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CRITERION
FOR LATTICES IN PRODUCTS
OF TREES
UN CRITÈRE D’IRRÉDUCTIBILITÉ DE
RAYON 1 POUR LES RÉSEAUX DANS LES
PRODUITS D’ARBRES

Abstract. — Let T1, T2 be regular trees of degrees d1, d2 > 3. Let also Γ 6 Aut(T1) ×
Aut(T2) be a group acting freely and transitively on V T1 × V T2. For i = 1 and 2, assume that
the local action of Γ on Ti is 2-transitive; if moreover di > 7, assume that the local action
contains Alt(di). We show that Γ is irreducible, unless (d1, d2) belongs to an explicit small set
of exceptional values. This yields an irreducibility criterion for Γ that can be checked purely
in terms of its local action on a ball of radius 1 in T1 and T2. Under the same hypotheses, we
show moreover that if Γ is irreducible, then it is hereditarily just-infinite, provided the local
action on Ti is not the affine group F5 o F∗

5. The proof of irreducibility relies, in several ways,
on the Classification of the Finite Simple Groups.

Résumé. — Soient T1, T2 des arbres réguliers de degrés d1, d2 > 3 et Γ 6 Aut(T1)×Aut(T2)
un groupe agissant librement et transitivement sur V T1 × V T2. Pour i = 1 et 2, on suppose
que l’action locale de Γ sur Ti est 2-transitive; si en outre di > 7, on suppose également que
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cette action locale contient le groupe Alt(di). Nous montrons que Γ est irréductible, à moins
que le couple (d1, d2) n’appartienne à une courte liste explicite de valeurs exceptionnelles.
Ce résultat donne lieu à un critère d’irréductibilité pour Γ qui s’exprime en termes de son
action locale sur les boules de rayon 1 de T1 et T2. Sous les mêmes hypothèses, en supposant en
outre que l’action locale de Γ sur Ti ne soit pas l’action 2-transitive naturelle du groupe affine
F5 o F∗

5, nous montrons aussi que si Γ est irréductible, alors il est héréditairement juste infini.
La démonstration du critère d’irréductibilité repose, de plusieurs façons, sur la Classification
des Groupes Simples Finis.

1. Introduction
The study of lattices in products of trees was pioneered by D. Wise [Wis96] and

M. Burger and S. Mozes [BM97, BM00b]. Their seminal works revealed that the
class of finitely generated groups admitting a Cayley graph that is isomorphic to the
Cartesian product of two trees is very rich: it contains not only products of virtually
free groups, but also certain S-arithmetic groups and some finitely presented virtually
simple groups, among many others. Such groups are called BMW-groups and form
a special class of lattices in products of trees. An introduction to this fascinating
subject may be consulted in [Cap19, § 4]. The goal of this paper is to present a
sufficient condition, that is straightforward to check in practise, ensuring that a
BMW-group is irreducible.
Let T1, T2 be locally finite trees and Γ 6 Aut(T1) × Aut(T2) be a group acting

with finite stabilizers and finitely many orbits. Equivalently Γ is a discrete subgroup
of Aut(T1) × Aut(T2) acting cocompactly on T1 × T2. Such a group Γ is called a
cocompact lattice in the product T1 × T2. Since we only consider cocompact lattices
in this paper, the adjective cocompact will henceforth be omitted. We say that Γ is
reducible if it contains a finite index subgroup of the form K1 ×K2, where Ki 6 Γ
acts trivially on T3−i and freely and cocompactly on Ti for i = 1 and 2. Otherwise Γ
is called irreducible. Determining whether a given lattice is reducible is a crucial basic
question, and there is no known algorithm deciding if that property holds in full
generality. Burger and Mozes observed however that the irreducibility of Γ can be
tested in an efficient algorithmic way under an extra hypothesis on the local action of
Γ on T1 or T2. We recall that, given a group G acting on a graphX by automorphisms,
the local action of level n of G at a vertex v is the action of the stabilizer Gv on the
n-ball around v. The Gv-action on the 1-sphere around v is called the local action
for short. We say that the local action of G has a property P (e.g. is transitive,
primitive, 2-transitive, etc.) if the local action of G at every vertex has property P .
If G is vertex-transitive, then the local actions of G at all vertices are pairwise
isomorphic; in that case, the corresponding abstract permutation group is called
the local action of G on X. An important fact due to Burger and Mozes [BM00a,
§ 3.3], [BM00b, § 5] is that, if di > 6, if G is vertex-transitive on Ti and if the local
action of Γ on Ti contains Alt(di) for i = 1 or 2, then the irreducibility of Γ can be
tested by considering the local action of level 2 of Γ on Ti. More generally, using the
work of V. Trofimov and R. Weiss [TW95], one can show that, for all di > 3, if the
local action of Γ on Ti is 2-transitive, then the irreducibility of Γ can be tested by
considering the local action of level 7 of Γ on Ti (see [Cap19, Corollary 4.12]).
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A radius 1 irreducibility criterion 645

An action of a group on a set is called regular if it is free and transitive. In the
present paper, we focus on the special class of lattices in T1×T2 formed by the groups
Γ 6 Aut(T1) × Aut(T2) acting regularly on V T1 × V T2. In that case the tree Ti is
regular of degree di. Following [Cap19, § 4], such a group Γ is called a BMW-group
of degree (d1, d2). When this is the case, the group Γ has a generating set S such
that the Cayley graph of (Γ, S) is the Cartesian product T1 × T2. This paper was
initiated by the following observation, which follows easily from the aforementioned
work of Trofimov–Weiss. It shows that, in principle, when the local action on both
tree factors is 2-transitive, then the lattice Γ is “almost always” irreducible.

Theorem 1.1. — Let d1 > d2 > 3, let T1, T2 be regular trees of degrees d1, d2
and let Γ 6 Aut(T1)×Aut(T2) be a group acting regularly on the vertices of T1×T2.
Assume that for i = 1, 2, the local action Fi of Γ on Ti is 2-transitive. If

d1 > (d2!)
(
(d2 − 1)!

) d2((d2−1)5−1)
d2−2 ,

then Γ is irreducible.

A similar idea is used by C. H. Li in his proof of [Li05, Theorem 1.1].
The condition that the Γ-action on V T1 × V T2 be free is essential in Theorem 1.1.

Indeed, given any d > 3, let Wd be the free product of d copies of the cyclic group of
order 2. Then Sym(d) acts by automorphisms on Wd by permuting the d generators
of order 2. Therefore, for all d1 > d2 > 3, the direct product

Γ =
(
Wd1 o Sym (d1)

)
×
(
Wd2 o Sym (d2)

)
is an obviously reducible lattice in T1 × T2, where Ti is the regular tree of degree
di. Its local action on Ti is Sym(di). Moreover Γ acts transitively, but not freely,
on V T1 × V T2, showing that the hypothesis of freeness of the Γ-action cannot be
removed in Theorem 1.1.
Under extra assumptions on the local action, the bound contained in Theorem 1.1

can be vastly improved. This is illustrated by the following result, where Cn denotes
the cyclic group of order n.

Theorem 1.2. — Let d1 > d2 > 3, let T1, T2 be regular trees of degrees d1, d2
and let Γ 6 Aut(T1)×Aut(T2) be a group acting regularly on the vertices of T1×T2.
Assume that for i = 1, 2, the local action Fi of Γ on Ti is 2-transitive. Assume
moreover that if di > 7, then Fi > Alt(di). Then Γ is irreducible provided none of
the following conditions holds:

(i) d2 = 3, and
d1 ∈

{
23, 24, 47

}
.

(ii) d2 = 4, and

d1 ∈
{

6n | n > 2 divides 972
}
∪
{

12n− 1 | n divides 972
}
.

(iii) d2 = 5, F2 ∼= C5 o C4, and

d1 ∈
{

10, 19, 20, 39, 40, 79
}
.
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(iv) d2 = 5, soc(F2) ∼= Alt(5), and

d1 ∈
{

30n | n > 2 divides 768
}
∪
{

60n− 1 | n divides 768
}
.

(v) d2 = 6, soc(F2) ∼= Alt(5), and

d1 ∈
{

30n | n > 2 divides 200
}
∪
{

60n− 1 | n divides 200
}
.

(vi) d2 > 6, and

d1 ∈
{
d2!
2 − 1, d2!

2 , d2!− 1, d2!(d2 − 1)!
4 − 1, d2!(d2 − 1)!

4 ,

d2!(d2 − 1)!
2 − 1, d2!(d2 − 1)!

2 , d2!(d2 − 1)!− 1
}
.

The socle of a finite group F , denoted by soc(F ), is the subgroup generated by
all the minimal normal subgroups of F . While contemplating the list of possible
exceptions in small degree in Theorem 1.2, it is useful to keep in mind the list of
finite 2-transitive groups of degree 6 6, which is recalled in Table 2.1 below.
Theorem 1.2 provides in particular an irreducibility criterion for a BMW-group Γ

of degree (d1, d2): if the pair (d1, d2) is not one of the exceptions from the list (i)–(vi)
in the theorem, then Γ is irreducible provided its local action on Ti is 2-transitive
and, in case di > 7, if it also contains Alt(di), for i = 1 and 2. That criterion depends
only on the local actions of level 1, and is thus considerably easier to use in practise
than the other criteria mentioned above.
Notice the contrast between the bound on d1 in Theorem 1.1 and the range of

values for (d1, d2) in Theorem 1.2. Examples of reducible lattices Γ as in Theorem 1.2
with (d1, d2) = (23, 3), (24, 3), (47, 3), (11663, 4), (19, 5), (39, 5) and (79, 5) will be
highlighted, relying on the work of Xu–Fang–Wang–Xu [XFWX05], Li–Lu [LL09],
M. Conder [Con09] and Ling–Lou [LL16, LL17], see Proposition 2.3 below. In par-
ticular Theorem 1.2 is sharp in the case d2 = 3. It would be very interesting to
determine which of the exceptional values occurring in Theorem 1.2 are indeed
realized by actual examples of reducible lattices (for 4 6 d2 6 6, not all values of
d1 appearing in the theorem can be realized, see Remark 2.12), or at least whether
infinitely many values of (d1, d2) with d2 > 6 can occur. As we shall see in Section 2.2,
this is a question in finite group theory. The examples found for the small values of
d2 provide evidence for a positive answer to the latter question.
We point out the following immediate consequence.

Corollary 1.3. — Let T1, T2 be regular trees of degrees d1, d2 ∈ {3, 4, 5, 6} and
let Γ 6 Aut(T1) × Aut(T2) be a group acting regularly on the vertices of T1 × T2.
Assume that for i = 1, 2, the local action of Γ on Ti is 2-transitive. Then Γ is
irreducible.

The hypothesis of the regularity of the Γ-action on V T1× V T2 is essential: indeed,
there are examples of reducible lattices Γ 6 Aut(T1)× Aut(T2) acting with 2 orbits
of vertices and locally 2-transitive actions at every vertex of both factors, with
(d1, d2) = (3, 4), see Remark 2.4 below.
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Using the basic covering theory of graphs (see Proposition 2.2), one shows that
Theorem 1.2 is equivalent to a statement on finite groups acting on graphs, namely
Theorem 3.1 below. The proof of the latter statement relies heavily, and in several
ways, on the Classification of the Finite Simple groups. Particularly relevant is the
classification, due to Liebeck–Praeger–Saxl [LPS00, Corollary 5], of all pairs (G,M)
consisting of a finite almost simple group G and a subgroup M 6 G whose order
involves all primes dividing the order of G (see Section 2.7 below). It is moreover
closely related to the well studied field of finite groups admitting an s-arc transitive
Cayley graph (see [LX14] and references therein).
Combining the work of Burger–Mozes [BM00a], Bader–Shalom [BS06] and V. Trofi-

mov [Tro07], we will show that if a lattice Γ satisfies the hypotheses of Theorem 1.2
and if it is irreducible, then it is hereditarily just-infinite, i.e. Γ is infinite, and every
proper quotient of every finite index subgroup of Γ is finite.
Corollary 1.4. — Retain the hypotheses of Theorem 1.2 and assume that Γ

is irreducible. Assume moreover that if di = 5 then Fi 6∼= C5 o C4 for i = 1 and 2.
Then Γ is hereditarily just-infinite.

