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Abstract. — For α ∈ (1, 2], the α-stable graph arises as the universal scaling limit of
critical random graphs with i.i.d. degrees having a given α-dependent power-law tail behavior.
It consists of a sequence of compact measured metric spaces (the limiting connected com-
ponents), each of which is tree-like, in the sense that it consists of an R-tree with finitely
many vertex-identifications (which create cycles). Indeed, given their masses and numbers
of vertex-identifications, these components are independent and may be constructed from a
spanning R-tree, which is a biased version of the α-stable tree, with a certain number of leaves
glued along their paths to the root. In this paper we investigate the geometric properties of
such a component with given mass and number of vertex-identifications. We (1) obtain the
distribution of its kernel and more generally of its discrete finite-dimensional marginals, and
observe that these distributions are themselves related to the distributions of certain config-
uration models; (2) determine its distribution as a collection of α-stable trees glued onto its
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kernel; and (3) present a line-breaking construction, in the same spirit as Aldous’ line-breaking
construction of the Brownian continuum random tree.

Résumé. — Pour α ∈ (1, 2], le graphe α-stable est la limite d’échelle universelle de graphes
aléatoires critiques à degrés i.i.d. dont la loi admet une queue polynomiale avec un certain
exposant dépendant de α. Cet objet est constitué d’une suite d’espaces métriques compacts
mesurés (ses composantes connexes), chacun étant “presque un arbre”, dans le sens où c’est
un R-arbre avec un nombre fini de paires de points identifiés, créant ainsi des cycles. Plus
précisément, étant donnés leurs masses et nombres d’identifications de paires de points, ces
composantes connexes sont indépendantes et peuvent être construites à partir d’un arbre
α-stable biaisé dont un nombre fini de feuilles sont identifiées (collées) à un point le long de
leur chemin vers la racine. Dans cet article, nous nous intéressons aux propriétés géométriques
d’une telle composante connexe, à masse et nombre d’identifications fixés.
Nous (1) obtenons la loi de son noyau et plus généralement celles de ses marginales fini-

dimensionnelles discrètes et constatons que ces lois peuvent elles-mêmes s’exprimer à partir de
certains modèles de configuration; (2) décrivons sa loi en la construisant comme un recollement
d’arbres α-stables le long de son noyau; et (3) en présentons une construction par recollements
successifs de segments, dans l’esprit de la construction par recollement de l’arbre brownien
donnée par Aldous.

A simulation of a connected component of the stable graph when α = 1.5 and the
surplus is 2. The cycle structure is shown in black.

1. Introduction and main results

1.1. Motivation

The purpose of this paper is to understand the distributional properties of the
scaling limit of a critical random graph with independent and identically distributed
degrees having certain power-law tail behaviour. Let us first describe the random
graph model precisely. Let D1, D2, . . . , Dn ∈ N := {1, 2, . . .} be independent and
identically distributed random variables such that E [D2

1] <∞. We build a graph with

ANNALES HENRI LEBESGUE



Stable graphs 843

vertices labelled by 1, 2, . . . , n. For i = 1, . . . , n− 1, let vertex i have degree Di. If∑n
i=1Di is even, let vertex n have degree Dn; otherwise, let vertex n have degree Dn+

1. Now pick a simple graph Gn (i.e. a graph with no self-loops or multiple edges)
uniformly at random from among those with these given vertex degrees (at least one
such graph exists with probability tending to 1 as n→∞).
Molloy and Reed [MR95] showed that there is a phase transition in the sizes

of the connected components in the more general setting of random graphs with
given (deterministic) degrees. Specialised to our setting, their result says that if
the parameter ν := E[D1(D1 − 1)]/E[D1] is larger than 1 there exists a unique
giant component of size proportional to n, while if ν is smaller than or equal to
1 there is no giant component. We will here tune the degree distribution so as to
be exactly at the point of the phase transition, i.e. ν = 1. The behaviour is here
at its most delicate: even after performing the correct rescaling and taking a limit,
there is residual randomness in the sequence of component sizes, as demonstrated
by Joseph [Jos14], who proved scaling limits for the component sizes under various
assumptions on the tail behaviour of D1. (See also Riordan [Rio12] in the case of
bounded degrees.) For the questions in which we are interested, the critical case with
E [D3

1] < ∞ has already been thoroughly investigated in previous work, which we
summarise in Section 1.3. So we will rather assume that the degree distribution has
infinite third moment and a specific power-law behaviour. Henceforth, fix 1 < α < 2
and assume that

(1.1) ν = 1 and P (D1 = k) ∼ ck−2−α as k →∞,

where c > 0 is constant. (Note that ν = 1 is equivalent to E [D2
1] = 2E [D1].)

This precise setting was first investigated by Joseph [Jos14] in the context of the
component sizes.
The analogous model of a random tree is a Galton–Watson tree with critical

offspring distribution in the domain of attraction of an α-stable law. In that case,
there is a well-known scaling limit, the α-stable tree [Duq03]. We will explore the
relationship between these two models, at the level of scaling limits, in the sequel.
It is now standard to formulate random graph scaling limits in terms of sequences of

measured metric spaces, namely metric spaces endowed with a measure. Throughout
this paper we let (C , dGHP) denote the set of measured isometry-equivalence classes of
compact measured metric spaces equipped with the Gromov–Hausdorff–Prokhorov
topology (see, for example, [ABBGM17, Section 2.1] for the formulation we use
here) and endow it with the associated Borel σ-algebra. (We will often elide the
difference between a measured metric space and its equivalence class but it should
be understood that we are really thinking about the equivalence class.) As we are
dealing with graphs which have many components, we need a topology on sequences
of (equivalence classes of) compact measured metric spaces. For this purpose, we use
the product Gromov–Hausdorff–Prokhorov topology and observe that it is standard
that this yields a Polish space.
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844 C. GOLDSCHMIDT, B. HAAS & D. SÉNIZERGUES

Write Cn
1 , C

n
2 , . . . for the vertex-sets of the components of the graph Gn, listed in

decreasing order of size (with ties broken arbitrarily). Set

(1.2) Aα =
(
cΓ(2− α)
α(α− 1)

)1/(α+1)

.

We think of the components as metric spaces by endowing each one with a scaled
version of the usual graph distance, dgr: let

dni := A2
α

E[D1]n(α−1)/(α+1) dgr

be the distance in Cn
i . We also endow each of them with the scaled counting measure

µni := Aα
E[D1]nα/(α+1)

∑
v ∈Cni

δv.

Let Cn
i = (Cn

i , d
n
i , µ

n
i ) be the resulting measured metric space. We write s(Cn

i ) for the
number of surplus edges (i.e. edges more than a tree) possessed by the component
Cn
i . Formally, for a connected graph G = (V,E), the number of surplus edges or,

more succinctly, surplus, is defined to be
s(G) = |E| − |V |+ 1.

The following theorem is proved in [CKG20].

Theorem 1.1. — As n→∞,

(Cn
1 ,Cn

2 , . . .)
d→ (C1,C2, . . .) ,

with respect to the product Gromov–Hausdorff–Prokhorov topology, for a random
sequence of measured metric spaces (C1,C2, . . .) which we call the α-stable graph.

(In Section 1.3 below we will describe the relationship of this theorem to other
work.)
Theorem 1.1 also holds in the setting of a random multigraph (i.e. it may contain

self-loops and multiple edges) sampled from the configuration model with i.i.d. de-
grees. Formally, a multigraph G is an ordered pair G = (V,E) where V is the set of
vertices and E the multiset of edges (i.e. elements of {{u, v}, u ∈ V, v ∈ V }). Let
supp(E) denote the support of E, i.e. the underlying set of distinct elements of E,
and, for e ∈ supp(E), let mult(e) denote its multiplicity. Let sl(G) denote the cardi-
nality of the multiset of self-loops. For a vertex v ∈ V , we write deg(v) for its degree,
that is the number of elements {u,w} of the multiset E such that at least one of u
and w is equal to v, or degG(v) if there is potential ambiguity over which graph we are
looking at. The surplus is still defined to be s(G) = |E|−|V |+1, where we emphasise
that |E| = ∑

e∈ supp(E) mult(e). Let us briefly explain the set-up of the configuration
model for deterministic degrees d1, d2, . . . , dn with even sum. (The configuration
model was introduced in varying degrees of generality in [BC78, Bol80, Wor78]. We
refer to [Hof17, Chapter 7] of the recent book of van der Hofstad for the proofs of the
claims made in this paragraph.) To vertex i we assign di half-edges, for 1 6 i 6 n.
We give the half-edges an arbitrary labelling (so that we may distinguish them)
and then choose a matching of the half-edges uniformly at random. Two matched
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half-edges form an edge of the resulting structure, which is a multigraph. Then
for a particular multigraph G with degrees d1, d2, . . . , dn, the probability that the
configuration model generates G is

(1.3)

n∏
i=1

di!(
n∑
i=1

di − 1
)

!! 2sl(G) ∏
e∈ supp(E)

mult(e)!
,

where a!! denotes the double factorial of a. From this expression, it is easy to see
that if there exists at least one simple graph with degrees d1, d2, . . . , dn then condi-
tioning the multigraph to be simple yields a uniform graph with the given degree
sequence. We are interested in the setting where the degrees are random variables
D1, D2, . . . , Dn satisfying the conditions (1.1) (with the small modification men-
tioned above to make the sum of the degrees even). In this case, there exists a simple
graph with these degrees with probability tending to 1 as n→∞, which enables us
to convert results for the configuration model into results for the uniform random
graph with given degree sequence; in the setting of Theorem 1.1 the conditioning
turns out not to affect the result.
The α-stable graph is constructed using a spectrally positive α-stable Lévy process;

we give the details, which are somewhat involved, in Section 2.2. For i > 1, write
Ci = (Ci, dCi , µCi), i > 1. These measured metric spaces are R-graphs in the sense
of [ABBGM17] i.e. they are locally R-trees, but may also possess cycles. It is possible
to make sense of the surpluses of the limiting components, for which we write s(Ci),
i > 1. It is a consequence of Theorem 1.1 that

(1.4) Aα
E[D1]nα/(α+1)

(
|Cn

1 | , |Cn
2 | , . . .

) d→
(
µC1 (C1) , µC2 (C2) , . . .

)
in the product topology (in fact, this convergence can be shown to occur in `2;
see [CKG20, Proposition 5.6]), jointly with the convergence in the sense of the
product topology

(1.5)
(
s (Cn

1 ) , s (Cn
2 ) , . . .

) d→
(
s (C1) , s (C2) , . . .

)
for the sequences of surplus edges. The joint law of (µC1(C1), µC2(C2), . . .) and
(s(C1), s(C2), . . .) is explicit in terms of the underlying α-stable Lévy process; see
Section 2.2. Moreover, [CKG20, Theorem 1.2] shows that the limiting components
(C1,C2, . . .) are conditionally independent given (µC1(C1), µC2(C2), . . .) and (s(C1),
s(C2), . . .), with distributions coming from a collection of fundamental building-
blocks: there exist random measured metric spaces (Gs, ds, µs), s > 0, where µs is a
probability measure, such that, for all i, given µCi(Ci) and s(Ci), we have(

Ci, dCi , µCi
) (d)=

(
Gs(Ci), µCi(Ci)1−1/α · ds(Ci), µCi(Ci) · µs(Ci)

)
.

For s = 0, (Gs, ds, µs) is simply the standard rooted α-stable tree, the definition
of which is recalled in Section 2.1. Informally, for s > 1, (Gs, ds, µs), is constructed
by randomly choosing s leaves in an s-biased version of this α-stable tree, and
then gluing them to randomly-chosen branch-points along their paths to the root,
with probabilities proportional to the “local time to the right” of the branch-points.
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(We will define these quantities in the sequel.) We will often think of the resulting
R-graph Gs as being rooted; in this case, the root is simply inherited from that of
the s-biased α-stable tree. The measure µs on Gs is then the probability measure
inherited from the s-biased α-stable tree. We will often abuse notation and simply
write Gs in place of (Gs, ds, µs). For a > 0, we will also write a · Gs to denote the
same measured metric space with all distances scaled by a, i.e. (Gs, ads, µs).
In order to understand the geometric properties of the α-stable graph, it therefore

suffices to consider the measured metric spaces
Gs, s > 0.

We will call Gs the connected α-stable graph with surplus s. Let us note immediately
that Gs naturally inherits the Hausdorff dimension of the α-stable tree and that,
therefore,

dimH(Gs) = α

α− 1 a.s.

Like a connected combinatorial graph, the R-graph Gs may be viewed as a cycle
structure to which pendant subtrees are attached. Let Ks be the image after the
gluing procedure of the subtree spanned by the s selected leaves and the root of the
s-biased version of the α-stable tree. (When s = 0, we use the convention that Ks is
the empty set.) The space Ks encodes the rooted cycle structure of Gs. We refer to
it as the continuous kernel because it is a continuous analogue of the usual graph-
theoretic notion of a kernel (except that it is rooted at a vertex of degree 1). We will
think of it as a rooted multigraph which is endowed with real-valued edge-lengths,
and write Ks for the rooted multigraph without the edge-lengths, which we call the
discrete kernel.
In order to better understand the structure of the R-graph Gs, we will approximate

it by a sequence (Gsn)n> 0 of multigraphs with edge-lengths, starting from the contin-
uous kernel, Gs0 = Ks. Consider an infinite sample of leaves from Gs, labelled 1, 2, . . ..
For each n ∈ N, let Gsn be the connected subgraph of Gs consisting of the union of the
kernel Ks and the paths from the n first leaves to the root. These are the R-graph
analogues of Aldous’ random finite-dimensional marginals for a continuum random
tree. For brevity, we will call them the marginals of Gs. In Lemma 4.1 below, we note
that Gs can be recovered as the completion of ∪n> 0Gsn. We will also make extensive
use of the discrete counterparts of the Gsn. For n > 0, let Gs

n be the combinatorial
shape of Gsn (i.e. “forget the edge-lengths”, so as to obtain a finite graph with surplus
s and no vertices of degree 2 – see (2.3) for a formal definition in the framework
of trees that adapts immediately to our graphs), so that Ks = Gs

0. Note that the
root vertex has degree 1 in all of these graphs. When s > 2, we can erase the root
in the discrete kernel (formally, we remove the root and the adjacent edge, and if
this creates a vertex of degree 2 we erase it) to obtain a multigraph that we denote
by Gs

−1.

1.2. Main results

Throughout this section, we fix the surplus s ∈ Z+ := {0, 1, 2, . . .}.
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Our first main results characterise the joint distributions of the discrete marginals
(Gs

n)n> 0. This family of random multigraphs has particularly attractive properties:
for fixed n, the graph Gsn has the distribution of a certain conditioned configuration
model with i.i.d. random degrees, with a particular canonical degree distribution.
Moreover, as a process, (Gsn)n> 0 evolves in a Markovian manner according to a simple
recursive construction which is a version of Marchal’s algorithm [Mar08] for building
the marginals of the stable tree, (G0

n)n> 0. Although Gs is constructed from a biased
version of the α-stable tree, we emphasise that it was not at all obvious to us a priori
that Marchal’s algorithm would generalise in this way.
An advantage of this recursive construction is that it has many urn models embed-

ded in it, which enables us to get at different aspects of Gs easily. We provide two
different constructions of Gs, which rely on relatively simple random building blocks.
The distributions of these building blocks (Beta, generalised Mittag–Leffler, Dirichlet
and Poisson–Dirichlet) are defined in Section 5, where we also recall various of their
standard properties and discuss their relationships to urns. Our two constructions
are as follows.

(1) The first takes a collection of i.i.d. α-stable trees which are randomly scaled
and then glued onto Ks in such a way that each edge of Ks is replaced by
a tree with two marked points, and such that every vertex of Ks acquires a
(countable) collection of pendant subtrees.

(2) The second starts by replacing the edges of the kernel by line-segments of
lengths with a given joint distribution, and then proceeds by recursively gluing
a countable sequence of segments of random lengths onto the structure. We
call this a line-breaking construction and obtain the limit space in the end by
completion.

These constructions generalise, in a natural way, the distributional properties and
line-breaking construction proved in [ABBG10] for the components of the Brownian
graph, a term we use to mean the common scaling limit of the critical Erdős–Rényi
random graph [ABBG12] and the critical random graph with i.i.d. degrees having
a finite third moment [BS20] as well as various other models (see Section 1.3). We
emphasise, however, that the proofs in the stable setting are much harder, essentially
due to the added complication of dealing with Lévy processes rather than just
Brownian motion. Our line-breaking construction is the graph counterpart of the
line-breaking construction of the stable trees given in [GH15].

1.2.1. The discrete marginals of Gs

We can recover the measured metric space Gs from the discrete marginals Gs
n

by equipping them with the graph distance and the uniform distribution on their
leaves, as follows.

Proposition 1.2. —
Gs
n

n1−1/α
a.s.−→

n→∞
α · Gs

for the Gromov–Hausdorff–Prokhorov topology.
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This generalises a result which says that the α-stable tree is the (almost sure)
scaling limit of its discrete marginals, see [CH13, Mar08]. The proof is given in
Section 4.1.
For any multigraph G = (V,E), recall that we let sl(G) denote its number of self-

loops, and for an element e ∈ supp(E), we let mult(e) denote its multiplicity. Let
I(G) ⊆ V denote the set of internal vertices of G. We say that a permutation τ of the
set I(G) is a symmetry of G if, after having extended τ to the identity function on
the leaves, τ preserves the adjacency relations in the graph and for all u, v ∈ V , the
edges {u, v} and {τ(u), τ(v)} have the same multiplicity. We let Sym(G) denote the
set of symmetries of G. For n > 0, let Ms,n be the set of connected multigraphs with
n+1 labelled leaves, surplus s and no vertices of degree 2. (Observe that the internal
vertices are not labelled.) When s > 2, let Ms,−1 be the set of unlabelled connected
multigraphs with surplus s and minimum degree at least 3. Note that considering
multigraphs with unlabelled internal vertices amounts to taking equivalence classes
of multigraphs up to relabelling the internal vertices. In order to keep the notation
simple, we proceed as follows: whenever we consider an element G ∈Ms,n, we choose
arbitrarily a representative of that equivalence class and (abusing notation) write
G = (V,E). A more detailed discussion on the nature of the multigraphs that we
consider can be found in Section 3.1.
Finally, let us define a sequence of weights by

(1.6) w0 := 1, w1 := 0, w2 := α− 1, wk := (k − 1− α) . . . (2− α)(α− 1),
for k > 3.

Viewing the root as a leaf with label 0, we note that Gsn is an element of Ms,n. We
can now describe the distributions of the random multigraphs Gs

n.

Theorem 1.3. — Let n > 0. For every connected multigraph G = (V,E) ∈Ms,n,

P (Gs
n = G) ∝

∏
v ∈ I(G)

wdeg(v)−1

|Sym(G)| 2sl(G) ∏
e∈ supp(E)

mult(e)! .

This, in particular, gives the distribution of the kernel Ks when n = 0. When s > 2,
this expression also gives the distribution of Gs

−1 on Ms,−1.

This result is proved in Section 3. To illustrate it, in Table 1.1 we give the distri-
bution of the kernel explicitly in the case s = 2 and α = 5

4 .
Comparing the form of the distribution of Gs

n with (1.3) suggests a connection
with a conditioned configuration model. To make this precise, let D(α) be a random
variable on N with distribution

P
(
D(α) = k

)
= 2(1 + α)α
α2 + α + 2 ·

wk−1

k! , k > 2,

and P
(
D(α) = 1

)
= 2(1 + α)
α2 + α + 2 .

(1.7)

Observe that P(D(α) = 2) = 0. We will verify in Section 3.6 that this indeed defines a
probability measure which, moreover, satisfies the conditions (1.1). Consider now the
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Table 1.1. The possible kernels for s = 2 with their probabilities for α = 5/4
(given in the penultimate line). For comparison, the last line gives the distribution
of the kernel of the connected Brownian graph with surplus 2.

