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988 F. SEVERO

Résumé. — On considère les courbes de niveau de champs gaussiens continus sur Rd au-
dessus d’un certain niveau −` ∈ R, ce qui définit un modèle de percolation lorsque ` varie.
Nous supposons que le noyau de covariance satisfait certaines conditions de régularité, de
symétrie et de positivité ainsi qu’une décroissance polynomiale d’exposant supérieur à d (cela
inclut notamment le champ de Bargmann–Fock). Sous ces hypothèses, nous prouvons que le
modèle subit une transition de phase abrupte autour de son point critique `c. Plus précisément,
nous montrons que les probabilités de connexion décroissent exponentiellement pour ` < `c

et que la percolation se produit dans des dalles 2D suffisamment épaisses pour ` > `c. Ceci
étenddles résultats récemment obtenus en dimension d = 2 à des dimensions arbitraires par
des techniques complètement différentes. Le résultat découle d’une comparaison globale avec
une version tronquée (c’est-à-dire avec une plage de dépendance finie) et discrétisée (c’est-
à-dire définie sur le réseau εZd) du modèle, qui peut présenter un intérêt indépendant. La
démonstration de cette comparaison repose sur un schéma d’interpolation qui intègre les
corrélations à longue portée et infinitésimales du modèle tout en les compensant par une légère
modification du paramètre `.

1. Introduction

Phase transition phenomena for level-sets of random fields on Rd were first stud-
ied in the 80’s by Molchanov and Stepanov [MS83a, MS83b, MS86] and has been
the object of intense research in the last decade – see e.g. [BG17, BM18, MV20,
MRVKS20, RV20]. One of the major interests in this area of research lies on its
strong links with the geometry of nodal sets of random polynomials and random
spherical harmonics [Ana15, NS09, CS19, Sar17, SW19]. It is believed that, under
suitable assumptions on a Gaussian field f on Rd, the behavior of its level-sets should
be very similar to that of Bernoulli percolation on Zd, even at criticality [BS02, BS07].
In particular, one expects to observe a sharp phase transition around the correspond-
ing critical level `c. For Bernoulli percolation, this corresponds to the exponential
decay of cluster size distribution in the subcritical phase – proved independently
by Menshikov [Men86] and Aizenman and Barsky [AB87] – and the existence of an
infinite cluster on sufficiently thick 2D slabs in the supercritical phase – proved by
Grimmett and Marstrand [GM90]. In the present paper, we prove that the corre-
sponding results hold for the level-sets of continuous Gaussian fields whose covariance
kernel satisfies certain regularity, symmetry and positivity conditions as well as a
polynomial decay with exponent greater than d. As an important example, our as-
sumptions are satisfied by the Bargmann–Fock field, for which these results were
known only in the planar case d = 2 [RV20].
Our approach is based on an interpolation scheme aimed at integrating out the long-

range and infinitesimal correlations of the model, thus comparing it with a truncated
and discretized counterpart. This strategy is inspired by a recent proof [DCGRS20]
of sharpness for the level-sets of the (discrete) Gaussian free field (GFF) on Zd, d > 3.
The proof in [DCGRS20] relies extensively on a decomposition of the GFF as a sum
of independent finite-range fields, which is used to perform certain “local surgeries”
with a low cost. Continuous Gaussian fields on Rd on the other hand tend to be
much more rigid objects and, in particular, such a decomposition is not available in
general. The Bargmann–Fock field for instance is analytic almost surely, hence it is
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Sharpness for Gaussian percolation 989

determined by its restriction to any open set, which in turn implies that one cannot
decompose the field as a sum independent finite-range fields. This rigidity makes the
implementation of finite-energy arguments much more challenging in the continuum.
In order to overcome this difficulty, we make use of a shift-argument based on the
Cameron–Martin formula. We hope that similar shift-arguments can be used as a
general way to bypass the lack of finite-energy property in the study of Gaussian
percolation.
Beyond the contrast between discrete and continuum setup, we would like to stress

that the fields considered in the present paper have faster decay of correlations
than the GFF and belong to a different universality class (namely, that of Bernoulli
percolation). Another important difference with [DCGRS20] is that we do not prove
the most classical notion of “supercritical sharpness”, i.e. that local uniqueness events
happen with high probability in the supercritical phase. Nonetheless, we strongly
believe that our theorem is the first step to proving this result for the Gaussian
fields considered here. We would also like to highlight that unlike [DCGRS20], our
interpolation scheme leads to a global comparison result that is valid throughout
the parameter space and does not require the assumption (by contradiction) that
sharpness does not hold. We believe that this global comparison result may be of
independent interest.
In recent years, a great progress has been made in the study of Gaussian percolation

on the plane (i.e. for d = 2), for which sharpness of phase transition has been
established in a series of works with progressively milder assumptions, see e.g. [Riv19,
RV20, MRVKS20, MV20]. This is mainly due to a special duality property that is
only available in the planar setting. In particular, one has `c = 0 on R2 in great
generality [MRVKS20], which can be seen as the analogue of Kesten’s celebrated
result [Kes80] establishing that pc = 1/2 for Bernoulli percolation on Z2. Another
tool that makes the study of planar percolation models simpler is the Russo–Seymour–
Welsh theory of crossing probabilities. In larger dimensions though, these techniques
break down and the study of Gaussian percolation remains rather limited. Subcritical
sharpness in dimensions d > 3 has been proved only for fields with finite-range
correlations in a very recent work [DM21], and it appears that no sort of supercritical
sharpness result has been obtained in the literature. We therefore hope that the
present work will contribute to a better understanding of the off-critical phases of
Gaussian percolation, especially in dimensions d > 3.

1.1. Gaussian percolation and sharp phase transition

Let f be a stationary, centered, ergodic, continuous Gaussian field on Rd. Such a
field is characterized by its covariance kernel

(1.1) κ(x) := E [f(0)f(x)] , x ∈ Rd.

We are interested in the connectivity properties of the (upper-)excursion set

(1.2) E(`) :=
{
x ∈ Rd : f(x) > −`

}
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990 F. SEVERO

as the parameter ` ∈ R varies. We say that E(`) percolates if it contains an unbounded
connected component. The percolation critical level is then defined as

(1.3) `c := sup
{
` ∈ R : P[E(`) percolates] = 0

}
.

We are going to make the following assumptions on the covariance kernel κ.

Assumption 1.1. — Suppose that there exists an L2 function q : Rd → R such
that

(i) κ = q ? q, where ? denotes the convolution on Rd,
(ii) there exist β > d/2 and C ∈ (0,∞) such that for every |x| > 1,

(1.4) max {|q(x)|, |Oq(x)|} 6 C|x|−β,

(iii) q ∈ C3(Rd) and ∂αq ∈ L2(Rd) for every multi-index α with |α| 6 3,
(iv) q(x) is invariant under sign changes and permutation of the coordinates of x,
(v) q > 0.

