In [BD04],
its solution is approximated by

(4.6) Wt = \/m“‘f:l.
| 2

The coupling of (4.5) and (4.6) leads to the GFDN method. It is not totally
obvious that (4.6) is actually an approximation of the solution w(t,+1) to (4.4). The
normalization part (4.6) is actually equivalent to solving the ordinary differential
equation

Op  =Upm(0t)p,ty, <t <tpi1,
p(tn) = 90n+17

where

In(m) — In ([l¢"*]7.)

Vnm(0F) = 25t

We define the piecewise function
+o0
Ln(t,68) = U (6) g, 4,,1)(F).
n=0

With this definition, the gradient flow with discrete normalization method (4.2) is
an approximation of

(4.7) Op = —Ho+ g (o) @, 0(tn) = $ltn), tn < t < tuia,
Op = fm(t,08)p, p(tn) = P(tns1), tn <t < tpy1,

with [|[¢(t,)]|32 = m. Actually, the system (4.7) has to be read as the Lie splitting
approximation of

(4.8) 0 = —HY + g (IT1) T + fim(t,66)Y,  T(t=0) = ¢,

and ||1o]/22 = m. Thus, it remains to make the link between (4.8) and (4.1) by
determining the limit of fi,,(¢,6t) when 0t goes to 0. Let us define t* = ¢, that
remains constant when 6t — 0 and n — oo. For t* <t < t* 4 §t, we have
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_1njlp(t +6t)[|7> — In(m)

/jm(t’ (5t) = 5t
_ nfle(t + 0l — e ()12
2 ot '
L e + 912
L2 _
= 4 — = O(at).
2 e @)

Since s — p(t* + s) is solution to ds¢ = —E'(p), for 0 < s < dt we have

d * * *
75 et +5)|[72 = —2(E' (0 (" +5), ¢ (" +5)) .
Consequently, for t* <t < t* + 0t, we have

(F' (¢ (), (%))
o (#4)1172 o
(E" (¢ (1)), (t)) +O(5t)

— 1 (1)) + O(51).

fim (£, 6) =

411

Thus, we conclude that (4.8) is an approximation of (4.1). This finishes the proof of

Proposition 4.1.

O

The complete Gradient Flow with Discrete Normalization algorithm is therefore

W0 = 1y, such that [[¢20]7, = m,

=0.
7lgepeat
(4.9) Solve (1d +ot (H 9 (1972))) o+t =y,
g P
Pl = \/EHSO"HHLz’
n=n+1,

until || = ||,. < e.

where Id is the identity map and ¢ is a tolerance value.

Remark 4.2. — Since we use a splitting scheme to discretize the continuous nor-
malized gradient flow (3.1), it is no longer guaranteed that (4.9) is energy diminishing.

We observe in numerical experiments that it is actually almost the case.

Remark 4.3. — 1t is possible to modify the algorithm (4.9) to deal with mass one

unknowns. Indeed, let us consider

7 Y Y

Tl Ym
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Then, the algorithm (4.9) becomes
0 = 1ho/+/m, such that [|[4°]|2, = m,

n = 0.
Repeat

Solve (Id +0t (H —g (m ‘12"‘2)>> "t = 1/7”,

&n—i—l _ (pn+1/HS0n+1
n=n+4+1,

2’

until H@”“ — 1/7"’
wN-',—l _ \/EIZN“.

<&

4.2. Space discretization

We obtained the discretization in time of the normalized gradient flow in the
previous section. To complete the discretization of the flow, we now proceed to the
space discretization of the operator H. We recall that H is defined as a Laplace
operator on each edge e € £ with boundary conditions given for each vertex v by

Avd)(v) + BU@D/(U) =0,

where (V) = (Ve(V))env, V'(V) = (020e(v))r ~o are vectors, with 0,1.(v) the outgo-
ing derivative on e at v, and (A,, B,) are matrices (see Section 2).

For each edge e € &, we consider N, € N* the number of interior points and
{Zex}1<k<n. a uniform discretization of the interval I, = [0, [.], i.e.