Graph G ∈M2,0

sl(G) 2 1 0 0 2 1 2∏
v ∈ I(G)

wdeg(v)−1
21
64

3
64

3
64

1
64

3
64

1
64

1
64

(α = 5/4)∏
e∈E(G)

mult(e)! 2 2 6 2 1 2 1

|Sym(G)| 1 1 1 2 1 1 2
P
(
K2 = G

)
1
2

1
7

2
21

1
21

1
7

1
21

1
42

(α = 5/4)

P
(
K2

Br = G
)

0 0 0 2
5 0 2

5
1
5

following particular instance of the configuration model. We fix n > 0 and m > n+ 1
(include the case n = −1 if s > 2), take vertices labelled 0, 1, . . . , m− 1 to have i.i.d.
degrees distributed according to D(α). Generate a multigraph with these degrees
according to the configuration model, forget the labels n+ 1, n+ 2, . . . , m− 1, and
condition the resulting object to lie in Ms,n. We write Csn,m for this random element
of Ms,n.

Corollary 1.4. — The random multigraph Gs
n conditioned to have m vertices

has the same law as Csn,m.

This again generalises the analogous result for the α-stable tree: the combinatorial
shape of the subtree obtained by sampling n > 0 leaves and the root is distributed
as a planted (i.e. with a root of degree 1) non-ordered version of a Galton–Watson
tree conditioned to have n leaves, whose offspring distribution ηα has probability
generating function z + α−1(1− z)α. There is, of course, a connection between D(α)

and ηα: if we let D̂(α) denote the size-biased version

P
(
D̂(α) = k

)
:=

kP
(
D(α) = k

)
E
[
D(α)

] , k > 1,

then D̂(α) − 1 is distributed as ηα. See Section 3.6.
In fact, we may think of the configuration multigraph with i.i.d. degrees distributed

as D(α) as, in some sense, the canonical model in the universality class of the stable
graph. For this model, the law of a component conditioned to have n+ 1 leaves and
surplus s is exactly the same as the corresponding discrete marginal for its scaling
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limit, and there exists a coupling for different n which is such that we get almost
sure (rather than just distributional) convergence, on rescaling, to the connected
α-stable graph with surplus s.
We are also able to understand the joint distribution of the graphs Gs

n, n > 0
(again, include the case n = −1 when s > 2): they evolve according to a multigraph
version of Marchal’s algorithm [Mar08] for the discrete marginals of a α-stable tree.
Let us define a step in the algorithm. Take a multigraph G = (V,E) ∈Ms,n. Declare
every edge to have weight α − 1, every internal vertex u ∈ I(G) to have weight
degG(u)− 1− α and every leaf to have weight 0. Then the total weight of G is

(1.8)
∑

u∈ I(G)
(degG(u)− 1− α) + (α− 1) · |E| = α(s+ n) + s− 1,

which depends only on the surplus and the number of leaves of the graph. We use
the term edge-leaf to mean an edge with a leaf at one of its end-points. Choose an
edge/vertex with probability proportional to its weight. Then

• if it is a vertex, attach a new edge-leaf where the leaf has label n+ 1 to this
vertex,
• if it is an edge, attach a new edge-leaf where the leaf has label n + 1 to a
newly created vertex which splits the edge into two.

Note that we avoid discussing the possible symmetries of the graph here. A way
to make this rigorous would be to first consider a version of Gs

n where the internal
vertices and edges are labelled (with labels chosen arbitrarily), perform a step of the
algorithm described above, and then forget the labelling. Since the procedure above
does not depend on the chosen labelling there is, in fact, no ambiguity.
We say that a sequence of graphs evolves according to Marchal’s algorithm if it is

Markovian and the transitions are given by one step of Marchal’s algorithm.

Theorem 1.5. — For s > 0, the sequence (Gsn)n> 0 evolves according to Marchal’s
algorithm. For s > 2, more generally, the sequence (Gs

n)n>−1 evolves according to
Marchal’s algorithm.

See Section 3.4 for a proof. We now turn to our constructions of the limit object Gs.

1.2.2. Construction 1: from randomly scaled stable trees glued to the kernel

Given a connected multigraph G ∈Ms,0, with k edges and k − s internal vertices
having degrees d1, . . . , dk−s, consider independent random variables

(M1, . . . , M2k−s) ∼ Dir

α− 1
α

, . . . ,
α− 1
α︸ ︷︷ ︸

k

,
d1 − 1− α

α
, . . . ,

dk−s − 1− α
α

(1.9)

and, for 1 6 i 6 k − s,

(∆i,j, j > 1) ∼ PD
(

1
α
,
di − 1− α

α

)
,(1.10)
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where Dir(a1, . . . , an) denotes the Dirichlet distribution on the (n− 1)-dimensional
simplex, with parameters a1 > 0, a2 > 0, . . . , an > 0, and PD(a, b) denotes the
Poisson–Dirichlet distribution on the set of positive decreasing sequences with sum
1, with parameters a > 0, b > 0.
Given all of these random variables, consider independent α-stable trees T`, Ti,j,

where T` has massM` and Ti,j has massMi+k ·∆i,j, with 1 6 ` 6 k, 1 6 i 6 k−s, j >
1. For each ` let ρ` denote the root of T` and L` be a uniform leaf. (Note that the law
of the stable tree is invariant under uniform random re-rooting [DLG09, HPW09],
so that exchanging the roles of ρ` and L` here does not affect the law of this
doubly-marked tree.) Similarly, let ρi,j denote the root of the tree Ti,j for each i, j.
Then denote by v1, . . . , vk−s the internal vertices of G having degrees d1, . . . , dk−s
respectively. Denote by e1, . . . , ek the edges of G in arbitrary order, with, say,
ei = {xi, yi}. Finally, let G(G) be the R-graph obtained by:

• replacing the edge {x`, y`} with the tree T`, identifying ρ` with x` and L` with
y`, for each 1 6 ` 6 k,
• gluing to the vertex vi the collection of stable trees Ti,j, j > 0, by identifying
all the roots ρi,j to vi (this gluing a.s. gives a compact metric space, see
Section 4.2), for each 1 6 i 6 k − s.

On an event of probability one the graph G(G) is therefore compact, and is naturally
endowed with the probability measure induced by the rescaled probability measures
on the α-stable trees T`, Ti,j, i, j, ` ∈ N. We view it as a random variable in (C , dGHP).

Theorem 1.6. — Given the random kernel Ks, let G(Ks) be the graph constructed
above by gluing α-stable trees along the edges and vertices of Ks. Then

Gs d= G(Ks),

as random variables in (C , dGHP).

We prove Theorem 1.6 in Section 4.2 via the recursive construction of the discrete
graphs Gs

n, n > 0. As a byproduct of the proof, we obtain the distribution of the
continuous marginals Gsn, which may be viewed as Gs

n with random edge-lengths. In
particular, when n = 0, we obtain the distribution of the continuous kernel Ks.

Proposition 1.7. — For n > 0, given Gs
n = (V,E), let (L(e), e ∈ E) be the

lengths of the corresponding edges in Gsn, in arbitrary order. Then,

(α · L(e), e ∈ E)

is distributed as the product of three independent random variables:

Beta
(
|E|, (n+ s)α + s− 1

α− 1 − |E|
)
·ML

(
1− 1

α
,
(n+ s)α + s− 1

α

)
·Dir(1, . . . , 1).

(1.11)

Here, ML(β, θ) denotes the generalised Mittag–Leffler distribution with parameters
0 < β < 1 and θ > −β.
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1.2.3. Construction 2: line-breaking

Various prominent examples of random metric spaces may be obtained as the limit
of a so-called line-breaking procedure that consists in gluing recursively segments
of random lengths – or more complex measured metric structures – to obtain a
growing structure. The most famous is the line-breaking construction of the Brownian
continuum random tree discovered by Aldous in [Ald91]. We refer to [ABBG10, CH17,
GH15, RW18, Sén19, Sén22] for other models studied since then.
The R-graph Gs may also be constructed in such a way, starting from its kernel.

This construction makes use of an increasing R+-valued Markov chain (Rn)n>1 which
is characterized by the following two properties for each n > 1:

Rn ∼ ML
(

1− 1
α
,
nα + (s− 1)

α

)
and Rn = Rn+1 ·Bn

where Bn ∼ Beta( (n+1)α+s−2
α−1 , 1

α−1) is a random variable independent of Rn+1. (An
explicit construction of this Markov chain is given e.g. in [GH15, Section 1.2]. Note
that similar Markov chains arise in the scaling limits of several stochastic models,
see [Jam15, Sén21].)
For the moment, assume that s > 1. Suppose we are given Ks with, say, k edges

and internal vertices v1, . . . , vk−s having degrees d1, . . . , dk−s respectively. We first
perform an initialisation step: independently of the Markov chain (Rn)n> 1,

• sample

(Θ1, . . . , Θ2k−s) ∼ Dir

1, . . . , 1︸ ︷︷ ︸
k

,
d1 − 1− α
α− 1 , . . . ,

dk−s − 1− α
α− 1

 ;

• assign the lengths Rs ·Θ1, . . . , Rs ·Θk to the k edges of Ks (the order is again
unimportant); viewing the edges as closed line-segments, this gives a metric
space that we denote Hs

0, with k − s branch-points (i.e. vertices of degree at
least 3) labelled v1, . . . , vk−s;
• let

η0 := λHs0 +
k−s∑
i=1

(Rs ·Θk+i) δvi ,

where λHs0 denotes the Lebesgue measure on Hs
0.

We now build a growing sequence of measured metric spaces (Hs
n, ηn)n> 0, starting

from (Hs
0, η0). Recursively,

• select a point v in Hs
n with probability proportional to ηn;

• attach to v a new closed line-segment σ of length (Rn+s+1−Rn+s) ·βn, where
βn has a Beta(1, (2−α)/(α−1))-distribution and is independent of everything
constructed until now; this gives Hs

n+1;
• let ηn+1 := ηn + (Rn+s+1 − Rn+s) · (1 − βn)δv + λσ, where λσ denotes the
Lebesgue measure on σ.

When s = 0 the construction works similarly except that the initialization starts
at n = 1 with H0

1 taken to be a closed segment of length R1, equipped with the

ANNALES HENRI LEBESGUE



Stable graphs 853

Lebesgue measure denoted by η1. We have the following result, which is proved in
Section 4.3.

Theorem 1.8. — The sequence (Hs
n, n > 0) is distributed as (Gsn, n > 0). In

consequence, the graph Hs
n, endowed with the uniform probability on its set of

leaves, converges almost surely for the Gromov–Hausdorff–Prokhorov topology to a
random compact measured metric space distributed as Gs. In particular, ∪n> 0Hs

n is
a version of Gs.

Remark 1.9. — We adopt a “discrete” approach to proving Theorems 1.6 and 1.8;
in other words, we make use of Marchal’s algorithm and the fact that it gives us
a sequence of approximations which, on rescaling, converge almost surely to the
connected α-stable graph with surplus s. An alternative approach should be possible,
whereby one would work directly in the continuum, but it is far from clear to us
that it would be any simpler to implement.

1.3. The finite third moment case, and other related work

The case where
E
[
D2

1

]
= 2E [D1] and E

[
D3

1

]
<∞

has already been well-studied. In particular, when P(D1 = 2) < 1, if we let
β = E [D1(D1 − 1)(D1 − 2)] then Theorem 1.1 holds with α = 2 if we rescale the
counting measure on each component by β−1E [D1]n−2/3 and the graph distances
by βE [D1]−1 n−1/3. The limiting graphs are constructed similarly to ours but using
a standard Brownian motion instead of a spectrally positive α-stable Lévy process
(with the small variation that β appears in the change of measure). See [BS20,
Theorem 2.4 and Construction 3.5] and also [CKG20] for more details. This Brow-
nian graph first appeared as the scaling limit of the critical Erdős–Rényi random
graph [ABBG12] and is now known to be the universal scaling limit of various other
critical random graph models. Precise analogues of our main results were already
known in this Brownian case (except for Theorem 1.5).
It follows from the properties of Brownian motion that the branch-points in GsBr,

the connected Brownian graph with surplus s, are then all of degree 3. Its discrete
kernel Ks

Br is therefore a 3-regular planted multigraph, whose distribution is given
below.

Theorem 1.10 ([ABBG10, Figure (2)] and [JKŁP93, Theorem 7]). — For a
connected 3-regular planted multigraph G with surplus s,

P (Ks
Br = G) ∝ 1

|Sym(G)| 2sl(G) ∏
e∈ supp(E(G))

mult(e)! .

(In the references given, the kernel is taken to be labelled and unrooted, but the
labelling can be removed simply at the cost of the factor of |Sym(G)|−1 appearing in
the above expression, and the root can be removed as detailed above.) See Table 1.1
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for numerical values when s = 2. Note that the formula above corresponds to that
of Theorem 1.3 when n = 0 and α = 2 since then

w0 = w2 = 1 and wi = 0 for all other indices i.
In fact, our proofs in Section 3 can be adapted to recover this case and more generally
to obtain the joint distribution of the marginals Gs

n,Br via a recursive construction
which is particularly simple in this case: starting from the kernel Ks

Br, at each step a
new edge-leaf is attached to an edge chosen uniformly at random from among the set
of edges of the pre-existing structure. (For s = 0, this is Rémy’s algorithm [Rém85]
for generating a uniform binary leaf-labelled tree.) After n steps, this gives a version
of Gs

n,Br, whose distribution is specified below.

Proposition 1.11. — For every multigraph G ∈Ms,n with internal vertices all
of degree 3,

P
(
Gs
n,Br = G

)
∝ 1
|Sym(G)| 2sl(G) ∏

e∈ supp(E(G))
mult(e)! .

As in the stable cases, these distributions are connected to configuration multi-
graphs. Indeed, let D(Br) denote a random variable with distribution

P
(
D(Br) = 1

)
= 3/4 and P

(
D(Br) = 3

)
= 1/4.

Consider then the following particular instance of the configuration model. We fix n >
0,m > n+1 and take vertices labelled 0, 1, . . . , m−1 to have i.i.d. degrees distributed
according to D(Br). We then write Csn,m for the resulting configuration multigraph
conditioned to be in Ms,n, after having forgotten the labels n+ 1, n+ 2, . . . , m− 1.

Corollary 1.12. — The random multigraph Gs
n,Br conditioned to have m ver-

tices has the same law as Csn,m.

The paper [ABBG10] is devoted to the study of the distribution of GsBr for s > 0.
In particular, it is shown there that a version of GsBr can be recovered by gluing
appropriately rescaled Brownian continuum random trees along the edges of Ks

Br
([ABBG10, Procedure 1]) or via a line-breaking construction ([ABBG10, Procedure 2
& Theorem 4]).
Let us turn now to other related work. The study of scaling limits for critical

random graph models was initiated by Aldous in [Ald97], where he proved in par-
ticular the convergence of the sizes and surpluses of the largest components of the
Erdős–Rényi random graph in the critical window, as well as a similar result for the
sizes of the largest components in an inhomogeneous random graph model. This was
followed soon afterwards by Aldous and Limic [AL98], who explored the possible
scaling limits for the sizes of the components in a “rank-one” inhomogeneous random
graph, with the limiting sizes encoded as the lengths of excursions above past-minima
of a so-called thinned Lévy process.
In [ABBG12], it was shown that Aldous’ result for the sizes and surpluses of the

largest components in a critical Erdős–Rényi random graph could be extended to
include also the metric structure of the limiting components; the limiting object is
what we refer to here as the Brownian graph. Since that paper, progress has been
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made in several directions. One direction has been to demonstrate the universality
of the Brownian graph (first in terms of component sizes, and then in terms of the
full metric structure). This has been done for critical rank-one inhomogeneous ran-
dom graphs [BSW17, BHL10, Tur13], for critical Achlioptas processes with bounded
size rules [BBW14], for critical configuration models with finite third moment de-
grees [BS20, DHLS17, Jos14, NP10, Rio12] and in great generality in [BBSW14].
Another line of enquiry, into which the present paper fits, is the investigation

of other universality classes, generally those with power law degree distributions.
This has been pursued in the setting of rank-one inhomogeneous random graphs
with power-law degrees in [BHL12, BHS18, Hof13] and with very general weights
by [BDW18, BDW21]. The configuration model with power-law degrees has been
treated by [BDHS20a, BDHS20b, DHLS20, Jos14]. The last four papers are the most
directly related to the topic of the present paper, and so we will discuss them in a
little more detail.
In [Jos14], Joseph considers the configuration model with i.i.d. degrees satisfying

the same conditions as us, and proves the convergence in distribution of the compo-
nent sizes (1.4). (He leaves the equivalent convergence in the setting of the graph
conditioned to be simple as a conjecture, but this is not hard to prove; see [CKG20]
for the details.) The results of [CKG20] in Theorem 1.1 thus directly generalise
those of Joseph. Dhara, van der Hofstad, van Leeuwaarden and Sen [DHLS20] and
Bhamidi, Dhara, van der Hofstad, and Sen [BDHS20a, BDHS20b] consider the com-
ponent sizes and metric structure respectively for critical percolation on supercritical
configuration models with degree sequences satisfying a certain power-law condition.
The paper [BDHS20b] proves a metric space scaling limit, where the limit compo-
nents are derived from the thinned Lévy processes mentioned above. This scaling
limit is proved in the product Gromov-weak topology, and the result is improved
to a convergence in the product Gromov–Hausdorff–Prokhorov sense in [BDHS20a].
This result is in principle somewhat more general in scope than that of [CKG20],
in that it covers a whole family of deterministic degree sequences; however, it is
restricted to the case of critical percolation on a supercritical configuration model,
whereas [CKG20] applies directly to a critical configuration model. In principle, it
should nonetheless be possible to view the stable graph as an appropriately annealed
version of the scaling limit of [BDHS20b]. However, it is for the moment unclear how
to prove independently that the two objects obtained must be the same. The limit
spaces obtained in [BDHS20b] are a priori much less easy to understand than ours;
the advantage of the i.i.d. setting is that we get very nice absolute continuity rela-
tions with the stable trees which are already well understood. Obtaining analogous
results in the setting of [BDHS20b] seems much more challenging. (See [CKG20] for
a more in-depth discussion of these issues and for a list of open problems.)

1.4. Perspectives

As discussed above, the results of this paper provide heavy-tailed analogues of those
in [ABBG10], which have been applied in other contexts. Firstly, the decomposition
into a continuous kernel with explicit distribution plus pendant subtrees played a
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key role in the proof of the existence of a scaling limit for the minimum spanning
tree of the complete graph on n vertices in [ABBGM17]. More specifically, assign
the edges of the complete graph i.i.d. random edge-weights with Exp(1) distribution.
Now find the spanning tree Mn of the graph with minimum total edge-weight. (The
law of Mn does not depend on the weight distribution as long as it is non-atomic.)
Think of Mn as a measured metric space in the usual way by endowing it with the
graph distance dn and the uniform probability measure µn on its vertices. The main
result of [ABBGM17] is that

(
Mn, n

−1/3dn, µn
) d→ (M, d, µ)

as n → ∞, in the Gromov–Hausdorff–Prokhorov sense, where the limit space
(M, d, µ) is a random measured R-tree having Minkowski dimension 3 almost surely.
This convergence has, up to a constant factor, recently been shown by Addario–Berry
and Sen [ABS21] to hold also for the MST of a uniform random 3-regular (simple)
graph or for the MST of a 3-regular configuration model.
Following a scheme of proof similar to that developed in [ABBGM17], it may be

possible to use the results of the present paper together with those of [CKG20] to
prove an analogous scaling limit for the minimum spanning tree of the following
model. First, generate a uniform random graph (or configuration model) with i.i.d.
degrees D1, D2, . . . , Dn with the same power-law tail behaviour as discussed above,
but now in the supercritical setting ν > 1. For the purposes of this discussion, let
us also assume that P (D1 > 3) = 1. Under this condition, the graph not only has a
giant component, but that component contains all of the vertices with probability
tending to 1 [CD09, Lemma 1.2]. As before, assign the edges of this graph i.i.d.
random weights with Exp(1) distribution and find the minimum spanning tree Mn.
Then we conjecture that in this setting we will have(

Mn, n
−(α−1)/(α+1)dn, µn

) d→ (M, d, µ) ,

for some measured R-tree (M, d, µ). This conjecture will be the topic of future work.
Another application of the results of [ABBG10] has been in the context of ran-

dom maps. The Brownian versions of the graphs Gs, s > 0 arise as scaling limits
of unicellular random maps on various compact surfaces. The results of [ABBG10]
have, in particular, been used to study Voronoi cells in these objects. More specif-
ically, for a surface S, let (U(S), d, µ) be the continuum random unicellular map
on S [ABAC+18], endowed with its mass measure µ, and let X1, X2, . . . , Xk be
independent random points sampled from µ. Let V1, V2, . . . , Vk be the Voronoi cells
with centres X1, . . . , Xk. Then in [ABAC+18] it is shown that(

µ(V1), . . . , µ(Vk)
)
∼ Dir(1, 1, . . . , 1).