We denote by BR := [−R,R]d the `∞-ball of radius R > 0 centered at the origin.
Given a random subset L ⊆ Rd and a (deterministic) domain D ⊆ Rd, we say that
L percolates in D if there is an unbounded connected component in L ∩ D. For
(deterministic) subsets A,B ⊆ Rd, we will denote by {A L←→

D
B} the event that L∩D

contains a path from A to B. We also write {A L←→
D
∞} for the event that there exists

an infinite connected component in L∩D intersecting A. As for the complementary
event {A L←→

D
B}c, we simply write {A 6 L←→

D
B}. We shall drop D from the notation

whenever D = Rd. We are now in position to state our main result.

Theorem 1.2 (Sharp phase transition). — If f satisfies Assumption 1.1 for some
β > d, then the following holds.

• For every ` < `c, there exists c = c(`) > 0 such that for every R > 2,

(1.5) P
[
B1

E(`)←−→ Bc
R

]
6 e−cR,

• For every ` > `c, there exists M = M(`) > 0 such that E(`) percolates in
R2 × [0,M ]d−2. Furthermore, there exists c = c(`) > 0 such that for every
R > 1,

(1.6) P
[
BR 6E(`)←−→∞

]
6 e−cR

d−1
.

Remark 1.3. — It is known that there is a non-trivial phase transition – actually,
`c ∈ (−∞, 0] – under certain general conditions [MS83a, MS83b], which are implied
by the hypothesis of Theorem 1.2. Furthermore, it is straightforward to deduce from
Theorem 1.2 that, under our assumptions, one has `c = 0 for d = 2. As mentioned
above, this fact was already known – even under weaker conditions [MRVKS20] –
but our result provides an alternative proof.
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Let us mention some examples of fields satisfying the hypothesis of Theorem 1.2.
Probably the most important example is the so called Bargmann–Fock field, which
is characterized by the covariance kernel

κ(x) = e−
1
2 |x|

2
.

Indeed, in this case κ = q ? q with q(x) = ( 2
π
) d4 e−|x|2 , and q clearly verifies Assump-

tion 1.1 for every β (in particular β > d). For this field, sharpness of phase transition
was previously known only in the case d = 2 [RV20].
There are also examples with slower decay of correlations. For instance, consider

the rational quadratic kernel

RQβ(x) :=
(
1 + |x|2

)−β2 ,
where β > d/2. By setting q = RQβ and κ = q ? q, it is clear that Assumption 1.1
is verified (for the same value of β). By Theorem 1.2, sharpness of phase transition
holds for the associated Gaussian whenever β > d. One can also easily check that,
for |x| > 1,

(1.7) κ(x) �


|x|−2β+d, if d

2 < β < d,

|x|−d log |x|, if β = d,

|x|−β, if β > d.

We now discuss our assumptions, which are very similar to those considered
in [MV20] for d = 2. Although our approach is completely different from that
of [MV20], the reasons why we consider these assumptions are essentially the same.
Property (i) of Assumption 1.1 implies that the field f can be represented as the
convolution of q with the standard white noise W on Rd:

(1.8) f = q ? W.

This representation allows us to easily define a finite-range version of the model by
simply truncating q. Properties (ii) and (iii), respectively, guarantee that f is locally
well approximated by a truncated and discretized version of f . Furthermore, the
greater β is, the better such a local approximation becomes, see Proposition 2.1.
Property (iv) implies that f has Zd-symmetries, which allows us to directly import
classical results and techniques from discrete percolation theory. Finally, property (v)
implies that f is an increasing function of W , thus allowing us to make use of the
FKG inequality.

1.2. Global comparison

Our strategy to prove Theorem 1.2 will consist in comparing E(`) with a sequence of
models for which sharpness is known to be true. For that purpose, we will construct a
truncated, discretized and noised version of E(`). As mentioned above, this approach
is inspired by [DCGRS20].
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Let χ : Rd → [0, 1] be a smooth and isotropic function satisfying

χ(x) =

1, if |x| 6 1/4
0, if |x| > 1/2.

For N > 1, let χN(x) = χ(x/N) and consider the truncated field

(1.9) fN := (qχN) ? W.

Notice that fN has range of dependence N . Given ε > 0, let f εN be the restriction of
fN to εZd. One can also regard f εN as a Gaussian field on Rd by setting

(1.10) f εN(y) := fN(x) ∀ y ∈ x+
[
−ε2 ,

ε

2

)d
, x ∈ εZd.

Given δ > 0 (in addition to the discretization parameter ε), let Tδ = (Tδ(x))x∈ εZd
be an i.i.d. family of random variables independent of W with distribution given by

P [Tδ(x) = 0] = 1− δ and
P [Tδ(x) = −∞] = P [Tδ(x) = +∞] = δ/2.(1.11)

We naturally extend Tδ to Rd by setting Tδ(y) := Tδ(x) for every y ∈ x + [− ε
2 ,

ε
2)d,

x ∈ εZd. Finally, for every ` ∈ R we consider the percolation model

(1.12) E ε,δN (`) :=
{
y ∈ Rd : f εN(y) + Tδ(y) > −`

}
.

Notice that although E ε,δN (`) is defined in the continuum, it can be simply seen as a
discrete site percolation model on εZd. In words, E ε,δN (`) is obtained by considering
the excursions of fN above −` on εZd and then independently declaring each site
x ∈ εZd to be either unchanged (with probability 1 − δ) or re-sampled as open or
closed (with probability δ/2 each). Let `c(N, ε, δ) be the percolation critical level
corresponding to E ε,δN , as defined in (1.3).
For every fixed N > 1 and ε, δ > 0, one can easily check that the (discrete)

percolation model E ε,δN (`) has a bounded-range i.i.d encoding, Zd-symmetries, positive
association, finite energy, and a convenient sprinkling property – the last two being
the only reason why we introduce the noise. These properties are known to imply
the following analogue of Theorem 1.2. We refer the reader to [DCGRS20, Section 6]
for the precise definition of these properties and the proof of Theorem 1.4 below,
which is based on adapting the techniques developed in [DCRT19] and [GM90].

Theorem 1.4. — Suppose that Assumption 1.1 holds (actually, conditions (ii)
and (iii) are not necessary). Then for every N > 1 and ε, δ > 0, the following holds.

• For every ` < `c(N, ε, δ), there exists c = c(N, ε, δ, `) > 0 such that for every
R > 2,

(1.13) P
[
B1

Eε,δN (`)
←−−→ Bc

R

]
6 e−cR,

• For every ` > `c(N, ε, δ), there exists M = M(N, ε, δ, `) > 0 such that E ε,δN (`)
percolates in R2 × [0,M ]d−2.Furthermore, there exists c = c(N, ε, δ, `) > 0
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such that for every R > 1,

(1.14) P
[
BR 6

Eε,δN (`)
←−−→∞

]
6 e−cR

d−1
.

