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RESUME. — Nous proposons une approche fondée sur des compléments de Schur, qui permet
d’obtenir des estimées explicites sur la résolvante d’opérateurs hypocoercifs, sans passer par
des estimées de décroissance exponentielle du semigroupe d’évolution intégrées en temps. Nous
présentons une application de cette méthode aux opérateurs de Fokker—Planck associés a des
dynamiques de type Langevin, ou a 'opérateur d’évolution de ’équation de Boltzmann linéaire
(qui correspond également au générateur d’un processus stochastique connu sous le nom de
méthode de Monte Carlo hybride randomisée en dynamique moléculaire). Nous explicitons
en particulier la dépendance des bornes de la résolvante en fonction des parametres de la
dynamique et de la dimension de l’espace ambiant. Nous discutons également les relations
entre notre approche et les autres méthodes hypocoercives.

1. Introduction

Degenerate dynamics appear in many contexts. Two prominent examples are
Langevin-type dynamics in molecular dynamics (whose associated generators are
Fokker—Planck operators), and Boltzmann-type equations in the kinetic theory of
fluids. From an analytical viewpoint, these operators have a degenerate dissipative
structure. For instance, Fokker—Planck operators are partial differential operators
with degenerate second order derivatives, in contrast to generators associated with
non-degenerate diffusive dynamics which have full second order derivatives. The key
point in proving the longtime convergence of degenerate dynamics is to retrieve some
dissipation in all degrees of freedom by a combination of the transport part of the
evolution and the degenerate diffusion — as provided by the hypocoercive techniques
reviewed below.

We first briefly describe the two models which motivate our study (Langevin-type
dynamics and linear Boltzmann equation), and then provide a review of existing
hypocoercive approaches. We then turn to our motivation, namely providing bounds
on the resolvent of the partial differential operator under consideration directly,
without going through kinetic estimates on the evolution semigroups; and describe
our approach based on Schur complements.

Paradigmatic hypocoercive dynamics

Our first motivation for studying hypocoercive operators stems from molecular
dynamics [FS01, LM15, LS16, Tucl0], the computational armed wing of statistical
physics [Bal07]. One family of dynamics commonly used to compute average prop-
erties according to the Boltzmann—Gibbs measure are Langevin dynamics. These
dynamics evolve the positions ¢ and momenta p of given particles interacting via
a potential energy function V(q) according to the following stochastic differential
equation:

dqy = pi dt,
dp, = =VV(q) dt — ypy dt + o dW;,

where W, is a standard Brownian motion and v, o are positive numbers. The first
result on the convergence of Langevin-like dynamics to the stationary measure
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is [Tro77], which however does not provide explicit convergence rates. The generator
associated with Langevin dynamics

2
Liang =P+ Vg = VV(q)- V= 1p- Yy + 51,
is degenerate since second derivatives in ¢ are missing.

Another classical example of hypocoercive equation is the linear Boltzmann equa-
tion modelling the behaviour of material particles interacting with the environment
and subjected to a potential V. The behavior of the particles is described in an
average way by the density f(¢,y,v) which gives the probability to observe a particle
at position y with velocity v at time ¢t. This density evolves as

of
(1.1) o By v) = VV(y) - Vof(ty,0) +v-Vyf(t,y,v) = (Mf)(¢y,v).
Here, M is the collision operator modelling the interactions between the particles
and the environment, which leads to some dissipative structure in the velocities. In

its simplest form, it is constructed from an integral operator with kernel k:

(M)(tg,0) = [ by v,0) £t y,w0) dw = oly,0)f (4 ,0),

with the equilibrium condition

[, kw0, w) dv = aly, w),
]Rd

meaning that there is neither creation nor annihilation of particles. A special case is to
choose for k(y, v, w) a positive multiple of a Gaussian density with identity covariance
in the v variable (independent of y,w), which corresponds in molecular dynamics
to the generator of the so-called randomized Hybrid Monte Carlo method [BRSS17].
The operator

Loon, =VV -V, —v-V, + M

generates a strongly continuous semigroup in L2, and under various conditions on k
and o, it decays exponentially fast towards a global equilibrium in long time. This
exponential decay arises from some coupling between the Hamiltonian transport part
and the dissipation in the velocities. Besides the hypocoercive techniques reviewed
below, let us mention other convergence results specific to this equation, based on
spectral methods [Uka70, Vid70], control theory [HKL15] or the theory of positive
semigroups (see [BS13, MK14] and references therein). However, these methods are
not constructive and therefore do not provide explicit quantitative estimates of the
exponential rate of decay. This is in contrast with hypocoercive approaches, which
allow to obtain quantitative bounds by a clever combination of the transport and
dissipation part of the dynamics.
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A literature review on convergence results for operators with
degenerate dissipation

Let us list various approaches to study the exponential convergence of semigroups
associated with hypoelliptic or degenerate generators, in a somewhat chronological
order (see also the recent review [Hér18al):

A first set of results is based on Lyapunov techniques [MSH02, RB06, Wu01],
the typical Lyapunov function being the total energy of the system plus some
term coupling positions and momenta. This approach was mostly used for
Fokker—Planck operators such as the generators of Langevin dynamics, but
it can also be used for specific Boltzmann-type operators [BRSS17, CCEY 20,
CEL™18]. The corresponding convergence rates are however usually not very
explicit in term of the parameters of the dynamics, because it is difficult to
quantify the constants appearing in the so-called minorization condition in
terms of the parameters of the dynamics (such as the friction v for Fokker—
Planck operators associated with Langevin dynamics). There were however
recent attempts at providing more quantitative minorization conditions, using
tools from Malliavin calculus [Eval§].

Subelliptic estimates [EH03, HN04, HNO05] allow to obtain detailed informa-
tion on the spectrum of Fokker—Planck operators (discrete nature, localization
in a cusp region). The spectrum is completely known for systems with zero
potential on a torus [Koz89], or for quadratic potential energy functions
(see [MPP02, Pav14]).

H' hypocoercivity was pioneered in [MNO6, Tal02] and later abstractified
in [Vil09]. The application of this theory to Langevin dynamics allows to
quantify the convergence rates in terms of the parameters of the dynamics;
see for instance [HP08] for the Hamiltonian limit and [LMS16, LS16] for
the overdamped limit. The method can be extended to Generalized Langevin
dynamics [OP11] and certain piecewise deterministic Markov processes (whose
generators are a specific form of Boltzmann operators) [DPBCD21]. It can
also be used to study the discretization of Fokker—Planck equations [DHL20,
Geo21].

Exponential convergence in H' can be established using only L? bounds on
the initial data by hypoelliptic regularization [Hér07]. The latter technique
can also be adapted to discretization schemes [PZ17].

Entropic estimates for Fokker—Planck operators were initiated in [DV01] and
abstractified in [Vil09], though under conditions stronger than those for H*.
Recently, it was shown in [CGMZ19] how to remove the assumption that the
Hessian of the potential is bounded. Entropic hypocoercivity for the linear
Boltzmann equation was studied in [Eva21, Mon21], and for linearized BGK
models (that generalize the linear Boltzmann equation) in spatial dimension
one in [AAC16].

A more direct route to proving the convergence in L? was first proposed
in [Hér06], then extended in [DMS09, DMS15], and revisited in [GS16] where
domain issues of the operators at play are addressed. This method can be
applied to Fokker—Planck operators and Boltzmann-type operators. It is based
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on a modification of the L? scalar product with some regularization operator.
This more direct approach makes it even easier to quantify convergence rates;
see [DKMS13, GS16] for studies on the dependence of parameters such as
friction in Langevin dynamics, as well as [AAS15, ASS20| for sharp estimates
for equilibrium Langevin dynamics and a harmonic potential energy function.