In other words, the Voronoi cells of uniform points provide a way to split the mass
of the space up uniformly. In principle, there should exist “stable” analogues of this
result (in which the mass-split will no longer be uniform).
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1.5. Organisation of the paper

Section 2 is devoted to background on stable trees, and to the description of the
distribution of the limiting sequence of metric spaces arising in Theorem 1.1 in
terms of a spectrally positive α-stable Lévy process. In particular, we give a precise
description of the elementary building-blocks Gs, s > 0. We then enter the core of the
paper with Section 3 which is dedicated to the proof of the joint distribution of the
discrete marginals Gs

n, n > 0 (Theorems 1.3 and 1.5), including the connection to a
configuration model stated in Corollary 1.4. Section 4 is devoted to the proofs of the
construction of the R-graph Gs from randomly scaled trees glued to its kernel and of
its line-breaking construction (Theorem 1.6, Proposition 1.7 and Theorem 1.8, as well
as Proposition 1.2). Finally, in the appendix, Section 5, we recall the definitions and
some properties of various distributions (generalized Mittag–Leffler, Beta, Dirichlet
and Poisson–Dirichlet), as well as some classical urn model asymptotics, which are
used at various points in the paper.

2. The stable graphs

We begin in Section 2.1 with some necessary background on stable trees. In partic-
ular, we recall Marchal’s algorithm for constructing the discrete ordered marginals,
and use it to obtain the joint distribution of various aspects (lengths, weights, local
times) of the continuous marginals, which we will need later on. In Section 2.2,
we turn to the distribution of the limiting sequence of metric spaces arising in
Theorem 1.1 and in particular to the construction of the stable graphs.
Throughout this section, we fix α ∈ (1, 2).

2.1. Background on stable trees

2.1.1. Construction and properties

The α-stable tree was introduced by Duquesne and Le Gall [DLG05], building on
earlier work of Duquesne and Le Gall [DLG02] and Le Gall and Le Jan [LGLJ98].
First, let ξ be a spectrally positive α-stable Lévy process with Laplace exponent

E [exp (−λξt)] = exp (tλα) , λ > 0, t > 0.
Now consider a reflected version of this Lévy process, namely (ξt− inf06 s6 t ξs, t > 0).
It is standard that this process has an associated excursion theory, and that one
can make sense of an excursion conditioned to have length 1. We will write X
for this excursion of length 1, and observe that, thanks to the scaling property of
ξ we may obtain the law of an excursion conditioned to have length x > 0 via
(x1/αX(t/x), 0 6 t 6 x). See Chaumont [Cha97] for more details.
To a normalised excursion X we may associate an R-tree. In order to do this, we

first derive from X a height function H, defined as follows: for t ∈ [0, 1],

H(t) = lim
ε→ 0+

1
ε

∫ t

0
1{X(s)<infs6 r6 tX(r)+ε}ds.
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The process H possesses a continuous modification such that H(0) = H(1) = 0
and H(t) > 0 for t ∈ (0, 1), which we consider in the sequel (see Duquesne and Le
Gall [DLG02] for more details). We then obtain an R-tree in a standard way from
H by first defining a pseudo-distance d on R+ via

d(s, t) = H(s) +H(t)− 2 inf
s∧ t6 r6 s∨ t

H(r).

Now define an equivalence relation ∼ by declaring s ∼ t if d(s, t) = 0. Then let
T be the metric space obtained by endowing [0, 1]/ ∼ with the image of d under
the quotienting operation. Let us write π : [0, 1] → T for the projection map. We
additionally endow T with the push-forward of the Lebesgue measure on [0, 1] under
π, which is denoted by µ. The point ρ := π(0) = π(1) is naturally interpreted as
a root for the tree. We will refer to the random variable (T , d, µ) as the (standard)
α-stable tree. In the usual notation, for points x, y ∈ T , we will write [[x, y]] for the
path between x and y in T , and ]]x, y[[ for [[x, y]] \ {x, y}. (These are isometric to
closed and open line-segments of length d(x, y), respectively.) We can use the root
to endow the tree T with a genealogical order : we say x � y if x ∈ [[ρ, y]]. We define
the degree, deg(x), of a point x ∈ T to be the number of connected components into
which its removal splits the space. If there is any potential ambiguity over which
metric space we are working in, we will write degT (x). The branchpoints are those
with degree strictly greater than 2 and the leaves are those with degree 1; we write
Br(T ) = {x ∈ T : deg(x) > 2} and Leaf(T ) = {x ∈ T : deg(x) = 1}. We observe
that the measure µ is diffuse, and is supported on Leaf(T ). Moreover, almost surely
Br(T ) contains only points x such that deg(x) = ∞. The distance d induces a
natural length measure on the tree T , for which we write λ.
We also define a partial order � on [0, 1] by declaring

(2.1) s � t if s 6 t and X(s−) 6 inf
s6 r6 t

X(r).

(We take as a convention that X(0−) = 0.) This partial order is compatible with
the genealogical order on T in the sense that for x, y ∈ T , x � y if and only if there
exist s, t ∈ [0, 1] such that x = π(s) and y = π(t) and s � t.
We will require various properties of T in the sequel, many of which originate in

the work of Le Gall and Le Jan [LGLJ98]. The key technical tool in their work is the
exploration process, which we prefer not to introduce here; our presentation of this
material instead owes much to that of Curien and Kortchemski [CK14], which relies
in turn on various key results from Miermont [Mie05]. As already mentioned, we will
make use of the fact that the law of T is invariant under re-rooting at a random point
with distribution µ. So we will sometimes think of the tree as unrooted and regenerate
a root from µ when necessary. Another key feature of T is that its branchpoints
are all of infinite degree, almost surely. By [Mie05, Proposition 2] of Miermont,
x ∈ Br(T ) if and only if there exists a unique s ∈ [0, 1] such that x = π(s) and
∆X(s) = X(s)−X(s−) > 0. For all other values r ∈ [0 , 1] such that π(r) = π(s) = x,
we have infs6u6 rX(u) = X(r) > X(s−). For such s associated to a branchpoint
x = π(s), we will define N(x) := ∆X(s). By Miermont’s equation [Mie05, Eq. (1)],
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for all x ∈ Br(T ) this quantity may be almost surely recovered as

N(x) = lim
ε→ 0+

1
ε
µ
({
y ∈ T : x ∈ [[ρ, y]] , d(x, y) < ε

})
,

and so N(x) gives a renormalised notion of the degree of x. We will refer to this
quantity as the local time of x, since it plays that role with respect to H.
For any s, t ∈ [0, 1] such that π(s) ∈ Br(T ) and s � t, we also define the local time

of π(s) to the right of π(t) to be
N right(π(s), π(t)) = inf

s6u6 t
X(u)−X(s−).

ThenN right(π(s), π(t)) ∈ [0, N(π(s))] is a measure of how far through the descendants
of π(s) we are when we visit π(t). (Indeed, since π(s) ∈ Br(T ), if s � t and
s � u with N right(π(s), π(t)) > N right(π(s), π(u)) then necessarily t < u.) By [CK14,
Corollary 3.4], we can express X(t) as the sum of the atoms of local time along the
path from the root to π(t):
(2.2) X(t) =

∑
0� s� t

N right(π(s), π(t)),

almost surely for all t ∈ [0 , 1]. For any s � t, we define the local time along the path
]]π(s), π(t)[[ by

N
(

]]π(s), π(t)[[
)

:=
∑

b∈Br(T )∩ ]]π(s),π(t)[[
N(b),

and the local time to the right along the path ]]π(s), π(t)[[ by

N right
(

]]π(s), π(t)[[
)

:=
∑

b∈Br(T )∩ ]]π(s),π(t)[[
N right(b, π(t)) = X(t−)−X(s),

where we observe that all of these sums are over countable sets.

2.1.2. Marchal’s algorithm for ordered trees

Consider an infinite sample of leaves from (T , d, µ) obtained as the images of i.i.d.
uniform random variables U1, U2, . . . on [0, 1] under the quotienting. These leaves,
which we label 1, 2, . . ., inherit an order from [0, 1]. For n ∈ N, let T ord

n be an ordered
leaf-labelled version of the subtree of T spanned by the root and the first n leaves
(the order being inherited from the leaves) and Tord

n its combinatorial shape, also
with leaf-labels. Formally,

Tord
n = shape

(
T ord
n

)
where, for any compact rooted (say at ρ) real tree τ (possibly ordered), shape(τ) is
the (possibly ordered) rooted discrete tree (V,E) with no vertex of degree 2 except
possibly the root, where

V = {ρ} ∪
{
v ∈ τ\{ρ} : degτ (v) 6= 2

}
and E =

{
{u, v} : u, v ∈ V, degτ (w) = 2,∀ w ∈ ]]u, v[[ and ρ /∈ ]]u, v[[

}
.

(2.3)

We define the shape of a discrete tree similarly. Note that, in fact, all of the trees
we consider will have a root of degree 1: they are planted.

TOME 5 (2022)



860 C. GOLDSCHMIDT, B. HAAS & D. SÉNIZERGUES

For any n > 1, we denote by Tn the set of planted ordered finite trees with n
labelled leaves, with labels from 1 to n, and no vertex of degree 2. The root is thought
of as a leaf with label 0. In [DLG02, Section 3], Duquesne and Le Gall show that for
each tree T ∈ Tn with set of internal vertices I(T ),

(2.4) P
(
Tord
n = T

)
∝

∏
u∈ I(T )

wdegT (u)−1

(degT (u)− 1)! ,

where the weights (wk, k > 0) were defined in (1.6). In other words, Tord
n is distributed

as a planted version of a Galton–Watson tree with offspring distribution ηα as defined
in Section 1.2.1 (below Corollary 1.4), conditioned on having n leaves uniformly
labelled from 1 to n.
Building on this result, in [Mar08] Marchal proposed a recursive construction of a

sequence with the same law as (Tord
n , n > 1). (In fact, Marchal gave a construction

of the non-ordered versions of the trees Tord
n , n > 1 but combined with [Mar08,

Section 2.3] we easily obtain an ordered version.) For any n > 1 and any T ∈ Tn, we
construct randomly a tree in Tn+1 as follows.

(1) Assign to every edge of T a weight α− 1 and every internal vertex u a weight
degT (u)− 1− α; the other vertices have weight 0;

(2) Choose an edge/vertex with probability proportional to its weight and then
• if it is a vertex, choose a uniform corner around this vertex, attach a new
edge-leaf in this corner and give the leaf the label n+ 1,
• if it is an edge, create a new vertex which splits the edge into two edges,
and attach an edge-leaf with leaf labelled n+ 1 pointing to the left/right
with probability 1/2.

If we start with the unique element of T1 and apply this procedure recursively, we
obtain a sequence of trees distributed as (Tord

n , n > 1).

Asymptotic behaviour. Consider now the discrete trees as metric spaces, en-
dowed with the graph distance. Fix k and for each k 6 n let Tord

k (n) be the sub-
tree of Tord

n spanned by the leaves with labels 1, 2, . . . , k and the root. Hence,
Tord
k = shape(Tord

k (n)) but the distances in Tord
k (n) are inherited from those in Tord

n .
We may therefore view Tord

k (n) as a discrete tree having the same vertex- and edge-
sets as Tord

k , but where the edges now have lengths. Similarly for T ord
k . Again from

Marchal [Mar08], we have

(2.5) Tord
k (n)
n1−1/α

a.s.−→
n→∞

α · T ord
k ,

as n → ∞, where the convergence means that the rescaled lengths of the edges
of Tord

k (n) converge to the lengths, multiplied by α, of the corresponding edges in
T ord
k . This convergence of random finite-dimensional marginals can be improved

when considering trees as metric spaces (i.e. we forget the order) equipped with
probability measures. Indeed, if Tn denotes the unordered version of Tord

n , with
leaves still labelled 0, 1, 2, . . . , n (0 is the root), µn the uniform probability measure

ANNALES HENRI LEBESGUE



Stable graphs 861

on these leaves, then we have that

(2.6)
(

Tn

n1−1/α , µn, 0, . . . , k
)

a.s.−→
n→∞

α · (T , µ, 0, . . . , k)

for the (k + 1)-pointed Gromov–Hausdorff–Prokhorov topology on the set of mea-
sured (k+ 1)-pointed compact trees, for each integer k. (See e.g. [Mie09, Section 6.4]
for a definition of this topology.) The convergence (2.6) was first proved in probabil-
ity in [HMPW08, Corollary 24] and then improved to an almost sure convergence
in [CH13, Section 2.4].
Suppose now that Tord

k has edge-set E(Tord
k ), labelled arbitrarily as ei, 1 6 i 6

|E(Tord
k )|, and internal vertices I(Tord

k ), labelled arbitrarily as vj, 1 6 j 6 |I(Tord
k )|.

As discussed above, for k 6 n, the internal vertices I(Tord
k ) all have counterparts

in Tord
k (n), which we will also call vj, 1 6 j 6 |I(Tord

k )|. To each edge ei ∈ E(Tord
k )

there corresponds a path γi in Tord
k (n) whose end-points are elements of {vj, 1 6 j 6

|I(Tord
k )|} ∪ {0, 1, . . . , k}. Write γ◦i for the same path with its end-points removed

(γ◦i may be empty). Since Tord
k (n) ⊆ Tord

n , we refer to the corresponding vertices and
paths in Tord

n by the same names.

0

2

0

2

v1

1

1

v1

v1

v1
v1

Tord
n (e1)

Tord
n (e2)

Tord
n (v1)

Tord
n (e3)

v1

v1 v1
Tord
n (v1, 1)

Tord
n (v1, 2)

Tord
n (v1, 3)

Figure 2.1. Left: the tree Tord
n for n = 18 (leaf-labels 3, . . . , 18 are suppressed

for purposes of readability). Tord
2 (n) is emphasised in red and bold. The tree

Tord
2 has a single internal vertex called v1 and edges e1 = {v1, 1}, e2 = {v1, 2}

and e3 = {v1, 0}. The corresponding paths in Tord
2 (n) have lengths 4, 2 and 5

respectively. Middle: the subtrees Tord
n (e1), Tord

n (e2), Tord
n (e3) and Tord

n (v1). Right:
the subtrees Tord

n (v1, 1), Tord
n (v1, 2) and Tord

n (v1, 3).

We will now give names to certain important subtrees of Tord
n and refer the reader to

Figure 2.1 for an illustration. For each vertex v ∈ V (Tord
n ), the unique directed path

from v to 0 has a first point int(v) of intersection with Tord
k (n). For 1 6 j 6 |I(Tord

k )|,
let Tord

n (vj) be the subtree induced by the set of vertices {v : int(v) = vj} and
rooted at vj. If int(v) /∈ {vj : 1 6 j 6 |I(Tord

k )|} then int(v) belongs to γ◦i for
some 1 6 i 6 |E(Tord

k )|. Let Tord
n (ei) be the subtree of Tord

n induced by the vertices
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{v ∈ V (Tord
n ) : int(v) ∈ γ◦i } ∪ γi and rooted at the end-point of γi closest to the root

of Tord
n .

If degTord
k

(vj) = dj then Tord
n (vj) can be split up into separate subtrees descending

from the dj different corners of vj. We list these subtrees in clockwise order from the
root as Tord

n (vj, `), 1 6 ` 6 dj.
For each ei, 1 6 i 6 |E(Tord

k )| then denote by
• Ln(ei) the length of γi in Tord

k (n),
• Mn(ei) the number of leaves in the subtree Tord

n (ei),
• Nn(ei) the number of edges of Tord

n (ei) adjacent to γi,
• N right

n (ei) the number of edges of Tord
n (ei) attached to the right of γi,

• Nn(ei, `) the degree −2 of the `th largest branchpoint along the path γi in
Tord
n (ei), for ` > 1, with ties broken arbitrarily,

• N right
n (ei, `) the degree to the right of the `th largest branchpoint along the

path γi in Tord
n (ei), for ` > 1 (with the same labelling as in the previous

point).
• Ln(ei, `) the distance from the `th largest branchpoint of γi to the root (end-
point nearest 0 in Tord

n ) of Tord
n (ei), ` > 1, again with the same labelling.

Observe that Nn(ei) = ∑
`> 1Nn(ei, `) and N right

n (ei) = ∑
`> 1N

right
n (ei, `).

Similarly, for each vertex vj, 1 6 j 6
∣∣∣I(Tord

n )
∣∣∣, denote by

• Nn(vj) the degree of vj in Tord
n (i.e. degTord

n
(vj)),

• Nn(vj, `) the degree of vj in Tord
n in the `th corner counting clockwise from

the root, for 1 6 ` 6 degTord
k

(vj),
• Mn(vj) the number of leaves in Tord

n (vj),
• Mn(vj, `) the number of leaves in Tord

n (vj, `), for 1 6 ` 6 degTord
k

(vj).

We use the same edge- and vertex-labels for the corresponding parts of T ord
k . Since

T ord
k is (an ordered version of) a subset of T , we have that ei corresponds to an

open path ]]xi,1, xi,2[[ for some pair of points xi,1, xi,2 ∈ T such that xi,1 � xi,2. Let
L(ei) = d(xi,1, xi,2) be the length of this path. We will abuse notation somewhat by
writing N(ei) and N right(ei) instead of N( ]]xi,1, xi,2[[ ) and N right( ]]xi,1, xi,2[[ ) for the
local time of the edge and the local time to the right of the edge respectively. For
` > 1, we will write N(ei, `) for the local time of the `th largest branchpoint along
]]xi,1, xi,2[[ (with ties broken arbitrarily; in any case, these are almost surely distinct),
N right(ei, `) for the local time to the right at the same branchpoint, and L(ei, `) for
the distance from that branchpoint to the lower end-point xi,1 of ei. Each vertex
vj corresponds to some point of T , which by abuse of notation we will also call vj.
(Note that, of course, we must have
{
vj : 1 6 j 6

∣∣∣I (Tord
k

)∣∣∣} ∪ {0, 1, . . . , k} =
{
xi,p : 1 6 i 6

∣∣∣E (Tord
k

)∣∣∣ , p = 1, 2
}
.)

Let T (ei) be the subtree of T containing [[xi,1, xi,2]], formally defined by

T (ei) =
{
x ∈ T : [[ρ, x]] ∩ ]]xi,1, xi,2[[ 6= ∅, xi,2 /∈ [[ρ, x]]

}
∪ {xi,1, xi,2} .
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Let M(ei) = µ(T (ei)). We introduce for any ` > 1 the subtree T (ei, `) hanging off
ei from the `th largest branchpoint xi(`) along ei as

T (ei, `) =
{
x ∈ T : [[ρ, x]] ∩ ]]xi,1, xi,2[[ = ]]xi,1, xi(`)]]

}
.

Let T (vj) be the subtree of T attached to vj, namely

T (vj) =
{
x ∈ T : vj ∈ [[ρ, x]] , ]]vj, x[[ ∩ [[xi,1, xi,2]] = ∅ for all 1 6 i 6

∣∣∣E (Tord
n

)∣∣∣} .
Let M(vj) = µ(T (vj)). As in the discrete case, we can split up T (vj) into subtrees
sitting in the degTord

k
(vj) corners of vj. We call these T (vj, `) for 1 6 ` 6 degTord

k
(vj).

Let

N (vj, `) = lim
ε→ 0+

1
ε
µ
({
y ∈ T (vj, `) : d(vj, y) < ε

})
.

Lemma 2.1. — We have the almost sure joint convergence, for 1 6 i 6 |E(Tord
k )|

and ` > 1,

Ln(ei)
n1−1/α −→

n→∞
α · L(ei),

Mn(ei)
n

−→
n→∞

M(ei),

Nn(ei)
n1/α −→

n→∞
N(ei),

N right
n (ei)
n1/α −→

n→∞
N right(ei),

Nn(ei, `)
n1/α −→

n→∞
N(ei, `),

N right
n (ei, `)
n1/α −→

n→∞
N right(ei, `),

and for 1 6 j 6 |I(Tord
k )|, 1 6 ` 6 degTord

k
(vj),

Mn(vj)
n

−→
n→∞

M(vj),

Nn(vj)
n1/α −→

n→∞
N(vj),

Nn(vj, `)
n1/α −→

n→∞
N(vj, `).