Te( = 0< Te1l < ... < XTeN, < TeNgt1 = le,

with Ze gy1 — Tep = le/(Ne + 1) := dz, for 0 < k < N, (see Figure 4.1). We denote
vy the vertex at x., vy the one at x. x. .1 and, for any v € H}(G), for all e € € and
1<k <N,

we,k = we (xe,k) )

as well as 1., 1= Yc(y,) for v € {vy,v2}, where y,, = zco and y,, = Te N, 41

U1 V2

X—o—0—0—0 —0 —0 0 X
Te,0 Te,l Te2 Le,Ne+1

Figure 4.1. Discretization mesh of an edge e € £

We now assume that N, > 3. For any 2 < k < N, — 1, the second order approxi-
mation of the Laplace operator by finite differences on e is given by

1—2
A@/J(%,k) ~ we,k 1 ;ie,zk + we,k+1 ‘
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For the case k = 1 and k = N,, the approximation requires 1. ,, and . ,, and we
have to use the boundary conditions in order to evaluate them. We use second order
finite differences to approximate them as well. For —2 < 7 < 0, we denote

we,vl,j = we ('re,|j|) and ’l/}e,vg,j = 1/}6 (xe,Ne+j) :
We have the approximation of the outgoing derivative from e at v € {vy, v}

3wev0 - 41#6’[}71 +¢6072
/ ~ sUy sUy s Uy
we (xeyv) ~ 25$€ N

Assuming that éz = dx. for every edge e € £ to simplify the presentation, this leads
to the approximation of the boundary conditions

3¢v,0 - 4¢v,—1 + 77ZJ1),—2> _ 0

Av7~/1v,0 + Bv ( 9 (SZE

where ¢, j = (Ve j)e~v. Assuming that 20zA, + 3B, is invertible, this is equivalent
to

(4.10) Yoo = (200A, + 3B,) " By (41hy 1 — by _2) .

Thus, we can explicitly express the value of 9., (resp. 1.,,): it depends linearly on
the vectors ¢, —1 and 1, _o (resp. ¥y, —1 and 1, _o). It is then possible to deduce
an approximation of the Laplace operator at z.; and z. n,. That is, there exists
(Qew)e~v C R, for v € {vy,v2}, such that

we,Z - 27%,1 + Z ae,vl (4%,1}1,71 - we,v1,72)
A¢(xe71) ~ e )

o2

and

¢6,Ne—1 - 2¢6,Ne + Z ae,vg (4¢€,U2,—1 - ¢e,v2,—2)
Aw(xech> ~ 26372
Since (Ve j)—2<j<0,ve {v1,00} are interior mesh points from the other edges, we limit
our discretization to the interior mesh points of the graph. The approximated values
of ¢ at each vertex are computed using (4.10). We denote ¥ = (Ve k)1<k<N. cecs
the vector in RN with Ny = 3, ¢ V., representing the values of ¢ at each interior
mesh point of each edge of G. We introduce the matrix [H| € R¥ X7 corresponding
to the discretization of H on the interior of each edge of the graph, which yields the
approximation

4.3. Space-time discretization

Finally, we obtain the Backward Euler Finite Difference (BEFD) scheme approxi-
mating (4.2). Let ¢ € R¥. We compute the sequence ("), o C RV? given by
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251

(a) Star-graph with 3 edges. (b) Matrix representation of H.

Figure 4.2. An example for a star-graph.

n n n n|2 n
@t =" — ot ([H]e"™ = [g (lv"F)] ")
(4.11) B — o
o™l 2

where [g(|1"]?)] € RVT*NT s a diagonal matrix whose diagonal is the vector g(|1p™|?)
and ||¢" |, is the usual £2:-norm on the graph G of ¢"*!. This scheme has been
studied on rectangular domains (with an additional potential operator) and Dirichlet
boundary conditions [BD04] and is known to be unconditionally stable. Since it is
implicit, the computation of ™! involves the inversion of a linear system whose
matrix is

(M) = [1d] + 6t ([H] - [g (lv")]),
where [Id] is the identity matrix, and right-hand-side is 9". Using the matrix [H],

we may also compute the energy. For instance, in the case where ¢g(z) = z, by using
the standard ¢? inner product on the graph, we obtain

(4.12) E (") = ; (H]yp "), — i (@™, @),

To illustrate our methodology, we give below an example of a star-graph with
3 edges (see Figure (4.2a)). The operator H is given with Dirichlet boundary con-
ditions for the exterior vertices and Kirchhoff-Neumann conditions for the central
vertex. We can see on Figure (4.2b) the positions of the non zero coefficients of the
corresponding matrix [H| when the discretization is such that N, = 10, for each
e € €. The coefficients accounting for the Kirchhoff boundary condition are the ones
not belonging to the tridiagonal component of the matrix.

