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1036 J. BOUTTIER, E. GUITTER & G. MIERMONT

Abstract. — We consider planar maps with three boundaries, colloquially called pairs
of pants. In the case of bipartite maps with controlled face degrees, a simple expression for
their generating function was found by Eynard and proved bijectively by Collet and Fusy. In
this paper, we obtain an even simpler formula for tight pairs of pants, namely for maps whose
boundaries have minimal length in their homotopy class. We follow a bijective approach based
on the slice decomposition, which we extend by introducing new fundamental building blocks
called bigeodesic triangles and diangles, and by working on the universal cover of the triply
punctured sphere. We also discuss the statistics of the lengths of minimal separating loops in
(non necessarily tight) pairs of pants and annuli, and their asymptotics in the large volume
limit.
Résumé. — Nous considérons des cartes planaires à trois bords, plus familièrement appe-

lées «pantalons». Dans le cas de cartes biparties avec un contrôle sur le degré des faces, une
expression simple pour leur fonction génératrice a été trouvée par Eynard et prouvée bijective-
ment par Collet et Fusy. Dans cet article nous obtenons une formule encore plus simple pour
les pantalons serrés, c’est-à-dire pour les cartes dont les bords ont une longueur minimale dans
leur classe d’homotopie. Nous utilisons une approche bijective basée sur la décomposition en
tranches, que nous étendons en introduisant de nouveaux blocs fondamentaux appelés triangles
et diangles bigéodésiques, et en travaillant sur le revêtement universel de la sphère à trois trous.
Nous discutons également la statistique des longueurs minimales des boucles séparantes au
sein des pantalons et des cartes annulaires (non nécessairement serrés), et leur asymptotique
dans la limite des grandes tailles.
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1. Introduction

Context and motivations

The study of maps (graphs embedded into surfaces) is an active field of research,
at the crossroads between combinatorics, theoretical physics and probability theory.
The combinatorial theory of maps started with the pioneering work of Tutte in the
1960’s [Tut68], and we refer to the recent review by Schaeffer [Sch15] for an account
of its many developments ever since. In theoretical physics, maps are intimately
connected with matrix models and two-dimensional quantum gravity: see for instance
the review by Di Francesco, Ginsparg and Zinn–Justin [DFGZJ95], the book by
Ambjørn, Durhuus and Jonsson [ADJ97], and the book by Eynard [Eyn16] for
more recent mathematical advances including the theory of topological recursion.
Probability theory aims at understanding the geometric properties of large random
maps and their limits: this topic is covered in several sets of lecture notes [Bud17,
Cur19, LGM12, Mie14], and we also mention the review by Miller [Mil18] which
discusses the connection with Liouville quantum gravity, a rigorous approach to
two-dimensional quantum gravity.
A key tool in the study of maps is the bijective approach, which consists in finding

correspondences between different families of maps, or with other combinatorial
objects such as trees or lattice walks. Bijections often yield elementary derivations
of enumerative results, but are also useful to understand properties of maps such as
distances (see the aforementioned references). There exists by now several general
bijective frameworks, and in this paper we focus on a specific one, called the slice
decomposition.
Colloquially speaking, the slice decomposition consists in performing a canoni-

cal decomposition of maps, by cutting them along leftmost geodesics. It was first
mentioned in the papers [AB12, BG09b, BG12], mostly as a reformulation of the
decomposition of mobiles [BDFG04]. Its real significance was highlighted in the pa-
per [BG14]—see also [Bou19, Chapter 2] for a recent exposition—which considers
so-called irreducible maps for which bijections were not known before. The slice
decomposition also passes naturally to the scaling limit [BM17, LG13]. However,
it has so far been understood only in the case of disks and annuli, namely planar
maps with one or two boundaries. Our purpose is to understand the case of maps
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1038 J. BOUTTIER, E. GUITTER & G. MIERMONT

Figure 1.1. Illustration of the main bijective construction discussed in this
paper. Starting from elementary pieces, namely two bigeodesic triangles and
three bigeodesic diangles (top), one builds a pair of pants with three tight bound-
aries (bottom right). To better visualize the construction, we pass through an
intermediate partial assembling (bottom left). Conversely, the building blocks
can be recovered by cutting along appropriately defined bigeodesics, here dis-
played in purple.