Proof. — The convergence of the lengths is Marchal’s result (2.5). The convergence
of the local times is proved in Dieuleveut [Die15, Lemma 2.7 & Lemma 2.8]. Finally,
in order to see the convergences of the proportions of leaves lying in each of the
subtrees Tord

n (vj) and Tord
n (ei) to the µ-masses of those subtrees T (vj) and T (ei)

respectively, we simply note that we are taking i.i.d. samples from µ, and so the
result follows by the strong law of large numbers. Note that since we are dealing
with a countable collection of random variables, these convergences indeed hold
simultaneously almost surely. �

2.1.3. Marginals of the stable tree

We now state explicitly the joint distributions of all of the limit quantities in
Lemma 2.1.
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Proposition 2.2. — Conditionally on Tord
k with |E(Tord

k )| = m and |I(Tord
k )| =

r := m− k, with degTord
k

(vj) = dj for 1 6 j 6 r, we have jointly(
M(e1), . . . , M(em),M(v1), . . . , M(vr)

) (d)= (D1, D2, . . . , Dm+r)

(N(e1), . . . , N(em), N(v1), . . . , N(vr))
(d)=
(
D

1/α
1 R1, . . . , D

1/α
m+rRm+r

)
α · (L(e1), . . . , L(em)) (d)=

(
D

1−1/α
1 Rα−1

1 R̄1, . . . , D
1−1/α
m Rα−1

m R̄m

)
,

where the following elements are independent:
• (D1, . . . , Dm, Dm+1, . . . , Dm+r) ∼ Dir(1− 1/α, . . . , 1− 1/α, (d1− 1−α)/α,
. . . , (dr − 1− α)/α);
• R1, R2, . . . , Rm+r are mutually independent with R1, . . . , Rm ∼ ML(1/α, 1−

1/α) and Rm+i ∼ ML(1/α, (di − 1− α)/α) for 1 6 i 6 r;
• R̄1, R̄2, . . . , R̄m are i.i.d. ML(α− 1, α− 1).

Moreover, we have Rα−1
i R̄i ∼ ML(1− 1/α, 1− 1/α) for 1 6 i 6 m.

The random variables N right(ei, `)/N(ei, `) and L(ei, `)/L(ei) for 1 6 i 6 m, ` > 1,
the random sequences (N(ei, `)/N(ei), ` > 1) for 1 6 i 6 m, and the random vectors
(N(vj, `)/N(vj), 1 6 ` 6 dj) for 1 6 j 6 r are mutually independent, and are also
independent of N(ei), 1 6 i 6 m and N(vj), 1 6 j 6 r. Moreover, we have(

N (ei, `)
N (ei)

, ` > 1
)
∼ PD(α− 1, α− 1), 1 6 i 6 m,

N right (ei, `)
N (ei, `)

∼ U[0, 1], 1 6 i 6 m, ` > 1,

L (ei, `)
L (ei)

∼ U[0, 1], 1 6 i 6 m, ` > 1,

and (
N (vj, `)
N (vj)

, 1 6 ` 6 dj

)
∼ Dir(1, 1, . . . , 1), 1 6 j 6 r.

The distributional results for the masses, lengths and total local times may be read
off from [GH15], although the precise dependence between lengths and local times is
left somewhat implicit there. Related results appeared earlier in [HPW09]. We give
a complete proof of Proposition 2.2 via an urn model which we now introduce.
Suppose we have k colours such that each colour has three types: a, b and c. Let

Xa
i (n), Xb

i (n) and Xc
i (n) be the weights of the three types of colour i in the urn at

step n, respectively, for 1 6 i 6 k. At each step we draw a colour with probability
proportional to its weight in the urn. If we pick the colour i type a, we add weight
α− 1 to colour i type a, 2− α to colour i type b and α− 1 to colour i type c (recall
that α ∈ (1, 2)). If we pick colour i type b, we add 1 to colour i type b and α− 1 to
colour i type c. If we pick colour i type c, we simply add weight α to colour i type c.
We start with

Xa
i (0) = ζi, Xb

i (0) = 0, Xc
i (0) = 0, 1 6 i 6 k.
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Proposition 2.3. — As n→∞, we have the following almost sure limits:
1

(α− 1)n1−1/α (Xa
1 (n), . . . , Xa

k (n))→
(
D

1−1/α
1 Rα−1

1 R̄1, . . . , D
1−1/α
k Rα−1

k R̄k

)
1

n1/α

(
Xb

1(n), . . . , Xb
k(n)

)
→
(
D

1/α
1 R1, . . . , D

1/α
k Rk

)
1
αn

(Xc
1(n), . . . , Xc

k(n))→ (D1, D2, . . . , Dk) ,

where the sequences (D1, . . . , Dk), (R1, . . . , Rk) and (R̄1, . . . , R̄k) are independent;
we have (D1, . . . , Dk) ∼ Dir(ζ1/α, . . . , ζk/α); the random variables R1, . . . , Rk

are mutually independent with Ri ∼ ML(1/α, ζi/α); and the random variables
R̄1, . . . , R̄k are mutually independent with R̄i ∼ ML(α− 1, ζi).

The proof of Proposition 2.3 appears in Section 5.2.
Proof of Proposition 2.2. — We make use of Marchal’s algorithm. Recall that

we are given an ordered tree Tord
k with k leaves labelled 1, 2, . . . , k, m edges and r

internal vertices with degrees d1, . . . , dr. Let us set
ζ1 = · · · = ζm = α− 1

and
ζm+1 = d1 − 1− α, . . . , ζm+r = dr − 1− α.

We then have ∑m+r
i=1 ζi = αk − 1.

We now show that the urn process from Proposition 2.3 naturally occurs within
our tree evolving according to Marchal’s algorithm. Colours 1, 2, . . . , m represent
the different edges of Tord

k and colours m + 1, . . . , m + r represent the different
vertices. For edge ei of Tord

k , type a corresponds to the weight of edges inserted along
ei; type b corresponds to the weight at vertices along ei; and type c corresponds to
the weight in vertices and edges in pendant subtrees hanging off ei (excluding their
roots along ei). So Xa

i (n) = (α − 1)Ln(ei), Xb
i (n) = Nn(ei) + (1 − α)(Ln(ei) − 1)

and Xc
i (n) = αMn(ei) − Nn(ei). For vertex vj of Tord

k , types a and b together
correspond to the weight at vj and type c corresponds to the weight in edges and
vertices in subtrees hanging from vj. So Xa

m+j(n) +Xb
m+j(n) = Nn(vj)− 1− α and

Xc
m+j(n) = αMn(vj)−Nn(vj) + dj. Applying Proposition 2.3 and Lemma 2.1 then

yields the claimed distributions for the L(ei), N(ei), M(ei), N(vj) and M(vj).
We now turn to Nn(ei, `), ` > 1, the ordered numbers of edges attached to the

branchpoints along ei. Independently for 1 6 i 6 m, let (Ci,`(n), ` > 1) be a Chinese
restaurant process with β = θ = α − 1. This evolves in exactly the same way as
Marchal’s algorithm adds new edges along ei. In particular, we have

(Nn (ei, `) , ` > 1) =
(
C↓i,` (Nn(ei)) , ` > 1

)
.

By again composing limits, it follows that(
N (ei, `)
N (ei)

, ` > 1
)
∼ PD(α− 1, α− 1),

independently for 1 6 i 6 m and independently of everything else.
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Let us now consider how the local time is distributed among the corners of
the vertices vj. This again follows from an urn argument: for the vertex vj which
has degree dj, consider an urn with dj colours, one corresponding to each corner,
(Am+j,1(n), . . . Am+j,dj(n))n> 0. Start the urn from a single ball of each colour. Then
whenever we insert an edge into the corresponding corner, we increase the number of
positions into which we can insert new edges by 1. Hence, we have precisely Pólya’s
urn (see Section 5 for a definition) and so by Theorem 5.5,

1
n

(
Am+j,1(n), . . . , Am+j,dj(n)

)
→
(
∆1, . . . , ∆dj

)
almost surely, where (∆1, . . . , ∆d) ∼ Dir(1, 1, . . . , 1). We have

(Nn (vj, `) , 1 6 ` 6 dj) =
(
Am+j,` (Nn(vj))− 1, 1 6 ` 6 dj

)
and it follows that (

N(vj, `)
N(vj)

, 1 6 ` 6 dj

)
∼ Dir(1, 1, . . . , 1),

independently for 1 6 j 6 r and independently of everything else.
A similar argument works for the local time to the left and right of the `th largest

vertex along an edge ei: start a two-colour urn (Ai,`,1(n), Ai,`,2(n))n> 0 from one ball
of each colour and at each step add a single ball of the picked colour. Then, again
by Theorem 5.5,

1
n

(Ai,1(n), Ai,2(n))→ (∆, 1−∆)

almost surely, where ∆ ∼ U[0, 1]. We get
N right
n (ei, `) = Ai,2 (Nn (ei, `))− 1

and so it follows that
N right(ei, `)
N(ei, `)

∼ U[0, 1],

independently for 1 6 i 6 m and ` > 1. �

Remark 2.4. — Let N(T ) := N(e1) + · · ·+N(em) +N(v1) + · · ·+N(vr). Using
Remark 5.8 below, we observe the following distributional relation: we have N(T ) ∼
ML(1/α, k − 1/α) and, independently,(

N(e1)
N(T ) , . . . ,

N(em)
N(T ) ,

N(v1)
N(T ) , . . . ,

N(vr)
N(T )

)
∼ Dir (α− 1, . . . , α− 1, d1 − 1− α, . . . , dr − 1− α) .

2.2. Construction of the stable graphs

2.2.1. Construction from [CKG20]

Returning now to the setting of our graphs, we wish to specify the distribution of
the limiting sequence Ci = (Ci, dCi , µCi), i > 1 arising in Theorem 1.1. The details of
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the following can be found in the paper [CKG20]. Our graph notation was introduced
in Section 1.1 and the processes ξ,X,H were introduced in Section 2.1.1.
We first define a real-valued process ξ̃ via a change of measure from the Lévy

process ξ. To this end, we observe first that (exp(−
∫ t

0 sdξs − tα+1

(α+1)), t > 0) is a
martingale. Now for each t > 0 and any suitable test-function f : D([0, t],R) → R,
define ξ̃ by

E
[
f
(
ξ̃s, 0 6 s 6 t

)]
= E

[
exp

(
−
∫ t

0
sdξs −

tα+1

(α + 1)

)
f (ξs, 0 6 s 6 t)

]
.

Superimpose a Poisson point process of rate A−1
α (as defined in (1.2)) in the region

{(t, y) ∈ R+ × R+ : y 6 ξ̃t − inf06 s6 t ξ̃s}. Then the limiting components Ci, i > 1
are encoded by the excursions of the reflected process (ξ̃t − inf06 s6 t ξ̃s, t > 0)
above 0 and the Poisson points falling under each such excursion. The total masses
of the measures µC1(C1), µC2(C2), . . . are given by the lengths of the excursions
of ξ̃ above its running infimum. The surpluses s(C1), s(C2), . . . are given by the
number of Poisson points falling under corresponding excursions. Then, the lim-
iting components (C1,C2, . . .) are conditionally independent given the sequences
(µC1(C1), µC2(C2), . . .) and (s(C1), s(C2), . . .), with(

Ci, dCi , µCi
) (d)=

(
Gs(Ci), µCi(Ci)1−1/α · ds(Ci), µCi(Ci) · µs(Ci)

)
.

2.2.2. Construction of the connected α-stable graph with surplus s

For s > 0, it remains to describe the connected stable graph, (Gs, ds, µs) with
surplus s. Just as the stable tree is encoded by a normalised excursion of ξ, the space
Gs has a spanning tree which is encoded by a normalised excursion of ξ̃ conditioned
to contain s Poisson points. This turns out to be distributed as follows. First sample
excursions Xs and Hs with joint law specified by

E [f (Xs(t), Hs(t), 0 6 t 6 1)] =
E
[(∫ 1

0 X(u)du
)s
f
(
X(t), H(t), 0 6 t 6 1

)]
E
[(∫ 1

0 X(u)du
)s] .

Let T s be the R-tree encoded by Hs and let πs : [0, 1]→ T s be its canonical projec-
tion. If s = 0, then Xs is a standard stable excursion and Hs is its corresponding
height process i.e. T 0 (d)= T . In this case, we simply set G0 = T 0. If, on the other
hand, s > 1, conditionally on Xs and Hs, sample conditionally independent points
V s

1 , V
s

2 , . . . , V
s
s from [0, 1], each having density

Xs(u)∫ 1
0 X

s(t)dt
, u ∈ [0, 1].

Then, for 1 6 k 6 s, let Y s
k be uniformly distributed on the interval [0 , Xs(V s

k )],
independently for all k, and let Bs

k = inf{t > V s
k : Xs(t) = Y s

k }. We obtain Gs
from T s by identifying the pairs of points (πs(V s

k ), πs(Bs
k)) for 1 6 k 6 s. (This is

achieved formally by a further straightforward quotienting operation which we do
not detail here.)
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In fact, using the notation of Section 2.1.1 for the tree T s (which is absolutely
continuous with respect to T ), this last operation corresponds to identifying the
leaf πs(V s

k ) with a branchpoint on its ancestral line ]]ρ, πs(V s
k )[[ , independently for

1 6 k 6 s. As a consequence of the discussion in Section 2.1, the point πs(Bs
k) is

such that

πs (Bs
k) = πs (Ask) , where Ask = sup

{
t 6 V s

k : Xs(t) 6 Y s
k

}
.

Along with equation (2.2), this ensures that each branchpoint b ∈ ]]ρ, πs(V s
k )[[ is

chosen with probability equal to
N right (b, πs (V s

k ))
N right ( ]]ρ, πs (V s

k )[[ ) = N right (b, πs (V s
k ))

X (V s
k ) ,

as claimed in the introduction. We view Gs as a measured metric space by endowing
it with µs, the image of the Lebesgue measure on [0, 1] by the projection πs.

2.2.3. Continuous and discrete marginals

Recall the definition for any n > 0 of the continuous marginals Gsn from the
introduction: Gsn is the union of the kernel Ks and the paths from n leaves to the
root, where the leaves are taken i.i.d under the measure carried by Gs. Indeed, the
kernel is the image of the subtree of T s spanned by the s selected leaves after the
gluing procedure.
Let (Ui)i> 1 be a sequence of i.i.d. U[0, 1] random variables independent of Xs,

and let n > 0. In the construction described above, let T ss,n be the ordered sub-
tree of T s spanned by the root and the leaves corresponding to the real numbers
V s

1 , . . . , V
s
s , U1, . . . , Un, and T s,ord

s,n its ordered version. Since πs(U1), . . . , πs(Un) are
(by definition) distributed according to the probability measure carried by Gs, the
image of T ss,n after the gluing procedure is a version of the continuous marginal Gsn
(and the discrete marginal Gs

n is then the combinatorial shape of the continuous
marginal Gsn).
For future purposes, we also define Ts,ord

s,n the discrete counterpart of T s,ord
s,n . By

convention, we consider that the s first leaves are unlabelled and the n leaves
corresponding to U1, . . . , Un inherit the label of their uniform variable.

2.2.4. Unbiasing

Let (X;V1, V2, . . . , Vs, Y1, . . . , Ys) be the unbiased excursion endowed with
• V1, . . . , Vs i.i.d. U[0, 1] random variables
• Y1, . . . , Ys which are conditionally independent given (X;V1, V2, . . . , Vs),
with Yk ∼ U[0, X(Vk)].

We call (X;V1, V2, . . . , Vs, Y1, . . . , Ys) the unbiased counterpart of (Xs;V s
1 , . . . , V

s
s ,

Y s
1 , . . . , Y

s
s ). Any random object defined as a measurable function

f
(
Xs; (V s

k )16 k6 s, (Y s
k )16 k6 s , (Ui)i> 1

)
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then also has an unbiased counterpart, f(X; (Vk)16 k6 s, (Yk)16 k6 s, (Ui)i> 1) and
vice versa. Using the fact that, conditionally on (X;V1, V2, . . . , Vs), the random
variables Y1, . . . , Ys have the same distribution as Y s

1 , . . . , Y
s
s conditionally on

(Xs;V s
1 , V

s
2 , . . . , V

s
s ), we observe that

(2.7) E
[
f
(
Xs; (V s

k )16 k6 s , (Y
s
k )16 k6 s , (Ui)i> 1

)]

=

E

 ∫
[0,1]s

dv1 . . . dvs
X (v1) . . . X (vs)(∫ 1

0 X(t)dt
)s ∫ X(v1)

0

dy1

X(v1) . . .

∫ X(vs)

0

dys
X (vs)

f (X; (vk) , (yk) , (Ui))
(∫ 1

0
X(t)dt

)s 
E
[(∫ 1

0 X(t)dt
)s]

=
E
[
f
(
X; (Vk)16 k6 s , (Yk)16 k6 s , (Ui)i> 1

)
X (V1)X (V2) . . . X (Vs)

]
E [X (V1)X (V2) . . . X (Vs)]

.

In particular, this allows us to compute quantities in the unbiased setting in order
to understand the biased one. We define Ĝs to be the unbiased counterpart of Gs and
Ĝsn to be the unbiased counterpart of Gsn and Ĝs

n to be the unbiased counterpart of Gsn.
Similarly, T̂ s,ord

s,n is the unbiased counterpart of T s,ord
s,n which, modulo the labelling of

the leaves, has the same distribution as T ord
s+n.

3. Distribution of the marginals Gs
n

Let s > 0. The goal of this section is to identify the joint distribution of the
marginals Gs

n, for n > 0 (and for n > −1 if s > 2). By definition, for any n > 0,
the random graph Gs

n is an element of Ms,n, the set of connected multigraphs with
surplus s, with n + 1 labelled leaves, unlabelled internal vertices and no vertex of
degree 2. To perform our calculations, it will be convenient to consider versions
of this multigraph with some additional structure, namely cyclic orderings of the
half-edges around each vertex. We denote by Mord

s,n the set of such graphs and we
emphasise here that the orderings around different vertices need not be compatible
with one another: the elements of Mord

s,n are not necessarily planar. The advantage
is that this additional structure breaks the symmetries present in elements of Ms,n.
(For n = −1 the cyclic ordering is insufficient to break all the symmetries and we
will rather label the internal vertices.)
We will begin in Section 3.1 by first clarifying how we see our multigraphs, and

then computing the number of possible cyclic orderings of the half-edges around the
different vertices of a graph G ∈ Ms,n. Then, in Section 3.2, we will describe the
elements of Mord

s,n as ordered trees with n labelled and s unlabelled leaves together
with a “gluing plan”, that specifies how to glue each unlabelled leaf “to the right” of
the ancestral path of that leaf. This description corresponds to the one we have for
Gsn, and we compute in Section 3.3 the distribution of the tree and the corresponding
gluing plan, which then yields the distribution of Gs

n claimed in Theorem 1.3. In
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Section 3.4, we show that the sequence (Gs
n)n> 0 evolves according to Marchal’s

algorithm (Theorem 1.5). In Section 3.5, we extend this to (Gs
n)n>−1 for s > 2.

Finally, Section 3.6 is devoted to the proof of Corollary 1.4, which identifies the
distribution of Gs

n with that of a specific configuration model with i.i.d. random
degrees.
We recall the following notation from the introduction. For each G = (V (G), E(G))
∈Ms,n, we denote I(G) ⊆ V (G) the set of internal vertices of G (vertices of degree 3
or more), deg(v) = degG(v) the degree of a vertex v ∈ V (G), sl(G) the number of
self-loops, mult(e) the multiplicity of the element e ∈ supp(E) and Sym(G) the set
of permutations of vertices of G that are the identity on the leaves and that preserve
the adjacency relations (with multiplicity).