We shall compare the probability of certain “admissible events” for E(`) and
E ε,δN (`± s), where s > 0 is a small “sprinkling” parameter, thus allowing to transfer
Theorem 1.4 from E ε,δN (`) to E(`). For this purpose, we introduce the following.

Definition 1.5 (Admissible events). — We say that an event A (on the space
of subsets of Rd) is admissible if it has the form

A =
{
S1 ←→

D
Sc

2

}
,

with either S1 = [−r, r]d, S2 = [−R,R]d and D = Rd or S1 = [−r, r]2 × [−M,M ]d−2,
S2 = [−R,R]2× [−M,M ]d−2 and D = R2× [−M,M ]d−2, whereM > 0 and R > r >
0. Given a “random subset” L ⊆ Rd (we will typically consider either L = E(`) or
L = E ε,δN (`)) and an event A as above, we may write L ∈ A in place of {S1

L←→
D
Sc

2}.

We are now in position to state the following global comparison theorem, which is
the heart of our strategy. Theorem 1.2, whose proof is shortly presented below, is a
straightforward consequence of Theorems 1.4 and 1.6. We believe that Theorem 1.6
might have other applications though.

Theorem 1.6 (Global comparison). — Suppose that Assumption 1.1 holds for
some β > d. Then for every `0 > 0 and s > 0, there exist N > 1 and ε, δ > 0 such
that for every ` ∈ [−`0, `0] and every admissible event A,

(1.15) P
[
E ε,δN (`− s) ∈ A

]
6 P [E(`) ∈ A] 6 P

[
E ε,δN (`+ s) ∈ A

]
.

Remark 1.7. — We would like to stress that the crucial fact that the quantities
N, ε, δ are uniform in the domain where the event A is defined (thus the name ‘global
comparison’). The proof of Theorem 1.6 actually gives a more quantitative statement:
for any η ∈ (0, β − d), one can take

s � N−η, ε = N−β+ d
2 and δ = e−N

2β−d−2η

– see (3.1). If one assumes a super-polynomial decay for ∂αq, |α| 6 1, then it is
straightforward to obtain a corresponding better bound for s in terms of N . In
particular, for the Bargmann–Fock field one can take N �

√
log s−1.

Remark 1.8. — One can easily check that the proof of Theorem 1.6 still works if
one takes ε and δ to be even smaller than those referred to in the previous remark.
In particular, one can take ε = δ = 0, i.e. compare {f > −`} with {fN > −(`± s)}.
One can probably also adapt the proof to other reasonable notions of truncation and
discretization as well, such as those considered in [MV20] for instance.

Remark 1.9. — As we have already mentioned, Theorem 1.6 differs fundamentally
from the comparison obtained in [DCGRS20, Proposition 1.4] as the former does
not require the assumption that ` lies in a certain fictitious regime, and is therefore
a non-vacuous statement. Furthermore, there is no additive error term in (1.15).
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Remark 1.10. — The class of events for which we can prove (1.15) is actually
larger than those introduced in Definition 1.5. Roughly speaking, we only need that
the sets S1, S2 and D to be such that there exists a “uniformly flat surface” in D
separating S1 from S2 – see Remark 3.6. In order to avoid technicalities, we decided
to state the results only for box-crossings in the full space and in 2D slabs as those
events are sufficient to deduce Theorem 1.2.

We now explain how to derive Theorem 1.2 from Theorems 1.4 and 1.6.
Proof of Theorem 1.2. — Fix `0 > 0 such that `c ∈ (−`0, `0). First, notice that by

applying (1.15) with the admissible events AR = {B1 ←→ Bc
R} and letting R →∞,

one readily concludes that |`c − `c(N, ε, δ)| 6 s for every N, ε, δ, s satisfying (1.15)
Let ` < `c and assume without loss of generality that ` > −`0. Let s = `c−`

3 and
N, ε, δ given by Theorem 1.6. Since `+s < `c−s 6 `c(N, ε, δ), the desired exponential
decay (1.5) follows directly by applying (1.15) for AR combined with (1.13).
Let ` > `c and assume without loss of generality that ` < `0. Let s = `−`c

3 andN, ε, δ
given by Theorem 1.6. Since `− s > `c + s > `c(N, ε, δ), we know by Theorem 1.4
that there exists M > 0 such that E ε,δN (` − s) percolates in R2 × [−M,M ]d−2 and
satisfies (1.14). By applying (1.15) with the admissible events

AR =
{

[−1, 1]2 × [−M,M ]d−2 ←−−−−−−−−→
R2×[−M,M ]d−2

(
[−R,R]2

)c
× [−M,M ]d−2

}

and letting R → ∞, one directly concludes that E(`) also percolates in R2 ×
[−M,M ]d−2. The bound (1.6) follows by applying (1.15) for AR,R′ = {BR ←→ Bc

R′},
taking R′ →∞ and using (1.14). �

Remark 1.11. — Notice that Theorem 1.6 implies more than Theorem 1.2. One
can deduce that the asymptotic behavior of any admissible event is the same as
for the truncated field, which in turn can be proved to be similar to Bernoulli
percolation. We also hope that the quantitative relation between s and N mentioned
in Remark 1.7 could be used to transfer near-critical results from E ε,δN to E .

1.3. Open questions

We now discus some questions left open by the present work. First, we highlight a
limitation of the version of “supercritical sharpness” we prove here, i.e. the existence
of an infinite cluster on thick slabs. For application purposes, the most useful version
of supercritical sharpness would be the fact that a certain “local uniqueness” event has
probability very close to 1 in the supercritical phase. This is usually the starting point
of any renormalization argument aimed at studying the geometry of infinite cluster
or the large deviation behavior of the finite clusters, see e.g. [Cer00, Bar04, Sap17].
In Bernoulli percolation, it is not hard to obtain local uniqueness from percolation
on slabs – see e.g. [Gri99]. For general Gaussian fields though, it is not clear how one
would prove this implication. Nonetheless, inspired on ideas from [BT17], it is proved
in Section 4 of [DCGRS20] that for the discrete GFF local uniqueness happens at
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level `+ δ with high probability whenever

P
[
Bu(R)

E(`)←−→ Bc
R

]
> 1− o

(
R−d

)
,

where u(R) = exp[(logR)1/3]. Since Theorem 1.2 provides an even stronger bound
(1.6) in the whole supercritical phase, one can expect that an adaptation of the
techniques from [DCGRS20] may lead to a proof of local uniqueness for the Gaussian
fields considered here. However, the aforementioned lack of finite-range decomposition
and finite-energy property for general Gaussian fields make the implementation of
such an argument considerably harder.
It would be especially interesting to prove a similar result for the so called

monochromatic random wave, which is one of the most relevant examples of con-
tinuous Gaussian fields. Studying this field is a much more challenging task as it
does not admit a white noise representation and its covariance kernel oscillates and
has a quite slow decay. However, great progress in the case d = 2 has been made
recently [MRVKS20].
We also expect that sharpness of phase transition holds under Assumption 1.1

for every β > d/2. However, the decay of connection and disconnection events
are not always the same as in (1.5) and (1.6). Indeed, we conjecture that under
Assumption 1.1 the correct decay of connection events in the subcritical regime
` < `c is, in general, the following:

(1.16) − logP
[
B1

E(`)←−→ Bc
R

]
�


R2β−d, if d

2 < β < d+1
2 ,

R/logR, if β = d+1
2 ,

R, if β > d+1
2 .