with other topologies, with the long-term goal of developing a bijective approach to
topological recursion.
In this paper, we make a first step in this direction, by considering pairs of pants,

namely planar maps with three boundaries. For simplicity, we restrict to the case of
bipartite maps with controlled face degrees (also known as Boltzmann maps), though
we believe that our treatment can be extended to the non bipartite or to the irre-
ducible settings as considered in [BG12, BG14]. A simple explicit expression of the
generating function of bipartite pairs of pants was given by Eynard [Eyn16, Proposi-
tion 3.3.1] and derived bijectively by Collet and Fusy [CF12]. We note that equivalent
formulas appeared previously in the physics literature, see for instance [AJM90, Equa-
tion (45)] or [ADJ97, Equation (4.94)]. Here, we obtain an even simpler formula for
tight pairs of pants, namely for maps whose boundaries have minimal length in their
homotopy class. As we shall see, our formula is equivalent to the Eynard–Collet–Fusy
formula, but our derivation is fundamentally different.
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Our approach, whose general idea is displayed in Figure 1.1, consists in decom-
posing tight pairs of pants into geometric pieces which we call (bigeodesic) diangles
and triangles. While the former are, in a sense, generalizations of the existing no-
tion of slices, the second are new objects (although they appear implicitly in earlier
work [BG08], see the discussion in Appendix B). As was pointed to us by Bram Petri,
the way in which the elementary pieces are assembled is very much reminiscent of
classical constructions of pairs of pants in hyperbolic geometry from ideal hyper-
bolic triangles, see for instance [Thu97, Section 3.4]. In particular, some notions of
importance in this paper, which we refer to as “equilibrium vertices” in triangles
and “exceedances” in diangles, have natural analogs in hyperbolic geometry: the
equilibrium vertices correspond to tangency points of the inner circles of the ideal
triangles, and the exceedances correspond to the invariants d(v) in [Thu97].
We believe that many other connections exist between these classical concepts and

our work. In particular, in the context of the classification of Riemann and hyper-
bolic surfaces [IT92], pants decompositions play a fundamental role. It is therefore
natural to expect that similar decompositions should exist in the context of maps.
In particular, the tightness constraint which we introduce should be an important in-
gredient: indeed, it should translate the natural idea of cutting surfaces along closed
geodesics, in order to obtain canonical decompositions. Such pants decompositions
will be explored in future research, but provide one of our main motivations for the
present paper.

Overview

A planar map is a connected multigraph embedded into the sphere without edge
crossings, and considered up to homeomorphism. It consists of vertices, edges, faces
and corners, see [Sch15] for precise definitions. Until further notice, we only consider
finite maps, i.e. maps with a finite number of edges (hence of vertices, faces and
corners). A path on a map is a sequence of consecutive edges, and the length of a
path is its number of edges. Given a face, its contour is the closed path formed by its
incident edges, and its degree is the length of the contour. A planar map is bipartite
if all its faces have even degree.
A boundary is either a marked face or a marked vertex on the map. We will use

the denominations boundary-face and boundary-vertex when we wish to specify the
nature of a boundary. We define the length of a boundary as being equal to its degree
in the case of a boundary-face, and to zero in the case of a boundary-vertex. Faces
which are not boundaries are called inner faces. A map is said essentially bipartite
if all its inner faces have even degree. The sum of the lengths of the boundaries of
an essentially bipartite map is necessarily even.
We intuitively think of boundaries as representing punctures on the sphere. This

is rather natural in the case of a boundary-face (we just remove its interior from the
surface), but slightly less in the case of boundary-vertex: see Figure 1.2. A path on
the map, together with a choice of circumventing direction when passing through
a boundary-vertex, corresponds to a path on the punctured sphere. Two closed
paths are said to be in the same homotopy class, or freely homotopic, if they can be
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Figure 1.2. An intuitive way to think of a boundary-vertex: we remove a small
disk around it, and keep all incident edges connected along a circle made of
special (dashed) edges, which are considered as having length zero. Note that a
path passing through a boundary-vertex may “circumvent” it in two ways, which
will correspond to different homotopy classes when there are other boundaries.

continuously deformed into one another on the punctured sphere. A boundary-face is
said tight if its contour has minimal length in its homotopy class (if the boundary-face
is incident to a boundary-vertex, the contour should be considered as the contour of
the corresponding face in the map modified as in Figure 1.2). A boundary-vertex is
by convention always tight.
We are interested in essentially bipartite planar maps with three distinct boundaries

which are labeled (distinguishable). Such maps cannot have symmetries, and therefore
we do not root (i.e., mark a corner on) the boundaries. Two situations may occur:
either all the boundary lengths are even, and the planar map is truly bipartite, or
two lengths are odd and the third is even, and following [CF12] we say that the map
is quasi-bipartite. We may now state our main enumerative result:

Theorem 1.1. — Let a, b and c be integers or half-integers such that a+ b+ c is
an integer. Then, the generating function Ta,b,c of essentially bipartite planar maps
with three labeled distinct tight boundaries of lengths 2a, 2b, 2c, counted with a
weight t per vertex different from a boundary-vertex and, for all k > 1, a weight g2k
per inner face of degree 2k, is equal to

(1.1) Ta,b,c = Ra+b+cd lnR
dt
− t−11a=b=c=0

where R is the formal power series in t, g2, g4, . . . determined by

(1.2) R = t+
∑
k> 1

(
2k − 1
k

)
g2kR

k

and where 1P is equal to 1 if P is true, and to 0 otherwise.

It is not difficult to check that the right-hand side of (1.1) is indeed a well-defined
power series in t, g2, g4, . . .. It is useful to look first at the case where g2, g4, . . . all
vanish. This corresponds to maps without inner faces. In this case, T0,0,0 vanishes
while, for a, b, c not all zero, Ta,b,c is equal to ta+b+c−1: this means that there should
exist exactly one such map, with a+b+c−1 vertices different from boundary-vertices.
This is indeed true, as illustrated on Figure 1.3.
Our expression for Ta,b,c is very similar to the aforementioned Eynard–Collet–Fusy

(ECF) formula for maps with three boundaries that are not necessarily tight. In fact,
the ECF formula simply differs by some binomial factors. As we will see in Section 6,
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generic case I generic case II

degenerate cases

b < a+ c

b > a+ c

b = a+ c

c = 0

a = b, c = 0

a = 0, c = 0

Figure 1.3. The possible types of maps with three tight boundaries and no inner
face. Tightness implies that there are no vertices of degree one, except possibly
boundary-vertices, indicated here by blue crosses. To identify the different types,
assume without loss of generality that the boundary lengths are b > a > c.
There exists two generic situations, denoted I and II, corresponding to the cases
b < a+ c and b > a+ c respectively. The degenerate cases correspond to having
b = a + c or/and some lengths equal to zero. We may check that there are
a+ b+ c− 1 vertices different from boundary-vertices in all cases.

the two formulas are equivalent, by a canonical decomposition which consists in
cutting a map with three arbitrary boundaries along outermost minimal separating
loops, resulting in three annular maps and one tight pair of pants. However, our
expression for Ta,b,c being even simpler than the ECF formula, it is desirable to have
a direct bijective proof of it, and this is the main objective of the present paper.
Our results have interesting consequences for the statistics of large random planar

maps, which are explored in Section 6.3. There, for simplicity, we restrict our atten-
tion to the case of quadrangulations. The aforementioned canonical decomposition
of a map with three boundaries into three annular maps and a tight pair of pants
allows one to define the exterior areas, corresponding to the number of faces in
the annular maps, the interior area, corresponding to the number of faces in the
tight pair of pants, and the minimal separating cycle lengths, corresponding to the
lengths of the three boundaries of the tight pair of pants. In Theorem 6.9, we give a
detailed limit theorem for the joint law of these quantities in large quadrangulations
with three boundaries. We also provide an analogous statement for random annular
quadrangulations in Theorem 6.7, which relies on the results obtained in [BG14].
Our strategy to prove Theorem 1.1 is the following. For a = b = c = 0, the right-

hand side of (1.1) can be rewritten as d ln(R/t)/dt which, by results from [BDFG04],
is already known to be equal to the generating function T0,0,0 of triply pointed
bipartite maps (for completeness, we provide a slice-theoretic rederivation of this
fact in Appendix A). Then, we will exhibit a bijection implying, as Corollary 3.2
below, that we have for any a, b, c

(1.3) Ta,b,c + t−11a=b=c=0 = Ra+b+cX
3Y 2

t6
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where R, X and Y are the generating functions of combinatorial objects called
respectively elementary slices, bigeodesic diangles, and bigeodesic triangles (all these
series are equal to t when g2, g4, . . . all vanish). These combinatorial objects will be
defined in Section 2. The notations are chosen to be consistent with those of [BG08,
BG09a]: as we discuss in Appendix B, bigeodesic diangles and triangles are the
slice-theoretic equivalents of objects appearing in the decomposition of well-labeled
maps (the slice interpretation of R being already known). This makes a connection
with the bijective approach developed in [AB13, BFG14, Mie09]. Comparing (1.3)
with the known expression for T0,0,0, we get X3Y 2/t6 = d lnR/dt and Theorem 1.1
follows.