3.1. Cyclic orderings of half-edges

3.1.1. Clarification of how we see multigraphs

In the introduction, we introduced multigraphs as ordered pairs (V,E), where
V is the set of vertices and E a multiset of non-oriented edges. A more accurate
representation of how we actually think about them would require us to introduce
fully specified multigraphs, where all vertices are distinguishable, all edges are distin-
guishable and are oriented (every edge has a tail and a head). Our original notion
of multigraphs can then be obtained by “forgetting” the orientation and labelling of
the edges, by which we mean that we consider equivalence classes of fully specified
multigraphs up to relabelling and flipping the orientation of edges. Now, on any fully
specified multigraph, what we mean by the half-edges adjacent to a vertex is clear,
so that we can make sense of the extra structure of a cyclic ordering of the set of
half-edges around every vertex.
We introduce Mful

s,n, the set of all fully specified multigraphs endowed with a
cyclic ordering of half-edges around each vertex, with n leaves labelled 1 to n,
surplus s, no vertex of degree 2, and where the labels of the internal vertices are
n+ 1, n+ 2, . . . , n+ I, where I is the number of internal vertices of the multigraph.
Any type of multigraph that we consider in this paper will be obtained by “forgetting”
structure from an oriented fully specified multigraph. In particular, the set Mord

s,n that
we defined in the introduction of this section, as well as the set Ms,n, can be seen
as quotients of the set Mful

s,n under some appropriate relabelling, order-shuffling and
orientation-flipping operations.
In order to avoid making the notation too heavy, we will not hold ourselves to

this level of precision (with the exception of a few places where we need to be very
precise) and will rather rely on the intuition that we get from drawing pictures of
these objects.

3.1.2. Number of possible cyclic orderings of a given graph

Let n > 0. In this section we compute the number of possible cyclic orderings
of the half-edges around each vertex of G, for each G ∈ Ms,n (we emphasise that
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Lemma 3.1 is false when n = −1 and s > 2). Let ψ : Mord
s,n → Ms,n be the map

that forgets the cyclic ordering around the vertices. More precisely, consider the
projection onto the quotient p : Mful

s,n → Ms,n. The reader can convince themselves
that if G,G′ ∈Mful

s,n are equivalent under forgetting edge-labelling, edge-orientation
and labelling of internal vertices, then p(G) = p(G′). This entails that p projects to
a function on the quotient space Mord

s,n , and this is the map that we call ψ.

Lemma 3.1. — For each G ∈Ms,n,

∣∣∣ψ−1(G)
∣∣∣ =

∏
v ∈ I(G)

(deg(v)− 1)!

|Sym(G)| 2sl(G) ∏
e∈ supp(E(G))

mult(e)! .

Proof. — Consider a version of G with labelled internal vertices. The number of
possible labellings is

(3.1) |I(G)|!
|Sym(G)| .

Indeed, let G̃ denote an arbitrarily labelled version of G. The symmetric groupS|I(G)|
acts on the set of multigraphs with |I(G)| internal labels by permuting those labels.
The number of labellings we seek is thus the number of elements of the orbit of G̃
under this action. This is just |I(G)|! divided by the cardinality of the stabilizer of G̃.
Any permutation σ ∈ S|I(G)| that fixes G̃ corresponds to a permutation τ ∈ Sym(G),
and (3.1) follows.
Now, to compute |ψ−1(G)|, we first label everything then forget the labels we do

not need.
• Consider version of G with labelled internal vertices: from the preceding
paragraph, there are |I(G)|!

|Sym(G)| possible labellings.
• For each e = {u, v} ∈ supp(E(G)), in order to distinguish between the mult(e)
edges joining u and v, number them from 1 to mult(e).
• Give every self-loop an orientation.
• Endow the multigraph with a cyclic ordering around each vertex. For each
v ∈ I(G) we have (deg(v)− 1)! possibilities for an ordering of the half edges
adjacent to v. (The half-edges are distinguishable because the self-loops are
oriented.)
• Forget the orientation on the self-loops. This transformation is 2sl(G)-to-1 since
with the ordering around the vertices, every orientation is distinguishable.
• Forget the labelling of the edges. This transformation is ∏

e∈ supp(E(G))
mult(e)!

 -to-1.

• Forget the labelling of the internal vertices. With the cyclic ordering around
the vertices every vertex is distinguishable, and so this map is |I(G)|!-to-1.

The last property follows from the fact that a depth-first search starting from the
root and using the cyclic ordering gives rise to a well-defined order on the vertices
and edges (see the introduction of Dep(G), the depth-first tree of G in the next

TOME 5 (2022)



872 C. GOLDSCHMIDT, B. HAAS & D. SÉNIZERGUES

1

2

0

2

0

1
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Erase Glue

T T ′

33

3

1

G

Figure 3.1. The operations Glue and Erase applied to a tree T ′. Here, T ′ is
the depth-first tree of G, and T is the base tree.

section). We emphasise here the importance of the fact that our multigraphs are
planted (i.e. their root has degree 1) in distinguishing edges and vertices.
We obtain a multigraph in Mord

s,n whose image by ψ is G. By the previous consider-
ations, the number of such multigraphs is indeed given by the claimed formula. �

3.2. Ordered multigraphs and the depth-first tree

We still consider integers n > 0.

3.2.1. Ordered trees with paired leaves

Let Ts,n be the set of planted ordered trees with no vertices of degree 2 that have
s unlabelled leaves and n labelled leaves, with labels from 1 to n. Let Tpair

s,n be the set
of ordered trees with no vertices of degree 2 that have n labelled uncoloured leaves,
s red leaves labelled 1 to s in clockwise order from the root, and s blue leaves also
labelled from 1 to s. We think of the red and blue leaves labelled i as forming a pair,
and impose the condition that the blue leaf labelled i must lie to the right of the
ancestral line of the red leaf labelled i, for 1 6 i 6 s.
We first describe how every ordered multigraph G ∈ Mord

s,n is equivalent to an
element of Tpair

s,n . We define two natural maps on Tpair
s,n . Let

Glue : Tpair
s,n →Mord

s,n

be the map that, for each red leaf i identifies i with its blue pair and then contracts
the resulting path containing a vertex of degree 2 into a single edge. Let

Erase : Tpair
s,n → Ts,n

be the map that erases the blue leaves and their adjacent edges, then contracts any
path of degree 2 vertices into a single edge, and finally forgets the labelling and
colour of the red leaves.
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3.2.2. Reverse construction: the depth-first tree

Let G ∈Mord
s,n . We imagine that each edge of G may be split into two half-edges (or

“stubs”), one attached to each of the vertices incident to the edge (note that these
may both be the same vertex if the edge is a self-loop). We say that two half-edges
are adjacent if they are attached to the same vertex. We describe a procedure that
explores all the half-edges of the graph in a deterministic manner and disconnects
exactly s edges in order to transform G into a tree. At each step i of the algorithm,
we will have an ordered stack of active half-edges Ai and a current surplus si. We
write h0 for the unique half-edge connected to the leaf with label 0.
Initialization A0 = (h0), s0 = 0.
Step i (0 6 i 6 |E(G)| − 1): Let hi be the half-edge at the top of the

stack Ai. Let ĥi be the half-edge to which it is attached. If ĥi /∈ Ai,
remove hi from the stack and put the half-edges adjacent to ĥi on the
top of the stack, in clockwise order top to bottom. If ĥi ∈ Ai, first
increment si, then remove both hi and ĥi from the stack, disconnect
them, attach a red leaf labelled si to hi and attach a blue leaf labelled
si to ĥi.

It is straightforward to check that this algorithm produces a tree in Tpair
s,n , which we

call the depth-first tree, and denote by Dep(G). (Note that this is a variant of the
notion of depth-first tree introduced in [ABBG12].) We have Dep(G) = G if and
only if G is a tree i.e. s = 0. The following lemma is then straightforward.

Lemma 3.2. — The maps Glue : Tpair
s,n → Mord

s,n and Dep : Mord
s,n → Tpair

s,n are
reciprocal bijections.

For a multigraph G, call Erase(Dep(G)) the base tree.

3.2.3. Gluing plans

Consider T ∈ Ts,n. We now aim to describe the set Erase−1 ({T}). This is the
set of possible depth-first trees T ′ obtainable from a fixed base tree T . As usual, we
write I(T ) for the internal vertices of T and E(T ) for its edges. A vertex v ∈ I(T )
of degree d = degT (v) possesses d corners, which we call cv,1, . . . , cv,d in clockwise
order from the root. We write C(T ) for the set of corners of T . The ancestral path of
a vertex is its unique path to the root. For the kth unlabelled leaf of T in clockwise
order, let A(k) be the set of edges and corners that lie immediately to the right of
its ancestral path, for 1 6 k 6 s.
Now let T ′ ∈ Erase−1 ({T}). The internal vertices of T each have a counterpart

in T ′, for which we use the same name. The red leaves of T ′ correspond to the
unlabelled leaves of T . A blue leaf is attached by its incident edge either into one of
the corners of an internal vertex of T , or to an internal vertex of T ′ which disappears
when the blue leaves are removed and paths of internal vertices of degree 2 are
contracted into a single edge. For each e ∈ E(T ) let ae be the number of additional
vertices along the path in T ′ which get contracted to yield the edge e by Erase. If
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ae 6= 0, we will list these additional vertices as ve,1, . . . , ve,ae in decreasing order of
distance from the root.
For each v ∈ I(T ), let Sv,` be the set of labels of blue leaves attached to corner

cv,`, for 1 6 ` 6 degT (v). (Any or all of these sets may be empty; in particular, Sv,1
is always empty because a blue leaf must lie to the right of the ancestral line of
the corresponding red leaf.) If Sv,` is non-empty, let σv,` be the permutation of its
elements which gives the clockwise ordering of the blue leaves in corner cv,`; if it is
empty, let σv,` be the unique permutation of the empty set. For each e ∈ E(T ) such
that ae 6= 0, we let Se,i be the set of labels of blue leaves attached to vertex ve,i in
T ′, for 1 6 i 6 ae. These sets can not be empty. Let σe,i be the permutation of the
elements of Se,i giving the clockwise ordering of the blue leaves attached to ve,i (note
that these are necessarily attached to the right of e). Observe that the collection of
sets {

Sv,` : v ∈ I(T ), 1 6 ` 6 degT (v), Sv,` 6= ∅
}
∪
{
Se,i : e ∈ E(T ), 1 6 i 6 ae

}
partitions {1, 2, . . . , s}. This induces a gluing function g : {1, 2, . . . , s} → (I(T ) ∪
E(T )) × N as follows. For 1 6 k 6 s, if k ∈ Sv,` set g(k) = (v, `); if k ∈ Se,i set
g(k) = (e, i).
See Figure 3.2 for an illustration. This leads us to the formal definition of a gluing

plan.

Definition 3.3. — We say that

∆ =
((

(Sv,`, σv,`)16 `6 degT (v)

)
v ∈ I(T )

,
(
(Se,i, σe,i)16 i6 ae

)
e∈E(T )

)
is a gluing plan for T if the following properties are satisfied.

(1) For all v ∈ I(T ) and all 1 6 ` 6 degT (v), we have Sv,` ⊆ {1, 2, . . . , s} and
σv,` is a permutation of Sv,`.

(2) For all e ∈ E and all 1 6 i 6 ae, the set Se,i ⊆ {1, 2, . . . , s} is non-empty
and σe,i is a permutation of Se,i.

(3) The sets
{Sv,` : v ∈ I(T ), 1 6 ` 6 degT (v), Sv,i 6= ∅} and {Se,i : e ∈ E(T ), 1 6 i 6 ae}

partition {1, 2, . . . , s}.
(4) The induced gluing function g : {1, 2, . . . , s} → (I(T ) ∪ E(T )) × N is such

that if g(k) = (v, `) then cv,` ∈ A(k) and if g(k) = (e, i) then e ∈ A(k), for
all 1 6 k 6 s.

It is straightforward to see that we can completely encode a tree T ′ ∈ Erase−1

({T}) by its gluing plan, and that conversely, every gluing plan for T encodes a tree
T ′ ∈ Erase−1({T}).

Lemma 3.4. —
Mord

s,n ' Tpair
s,n ' {(T,∆) | T ∈ Ts,n and ∆ is a gluing plan for T} .

Suppose T ∈ Ts,n and that

∆ =
((

(Sv,`, σv,`)16 `6 degT (v)

)
v ∈ I(T )

,
(
(Se,i, σe,i)16 i6 ae

)
e∈E(T )

)

ANNALES HENRI LEBESGUE



Stable graphs 875

kv,2 = 3
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(a) In a corner
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(b) On an edge

Figure 3.2. Definition of a gluing plan

is a gluing plan for the base tree T . We let kv,` = |Sv,`| be the number of blue leaves
attached into corner cv,` and kv = ∑degT (v)

`=1 kv,` be the total number of blue leaves
attached to v. We let ke,i = |Se,i| be the number of blue leaves attached to the ith
vertex inserted along e and let ke = ∑ae

i=1 ke,i be the total number of blue leaves
attached to vertices along e. We call the family of numbers((

kv, (kv,`)16 `6 degT (v)

)
v ∈ I(T )

,
(
ke, ae, (ke,i)16 i6 ae

)
e∈E(T )

)
the type of the gluing plan ∆.

Remark 3.5. — Suppose that G ∈ Mord
s,n corresponds to (T,∆). The degrees in

G depend only on T and the type of the gluing plan ∆. For an internal vertex v
of G that was already present in I(T ), its degree in G is degG(v) = degT (v) + kv.
The internal vertices of G that do not correspond to internal vertices of T are the
ones that were created along the edges of T during the gluing procedure. For each
e ∈ E(T ), there are ae newly-created vertices along the edge e, having degrees
2 + ke,1, 2 + ke,2, . . . , 2 + ke,ae .

3.3. The distribution of Gs
n

The goal of this section is to prove Theorem 1.3 for n > 0, which states that for
every connected multigraph G ∈Ms,n,

P (Gs
n = G) ∝

∏
v ∈ I(G)

wdeg(v)−1

|Sym(G)| 2sl(G) ∏
e∈ supp(E(G))

mult(e)! ,

where the weights (wk)k>0 are defined in (1.6).
Recall the construction of the random R-graph Gs using a tilted excursion and

biased chosen points (Xs;V s
1 , . . . , V

s
s ) from Section 2.2. Recall also the definitions of
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T s,ord
s,n (and its discrete version Ts,ord

s,n ) and Gss,n (and its discrete version Gsn), using an
additional sequence of i.i.d. uniform random variables (Ui)i>1. In order to apply the
results of the previous section, we want to work with ordered versions of our graphs.
In particular, we will get an ordered version Gs,ord

n of Gsn by applying a gluing plan to
the base tree Ts,ord

s,n . The change of measure (2.7) allows us to make calculations using
the unbiased excursion with uniform points (X;V1, . . . , Vs, U1, . . . , Un). So we will
define and work instead with an unbiased version Ĝs,ord

n , derived from the unbiased
version T̂s,ord

s,n of Ts,ord
s,n .

3.3.1. Construction of Ĝs,ord
n

We define Ĝs,ord
n via a random gluing plan ∆ for T̂s,ord

s,n . Conditionally on T̂s,ord
s,n =

T ∈ Ts,n, let

Ω(T ) :=
{

(v, `) : v ∈ I(T ), 1 6 ` 6 degT (v)
}
∪
{

(e, j) : e ∈ E(T ), j > 1
}

⊆ (I(T ) ∪ E(T ))× N.
This indexes all the atoms of local time in the corners (as usual, ordered clockwise
around each internal vertex) and along the edges (ordered by decreasing local time
in this instance) of the ordered tree T s,ord

s,n . We will often abuse notation and think
of the elements of Ω(T ) (which are just labels) as the atoms themselves. In fact, the
tree T s,ord

s,n has, up to the labelling of the leaves, the same distribution as T ord
s+n, so

using the discussion just before Lemma 2.1, we can decompose the whole (unbiased)
stable tree as

T ord
s,n ∪

⋃
ω ∈Ω(T )

T (ω).

In order to define our gluing plan, we need to be a little careful about labelling. For
1 6 k 6 s, let lk ∈ {1, 2, . . . , s} be the position of Vk in the increasing ordering of
V1, . . . , Vs i.e. lk = #{1 6 j 6 s : Vj 6 Vk}. This gives the relative planar position
of the (unlabelled) leaf in T corresponding to Vk. Recall from the description of
gluing plans that A(lk) is then the set of edges and corners that lie immediately to
the right of the ancestral path of this leaf. As in Section 2.2, the value Bk = inf{t >
Vk : X(t) = Yk} corresponds to an atom ωk which lies in A(lk). The distribution of
this atom is as follows: conditionally on (X;V1, V2, . . . , Vs, U1, U2, . . . , Un), we have

ωk =

(v, `) with probability N(v,`)
X(Vk) , for any corner (v, `) ∈ A(lk),

(e, j) with probability Nright(e,j)
X(Vk) , for any edge e ∈ A(lk) and any j > 1,

independently for all k. For each edge e ∈ E(T ), let ae be the number of dis-
tinct atoms of local time which appear among ω1, . . . , ωs. If ae > 1, we denote
by j1, j2, . . . , jae the values in the set {j > 1 : (e, j) ∈ {ω1, . . . , ωs}} (that is, the
indices of the atoms along e that receive at least one gluing) listed now in decreasing
order of height i.e. such that L(e, j1) > L(e, j2) > · · · > L(e, jae). For 1 6 k 6 s, let

g(lk) =

(v, `) if ωk = (v, `) for some corner (v, `) ∈ A(lk),
(e, i) if ωk = (e, ji) for some edge e ∈ A(lk) and some 1 6 i 6 ae.
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This is the required gluing function for T . We now derive the full gluing plan. For
e ∈ E(T ) such that ae > 1 and 1 6 i 6 ae, let Se,i = g−1({(e, i)}) be the set of
leaves mapped to the ith atom in decreasing order of height along the edge e. Define
a permutation σe,i of Se,i by

σe,i(lk) = # {1 6 j 6 s : lj ∈ Se,i, Yj > Yk} .
Similarly, for any (v, `) ∈ C(T ), we define Sv,` = g−1({(v, `)}) and a permutation
σv,` of Sv,` by

σv,`(lk) = # {1 6 j 6 s : lj ∈ Sv,`, Yj > Yk} .
Since Y1, . . . , Yk are conditionally independent given (X;V1, . . . , Vs, U1, . . . , Un),
we see that the permutations are conditionally independent. Conditionally on cor-
responding to the same atom of local time, the relative ordering of the associated
Yk’s is uniform, so that the permutations are all uniform on their label-sets. By
construction,

∆ =
((

(Sv,`, σv,`)16 `6 degT (v)

)
v ∈ I(T )

,
(
(Se,i, σe,i)16 i6 ae

)
e∈E(T )

)
is a gluing plan for T . We call Ĝs,ord

n the corresponding (random) multigraph in Mord
s,n ,

obtained via the bijection of Lemma 3.4.
For n > 1, let Nn,6= = {(j1, . . . , jn) ∈ Nn : j1, j2, . . . , jn are distinct.}.

Proposition 3.6. — Fix T ∈ Ts,n and suppose that G ∈Mord
s,n is obtained from

T by a gluing plan ∆. Conditionally on T̂s,ord
s,n = T and on the random variables

(N(v, `); v ∈ I(T ), 1 6 ` 6 degT (v)) ,
(
N right(e, j); e ∈ E(T ), j > 1

)
,(3.2)

the probability that Ĝs,ord
n is equal to G depends only on the type of the gluing plan

∆. Indeed, for any gluing plan of type((
kv, (kv,`)16 `6 degT (v)

)
v ∈ I(T )

,
(
ke, ae, (ke,i)16 i6 ae

)
e∈E(T )

)
,

this conditional probability is

(3.3) 1
X(V1)X(V2) . . . X(Vs)

 ∏
v ∈ I(T )

degT (v)∏
`=1

N(v, `)kv,`
kv,`!


·

 ∏
e∈E(T )

∑
(j1, ..., jae )∈Nae, 6=

1
ae!

ae∏
i=1

N right(e, ji)ke,i
ke,i!

 .
Note that the random variables X(V1), X(V2), . . . , X(Vs) appearing in (3.3) are

measurable functions of the random variables appearing in (3.2).
Proof. — We first reason conditionally on (X;V1, . . . , Vs, U1, . . . , Un). Observe

that the tree T̂s,ord
s,n and random variables(

N right(e, j) : e ∈ E(T ), j > 1
)

and
(
N(v, `) : v ∈ I(T ), 1 6 ` 6 degT (v)

)
are measurable functions of these quantities, as are the relative orderings of the
atoms of local time along an edge. The remaining randomness lies in the random
variables Y1, . . . , Ys. Consider first a vertex v ∈ I(T ) and 1 6 ` 6 degT (v). The
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probability that the leaves among l1, . . . , ls with indices in Sv,` (where |Sv,`| = kv,`)
are glued into corner cv,` is

N(v, `)kv,`∏
lj ∈Sv,`

X(Vj)
.