The approach can be perturbatively extended to nonequilibrium situa-
tions [BHM17, 10519, SVE18] and to discretizations of the generator, either
via spectral methods [RS18] or with finite volume schemes [BCHR20]. It also
allows to consider non-quadratic kinetic energies (for which the associated
generator may fail to be hypoelliptic) [ST18]. It can be applied to various
dynamics, such as Adaptive Langevin [LSS20] or certain piecewise determinis-
tic Markov processes [ADNR21]. Finally, a combination of this approach with
a mode-by-mode analysis in Fourier space was introduced in [BDM™20] to
establish polynomial decay estimates for dynamics without confinement, and
extended in [BDLS19] to cover fractional diffusion operators. Alternatively,
it is also possible to rely on weak Poincaré estimates to obtain convergence
rates when there is no confinement [GW19).

e [t was shown recently how to use techniques from I'y calculus for degener-
ate operators corresponding to Langevin dynamics [Baul7, Mon19a]. This
approach allows to study more degenerate dynamics corresponding to the
evolution of chains of oscillators [Men20].

e Fully probabilistic techniques, based on clever coupling strategies, can also be
used to obtain the exponential convergence of the law of Langevin processes
to their stationary state [EGZ19]. One interest of this approach is that the
drift needs not be gradient, in contrast to standard analytical approaches for
which the analytical expression of the invariant measure should be known in
order to separate the symmetric and antisymmetric parts of the generator
under consideration. This coupling approach can combined with ideas from
Iy calculus [CG14].

e Finally, it was recently shown how to directly obtain L? estimates without
changing the scalar product, relying on a space-time Poincaré inequality
to conclude to an exponential convergence in time of the evolution semi-
group. The method was initially developped for the generators of Langevin
dynamics [AAMN19, CLW19], but can be extended to certain Boltzmann-
type operators [LW20] (see Appendix A below for a more detailed account).

Note that degenerate norms can be considered for approaches based on H!, L?
or Wasserstein norms, as initially done in [Tal02], and recently used in [Baul?,
LO17, IOS19]. It is also possible to extend various convergence results to singular
interaction potentials [BGH21, CHSG22, Her18b, HM19], and systems with several
conservation laws [CDH™21]. Let us finally mention that some approaches are related

one to another, such as Lyapunov techniques and estimates based on Poincaré
inequalities [BCGOS|.
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Motivations

Our aim in this work is to directly obtain bounds on the resolvent £71, as for
subelliptic estimates [EH03, HN04, HNO5|, without going through kinetic estimates
on the semigroup e’* which usually require a modified scalar product (often involving
a small parameter which makes the final estimates on the resolvent less quantitative).
The motivation for obtaining such resolvent bounds stems from the fact they are a
key element for proving that a Central Limit Theorem holds for time averages along
realizations of Langevin-like dynamics, and for obtaining estimates on the associated
asymptotic variance; see for example [Bha82] which shows that a sufficient condition
for the Central Limit Theorem to hold in this context is that —£~! is well defined on
a subspace of L?*(u), where y is the invariant measure of the underlying stochastic
dynamics. Note that it is also possible to use hypocoercive results to obtain non-
asymptotic concentration inequalities for time averages beyond the Central Limit
Theorem [BRB19, Mon19b).

From a more algebraic perspective, our motivation was to understand the origin
of the expression of the regularization operator which appears in the modified L?
scalar product in [Hér06, DMS09, DMS15], as well as the algebraic manipulations
of [AAMN19, CLW19], which bear some similarity with some computations in [Hér06,
DMS09, DMS15]. Our hope is to extract a structure as general as possible, which
encompasses many hypocoercive dynamics such as underdamped Langevin with
non-quadratic kinetic energies [ST18], the linear Boltzmann equation or randomized
Hybrid Monte Carlo with jump processes on the momenta [BRSS17], Adaptive
Langevin dynamics with a dynamical friction [Her18b, L.SS20], Langevin dynamics
with extra non-reversible perturbation [DNP17], etc.

Saddle-point problems and Schur complements

We now motivate the technical approach we use, which is based on Schur comple-
ments once the operator under consideration has been written in a form reminiscent
of a saddle-point problem. We illustrate the idea on a very simple example of station-
ary equation displaying some hypocoercive structure, namely the stationary Stokes
equation:

V.-u=0,
—aAu+ Vp = f,

where o > 0 is a viscosity constant, u :  — R? is the velocity field and p: Q — R
is the pressure field, with Q a subset of R? (d = 2 or 3). For simplicity, we take for
Q the torus (R/(27Z))? with periodic boundary conditions, and add the constraints
Jop = 0, Jou = 0. In a vector representation, the equation can be rewritten as

LStokes(p; U,) = (0, f), with
0o Vvt
LStokes = (v —OzA) .
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Expanding p,u and f into Fourier series, the equation is decoupled for each mode
n € Z4, resulting in the (1 + d)-dimensional algebraic equation Lsiokes. n(Pn, Un) =

(0, fn), where
0 in™
EStokeS,n - <in a|n|2 Idd> .

This (1 + d) x (1 + d) matrix is coercive in the last d variables (associated with
the velocity field ), but not in the first one (associated with the pressure field p).
However, we can first use the second equation to solve u,, as a function of p,:

Up = a_1|n|_2 (fn - inpn) :

Next, replacing in the first equation, we obtain
S,p, =in - (a_1|n|_2fn) )

where &,, = infa™!n|%in = —a~! is the Schur complement. This shows that
Lstokes,n 18 invertible for all n € Z\{0}; together with the zero-mean constraints on
u and p, this implies that the original problem has a unique solution. This scheme
of proof generalizes to other types of boundary conditions or equations (see for
instance [EG04, Section 2.4]).

The Stokes equation is an example of a more general class of problems characterized
by the block operator structure

(1.2) - (_OB iT> |

This type of problems arises for instance as the Hessian of the Lagrangian of a
minimization problem with linear constraints. The expression of L corresponds to
a splitting of the variables as (u,p), where u are the primal variables and p the
dual variables (Lagrange multipliers). In this case, solutions are saddle points of
the Lagrangian, hence the general name of saddle-point problems (see [BGLO5] for
a comprehensive review). As for the Stokes equation above, when A is invertible,
one can solve the equation for the second variable as a function of the first; in the
finite-dimensional case, this shows that the matrix L is invertible if and only if the
Schur complement & = BT A~ B is, which is equivalent to B having full column
rank.

The main result of this paper is an infinite-dimensional generalization of this simple
approach that covers the case of Fokker—Planck and Boltzmann-type operators. In
these applications, the block structure corresponds to the separation between the in-
directly dissipated variables (position) and the directly dissipated ones (momentum).
The algebraic structure is the same as the one above (compare (1.2) and (2.2)), but
the analytical structure (bounds on operators) that we use is adapted to the specific
case of kinetic operators.

Outline of the work

From a technical point of view, our approach based on Schur complements allows
to obtain a formal expression of the resolvent from a decomposition of the operator
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under study according to the kernel and image of the degenerate symmetric part of
the operator, which is at the origin of the degenerate dissipation. To our knowledge,
Schur complements were not used to understand the behavior of hypocoercive op-
erators, although they are well known in the mathematical physics literature where
they are used for spectral analysis (see for instance the review [SZ07]). As already
hinted at above, the main benefit of our approach is that it avoids the appearance
of somewhat uncontrolled prefactors in the bounds on the resolvent, in contrast to
estimates obtained from the exponential decay of the evolution semigroup; see in
particular Theorem 2.7 for general estimates, and for instance Corollary 3.4 and
Proposition 3.11 for illustrative applications of this general result.