Remark 4.4. — We have implemented this space discretization in the framework
of the Grafidi library [BDLC21a], a Python library which we have developed for the
numerical simulation on quantum graph and which is presented in [BDLC21b]. Note
that finite differences on graphs have also been implemented in a library developed
in Matlab by R. H. Goodman, available in [Goo20] and which has been used in
particular in [Gool9, KPG19].
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5. Numerical experiments

We present here various numerical computations of ground states using the Back-
ward Euler Finite Difference scheme (4.11). Even though the (BEFD) method was
built for a general nonlinearity, for simplicity we focus in this section on the com-
putations of the ground states of the focusing cubic nonlinear Schrodinger (NLS)
equation on a graph G, that reads

(5.1) i0ah = Hy — [

Explicit exact solutions are available for (NLS) on various graphs, in particular star
graphs. We use the two-edges star graph in Section 5.1 to validate our implementation
of the (BEFD) method and to show its efficiency to compute ground states. We
present in Section 5.2 some numerical results for non compact graphs for which

no explicit solutions are available. More examples are presented in a companion
paper [BDLC21b].

5.1. Two-edges star-graph

The two-edges star-graph is one of the simplest graph. We identify the graph
G = G, as the collection of two-half lines connected to a central vertex A. Each edge
is referred to with index i = 1,2 (see Figure 5.1). The coordinate of vertex A is
therefore both x; = 0 and o = 0. The unknown ¢ of (5.1) can be thought as the
collection

w = (¢17 1/12)T7
each function v; living on the edge ¢ = 1, 2.
T A T2

Figure 5.1. Two star-graph

5.1.1. Kirchhoff condition

The ground state of the cubic nonlinear Schrédinger equation (5.1) on the real line
is known to be the soliton. To compute it on a two-edges star-graph, we identify the
real line R to the graph G, with Kirchhoff condition at the vertex located at x =0
(see [ACFN12a]). The Kirchhoff condition on R is

V(O07)=¢(0%),  ¥'(07) =¢'(07),
with ¢/’ denoting the usual forward derivative, whereas on Gy, it is

1(0) =12(0),  ¥1(0) +¢5(0) =0.
The energy is

1 1
Exus(¥) = 519172 — 1912wy, v € H'(R),
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or similarly
2 1 112 1 4 1
Exs(¥) =>_ (2 1l ey = 3 ||¢i||L4(R;)) e H(G).
i=1 ‘
The minimum of the functional Fyrg among functions of H'(R) with squared L?-
norm equal to m > 0 is given (up to phase and translation) by

m 1
(5:2) (@) = 5 75 cosh(ma /1)’
and ;
ENLS(¢m) = _%

In order to simulate the two semi-infinite edges originated from the central vertex,
we consider two finite edges of length 40. The graph is presented on Figure 5.2 (left).

0.7

0.6
0.5
0.4
0.3
0.2
0.1
0.0

B A C
. . . —40

%0 0.00,

. . . . . . . . . 0
40 -30 20 -10 0 10 20 30 40 v 0,

Figure 5.2. Two-edges graph (left) and the exact solution ¢,,(z) for m = 2 (right)

We discretize each edge with N, = 4000 nodes and set homogeneous Dirichlet
boundary conditions at the external vertices (B and C' on Figure 5.2). The time step
is 0t = 1072, The mass is m = 2. The exact solution is plotted on Figure 5.2 (right).
The initial datum is chosen as a Gaussian of mass m/2 on each edge, namely

10m 1022
We plot on Figure 5.3 both the exact solution ¢,, (5.2) and the numerical one ¢, num
obtained after 3000 iterations (left), as well as the error |¢,, — ¢ num| (right). The
error is plotted for a fixed dz. We discuss the variation of the error with respect
to 0z in Figure 5.7 and observe that the scheme is of order 2. We obtain a very
close numerical solution. Since the initial data is symmetric and centered on 0, our
solution is also symmetric and centered on 0.