Now consider an edge e ∈ E(T ) and fixed ae > 1. The probability that the leaves
among l1, . . . , ls with indices in the sets Se,1, . . . , Se,ae (with |Se,i| = ke,i) are grouped
together in the gluing, in that top-to-bottom order, is given by summing over
(j1, . . . , jae) ∈ Nae, 6=, corresponding to different ordered collections of atoms of
local time along the edge e,∑

(j1, ..., jae )∈Nae,6=
1{L(e,j1)>L(e,j2)>···>L(e,jae )}

ae∏
i=1

N right (e, ji)ke,i∏
lj ∈Se,i

X (Vj)
.

The corners and edges all behave independently, and so multiplying everything
together, we obtain that the probability of seeing the particular sets

((Sv,`)16`6degT (v))v∈I(T ), ((Se,i)16i6ae)e∈E(T )

in the random gluing plan is

(3.4) 1
X(V1)X(V2) . . . X(Vs)

·

 ∏
v ∈ I(T )

degT (v)∏
`=1

N(v, `)kv,`


·

 ∏
e∈E(T )

∑
(j1, ..., jae )∈Nae,6=

1{L(e,j1)>L(e,j2)>···>L(e,jae )}

ae∏
i=1

N right (e, ji)ke,i
 .

We now take the conditional expectation of the above quantity with respect to
(N(v, `); v ∈ I(T ), 1 6 ` 6 degT (v)), (N right(e, j); e ∈ E(T ), j > 1). The indicator
1{L(e,j1)>L(e,j2)> ···>L(e, jae )} integrates to 1

ae! , independently for every e ∈ E(T ), by
Proposition 2.2.
Since the permutations (σv,`)v ∈ I(T ), 16 `6 degT (v) and (σe,i)e∈E(T ), 16 i6 ae are uniform

and independent given the sets ((Sv,`)16 `6degT (v))v ∈ I(T ) and ((Se,`)16 `6 ae)e∈E(T ), we
see that each particular collection of permutations arises with conditional probability ∏

v ∈ I(T )

degT (v)∏
`=1

1
kv,`!

 ·
 ∏
e∈E(T )

1
ke,1! . . . ke,ae !

 .
Multiplying the conditional expectation of (3.4) by this quantity gives the desired
result. �
Recall that Ĝs,ord

n is an ordered version of Ĝs
n. We denote by Gs,ord

n the corresponding
ordered version in the s-biased case.

3.3.2. The distribution of Gs,ord
n

We will show that for any ordered multigraph G ∈Mord
s,n ,

(3.5) P
(
Gs,ord
n = G

)
∝

∏
v ∈ I(G)

wdegG(v)−1

(degG(v)− 1)! .
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Fix G ∈ Mord
s,n . As previously mentioned, the only way to obtain G by gluing the s

unlabelled leaves of a tree T ∈ Ts,n onto their ancestral paths is if the tree T is the
base-tree of G, i.e. if T = Erase(Dep(G)). Let Cs := E [X(V1) . . . X(Vs)]−1. Then
using the change of measure formula (2.7), we have

(3.6) P
(
Gs,ord
n = G

)
= Cs · E

[
1{Ĝs,ord

n =G}X(V1)X(V2) . . . X(Vs)
]

= Cs · P
(
T̂s,ord
s,n = T

)
E
[
1{Ĝs,ord

n =G}X(V1)X(V2) . . . X(Vs)
∣∣∣∣ T̂s,ord

s,n = T
]
.

Observe here again that, apart from the labels on the leaves, the tree T̂s,ord
s,n has

exactly the same distribution as Tord
s+n defined at the beginning of Section 2.1.2. So

by (2.4), we have

(3.7) P
(
T̂s,ord
s,n = T

)
∝

∏
v ∈ I(T )

wdegT (v)−1

(degT (v)− 1)! .

We then calculate

E
[
1{Ĝs,ord

n =G}X(V1)X(V2) . . . X(Vs)
∣∣∣∣ T̂s,ord

s,n = T
]

by taking expectations in the formula of Proposition 3.6 conditionally on the event
{T̂s,ord

s,n = T}. Recall that we fixed T = Erase(Dep(G)) and recall the notation
N(T ) introduced in Remark 2.4. Using Proposition 2.2 and Remark 2.4, we know
explicitly the (conditional) distributions of each of the terms in (3.3). Using the
independence stated there, we get

E
[
1{Ĝs,ord

n =G}X(V1)X(V2) . . . X(Vs)
∣∣∣∣ T̂s,ord

s,n = T
]

= E

 ∏
v ∈ I(T )

degT (v)∏
`=1

N(v, `)kv,`
kv,`!

 ·
 ∏
e∈E(T )

∑
(j1, ..., jae )∈Nae,6=

1
ae!

ae∏
i=1

N right (e, ji)ke,i
ke,i!


= E [N(T )s]E

 ∏
v ∈ I(T )

(
N(v)
N(T )

)kv ∏
e∈E(T )

(
N(e)
N(T )

)ke
·
∏

v ∈ I(T )
E

degT (v)∏
`=1

1
kv,`!

(
N(v, `)
N(v)

)kv,`
·
∏

e∈E(T )
E

 ∑
(j1, ..., jae )∈Nae,6=

1
ae!

ae∏
i=1

(
N right(e, ji)

N(e)

)ke,i 1
ke,i!

 .
We now compute the different terms in this product separately.
Using Remark 2.4, we have

N(T ) = N(e1) +N(e2) + . . . N
(
e|E(T )|

)
+N(v1) + . . . N

(
v|I(T )|

)
∼ ML (1/α;n+ s− 1/α) ,
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so we get

E [N(T )s] = Γ(n+ s− 1/α)Γ((n+ s)α + s− 1)
Γ((n+ s)α− 1)Γ(n+ s+ (s− 1)/α) .

Using Remark 2.4 again,
N(e1)
N(T ) , . . . ,

N
(
e|E(T )|

)
N(T ) ,

N(v1)
N(T ) , . . . ,

N
(
v|I(T )|

)
N(T )


∼ Dir (α− 1, . . . , α− 1, d1 − 1− α, . . . , dr − 1− α) .

Note that |I(T )| = |E(T )|−n− s and ∑v ∈ I(T ) degT (v) = 2|E(T )|−n− s− 1, which
yield that

(α− 1)|E(T )|+
∑

v ∈ I(T )
(degT (v)− 1− α) = (n+ s)α− 1.

So (5.2) gives

E

 ∏
v ∈ I(T )

(
N(v)
N(T )

)kv ∏
e∈E(T )

(
N(e)
N(T )

)ke
= Γ ((n+ s)α− 1)

Γ ((n+ s)α + s− 1) ·
∏

v ∈ I(T )

Γ (degT (v) + kv − 1− α)
Γ (degT (v)− 1− α)

·
∏

e∈E(T )

Γ (α− 1 + ke)
Γ(α− 1) .

Let v ∈ I(T ). Proposition 2.2 gives(
N(v, 1)
N(v) , . . . ,

N (v, degT (v))
N(v)

)
∼ Dir(1, . . . , 1),

and then (5.2) yields

E

degT (v)∏
`=1

1
kv,`!

(
N(v, `)
N(v)

)kv,`
= Γ (degT (v))

Γ (degT (v) + kv)
·

degT (v)∏
`=1

Γ (kv,` + 1)
Γ(1)

 ·
degT (v)∏

`=1

1
kv,`!


= (degT (v)− 1)!

(degT (v) + kv − 1)! .

Let e ∈ E(T ). Using Proposition 2.2, we have(
N(e, j)
N(e)

)
j > 1
∼ PD (α− 1, α− 1) , and

(
N right(e, j)
N(e, j)

)
j > 1

are i.i.d. U[0, 1],
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so using Lemma 5.4, and the fact that E [Up] = 1/(p+ 1) for U ∼ U[0 , 1], we get

E

 ∑
(j1, ..., jae )∈Nae,6=

(
N right (e, j1)

N(e)

)ke,1
· · ·

(
N right (e, jae)

N(e)

)ke,ae
=
(
ae∏
i=1

wke,i+1

ke,i + 1

)
· Γ(α− 1)

Γ(ke + α− 1) · ae!.

Multiplying this by the combinatorial factor 1
ae!ke,1! ... ke,ae ! , we get

ae∏
i=1

wke,i+1

(ke,i + 1)! ·
Γ (α− 1)

Γ (ke + α− 1) .

So, multiplying everything together, we get

(3.8) E
[
1{Ĝs,ord

n =G}X(V1)X(V2) . . . X(Vs)
∣∣∣∣ T̂s,ord

s,n = T
]

= Γ (n+ s− 1/α)
Γ (n+ s+ (s− 1)/α) ·

 ∏
e∈E(T )

ae∏
i=1

wke,i+1

(ke,i + 1)!


·
∏

v ∈ I(T )

Γ (degT (v) + kv − 1− α)
(degT (v) + kv − 1)!

(degT (v)− 1)!
Γ (degT (v)− 1− α) .

Now, if we fix an ordered multigraph G ∈Mord
s,n , from (3.6) and (3.7) we get

P
(
Gs,ord
n = G

)
∝

∏
v ∈ I(T )

wdegT (v)−1 Γ (degT (v) + kv − 1− α)
(degT (v) + kv − 1)! Γ (degT (v)− 1− α) ·

 ∏
e∈E(T )

ae∏
i=1

wke,i+1

(ke,i + 1)!

 .
Observe finally that every new internal vertex in G corresponds to some e ∈ E(T )
and some 1 6 i 6 ae, and has degree ke,i + 2. For a vertex v ∈ I(T ), its degree in G
is degG(v) = degT (v) + kv. Moreover,

wdegT (v)+kv−1 = wdegT (v)−1 ·
Γ (degT (v) + kv − 1− α)

Γ (degT (v)− 1− α) .

Putting everything together, we indeed get (3.5).
We have now assembled all of the ingredients needed for the proof of Theorem 1.3.
Proof of Theorem 1.3. — Take a multigraph G ∈Ms,n with internal vertices I(G),

edge multiset E(G) and a number sl(G) of self-loops. From Lemma 3.1, the number
of corresponding ordered multigraphs is∏

v ∈ I(G)
(deg(v)− 1)!

|Sym(G)| 2sl(G) ∏
e∈ supp(E(G))

mult(e)! .
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Combining this with (3.5), we get that for any multigraph G ∈Ms,n,

P (Gs
n = G) ∝

∏
v ∈ I(G)

wdeg(v)−1

|Sym(G)| 2sl(G) ∏
e∈ supp(E(G))

mult(e)! ,

as claimed. �

3.4. The distribution of (Gs
n, n > 0) as a process

We now turn to the proof of Theorem 1.5, which says that the sequence (Gsn, n > 0)
evolves according to the multigraph version of Marchal’s algorithm given in Sec-
tion 1.2.1. Again, it is easier to work with multigraphs having cyclic orderings of
the half-edges around each vertex in order to break symmetries. Recall from Sec-
tion 3.3 that Gs,ord

n denotes a version of Gsn with cyclic orderings around the vertices
built from the trees Ts,ord

s,n . We observe that there is a natural coupling of Ts,ord
s,n for

n > 0 obtained by repeatedly sampling new uniform leaves. Let (Gs
n, n > 0) and

(Gs,ord
n , n > 0) be built from this coupled version of the base trees. Note that, for all

n, Gs,ord
n is obtained from Gs,ord

n+1 by erasing the leaf labelled n+ 1 together with the
edge to which it is connected. Recall also from (3.5) that the distribution of Gs,ord

n is

P
(
Gs,ord
n = G

)
= cs,n ·

∏
v ∈ I(G)

wdegG(v)−1

(degG(v)− 1)! , ∀ G ∈Mord
s,n ,

where cs,n is the normalizing constant. We need an ordered counterpart of Marchal’s
algorithm for graphs with cyclic orderings around vertices. Starting from a graph
G ∈Mord

s,n and assigning to its edges and vertices the weights of Marchal’s algorithm,
we decide that (1) if a vertex is selected, we glue the new edge-leaf in a corner
chosen uniformly around this vertex, while (2) if an edge is selected, we place the
new edge-leaf on the right or on the left of the selected edge each with probability
1/2.
We will prove Theorem 1.5 together with the following result.

Proposition 3.7. — The sequence (Gs,ord
n , n > 0) is Markovian, with transitions

given by the ordered version of Marchal’s algorithm.

Proof of Proposition 3.7 and Theorem 1.5. — The Markov property of (Gsn, n > 0)
and (Gs,ord

n , n > 0) is immediate since the backward transitions are deterministic.
Now fix n and let Gord ∈Mord

s,n and Hord ∈Mord
s,n+1 be such that Gord is obtained from

Hord by erasing the leaf labelled n+ 1 and the adjacent edge. Note that the internal
vertices of our graphs are mutually distinguishable since the graphs are planted, with
cyclic orderings around internal vertices. Then,
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P
(
Gs,ord
n+1 = Hord

∣∣∣ Gs,ord
n = Gord

)
=

P
(
Gs,ord
n+1 = Hord

)
P
(
Gs,ord
n = Gord

)

= cs,n+1

cs,n
·

∏
v ∈ I(Hord)

wdeg
Hord (v)−1

(degHord(v)− 1)!∏
v ∈ I(Gord)

wdeg
Gord (v)−1

(degGord(v)− 1)!

.

Now there are two different cases, (a) and (b) below.
(a) The leaf n + 1 of Hord is attached to a vertex v of Hord that has a degree

greater or equal to 4. In this case, v corresponds to a vertex of Gord, still
denoted by v, and I(Hord) = I(Gord), degGord(v) = degHord(v) − 1 and the
degree of any other internal vertex is identical in Gord and Hord. Since

wdeg
Hord (v)−1 = wdeg

Gord (v) = (degGord(v)− 1− α)wdeg
Gord (v)−1,

together with the above expression for P
(
Gs,ord
n+1 = Hord | Gs,ord

n = Gord
)
this

implies that

(3.9) P
(
Gs,ord
n+1 = Hord

∣∣∣ Gs,ord
n = Gord

)
= cs,n+1

cs,n
· degGord(v)− 1− α

degGord(v) .

(b) The vertex v has degree 3 in Hord and is erased when erasing the leaf n+ 1
and the adjacent edge. In this case I(Hord) = I(Gord) ∪ {v} and

(3.10) P
(
Gs,ord
n+1 = Hord

∣∣∣ Gs,ord
n = Gord

)
= cs,n+1

cs,n
· α− 1

2 .

Proposition 3.7 follows immediately.
This argument also gives us the dynamics of the process (Gs

n, n > 0). Recall
the function ψ : Mord

s,n → Ms,n that forgets the cyclic ordering around vertices. By
definition, we have (Gs

n, n > 0) = (ψ(Gs,ord
n ), n > 0).

For any H ∈ Ms,n+1 such that G is obtained from H by erasing the leaf labelled
n+ 1 we have

(3.11) P
(
Gs
n+1 = H

∣∣∣ Gs
n = G

)
=

∑
Gord ∈ψ−1(G)

P
(
Gs
n+1 = H

∣∣∣ Gs,ord
n = Gord

)
P
(
Gs,ord
n = Gord

∣∣∣ Gs
n = G

)
.

Now observe from the transition kernel of (Gs,ord
n )n>0 that the value of

P
(
ψ
(
Gs,ord
n+1

)
= H

∣∣∣ Gs,ord
n = Gord

)
is the same for any choice of Gord ∈ ψ−1(G), so that we get

P
(
Gs
n+1 = H

∣∣∣ Gs
n = G

)
= P

(
Gs
n+1 = H

∣∣∣ Gs,ord
n = Gord

)
for any Gord ∈ φ−1(G). Note that taking a particular Gord ∈ ψ−1(G) induces an
ordering on the edges and internal vertices of G and makes them distinguishable.
Considering the two cases covered by (3.9) and (3.10), we see that the leaf labelled
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n+1 is attached to any vertex v already present in Gord with probability proportional
to degGord(v)− 1− α and to a newly created vertex created along some edge of Gord

with probability proportional to α− 1. This corresponds to the dynamics described
in Theorem 1.5. �

Remark 3.8. — Note that in the above proof, we do not explicitly find the quantity
(Gs

n+1 = H | Gs
n = G), as it would involve factors that coming from the symmetries

that are broken by the addition of the leaf labelled n+ 1. Instead we rely on being
able to make sense of a step in Marchal’s algorithm for any graph that has labelled
(or, say, distinguishable) edges and internal vertices, and on the fact that the way it
is defined is invariant under re-labelling those edges or internal vertices.

3.5. The unrooted kernel Gs
−1

In this section, we fix s > 2. Our goal is to prove that the distribution of Gs
−1 is

that given in Theorem 1.3, and that the conditional probability of Gs
0 given Gs

−1 is
given by a step in Marchal’s algorithm. We cannot proceed as before since the use
of cyclic orderings around vertices is not sufficient to break all the symmetries in
the unrooted graph Gs

−1. We instead label the internal vertices: let Gs,lab
0 denote a

version of Gs
0 with internal vertices labelled uniformly from 1 to |V (Gs

0)|.
For any connected multigraph G (labelled or not) we write

w(G) :=

∏
v ∈ I(G)

wdeg(v)−1

|I(G)|! 2sl(G) ∏
e∈ supp(E(G))

mult(e)! ,

with the usual notation. From Theorem 1.3 and (3.1), we know that the distribution
of the labelled graph Gs,lab

0 is

(3.12) P
(
Gs,lab

0 = G
)

= c̃s,0 · w(G),

where c̃s,0 is the normalising constant.
LetH lab and Glab be labelled versions of multigraphs inMs,0 andMs,−1 respectively

that are compatible in the sense that removing the root and the adjacent edge (in
the following, we will use the word root-edge) in H lab gives a graph which, after an
increasing mapping of the labelling to {1, . . . , |V (Glab)|}, isGlab. We then distinguish
2 cases, precisely one of which occurs.

(a) The root-edge in H lab is attached to a vertex v of degree degHlab(v) > 4, in
which case

w
(
H lab

)
=
wdeg

Hlab (v)−1

wdeg
Glab (v)−1

· w
(
Glab

)
= (degGlab(v)− 1− α) · w

(
Glab

)
.

Note that, given Glab and a vertex v of Glab, there is a unique graph H lab

which has its root-edge attached to v and is compatible with Glab.
(b) The root-edge is attached to a vertex v of degree degHlab(v) = 3. Its deletion

either “creates” an edge e of Glab (possibly a self-loop, erasing then at the
same time an edge of multiplicity 2 in H lab) or increases by 1 the multiplicity
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of an edge e ∈ supp(H lab) (possibly a multiple self-loop, erasing, again, at
the same time an edge of multiplicity 2 in H lab). In all cases,

w
(
H lab

)
=
wdeg

Hlab (v)−1 ·mult(e)
|I (Glab)|+ 1 · w

(
Glab

)
= (α− 1) ·mult(e)
|I (Glab)|+ 1 · w

(
Glab

)
,

where mult(e) refers here to the multiplicity of e seen as an element of
supp(Glab). Note that given an edge e of Glab, there are exactly |I(Glab)|+ 1
graphs H lab with the root-edge attached in the middle of (a copy of) e that
are compatible with Glab.

From this, (3.12) and the fact that the sum of the Marchal weights is (s−1)(α+1)
for any graph in Ms,−1 (see (1.8)), we obtain the distribution of Gs,lab

−1 :

P
(
Gs,lab
−1 = Glab

)
=

∑
Hlab compatible

with Glab

P
(
Gs,lab

0 = H lab
)

= c̃s,0
∑

Hlab compatible
with Glab

w
(
H lab

)

= c̃s,0 ·

 ∑
v ∈ I(Glab)

(degGlab(v)− 1− α) +
∑

e∈ supp(E(Glab))
mult(e)(α− 1)

 · w(Glab)

= c̃s,−1 · w
(
Glab

)
,

where c̃s,−1 = c̃s,0(s−1)(α+1). Together with (3.1), which holds for graphs of Ms,−1,
this implies that Gs

−1 has the required distribution. Next, to get the conditional
distribution of Gs

0 given Gs
−1 we write, for H ∈Ms,0 and G ∈Ms,−1,

P
(
Gs

0 = H
∣∣∣ Gs
−1 = G

)
=

∑
Glab a labelled

version of G

P
(
Gs

0 = H,Gs,lab
−1 = Glab

)
P
(
Gs,lab
−1 = Glab

) P
(
Gs,lab
−1 = Glab

∣∣∣ Gs
−1 = G

)
.