As for the correct decay of disconnection events in the supercritical regime ` > `c,
we conjecture that under Assumption 1.1, one should have the following:

(1.17) − logP
[
BR 6E(`)←−→∞

]
�


R2β−d, if d

2 < β < d− 1
2 ,

Rd−1/logR, if β = d− 1
2 ,

Rd−1, if β > d− 1
2 .

Let us mention that both decays (1.16) and (1.17) have been proved for the discrete
GFF on certain graphs [DPR21, GRS21, Nit18, NS20, PR15, Szn15].
We now discuss some aspects of our global comparison theorem. First, we do not

know whether the comparison (1.15) should still hold for arbitrary increasing event
A under the same hypothesis of Theorem 1.6 (i.e. β > d), thus leading to a stochastic
domination – see Remark 3.6 for more details on this. In Remark 3.5, we mention
a possible way to prove Theorem 1.6 under the weaker assumption β > d− 1

2 . This
is optimal because due to (1.14) and (1.17), the comparison (1.15) cannot hold for
β 6 d− 1

2 in the supercritical regime. On the subcritical regime ` < `c though, we still
believe that (1.15) holds whenever d+1

2 < β 6 d − 1
2 . Because of (1.13) and (1.16),

the comparison (1.15) cannot hold as stated in either subcritical or supercritical
regimes for d

2 < β 6 d+1
2 . Nonetheless, one can still hope to prove sharpness of phase

transition for all β > d
2 by showing a global comparison on a certain fictitious regime,
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as originally done in [DCGRS20] for the GFF. In this case though, the comparison
statement obtained becomes vacuous a posteriori.

Notation

For A,B ⊆ Rd, we denote A + B := {a + b : a ∈ A, b ∈ B}. Given x ∈ Rd

and R > 0, let BR(x) := x+ BR, where BR = [−R,R]d. For S ⊂ Rd, we denote its
boundary as ∂S := S̄ \ So. We write c, c′, C, C ′ for generic constants in (0,∞) which
may depend implicitly on the field f , the dimension d and can also change from line
to line. Their dependence on other parameters will always be explicit. Numbered
constants c0, c1, C0, C1, . . . refer to constants that are used repeatedly in the text
and are numbered according to their first appearance.

2. Local comparison and Cameron–Martin formula

In this section we overview a few basic properties of Gaussian fields. First, we show
that the local difference between a field and its truncated and discretized version
is small with very high probability. Then we review the Cameron–Martin formula
describing the Radon–Nikodym derivative of a Gaussian field with respect to its
shift by a deterministic function, which will be instrumental when implementing a
certain finite-energy argument in Section 3.
By applying standard Gaussian bounds, one can prove that f εN approximates f very

well locally (i.e. in a ball of radius 1). This is the content of the following proposition,
which is analogous to [MV20, Proposition 3.11]. Although [MV20] is concerned with
the case d = 2 and considers a slightly different notion of discretization, their proof
can be easily adapted to our framework and we thus choose to omit the proof here.

Proposition 2.1 (Local comparison). — Suppose that Assumption 1.1 holds for
some β > d

2 (actually, conditions (iv) and (v) are not necessary). Then there exist
C, c ∈ (0, 1) such that for every N > 1 and ε > 0,

P
[

sup
y ∈B1

|f(y)− fN(y)| > s

]
6 exp

(
−cs2N2β−d

)
, for all s > CN−β+ d

2 ,(2.1)

P
[

sup
y ∈B1

|fN(y)− f εN(y)| > s

]
6 exp

(
−cs2ε−2

)
, for all s > Cε.(2.2)

Remark 2.2. — Under a stronger assumption on the decay of ∂αq, |α| 6 1, the
bound (2.1) can be strengthened correspondingly. For the Bargmann–Fock field in
particular one can prove that

(2.3) P
[

sup
x∈B1

|f(x)− fN(x)| > s

]
6 exp

(
−cs2ecN

2)
, for alls > Ce−

c
2N

2
.

We now introduce the Cameron–Martin space associated to a Gaussian field g
on an abstract space X with covariance kernel K(x, y) := E[g(x)g(y)], x, y ∈ X.
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First, let G be the Hilbert space of centered Gaussian random variables given by the
closure in L2 of the linear space spanned by g, i.e. the set

(2.4)
∑
i∈N

aig(yi), with yi ∈ X, ai ∈ R,
∑
i,j ∈N

aiajK(yi, yj) <∞.

Then define the (injective) linear map P : G→ RX given by

(2.5) ξ 7→ P (ξ)(·) := 〈ξ, g(·)〉G = E[ξg(·)].

The function space H := P (G), equipped with the inner product

(2.6) 〈h1, h2〉H :=
〈
P−1(h1), P−1(h2)

〉
G

= E
[
P−1(h1)P−1(h2)

]
is a Hilbert space known as the Cameron–Martin space associated to g. By con-
struction, P defines an isometry between G and H. Note that for any y ∈ X, the
function K(y, ·) is in H and P−1(K(y, ·)) = g(y). The following is a classical result –
see e.g. [Jan97, Theorems 14.1 and 3.33].

Theorem 2.3 (Cameron–Martin). — Let g be a centered Gaussian field and H
its Cameron–Martin space. Then, for every h ∈ H, the Radon–Nikodym derivative
between the law of g + h and the law of g is given by

(2.7) exp
{
P−1(h)− 1

2E
[
P−1(h)2

]}
.

In particular, for every g-measurable event E,

(2.8) P [g + h ∈ E] = E
[
exp

{
P−1(h)− 1

2E
[
P−1(h)2

]}
1g ∈E

]
.

3. Interpolation scheme

In this section we prove Theorem 1.6. Fix an arbitrary η ∈ (0, β − d) and let
γ := 2β − d− 2η > d. For N > 1, we set

(3.1) sN := N−η, εN := N−β+d
2 and δN := e−N

γ

.

Theorem 1.6 is a direct consequence of the following proposition.

Proposition 3.1. — For every `0 > 0, there exist N0 = N0(`0) > 1 such that
the following holds. For every N > N0, ` ∈ [−`0, `0] and every admissible event A,

(3.2) P
[
E εN ,δNN (`− sN) ∈ A

]
6 P

[
E ε2N ,δ2N

2N (`) ∈ A
]
6 P

[
E εN ,δNN (`+ sN) ∈ A

]
.