See Corollary 4.4 for a more general statement.
Numerous explicit examples of BMW-groups of small degree satisfying the hypothe-

ses of Theorem 1.2 and Corollary 1.4 are given in [Cap19, § 4], [Rad17] and [Rat04].
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2. Preliminaries

2.1. Groups acting on graphs and local action

For graphs and trees, we use the terminology and notation of [BL01, § 2.1].
A graph X consists of a set of vertices V X, a set of oriented edges EX, two maps
∂0, ∂1 : EX → V representing the endpoints of edges, and an orientation reversing
map EX → EX : e 7→ ē satisfying ∂iē = ∂1−ie and ¯̄e = e 6= ē. For x ∈ V X we set
E(x) = {e ∈ EX | ∂0(e) = x}. A geometric edge of X is a pair {e, ē} with e ∈ EX.
Let now G be group acting on a graph X by automorphisms. We denote by Gx

the stabilizer of an element x ∈ V X ∪ EX. For x ∈ V X and m > 0, we also denote
by G[m]

x the subgroup of G fixing all vertices y ∈ V X at distance d(x, y) 6 m. The
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quotient group Gx/G
[1]
x , viewed as a permutation group on E(x), is the local action

of G at x. More generally, the group Gx/G
[m]
x , viewed as a permutation group on

the m-ball around x, is called the local action of level m of G at x.
An edge inversion is an element g ∈ G such that ge = ē for some e ∈ EX. If G

acts without edge inversion, then we can form the quotient graph G\X, see [BL01,
§ 2.2]. We say that the G-action on X is free if G acts freely on V X and freely on
the set of geometric edges. Equivalently, the G-action on X is free if G acts freely
on V X and has no edge inversion.

Lemma 2.1. — Let X be a connected graph and G 6 Aut(X) be a group of
automorphisms. Given a normal subgroup N of G acting freely on X, the kernel of
the G-action on the quotient graph N\X coincides with N .

Proof. — Let g ∈ G act trivially on the quotient graph N\X and let x ∈ V X.
Since gN(x) = N(x), there exists n ∈ N with gn(x) = x. Let now y be any vertex
of X fixed by h = gn, and let e be an oriented edge with ∂0e = y. Then e and h(e)
belong to the same N -orbit since g acts trivially on N\X. Since ∂0e = y = ∂0h(e),
any element of N mapping e to h(e) fixes y. Since N acts freely, we deduce that
h(e) = e. Thus h fixes all edges emanating from y, hence also all the neighbours of y.
Since the graph X is connected, this implies that h = gn acts trivially on X. Thus
g ∈ N as required. �

2.2. A reduction to finite group theory

The following basic result from the covering theory of graphs allows one to go back
and forth between reducible lattices in products of trees and finite groups acting on
products of graphs, without affecting the local actions.

Proposition 2.2. — Let T1, T2 be regular trees of degree d1, d2 and Γ 6 Aut(T1)
× Aut(T2) be a group acting transitively on the vertices of the Cartesian product
T1×T2. For i = 1, 2, let Fi denote the local action of Γ on Ti, let Ki be the projection
on Aut(Ti) of the kernel of the Γ-action on T3−i. Assume that Ki acts freely on Ti

(as defined in Section 2.1). Then for i = 1 and 2, we have:
(i) the group G = Γ/K1 ×K2 acts transitively on the Cartesian product V X1 ×

V X2, where Xi is the quotient graph Ki\Ti,
(ii) Xi is of degree di and the local action of G on Xi is isomorphic to Fi,
(iii) the G-action on Xi is faithful,
(iv) if the Γ-action on V T1 × V T2 is free, then so is the G-action on V X1 × V X2.
Conversely, let X1, X2 be regular graphs of degree d1, d2 and G 6 Aut(X1) ×

Aut(X2) be a group acting with m orbits (resp. acting regularly) on the vertices
of the Cartesian product X1 × X2. Assume that the local action of G at every
vertex of Xi is isomorphic to the permutation group Fi. Then there is a group
Γ 6 Aut(T1)× Aut(T2) acting with m orbits (resp. acting regularly) on V T1 × V T2,
where Ti is the regular tree of degree di, such that:

(v) The local action of Γ at every vertex of Ti is isomorphic to Fi,
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(vi) Γ contains a normal subgroup of the form K1 ×K2 such that the quotient
group Γ/K1 ×K2 is isomorphic to G,

(vii) Ki is the fundamental group of the graph Xi acting by covering transforma-
tions on the tree Ti.

Proof. — For the first part, notice that since Ki acts freely on Ti, the quotient
graph Xi = Ki\Ti is well defined. Recall that, by definition, the vertex set of Xi

consists of the Ki-orbits in V Ti, and the oriented edges of Xi are defined as the Ki-
orbits of oriented edges in Ti, so that the projection map V Ti → V Xi is a morphism
of graphs. Since Ki acts freely, the quotient map Ti → Xi can also be viewed as
a covering map in the classical sense from topology. Assertions (i)–(iv) now follow
from the basic covering theory of graphs (for which we refer to [Bas93] and [Ser77]),
together with Lemma 2.1.
The converse is also a standard application of the covering theory of graphs. �
Given Proposition 2.2, the following result is an easy consequence of known

results on s-arc transitive Cayley graphs due to Li–Lu [LL09], Xu–Fang–Wang–
Xu [XFWX05] and M. Conder [Con09]. We denote by Tn the regular tree of degree n.
Proposition 2.3. —
(i) There exists a reducible lattice Γ3, 23 6 Aut(T3)× Aut(T23) acting regularly

on the vertices of T3 × T23, whose local action on T3 (resp. T23) is Sym(3)
(resp. Sym(23)).

(ii) There exists a reducible lattice Γ3, 24 6 Aut(T3)× Aut(T24) acting regularly
on the vertices of T3 × T24, whose local action on T3 (resp. T24) is Sym(3)
(resp. Sym(24)).

(iii) There exists a reducible lattice Γ3, 47 6 Aut(T3)× Aut(T47) acting regularly
on the vertices of T3 × T47, whose local action on T3 (resp. T47) is Sym(3)
(resp. Alt(47)).

(iv) There exists a reducible lattice Γ4, 11663 6 Aut(T4)× Aut(T11663) acting regu-
larly on the vertices of T4 × T11663, whose local action on T4 (resp. T11663) is
Sym(4) (resp. Alt(11663)).

(v) There exists a reducible lattices Γ5, n 6 Aut(T5) × Aut(Tn) acting regularly
on the vertices of T5 × Tn, for n = 19, 39 and 79, whose local action on T5 is
C5 o C4, and whose respective local action on T19, T39 and T79 is Sym(19),
Alt(39) and Alt(79).

Proof. — By [LL09, Theorem 1.1], there is a 3-regular graph Y which is a Cayley
graph of the group B = Sym(23), whose full automorphism group G is isomorphic to
Sym(24), and such that the local action of G on Y is Sym(3). Let A be the stabilizer
in G of a vertex y ∈ V Y . Hence |A| = 24, A∩B = {1} and G = AB. Let moreover X
be the complete graph on 24 vertices, on which G acts faithfully by automorphisms.
Let x ∈ V X be the vertex fixed by B. Since G = AB and A ∩ B = {1}, it follows
that the diagonal G-action on the vertex set of X × Y is free and transitive. The
assertion (i) thus follows from Proposition 2.2.
For (ii), we use a similar argument, using a degree 3 Cayley graph Y of an index 2

subgroup of Sym(23)× Sym(24) appearing in [Con09, Theorem 2.1(d)]. We define
X to be the complete bipartite graph K24,24 in this case.
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The proof of (iii), (iv) and (v) are also similar. For (iii) and (iv), one uses a degree 3
Cayley graph of Alt(47) appearing in [Con09, Theorem 2.1(e)] (such a graph was
first constructed in [XFWX05]) and a degree 4 Cayley graph of Alt(11663) discussed
in [Con09, § 3]. For (v) and n = 39, 79, one uses the graph from [LL16] and [LL17,
Theorem 1.1(2)] respectively. For (v) and n = 19, an example was constructed by
M. Giudici using Magma. �

Remark 2.4. — Using the converse part of Proposition 2.2, one can also construct
reducible lattices Γ in regular trees of smaller degrees with 2-transitive local actions.
For example, consider the group G = Sym(4) ×C2. It acts locally 2-transitively

on the bipartite graph X with 2 vertices and 4 geometric edges, as well as on the
graph Y which is the 1-skeleton of the cube. The diagonal action of G on X ×Y has
2 orbits of vertices, and the vertex-stabilizers are non-trivial (they are isomorphic to
Sym(3)). Invoking Proposition 2.2, we obtain a locally 2-transitive reducible lattice
Γ 6 Aut(T4)× Aut(T3) acting with 2 orbits of vertices, since X̃ ∼= T4 and Ỹ ∼= T3.
Another example is constructed similarly using the group G = Sym(5), that acts

locally 2-transitively on the complete graph X = K5, as well as on the Petersen
graph Y . The diagonal action of G on X × Y has 2 orbits of vertices (the stabilizers
of vertices in the corresponding orbits are respectively of order 4 and 6). This yields
a locally 2-transitive reducible lattice Γ 6 Aut(T4)×Aut(T3) acting with 2 orbits of
vertices, since K̃5 ∼= T4 and Ỹ ∼= T3.

2.3. Locally 2-transitive actions

Recall that a permutation group G 6 Sym(Ω) is quasi-primitive if every non-trivial
normal subgroup of G acts transitively on Ω.

Lemma 2.5 ([BM00a, Lemma 1.4.2]). — Let X be a connected graph, let
G 6 Aut(X) be a group whose local action is quasi-primitive and let N 6 G
be a normal subgroup of G. Set

V X ′(N) = {x ∈ V X|Nx acts transitively on E(x)} ,
V X ′′(N) = {x ∈ V X|Nx acts trivially on E(x)} .

Then one of the following assertions holds:
(i) V X ′′(N) = X and N acts freely on V X.
(ii) V X ′(N) = X and N acts transitively on the set of geometric edges of X. In

particular N has at most 2 orbits of vertices.
(iii) V X = V X ′(N) ∪ V X ′′(N) is a G-invariant bipartition of X, and for any

x′′ ∈ V X ′′(N), the 1-ball B(x′′, 1) around x′′ is a strict fundamental domain
for the N -action on X.

The case (ii) splits into two subcases, according to whether N is transitive on V X.
In particular, we deduce the following when G is vertex-transitive.
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Corollary 2.6. — Let X be a connected graph, let G 6 Aut(X) be a vertex-
transitive group whose local action is quasi-primitive. For any normal subgroup
N 6 G, one of the following assertions holds:

(i) N acts freely on V X.
(ii) N is transitive on V X and on the set of geometric edges.
(iii) N has exactly two orbits on V X, which form a G-invariant bipartition of X,

and N is transitive on the set of geometric edges.

Proof. — Since N is normal and G is vertex-transitive, the Nx-action on E(x) is
isomorphic to the Ny-action on E(y) for any two vertices x, y ∈ V X. Thus only the
cases (i) or (ii) from Lemma 2.5 can occur. In the second case, observe that if N
is not transitive on V X, then no element of N can map a vertex to a neighbour,
because Nx acts transitively on E(x) for all x ∈ V X. Thus the N -orbits form a
G-invariant partition of V X such that no two element of a given class are adjacent.
Since N is transitive on the set of geometric edges, it has at most 2 orbits of vertices.
The desired assertion follows. �

In case N 6 G is a normal subgroup acting non-freely on V X, we have the
following.

Corollary 2.7. — Let X be a connected graph, let G 6 Aut(X) be a vertex-
transitive group whose local action is quasi-primitive. Let N 6 G be a normal
subgroup. Assume that neither N nor CG(N) acts freely on V X. Then either |V X|
6 2, or X is complete bipartite and N acts regularly on the set of geometric edges.

Proof. — Let M = CG(N). Since N is normal in G, so is M . In view of the
hypotheses, both M and N satisfy the conclusion (ii) in Lemma 2.5.
We now invoke Corollary 2.6 for M .
If M is transitive on V X, then Nx = Ny for any pair of vertices x, y ∈ V X. Since

Nx is also transitive on E(x) it follows that |V X| 6 2.
If M is not transitive on V X, then X is bipartite and M has two orbits on V X.

Let x 6= y be adjacent vertices.
TheMy-action on E(y) is transitive by Lemma 2.5. Thus, for all neighbours x′ of y,

we have Nx = Nx′ . Since Nx is transitive on E(x), we see that Nx-orbit of y coincides
with the set of neighbours of x. Since Nx = Nx′ and Nx′ is transitive on E(x′), we
deduce that x and x′ have the same set of neighbours. Similarly, any neighbour y′
of x has the same set of neighbours as y. Since X is connected, this implies that
X is a complete bipartite graph. Given a geometric edge {x, y}, the stabilizer Nx, y

is trivial since it commutes with M , which is transitive on the geometric edges by
Corollary 2.6. The conclusion follows since N is transitive on the set of geometric
edges by Corollary 2.6. �

We also record the following information about the case where the local action
of G is 2-transitive and N 6 G is a normal subgroup acting freely on V X but not
freely on geometric edges.