The (BEFD) method allows to compute the exact energy and show that the scheme
is energy diminishing. We plot in Figure 5.4 the evolution of the numerical energy
using (4.12) and the comparison with the exact energy. The scheme is clearly energy
diminishing and we obtain a very good agreement with the exact energy.

ANNALES HENRI LEBESGUE



0.71

0.6 1

0.4 1

0.31

0.2

0.1+

0.0

Stationary states on nonlinear quantum graphs
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—— Exact sol.
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1075
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417

40 —30 —20 —10

(b) fm —

0 10
T

¢m,num|

Figure 5.3. Comparison between ¢,, and ¢, num

61 —— Energy num.
—— Exact energy

5 4

4 4

3 4

2 4

1 4

0 4

0 25 50 75 100

125 150 175
iteration number

200

2

30

40

Figure 5.4. Evolution of the energy when computing the ground state of (5.1)

for x € R compared to Enis.

5.1.2. d-condition

We consider now a d-condition at the central vertex A of the graph Gy. The
unknown 5 = (51, %s2)" is the collection of ts; living on each edge i = 1, 2. Recall
that the boundary conditions at A are

%,1(0) = %,2 (0)7

¥51(0) + ¢5,5(0) = 15,1 (0).

The parameter « is interpreted as the strength of the § potential and we focus on
the attractive case (o < 0). The mass and energy are

2
M(%) = ;/}R; W&,i(ﬂfi)ﬁ dx;,
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and

2
- W5 @) (s o ,
Bathg) = 30| [ g = dat G 10)

Explicit ground state solutions were provided in [GHWO04] in the cubic case (see
also [ACFN12b, ANV13]| for the general case). Define a by

a = Lf:urctanh M
Jw 2w )’
and define the function ¢5 = (¢s1, ¢s2) by

Ps,i(w:) = v - :
S

The mass of ¢4 is explicitly given by
ms = M(5) = 4/ + 20,

and the function ¢5 has been constructed so that it is the minimizer of Es(1)5) with
constrained mass mg. The energy might be explicitly calculated :

2 5 o« m3  mia  msa?
E = _Zr - — =_179 0= _
o(9) = —gw? = 5 96 ' 16 8

Like in the previous section, we apply the (BEFD) method to compute the ground
state. We take the same numerical parameters concerning the mesh size and the
approximation graph of Figure 5.2 (left). The numerical solution compared to the
exact one with w = 1, & = —1 and therefore mass ms = 2 is presented on Figure 5.5
(left). The initial data are Gaussian on both edges equal to ¥y (z;) = pe= 107§ =1 2,
with p > 0 such that M(¢y) = ms. In order to focus close to the vertex A, we
choose to plot these solutions on [—10, 10]. Once again, the numerical solution is
very close to the exact ground state. A closer look on the error function |¢s — @s num|

10°
1.24 —— Num. sol.
—e— Exact sol. 10721
1.0
10744
0.84 10-6 4
0.6 1 1084
10
04 10
10 12
0.2
10714_
0.0 ,
. . . . . . . 10-16 1 | | | | | | | |
~100 —-75 -50 -25 00 25 50 75 100 —40 -30 -20 —-10 O 10 20 30 40
xT xr
(a) ¢5 and d’d,num (b) |¢5 - ¢5,num|
Figure 5.5. Comparison of ¢s and ¢snum for o interaction, w =1 and a = —1.
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in logarithmic scale (see Figure 5.5, right) confirms the accuracy of the numerical
solution. Finally, we plot the evolution of the energy on Figure 5.6. We restrict
ourselves to 1000 iterations on the horizontal axis since the convergence is really fast.
The agreement with the exact energy is notable.

44

— Energy num.