Proof of Theorem 1.6. — By standard properties of Gaussian fields, one can prove
that under our assumptions, every admissible event A is a continuity event for f
in the uniform-on-compacts topology, and as a consequence limN→∞ P[E εN ,δNN (`) ∈
A] = P[E(`) ∈ A]. By successively applying Proposition 3.1 to N = 2iN0, i > n0,
and noticing that ∑i>n0 s2iN0

� (2n0N0)−η < s for n0 = n0(s) sufficiently large, the
theorem follows with N = 2n0N0, ε = εN and δ = δN . �
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Proof of Proposition 3.1. — Fix N > 1 and ` ∈ [−`0, `0]. We will construct an
interpolation between E ε2N ,δ2N

2N (`) and E εN ,δNN (`± sN) as follows. Let {x0, x1, x2, . . .}
be an arbitrary enumeration of 2NZd. We start with E2N(`) and at the nth step of
our procedure, we will change the model on B′N(xn) := xn + [−N,N)d (note that
these boxes perfectly pave Rd) from E ε2N ,δ2N

2N to E εN ,δNN at the same time as slightly
sprinkling the parameter ` everywhere. We do so in such a way that at the “∞th

step” of our procedure, we end up with E εN ,δNN (`± sN).
We now describe the precise construction. For simplicity, we will focus on the

interpolation between E ε2N ,δ2N
2N (`) and E εN ,δNN (` + sN) only – the construction for

E εN ,δNN (`− sN) is analogous, see Remark 3.2. First, let τ : Rd → R be the function
given by

(3.3) τ(y) := cd
(
1 + |x|d+1

∞

)−1
, ∀ y ∈ x+

[
−1

2 ,
1
2

)d
, x ∈ Zd,

where the constant cd > 0 is chosen so that
∫
Rd τ = ∑

x∈Zd cd(1 + |x|d+1
∞ )−1 =

1/2. Consider the increasing sequence (τk)k∈ 1
2N

of “sprinkling functions” recursively
defined by τ0 = 0 and, for all n ∈ N,

τn+ 1
2

:= τn + 1
21B′N (xn)sN ,(3.4)

τn+1 := τn+ 1
2

+ τ
( · − xn

2N

)
sN .(3.5)

Notice that by construction, the limit τ∞ := limn→∞ τn is the constant function
equal to sN . We are now in position to define the interpolation. For every k ∈ 1

2N,
consider

I1
k :=

y ∈
dke−1⋃
i=0

B′N(xi) : f εNN (y) + TδN (y) > − (`+ τk(y))

 ,(3.6)

I2
k :=

y ∈
∞⋃

i=dke
B′N(xi) : f ε2N

2N (y) + Tδ2N (y) > −(`+ τk(y))

 ,(3.7)

and finally define
(3.8) Ik := I1

k ∪ I2
k .

The sequence (Ik)k∈ 1
2N

is an interpolation between E ε2N ,δ2N
2N (`) and E εN ,δNN (` + sN).

Indeed, by construction I0 = I2
0 = E ε2N ,δ2N

2N (`) and, since τ∞ ≡ sN , we have

(3.9) I∞ := lim
k→∞

Ik = lim
k→∞

I1
k = E εN ,δNN (`+ sN).

In words, for every n ∈ N, we construct In+ 1
2
from In by changing the model in

B′N(xn) from E ε2N ,δ2N
2N to E εN ,δNN and sprinkling the level parameter by sN/2 on the

same box only (see (3.4)); and we construct In+1 from In+ 1
2
by simply sprinkling

everywhere by an integrable function τ of the (renormalized) distance to the “center”
xn – see (3.5). Notice that Ik is an increasing function of W and T := (TδN , Tδ2N )
for each k ∈ 1

2N. Also notice that this function is N -local, i.e. Ik at any point x only
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depends (increasingly) on the restriction of W and T to BN(x). In particular, Ik
satisfies the FKG inequality and has range of dependence 2N .
The crucial property of this construction is that it is “almost increasing” in k. First,

we obviously have In+ 1
2
⊂ In+1 almost surely for every n ∈ N. Second, In ⊂ In+ 1

2
holds with very high probability. Indeed, notice that by construction the following
inclusion holds

(3.10)
{
In ⊂ In+ 1

2

}
⊃

 sup
y ∈B′N (xn)

|f εNN (y)− f ε2N
2N (y)| 6 sN/2

 ∩ {TδN = Tδ2N = 0 on B′N(xn)} .

Due to Proposition 2.1 and the choice of εN , δN and sN in (3.1), one can easily lower
bound the probability of the event in the right hand side of (3.10) by 1− e−cNγ , thus

(3.11) P
[
In ⊂ In+ 1

2

]
> 1− e−cNγ

.

Remark 3.2. — When adapting the above construction to interpolate between
E ε2N ,δ2N

2N (`) and E εN ,δNN (`−sN), it is more convenient to start with I0 = E εN ,δNN (`−sN)
and end up with I∞ = E ε2N ,δ2N

2N (`), so that the “almost increasing” property above
still holds, and the proof presented below directly applies to this case as well.

We claim that, if N is large enough, then for every admissible event A,
(3.12) P [In ∈ A] 6 P [In+1 ∈ A] textforalln > 0.
We now proceed with the proof of (3.12), which readily implies the desired inequal-
ity (3.2). In what follows, N and A are though as fixed and thus often omitted from
the notation, but every estimate will be uniform on them. Given an admissible event
A, we define

pn := P [In ∈ A]− P
[
In+ 1

2
∈ A

]
(3.13)

qn := P [In+1 ∈ A]− P[In+ 1
2
∈ A] (> 0).(3.14)

Our goal is then to prove that, if N is large enough (not depending on A), then
pn 6 qn for every n > 0. Given n > 0, y ∈ Rd and L > 0, we define the coarse
pivotality event

(3.15) Pivny (L) :=
{
In+ 1

2
∪BL(y) ∈ A

}
∩
{
In+ 1

2
\BL(y) /∈ A

}
.

Notice that Pivny (L) depends only on In+ 1
2
restricted to the complement of BL(y).

Since In and In+ 1
2
are identical on BN(xn)c almost surely, the following inclusions

hold

{
In ∈ A, In+ 1

2
/∈ A

}
⊂
{
In ⊂ In+ 1

2

}c
∩ Pivnxn(N)

⊂
{
In ⊂ In+ 1

2

}c
∩ Pivnxn(4N).

The event {In ⊂ In+ 1
2
}, besides satisfying the bound (3.11), only depends on W

and T restricted to B2N(xn), which in turn is independent of In+ 1
2
restricted to
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B4N(xn)c. Combining these observations, we obtain
pn 6 P

[
In ∈ A, In+ 1

2
/∈ A

]
6 P

[{
In ⊂ In+ 1

2

}c
∩ Pivnxn(4N)

]
6 e−cN

γP
[
Pivnxn(4N)

]
.