We start by presenting the method in an abstract setting in Section 2, and then
apply it to various dynamics in Section 3. We discuss some relationship with the
recent works [AAMN19, CLW19] in Appendix A.

Extensions and future work tracks

This work calls for various extensions and refinements, on which we are currently
working, including in particular:

(i) obtaining resolvent estimates for (z — £)~!, for negative real parts of z suf-
ficiently small compared to the imaginary values of z (as already obtained
with subelliptic estimates [EH03, HN04, HN05]);

(ii) extending the approach to more degenerate dynamics, starting with the Gener-
alized Langevin dynamics [OP11], and if possible addressing oscillator chains.
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2. Abstract resolvent estimates
2.1. Schur decomposition of the generator

We consider the Hilbert space L?(u1) for some Boltzmann—Gibbs probability mea-
sure p1(dx) on a configuration space X = RP (the analysis could however be straight-
forwardly extended to situations such as X = TP with T = R/Z). The space L?(u)
is equipped with its canonical scalar product, denoted by (-,-). The induced norm is
denoted by || - ||. We consider a stochastic dynamics with generator

L=8S+ A,
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seen as an unbounded operator on L?(u), where
S L+L 7 _ L—-L
2
are respectively the symmetric (dissipation) and antisymmetric (transport) parts
of £. Adjoint operators are considered with respect to the scalar product (-,-). We
assume that the space € of smooth and uniformly bounded functions with uniformly
bounded derivatives is a core for both A and S. In the following, with some abuse
of notation, we denote by A and S the closure of these operators.
We assume that p is invariant by the dynamics, which translates into:

Vye®e, /X&pd,u:O.

We also assume that £1 = 0 (which for instance is obviously the case for generators
associated with diffusion processes; note that for hypocoercive dynamics, the assump-
tion of the existence of an invariant probability measure implies that no blowup can
occur). We define the subspace of functions of L?(u) with average 0 with respect

to
H= {eL2 ‘/ @,1):0}.

In the orthogonal decomposition L?(u) = Ran( ) @ H, the operator £ can therefore

be written as
0 0
L= (0 £|H> )

where L|3 denotes the restriction of £ to H. In particular, the inverse of £ cannot
be defined on the whole space L?(u), but only on H. In the sequel, we work on the

Hilbert space H only. We still denote by L, S, A the restrictions of £, S, A to H.
Our first structural assumption is the following.

ASSUMPTION 2.1. — There exists an orthogonal projector 1l such that I1y¢ C €
and
(2.1) I Ally = 0, Slly =1I,S = 0.

We denote by II, = 1 — Il the orthogonal projector complementary to Ily, and by
H - HO @ H+

the resulting decomposition of the Hilbert space. In the sequel, when T is an operator
on H and «, § labels, we use the notation H, = Ran(Il,) for the subspaces of H
and

Ta,@ = HQTH/B . Hﬂ — Ha,
for the restrictions (blocks) of 7. When 7,4 is a bounded operator, we denote its
operator norm by

[ Tasf]]
[ Topll = sup ——r2—.
rens\oy /]l
In view of Assumption 2.1, the operator £ can be written on H = Hy & H. as
. 0 £0+ o 0 AO+
(22) E - <£+O £++> - <A+0 »C++>
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with Ags = —A%,. We next formally compute the action of £7! by solving the
following linear system for a given couple (¢g, ¢+) € Ho X Ha:

PECERE
A+0 £++ U+ o ¢+ '

The second line leads to us = L }(¢+ — Asoup), and then the first line to ug =
(A L7 Aso) =0 + Ao+ LT} b4). Therefore,

-1 60_1 —661A0+£:+1
(2.3) L= <—£++1A+0651 Lo+ L A0S A L)

where
60 = _AO+£:+1-/4+0 = i0£:+1¢4+0
is the Schur complement associated with the decomposition (2.2). The subscript 0
in &y emphasizes that this operator acts on H,.
To give a meaning to the computations leading to (2.3), we need to ensure that both

L.+ and &y are invertible, and that the operators appearing in (2.3) are bounded.
We start with conditions ensuring the invertibility of L...

ASSUMPTION 2.2. — There exists s > 0 such that —S > sll. in the sense of
symimetric operators.

This shows in particular that —L,. is coercive on H., and therefore invertible,
with

=

It is clear from (2.2) that if A.q has a non trivial kernel, then £ cannot be invertible.

We therefore need a quantitative assumption about the injectivity of this operator
(a property called “macroscopic coercivity” in [DMS15]).

1
< s .

AsSuMPTION 2.3 (Macroscopic coercivity). — There exists a > 0 such that
(2.4) VeeHoN?, [ Awel = allel.

Let us next introduce the range of A.:

H, = Ran (Aw) = (Awp, p € HoNE) .

Assumption 2.3 ensures that — A Ao = A% Asg = a?, so that —Ag. Ay is invertible
on Hy. It is then easily seen that the operator

(2.5) I = Aso(AlpA) Al

is an orthogonal projector, and that its range is H;, so that II; is the orthogonal
projector onto Hi.

We further decompose H. orthogonally as H, = H; & Hs, which boils down to
defining Hy = (Ho ® H1)*. We denote by II, the orthogonal projector onto Ho. We
therefore have the following decomposition of H:

H="HoDH & Hy,
—_——

:H+

ANNALES HENRI LEBESGUE



Hypocoercivity with Schur complements 533

which induces the following decomposition of the generator:

0 Ay 0
L=|Aw L1 Li2], Aoi = —Aj.
0 ,621 »C22

The operator Ay : Ho — H; is injective by Assumption 2.3, and surjective by
definition of H;. It is therefore invertible, and the norm of its inverse A7y is bounded
by 1/a in view of (2.4). It can be easily checked that the explicit expression of the
inverse is

A = (AfpAu) Al = (Apdu) Al

Remark 2.4. — Note that Aj; is quite similar to the regularization operator
R = (1+ AiAs) L A%, introduced in [DMS09, DMS15, Hér06] to modify the scalar
product on L?(p) for proving hypocoercive properties. More precisely, the main steps
of the proof in [DMS09, DMS15] are to introduce a modified L?() scalar product,
induced by the modified norm (M. f, f) with the decomposition

1 eR
M. = (esR* 1 )
on HoPH., and equivalent to the canonical one; and to prove that — L is coercive with
respect to this modified scalar product, i.e. (—=M.Lf, f) > &(M.f, f) for some > 0.
The proof can be extended to any regularization operator of the form R = (n +
Al Asg) LA%, with 7 > 0. The inverse Ajg is recovered in the limit 7 — 0. Our

algebraic derivation therefore provides a complementary viewpoint on the origin of
the regularization operator in [DMS09, DMS15, Hér06].

We next remark that
(2.6) So = AL L A = A%y [c:}]n Asp.

Both operators —L,, and —Ls are coercive and hence invertible. We can then
consider a second Schur complement to compute the action of [£;}];:

s

Therefore, &y = A%,&; Ay, and so

=67, Sy = L1 — L12L5 Loy

11

S, = Ay (511 - /312/3521521) 10

(2.7) -1
= (AloAn) A (L1 = Lol L) Aro(AlpAo)

-1
We introduce a final structural assumption, which simplifies the action of some of
the operators.

ASSUMPTION 2.5. — There exists an involution R on H (i.e. a bounded operator
for which R? = 1) such that

RIly = IR = 1, RSR =S, RAR = —A.
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This assumption is motivated by the physical notion of microscopic reversibility
for kinetic dynamics, where R can be chosen as the momentum-reversal operator
(see Section 3). Assumption 2.5 implies in particular that

(2.8) RLR = L.
Since RIL, = R(1 — IIp) = IR, it holds
(2.9) RA. = — Ao,

and therefore RII; = —II;. Similarly, [I;/R = —II;. The operator R can therefore be
decomposed as

1 0 0
R=10 -1 0
0 0 Ra

It then follows from (2.8) that £ is symmetric, i.e. £1; = Sy;. In view of the latter
equality and of (2.7), we finally assume the following to ensure the invertibility of
the Schur complement Sy.