Outline

Section 2 introduces the basic building blocks of our approach, namely tight
slices, bigeodesic diangles and bigeodesic triangles, and derives some elementary
enumeration results for those pieces. Section 3 explains how these pieces can be
assembled to produce a map with three tight boundaries. This allows us to state our
main bijective result, Theorem 3.1. To prove this theorem, the difficult part is to
decompose a map with three tight boundaries back into basic building blocks. This
decomposition takes place on the universal cover of the map, which is a periodic
infinite map which we describe in Section 4. Section 5 then presents the decomposition
of a map with three tight boundaries, by first introducing the important geometric
tool of Busemann functions associated with infinite geodesics, and finishes the proof
of Theorem 3.1 by showing that this decomposition is indeed the inverse of the
assembling procedure. Section 6 discusses how to recover the ECF formula from our
results and a decomposition of pairs of pants into annular maps and tight pairs of
pants, and then states and proves our probabilistic applications on the statistics of
minimal separating cycles and areas in large random quadrangulations with three
boundaries. Concluding remarks and discussion on future directions are gathered
in Section 7. Finally, we recall in Appendix A how to obtain the classical recursion
relation (1.2) for slices, as well as the reason why d ln(R/t)/dt is the generating
function of triply pointed maps, and in Appendix B we present another approach
to bigeodesic diangles and triangles in the case of quadrangulations, based on a
bijection with labeled trees.

Acknowledgements

We thank Marie Albenque, Timothy Budd, Vincent Delecroix, Marco Mazzucchelli
and Bram Petri for valuable discussions. We also thank the two anonymous referees
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2. Basic building blocks
In this section we introduce the fundamental building blocks of our approach. We

start with some preliminary definitions.
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2.1. Preliminaries: geodesics and related concepts

In a map, a geodesic between two vertices v1 and v2 is a path of minimal length
connecting them. This minimal length is by definition the (graph) distance d(v1, v2)
between the vertices v1 and v2. Maps are assumed to be connected, so geodesics
between any two given vertices always exist and d(v1, v2) is a finite integer.
A geodesic vertex between v1 and v2 is a vertex v belonging to a geodesic between

them. Clearly, v is a geodesic vertex if and only if

(2.1) d(v, v1) + d(v, v2) = d(v1, v2).

2.1.1. Bigeodesics

In general, there may exist many geodesics between v1 and v2. But, using the
(local) planar structure of a map, it is often possible to single out a canonical one.
The previous works on slice decomposition were using the notion of leftmost geodesic
determined by the choice of an initial direction at v1. Here, we will need a related
but slightly different notion, which is that of leftmost bigeodesic determined by the
choice of a geodesic vertex between v1 and v2.
A bigeodesic between two vertices v1 and v2 is a triple made of a geodesic vertex

v between them and of two geodesics, one between v and v1 and one between v and
v2. Clearly the concatenation of these two geodesics is a geodesic between v1 and v2,
so that a bigeodesic between v1 and v2 is entirely specified by the data of a geodesic
between v1 and v2 and of a vertex v along this geodesic.
Viewing the bigeodesic as “launched” from the geodesic vertex v towards v1 and v2

respectively, we may introduce the notion of leftmost bigeodesic as follows. Assume
that d(v1, v2) > 2 and that v is distinct from v1 and v2. We may partition the set of
edges incident to v into three types:

(i) those leading to a vertex strictly closer to v1,
(ii) those leading to a vertex strictly closer to v2,
(iii) those leading to a vertex that is neither strictly closer to v1 nor to v2.

Ignoring the edges of type (iii), it is easily seen that, by planarity, there exists an edge
e1 of type (i) and an edge e2 of type (ii) such that, when turning clockwise around
v, all edges of type (i) appear between e1 and e2 and all edges of type (ii) appear
between e2 and e1. We then consider the leftmost geodesic from v to v1 starting
with e1, i.e. the geodesic whose first step goes along e1 from v to its neighbor at
distance d(v, v1) − 1 from v1, and at each step, goes along the leftmost edge (as
viewed from the previous edge) among all those going from the currently attained
vertex to a vertex closer to v1, until v1 is eventually reached. We similarly pick the
leftmost geodesic from v to v2 starting with e2. Concatenating these two geodesics,
we obtain a bigeodesic between v1 and v2 launched from v, which is by definition
the leftmost bigeodesic we are looking for. Observe that the leftmost bigeodesic is
not well-defined if v = v1 or v = v2, and in particular if d(v1, v2) < 2.