(3.16)

For n, j > 0, let
(3.17) pn(xj) := P

[
Pivnxj(4N)

]
.

In view of (3.16), it remains to show that if N is large enough, then pn(xn) 6 ecN
γ
qn

for every event A and all n > 0. In other words, we want to construct the “sprinkling
pivotality” event {In+1 ∈ A}∩{In+ 1

2
/∈ A} – which has probability qn, see (3.14) – out

of the coarse pivotality event Pivnxn(4N) – which has probability pn(xn) – by paying
a sufficiently small multiplicative price. This fact is a straightforward consequence of
the following lemma. Roughly speaking, it says that if coarse pivotality happens at
a given site xj, then one can either perform a “local surgery” – whose cost depends
on the sprinkling function τ – to construct sprinkling pivotality, or a local bad event
– which has a very small probability – happens around xj and one further recovers a
coarse pivotality event at some site xj′ near xj.
Lemma 3.3 (Local surgery). — There exists γ̃ ∈ (d, γ) and constants N1 > 1 and

c, C ∈ (0,∞) such that for N > N1, every admissible event A and every n, j > 0,

(3.18) pn(xj) 6 eCN
γ̃

τ
(
xj − xn

2N

)−1
qn + e−cN

γ̃−1 ∑
xj′ ∈B8N (xj)

pn (xj′) .

Before proving Lemma 3.3, let us conclude the proof that pn 6 qn for every n > 0.
Starting with j = n and then successively applying Lemma 3.3, one can easily prove
by induction that for every integer T > 1,

pn(xn) 6 eCN
γ̃

(
T−1∑
t=0

e−cN
γ̃−1t

∣∣∣2NZd ∩B8N

∣∣∣t ∣∣∣2NZd ∩B8Nt

∣∣∣ c−1
d

(
1 + (4t)d+1

))
qn

+ e−cN
γ̃−1T

∣∣∣2NZd ∩B8N

∣∣∣T ∑
xj ∈B8NT (xn)

pn (xj) .

Noting that the sum inside the parenthesis above is convergent and that the second
term vanishes when T →∞ (recall that pn(xi) 6 1), we obtain

pn(xn) 6 C ′eCN
γ̃

qn,

which combined with (3.16) and the fact that γ̃ < γ, implies that for N is large
enough we have pn 6 qn for every admissible event A and all n > 0, as we wanted
to prove. �
It remains to prove Lemma 3.3, which is the technical heart of our proof.
Proof of Lemma 3.3. — Fix N > 1 and A := {S1 ←→

D
Sc

2} an admissible event –
recall Definition 1.5. We stress that every estimate below will be uniform on N and
A. For K ⊂ Rd, we will denote by (W,T )|K the restriction of W and T = (TδN , Tδ2N )
to K. Given n > 0, L > 0 and y ∈ Rd, we define the closed pivotality event
(3.19) CPivny (L) :=

{
In+ 1

2
∪BL(y) ∈ A

}
∩
{
In+ 1

2
/∈ A

}
.
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In words, BL(y) is called closed pivotal if it is pivotal but A does not happen. The
proof will be divided into four steps.

Step 1. From 4N -pivotal to 8N -closed-pivotal. — Let n, j > 0. Consider the
following event

Pivnxj(8N, 4N) :=
{
In+ 1

2
∪B8N(xj) ∈ A

}
∩
{
In+ 1

2
\B4N(xj) /∈ A

}
.

By definition Pivnxj(4N) ⊂ Pivnxj(8N, 4N), hence

(3.20) pn(xj) = P
[
Pivnxj(4N)

]
6 P

[
Pivnxj(8N, 4N)

]
.

Now, consider the event

F :=
{
In+ 1

2
∩ ∂B4N(xj) = ∅

}
∩
{
In+ 1

2
∩ ∂S1 ∩B4N(xj) = ∅

}
.

and notice that
Pivnxj(8N, 4N) ∩ F ⊂ CPivnxj(8N).

Furthermore, both events Pivnxj(8N, 4N) and F are decreasing in (W,T )|B6N (xj) and F
is (W,T )|B6N (xj)-measurable. Therefore, conditioning on (W,T )|B6N (xj)c and applying
the FKG inequality for (W,T )|B6N (xj) gives

(3.21) P
[
CPivnxj(8N)

]
> P

[
Pivnxj(8N, 4N) ∩ F

]
> P

[
Pivnxj(8N, 4N)

]
P[F ].

We will now prove that the following inequality holds

(3.22) P[F ] > e−CN
d−1
.

First observe that as f is a non-degenerate, continuous, stationary Gaussian field,
there exist constants r0 > 0 and c0(`0) > 0 such that c0 < P[f(y) > ` ∀ y ∈
Br0(x)] < 1 − c0 for every ` ∈ [−`0, `0] and x ∈ Rd. Since fN converges locally to
f , this property is also valid for fN with N sufficiently large. Since Ik is made of
level-sets of either f εN ,δNN or f ε2N ,δ2N

2N , one deduces that there exists c1 = c1(`0) such
that P[Br0(x) ∩ Ik = ∅] > c1 and P[Br0(x) ⊂ Ik] > c1 for every x ∈ Rd. One can
thus cover ∂B4N(xj) by at most C(r0)Nd−1 balls of radius r0 and apply the FKG
inequality to obtain

(3.23) P
[
In+ 1

2
∩ ∂B4N(xj) = ∅

]
> c

C(r0)Nd−1

1 .

Now notice that, by specific geometry of the set S1 – recall Definition 1.5 – one can
easily cover ∂S1 ∩B4N(xj) with at most C(r0)Nd−1 balls of radius r0. Therefore, by
the same reasoning as the proof of (3.23), we have

(3.24) P
[
In+ 1

2
∩ ∂S1 ∩B4N(xj) = ∅

]
> c

C(r0)Nd−1

1 .

By another application of FKG, (3.23) and (3.24) imply (3.22). Putting the inequal-
ities (3.20), (3.21) and (3.22) together give

(3.25) pn(xj) 6 eCN
d−1P

[
CPivnxj(8N)

]
.
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Step 2. From 8N -closed-pivotal to 2N -closed-pivotal. — First, let CD
S1 and CD

Sc
2

denote the (union of) connected components of In+ 1
2
∩ D intersecting S1 and Sc

2,
respectively (recall S1, S2 and D from Definition 1.5). Consider the events

E1 :=
{
CD
S1 ∩ S

c
2 = ∅

}
∩
{
CD
S1 ∩B8N(xj) 6= ∅

}
E2(y) :=

{
CD
Sc

2
∩B1(y) 6= ∅

}
,

and notice that, for E(y) := E1 ∩ E2(y), we have

CPivnxj(8N) ⊂
⋃
y

E(y),

where the union above is taken over y ∈ B8N(xj) ∩D ∩ Zd. By a union bound over
all the |B8N(xj)∩D∩Zd| 6 CNd possibilities (recall (3.1)), we can find at least one
such site y0 satisfying

(3.26) P[E(y0)] > cN−d P
[
CPivnxj(8N)

]
.