—— Exact energy

0 25 50 75 100 125 150 175 200
Iteration number

Figure 5.6. Evolution of the energy when computing the ground state of (5.1)
with ¢ condition compared to Ej.

Using the exact solutions when considering Kirchhoff and § conditions, we are able
to evaluate the order of the numerical scheme with respect to the spatial mesh size.
As it was described in Section 4.2, the scheme should be of second order in space.
To confirm this, we make various simulations for different mesh sizes dx and present
the results in Figure 5.7 for both Kirchhoff and ¢ conditions. In the two cases, the
order of convergence is 2, as expected.

1072 10-2

10—34 10—34

1074 1074

1077 5 1077 5

106 106

10774 —o— [ — Gmum| 10774 —o— 1195 = Ssnumllzee

—— Slope 2 —— Slope 2

07 10-2 10-! 07 10-2 10-!

o o

Figure 5.7. Convergence curves for Kirchhoff (left) and § (right) conditions.

5.1.3. §’-condition

The 0’-condition on star graph is usually defined by interchanging functions and
their derivatives in the definition of the d-condition (see e.g. [BK13]). We prefer here
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to use the concept of ¢’ on the graph corresponding to the ¢’ interaction on the
line, and give a precise definition in what follows. As in the previous section, the
unknown s = (Y5 1,%s 2)" is the collection of s ; living on each edge i = 1,2.
The boundary conditions at A are

(5.3) Y1(0) = Pora(0) + 85 5(0), ¥50,(0) + ¢ 5(0) = 0,

with # > 0. The mass and energy are
2
M (¢s) = Z/W |¢5',i($i)|2 dx;
=1 T4
and

) )l 1
Es (Ys) Z/}W — 22 iﬂ ) dz; — % [951.2(0) — 15 1(0)] .

Explicit ground state solutions are provided in [ANV13]. Let us consider the tran-
scendental system

tanh (/wz,) N tanh (y/wz_)
(5.4) cosh (yﬁm) cosh (1\/@95,)

cosh (y/wxy) - cosh (y/wx_) -

We are looking for real solutions such that

=0,

tanh (y/wz )
v cosh (ywzy)

ZL'_<O<1/'+.

When 4/3% < w < 8/, there exists a unique couple (—z, ) solution to (5.4), where
x is given by

e L (25).

When 8/3% < w < +oo, in addition to the symmetric couple (—,) previously
given, we have another, asymmetric, not explicit, unique, couple (Z_,7,) € R? such
that
To<0<Ty <|7].
For brevity in notation, we define
(—z,7) if4/8% <w <8/3%,
(ZL‘_, :L‘_;,_) = {

(T_,2y) if8/8% <w < +o0.
The ground state in both cases is given (up to a phase factor) by
B —v/2w/cosh (@(9&1 —i—x_)), z1 € [0, +00),
P (1) = {\/ﬂ/cosh (\/E (g + a:'+)), zy € [0, +00).

When 4/4% < w < 8//?, the ground state of (5.1) with boundary condition (5.3)
minimizing the energy Fs with fixed mass M (s ) is an odd function. When 8/3?
< w < 400, the ground state is asymmetric.
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When 4/3? < w < 8/, since T = |z|, the mass and energy are equal to

M(¢5,) = 4\/0_0 - 27 E&/(¢5/) = ; <ﬁ83 — w3/2> .

If 8/3% < w < +00, the mass and energy are less explicit and are equal to

My (¢5) = 2\/c_u(2 + tanh (\/c_uaz_> — tanh (\/LU:UJr) ),

and
W32

Esi(¢s) = 3< -2-3 (tanh (\/c_ux_> — tanh (\/Em+>)
+ 2 (tanh3 (\/c_uac,) — tanh® <\/c_ux+)) )

- ; (Cosh (1/0_033) " cosh (1/5:”))2'

The parameters for the numerical simulations are 3 = 1, 5t = 102 and we keep 4000
nodes per edges to discretize the two-edges graph (see Figure 5.2, left). The initial
data are Gaussian on both edges but contrary to d-condition, we select a different sign
for the two edges (to increase the convergence speed). Namely, ¢ho(z;) = —pe 1041
and 1o (x2) = pe 9% with p > 0 such that M;(1hy) = My (¢dy). In order to simulate
both odd and asymmetric ground states, we select respectively w = 6 and w = 16.
The exact and numerical solutions are plotted in Figure 5.8. When looking to the

2.0

—— Num. sol. 54 —— Num. sol.