ASSUMPTION 2.6. — The operators Si1 and Lo1. A1 (.Aiofho)_l are bounded.

As we shall see in Section 3, Assumptions 2.1 to 2.6 are satisfied for generators
of Langevin-like dynamics, under suitable conditions on the potential and kinetic
energies. The final result can then be summarized as follows.

THEOREM 2.7. — Suppose that Assumptions 2.1 to 2.6 hold true. Then, L is

invertible on ‘H and
2

-1
s, IReal 1o (4o A)

a? S

3

e <2 3

Proof. — The proof consists in bounding the various terms in (2.3). We start
with the operator on the upper left. From (2.7) and since £1; = Sy1, we obtain the
following bound:

l&5!] < A s Ay Lo Awo(AzpAn) |-

] (Asoa) " AdoLia] 1232
Since (512)* = (ﬁ*)gl = (RER)Ql - —R22£21,
“(AjO.A+0)_1 To»ClQH = H(ﬁm)* A10<«4io-f4+o>_l‘ < | Raz| ‘

La1.A10(AgAv) |

From Assumption 2.2 we have ||£55|| < s7!. Therefore,
2

Lo1A10 (A.’COA+0) o

s

We now turn to the other terms in (2.3). Note first that Rt LisRur = LI, s0
that R L7 Ree = L5 In view of (2.6) and (2.9), the Schur complement & is in
fact symmetric and can be written as &y = A%, [£;}], Asw, where Ty = (T + T%) /2
denotes the symmetric part of an operator T'. Since [T 1], = T~*T, T, the operator

Raa |
HG_IH . ||‘z121|| ) Rz

(2.10) 0
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(LY = —L£78n.L7} is a positive bounded self-adjoint operator, with a well-
defined square root. The Schur complement is therefore symmetric negative and can

be factored as
1/2

So=—-0QQ,  Q=|-Ll]" Ao
Consider now the second term in the lower right corner of (2.3):
Lol Ay ALt = — £t -2 Q@@ @ [
S N / S

T T Ts

1/2

-1
L.

The operator T; is an orthogonal projector, hence has a norm bounded by 1. We
bound T3 by noting that

T5Ts = Ly} [—E:f}: L
= -2 (Cw [t 4 L) 1)
= 2L+ L) = =85,

and therefore ||T3]| < 1/4/s by Assumption 2.2. Similarly, ||77]] < 1/4/s, so that
1L A0Sy AL L] < 1/5. To bound the operator in the upper right corner of (2.3),
we remark that &5 ' A% L = —(Q*Q)~'Q* T3, so that (using ||A> = [|AA*|| with

=(Q*Q)'Q")
< Ljeor o] - oo -yl

The same bound holds for the operator in the lower left corner of (2.3).
By gathering all the estimates, we finally obtain
(£_1>++

o A (M B (G Rl [

1
< &5 +2 e +§ <z2)&p|+ 7,

S

&2

which, together with (2.10), gives the desired bound. O

3. Applications and extensions
3.1. Langevin dynamics

For Langevin dynamics (also known as underdamped Langevin dynamics, or kinetic
Langevin dynamics in some communities), the reference measure is the phase-space
Boltzmann-Gibbs measure defined on X = D x R? with D = T? or R?, which reads

pu(dq dp) = v(dq) k(dp),
(3.1) v(dq) = Z; e PV qq,
K(dp) = Z e V@) dp,
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where Z,,, Z,. € (0, +00) are normalization constants ensuring that v, k are probability
measures. The dynamics reads, for some positive friction v > 0,

dg = VU(pt) dt,

dps = =VV(q) dt —yVU(p;) dt + \/?th.

Dynamics in an extended space can also be considered, as we shall see in Section 3.3.
Note also that while for the classical Langevin dynamics the kinetic energy is simply
U(p) = |p|*/2, we consider a general kinetic energy U in order to emphasize the
structure of the dynamics. In particular, VU can vanish on an open set, in which
case the generator associated with the corresponding Langevin dynamics is not
hypoelliptic [ST18]. The antisymmetric part of the generator is the generator of the
Hamiltonian dynamics

(3.2) A= Lyam =VU(p)'Vy = VV(9)"V,,

while the symmetric part is (the subscript 'FD’ stands for "fluctuation/dissipation’)
1 1,

(33) S = 7£FD7 £FD = —VU(p)TVp + BAP = —vavp.

When the kinetic energy is quadratic, the choice (3.3) corresponds to considering an
Ornstein—Uhlenbeck process on the momenta. The projector Iy is

(3.4) (Wog)(g) = [, o(a.p) n(dp).

Simple computations show that Assumptions 2.1 and 2.5 hold true when U is even,
upon choosing the momentum reversal operator Rf(q,p) = f(q,—p) in Assump-
tion 2.5. Note that R is unitary when U is even, in which case ||Raz| = 1.

3.1.1. General estimates

We assume that v and & satisfy Poincaré inequalities. As we will see below, we also
need growth conditions on the potential in order to apply some results from [DMS15];
as well as moment estimates for derivatives of U. To state them, we denote by

¢ =051 ... 0yt and |a| = ay + - + ag for any a = (ay, ..., ag) € N
ASSUMPTION 3.1. — The function V is smooth and such that e ?V € L1(D).
There exists K, > 0 such that, for any ¢ € H'(v),
1
_ < .
H¢ /DMV 2w K, Vet

Moreover, there exist ¢; > 0, ¢y € [0,1] and c¢3 > 0 such that

(35) AV < ed+ 0225 wvE, v = fj 0,,0,,V[" < & (d+ WV,

t,j=1

where | - | denotes the standard Euclidean norm on R?.
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ASSUMPTION 3.2. — The function U is smooth and even, and such that e %V ¢
LY(R%). There exists K, > 0 such that, for any o € H*(k),
1
— d < —|V )-
o= Loet|,,. < Il

Moreover, the kinetic energy U is such that 05U belongs to L*(k) for any |a| < 3,
and (00U)(0'U) is in L*(k) for any |a| < 2 and |o/| = 1.

We refer to [BBCGOS| for simple conditions on U and V' that ensure that Poincaré
inequalities hold. The scaling with respect to the dimension of the constants in the
bounds (3.5) is motivated by the case of separable potentials for which V(q) =
v(q1)+- - - +v(qq) for some smooth one dimensional function v, which corresponds to
tensorized probability measures. The bounds (3.5) then follow from the inequalities

V' < e+ 6226(1/)2, W < 2 (1 + \v’\Q) .

These bounds generally hold if v has polynomial growth for example. The scaling of
the constants should be similar for particles on a lattice (such as one dimensional
atom chains) with finite interaction ranges, or systems for which correlations between
degrees of freedom are bounded with respect to the dimension, in the sense that each
column/line of the matrix V2V has a finite number of nonzero entries. Note finally
that a careful inspection of the proof of Lemma 3.7 below shows that it would be
possible to choose ¢; € [0,2), but the final estimates would be more cumbersome to
write, which is why we stick to the condition ¢, € [0, 1].