TOME 5 (2022)



1044 J. BOUTTIER, E. GUITTER & G. MIERMONT

c′

c′′

c

[c′′, c] = strictly geodesic
from c′′ to c

[c, c′] = geodesic
from c to c′

[c′, c] = leftmost bigeodesic

launched from c′′ towards c and c′

[c′, c′′] = geodesic from c′ to c′′

(right boundary)

Figure 2.1. Generic structure of a tight slice (the boundary-face is the outer
face). In this figure and the following, we represent geodesic boundary intervals
in blue and strictly geodesic ones in red. The corner c′′ is shown in blue since it
is an intermediate corner on the geodesic boundary interval [c′, c]. The width of
the slice is the length of [c′, c′′].

2.1.2. Geodesic boundary intervals

Consider a planar map with one boundary-face, which we denote f0 and which
we choose as the external face in the planar representation of the map. Let c and c′
be two corners incident to f0. These corners split the contour of f0 in two portions,
which we call boundary intervals. When turning counterclockwise around the map
(i.e., when walking along the contour with f0 on the right), the portion that starts
at c and ends at c′ is denoted [c, c′]. It forms a path on the map, which may not
be simple in general. In the particular case where it forms a geodesic between the
vertices incident to c and c′, then we say that the boundary interval [c, c′] is geodesic
(the path is necessarily simple in this case). Furthermore, if there exists no other
geodesic in the map with the same endpoints, then [c, c′] is said strictly geodesic.
In the figures, we will often use the graphical convention of representing geodesic
boundary intervals in blue, and strictly geodesic boundary intervals in red.

2.2. Tight slices

Our first building block is what we call a tight slice, defined as a planar bipartite
map with one boundary-face having three distinguished (not necessarily distinct)
incident corners c, c′ and c′′ appearing counterclockwise around the map such that:

• the boundary intervals [c, c′] and [c′, c] are geodesic,
• the boundary interval [c′′, c], called the right boundary, is strictly geodesic,
• the intervals [c′′, c] and [c, c′] share only a common vertex at c.

See Figure 2.1 for an illustration. Note that the constraints imply that [c′, c′′] is also
geodesic, and the length of this interval is called the width of the slice. The only tight
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slice of width zero is equal to the vertex-map, reduced to a single vertex and a single
face both of degree zero. Note that, if c 6= c′′ (hence c′ 6= c′′), then [c′, c] is nothing
but the leftmost bigeodesic launched from the vertex incident to c′′ towards those
incident to c and c′ respectively. A tight slice of width 1 is called an elementary slice.
Proposition 2.1. — The generating function of tight slices of width `, counted

with a weight t per vertex not incident to the right boundary and a weight g2k per
inner face of degree 2k for all k > 1, is equal to R`, with R defined as in Theorem 1.1.
Proof. — It is known that R counts elementary slices (for completeness, we provide

a proof in Appendix A). Given a tight slice of arbitrary width, let us consider all the
vertices incident to the boundary interval ]c′, c′′[ (with endpoints excluded), and the
leftmost bigeodesics launched from them towards the vertices incident to c′ and c.
These bigeodesics necessarily follow the boundary towards c′, but may enter inside
the map towards c. Cutting also these bigeodesics splits the map into a `-tuple
of elementary slices, and it is straightforward to check that the decomposition is
bijective. �

2.3. Bigeodesic diangles

Our second building block is what we call a bigeodesic diangle, or a diangle for
short, which is again a planar bipartite map with one boundary-face, with now four
distinguished (not necessarily distinct) incident corners c1, c12, c2, c21 appearing
counterclockwise around the map, and having the following properties:

• the boundary intervals [c1, c2] and [c2, c1] are geodesic,
• the boundary intervals [c12, c2] and [c21, c1] are strictly geodesic,
• [c21, c1] and [c1, c2] share only a common vertex at the vertex v1 incident to c1
and similarly, [c12, c2] and [c2, c1] share only a common vertex at the vertex
v2 incident to c2.