Lemma 2.8. — Let X be a connected graph, let G 6 Aut(X) be a group whose
local action is 2-transitive, and let N 6 G be a normal subgroup of G acting freely
on V X but non-freely on the set of geometric edges of X. Let x ∈ V X. Then:
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(i) For each e ∈ E(x), there is a unique element se ∈ N with se(e) = ē and
s2

e = 1.
(ii) N acts regularly on V X.
(iii) N is generated by the set {se | e ∈ E(x)}.
(iv) G[1]

x = {1}.
(v) G ∼= N oGx and CGx(N) = {1}.
(vi) Z(G) 6 N .
Proof. — The hypotheses on N imply the existence of an edge f ∈ EX and an

element s ∈ N with s(f) = f̄ . Since N is free on V X we have s2 = 1. Let x = ∂0(f).
For each e ∈ E(x) there is g ∈ Gx with g(f) = e. Set se = gsg−1 ∈ N . Thus we have
proved Assertion (i) for some vertex x, and the assertion will follow for all vertices
as soon as we show that N is vertex-transitive. The group 〈se | e ∈ E(x)〉 contains
an element mapping x to each of its neighbours. Since X is connected, it follows
that the latter group is transitive on V X. Thus N is transitive and Assertions (i),
(ii) and (iii) follow since N acts freely on V X by hypothesis. Moreover (v) is a
consequence of (ii). Finally, observe that an element g ∈ G[1]

x fixes each e ∈ E(x),
and thus centralizes se. Thus g ∈ CGx(N) by (iii). Thus g = 1 by (v), and (iv) holds.
Let Z = Z(G) be the center of G. Its image under the projection G→ G/N ∼= Gx is

a central subgroup of Gx. The group Gx acts 2-transitively on E(x), and that action
is faithful by (iv). It follows that Z(Gx) = {1}. Hence Z 6 N and (vi) holds. �

2.4. Vertex stabilizers of locally 2-transitive actions

The following important result due to V. Trofimov and R. Weiss provides very pre-
cise information about vertex-stabilizers for proper vertex-transitive locally
2-transitive actions of discrete groups on locally finite graphs. It plays a crucial
role in our considerations.
Theorem 2.9. — Let G 6 Aut(X) be a vertex-transitive automorphism group

of a connected locally finite graph X. Let (v, w) be an edge of X. Suppose that the
local action is 2-transitive, and that the stabilizer Gv is finite. Then:

(i) (Trofimov–Weiss [TW95, Theorem 1.4]) We have
G[5]

v ∩G[5]
w = {1}.

In particular G[6]
v = {1}.

(ii) (Trofimov–Weiss [TW95, Theorem 1.3 and 2.3]) If G[1]
v ∩ G[1]

w 6= {1} (e.g. if
G[2]

v 6= {1}), then the local action at v contains a normal subgroup isomorphic
to PSLn(Fq) in its natural action on the points of the n − 1-dimensional
projective space over the finite field Fq of order q. Moreover G[1]

v ∩ G[1]
w is a

p-group, where p is the characteristic of Fq.
(iii) (R. Weiss [Wei79, Theorem 1.1 and 1.4]) If the local action at v contains a

normal subgroup isomorphic to PSL2(Fq) in its natural action on the points
of the projective line over a finite field Fq, then there is s ∈ {2, 3, 4, 5, 7} such
that for any geodesic segment (v1, v2, . . . , vs) of length s− 1, we have

G[1]
v1 ∩G

[1]
v2 ∩Gv3 ∩ · · · ∩Gvs = {1}.
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Moreover if char(Fq) > 5 then s 6 4, and if char(Fq) = 2 then s 6 5.

2.5. The 2-transitive groups of degree 6 6

In the proof of Theorem 1.2, we will encounter several case-by-case discussions
depending notably on the list of 2-transitive groups of small degree. For the reader’s
convenience, that list is recalled in Table 2.1.

Degree d G 6 Sym(d) |G|
3 Sym(3) ∼= C3 o C2 ∼= F3 o F∗3 6
4 Alt(4) ∼= PSL2(F3) ∼= F4 o F∗4 12
4 Sym(4) ∼= PGL2(F3) 24
5 C5 o C4 ∼= F5 o F∗5 20
5 Alt(5) ∼= PSL2(F4) 60
5 Sym(5) ∼= PΓL2(F4) 120
6 Alt(5) ∼= PSL2(F5) 60
6 Sym(5) ∼= PGL2(F5) 120
6 Alt(6) 360
6 Sym(6) 720
Table 2.1. 2-transitive groups of degree 6 6

Keeping that list in mind, we now present two consequences of Theorem 2.9 needed
for the proof of Theorem 1.2. The following one should be compared with [BM00a,
Lemma 3.5.1].

Corollary 2.10. — Let G 6 Aut(X) be a vertex-transitive automorphism
group of a connected locally finite graph X of degree d with finite vertex-stabilizers.
Suppose that the local action F 6 Sym(d) is 2-transitive. Suppose moreover that at
least one of the following conditions holds:

(a) the point stabilizer Fp is almost simple.
(b) F is sharply 2-transitive and d 6 5.

Then for v ∈ V X, we have G[2]
v = {1}, and the group G[1]

v is isomorphic to a normal
subgroup of Fp. Furthermore, if (a) holds and if G[1]

v 6= {1} then G[1]
v is almost simple

with socle isomorphic to soc(Fp).

Proof. — Let w ∈ V X be adjacent of v. Each of the conditions (a) and (b) implies
that G[1]

v ∩G[1]
w = {1} by Theorem 2.9(ii) (see Table 2.1). The groups G[1]

v and G[1]
w

are both normal subgroups of Gv, w, and the quotient Gv, w/G
[1]
w is isomorphic to

Fp. The image of G[1]
v 6 Gv, w under the projection Gv, w → Gv, w/G

[1]
w is injective

(since G[1]
v ∩G[1]

w = {1}) and isomorphic to a normal subgroup of the group Fp. The
required conclusions follow. �

The various possible exceptions appearing in Theorem 1.2 find their roots in the
following result.
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Corollary 2.11. — Let G 6 Aut(X) be a vertex-transitive automorphism
group of a connected locally finite graph X of degree d with finite vertex-stabilizers.
Suppose that the local action F 6 Sym(d) is 2-transitive, and moreover that F >
Alt(d) if d > 7. Let x ∈ V X. Then one of the following assertions holds:

(i) d > 6 and |Gx| ∈ {d!
2 , d!, d!(d−1)!

4 , d!(d−1)!
2 , d!(d− 1)!}.

(ii) d = 3 and |Gx| ∈ {6n | n divides 23}.
(iii) d = 4 and |Gx| ∈ {12n | n divides 22 · 35}.
(iv) d = 5 and F = C5 o C4, then |Gx| ∈ {20, 40, 80}.
(v) d = 5 and soc(F ) = Alt(5) and |Gx| ∈ {60n | n divides 28 · 3}.
(vi) d = 6, soc(G) = PSL2(F5) and |Gx| ∈ {60n | n divides 23 · 52}.
Proof. — If F = Alt(d) or Sym(d) with d > 6, we must have (i) by Corollary 2.10.

Similarly, if d = 5 and F = C5 o C4 then |Gx| ∈ {20, 40, 80} by Corollary 2.10.
In the remaining cases, we apply Theorem 2.9(iii) using the list in Table 2.1. �

Remark 2.12. — The structure of Gx in the case where d 6 6 can be described
more precisely, see [Wei79, Theorems (1.2) and (1.3)]. Those results could be used
to sharpen slightly the range of values appearing in Corollary 2.11, and hence also
those in Theorem 1.2; we will not perform that sharpening here.

2.6. Finite simple {2, 3, 5}-groups

The following result is a consequence of the CFSG.
Proposition 2.13 ([HL00, Theorem III(1) and Table 1]). — Let S be a non-

abelian finite simple group such that the only prime divisors of |S| are 2, 3 and 5.
Then S is isomorphic to Alt(5), Alt(6) or PSp4(3) ∼= U4(2), respectively of order
22 · 3 · 5, 23 · 32 · 5 and 26 · 34 · 5.

2.7. Subgroups of a finite simple group involving all its primes

Given a finite set X, we denote by π(X) the set of prime divisors of |X|. The
following important result will be crucial to our purposes.
Theorem 2.14 (Liebeck–Praeger–Saxl [LPS00, Corollary 5]). — Let G be a finite

almost simple group with socle N . Let M 6 G be a subgroup not containing N such
that π(M) ⊇ π(N). Then the possibilities for N and M are all listed in [LPS00,
Table 10.7].
The following consequence, that can be extracted from the list given by Liebeck–

Praeger–Saxl, will be sufficient for us. (Extra caution is needed in view of the
exceptional isomorphisms between small finite simple groups.)
Corollary 2.15. — Retain the assumptions of Theorem 2.14 and suppose in

addition that M ∩N has a composition factor isomorphic to Alt(d) for some d > 5.
Then either there exist positive integers k 6 c such that N = Alt(c) and Alt(k)CM
6 Sym(k)× Sym(c− k) and k > p for all primes p 6 c, or the pair (N,M ∩N) is
one of the exceptions listed in Table 2.2 (see [LPS00] for the notation).
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N |N | M ∩N
(1) Alt(6) 23 · 32 · 5 L2(5) ∼= Alt(5)
(2) U3(5) 24 · 32 · 53 · 7 Alt(7)
(3) U4(2) 26 · 34 · 5 M ∩N 6 24.Alt(5), Sym(6)
(4) U4(3) 27 · 36 · 5 · 7 Alt(7)
(5) PSp4(7) 28 · 32 · 52 · 74 Alt(7)
(6) Sp6(2) 29 · 34 · 5 · 7 Alt(7), Sym(7),Alt(8), Sym(8)
(7) PΩ+

8 (2) 212 · 35 · 52 · 7 M ∩N 6 P1, P3, P4,Alt(9)
Table 2.2. The exceptional pairs (N,M ∩N) in Corollary 2.15

2.8. On subgroups of direct products of simple groups

The following fact is an easy corollary of an important consequence of the Classifi-
cation of the Finite Simple Groups, namely the fact the every automorphism of a
non-abelian finite simple group centralizes a non-trivial subgroup (see [KS04, § 9.5.3]).
Note however that we shall need that result only in the case of the alternating groups.

Proposition 2.16. — Let S be a non-abelian finite simple group. LetG = S1×S2
be the direct product of two groups isomorphic to S, and let A1, A2 6 G be subgroups
of G that are also isomorphic to S. If A1 ∩ A2 = {1}, then there is i ∈ {1, 2} such
that Ai = S1 × {1} or Ai = {1} × S2.

Proof. — Assume that Ai 6= S1 × {1} and Ai 6= {1} × S2 for i = 1 and 2. Then
by Goursat’s Lemma, for i = 1, 2 there exists an isomorphism ϕi : S1 → S2 such
that Ai = {(x, ϕi(x)) | x ∈ S1)}. Since A1 ∩ A2 = {1}, it follows that ϕ−1

1 ϕ2 is an
automorphism of S1 whose only fixed point is the trivial element. By [KS04, § 9.5.3]
(see also the announcement in [Gor82, Theorem 1.48]), the group S1 must be solvable,
contradicting the hypotheses. �

3. Finite groups with locally 2-transitive actions on product
graphs

The goal of this section is to prove Theorem 1.2. It will be deduced as a corollary
to the following result. See Section 3.10.

Theorem 3.1. — Let X1, X2 be finite connected regular graphs of degree d1 >
d2 > 3 and let G 6 Aut(X1) × Aut(X2) be a group acting freely and transitively
on the vertices of the Cartesian product X1 ×X2. For i = 1 and 2, we assume that
the G-action on Xi is faithful and that its local action Fi is locally 2-transitive; we
assume moreover that if di > 7 then Fi > Alt(di). Then X1 is the complete graph
Kd1+1 or the complete bipartite graph Kd1, d1 . Moreover one of the conditions (i)–(vi)
listed in Theorem 1.2 is satisfied.

The proof occupies the rest of this section.
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3.1. The standing hypotheses and notation

We fix the notation and assumptions adopted throughout. For i = 1, 2, let di > 3
and Fi 6 Sym(di) be a 2-transitive permutation group. Let E(F1, F2) be the collection
of triples (X1, X2, G) satisfying the following conditions:

(Hyp1) Xi is a connected di-regular graph for i = 1 and 2.
(Hyp2) G 6 Aut(X1)× Aut(X2) is a finite group.
(Hyp3) G acts transitively on V X1 × V X2.
(Hyp4) The G-action on Xi is faithful for i = 1 and 2.
(Hyp5) The local action of G on Xi is isomorphic to Fi for i = 1 and 2.