1.5 —— Exact sol. —— Exact sol.

1.0+

0.5 1

0.01

0.5

1.0 0

1.51 —14

2.01 o]
4 2 0 2 4 —4 -2 0 2 4
T x

(a) Odd solution, w = 6 (b) Asymmetric solution, w = 16

Figure 5.8. Comparison of numerical solutions to ground states for ¢’ interaction,

B=1

comparison in logarithmic scale (see Figure 5.9), we see that we obtain a very good
agreement with the exact solutions.

We note that the evolution of the energy (see Figure 5.10) during the minimization
process for the asymmetric case is not strictly monotone. After a first plateau, the
algorithm allows to obtain the global minimum (second plateau).
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10° 10°
10724 107
10 10
107 107
107% 1078
1071[)_ 10711)_
10124 10124
1044 10144
~16 I I I I I I I 10-16 | | | | | | |
-100 -75 —50 -25 00 25 50 7.5 100 -100 -75 —50 -25 00 25 50 7.5 100
- -
(a) Odd solution, w = 6 (b) Asymmetric solution, w = 16

Figure 5.9. Comparison in logarithmic scale of numerical solutions to ground
states for ¢’ interaction, 5 =1

3.2 1 —— Energy num. 201 —— Energy num.
—— Exact energy —— Exact energy
341
21
36
381 99
40
23
421
441 91
0 100 200 300 400 500 0 200 400 600 800 1000
iteration number iteration number
(a) Odd solution, w = 6 (b) Asymmetric solution, w = 16

Figure 5.10. Evolution of the energy when computing the ground state of (5.1)
with ¢ condition compared to Es (s ).

5.2. General non-compact graphs with Kirchhoff condition

We consider the computation of ground states on non-compact graphs not satisfying
Assumption (H). We focus on the signpost and tower of bubbles graphs. Beside the
fact that they exist, little is known about minimizers. Our numerical algorithm is an
easy to use tool to provide conjectures on the qualitative behavior of ground states
on metric graphs.

5.2.1. Signpost graph
We now consider a signpost graph (see Figure 2.2). We wish to compute a stationary

state of the NLS equation (5.1). The graph has the following dimensions: the line
segment is equal to 2 and the perimeter of the loop is 4. The initial mass is taken
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to be 1. Concerning the length of the main line (supposedly very large), it is set
to 100. On the discretization side, we set the total number of grid points to 5000.
Furthermore, the time step is fixed to 1072 with a total number of iteration equal
to 5000.

The resulting stationary state is shown in Figures 5.11 and 5.12. We can see that
it is localized in the loop and the line segment and decreases slowly along the main
line. This is consistent with [AST15, AST16].

0.4
0.3
0.2
0.1
0.0

—40 —20

N 20 40 0.0

Figure 5.11. The numerical ground state on the signpost graph

Figure 5.12. Zoom of the numerical ground state on the signpost graph

5.2.2. Tower of bubbles graph

Finally, we have computed a stationary state for the tower of bubbles graph, with
2 bubbles. The graph is characterized by the following dimensions: the top bubble
has a perimeter of 8 and the one of the bottom loop is set to 4. The main line, which
is suppose to be very large, has a length of 100. The initial mass is taken to be 1.
The space discretization is set by fixing a total number of grid points to 10000 and,
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for the time discretization, we have the time step set to 1072 for a total number of

iterations of 10000.

We obtain the stationary state depicted in Figure 5.13 and 5.14. It is clear that, as
for the signpost graph, the ground state is localized in the two bubbles and decreases
slowly along the main line. Again, this is consistent with [AST15, AST16].

0.0

20 20 40

Figure 5.13. The numerical ground state on the tower of bubbles graph

Figure 5.14. Zoom of the numerical ground state on the tower of bubbles graph
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