See Figure 2.2 for an illustration. Note that the boundary intervals [c1, c12] and
[c2, c21] are necessarily geodesic. Let us denote by w12 and w21 the vertices incident
to c12 and c21. If w12 is different from v1 and v2, then [c1, c2] is the leftmost bigeodesic
launched from w12 towards v1 and v2. Similarly, if w21 is different from v1 and v2,
then [c2, c1] is the leftmost bigeodesic launched from w21. The corners c12 and c21
(or the vertices w12 and w21 depending on the context) will be referred to as the
attachment points of the diangle, for reasons which will become clear in the next
section.
The exceedance e of the diangle is defined as

(2.2) e = d(w12, v1)− d(w21, v1) = d(w21, v2)− d(w12, v2).
A diangle is said balanced if its exceedance e is 0, that is if w12 and w21 are at the
same distance from v1, say. Note that the vertex-map again satisfies all the required
criteria for a balanced diangle. Apart from this trivial case, any other balanced
diangle has d(v1, v2) > 2, with w12 and w21 different from v1 and v2 and from each
other, with [c1, c2] and [c2, c1] meeting only at v1 and v2. This latter property is not
necessarily true for unbalanced diangles, as indicated in the caption of Figure 2.2.
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c2

c12

v2

v1

w12

w21

∼ ∼

e

c1

c21

e

≈ ≈

Figure 2.2. Schematic picture of a bigeodesic diangle of nonnegative exceedance
e. The boundary intervals with the ∼ label have the same length and meet only
at v1, and similarly for the ≈ label. The remaining two other boundary intervals,
of length e, may however share common vertices as soon as e > 0.

We denote by X the generating function of balanced bigeodesic diangles, where
the boundary-face and the vertices incident to the strictly geodesic intervals [c12, c2]
and [c21, c1] other than w12 and w21 receive no weight. Note that the vertex-map
contributes a weight t to X.
Even though we shall not need any precise expression for X, let us mention

that, by the results of [BG08], a very explicit formula can be given in the case of
quadrangulations (g2k = g δk,2), see equation (B.3) in Appendix B. It yields the
expansion X = t+ gt2 + 8g2t3 + 73g3t4 + 711g4t5 + . . ., and the maps corresponding
to the first terms of this expansion are displayed in Figure 2.3.
With the same weighting convention as for balanced diangles, we have the following

property:

Proposition 2.2. — The generating function of bigeodesic diangles with non-
negative exceedance e is equal to ReX.

Proof. — The property is obvious for e = 0, so we may assume e > 0. Let w12
denote the vertex along [c1, c2] which is at the same distance from v1 as w21. We
have d(w12, w12) = e. Consider the leftmost bigeodesic launched from w12 towards
v1 and v2: its part towards v1 follows the boundary, while its part towards v2 may
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t gt2 8g2t3}
Figure 2.3. The first terms in the expansion of X for quadrangulations (g2k =
g δk,2). The unfilled vertices (circles) receive no weight.

v2

v1

w12w12

w21w21
w12

∼ ∼

e

v2 = v2

geodesic

balanced

v1

w12w12

w21w21
w12

∼ ∼

diangle

tight slice

of width e

e

leftmost

from w12 to v2
v2

Figure 2.4. Decomposition of a bigeodesic diangle of exceedance e into a pair
made of a balanced bigeodesic diangle and a tight slice of width e. Different
situations occur according to which boundary is first hit by the leftmost geodesic
from w12 to v2.
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enter inside the diangle. We denote by v2 the first vertex common to this part and
[c2, c1]. Then, as illustrated in Figure 2.4, the bigeodesic splits the map into two
pieces. One of them is a balanced diangle with distinguished corners incident to v1,
w12, v2 and w21, and the other is a tight slice of width e > 0. The decomposition is
clearly a bijection and implies the wanted expression, by Proposition 2.1 (note that
the weight t for w12 must be transferred to w12 in the tight slice). �

When all face weights are set to zero, ReX is equal to te+1, which accounts for the
diangle made of a chain of e+ 1 vertices and e edges, with v1 = w21 at one extremity
and v2 = w12 at the other.
It is interesting to note that a tight slice of (positive) width e is nothing but

a diangle of exceedance e for which c12 = c2 (with the correspondence c = c1,
c′ = c12 = c2, c′′ = c21). Note however that the weighting conventions differ slightly
(there is an extra weight t for diangles).
We will not consider diangles with negative exceedance in this paper, since their

enumeration is more subtle.

2.4. Bigeodesic triangles

c2

c12

v2

v1

c23

c1

c31

c3

v3

w12

w23

w31

s1 s1

s2

s2 s3

s3

Figure 2.5. Schematic picture of a bigeodesic triangle. The vertices w12, w23 and
w31 are colored in red to indicate that any geodesic from v1 to v2 (respectively
from v2 to v3, from v3 to v1) must pass via w12 (respectively w23, w31).

ANNALES HENRI LEBESGUE



Bijective enumeration of planar bipartite maps with three tight boundaries 1049}t g3t4 21g4t5

×3 ×3 ×3 ×3

×3 ×3
×3

Figure 2.6. The first terms in the expansion of Y for quadrangulations (g2k =
g δk,2). The unfilled vertices (circles) receive no weight.