THEOREM 3.3. — Suppose that Assumptions 3.1 and 3.2 hold true. Then, the
resolvent of the generator of the Langevin dynamics satisfies the following bound:

(3.6) [ < m IIIL; LrplL |
46 3 9 N —1]|2 9 . —1]|2
+ ’}/KQ <4 + HH*'ﬁhamHO <A+0A+0) H + HH2£FDH1£hamHO (A+0~A+O) > ,

where Apin(M) > 0 denotes the smallest eigenvalue of the symmetric positive definite
matrix

/\/l:/ vQUdnga’/ VU @ VU dr.
Rd Rd

Note that the resolvent bound ||[£7!| indeed scales as min(y,v7'), as noted in
various previous works [DKMS13, GS16, IOS19] (upon possibly integrating in time
the bounds on the evolution semigroup).

Proof. — We apply Theorem 2.7, and check to this end that Assumptions 2.2, 2.3
and 2.6 hold true. The Poincaré inequality in the momentum variable implies that
Assumption 2.2 holds with

K
S = ’}/?
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To check Assumptions 2.3 and 2.6, we use d; = —0,, +£0,,U and 9, = —0,,+ 50,V
to rewrite the generators as

d
szyzFD:—gZa;am, A= Lo = — Za*  — 00,
=1

We also use the following rules

(05,0, ] = Oy =0,  Tdj, =0,  [9,,0;] =802 ,U

to obtain

1 d d

Al = 25 Z > 1109, 0, 05 0y, Ty
i=1j5=1

1
(3.7) = MoV, MV, Ty

1 d

=5 My 1L, 9, I
ij=1

To prove that M is a symmetric positive definite matrix, we write, for £ € R¢,
T T 2
¢ Mg:/a/Rd}g VUl dr.

If the latter quantity was 0 for some element ¢ € R4\ {0}, then VU would be 0 in
the direction of &, and hence U would be constant in this direction, which would
contradict the assumption e Y € L1(R?). We then obtain, for a smooth function ¢
with compact support and average 0 with respect to p,

2 B 1 m T m
L2(n) = ﬁ/ Vq ()QO) qu 0g0dl/

Amin (M) K2
o 2 G Mg

where we used the Poincare inequality for v in the last step. This shows that As-
sumption 2.3 holds true with

A
2 mln ’

We finally turn to Assumption 2.6. Note first that

_AtOEFDAm =

%= [0,

so that, in view of (2.5) and (3.7),

1
EV;N V 1o,
with

dk = Z/ pz U alzk Pj U) dk,

—II Lppll; = Z Tij,

1]1
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with
* '8 * -1 o * -1
Ty = 05 1ody,, Ty =0, (ViMV,)  ViNV, (ViMV,) 0,
where Tij is seen as an operator on L?(v). Note that T}; is bounded since it is the

composition of operators of the form IIy0,, and their adjoints, such operators being
bounded because, by an integration by parts,

IO, 0 = B/Rd 0 0p, U dk,
so that
HHoapkgp

L2(y) <P HapkUHLQ(u) HSOHLQ(M) :

The operators ﬂ-j are also easily seen to be bounded, as a linear combination of
composition of operators of the form (Vi MV )~/ 2(9; (which are bounded from L?(v)

to L(v), the subspace of functions of functions of L*(v) with average 0 with respect
to v) and their adjoints. This allows to conclude that S;; = vII; Lgpll; is bounded.
Let us next consider

-1 —1 -1
(38)  LaAw(AlpAw)  =ThSAM(Ajgdn)  + Ao (AfAw)

We start by the second operator on the right hand side of the latter equality.
Since II, = II,II,, it suffices in fact to prove that II,.AII, (Af0A+0)_1 is bounded.

First, for a smooth function ¢ with compact support, we compute A%llpp =

VU (Vlgp)VU — VVT(V2U)V,Ilyp, and therefore

d
(3.9) LA = Y U0z, Tlop — Vij (9, V) 0y, Ty,

ij=1
with

1

(3.10) Us; = l(ﬁpiU) (9,,U) - BMU] . Vi =0,,U-My.
The boundedness of the operator I1,.4%T1, (A%, As) " then follows from the fact that
the operators 11,0}, , T (At As) " and 11, (9, V) 04,11o (A%, As) " are bounded (in
view of (3.5), see respectively [DMS15, Proposition 5] and [ST18, Lemma A.4]; see
also the proof of Proposition 3.5 below).

Let us finally bound the first operator on the right hand side of (3.8), using the
following equality as operators from Hy to Ha:

TS ATl (A Ao ) = —;2 i 11570y, (AlpAs) -
=1

Pj~pi

d
7 =3 9; 0,0, 1.
j=1

The result then follows from the fact that d,, (A% Asw) ™" is bounded from H, to H,

and
d

I, =0 Z {5 (apj U) (8;,173' U) - alivpjvpj U} o

j=1

TOME 5 (2022)



540 E. BERNARD, M. FATHI, A. LEVITT & G. STOLTZ

is a bounded operator on L?(u), because of the L?(k)-bounds on the derivatives of
U (see Assumption 3.2). The estimate (3.6) finally follows by Theorem 2.7. O

3.1.2. Scaling with the dimension

The aim of this section is to make precise the dependence on the dimension of the
various terms in (3.6). We consider to this end the simple situation where the kinetic
energy is quadratic and where all degrees of freedom are associated with the same
mass m > 0, i.e.

d 2

p
(311) Up) =Y ulp). )= L
i=1 m
In this case, k(dp) is a tensor product of Gaussian measures with variances m/f3, so
that the Poincaré constant is K2 = 3/m.

COROLLARY 3.4. — Suppose that Assumption 3.1 holds true. Then, the resolvent
of the generator of the Langevin dynamics with quadratic kinetic energy (3.11)
satisfies the following bound:

2)

4 28y 4m (3
(3.12) e < Tt <4 +‘

The operator norm on the right hand side can be bounded using Proposition 3.5
below, or Proposition 3.9 in Section 3.1.4 under some extra assumptions on the
potential V. Let us emphasize that a particularly nice feature of the estimate (3.12)
is that there is no uncontrolled prefactor in the estimate, as usually obtained by
writing the resolvent as the time integral of the semigroup.

Proof. — First, M = m™'1d so that Apu(M) = m~t. Consider next IT; Lppll;.
Since LppLuamllo = —LpamIlo/m and therefore A% LrpAsg = —AjgAwo/m, it holds
Leplly = 11 Lppll; = —1II; /m. Since I1; is an orthogonal projector, we finally obtain
|ITT, LepITy || < m™!. Moreover, Iy Lppll; = 0 since Lppll; = —II;/m by the above
computations. The estimates finally follow from (3.6). O

T LT (ASpAun)

In addition to Assumption 3.1, and similarly to what is done in [CLW19], we
consider two possible conditions on the potential energy: (i) V' is convex; (ii) the
Hessian of V' is bounded below as VgV > —KId for some K € R,. Notice that
the second condition implies the first one when K = 0. The following result, whose
proof is postponed to Section 3.1.3, is key in understanding the dependence on the
dimension of the bound provided by (3.12).

PROPOSITION 3.5. — Suppose that Assumption 3.1 holds. Then,

* -1|1? Cl
HH.;.EﬁamHO <A+OA+0) < 2 (O + K,2> )

!/
where C and C' can be chosen as:

(i) If V is convex, then C' =1 and C" = 0;
(ii) If ViV > —KId for some K > 0, then C' =1 and C' =K;
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(iii) In the general case, C' = 2 and

’ 803 Cld
C 203[\/3—1—2max<62, 5)1

The scaling with respect to the dimension of the bound for item (iii) above is better
than the one in [CLW19], because we directly integrate into our assumption (3.5) how
the prefactors in the estimates should depend on the dimension, and then carefully
track this dependency in the proofs of Lemmas 3.6 and 3.7 below (the latter lemma
being directly obtained from [Vil09, Lemma A.24]).