We further denote by F(F1, F2) the subcollection consisting of those triples (X1, X2,
G) ∈ E(F1, F2) satisfying in addition:

(Hyp6) G acts freely on V X1 × V X2.
Lemma 3.2. — Let (X1, X2, G) ∈ E(F1, F2), let x1 ∈ V X1 and x2 ∈ V X2. Then:
(i) Gx1 acts transitively on V X2 and Gx2 acts transitively on V X1.
(ii) G = Gx1Gx2 .

If in addition (X1, X2, G) ∈ F(F1, F2), then:
(iii) Gx1 acts freely on V X2 and Gx2 acts freely on V X1.
(iv) Gx1 ∩Gx2 = {1}.
Proof. — Assertion (i) is immediate from (Hyp2) and (Hyp3); assertion (ii) fol-

lows from (i), while (iii) and (iv) are equally straightforward. �
Thus, if (X1, X2, G) ∈ F(F1, F2), we may see X1 as a Cayley graph of Gx2 and vice-

versa, unless |V X1| 6 2 (resp. |V X2| 6 2). The latter inequality is never satisfied in
our setting: indeed, since |V Xi| = |Gx3−i

| and since Gx3−i
has a 2-transitive action

on a set of cardinality d3−i > 3, we have |V Xi| > 3.

3.2. Proof of Theorem 1.1

As mentioned in the introduction, Theorem 1.1 is a straightforward consequence
of Theorem 2.9. Let us record the proof. We first need the following result.
Lemma 3.3. — Let T1, T2 be regular trees of degree d1, d2 > 3 and let Γ 6

Aut(T1) × Aut(T2) be a group acting regularly on the vertices of T1 × T2. Assume
that the local action of Γ on Ti is 2-transitive for i = 1, 2. For i = 1, 2, let Ki be
the projection on Aut(Ti) of the kernel of the Γ-action on T3−i. Then Ki acts freely
on Ti.
Proof. — Since Γ acts freely on V T1 × V T2, it follows that Ki acts freely on V Ti.

We need to show that Ki does not invert any edge of Ti. If Ki contains an edge
inversion, then Ki acts regularly on V Ti by Lemma 2.8(ii). Let v ∈ V T3−i. Let K ′i
be the kernel of the Γ-action on T3−i, so that K ′i ∼= Ki and K ′i acts regularly on V Ti.
Clearly K ′i 6 Γv. Since Γ acts regularly on V T1 × V T2, it follows that Γv is regular
on V Ti, so that K ′i = Γv. Since that equality holds for all v ∈ V T3−i, it follows
that Γv acts trivially on T3−i. This contradicts the hypothesis that Γv is 2-transitive
on E(v). �

ANNALES HENRI LEBESGUE



A radius 1 irreducibility criterion 657

The example following Theorem 1.1 in the introduction shows that Lemma 3.3
may fail if the Γ-action on V T1 × V T2 is not free.
Proof of Theorem 1.1. — Retain the notation of Lemma 3.3 and assume that

d1 > d2 and that Γ is reducible. We must show that d1 < M , where

M = (d2!) ((d2 − 1)!)
d2((d2−1)5−1)

d2−2 .

The reducibility of Γ ensures that the quotient Γ/K1 ×K2 is finite. Moreover by
Lemma 3.3, we may invoke Proposition 2.2, which ensures that the set F(F1, F2) is
non-empty, where F1, F2 denote the local actions of Γ on T1, T2. Let (X1, X2, G) ∈
F(F1, F2), let x ∈ V X2 and v ∈ V T2. In view of Theorem 2.9, an upper bound on
the order of |Gx| is provided by the order Aut(T2)v/Aut(T2)[6]

v . The latter group is
isomorphic to the iterated permutational wreath product
Sym (d2 − 1) o Sym (d2 − 1) o Sym (d2 − 1) o Sym (d2 − 1) o Sym (d2 − 1) o Sym (d2) ,
whose order is M . In particular X1 is a d1-regular graph of order bounded above by
that number. Since Aut(X1) is locally 2-transitive, we have |V X1| 6 2 or |V X1| >
d1 + 1. The former case is impossible, since it would imply that |Gx2| = 2 by
Lemma 3.2, contradicting that G is locally 2-transitive on the graph X2 whose
degree is d2 > 3. Thus we obtain d1 + 1 6M , which is the required bound. �

Remark 3.4. — The bound obtained in the proof above can directly be sharpened
by exploiting Theorem 2.9 in a more precise way. We will do this in the proof of
Theorem 3.1.

3.3. Assuming that N acts freely on V X1 and on V X2

From now on, we choose a member (X1, X2, G) ∈ F(F1, F2). We also fix N 6= {1}
a minimal normal subgroup of G. Thus N is characteristically simple. Hence it is
isomorphic to the kth direct power of a finite simple group S. We also fix x1 ∈ V X1
and x2 ∈ V X2.
Lemma 3.5. — Assume that N ∼= Sk acts freely on both V X1 and V X2, but not

freely on the set of geometric edges of Xi for i = 1 or 2. Then:
(i) |N | = |Gx3−i

|.
(ii) Gx3−i

is isomorphic to a subgroup of Gxi
.

(iii) N and S are not abelian.
(iv) d1, d2 > 5.
(v) |Fi| has at least 3 prime divisors.

Proof. — Lemma 2.8 applies to the N -action on Xi. It follows that G ∼= N oGxi
.

In view of Lemma 3.2, the assertion (i) follows. Since the N -action on V X3−i is free,
the projection of Gx3−i

under the projection G→ G/N ∼= Gxi
maps Gx3−i

injectively
onto a subgroup of Gxi

. This proves (ii).
If N ∼= Sk were abelian (or equivalently if S were abelian), then the order of

N would be a power of 2 since N is generated by involutions (see Lemma 2.8(i)
and (iii)). Thus Gx3−i

is a 2-group by (i). A 2-group does not admit a 2-transitive
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action on a set containing more than two elements. This is a contradiction since Gx3−i

is 2-transitive on a set of cardinality d3−i > 3. This proves (iii). If d1 6 4 or d2 6 4,
then the set of prime divisors of |Gx1| or |Gx2| would be contained in {2, 3}. Hence
the same would apply to |N | by (i) and (ii). Thus N would be solvable by Burnside’s
theorem, hence abelian since N is characteristically simple. This contradicts (iii).
Thus (iv) holds. If |Fi| has at most 2 prime divisors, then the same holds for |Gxi

|,
hence also |Gx3−i

| by (ii), hence |G| by Lemma 3.2. Thus G is solvable by Burnside’s
theorem. The minimal normal subgroup N must thus be abelian, contradicting (iii).
This proves (v). �

Lemma 3.6. — For j = 1 and 2, we assume that Fj > Alt(dj) if dj > 7. If N acts
freely on V X1 and on V X2, then it acts freely on X1 and on X2.

Proof. — Suppose for a contradiction that N does not act freely on Xi for some
i ∈ {1, 2}. This means that N does not act freely on the set of geometric edges of
Xi. By Lemma 3.5(iv), we have di > 5. Moreover Fi has at least 3 distinct prime
divisors by Lemma 3.5(v). In particular Fi 6∼= C5 o C4. By the hypothesis made on
Fi, we deduce that Fi is not solvable (see Table 2.1). The hypotheses imply that the
socle of Fi is isomorphic to Alt(di), or to Alt(5) if di = 6. Note moreover that, since
G[1]

xi
= {1} by Lemma 2.8(iv), we have Gxi

∼= Fi.
Recall that N ∼= Sk, where S is a finite simple group. We distinguish two cases.
Suppose first that CG(N) = {1}. Then the G-conjugation action on N yields an

injective homomorphism of Gxi
∼= G/N into Out(N). By the Krull–Remak–Schmidt

theorem (see [Rob96, Theorem 3.3.8]), the outer automorphism group Out(N) is
isomorphic to the wreath product Out(S) o Sym(k). The group Out(S) is solvable
by the Schreier conjecture. Since Gxi

is not solvable, we deduce that k > 5.
Since |N | = |Gx3−i

| by Lemma 3.5(i), we infer that the order of Gx3−i
is a kth

power. We have d3−i > 5 by Lemma 3.5(iv). Let p be a prime with d3−i/2 < p < d3−i.
Using Corollary 2.11, we see that p divides |Gx3−i

|, but p4 does not. Therefore |Gx3−i
|

cannot be a kth power with k > 4, and we have reached a contradiction. This finishes
the proof in the case where CG(N) = {1}.
Assume now that CG(N) is non-trivial. LetM 6= {1} be a minimal normal subgroup

of G contained in CG(N). Thus MN is a normal subgroup of G. Since N is minimal
normal in G and non-abelian by Lemma 3.5(iii), we have M ∩N = {1}. In view of
Lemma 2.8(v), we deduce that MN ∩ Gxi

6= {1}. Since Gxi
∼= Fi is almost simple

with socle Alt(di) or Alt(5) if di = 6, we deduce that G+
xi

:= Gxi
∩MN contains

the socle of Gxi
, and has index 1 or 2 in Gxi

. Lemma 2.8(v) also implies that
M ∩ Gxi

= {1}, so that the natural homomorphism MN → N yields an injective
homomorphism G+

xi
→ N . By Lemma 3.5(i) and (ii), we also have |N | 6 |Gxi

|, hence
|N | 6 2|G+

xi
|. It follows G+

xi
is isomorphic to a subgroup of index at most 2 in N .

Since N is characteristically simple and non-abelian, we deduce that G+
xi

∼= N . In
particular N , hence also G+

xi
, is simple. This implies that G+

xi
is the socle of Gxi

.
Since G ∼= N o Gxi

and M ∩ N = {1}, the projection map G → Gxi
yields an

injective homomorphism of M into Gxi
, whose image is normal since M is nor-

mal in G. Since Gxi
is almost simple with socle G+

xi
, while M is characteristically

simple, it follows that G+
xi

∼= M . Using Lemma 3.5(i) and (ii), we obtain that
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Gx3−i
∼= M ∼= N ∼= G+

xi
, which is Alt(di) or Alt(5). Since MN has index at most 2 in

G by Corollary 2.6, we have Gx3−i
6MN . Since the G-action on V X1×V X2 is free,

we have G+
xi
∩Gx3−i

= {1}. Applying Proposition 2.16 to the group MN ∼= M ×N ,
we infer that one of the two groups G+

xi
or Gx3−i

coincides with one of the two simple
factors of MN . Both of those factors are normal subgroups of G. It finally follows
that G+

xi
or Gx3−i

is normal in G. Hence G+
xi

acts trivially on V Xi or Gx3−i
acts

trivially on V X3−i. This implies that |V Xi| 6 2 or |V X3−i| 6 2, which contradicts
Lemma 3.2 since d1, d2 > 3. �

3.4. Assuming that N acts freely on V Xi but not on V X3−i

Lemma 3.7. — Let i ∈ {1, 2}. Assume that N acts freely on V Xi and non-freely
on V X3−i. Then G+

xi
:= Gxi

∩NGx3−i
has index 1 or 2 in Gxi

and |G+
xi
| = |N : Nx3−i

|
divides |Gx3−i

: Nx3−i
|. Furthermore we have |Gxi

| < |Gx3−i
|.

Proof. — The N -orbits on V Xi define a G-invariant partition into subsets of size
|N |. Since Gx3−i

acts regularly on V Xi by Lemma 3.2, we infer that |N | divides
|Gx3−i

|. We have |Gx3−i
| = |Gx3−i

: Nx3−i
||Nx3−i

| and |N | = |N : Nx3−i
||Nx3−i

|. It
follows that |N : Nx3−i

| divides |Gx3−i
: Nx3−i

|.
By Lemma 3.2, the group Gxi

acts regularly on V X3−i. The hypotheses imply that
N has at most two orbits on V X3−i by Corollary 2.6, so that NGx3−i

has index 1 or
2 in G. Accordingly, the group G+

xi
= Gxi

∩NGx3−i
has index 1 or 2 in Gxi

, and we
have |G+

xi
| = |N : Nx3−i

|.
Since Nx3−i

is transitive on E(x3−i) (see Lemma 2.5 and Corollary 2.6), we have
|Nx3−i

| > d3−i > 3. Thus |Gxi
| 6 2|G+

xi
| 6 2|Gx3−i

: Nx3−i
| 6 2|Gx3−i

|/3 < |Gx3−i
|.
�

3.5. A minimality condition

We shall now consider (X1, X2, G) ∈ F(F1, F2) satisfying the following:

(Min) For all (X ′1, X ′2, G′) ∈ F(F1, F2), we have |V X ′1 × V X ′2| > |V X1 × V X2|.