From the remarks above, we see that when H is obtained from G by gluing the
root-edge to a vertex v of G, we get

P
(
Gs

0 = H,Gs,lab
−1 = Glab

)
P
(
Gs,lab
−1 = Glab

) = c̃s,0
c̃s,−1

· w(H)
w(G) = c̃s,0

c̃s,−1
· (degG(v)− 1− α) ,

for all labelled versions Glab. If, on the other hand, H is obtained from G by gluing
the root-edge to (a copy of) an edge e ∈ supp(G),

P
(
Gs

0 = H,Gs,lab
−1 = Glab

)
P
(
Gs,lab
−1 = Glab

) =
(
|I(G)|+ 1

)
· c̃s,0
c̃s,−1

· w(H)
w(G) = c̃s,0

c̃s,−1
· (α− 1) ·mult(e).
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Putting everything together, we see that we do indeed obtain the transition proba-
bilities corresponding to a step of Marchal’s algorithm.

3.6. The configuration model embedded in a limit component

The goal of this subsection is to prove Corollary 1.4 where we identify for each n > 0
(and n = −1 if s > 2) the distribution of Gs

n with that of a specific configuration
model.

3.6.1. Two probability distributions

In [DLG02, Section 3.3] of Duquesne and Le Gall, it is shown that the rooted
subtree obtained by sampling n > 0 leaves in the α-stable tree is distributed as
a planted Galton–Watson tree conditioned to have n leaves, with critical offspring
distribution ηα satisfying

ηα(k) = wk
k! , k > 2, ηα(1) = 0, ηα(0) = 1

α
,

or, equivalently, with probability generating function z + α−1(1 − z)α, z ∈ (0, 1],
as already mentioned in Section 1.2.1. Note that ηα(k) ∼k→∞ ck−1−α for some
constant c > 0, by an elementary estimate. Now consider the random variable
D(α) with distribution introduced in (1.7), and note that it is indeed a probability
distribution since

∑
k> 2

wk
k! = (α− 1)

2 +
∑
k> 3

(k − 1− α)wk−1

k!

= (α− 1)
2 +

∑
k> 3

wk−1

(k − 1)! − (1 + α)
∑
k> 3

wk−1

k! ,

which implies that

∑
k> 2

wk−1

k! + 1
α

= (α− 1)
2(1 + α) + 1

α
= α2 + α + 2

2(1 + α)α .

It is straightforward to see that E[D(α)] = 2(1 + α)α/(α2 + α + 2). Moreover, if we
consider the biased version

P
(
D̂(α) = k

)
:=

kP
(
D(α) = k

)
E [D(α)] , k > 1

we immediately get that D̂(α)− 1 has the same distribution as ηα. This in particular
implies that D(α) satisfies the conditions (1.1).
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3.6.2. The stable configuration model

Fix n > 0 if s ∈ {0, 1} or n > −1 if s > 2. Then fix m > n + 1 and con-
sider the multigraph Cm sampled from the configuration model with i.i.d. degrees
D

(α)
0 , . . . , D

(α)
m−1 distributed as D(α). From [Hof17, Proposition 7.7], we have that

P
(
Cm = G

∣∣∣ D(α)
i = di, 0 6 i 6 m− 1

)
= 1( ∑

06 i6m−1
di − 1

)
!!
·

∏
06 i6m−1

di!

2sl(G) ∏
e∈ supp(E)

mult(e)! ,

for every multigraph G = (V,E) with m labelled vertices of respective degrees
d0, . . . , dm−1 such that ∑06 i6m−1 di is even. Hence, the distribution of Cm is given
for each such multigraph by

P (Cm = G) =
(

2(1 + α)α
α2 + α + 2

)m
· 1( ∑

06 i6m−1
di − 1

)
!!
·

∏
06 i6m−1

di!

2sl(G) ∏
e∈ supp(E)

mult(e)!

· 1
α#{i:di=1} ·

m−1∏
i=0

wdi−1

di!
.

On the event {Cm is connected, s(Cm) = s}, the sum ∑
06 i6m−1 di depends only

on m and s. Conditioning additionally on {D(α)
0 = · · · = D(α)

n = 1, and D(α)
i 6=

1 for all n + 1 6 i 6 m − 1}, we have #{i : D(α)
i = 1} = n + 1. Forgetting the

labels n+ 1, . . . , m− 1 (which we now know belong to internal vertices), we obtain
a factor of (m− n− 1)!/|Sym(G)|. (See (3.1) for further discussion.) Together with
Theorem 1.3 this implies Corollary 1.4.

4. Two simple constructions of the graph Gs

Let s > 1. We start by proving in Section 4.1 that the (measured) R-graph Gs
is the almost sure limit of rescaled versions of its combinatorial shapes Gs

n, n > 0
equipped with the uniform distribution on their leaves. Together with the algorithmic
construction of the graphs Gsn, n > 0 (Theorem 1.5) and some urn model asymptotics
recalled in the Appendix, this will lead us to the two alternative constructions
of Gs presented in the introduction: in Section 4.2, we prove Theorem 1.6 and
Proposition 1.7, giving the distribution of Gs as a collection of rescaled α-stable
trees appropriately glued onto the kernel Ks; Section 4.3 is then devoted to the
line-breaking construction of Theorem 1.8.

4.1. The graph as the scaling limit of its marginals

Recall from Section 2.2 that Gs is constructed from T s, a biased version of the
α-stable tree, by gluing appropriately s marked leaves onto randomly selected branch-
points. Recall also that Xs denotes the s-biased stable excursion from which T s is
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built, that πs(V s
1 ), . . . , πs(V s

s ) are the s leaves to be glued and that πs(Ui), i > 1
are i.i.d. uniform leaves. For all n > 1, T ss,n then denotes the subtree of T s spanned
by the root and the leaves πs(V s

1 ), . . . , πs(V s
s ), πs(U1), . . . , πs(Un) and we let Ts

s,n

be its combinatorial shape. Finally, recall that Gsn is the connected subgraph of Gs
consisting of the union of the kernel and the paths from the leaves πs(U1), . . . , πs(Un)
to the root, for all n > 0, and that the finite graph Gs

n denotes the combinatorial
shape of Gsn. We will use the following observation: for all n larger than some finite
random variable, Gsn is obtained from T ss,n by an appropriate gluing of the s leaves
πs(V s

1 ), . . . , πs(V s
s ) to some of its internal vertices (for small n, it may be that we

instead glue some leaves along edges of T ss,n).
The goal of this section is to prove Proposition 1.2: when the graph Gsn is equipped

with the uniform distribution on its leaves,

(4.1) Gs
n

n1−1/α
a.s.−→

n→∞
α · Gs

for the Gromov–Hausdorff–Prokhorov topology. With this aim in mind, we first
observe that Gs can be recovered from the completion of the union of its continuous
marginals.

Lemma 4.1. — With probability one,
Gs = ∪n> 0 Gsn

and consequently Gs is the a.s. limit of Gsn in (C , dGHP), when the graph Gsn is endowed
with the uniform distribution on its leaves for n > 1.

Indeed, it is well-known that the α-stable tree is almost surely the completion of
the union of its continuous marginals, which entails a similar result for the biased
version T s and then for the graph Gs, using its construction from T s. The measures
can then be incorporated by using the strong law of large numbers.
Proof of Proposition 1.2. — We make use of the fact (2.6) that the α-stable tree

is the almost sure scaling limit of its discrete marginals. We refer the reader to the
book of Burago, Burago and Ivanov [BBI01] for background on the notions of a
correspondence and its distortion, which are used here for the proof.
By Lemma 4.1, it suffices to prove that almost surely

dGHP

(
Gs
n

n1−1/α , α · G
s
n

)
−→
n→∞

0.

We observe first that
dGHP

(
n1/α−1Ts

s,n, α · T ss,n
)
−→
n→∞

0

almost surely. This is proved for s = 0 in [CH13, Section 2.4] and may be transferred
to s > 1 by absolute continuity. The s = 0 case is proved in [CH13] by using a natural
correspondence which we introduce here for general s and call Rs

n. It is a correspon-
dence between n

1
α
−1Ts

s,n and α · T ss,n. The leaves with the same labels correspond
to one another, and the internal vertices of Ts

s,n are put in correspondence with the
branch-points of T ss,n in the obvious way. Finally, the edges of T ss,n (which have real-
valued lengths and which we think of as line-segments) are put in correspondence
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with the vertex or vertices of Ts
s,n corresponding to their end-points. From [CH13]

we obtain that the distortion dist(Rs
n) of the correspondence Rs

n tends to 0 almost
surely as n→∞. To deal with the gluing, we use the fact already observed above
that for n sufficiently large, Gsn is obtained from T ss,n by an appropriate gluing of the
s leaves πs(V s

1 ), . . . , πs(V s
s ) to its internal vertices; similarly Gs

n is obtained by the
gluing of the corresponding leaves of Ts

s,n to the corresponding internal vertices of
this tree. It then follows from [ABBGM17, Lemma 4.2] that

dGHP

(
Gs
n

n1−1/α , α · G
s
n

)
6

(s+ 1)
2 dist (Rs

n)

and the claimed almost sure convergence follows easily. �

4.2. Construction from randomly scaled stable trees glued to the kernel

We now turn to the proof of Theorem 1.6 which states that in (C , dGHP), we have
the identity in distribution of the measured compact metric spaces

(4.2) Gs d= G (Ks)
(with the notation used in Section 1.2.2). We will also prove Proposition 1.7 in this
section.
Proof of Theorem 1.6. — Using (4.1), we just need to prove that

Gs
n

n1−1/α
d−→

n→∞
α · G(Ks)

for the Gromov–Hausdorff–Prokhorov topology, when the graph Gs
n is equipped

with the uniform distribution on its leaves. (We will prove the compactness of the
object on the right-hand side below.) As discussed earlier, the graph Gs

n may be
viewed as a collection of trees glued to the kernel Ks. We will show that each of
these tree-blocks converges after rescaling to its continuous counterpart used in the
construction of G(Ks). Our argument and notation are similar to those used in the
proof of Proposition 2.2 concerning the stable tree.
We work conditionally on Ks. Let m denote the number of edges of Ks, which

are arbitrarily labelled as e1, . . . , em. Let v1, . . . , vm−s denote the internal vertices
of Ks, again in arbitrary order, and d1, . . . , dm−s their respective degrees. For each
n > 0, we interpret these edges (resp. vertices) as edges of Gs

n with edge-lengths
(resp. vertices). For each k, we write Tn(ek) for the subtree of Gs

n induced by the
vertices closer to ek than to any other edge ei, i 6= k, including the two end-points
of ek. These end-vertices are interpreted as leaves of Tn(ek) and count as distinct
leaves even if ek is a loop. (These formulation may seem arbitrary but it is the one
needed to initiate properly the urn model we will use below.) The number of leaves
of Tn(ek) is then denoted by Mn(ek). Similarly we let Tn(vi) denote the subtree of
Gs
n induced by the set of all vertices closer to vi than to any edge ek, 1 6 k 6 m,

including vi which is considered as its root. ThenMn(vi) denotes its number of leaves
(here vi is not considered to be a leaf so that, in particular, Mn(vi) = 0 if Tn(vi)
has vertex-set {vi}). Next, for each 1 6 i 6 m − s, let Tn(vi, j), j > 1 denote the
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connected components of Tn(vi)\{vi}. We think of these subtrees as planted (and
we again call the root of each vi), so that if we identify their roots we recover Tn(vi).
The number of such subtrees is finite (possibly zero) for each n but tends to infinity
as n → ∞. We label them Tn(vi, 1), Tn(vi, 2), . . . in order of appearance, with the
convention that Tn(vi, j) is the empty set if there are strictly fewer than j subtrees
at step n. Let Mn(vi, j) be the number of leaves of Tn(vi, j), j > 1.
• Scaling limits of the numbers of leaves. It is easy to see using the algorithmic

construction of the sequence (Gs
n, n > 0) from Theorem 1.5 that the process(

αMn(e1)− α− 1, . . . , αMn(em)− α− 1,

αMn(v1) + d1 − 1− α, . . . , αMn (vm−s) + dm−s − 1− α
)
n> 0

evolves according to Pólya’s urn (see Theorem 5.5) with 2m − s colours of initial
weights

(α− 1, . . . , α− 1, d1 − 1− α, . . . , dm−s − 1− α)
respectively, and weight parameter α. Hence, there exists a random variable (M1, . . . ,
M2m−s) with the Dirichlet distribution of parameters specified at (1.9) such that(

Mn(e1)
n

, . . . ,
Mn(em)

n
,
Mn(v1)
n

, . . . ,
Mn (vm−s)

n

)
a.s.−→

n→∞
(M1, . . . , M2m−s) .

Next we observe that for all i the jumps of ((Mn(vi, j))j > 1, n > 0) follow the same
dynamics as a Chinese restaurant process with parameters 1/α and (di − 1− α)/α,
independently of everything else. Since the total number of jumps at step n isMn(vi),
Theorem 5.6 yields (

M↓
n (vi, j)
Mn(vi)

, j > 1
)

a.s.−→
n→∞

(∆i,j, j > 1) ,

where (M↓
n(vi, j), j > 1) denotes the decreasing reordering of (Mn(vi, j), j > 1) and

the limit (∆i,j, j > 1) follows a Poisson–Dirichlet PD(1/α, (di−1−α)/α) distribution,
independent of the random variable (M1, . . . , M2m−s). (The convergence holds in `1

equipped with its usual metric.)
• Scaling limits of the trees Tn(ek), Tn(vi, j). Given the processes (Mn(ek), n > 0),

(Mn(vi, j), n > 0), for all k, i, j, the jump evolutions of the trees Tn(ek), Tn(vi, j),
n > 0 are independent and all follow Marchal’s algorithm. Then writing ek = {xk, yk}
for 1 6 k 6 m, we know by (2.6) that there exist rescaled (measured) α-stable trees
Tk, Ti,j, k, i, j such that, given (M1, . . . , M2m−s) and (∆i,j, j > 1), the trees are
independent, Tk has total mass Mk, Ti,j total mass Mi+m ·∆i,j and, furthermore,

(a) for all k,(
Tn(ek)
n1−1/α , xk, yk

)
=
(Mn(ek)

n

)1−1/α

· Tn(ek)
Mn(ek)1−1/α , xk, yk

 a.s.−→
n→∞

(α · Tk, ρk, Lk)

for the 2-pointed Gromov–Hausdorff–Prokhorov topology, the tree Tn(ek)
being implicitly endowed with the measure that assigns weight 1/n to each
of its leaves (here, ρk denotes the root of Tk and Lk a uniform leaf);
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(b) for all i, j,(
Tn(vi, j)
n1−1/α , vi

)
=
(Mn (vi, j)

n

)1−1/α

· Tn (vi, j)
Mn (vi, j)1−1/α , vi

 a.s.−→
n→∞

(α · Ti,j, ρi,j)

for the pointed Gromov–Hausdorff–Prokhorov topology, where again Tn(vi, j)
is endowed with the measure that assigns weight 1/n to each of its leaves,
and ρi,j is the root of Ti,j.

• Scaling limits of the trees Tn(vi), and the compactness of the limit. Fix i > 1 and
recall that Tn(vi) is obtained by identifying the roots of the trees Tn(vi, j), j > 1.
We now show that n−(1−1/α)Tn(vi) converges in probability for the pointed GHP-
topology to the measured R-tree T(i) obtained by identifying the roots of the trees
α · Ti,j.
Let us first show that T(i) is compact and is the almost sure GHP-limit as j0 →∞

of the R-tree T j0(i) obtained by gluing the first j0 trees Ti,j, j 6 j0 together at their
roots. (For different values of j0 we think of the underlying spaces as being nested
and all contained within T(i).) For a rooted R-tree T, we write ht(T) for its height.
Let T denote a standard α-stable tree (of total mass 1). Then by the scaling property
of the stable tree we have

E

( sup
j > j0

ht (Ti,j)
)α/(α−1)

 6 ∑
j > j0

E
[
ht (Ti,j)α/(α−1)

]
= E

[
ht(T )α/(α−1)

]
E
[
Mi+m

] ∑
j > j0

E
[
∆i,j

]
.

Since ht(T ) has finite exponential moments (see, for example, [Kor17, equation (2)]
for a convenient statement) the right-hand side is finite, and clearly tends to 0
as j0 → ∞. Hence the decreasing sequence supj > j0 ht(Ti,j) converges a.s. to 0 as
j0 →∞. This implies in particular that T(i) is a.s. compact. Then, note that

dGHP
(
T(i), T j0(i)

)
6 max

 sup
j > j0

ht (Ti,j) ,Mi+m ·
∑
j > j0

∆i,j


since Mi+m ·

∑
j > j0 ∆i,j is the total mass of T(i) \ T j0(i) . This total mass also converges

to 0. Hence, T j0(i) → T(i) almost surely as j0 →∞ with respect to the GHP-topology.
Next, note that for j0 ∈ N,

dGHP

(
Tn(vi)
n1−1/α , α · T(i)

)
6

j0∑
j=1

dGHP

(
Tn (vi, j)
n1−1/α , α · Ti,j

)
+ α · dGHP

(
T j0(i) , T(i)

)

+ sup
j > j0

ht
(
Tn (vi, j)
n1−1/α

)
+
∑
j > j0

Mn (vi, j)
n

.

We already know that the first term on the right-hand side converges a.s. to 0 as
n → ∞ (for j0 fixed) and that the second term converges a.s. to 0 as j0 → ∞.
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Moreover, since Mn(vi) 6 n, by dominated convergence we have

E

 ∑
j > j0

Mn (vi, j)
n

 = E

Mn(vi)
n

−
∑
j 6 j0

Mn (vi, j)
n

 −→
n→∞

E

Mi+m

1−
∑
j 6 j0

∆i,j


and then

lim
j0→∞

lim
n→∞

E

 ∑
j > j0

Mn (vi, j)
n

 = 0.

Now note that

lim sup
n→∞

∑
j > j0

E


(
ht (Tn (vi, j))α/(α−1)

n


6 lim sup

n→∞

∑
j > j0

E


(
ht (Tn,j (vi, j))α/(α−1)

Mn (vi, j)
· Mn (vi, j)

n


6 Cα lim sup

n→∞

∑
j > j0

E
[
Mn(vi, j)

n

]
,

by [HM12, Lemma 33], where Cα is a finite constant depending only on α. So by
Markov’s inequality, we get

lim
j0→∞

lim sup
n→∞

P
(

sup
j > j0

ht
(
Tn (vi, j)
n1−1/α

)
> ε

)
= 0

for all ε > 0. Putting everything together, we obtain the convergence in probability

dGHP

(
Tn(vi)
n1−1/α , α · T(i)

)
p→ 0.

• Final gluing. Finally, the graph Gs
n is obtained by gluing appropriately the

2m− s trees Tn(ek), Tn(vi), 1 6 k 6 m, 1 6 i 6 m− s along the kernel Ks. Using the
results above, it therefore converges in probability, after multiplication of distances
by n−(1−1/α), to a version of α · G(Ks). �

From this we immediately obtain the joint distribution of the edge-lengths of
the continuous kernel Ks. Given that the number of edges of Ks is m and keeping
the notation of the proofs, we see that the lengths of the m edges are given by
M

1−1/α
i ·Λi, 1 6 i 6 m where the Λi are i.i.d. ML(1−1/α, 1−1/α) random variables

(this is the distribution of the distance between a uniform leaf and the root in a
standard α-stable tree) and independent of (M1, . . . , M2m−s). We may combine
Remark 5.8 and Lemma 5.1 to check that the distribution of this m-tuple of random
variables coincides with the one of Proposition 1.7 when n = 0. More generally, we
could deduce from (4.2) the joint distribution of the edge-lengths of the continuous
marginals Gsn, n > 0. However, it is simpler to prove this directly using urn arguments
similar to those above.
Proof Proposition 1.7. — Fix n0 > 0. We work conditionally on Gsn0 = (V,E). For

each edge e ∈ E and each n > n0, let Ln(e) denote the length of e in Gs
n and let

Ltot
n := ∑

e∈E Ln(e). From the algorithmic construction of (Gs
n, n > n0) we get that
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(a) the process (
Ltot
n , n > n0

)
is a triangular urn scheme as defined in Theorem 5.7 with initial weights

a = |E|, b = (n0 + s)α + s− 1
α− 1 − |E|

(b is the initial total weight of the vertices of Gs
n0 , divided by α − 1) and

additional weight parameters γ = 1 and β = α/(α− 1);
(b) the jumps of the process ((Ln(e), e ∈ E), n > n0) evolve according to Pólya’s

urn with initial weights ai = 1, 1 6 i 6 |E|, and additional weight parameter
β = 1, independently of Ltot

n .
Theorem 5.7 and Theorem 5.5 therefore imply that (Ln(e)/n1−1/α, e ∈ E) converges
almost surely to a random vector with distribution (1.11). The conclusion then
follows from the convergence (4.1). �

4.3. The line-breaking construction

The proof of Theorem 1.8 for s > 1 is inspired by the approach used in [GH15] to
obtain a line-breaking construction of the stable trees. As we have already mentioned,
we rely again on the algorithmic construction of the sequence (Gs

n, n > 0). The
notation below coincides with that of Section 1.2.3. Moreover, for each n, we let
Hs
n denote the combinatorial shape of Hs

n. The metric space Hs
n is then interpreted

as a finite graph (the graph Hs
n) with edge-lengths. We let Ln denote this sequence

of edge-lengths, ordered arbitrarily, and let Wn denote the sequence of weights at
internal vertices of Hs

n (i.e. the weights attributed by the measure ηn to each of these
vertices), also ordered arbitrarily. We start with a preliminary lemma.