To finally discuss more precisely the dependence on the dimension of the upper
bound (3.12), we would need to understand how the Poincaré constant K, and
constants ¢y, ¢, c3 in Assumption 3.1 depend on the dimension:

(i) As discussed after Assumption 3.1, ¢, ¢o, ¢3 can be chosen independently of
the dimension for simple systems (in particular for separable potentials, in
which case the Langevin dynamics can be seen as the juxtaposition of d one
dimensional Langevin dynamics).

(i) When V2V > RId with R > 0, the Poincaré constant K2 is bounded from
below by the positive constant SR by the celebrated Bakry-Emery crite-
rion [BE85], independently of the dimension. For separable potentials, the
Poincaré constant for the full measure is dimension-free as long as the mar-
ginal distribution of any single position itself satisfies a Poincaré inequality
(with some uniform lower bound on the Poincaré constant), by the tensoriza-
tion property. Sufficient conditions for dimension-free constants for functional
inequalities when the potentials have weak enough interactions have been
well-studied, see for example [OR07, Yos01].

These considerations allow to further make precise the estimates on the resolvent.

3.1.3. Proof of Proposition 3.5

We start by noting that, for the quadratic kinetic energy (3.11), the expres-
sions (3.9)-(3.10) simplify as
U — PiDj 1

i m2 miﬁ 1,7

V1<i,j<d, Vi; =0,

and

IL LY, 1o (Ai0A+0>_190 = Xd: uijai,qj'ﬂo (Ai0A+0>_190.
i, j=1

i, J=

Besides, a simple computation gives |[Uy;|72(, = 1/(m?8?) for i # j, and ||Uii |72,
= 2/(m?p?), as well as (Uij,Uri) 2,y = 0 when {i, j} # {k,1}. Therefore, for p €
L2 (),

(%)

1 2

1,220 (Al o) '

1

2 d _
= Z ”Z/{Z]Hi2(li) a§i7qu0(At0A+O> 2

i,j=1

L2(v)
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2

¢, o (A*0A+o)

S m252 Z

i, j=1

ZWHWOW

so that, using A} Aw = (mf) 'V VI,

L2(v)

¥ 120’

2

HH+£ﬁmHO(AiOA+O)_1 <o va (ViV,) Ty

L2()
The proof is then directly obtained from the following technical result (where we
denote by C°(D) the set of C'* functions with compact support).

LEMMA 3.6. — It holds, with the same constants C,C' € R as in Proposition 3.5,

20 = Z H gi ;Y

To prove this result, we need the following lemma.

2

YueCxD Hv2

CHVVu

L2(v L2(v) L2(v)’

LEMMA 3.7. — Suppose that Assumption 3.1 holds. Then,

4de
W¢mz

Proof of Lemma 3.7. — We closely follow the proof of [V1109, Lemma A.24],
precisely keeping track of all constants (which leads to estimates with a better
scaling than in [CLW19, Lemma 2.2]). First, for a given function ¢ € C°(D),

[Evatal P :/D<z§2|VV]2dV: ;/Ddiv (6*VV) dv

16
(3.13) Ve H (v), IWVVE%4<BﬂVMﬁ%>

2 1
_ f/ ¢v¢-vvczu+—/ SAV dv,
B Jp B
so that, in view of Assumption 3.1,
2 cd
169V Iza) < 5198l 2y 169V iz + =163y + S 19VV 120,

By a Young inequality with parameter n > 0, we then obtain

c d
(1 — 5 — > ||¢VV||L2 V) Hv¢||L2 - ||¢||L2(V)

Choosing 7 = /4 and recalling that ¢y € [O, 1] provides the claimed estimate by the
density of C°(D) in H'(v). O
We can finally turn to the proof of Lemma 3.6.

Proof of Lemma 3.6. — We fix u € C°(D) and follow the proof of [CLW19,
Lemma 2.3], which relies on Bochner’s formula

2
z; ’ ,u’2 = V-V, (V;un) — (un)Tvg‘/vqu vy, <|V;u] > |
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to write

(3.14) Z_ |02 ,u

—HVVU

/D (Vou) V2VV,udv.

L2(v)

This already gives the desired result when either V is convex (i.e. V2V > 0) or
V2V > —KId.

Let us next consider the general case given by Assumption 3.1. Note that |[V?V| <
cs(vVd 4 |[VV]). We first obtain from (3.14) that

(3.15) HV2

)
<[ vivul

L2 (v)

2
+eyVd ||unHL2(V) +¢3 quu”LQ(y)

Note that, from (3.13),

|19l 19,V

2
L2(v)

qi

d

416 2 4dc1
<;52HV(8%1L) oy T ‘8qzu .

16 2 4dc

3 [Viulag, + =5 IVallzag)

Using a Young inequality to bound the last term on the right hand side of (3.15)
with the inequality above then leads to

(92l < 93Pl + 0 (V55 ) 190,
d
+ 5 (R Ival, P 1ealla,,).
and finally
8 2nd
( c3?7> Hv2 HVVuL2 " <\/_+77+ 7 Cl)”v vy

We next choose n = 3%c/(8¢3) for some € € (0,1) to be determined, so that

Vi,

<1_€[HVVU

2
+ La,e ||un||Lz(,,)} )

L2(v) 2(v)

with

4 d
LdE:C3(\/a+a+b€), a:i;, [12601.
’ € o] des

When d is large, one should choose ¢ small enough in order for be to have a limited
growth. Such a choice implies that the denominator 1 — ¢ in the expression of L, .
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will be close to 1. In order to balance the diverging term a/ec as ¢ — 0, one should
set € = y/a/b. We however want to keep € < 1/2 in all cases, which suggests choosing

—min1 a
°7 2°\/v )

in which case (using that b < 4a when ¢ = 1/2)
d
Lg .= c3 [\/84— 2 max (2a, \/ab)} = C3 [\/E—i— 2 max (85023, c;)] .
The conclusion then follows from the fact that 1 —e > 1/2. U

3.1.4. Improving the dependence on the dimension under a log-Sobolev inequality

It is possible to improve the explicit dependence on the dimension from v/d to log d
in item (iii) of Proposition 3.5, but under some extra assumptions on the potential,
and if we strengthen the Poincaré inequality assumption into a logarithmic Sobolev
inequality.

DEFINITION 3.8. — A probability measure v on D is said to satisfy a logarithmic
Sobolev inequality with constant Cigp if
Vfe O§°<D),
But, (£2) = [ 2108 2 = {10108 1/ Iy < Cosil 97 s

A Poincaré inequahty can be derived by linearizing this inequality, so it is strictly
stronger than the Poincaré inequality we used above. However, it is still valid for
uniformly log-concave distributions, and tensorizes with dimension-free constants. We
refer to [Led99] for background information, and more general sufficient conditions
for LSI to hold. To state the result giving bounds on the resolvent with respect to
the dimension, we define, for a matrix M € R%¢, the operator norm

| M ||5(2) = sup |ME].

<1

We also denote by |£]so = max(|&1], ..., [&]) the £ norm on RY.

PROPOSITION 3.9. — Consider the quadratic kinetic energy (3.11). Assume that
e PV € LY(D), that v satisfies a logarithmic Sobolev inequality, and that

(3.16) VeeD, V(9 S+ IVV(l).

Then the conclusion of Proposition 3.5 holds true with

1
_ r_ 2c3Crs1|0; V|
C =2, C'=2 <63 + SesCrar {logd + log (i:nll%)fd/e du)]) .

Note that for this proposition to be useful, we implicitly assume the exponential
integrability of the partial derivatives of V' with respect to v. If we look at nice enough
separable potentials, the dependence of C” on the dimension is of order log d, since the
other quantities involved in the bound are dimension-free. Note that a logarithmic
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scaling in d is typically correct for maxima of d independent quantities [DLO1,
Lemma 2.2] (which here would correspond to the case of a separable potential).
Note also that the assumption (3.16), while natural for separable potentials, is not
invariant under a change of orthonormal basis.