Lemma 3.8. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Then there is i ∈
{1, 2} such that the N -action on the graph Xi is not free.

Proof. — If the N -action on Xi were free for i = 1 and 2, then the triple

(N\X1, N\X2, G/N)

would belong to F(F1, F2) by Lemma 2.1 (see also Proposition 2.2), which would
contradict the hypothesis (Min). �

Lemma 3.9. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Assume moreover
that there is i ∈ {1, 2} such that N does not act freely on V Xi. Then CG(N) = {1}.
In particular N is not abelian. Moreover max{d1, d2} > 5.
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Proof. — Assume that CG(N) 6= {1}. LetM 6= {1} be a minimal normal subgroup
of G contained in CG(N). We aim at finding a contradiction.
Suppose first that M acts freely on both V X1 and V X2. By Lemma 3.8, the

M -action cannot be free on the set of geometric edges of both X1 and X2.
Assume that M is not free on Xi. Then, by Lemma 2.8, the M -action is regular

on V Xi. Since [M,N ] = {1}, the group Nxi
fixes pointwise the M -orbit of xi. Thus

Nxi
acts trivially on V Xi. On the other hand N has at most two orbits on V Xi by

Corollary 2.6, since the N -action on V Xi is not free by hypothesis. It follows that
|V Xi| 6 2, so that |Gx3−i

| 6 2 by Lemma 3.2, which is absurd.
Assume now that M is not free on X3−i. Then |Gxi

| divides |Gx3−i
| by Lem-

ma 3.5(ii). In particular |Gxi
| 6 |Gx3−i

|, so that the N -action cannot be free on
V X3−i by Lemma 3.7. We may thus apply the same argument as in the preceding
paragraph to conclude that |V X3−i| 6 2, leading to a contradiction.
This shows that the M -action cannot be free on both V X1 and V X2.
Assume first that the M -action is not free on V Xi. We may then invoke Corol-

lary 2.7, which ensures that Xi is the complete bipartite graph Kdi, di
and that M

and N both act regularly on the set of geometric edges of Xi. In particular Nxi

acts regularly on E(xi). It follows that the 2-transitive permutation group Fi has a
regular normal subgroup. Thus Fi is of affine type and di is a prime power. We also
have |Gx3−i

| = |V Xi| = 2di. Since Gx3−i
admits a 2-transitive permutation action on

d3−i points, we deduce that d3−i(d3−i − 1) divides 2di. Since di is a prime power, we
must have d3−i = 3 and di is a power of 3. Applying Corollary 2.11 to the stabilizer
Gx3−i

, which has order 2di, we deduce that di = 3. Therefore |Gx3−i
| = |V Xi| = 6

and hence Gx3−i
∼= Sym(3). Moreover |Gxi

| ∈ {6, 12} since Xi
∼= K3, 3.

Since M and N both act regularly on the set of geometric edges of Xi, we have
M = N ∼= C2

3. Notice that N is a 3-Sylow subgroup of G. It has 4 cyclic subgroups of
order 3, which are permuted by G. Since N is minimal normal in G, that permutation
action must be fixed-point-free. Each involution in G has 0, 2 or 4 fixed points in
V Xi, and if some involution fixes 4 vertices, then G[1]

xi
is non-trivial. Assume now

that |Gxi
| = 6, so that Gxi

∼= Sym(3) and G[1]
xi

= {1}. Then every involution σ ∈ Gxi

has 2 fixed points on V Xi. It follows that its conjugation action on N maps each
element on its inverse, and hence it acts trivially on the set of cyclic subgroups of N .
This implies that the cyclic subgroup of Gx3−i

of order 3 is normalized by both Gx1

and Gx2 . Thus it is normal in G by Lemma 3.2, contradicting the minimality of N .
We deduce that |Gxi

| = 12. Hence X3−i is a 3-regular graph with 12 vertices which
is also a Cayley graph for Gxi

on which the group G acts locally 2-transitively. Such
a graph does not exist by [LL09, Theorem 1.1].
We conclude finally that the M -action is free on V Xi, and non-free on V X3−i.

Lemma 3.7 successively implies that |Gxi
| < |Gx3−i

|, and that the N -action on
V X3−i cannot be free. We may finish the proof by swapping X1 and X2 and use the
same argument as in the previous paragraph. This confirms that CG(N) = {1}.
If d1, d2 6 4, then the only prime divisors of |G| would be 2 and 3, so that G would

be solvable and N abelian, a contradiction. �
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3.6. Assuming that |Fi| has only two prime divisors

Lemma 3.10. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Assume that there
is i ∈ {1, 2} such that |Fi| has only two primes divisors. Then the N -action on V X3−i

is not free.

Proof. — The hypothesis on Fi implies that |Gxi
| has only two primes divisors.

Suppose for a contradiction that N acts freely on V X3−i. Then |N | divides |V X3−i| =
|Gxi
| by Lemma 3.2. So the characteristically simple group N must be abelian. Hence

N acts freely on V Xi by Lemma 3.9, and also freely on the set of geometric edges
of X1 and X2 by Lemma 3.5(iii). This contradicts Lemma 3.8. �

3.7. Assuming that F1 ∼= C5 o C4

Lemma 3.11. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Assume that d1 = 5,
F1 ∼= C5 o C4. Then d2 > 5.

Proof. — Suppose for a contradiction that d2 6 4. In particular F2 is a {2, 3}-
group, and Gx2 is a {2, 3}-group as well. Moreover the hypothesis on F1 implies
that Gx1 is a {2, 5}-group whose order is not divisible by 25. In particular G is a
{2, 3, 5}-group whose order is divisible by 5 but not by 25 in view of Lemma 3.2.
Lemma 3.10 ensures that the N -actions on V X1 and on V X2 are both non-free.

Thus CG(N) = {1} by Lemma 3.9; in particular N is not abelian. Thus 5 divides
|N |, and since 25 does not divide |G|, we infer that N is simple non-abelian and that
G is almost simple. From Proposition 2.13, we have N ∼= Alt(5),Alt(6) or U4(2).
Moreover Lemma 3.2 affords a factorization G = Gx1Gx2 of G as a product of two
solvable subgroups.
If N ∼= Alt(5), then |G| = 60 or 120, while |Gx1| = 20, 40 or 80 by Corollary 2.11.

Therefore |Gx2| 6 6, whence d2 = 3 and Gx2
∼= Sym(3). Hence the graph X2, which

is a Cayley graph for Gx1 , contradicts [LL09, Theorem 1.1] in that case.
If N ∼= Alt(6) ∼= PSL2(F9), we invoke [LX14, Proposition 4.1] and deduce that Gx2

has a normal 3-Sylow subgroup, whose order is 9. Thus d2 = 4 by Corollary 2.11,
and we get a contradiction since a finite group with a normal 3-Sylow subgroup
cannot have a quotient isomorphic to Alt(4) or Sym(4).
Finally, if N ∼= U4(2), then [LX14, Proposition 4.1] ensures that Gx1 has a normal

subgroup isomorphic to C4
2. Since the only normal 2-group in Gx1/G

[1]
x1
∼= C5 o C4

is the trivial one, we deduce that G[1]
x1 contains a subgroup isomorphic to C4

2. By
Corollary 2.10, the group G[1]

x1 is isomorphic to a subgroup of a point stabilizer in F1.
In particular |G[1]

x1 | 6 4, a contradiction. �
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3.8. If N is not simple then X1 is a complete bipartite graph

Lemma 3.12. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Assume that:
(1) There is i ∈ {1, 2} such that N does not act freely on V Xi.
(2) For j = 1 and 2, if dj > 7 then Fj > Alt(dj).
(3) N is not simple.
(4) d1 > d2.

Then X1 is the complete bipartite graph Kd1, d1 and one of the following conditions
holds:

(i) d2 = 3 and d1 = 24.
(ii) d2 = 4, and d1 ∈

{
6n | n > 2 divides 22 · 35

}
.

(iii) d2 = 5, F2 ∼= C5 o C4 and d1 ∈
{

10, 20, 40
}
.

(iv) d2 = 5, soc(F2) ∼= Alt(5) and d1 ∈
{

30n | n > 2 divides 28 · 3
}
.

(v) d2 = 6, soc(F2) ∼= Alt(5), and d1 ∈
{

30n | n > 2 divides 23 · 52
}
.

(vi) d2 > 6, and d1 ∈
{

d2!
2 ,

d2!(d2−1)!
4 , d2!(d2−1)!

2

}
.

Proof. — The group N is characteristically simple, so that N = S1 × · · · × Sk,
where Si is isomorphic to a finite simple group S for all i. Moreover S is not abelian
and d1 > 5 by Lemma 3.9. The condition (3) ensures that k > 2. Furthermore we
have CG(N) = {1} by Lemma 3.9.
The first step is to establish the following.

Claim. — There is j ∈ {1, 2} such that dj > 5, Fj 6∼= C5 o C4 and N does not
act freely on V Xj.

By Lemma 3.9, we have d1 > 5. Assume that j = 1 does not satisfy the claim. Then
either N acts freely on V X1, or N does not act freely on V X1 and F1 ∼= C5 o C4.
If N acts freely on V X1, then it acts non-freely on V X2 by (1), and it follows

from Lemma 3.7 that |Gx1| has a subgroup of index at most 2 whose order divides
|Gx2 : Nx2|. Since d1 > 5, it follows that |Gx1|, and thus also |Gx2| is divisible by 5. In
particular d2 > 5. Moreover |N | divides |V X1| which is equal to |Gx2| by Lemma 3.2.
Thus |Gx2| has at least 3 prime divisors (because N is not solvable). In particular
F2 6∼= C5 o C4. Thus j = 2 satisfies the claim in this case.
Assume now that N does not act freely on V X1 and that F1 ∼= C5 o C4. Hence

d2 6 d1 = 5 by (4). In view of Lemma 3.11, we have d2 = 5. Moreover N does not
act freely on V X2 by Lemma 3.10. It follows that soc(F2) = Alt(5) since otherwise
Gx1 and Gx2 would both be {2, 5}-groups, contradicting that N is non-abelian. Thus
j = 2 satisfies the claim in this case as well. This ends the proof of the claim.
In view of the claim, we may, upon replacing i by 3−i, strengthen the hypothesis (1)

and assume in addition that di > 5 and that Fi 6∼= C5 o C4. In particular soc(Fi) is
simple and 2-transitive.
Assume next that the S1-action on V Xi is not free. In particular the Sj-action on

V Xi is not free for all j ∈ {1, . . . , k} since the simple factors of N are permuted
transitively under the conjugation action of G.
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Since di > 5 and soc(Fi) is simple, we know that the socle of Nv/N
[1]
v is simple

and 2-transitive on E(v) for every vertex v ∈ V Xi. For j 6= m ∈ {1, . . . , k} and
any v ∈ V Xi, it follows that if (Sj)v is non-trivial on E(v) then (Sm)v is trivial on
E(v). We now apply Lemma 2.5 to the normal subgroups Sj and Sm of N . For each
of them we get a bipartition of Xi, and the previous observation together with the
fact that Sj and Sm are conjugate in G implies that (Sj)v is non-trivial on E(v) if
and only if (Sm)v is trivial on E(v) for all v ∈ V Xi. Since this holds for all pairs
j 6= m ∈ {1, . . . , k}, it follows that k = 2. Given two adjacent vertices v, w such that
(S1)v is non-trivial on E(v), we know infer that (S1)v fixes all neighbours of w and
(S2)w fixes all neighbours of v. Using that (S1)v is transitive on the neighbours of v
(resp. (S2)w is transitive on the neighbours of w) we deduce that Xi is the complete
bipartite graph Kdi, di

. Since d3−i > 3 and Gx3−i
has a 2-transitive action on a set of

cardinality d3−i, we obtain

2d3−i 6 d3−i (d3−i − 1) 6
∣∣∣Gx3−i

∣∣∣ = |V Xi| = 2di.