Our third and final building block is what we call a bigeodesic triangle, or triangle
for short, which is again a planar bipartite map with one boundary-face. It now has
six distinguished incident corners c1, c12, c2, c23, c3, c31 appearing counterclockwise
around the map, and having the following properties:

• the boundary intervals [c1, c2], [c2, c3] and [c3, c1] are geodesic, with no common
vertex except at their endpoints v1, v2, and v3 (incident to c1, c2 and c3,
respectively),
• the boundary intervals [c12, c2], [c23, c3] and [c31, c1] are strictly geodesic,
• the boundary intervals [c1, c12] and [c31, c1] (respectively [c2, c23] and [c12, c2],

[c3, c31] and [c23, c3]) have the same length s1 (respectively s2, s3).
• any geodesic from v1 to v2 (respectively from v2 to v3, from v3 to v1) passes
via w12 (respectively w23, w31), the vertex incident to c12 (respectively c23,
c31).

See Figure 2.5 for an illustration. Note that, if two corners among c1, c12, c2, c23, c3,
c31 are equal, then the above properties imply that the triangle is reduced to the
vertex-map. Note also that the boundary intervals [c1, c12], [c2, c23] and [c3, c31] are
necessarily geodesic and that

d(v1, v2) = s1 + s2, d(v2, v3) = s2 + s3 and d(v3, v1) = s3 + s1.

As in the case of diangles, the interval [c1, c2] is the leftmost bigeodesic launched
from w12 towards v1 and v2. Note also that a geodesic from v1 to v2, which has to
pass via w12, necessarily sticks to [c12, c2] between w12 and v2 since [c12, c2] is strictly
geodesic. Similar properties hold under cyclic permutations of the indices 1, 2, 3. The
corners c12, c23, c31 (or the vertices w12, w23, w31 depending on the context) will be
referred to as the attachment points of the triangle.
We call Y the generating function of bigeodesic triangles, where the boundary-face

and the vertices incident to the strictly geodesic intervals [c12, c2], [c23, c3] and [c31, c1]
other than w12, w23 and w31 receive no weight. The vertex-map contributes a term t
to Y .
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As was the case for the generating function X of diangles, we shall not need
any precise expression for Y , even though the results of [BG08] provide an explicit
formula in the case of quadrangulations (g2k = g δk,2), see again equation (B.3) in
Appendix B. It yields the expansion Y = t+ g3t4 + 21g4t5 + 324g5t6 + . . ., and the
maps corresponding to the first terms of this expansion are displayed in Figure 2.6.

3. Assembling the building blocks

We now explain how to assemble a map with three tight boundaries from the
basic building blocks introduced in the previous section. We start from a quintuple
consisting of the following pieces:

• three bigeodesic diangles of nonnegative exceedances denoted by e1, e2 and
e3,
• two bigeodesic triangles.

Recall that the boundaries of bigeodesic diangles and triangles are conventionally
colored in red and blue: a boundary edge is colored red if it belongs to a boundary
interval that is constrained to be strictly geodesic, and is colored blue otherwise (i.e.
it belongs to a geodesic boundary interval which is not necessarily strictly geodesic).
Generally speaking, the assembling procedure consists in gluing the boundaries of
the different pieces together, a red edge being always glued to a blue edge. Some blue
edges will possibly remain unmatched and form the boundaries of the assembled
map.
We shall discuss in fact two alternative assembling procedures, hereafter numbered

I and II, which are complementary in the sense that each of them generates only a
strict subset of the set of maps with three tight boundaries but, taken together, they
generate the full set.

3.1. Description of the assembling procedures I and II

In a nutshell, the assembling procedures consist of two operations, which we call
attachment and red-to-blue gluing. We start by describing these operations in detail
in the case of procedure I, referring again to Figure 1.1 for an illustration, then turn
to procedure II which only differs at the level of the attachment operation.