Proof. — The proof follows the same general approach as that of Proposition 3.5,
but with the extra assumption on V', (3.15) can be replaced by
2
L2 (v

(317) |V

i?(u) S HVZun

) + c3 |]un||iz(y) + 03/ Vul® [VV]| dv.

We cannot use Lemma 3.7 to control the last term in the above equation, but use
instead the following classical entropy inequality: for g bounded measurable,

/Df29 dv < Ent, (fz) + Hf”%z(y) log (/D ed dy) .

This inequality is an immediate consequence of the fact that the entropy is the
Legendre transform of the log-Laplace functional, with respect to the duality between
functions and measures, i.e.

Ent, (f2) = sup {/ fPgdv — ||f|]%2(l,) log </ ed du) , g bounded measurable} .
D D
As a consequence, we obtain a bound of the form
1 1
Vaul? [V, dv < = Bty ((V,l?) 4+ [ Vgulfag, log ([ ei™Ve av),
L IVaul? [V dv <~ Ent, (IVul?) + < IVl log [ 17 av

with ¢ > 0 a constant to be adjusted later. When v satisfies a logarithmic Sobolev
inequality, the first factor on the right-hand side can be controlled by Crsi[|Vaull72 (),

using the inequality |V|V f||* < |V2f|2. The second factor can be bounded as

d
o) < (5
og De v og ;De

We therefore obtain the inequality

04,V

=1,...,d JD

o dy> < logd + log (._max / e<l9;V | du) .

2
L2(v

1 2
+ P ||vqu||L2(u) [logd +log (igl,afd/p

c3Crsr

(3.18) | V2u

HVQU

2
L?(v

oy <|IViVat| u,, + csll Vaullzag +

2
L2 (v)

ecloiV] dyﬂ .

C

Taking ¢ = e te3Chgr leads to
2

<
L2(v)

|v2u ViV,u

1 2
| + Ly IV qullZa,,

2
L2(v)

with

1 -
he = = (03 + é {logd%— log < max /De‘E teaCrsilOiV] dl/)]) .

c3CLst i=l,...,d

We next set ¢ = 1/2 and follow the same reasoning as in the end of the proof of
Proposition 3.5 to conclude. U
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3.2. Linear Boltzmann equation

We turn in this section to another paradigmatic hypocoercive dynamics, known as
the linear Boltzmann equation in the community of researchers working on kinetic
equations, while it corresponds to the randomized Hybrid Monte Carlo method in
computational statistics and molecular simulation.

We consider the linear Boltzmann equation (1.1) with a more general kinetic
energy U(v) than |v|?/2, for the choice

k(y, v.w) = e V0,

This corresponds to the following dynamics
of

E(ta Y, U) - VV(y) . va(t7 Y, U) + VU(U) ’ Vyf(t7 Y, U)

:7[ 7. /Rdf(tava)dw_f<t7y7v) :
We next change the unknown function from f(¢,y,v) to ¢(t,y,v) = f(t,y,v)/
foo(y,v), with f the steady-state of the above equation. In fact, f, is the density
of (3.1), namely foo(y,v) = Z e PV®+U®) We then obtain the following dynamics
on :

Op + Liamp = 7(Ilo — Do,

with Ily defined in (3.4). This shows that the operator to consider for the longtime
convergence of the linear Boltzmann equation is £L = A+ S with A = —L.m and

(3.19) S = (Il — 1).

Remark 3.10. — We can alternatively interpret the generator as the Fokker—
Planck operator associated with a piecewise deterministic Markov process where
Hamiltonian trajectories are interrupted at random exponential times by a resampling
of the momenta according to x. This corresponds to the so-called Randomized Hybrid
Monte Carlo method [BRSS17].

The estimates on the resolvent of the generator obtained by the approach described
in Section 2 are the following.

ProPOSITION 3.11. — Suppose that Assumption 3.1 holds true and that U is
smooth and even, with e PV € L*(RY). Then, the resolvent of the generator L = A+S
with A given by the opposite of the generator in (3.2) and S given by (3.19) satisfies
the following bound:

)

208~ 2 (3
£ < e = 5+
e < s 2 (5
Note that, here as well, the upper bound on the resolvent of the generator scales
as min (7,7 1). The scaling with respect to the dimension d can be made precise as
in Sections 3.1.2 and 3.1.4.

T Tl (ASpAuo)
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Proof. — All the computations of Section 3.1.1 are valid upon taking s = . The
only changes that need to be made are in the verification of Assumption 2.6. Note
first that I1;STI; = AI1411,11; = ~II;, which immediately implies that ||[TI;STI;|| = .
Next, Sy; = 0, so that Sy A (.A,*,OA+0)_1 = 0. The final estimate then directly
follows from Theorem 2.7. OJ

3.3. Adaptive Langevin dynamics

We show here how to apply the framework of Section 2 to Adaptive Langevin
dynamics, which is a Langevin dynamics in which the friction is a dynamical vari-
able ¢ € R following some Nosé-Hoover feedback dynamics. Therefore, x = (g, p, §)
and X = D x R? x R. We consider for simplicity the case when
|p|2 12d: 2
After some suitable normalization (see [LSSQO]), the invariant measure of the dy-
namics reads

(3.20) U(p) =

_ s 52
pldgdpdg) = Z"exp | =f | =~ +V(q) + dq dp dg,

and the generator is, for some ¢ > 0,
1
L = Lpam +7Lrp + gﬁNHa

with Lyam and Lpp defined respectively in (3.2) and (3.3), and
d & * * *

Lt = (W ~ B) O —EpTV, = @ ((0e = 02) ViV, + Asde — A,0;) .
Therefore, S = vLpp as for standard Langevin dynamics, while A = Ly +2 1 Lxg.
The framework introduced in Section 2 allows to retrieve the scaling on the resolvent
of the generator found in [L.SS20] using the techniques from [DMS15, Hér06).

PROPOSITION 3.12. — Suppose that Assumption 3.1 holds true. Then there exists
C € R, such that
1 s 11
YV y,e >0, H/J HéC’maX YL == | -
voE

Proof. — Assumptions 2.1, 2.2 and 2.5 hold true as for Langevin dynamics. A
simple computation next shows that

Alg A = < G20k + va) Mo,

which, by tensorization of Poincaré inequalities, implies that Assumption 2.3 holds

with
1 2d
a’> = = min < , K 2)
B
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Let us next turn to Assumption 2.6. Computations similar to the ones performed for
Langevin dynamics (see the proof of Corollary 3.4) show that IT; Lgpll; is bounded
and Sy Applly(B*B)™! = 0 since Sy = YII,Lppll; = 0 for the choice (3.20). From
the computations in the proof of [LSS20, Lemma 2.7], there exists R € R, such that

- 1
HH.;.EﬁamHO (A_T_()A-y()) 1” < RmaX (]_, 5) .

An application of Theorem 2.7 then allows to conclude. U

Appendix A. Generalized Poincaré-type inequalities

We show here how to obtain Poincaré-type inequalities, as recently derived in
[AAMN19] and revisited in [CLW19], relying on the algebraic framework presented
in Section 2. We assume in all this section that A1 = 0 and that S is a negative
operator. Let us emphasize that some arguments are formal. The main interest of our
presentation in our opinion is to make explicit the algebraic framework behind the
estimates obtained in [AAMN19, CLW19] for Langevin dynamics, in order to extend
the approach to other hypocoercive dynamics (as done in [LW20] for various models
of piecewise deterministic Markov processes, as the one considered in Section 3.2).
In particular, the framework used here allows to simplify some algebraic manipula-
tions, as for instance in the proof of [CLW19, Theorem 2].