Hence di = max{d1, d2} = d1. Moreover the equality case d1 = d2 occurs only if
d1 = d2 = 3, which is impossible since d1 > 5. It follows that d1 > d2, hence i = 1. So
X1 is the complete bipartite graph Kd1, d1 . Moreover Gx1/G

[1]
x1
∼= F1 is almost simple,

with socle equal to Alt(d1) if d1 > 7.
If d2 = 3, we invoke [LL09, Theorem 1.1] and deduce that d1 = 24.
If d2 > 4 we use the fact that the order of Gx2 , which is equal to |V X1|

= 2d1, is subject to Corollary 2.11. This provides numerical constraints on (d1, d2).
Those can be slightly strengthened by observing that Gx2 acts vertex-transitively
on the complete bipartite graph Kd1, d1 , and thus possesses a subgroup of index 2.
In particular Gx2 cannot be Alt(d2) or Alt(d2) × Alt(d2 − 1) for all d2 > 4. The
required conditions (i)–(vi) follow.
We assume henceforth that the S1-action on V Xi is free. In particular |S| divides
|V Xi| = |Gx3−i

|, so that d3−i > 5 and F3−i 6∼= C5 oC4. In particular, if the action of
S1 (hence of N) on V X3−i is not free, then j = 1 and 2 both satisfy the claim above,
and we may thus argue as in the case already treated.
It remains to consider the case where all simple factors of N act freely on both V X1

and V X2, since G permutes transitively the simple factors of N . In particular |S|
divides |V Xj| = |Gx3−j

| for j = 1 and 2, hence d1 > d2 > 5 and F1 6∼= C5 o C4 6∼= F2.
In particular F1 and F2 are both almost simple by the hypothesis (2).
The rest of the proof aims at reaching a contradiction, thereby showing that the

only possible situation is the one we have just described. We distinguish two cases.
Case 1. d1 6 6. — Then the only prime divisors of |Gx1| and |Gx2 | are 2, 3 and 5.

Thus the same holds for |G|, whence also |S|, by Lemma 3.2. Moreover soc(F1) and
soc(F2) are isomorphic to A5 ∼= PSL2(F5) (acting on 5 or 6 points) or A6 (acting
on 6 points), see Table 2.1. By Corollary 2.11, this implies that 34 does not divide
|Gxj
| for j = 1 and 2. In particular 37 does not divide |G| by Lemma 3.2, so that

S ∼= Alt(5) or Alt(6) by Proposition 2.13.
We claim that if N acts freely on V X1, then d1 = d2 = 6. Indeed, if the claim fails,

then N acts freely on V X1 and d2 = 5 since 5 6 d2 6 d1 6 6. The hypothesis (1)
implies that N does not act freely on V X2. By Lemma 3.7, the stabilizer Gx1 has
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a subgroup G+
x1 of index at most 2 whose order divides |Gx2 : Nx2|. Since d2 = 5,

the group Gx2/G
[1]
x2 is almost simple with socle Alt(5). Moreover Nx2/N

[1]
x2 contains

the socle of Gx2/G
[1]
x2 since the N -action on V X2 is not free. Using Corollary 2.11,

we deduce that |Gx2 : Nx2| is not divisible by 5, whereas 5 divides |G+
x1|. This is a

contradiction.
In view of the claim, we may, upon swapping the indices 1 and 2, assume that

the N -action on V X1 is not free. As observed above, we have dj ∈ {5, 6} and
soc(Fj) ∈ {Alt(5),Alt(6)} for j = 1, 2 in the case at hand. We shall now consider
three cases successively namely (d1, soc(F1))) = (6,Alt(6)), (6,Alt(5)) or (5,Alt(5)).
If (d1, soc(F1))) = (6,Alt(6)), then Nx1/N

[1]
x1 contains Alt(6), so that S ∼= Alt(6).

In particular |N |, hence also |G|, is divisible by 32k. We have already seen that
|G| is not divisible by 37, so that k 6 3. Corollary 2.10 ensures that G[1]

x1 is either
trivial, or almost simple with socle isomorphic to Alt(5). In particular there is no
homomorphism Gx1 → Sym(3) with transitive image. Recall from Corollary 2.6
that N has at most two orbits on V X1. In particular |G : Gx1N | 6 2. Since the
conjugation action of G permutes transitively the simple factors of N , the case k = 3
is impossible, and we have k = 2. Hence N = S1 × S2 ∼= Alt(6) × Alt(6) and we
know that Nx1/N

[1]
x1 is almost simple with socle Alt(6). Considering the projection of

Nx1 on the simple factors of N , we deduce that image of N [1]
x1 under at least one of

these projections must be trivial. In other words N [1]
x1 is contained in one of the two

simple factors of N . We have seen above that all simple factors of N act freely on
V X1. Therefore N [1]

x1 = {1}. Thus G[1]
x1∩N = {1}, so that G[1]

x1 embeds in the quotient
group G/N . Since CG(N) = {1} and N ∼= Alt(6)×Alt(6), the quotient G/N embeds
in (Out(Alt(6))×Out(Alt(6)))o Sym(2), which is a 2-group. On the other hand, by
Corollary 2.10, the group G[1]

x1 is either trivial or almost simple (with socle Alt(5)).
We deduce that G[1]

x1 = {1}. Therefore we have Nx1
∼= Alt(6) and |Gx1 : Nx1| 6 2, so

that the N -action on V X2 is not free by Lemma 3.7. We now distinguish 3 subcases.
If (d2, soc(F2)) = (6,Alt(6)), then by symmetry we have Nx2

∼= Alt(6), and it then
follows from Proposition 2.16 that Nx1 ∩Nx2 is non-trivial. This is absurd since the
G-action on V X1 × V X2 is free.
If (d2, soc(F2)) = (6,Alt(5)), then |Gx2| is not divisible by 32 in view of Corol-

lary 2.11, and we obtain a contradiction since |N |, whence also |G|, is divisible
by 34.
If (d2, soc(F2)) = (5,Alt(5)), we consider the group H = NGx1 , which is of index

at most 2 in G since the N -action on V X1 has at most 2 orbits. The local action
of H on V X2 is Alt(5) or Sym(5), so Hx2/H

[1]
x2 = Alt(5) or Sym(5). Moreover

|Hx2| = |N : Nx1| = 23.32.5, so that |H [1]
x2 | = 3 or 6. On the other hand, consider

a vertex y2 ∈ V X2 adjacent to x2. By Theorem 2.9(ii), the group H [1]
x2 ∩ H

[1]
y2 is a

2-group. Therefore the natural image of H [1]
x2 in Hy2/H

[1]
y2 is non-trivial. Moreover it

is isomorphic to a normal subgroup of a point stabilizer in Alt(5) or Sym(5). Since
the latter groups are 3-transitive, it follows that the order of H [1]

x2 is divisible by 4, a
contradiction. This finishes the case (d1, soc(F1)) = (6,Alt(6)).
If (d1, soc(F1)) = (6,Alt(5)), then |Gx1| is not divisible by 32 in view of Corol-

lary 2.11. It follows that the N -action on V X2 cannot be free, since otherwise |N |
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would divide |Gx1| = |V X2|, so the latter would be divisible by 3k > 32. We may
thus assume that soc(F2) ∼= Alt(5), since otherwise (d2, soc(F2)) = (6,Alt(6)) and
we may swap X1 and X2 and invoke the case that has already been treated. If d2 = 6,
then |Gx2| is not divisible by 32 by Corollary 2.11, so that |G| is not divisible by 33.
This yields k = 2. If d2 = 5, then |Gx2| is not divisible by 33 by Corollary 2.11, so
that |G| is not divisible by 34. Thus k 6 3, but if k = 3, then |N | is divisible by 33

and |G/N | is divisible by 3 since G permutes transitively the simple factors of N .
Since |G| is not divisible by 34, we obtain k = 2 in all cases. If S ∼= Alt(6), then |N |
is divisible dy 34, which is impossible. So S ∼= Alt(5) and N ∼= Alt(5)×Alt(5). Since
the N -action on both V X1 and V X2 is non-free, it follows that Nxj

/N [1]
xj

contains
Alt(5) for j = 1, 2. Since the simple factors of N act freely on V X1 and V X2, we have
N [1]

xj
= {1}. Using again Proposition 2.16, we deduce that Nx1 ∩Nx2 is non-trivial, a

contradiction.
If (d1, soc(F1)) = (5,Alt(5)), then |Gx1| is not divisible by 52. It follows that the

N -action on V X2 cannot be free, since otherwise |N | would divide |Gx1 | = |V X2|, so
the latter would be divisible by 5k > 52. Moreover we have (d2, soc(F2)) = (5,Alt(5)),
since d1 > d2 > 5. In particular |Gx2| is not divisible by 52, hence k = 2. We cannot
have S ∼= Alt(5), since otherwise we would get the same contradiction as in the
previous paragraph. Thus S ∼= Alt(6). Thus |G[1]

x1 | and |G
[1]
x2 | are both divisible by 3

since |G| = |Gx1||Gx2|. Thus |N [1]
x1 | is divisible by 3 since otherwise |G/N | would

be divisible by 3. This is not the case since CG(N) = {1}, so that the quotient
G/N embeds in (Out(Alt(6))×Out(Alt(6))) o Sym(2), which is a 2-group. We now
consider the projection of Nx1 to each simple factor Sj of N . Since Nx1/N

[1]
x1 contains

Alt(5) and since the only subgroups of Alt(6) containing a subnormal subgroup
isomorphic to Alt(5) are Alt(5) and Alt(6), we deduce that N [1]

x1 is contained in one
of the two simple factors of N . This is impossible, since all the simple factors of N
act freely on V X1. This proves that the case d1 6 6 does not occur.

Case 2. d1 > 7. — We claim that if N acts freely on V X1, then d1 = d2. Indeed,
if the claim fails, then N acts freely on V X1 and d1 > d2. The hypothesis (1) implies
that N does not act freely on V X2. By Lemma 3.7, the stabilizer Gx1 has a subgroup
G+

x1 of index at most 2 whose order divides |Gx2 : Nx2|. By the discussion directly
preceding Case (1), the group Gx2/G

[1]
x2 is almost simple. Moreover Nx2/N

[1]
x2 contains

the socle of Gx2/G
[1]
x2 since the N -action on V X2 is not free. Since d1 > 7, we deduce

from the hypothesis (2) that 7 divides |G+
x1|, hence also |Gx2 : Nx2|. It then follows

from Corollary 2.11 that d2 > 8. We may then invoke Corollary 2.10 to establish
that d1!

4 divides |G+
x1|, and that |Gx2 : Nx2| divides

d2!(d2−1)!
d2!/2 = 2(d2 − 1)!. Since |G+

x1|
divides |Gx2 : Nx2|, we deduce that d1 = d2 = 8. The claim follows.
In view of the claim, we may, upon swapping the indices 1 and 2, assume that the

N -action on V X1 is not free.
For j ∈ {1, 2}, if the permutation group Fj has almost simple stabilizers, then

Corollary 2.10 ensures that

∣∣∣Gxj

∣∣∣ 6 dj! (dj − 1)! 6 d1! (d1 − 1)!.
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This holds in particular for j = 1. If the point stabilizers in F2 are not almost simple,
then the discussion directly preceding Case (1) implies that either (d2, soc(F2)) =
(5,Alt(5)) or (d2, soc(F2)) = (6,Alt(5)). In all cases, we invoke Corollary 2.11, which
respectively yields the following upper bounds:

|Gx2| 6 5!4!44

if (d2, soc(F2)) = (5,Alt(5)), or

|Gx2| 6 5!5!5

if (d2, soc(F2)) = (6,Alt(5)). In either case, we obtain

|Gx2| 6 7!6! 6 d1! (d1 − 1)!.

This proves that |G| = |Gx1||Gx2| 6 d1!2(d1 − 1)!2. On the other hand we know that
Nx1/N

[1]
x1 contains the socle of F1, which is the alternating group Alt(d1) in the case

at hand. Considering the projection of Nx1 to each of the simple factors of N , we
infer that d1!/2 = |Alt(d1)| 6 |S|. This yields

d1!k
2k
6 |S|k = |N | 6 |G| 6 d1!2 (d1 − 1)!2.

We deduce that k 6 3. In particular Out(N) is solvable, so that the N -action on V X2
is not free since otherwise Gx2 would map injectively in Out(N) since CG(N) = {1},
contradicting that Gx2 has a non-abelian simple subquotient. Moreover, the group
NGx1 has index at most 2 in G by Corollary 2.6, and G permutes transitively the k
simple factors of N . Thus, if k = 3 then Gx1 has a transitive action on a 3-point set.
However, by Corollary 2.10, the group Gx1 does not have any subgroup of index 3.
Thus k = 2. Hence N = S1 × S2 ∼= S × S.
The N -action on both V X1 and V X2 is non-free, hence each has at most 2 orbits.