For every C ⊂ D ⊂ Rd, consider the event

F (y0, C) :=
{
B1(y0)

I
n+ 1

2←−−−−−→
D∩B8N (xj)

C +B2N

}
∩
{
B1(y0) ∩ (C +B2N)c ⊂ In+ 1

2

}
,

and notice that, for F (y0,CD
S1) := ⋃

C {CD
S1 = C} ∩ F (y0, C), we have

(3.27) E(y0) ∩ F
(
y0,C

D
S1

)
⊂

⋃
xj′ ∈B8N (xj)

CPivnxj′ (2N).

By a similar reasoning as in the proof of (3.22) above, one can prove that for every
C ⊂ D such that C ∩B8N(xj) 6= ∅, we have

(3.28) P [F (y0, C)] > e−CN .

Since both events F (y0, C) and E2(y0) are increasing in (W,T )|(C+BN )c , we can apply
the FKG inequality to deduce that

(3.29) P
[
F (y0, C) ∩ E2(y0)

∣∣∣ (W,T )|C+BN

]
> P

[
F (y0, C)

∣∣∣ (W,T )|C+BN

]
P
[
E2(y0)

∣∣∣ (W,T )|C+BN

]
= P [F (y0, C)] P

[
E2(y0)

∣∣∣ (W,T )|C+BN

]
> e−CN P

[
E2(y0)

∣∣∣ (W,T )|C+BN

]
,

for every C ⊂ D such that C ∩B8N(xj) 6= ∅. In the second line of (3.29) we used that
F (y0, C) is independent of (W,T )|C+BN and in the third line we used (3.28). Notice
that for every C, the event {CD

S1 = C} is measurable with respect to (W,T )|C+BN .
Therefore, multiplying both sides of (3.29) by the indicator function of {CD

S1 = C},
taking expectations and then summing over all the (finitely many) C such that
C ∩ Sc

2 = ∅ and C ∩B8N(xj) 6= ∅, gives

(3.30) P
[
E(y0) ∩ F

(
y0,C

D
S1

)]
> e−CNP [E(y0)] .
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Combining (3.26), (3.27) and (3.30), we obtain

(3.31) P
[
CPivnxj(8N)

]
6 eC

′N
∑

xj′ ∈B8N (xj)
P
[
CPivnxj′ (2N)

]
.

Step 3. From 2N -closed-pivotal to good-2N -closed-pivotal or bad-4N -pivotal. —
Fix any γ̃ ∈ (d, γ) and xj′ ∈ B8N(xj). Consider the following “good event”

(3.32) G :=
{
|f εNN | , |f

ε2N
2N | 6 N

γ̃−1
2 on B2N (xj′)

and TδN = Tδ2N = 0 on B2N (xj′)

}
.

By standard Gaussian bounds and the choice of δN (and δ2N) in (3.1), one can easily
see that

(3.33) P[G] > 1− e−cN γ̃−1
.

Since CPivnxj′ (2N) ⊂ Pivnxj′ (4N) and Pivnxj′ (4N) is independent of G, we have

P
[
CPivnxj′ (2N) ∩Gc

]
6 P

[
Pivnxj′ (4N) ∩Gc

]
6 e−cN

γ̃−1P
[
Pivnxj′ (4N)

]
= e−cN

γ̃−1
pn (xj′) ,

(3.34)

and hence

(3.35) P
[
CPivnxj′ (2N)

]
6 P

[
CPivnxj′ (2N) ∩G

]
+ e−cN

γ̃−1
pn (xj′) .

Step 4. From good-2N -closed-pivotal to sprinkling-pivotal. — We are going to
prove the following inequality

(3.36) P
[
CPivnxj′ (2N) ∩G

]
6 eC

′′N γ̃

τ
(
xj′ − xn

2N

)−1
qn.

Notice that by combining (3.25), (3.31), (3.35), (3.36) and reminding that γ̃ − 1 >
d− 1, one readily obtains the desired bound (3.18).
We now explain how to prove (3.36). The idea is that the bound on f εNN and f ε2N

2N
provided by the good event G allows us to apply the Cameron–Martin theorem in
order to shift the fields by an appropriate deterministic function, ultimately leading
to the sprinkling-pivotality event {In+1 ∈ A} ∩ {In+ 1

2
/∈ A}, which has probability

qn. First, consider the Gaussian field gN on X := Rd × {1, 2} given by

gN(y, i) := f εiNiN (y)

and let KN be the covariance kernel of gN . Notice that for every k ∈ 1
2N, Ik is a

function of gN (and T ), and we will henceforth stress this by writing Ik = Ik(gN) =
Ik(gN , T ). In particular, since In+1 is simply a sprinkling of In+ 1

2
by the function

τ( ·−xn2N )sN (recall (3.5)–(3.8)), we have

(3.37) In+1(gN) = In+ 1
2

(
gN + τ

( · − xn
2N

)
sN

)
.

By definition, KN((y, i), (y′, i′)) converges uniformly, as N → ∞, to κ(y, y′) for
every y, y′ ∈ Rd and i, i′ ∈ {1, 2}. Since κ is continuous and κ(y, y) = κ(0, 0) > 0,
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one can find N1 > 0, c2 > 0 and r1 > 0 such that for every N > N1,

(3.38) KN

(
(y, i), (y′, i′)

)
> c2 ∀ y, y′ ∈ Rd with |y − y′| 6 r1 and ∀ i, i′ ∈ {1, 2}.

One can also easily check that KN has a decay analogous to that of κ in (1.7),
i.e. there exists C > 0 such that for every N > 0,

(3.39) KN

(
(y, i), (y′, i′)

)
6 C |y − y′|−β 1{|y−y′|6 4N} ∀ y, y′ ∈ Rd and ∀ i, i′ ∈ {1, 2}.

Notice that, on the event CPivnxj′ (2N), one can find a pair of vertices y1, y2 ∈
B2N(xj′) ∩ r1Zd such that CD

S1 ∩ Br1(y1) 6= ∅ and CD
Sc

2
∩ Br1(y2) 6= ∅. For any such

pair, one can deterministically associate a sequence of points Γ = {z1, z2, . . . , zm}
in B2N(xj′) satisfying z1 = y1, zm = y2 and |zk − zk+1| 6 r1 for every k ∈ {1, 2, . . . ,
m− 1} with m 6 C(r1)N . We consider the following function (which depends on y1
and y2)

(3.40) h :=
∑

k∈{1,2, ...,m}
i∈{1,2}

KN((zk, i), ·)

Notice that h is in the Cameron–Martin space H associated to gN and

(3.41) P−1(h) =
m∑
k=1

f εNN (zk) + f ε2N
2N (zk).