We first show how to obtain Poincaré-type inequalities using the antisymmetric
part of the generator, in a static setting where only spatial degrees of freedom are
considered. We then give a somewhat abstract account of Poincaré-type inequalities
in a space-time setting and recall how they are used to prove the exponential decay
of the evolution semigroup. We do not provide new results in the space-time setting,
but merely present the results of [AAMN19, CLW19] in the language of this work.

A.1. Poincaré-type inequality using the antisymmetric part of the
generator

We start by proving the following Poincaré-type estimate. Recall that 11, = 1 —1I,.
We consider, in the result below, a slight modification of Assumption 2.6.

PROPOSITION A.1. — Suppose that Assumptions 2.1 and 2.3 hold true, and that
the operators (1 — S)V2I1; and I1, A%, (A%, Asw) " are bounded. Then,

(A1) VfeCE(X), |f = (£ <O -Th) £l + Co||(1 = 8) V2 Af
with

Y

Cr=1+ HmA?HO (AiOA+0)_1H < 400,

Co = (1= 8) " Auo(Aig ) | < o0
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Note that, for Langevin dynamics, ||(1 —S&)™'/2 - || is a norm equivalent to the
canonical norm on L*(v, H '(k)) (since S = Lpp with Lpp given by (3.3)), so
that (A.1) corresponds to the result in [AAMNI19, Theorem 1.2]. The assumption

n (1 — 8)Y211; is automatically satisfied for operators associated with linear Boltz-
mann dynamics, or Langevin dynamics with quadratic kinetic energies (since STI; is
proportional to II; in these cases and hence bounded, see the proof of Corollary 3.4).

Proof. — To prove (A.1), we first note that, since ||f|| < [|(1 —IIo) f|| + [[TIo f]], it
is sufficient to establish that there exists C; € R, such that, for any f € C°(X),

@9 )< afa-m ]+ cofa -5,

The inequality (A.1) then holds with C; = 1 + C;. To obtain (A.3), we assume
without loss of generality that (f,1)2(,) = 0 and compute

o/ = {Aof, Ao (Al o) "o )
<AHof, A+o A*OAm) 11_[0f>
<

Af, .A+o Atofho) 1H0f> _ <A(1 — o) f, Auo (AZgAug) " H0f>
H 1/2AfH H 1/2A+0<Ai044+0) IHOf

Note that the operator (1 —S)2 A, (A%, Aw)~" can be written as the composition

of (1—8)Y2IL; (bounded by assumption) and the bounded operator A.g (A% Av) "
This leads finally to (A.1). O

+ =10 £ a2 (A d) o f

A.2. Space-time Poincaré inequality (formal)

We now turn to space-time domains. We fix a time 7" > 0 and consider the reference
Hilbert space

Hy = {@ € L* (fir) | {p: Vo) = 0},

where
- 1

The space-time Poincaré inequality proved in [AAMNI19, CLW19] is the following:
For any T' > 0, there exist Cy r, Cor € Ry such that, for any f € C([0,T] x X),

Hf LQ(MT) LQ(JT)
< Oy, r||(1 —1Ip) fHLz(;;T) + o, H(l — Lep) Y2 (=0, + Lpam) f

with Lyam and Lpp defined in (3.2) and (3.3) respectively.

L2 (ET) ’
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This suggest considering the following space-time Poincaré inequality for generators

L=A+S:

(A.4) Hf— oD e () 12 (jir )

< Cur (=Tl oy + Cor (1= )2 (=0 + A) f

L2 ()
Formally, this corresponds to replacing £ in the statement of Proposition A.1 by
—0; + L, considered on the Hilbert space Hr. The total antisymmetric part of the
operator is then —d; + A. In order to derive an inequality such as (A.4), it formally
suffices to replace the operator A.g in the derivation of (A.3) by —0;I1y+.A+g. Let us
emphasize that this operator does not correspond to the restriction of —9; + A+ S
from Hy to H because of the term —0;Ily. There are however some caveats in such
a derivation, related to the boundary conditions in the time domain, which is why a
careful treatment is required; see [CLW19, Lemma 2.6].

A.3. Exponential convergence

Let us finally show how to formally deduce an exponential convergence from (A.4)
(the complete rigorous argument would involve regularizations and truncations in
order to give a meaning to all time derivatives) when Assumption 2.2 holds true.
Recall that scalar products and associated norms are by default the ones on L?(),
unless explicitly mentioned otherwise.

In order to highlight the fact that it is possible to obtain lower bounds on the
convergence rate with respect to some parameter in the dynamics, we consider the
case when the generator is of the form

L=A+~S,

for some parameter v > 0. Consider ¢(t) = e'“¢, for a given function ¢, € H. Note
first that (¢(t),1) = 0 for all £ > 0, so that (¢, 1) 2, = 0. Moreover, ¢ — [|o()]]
is non-increasing since

& (S IeI) = 2(ele). S0(0)) < 0.

Finally, from the evolution equation satisfied by (%),
—18¢(t) = (=0 + A) p(t) = IL (=0, + A) (1),

which implies, upon applying (—S)~'/2 to both sides of the above equality (which is
indeed possible in view of Assumption 2.2), that

(), Se(t)) =7 |(=8)et)| = i |(=8)72(=0, + Aye(t)|

> 21— )2 (=0 + Apt)|

o)
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Therefore, for any n € (0,1),
le(T)II* = llp(0)[1> = 29T (@ 80D 12 ()

2T _ 2
< =297 (1 = sl ) — j [(1=8)" (=0, + A)p

L? (ﬁT) '

The choice n = v*sC3 1/(v*sC3 1 + C} 1) leads to

2
o] e E O]
2vsT

< _
v2sC5 7+ CF ¢

2

L2 (ﬁT)

(c3ofa -0

+C3 1 ||(1 = 8)72 (=0, + A)p(t)

)

2
L2 (ﬁT ) )
vsT vsT

< — 2 < — T 2 :
25C3 1+ C3y Il ) 125C3 7+ C2 1 o2z

vsT
S - 2 (12 2
Y SCQ,T+CI,T

(curfa -t

L?(jir)

+Co 1 |[(1 = 8)72 (=0, + A)e(t)

where we used the Poincaré inequality (A.4), and the fact that ¢ — [[¢(t)||£2(,) is
non-increasing in the last step. By rewriting this final inequality as

-1
sT
TYsr o < apllo(O)|2200,  0<ap =1+ i <1,
T < orllo@lsgy, 0 <o = (1+

we can then conclude to an exponential convergence as in [AAMN19, CLW19]. It
is also possible to make explicit the scaling with respect to the dimension and the
friction coefficient 7 in this setting, as done for Langevin dynamics in Section 3.1.
More precisely, for T' > 0 fixed, it holds

ar ~ e_'YST/C%,T7 ar  ~ e—T/(’yC;T)’

v—0 vy — +o0

which shows that the convergence rate of the semigroup e** is indeed of order
min(y,y7").

Remark A.2. — If the constants Cy 7, Cs 7 in (A.4) were uniformly bounded by
values C, Cy > 0 with respect to T" > 0, it would be possible to take the limit 7" — 0
in the above estimates. This would lead to

d 2 s 2
gt (eOllEzg) <~ mm g le O,

and hence to an exponential convergence without prefactor, which is clearly false
since this would imply the coercivity of the generator for the canonical scalar product
on L*(p). In [CLW19), the constant Cyr in (A.4) involves a term scaling as 1/T,
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which prevents taking the limit 7" — 0. It can be traced back to the estimates on 1/,
in [CLW19, Lemma 2.6].
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