Recall moreover that the S1- and S2-actions on both V X1 and V X2 are all free. In
particular |S| divides both |V X1| = |Gx2| and |V X2| = |Gx1|.
Assume that G[1]

x1 is non-trivial. Then it is almost simple with socle Alt(d1 − 1) by
Corollary 2.10. Therefore so is N ∩G[1]

x1 = N [1]
x1 , since CG(N) = {1} and Out(N) is

solvable. Since both simple factors of N act freely on V X1, we see that the projection
map N → S1 yields an injective homomorphism of Nx1 into S. Since |S| divides
|Gx1|, we obtain that d1!

2
(d1−1)!

2 divides |S|, which in turn divides d1!(d1 − 1)!. It
follows that the image of Nx1 into S has index at most 4. Since S is simple, the
image of Nx1 into S must be surjective, which is absurd since the normal subgroup
N [1]

x1 is non-trivial. This proves that G[1]
x1 = {1}.

Invoking again that Nx1 maps injectively to S and that |S| divides |Gx1| ∈
{d1!, d1!/2}, we now deduce that S ∼= Alt(d1) ∼= Nx1 . Since N has at most 2 or-
bits on V X1, we deduce that |Gx2| = |V X1| ∈ {|N : Nx1|, 2|N : Nx1|} = {d1!/2, d1!}.
In particular d2 > 7. We may thus apply the same arguments for Gx2 as for Gx1 in
the previous paragraph to establish that G[1]

x2 = {1} and that Nx2
∼= Alt(d1) ∼= Nx1 .

Since N = S1 × S2 ∼= Alt(d1) × Alt(d1), we deduce from Proposition 2.16 that
Nx1 ∩Nx2 is non-trivial. Therefore the G-action on V X1×V X2 is not free. This final
contradiction finishes the proof of Lemma 3.12. �
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3.9. If N is simple then X1 is a complete graph

Lemma 3.13. — Let (X1, X2, G) ∈ F(F1, F2) satisfy (Min). Assume that:
(1) There is i ∈ {1, 2} such that N does not act freely on V Xi.
(2) For j = 1 and 2, if dj > 7 then Fj > Alt(dj).
(3) N is simple.
(4) d1 > d2.

Then X1 is the complete graph Kd1+1, and one of the following conditions holds:
(i) d2 = 3, and d1 ∈

{
23, 47

}
.

(ii) d2 = 4, and d1 ∈
{

12n− 1 | n > 2 divides 22 · 35
}
.

(iii) d2 = 5, F2 ∼= C5 o C4 and d1 ∈
{

19, 39, 79
}
.

(iv) d2 = 5, soc(F2) ∼= Alt(5) and d1 ∈
{

60n− 1 | n divides 28 · 3
}
.

(v) d2 = 6, soc(F2) ∼= Alt(5), and d1 ∈
{

60n− 1 | n divides 23 · 52
}
.

(vi) d2 > 6, and d1 ∈
{

d2!
2 − 1, d2!− 1, d2!(d2−1)!

4 − 1, d2!(d2−1)!
2 − 1, d2!(d2 − 1)!− 1

}
.

Proof. — We know that N is non-abelian and that d1 > 5 by Lemma 3.9. That
lemma ensures that CG(N) = {1}, so that G is almost simple with socle N .
If d1 = 5 and F1 ∼= C5 o C4, then d2 = 5 by Lemma 3.11. In that case F2 6∼=

C5 o C4 since otherwise G would be a {2, 5}-group by Lemma 3.2, hence solvable,
a contradiction. Therefore, upon replacing (X1, X2, G) by (X2, X1, G) in the case
d1 = d2 = 5, we may assume without loss of generality that F1 is almost simple. In
particular Gx1 is not solvable, hence N ∩Gx1 6= {1} since CG(N) = {1} and Out(N)
is solvable. Thus N does not act freely on V X1.
Since d1 > d2, the hypothesis (2) implies that π(Gx2) ⊆ π(Gx1) with the notation

of Section 2.7, so that π(G) = π(Gx1). Moreover N is not contained in Gx1 , since G
acts faithfully on X1. Thus all the hypotheses of Corollary 2.15 are satisfied.
We shall now consider successively the seven exceptional cases of Corollary 2.15

displayed in Table 2.2 and show that none of them occurs. An observation that
we shall used repeatedly is the following. Table 2.2 provides us with the possible
values of the index |N : Nx1 |. We know moreover that N has at most two orbits
on V X1 (by Corollary 2.6) and the Gx2 acts regularly on V X1 (by Lemma 3.2).
Thus |V X1| = |Gx2| equals |N : Nx1| or 2|N : Nx1 |. This can be confronted with
Corollary 2.11, which provides independent constraints that the number |Gx2| must
satisfy.
The numbering of the cases below is chosen according to the numbering of the

rows in Table 2.2.
Case 1. N = Alt(6) and Nx1 = PSL2(F5). — By Corollary 2.15, we have |N :

Nx1| = 6. Hence |Gx2| = |V X1| ∈ {6, 12}, so that d2 6 4. From [LL09, Theorem 1.1],
we deduce that d2 6= 3. Thus |V X1| = 12, and d2 = 4. Hence Gx2

∼= Alt(4), so Gx2

does not have any subgroup of index 2. But N acts with two orbits on V X1, so that
NGx1 is an index 2 subgroup of G, and Gx2 ∩NGx1 is an index 2 subgroup of Gx2

by Lemma 3.2. This is a contradiction.
Case 2. N = U3(5) and Nx1 = Alt(7). — By Corollary 2.15, we have |N : Nx1|

= 2 · 52. Hence |Gx2| = |V X1| ∈ {50, 100}. This is impossible by Corollary 2.11.
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Case 3. N = U4(2) and Nx1 6 24.Alt(5) or Nx1 6 Sym(6). — Then the only
primes dividing |N : Nx1| are 2 and 3, so that Gx2 is a {2, 3}-group. In particular
it is solvable, and d2 ∈ {3, 4}. We may thus invoke [LX14, Theorem 1.1]; it follows
that the triple (G,Gx2 , Gx1) must be as in row 10 or 11 of [LX14, Table 1.2]. In the
former case we have Nx1 = 24.Alt(5), so that |Gx2 | = 27 or 54. This is impossible
by Corollary 2.11. Thus the triple (G,Gx2 , Gx1) is as in row 11 of [LX14, Table 1.2],
and Nx1 = Alt(5), Sym(5),Alt(6) or Sym(6). If N is transitive on V X1, then the
hypotheses of [LX14, Lemma 8.30] are satisfied and we get a contradiction. Thus
|G : NGx1| = 2. Since Out(N) is of order 2, we deduce that N = NGx1 . In particular
Gx1 6 N and Nx2 is of index 2 in Gx2 . Moreover, the information provided by [LX14,
Table 1.2] ensures that Nx2 is a subgroup of 31+2

+ : 2.Alt(4), which is a parabolic
subgroup of PSp4(3) ∼= U4(2). Observe that the natural action of Alt(4) on the
Heisenberg group 31+2

+ does not preserve any subgroup of order 32; therefore the
largest power of 3 dividing |Nx2 | (and hence also Gx2) cannot be 33. On the other
hand, we have |Nx2| = |N : Nx1|. We deduce that Nx1 = Gx1 can neither be
Alt(5) nor Sym(5), so that it is Alt(6) or Sym(6). The latter possibility is excluded
because Sym(6) is maximal in N , and the factorization N = Nx1Nx2 would then
contradict [LPS10, Theorem 1.1]. Thus Nx1 = Gx1 = Alt(6). It follows that |Nx2 | =
23 · 32, hence Nx2

∼= 3 : 2.Alt(4). It follows that N is locally 2-transitive on X2 with
local action at every vertex isomorphic to Alt(4) by Lemma 2.5. It follows that the
point stabilizers in Nv/N

[1]
v are cyclic of order 3 for all v ∈ V X2, so that N [1]

x2 is a
3-group. This contradicts that Nx2

∼= 3 : 2.Alt(4).
Case 4. N = U4(3) and Nx1 = Alt(7). — Then |N : Nx1| = 24 · 34. Thus Gx2 is a
{2, 3}-group, hence solvable. We may thus invoke [LX14, Theorem 1.1], which yields
a contradiction.

Case 5. N = PSp4(7) and Nx1 = Alt(7). — Then |N : Nx1| = 25 · 5 · 73, so that
|Gx2| ∈ {|N : Nx1|, 2|N : Nx1|} violates Corollary 2.11.

Case 6. N = Sp6(2) and Nx1 = Alt(7), Sym(7),Alt(8) or Sym(8). — Here again
Gx2 is a {2, 3}-group, hence solvable. Since Out(N) is trivial in this case, we have
G = N so that the hypotheses of [LX14, Lemma 8.30] are satisfied. The latter result
yields a contradiction.

Case 7. N = PΩ+
8 (2) and Nx1 6 P1, P3, P4 or Nx1 6 Alt(9). — Then Gx2 is a

{2, 3, 5}-group whose order is divisible by 30, so that d2 ∈ {5, 6} and F2 6∼= C5 o C4.
Let us first consider the case where Nx1 is contained in a parabolic subgroup Pk.

Then the socle of Nx1/N
[1]
x1 must be isomorphic to the Levi factor of Pk, which is

SL4(F2) ∼= Alt(8). It follows that |N : Nx1| is divisible by 33 · 5, but |N : Nx1| is not
divisible by 25. This contradicts Corollary 2.11 for the |Gx2|.
We now assume that Nx1 6 Alt(9). If Nx1 is a proper subgroup of Alt(9), the

same numerical considerations as in the case Nx1 6 Pk yield a contradiction. It
follows that Nx1 = Alt(9), so |Gx2| = 2a · 3 · 5 with a = 6 or 7. Using Corollary 2.11,
we infer that d2 = 5, so F2 = Alt(5) or Sym(5) because F2 6∼= C5 o C4. Notice
that Nx1 is a maximal subgroup of N in the case at hand. Therefore Gx1 is a
maximal subgroup of the almost simple group NGx1 . Denoting G+

x2 = Gx2 ∩NGx1 ,
the factorization G = Gx1Gx2 yields a factorization NGx1 = Gx1G

+
x2 since N has at
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most two orbits on V X1. We may then invoke [LPS10, Theorem 1.1], which ensures
that G+

x2 = 24.Alt(5). In particular |Gx2|/60 = 24 or 25. Recall that Alt(5) ∼= Ω−4 (2).
A more precise look at the structure of G+

x2 afforded by that factorization reveals
that G+

x2
∼= F4

2 o Ω−4 (2), where F4
2 is the standard Ω−4 (2)-module: that information

can be extracted from [Bau07, Examples (h) and (i) and Lemma 10.7].
On the other hand, Corollary 2.11 yields d2 = 5, and we may invoke [Wei79,

Theorem (1.2)] to elucidate the structure of Gx2 . Given the possible values for the
order of Gx2 , we must have s = 4 in the notation of [Wei79, Theorem (1.2)], so
that the latter result yields an embedding of Gx2 as a subgroup of F2

4 o PΓL2(F4)
containing F2

4 o PSL2(F4), where the action of Alt(5) ∼= PSL2(F4) on F2
4 is the

standard one. That embedding must map G+
x2 isomorphically onto F2

4 o PSL2(F4).
This is a contradiction, because the groups F4

2 o Ω−4 (2) and F2
4 o PSL2(F4) are not

isomorphic (the two corresponding modules of Alt(5) ∼= Ω−4 (2) ∼= PSL2(F4) are not
isomorphic).
Since all the seven exceptional cases of Corollary 2.15 are excluded, we deduce

from the latter result that N ∼= Alt(c) and Alt(k) C Nx1 6 Sym(k) × Sym(c − k),
where k 6 c are integers such that p 6 k for every prime p 6 c. Moreover c > 5
because d1 > 5, and the case c = 5 is excluded since it would imply that N 6 Gx1 .
If c = 6, then Nx1 = Alt(5) and |Gx2| = 6 or 12, and we obtain a contradiction

with the same arguments as in Case (1) above. We assume henceforth that

c > 7.