It follows from (3.38), (3.39) and KN > 0 that there exists C0, C1 ∈ (0,∞) such that
(a) 0 6 h(z, i) 6 C0 1{|z−xj′ |66N} ∀ z ∈ Rd, ∀ i ∈ {1, 2},
(b) h(z, i) > c2 ∀ z ∈ Γ̄, ∀ i ∈ {1, 2},
(c) E[P−1(h)2] = ∑

k,k′ ∈{1,2, ...,m}
i,i′ ∈{1,2}

KN((zk, i), (zk′ , i′)) 6 C1N ,

where Γ̄ := ⋃m
k=1 Br1(zi) is the “r1-thickened path” determined by Γ. Let

s̃ = s̃ (N, n, xj′) := C−1
0 min

y ∈B6N(xj′)
τ
(
y − xn

2N

)
sN ,

which is defined in such a way that, in view of property (a) above, we have

(3.42) s̃h 6 τ
( · − xn

2N

)
sN .

Set L := (N γ̃−1
2 + `0 + sN)/c2. It follows from property (b) and (3.32) that on the

event G we have Γ̄ ⊂ In+ 1
2
(gN + Lh). Therefore, on CPivnxj′ (2N) ∩ G, the event A

happens for In+ 1
2
(gN + Lh) but it does not happen for In+ 1

2
= In+ 1

2
(gN). We then

deduce by monotonicity that on CPivnxj′ (2N) ∩G, there exist sites y1 and y2 (which
determine h) as above and an integer t ∈ [0 , L/s̃) such that the event

(3.43) E (y1, y2, t) :=
{
In+ 1

2
(gN + ts̃h) /∈ A

}
∩
{
In+ 1

2
(gN + (t+ 1)s̃h) ∈ A

}
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happens. Overall, we have proved the following inclusion
(3.44) CPivnxj′ (2N) ∩G ⊂

⋃
y1,y2,t

E(y1, y2, t) ∩G.

By a union bound, we conclude that there exist y1 and y2 and t as above such that

P [E (y1, y2, t) ∩G] >
∣∣∣B2N (xj′) ∩ r1Zd

∣∣∣−2
⌈
s̃

L

⌉
P
[
CPivnxj′ (2N) ∩G

]
> cN−2d τ

(
xj′ − xn

2N

)
sN P

[
CPivnxj′ (2N) ∩G

]
.

(3.45)

We will now apply the Cameron–Martin theorem to the event E(y1, y2, t)∩G. First
notice that by (3.41) and the property (c) above, the following bound holds almost
surely on the event G

(3.46)
∣∣∣∣P−1 (−ts̃h)− 1

2E
[
P−1(−ts̃h)2

]∣∣∣∣
=
∣∣∣∣ts̃P−1(h) + 1

2 (ts̃)2 E
[
P−1(h)2

]∣∣∣∣ 6 C3N
γ̃.

Since gN − ts̃h ∈ E(y1, y2, t) ⇐⇒ gN ∈ E(y1, y2, 0), one can apply the Theorem 2.3
for the field gN (conditionally on T , which is independent from gN) and the shift
function −ts̃h ∈ H, which combined with (3.46) gives
(3.47) P [E (y1, y2, 0)] > e−C3N γ̃P [E (y1, y2, t) ∩G] .
Due to (3.37), (3.42) and (3.43), we have

E (y1, y2, 0) ⊂
{
In+ 1

2
/∈ A

}
∩ {In+1 ∈ A} ,

hence
(3.48) P [E (y1, y2, 0)] 6 qn.

Combining (3.45), (3.47) and (3.48) gives the desired inequality (3.36), thus conclud-
ing the proof of Lemma 3.3. �

Remark 3.4. — In order to obtain the quantitative relation N �
√

log s−1 claimed
in Remark 1.7 for the case of the Bargmann–Fock field, it suffices to make the
following simple adaptations in the choice of parameters. Fix any γ > d and let
sN = N

γ
2 e−

c
2N

2 , εN = e−
c
2N

2 and δN = e−N
γ , where c is given by (2.3). With these

changes, the rest of the proof works as before.

Remark 3.5. — If one wanted to prove Theorem 1.6 under the (conjecturally
optimal) assumption β > d− 1

2 , one could try to make the following changes to the
proof presented above. First, take η ∈ (0, β − d + 1

2) instead, which implies that
γ := 2β−d−2η > d−1. Now, for γ̃ ∈ (d−1, γ), redefine G as (in addition to T = 0,
as before) the existence of a “linear path” of sites satisfying |f εNN |, |f

ε2N
2N | 6 N

γ̃−1
2

between every pair of macroscopic connected sets in B4N(xj′), instead of asking
for a bound on the whole box. By using renormalization techniques, it should be
possible to prove the improved bound P[G] > 1− e−cN γ̃ instead of (3.33). The rest
of the argument then works similarly as before with the additional observation that,
for typical N and xj′ , both CD

S1 and CD
Sc

2
are macroscopic in B4N(xj′) on the event
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CPivnxj′ (2N). Since this adaptation is non-trivial and would probably result in a
substantially more technical proof, we chose not to follow this strategy and we only
claim the result under the stronger assumption β > d.

Remark 3.6. — We now discuss the definition of admissible events A for which
the comparison (1.15) holds. First notice that Steps 1, 2 and 4 relied on the fact
that A is a connection event, but the precise geometry of S1, S2 and D has only
been used to obtain the inequality (3.24) in Step 1 – we simply used the fact that
∂S1 can be locally covered at any scale N by O(Nd−1) unit balls, which can be seen
as a sort of “uniformly flat curvature” property. If we assume the stronger inequality
β > d + 1

2 , then the above proof of (1.15) works for arbitrary connection events
A = {S1 ←→

D
Sc

2}, regardless of the geometry of S1, S2 and D. Indeed, it suffices to
choose γ > γ̃ > d+ 1 and redefine the event F in Step 1 to be

F =
{
In+ 1

2
∩B4N(xj) = ∅

}
,

in which case we have P[F ] > e−cN
d instead of (3.22), and the proof of Lemma 3.3

still works as γ̃ − 1 > d. Actually, if one combines this with the modified definition
of good event proposed in Remark 3.5 above, one might even be able to prove (1.15)
for arbitrary connection events A under our original assumption β > d. Since in
this case the geometry of the connection event A does not matter, it seems natural
to expect that (1.15) holds for every increasing event A, which would imply the
stochastic domination E ε,δN (`− s) ≺ E(`) ≺ E ε,δN (`+ s). However, it is not clear how
one could adapt the above proof for increasing events. In fact, if A was an arbitrary
increasing event, Step 4 could be adapted – possibly under a stronger assumption
on β – by simply constructing h to be uniformly positive on the whole ball B2N(xj′)
instead of a linear path. In Step 2 though, we strongly used the fact that A is a
connection event in order to reduce the scale of pivotality by conditioning on one
cluster and making surgeries in the complement of its 2N -neighborhood.
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