Lemma 4.2. — Given Hs
k, 0 6 k 6 n, and in particular that Hs

n has m edges and
m− (n+ s) internal vertices with degrees d1, . . . , dm−(n+s), we have

(
Ln,Wn

) (d)= ML
(

1− 1
α
,
(n+ s)α + (s− 1)

α

)

·Dir
1, . . . , 1︸ ︷︷ ︸

m

,
d1 − 1− α
α− 1 , . . . ,

dm−(n+s) − 1− α
α− 1

 ,
the random variables on the right-hand side being independent. In particular,

Ln
(d)= ML

(
1− 1

α
,
(n+ s)α + (s− 1)

α

)
· Beta

(
m,

(n+ s)α + s− 1
α− 1 −m

)
·Dir (1, . . . , 1) .

Proof. — For n = 0, the first identity in distribution holds by definition of (Hs
0, η0)

in the line-breaking construction. The rest of the proof proceeds by induction on n,
and is based essentially on manipulations of Dirichlet distributions. The steps are
exactly the same as those of [GH15, Proposition 3.2], to which we refer the interested
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reader. The only slight change to highlight is that here the degrees d1, . . . , dm−(n+s)
of the internal vertices of a graph in Ms,n with m edges necessarily satisfy

m−(n+s)∑
i=1

di − 1− α
α− 1 = (n+ s)α + s− 1

α− 1 −m,

as already observed in (1.8). This fact is also used, together with Lemma 5.1, to
deduce the distribution of Ln from that of the pair (Ln,Wn). �

Proof of Theorem 1.8. — Note that the metric spaces Hs
n, n > 0 have implicit

leaf-labels, given by their order of appearance in the construction. The metric spaces
Gsn, n > 0 are also leaf-labelled by construction. Both models are sampling consistent:
the metric space indexed by n is obtained from the metric space indexed by n+ 1 by
removing the leaf labelled n+ 1 and the adjacent line-segment (this description is a
little informal but hopefully clear). Hence, we only need to prove that, for all n > 0,

(4.3) Hs
n

d= Gsn,

these compact metric spaces being implicitly endowed with the uniform distribution
on their leaves, and still leaf-labelled. Together with the sampling consistency, this
will imply that the processes of compact measured metric spaces (Hs

n, n > 0) and
(Gsn, n > 0) have the same distribution. Since Gs is the almost sure GHP-scaling limit
of Gsn (Lemma 4.1) and since (C , dGHP) is complete, this will in turn entail that Hs

n

converges a.s. to a random compact measured metric space distributed as Gs.
To prove (4.3), we first check that the sequence of finite graphs (Hs

n, n > 0) evolves
according to Marchal’s algorithm, as does (Gs

n, n > 0). This relies on Lemmas 4.2
and 5.2 which imply that for each n, given (Hs

k, 0 6 k 6 n), the probability that
the new segment in the line-breaking construction is attached to a given edge of Hs

n

is proportional to 1, whereas the probability that it is attached to a given vertex
with degree di > 3 is proportional to (di − 1− α)/(α− 1). Hence, the sequences of
graphs (Hs

n, n > 0) and (Gs
n, n > 0) have the same distribution since Gs

0 = Hs
0 = Ks,

including leaf-labels. Then we get (4.3) by simply noticing that the distribution of
the edge-lengths of Hs

n given (Hs
k, 0 6 k 6 n) is the same as that of the edge-lengths

of Gsn given (Gs
k, 0 6 k 6 n), by Lemma 4.2 and Proposition 1.7. �

5. Appendix: distributions, urn models and applications

We detail in this appendix some classical asymptotic results on urn models that
are needed at various points in the paper. We first recall the definitions and some
properties of several distributions that are related to these asymptotics.

5.1. Some probability distributions

For more detail on the material in this section, we refer to Pitman [Pit06].

ANNALES HENRI LEBESGUE



Stable graphs 895

5.1.1. Definitions and moments

Beta distributions. For parameters a, b > 0, the Beta(a, b) distribution has
density

Γ(a+ b)
Γ(a)Γ(b)x

a−1(1− x)b−1

with respect to the Lebesgue measure on (0, 1). If B ∼ Beta(a, b), then for p, q ∈ R+,

E [Bp(1−B)q] = Γ(a+ b)
Γ(a+ b+ p+ q)

Γ(a+ p)
Γ(a)

Γ(b+ q)
Γ(b) .(5.1)

Dirichlet distributions. For parameters a1, a2, . . . , an > 0, the Dirichlet distri-
bution Dir(a1, a2, . . . , an) has density

Γ
(

n∑
i=1

ai

)
n∏
i=1

Γ(ai)

n∏
j=1

x
aj−1
i

with respect to the Lebesgue measure on the simplex {(x1, . . . , xn) ∈ [0, 1]n :∑n
i=1 xi = 1}. When (X1, . . . , Xn) ∼ Dir(a1, . . . , an), for k1, . . . , kn ∈ R+,

(5.2) E
[
Xk1

1 X
k2
2 . . . Xkn

n

]
=

Γ
(

n∑
i=1

ai

)
Γ
(

n∑
i=1

(ai + ki)
) · n∏

i=1

Γ (ai + ki)
Γ(ai)

.

Generalized Mittag–Leffler distributions. Let 0 < β < 1, θ > −β. An R+-
valued random variable M has the generalized Mittag-Leffler distribution ML(β, θ)
if, for all suitable test functions f , we have

(5.3) E [f(M)] =
E
[
σ−θβ f

(
σ−ββ

)]
E
[
σ−θβ

] ,

where σβ is a stable random variable with Laplace transform E[e−λσβ ] = exp(−λβ), λ
> 0. For p ∈ R+,

E [Mp] = Γ(θ)Γ(θ/β + p)
Γ(θ/β)Γ(θ + pβ) = Γ(θ + 1)Γ(θ/β + p+ 1)

Γ(θ/β + 1)Γ(θ + pβ + 1) .

Poisson–Dirichlet distributions. Let 0 < β < 1, θ > −β and for i > 1, let
Bi ∼ Beta(1 − β, θ + iβ) independently. Then the decreasing sequence (Pi)i> 1 =
(Q↓i )i> 1 where Qj = Bj

∏j−1
i=1 (1−Bi) has the PD(β, θ) distribution. The almost sure

limit W := Γ(1− β) limi→∞ i(Pi)β has the ML(β, θ) distribution.

5.1.2. Distributional properties

Lemma 5.1. — If (X1, . . . , Xn) ∼ Dir(a1, . . . , an) then for all 1 6 m 6 n − 1,
(X1, . . . , Xm) is distributed as the product of two independent random variables:

Beta
 m∑
i=1

ai,
n∑

i=m+1
ai

 ·Dir(a1, . . . , am).
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Lemma 5.2. — Suppose that (X1, X2, . . . , Xn) ∼ Dir(a1, a2, . . . , an). Let I be
the index of a size-biased pick from amongst the co-ordinates i.e. P(I = i|X1, X2, . . . ,
Xn) = Xi, for 1 6 i 6 n. Then

P (I = i) = ai
a1 + a2 + . . .+ an

for 1 6 i 6 n and, conditionally on I = i,

(X1, X2, . . . , Xn) ∼ Dir (a1, . . . , ai−1, ai + 1, ai+1, . . . , an) .

Lemma 5.3. — Let 0 < β < 1, θ > −β, and let (Pi)i> 1 have distribution PD(β, θ).
Let J be the index of a size-biased pick from this sequence, i.e. P (J = j | (Pi)i> 1) =
Pj, for j > 1. We let (P ′i )i> 1 be the decreasing sequence (1 − PJ)−1 · (Pi)i> 1, i 6= J ,
reindexed by N. Then

PJ ∼ Beta(1− β, θ + β) and (P ′i )i> 1 ∼ PD(β, θ + β),

and these two random variables are independent.

Let Nn, 6= := {(i1, . . . , in) ∈ Nn | i1, . . . , in are distinct}.

Lemma 5.4. — Let (Pi)i> 1 ∼ PD(β, θ) with 0 < β < 1 and θ > −β. Then for all
k1, k2, . . . , kn ∈ [1 ,∞),
(5.4)

E

 ∑
(i1, ..., in)∈Nn,6=

P k1
i1 . . . P kn

in

 =
(

n∏
i=1

β
Γ(ki − β)
Γ(1− β)

)
Γ(θ)

Γ
(
θ +

n∑
j=1

kj

) Γ(θ/β + n)
Γ(θ/β) .

In particular, for (Pi)i> 1 ∼ PD(α− 1, α− 1) with α ∈ (1 , 2), and k1, . . . kn ∈ N, we
have

E

 ∑
(i1, ..., in)∈Nn,6=

P k1
i1 . . . P kn

in

 =
(

n∏
i=1

(α− 1)Γ (ki + 1− α)
Γ(2− α)

)
Γ(α− 1) n!

Γ
(
α− 1 +

n∑
j=1

kj

)

=
(

n∏
i=1

wki+1

)
Γ(α− 1) n!

Γ
(
α− 1 +

n∑
j=1

kj

) ,

where the weights w1, w2, . . . are defined in (1.6).

Proof. — We proceed by induction on n. For n = 0 we use the convention that the
left-hand side of (5.4) is 1 and so the identity is true. Let n > 1 and suppose that
the identity is true for n− 1. Then letting J be such that P (J = j | (Pi)i> 1) = Pj,
we have
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E

 ∑
(i1, ..., in)∈Nn,6=

P k1
i1 . . . P kn

in



= E

P kn−1
J (1− PJ)k1+···+kn−1

∑
(i1, ..., in−1)
∈(N\{J})n−1,6=

(
Pi1

1− PJ

)k1

· · ·
(
Pin−1

1− PJ

)kn−1


= E

[
P kn−1
J (1− PJ)k1+···+kn−1

]
· E

 ∑
(i1, ··· , in−1)∈Nn−1,6=

(
P ′i1

)k1 · · ·
(
P ′in−1

)kn−1

 ,
by Lemma 5.3, where (P ′i )i> 1 ∼ PD(β, β+θ) and PJ ∼ Beta(1−β, θ+β). Using (5.1),
we have

E
[
P kn−1
J (1− PJ)k1+···+kn−1

]
=

Γ(1 + θ)Γ(1− β + kn − 1)Γ
(
θ + β +

n−1∑
i=1

ki

)
Γ(θ + β)Γ(1− β)Γ

(
1 + θ +

n∑
i=1

ki − 1
)

=
(
β

Γ(kn − β)
Γ(1− β)

) Γ(θ)Γ
(
θ + β +

n−1∑
i=1

ki

)
Γ(θ + β)Γ

(
θ +

n∑
j=1

kj

) θ
β
.

The induction hypothesis applied to the sequence (P ′i )i>1, which has distribution
PD(β, β + θ), then yields

E

 ∑
(i1,...,in−1)∈Nn−1,6=

(P ′i1)k1 . . . (P ′in−1)kn−1


=
(
n−1∏
i=1

β
Γ(ki − β)
Γ(1− β)

)
Γ(θ + β)

Γ(θ + β +∑n−1
j=1 kj)

Γ((θ + β)/β + n− 1)
Γ((θ + β)/β)

=
(
n−1∏
i=1

β
Γ(ki − β)
Γ(1− β)

)
Γ(θ + β)

Γ(θ + β +∑n−1
j=1 kj)

Γ(θ/β + n)
(θ/β)Γ(θ/β) ,

and the result for n follows by multiplying together the last display and the preceding
one. �

5.2. Pólya’s urn, Chinese restaurant processes and triangular urn
schemes

We gather here some classical results for urn models.

Theorem 5.5 (Pólya’s urn). — Consider an urn model with k colours, with
initial weights a1, . . . , ak > 0 respectively. At each step, draw a colour with a
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probability proportional to its weight and add an extra weight β > 0 to this colour.
Let W (1)

n , . . . , W (k)
n denote the weights of the k colours after n steps. Then(

W (1)
n

βn
, . . . ,

W (k)
n

βn

)
a.s.−→

n→∞

(
W (1), . . . , W (k)

)
where (W (1), . . . , W (k)) ∼ Dir(a1/β, . . . , ak/β).

Theorem 5.6 (The Chinese restaurant process). — Fix two parameters β ∈ (0, 1)
and θ > −β. The process starts with one table occupied by a single customer and then
evolves in a Markovian way as follows: given that at step n there are k occupied tables
with ni customers at table i, a new customer is placed at table i with probability
(ni − β)/(n + θ) and placed at a new table with probability (θ + kβ)/(n + θ). Let
Ni(n), i > 1 be the number of customers at table i at step n and let (N↓i (n), i > 1)
be the decreasing rearrangement of these terms. Let K(n) denote the number of
occupied tables at step n. Then(

N↓i (n), i > 1
n

)
a.s. in `1−→
n→∞

(Yi, i > 1) and K(n)
nβ

a.s.−→
n→∞

W

where (Yi, i > 1) ∼ PD(β, θ) and W ∼ ML(β, θ).

We refer to Pitman’s book [Pit06, Chapter 3] for more detail on these first two
theorems.

Theorem 5.7 (Triangular urn schemes). — Consider an urn model with two
colours, red and black. Suppose that initially red has weight a > 0 and black has
weight b > 0. At each step, we sample a colour with probability proportional to its
current weight in the urn. Let β > γ > 0 and assume that when red is drawn then
weight γ is added to red and weight β − γ to black, whereas when black is drawn
then weight β is added to black (and nothing to red). Let Rn denote the red weight
after n steps. Then,

Rn

nγ/β
a.s.−→

n→∞
R

where the random variable R is such that R ∼ γ ·Beta( a
γ
, b
γ
) ·ML

(
γ
β
, (a+b)

β

)
with the

Beta and Mittag–Leffler random variables being independent, and the convention
that Beta(a, 0) = 1 a.s.

(Note that, since the total weight in the urn at step n is a+ b+ nβ, we trivially
deduce that the black weight Bn = a+b+nβ−Rn satisfies Bn/n→ β almost surely.)
There is a vast literature on triangular urn schemes, which give rise to profoundly
different asymptotic behaviour. We refer to Janson for an overview, and in particular
to [Jan06, Theorems 1.3 and 1.7] therein which together imply the convergence of
Theorem 5.7 (but only in distribution). The almost sure convergence can, in fact,
be deduced from Theorems 5.5 and 5.6. Observe first that we may reduce to the
case γ = 1 by scaling. Now note that in the context of Theorem 5.7 when γ = 1
and b = 0, the red weight evolves as a plus the number of occupied tables in a
Chinese restaurant process with parameters (1/β, a/β), and so the almost sure limit
has ML(1/β, a/β) distribution. To treat the case b > 0, consider a refinement of
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the urn model in which the red colour comes in two variants, light and dark. Start
with a light red weight, b dark red weight and 0 black weight. Sample a colour with
probability proportional to its current weight in the urn. When black is drawn, add
weight β to black. When red is drawn in either of its variants, add weight 1 to that
variant and weight β − 1 to black. Clearly, light red and dark red + black taken
together follow the β-triangular urn scheme with respective initial weights a and b.
Moreover, (1) the proportion of the total red weight which is light red converges
almost surely to a random variable with Beta(a, b) distribution by Theorem 5.5, and
(2) this evolution holds independently of that of the total proportion of red weight
in the urn, which converges to a ML(1/β, (a+ b)/β)-distributed random variable, by
the Chinese restaurant process as noted above.
We finally turn to the proof of Proposition 2.3. The notation is introduced in the

vicinity of its statement in Section 2.1.3.
Proof of Proposition 2.3. — Imagine first not distinguishing between the different

types of a colour, i.e. consider the evolution of

Xa,b,c
i (n) = Xa

i (n) +Xb
i (n) +Xc

i (n), 1 6 i 6 k.

Then (Xa,b,c
1 (n), . . . , Xa,b,c

k (n))n> 0 performs a classical Pólya’s urn in which we
always add weight α of the colour picked, and which is started from(

Xa,b,c
1 (0), . . . , Xa,b,c

k (0)
)

= (ζ1, . . . , ζk) .

So we have

(5.5) 1
αn

(
Xa,b,c

1 (n), . . . , Xa,b,c
k (n)

)
→ (D1, . . . , Dk)

almost surely as n→∞, where (D1, . . . , Dk) ∼ Dir(ζ1/α, . . . , ζk/α). Observe that
(Xa,b,c

i (n)− ζi)/α is the number of times by step n that colour i has been picked.
Now consider the triangular sub-urn which just watches the evolution of colour

i, which doesn’t distinguish between types a and b, but does distinguish type c.
In particular, at each step we pick either type {a, b} or type c with probability
proportional to its current weight. If we pick {a, b}, we add 1 to its weight and α− 1
to the weight of c; if we pick c, we simply add weight α to c. Write Y a,b

i (n) and Y c
i (n)

for the weights after n steps within this urn, with Y a,b
i (0) = ζi and Y c

i (0) = 0. Then
by Theorem 5.7, we have

(5.6) 1
n1/αY

a,b
i (n)→ Ri,

1
αn

Y c
i (n)→ 1,

almost surely as n→∞, where Ri ∼ ML(1/α, ζi/α). Moreover, the number of times
we add to type a or b is Y a,b

i (n)− ζi.
Now consider the sub-urn which just watches the evolution of types a and b of

colour i. So if we pick a, we add weight α − 1 to a and 2 − α to b, whereas if we
pick b we just add weight 1 to b. Write Za

i (n) and Zb
i (n) for the weights of types a

and b after n steps of this sub-urn, with Za
i (0) = ζi and Zb

i (0) = 0. Then again by
Theorem 5.7 we have
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(5.7) 1
(α− 1)nα−1Z

a
i (n)→ R̄i,

1
n
Zb
i (n)→ 1

almost surely, where R̄i ∼ ML(α − 1, ζi). Finally, observe that the full urn process
may be decomposed as follows:

Xa
i (n) = Za

i

(
Y a,b
i

(
Xa,b,c
i (n)− ζi

α

)
− ζi

)

Xb
i (n) = Zb

i

(
Y a,b
i

(
Xa,b,c
i (n)− ζi

α

)
− ζi

)

Xc
i (n) = Y c

i

(
Xa,b,c
i (n)− ζi

α

)
,

where the processes (Xa,b,c
1 (n), . . . , Xa,b,c

k (n))n> 0, (Y a,b
i (n), Y c

i (n))n> 0 for 1 6 i 6 k,
and (Za

i (n), Zb
i (n))n> 0 for 1 6 i 6 k, are all independent. The claimed results then

follow by composing the limits (5.5), (5.6) and (5.7). �

Remark 5.8. — The following statements follow using similar arguments:(
D

1/α
1 R1, . . . , D

1/α
k Rk

) (d)= R ·
(
D̃1, . . . , D̃k

)
,

where R ∼ ML(1/α, γ/α) is independent of (D̃1, . . . , D̃k) ∼ Dir(ζ1, . . . , ζk), and
Rα−1
i R̄i ∼ ML (1− 1/α, ζi/α)

for 1 6 i 6 k.
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