Hence G = Alt(c) or Sym(c). Using the existence of a prime p with c+1
2 < p 6 c

(see [WW80, 1.1] for a more general fact), we deduce from Corollary 2.10 that
G[1]

x1 = {1}, so that Gx1 = Alt(d1) or Sym(d1).
We shall now use the fact that the factorization G = Gx1Gx2 must be described

by the main results from [WW80].
If G = Alt(c), we invoke [WW80, Theorem A]. Case III from [WW80, Theorem A]

is impossible since Gx1 = Alt(d1) or Sym(d1). Case II is also impossible in view of
our hypotheses on F2 (special care is required in view of the isomorphism Alt(6) ∼=
PSL2(F9); however PSL2(Fq) appears in [WW80, Theorem A, Case II] only for prime
powers q congruent to 3 modulo 4). Thus we are in Case I of [WW80, Theorem A].
This yields Gx1 = Alt(d1) = Alt(k) and Gx2 acts sharply t-transitively on {1, . . . , c},
where t = c− k.
If G = Sym(c), we invoke [WW80, Theorem S]. Using similar arguments, we obtain

d1 = k and either Gx2 or its index 2 subgroup Nx2 acts sharply t-transitively on
{1, . . . , c}, where t = c− k.
We next claim that t = 1. In order to establish this, we assume that t > 2 and

discuss the value of d2. We shall repeatedly use the fact that a sharply t-transitive
group on a set of cardinality c is of order c · (c− 1) . . . (c− t+ 1).
If d2 = 3, then Corollary 2.11 yields c = 3 or 4, which is absurd.
If d2 = 4, then Corollary 2.11 yields c = 9 and t = 2. It then follows that Gx2 or

Nx2 is the affine group F9 o F∗9, which is absurd since Gx2/G
[1]
x2 is Alt(4) or Sym(4).

If d2 = 5, then F2 6∼= C5 o C4 since c > 7. Thus soc(F2) ∼= Alt(5) and Gx2 is a
{2, 3, 5}-group. Assume now that G[1]

x2 6= {1}. It then follows from Theorem 2.9 that
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G[1]
x2 has a non-trivial normal 2-subgroup. Therefore the same holds for Gx2 . Since

Gx2 is 2-transitive on {1, . . . , c}, it follows that c is a power of 2. In view of [Cam99,
Table 7.3], we must have c = 16 since Gx2/G

[1]
x2 is isomorphic to Alt(5) or Sym(5).

We deduce that t = 2 (since otherwise |Gx2 | would be divisible by 7), and we get
a contradiction since the only sharply 2-transitive groups on 16 points are solvable.
Thus G[1]

x2 = {1} and Gx2
∼= Alt(5) or Sym(5). Neither of these two groups has a

t-transitive action on a set of c > 7 points.
If d2 = 6 and soc(F2) = PSL2(F5) ∼= Alt(5), then Gx2 is a again a {2, 3, 5}-group.

If G[1]
x2 6= {1} then Theorem 2.9 ensures that O5(G[1]

x2) is of order 5 or 25. Hence
O5(Gx2) is also of order 5 or 25. Since Gx2 is t-transitive on {1, . . . , c} and c > 7, we
obtain c = 25 = |O5(Gx2)|. Moreover t = 2 since otherwise |Gx2| would be divisible
by 23. Therefore |Gx2/O5(Gx2)| = 24, which is absurd since O5(Gx2) 6 G[1]

x2 . This
contradiction shows that G[1]

x2 = {1}, so that Gx2
∼= Alt(5) or Sym(5). As before, we

arrive at a contradiction since neither of these two groups has a t-transitive action
on a set of c > 7 points.
If d2 > 6 and soc(F2) = Alt(d2), then G[1]

x2 is either trivial or almost simple with
socle Alt(d2−1) by Corollary 2.10. In the latter case Gx2 has two commuting normal
subgroups of order d2!

2 and (d2−1)!
2 respectively. This prevents Gx2 from admitting

any faithful 2-transitive action (since both normal subgroups would have to act
freely and transitively, contradicting the fact that they have different orders). Hence
G[1]

x2 = {1}, so Gx2 = Alt(d2) or Sym(d2). In view of [Cam99, Table 7.4], the only
2-transitive action of the latter is the natural action on d2 points, unless d2 = 6, in
which case there is a 2-transitive action on 10 points via the exceptional isomorphism
Alt(6) ∼= PSL2(F9). In that case we must have Gx2 = Sym(6), c = 10 and t = 3, so
d1 = c− t = 7 and d2 = 6.
In order to exclude that case, we observe that by Lemma 3.2, the 7-regular graph

X1 is a Cayley graph of Gx2 . The corresponding generating set of Gx2 must thus
contain an involution τ (because 7 is odd) that maps x1 to a neighbouring vertex y1.
Thus τ normalizes Gx1, y1 . Notice that Gx1, y1

∼= Alt(6) or Sym(6) since Gx1
∼= Alt(7)

or Sym(7). Moreover 〈Gx1∪{τ}〉 is transitive on V X1, and is thus the whole group G.
Consider that Gx1-action on {1, . . . , 10} given through the isomorphism G ∼= Alt(10)
or Sym(10). Upon reordering we may assume that the largest orbit ofGx1 is {1, . . . , 7}
and that Gx1, y1 fixes the point 1. Since we also know that Gx1

∼= Alt(7) or Sym(7),
we deduce from [WW80, Theorems A and S] that Gx1 acts trivially on {8, 9, 10}.
Since τ normalizes Gx1, y1 which is isomorphic to Alt(6) or Sym(6), it must stabilize
the set {2, . . . , 7}. Thus, the set {8, 9, 10}\{τ(1)}, which is of size 2 or 3, is invariant
under both Gx1 and τ . This contradicts the fact that G = 〈Gx1 ∪ {τ}〉.
This finally shows that t = 1. Thus Gx1 = Alt(d1) or Sym(d1) and G = Alt(d1 + 1)

or Sym(d1 + 1), and the group Gx2 acts regularly on a set of cardinality d1 + 1,
so |V X1| = |Gx2| = d1 + 1. It follows that X1 is the complete graph Kd1+1. The
numerical constraints satisfied by the pair (d1, d2) follow from the fact that the order
of Gx2 is subject to Corollary 2.11. Furthermore, in case d2 = 3, the more precise
conclusion that d1 ∈ {23, 47} follows from [LL09].
It finally remains to exclude the case (d1, d2) = (11, 4). In that case Gx2

∼= Alt(4)
and G = Sym(12) or Alt(12), and Gx1 = Sym(11) or Alt(11). For such a triple
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(G,Gx1 , Gx2), we deduce from Lemma 3.2 that there exists an element g ∈ Gx1

such that:
• g−1 ∈ Gx2gGx2 ,
• |Gx2\Gx2gGx2| = 4, and
• G = 〈{g} ∪Gx2〉.

Using GAP, we enumerated all elements of Sym(11) and checked that none of them
satisfies all of these three conditions. �

3.10. Proofs of Theorems 3.1 and 1.2

We are now ready to finish the proofs of the main results of this paper.
Proof of Theorem 3.1. — Retain the notation introduced in Section 3.1. Under the

hypotheses of Theorem 3.1, we have d1 > d2 and the permutation group Fi 6 Sym(di)
is 2-transitive. Moreover Fi contains Alt(di) if di > 7. We need to show that if the set
F(F1, F2) is non-empty, then (d1, d2) satisfy the constraints listed in the statement
of the theorem.
Assume that F(F1, F2) is non-empty. We may then choose (X1, X2, G) ∈ F(F1, F2)

satisfying (Min). Let N be a minimal normal subgroup of G. Then N does not act
freely on both X1 and X2 by Lemma 3.8. Moreover there is i ∈ {1, 2} such that
N does not act freely on V Xi by Lemma 3.6. If N is simple, then Lemma 3.13
applies, while if N is not simple, we invoke Lemma 3.12. In either case the required
conclusion follows. �
Proof of Theorem 1.2. — Let Γ 6 Aut(T1) × Aut(T2) and assume that Γ is

reducible. We must show that (d1, d2) satisfies the required constraints.
For i = 1, 2, let Ki be the projection on Aut(Ti) of the kernel of the Γ-action

on T3−i. Then Ki does not contain any edge inversion by Lemma 3.3. We may
therefore invoke Proposition 2.2. Since Γ is reducible, it follows that the quotient
group Γ/K1 ×K2 is finite, and so is the quotient graph Xi = Ki\Ti. The conclusion
is now straightforward from Theorem 3.1. �

4. The just-infinite property

In this final section, we assemble the ingredients needed to establish Corollary 1.4.
We recall that a locally compact group is called topologically simple if its only

closed normal subgroups are the trivial ones.
The following fundamental result of Bader–Shalom generalizes a result of Burger–

Mozes [BM00b, Theorem 4.1] concerning certain lattices in products of trees.
Although we shall invoke the result in the context of lattices in products of trees,
we do need the more general version of Bader–Shalom, whose hypotheses on the
structure of the ambient group are more flexible.
Theorem 4.1 (Bader–Shalom [BS06]). — Let G1, G2 be compactly generated

locally compact groups and Γ 6 G1 × G2 be a cocompact lattice whose projection
to G1 and G2 has dense image. Assume that for i = 1 and 2, the intersection Mi of
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all non-identity closed normal subgroups of Gi is topologically simple and that the
quotient Gi/Mi is compact. Then Γ is hereditarily just-infinite.

In the context of groups acting on trees, locally compact groups satisfying the
conditions appearing in Theorem 4.1 pop up naturally. This is illustrated by the
following result of Burger–Mozes and Nebbia.

Theorem 4.2 (Burger–Mozes [BM00a], Nebbia [Neb00]). — Let T be a locally
finite tree, all of whose vertices have degree > 3. Let also G 6 Aut(T ) be a closed
subgroup. If the G-action on the set of ends ∂T of T is 2-transitive, then G is
compactly generated, the intersection M of all non-identity closed normal sub-
groups of G is topologically simple, and the quotient G/M is compact. Moreover the
M -action on ∂T is 2-transitive.

Proof. — This follows by combining several results from [BM00a] (see also [Neb00]
for the case of regular trees). Details can be found in [CDM13, Proposition 2.1 and
Theorem 2.2]. �

A fundamental idea of Burger–Mozes is that, given a tree T and a vertex-transitive
group G 6 Aut(T ), if G is non-discrete and the local action of G on T is a suitable
2-transitive group, then the closure G is 2-transitive on ∂T (see [BM00a, § 3.3]),
so that G is subject to Theorem 4.2. The 2-transitive groups considered by Burger–
Mozes are those with almost simple (or quasi-simple) point stabilizers. In particular,
their original arguments do not apply to 2-transitive groups of degree 6 5. How-
ever, a similar local-to-global phenomenon can also be extracted from the work of
V. Trofimov. The following result, due to him, applies to numerous 2-transitive local
actions whose point stabilizers need not be almost simple.

Theorem 4.3 (V. Trofimov [Tro07, Proposition 3.1]). — Let X be a locally finite
d-regular graph and G 6 Aut(X) be a vertex-transitive group whose local action on
X is the 2-transitive group F 6 Sym(d). Assume that every subnormal subgroup S
of the point stabilizer F1, for which the index |F1 : NF1(S)| divides a power of d− 1,
acts transitively on {2, . . . , d}. If G is non-discrete, then X is a tree and the closure
G is 2-transitive on the set of ends ∂X.
Moreover, the above condition is satisfied if d = q + 1 and F contains a normal

subgroup isomorphic to PSL2(Fq), or if F > Alt(d).

Proof. — The statement of [Tro07, Proposition 3.1] ensures that X is a tree.
Although he does not write it explicitly, Trofimov’s proof actually also shows that
G is 2-transitive on ∂X. The fact that the condition holds in the case d = q + 1 and
PSL2(Fq) C F is explained in [Tro07, Example 3.2]. If F > Alt(d) with d > 6, the
condition is clearly satisfied since Alt(d− 1) is simple. For d 6 5, it follows from the
preceding case (see Table 2.1). �

Combining the three theorems above, we obtain the following result.

Corollary 4.4. — Let d1, d2 > 3, let T1, T2 be regular trees of degree d1, d2 and
let Γ 6 Aut(T1)×Aut(T2) be a discrete subgroup acting transitively on V T1 × V T2.
Assume that for i = 1, 2, the local action Fi of Γ on Ti satisfies the condition in
Theorem 4.3. If Γ is irreducible, then it is hereditarily just-infinite.
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Proof. — Since Γ is irreducible, its projection pi : Γ→ Aut(Ti) has a non-discrete
image for i = 1 and 2 by [BM00b, Proposition 1.2]. Let Gi = pi(Γ). By Theorem 4.3,
the Gi-action on ∂Ti is 2-transitive. Thus Theorem 4.2 ensures that G1 and G2 satisfy
the hypotheses of Theorem 4.1. The conclusion follows. �

Corollary 1.4 is an immediate consequence of Corollary 4.4 (see Table 2.1), recalling
that a subgroup Γ 6 Aut(T1)×Aut(T2) is discrete if and only if the stabilizer Γ(v1, v2)
of a vertex (v1, v2) ∈ V T1 × V T2 is finite.
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