3.1.1. Procedure I

Recall from Sections 2.3 and 2.4 that the attachment points of diangles and
triangles are the vertices from which their bigeodesic boundaries are launched. The
attachment operation consists in identifying the attachment points as shown on
Figure 3.1(a). The resulting object is a planar map which, in addition to the inner
faces of the initial triangles and diangles, has three extra special faces, hereafter
denoted FA, FB and FC . Each special face is incident to four attachment points
(after identification) and its contour is made of alternating blue and red intervals,
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e1

e2

e3

FA

FC

FB

e1 + e2e1 + e2

FA

FB

FB

FC
FC

FB

FB

FCFC

(a) (b)

(c) (d)(c)

δA δA

e1 + e2

Figure 3.1. The assembling procedure of type I. (a) We first identify the at-
tachment points of the two triangles and the three diangles as shown so as to
create a planar map with three special faces FA, FB and FC . (b) The red-to-blue
gluing around the special face FA: the arrows indicate the resulting identification
between vertices (the identified attachment points are shown in purple). Here,
e1 + e2 = 2 blue edges remain unmatched. (c) Alternate representation of the
gluing process: the cyclic sequence of edges counterclockwise around FA may be
coded by the quasi-periodic lattice path with a unit up (respectively down) step
for each blue (respectively red) edge (the increments of the path are denoted εn
in the text). Each down (red) step is then matched to the next up (blue) step
on its right which returns to the same height. A number e1 + e2 of blue edges
remain unmatched for each period δA = deg(FA). (d) Result of the gluing of
FA: we obtain a boundary of length e1 + e2 (the glued edges are represented by
dashed lines). The red-to-blue gluing of FB and FC is performed similarly.
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four of each color, with an excess of blue edges (e1 + e2 for FA, e2 + e3 for FB, e3 + e1
for FC).
The second operation is performed independently on each special face, and consists

in gluing all its incident red edges to blue edges so as to form a face of smaller degree
with only blue incident edges (thus the term red-to-blue gluing). More precisely,
consider a special face, say FA, and follow its contour keeping the face on the left
(i.e. we turn counterclockwise around FA, when it is represented as a bounded face
in the plane): each red edge immediately followed by a blue edge is glued to it, and
we repeat the process until no red edge is left. A convenient global description of
this operation can be given as follows: number the edges along the contour of FA by
integers, starting at an arbitrary position and in the same direction as before. We set
εn = 1 if the edge numbered n is blue, and εn = −1 if it is red. The sequence (εn)n is
naturally defined for all n ∈ Z by periodicity, with a period δA equal to the degree
of FA. Then, a red edge at position k will be matched and glued to the blue edge at
position `, where ` is the smallest integer larger than k such that ∑`

n=k εn = 0. Such
` necessarily exists since εk = −1 and ∑k+δA−1

n=k εn = e1 +e2 > 0. See Figure 3.1 for an
illustration. After the gluing step, a number e1 + e2 of blue edges remain unmatched.
If e1 + e2 > 0, these edges form the contour of a boundary-face. If e1 + e2 = 0, we
instead obtain a boundary-vertex, which corresponds to the vertex preceding any
edge k such that ∑`

n=k εn 6 0 for all ` > k. Indeed, such vertices corresponds to the
maxima of the lattice path of Figure 3.1(c)—which is periodic when e1 +e2 = 0—and
all of them are identified by gluing. All in all, FA becomes a boundary of length
e1 + e2, and performing the same operation on FB and FC , these become boundaries
of lengths e2 + e3 and e3 + e1 respectively.
The assembling procedure is trivially adapted to the case where a triangle is

reduced to the vertex-map, by equipping its unique vertex with three attachment
points (dividing the surrounding corner in three sectors). Similarly, when one of the
exceedances is 0 and the corresponding (balanced) diangle is reduced to the vertex-
map, we equip its unique vertex with two attachment points. If e1 = e2 = e3 = 0 and
all the triangles/diangles are reduced to the vertex-map, the object resulting from
the assembling procedure is the vertex-map itself. Besides this pathological case, we
always obtain a map in which the three boundaries are distinct elements of the map.

3.1.2. Procedure II

It differs from the previous one only by the identification between attachment
points, following now the prescription of Figure 3.2. The resulting object is still a
planar map with three special faces: two of them (FA and FC) are now incident to two
attachment points (after identification) and the third one (FB) to eight attachment
points. They all have a boundary made of alternating blue and red intervals. We
then repeat the red-to-blue gluing operation described in the case I, creating three
boundaries of respective lengths e2 (from FA), e3 (from FC) and 2e1 + e2 + e3 (from
FB). Again, the assembling procedure is trivially extended to the case where some
of the triangles/diangles are reduced to the vertex-map, and the three boundaries
are distinct as soon as at least one of the building blocks is non trivial.
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e1

e2

e3

FB

FA FC

Figure 3.2. The first step of the assembling procedure of type II, creating a
planar map with three special faces FA, FB and FC .

3.2. Properties of the assembling procedures

Let us first observe that, for both assembling procedures, the resulting map is
essentially bipartite: indeed its inner faces are those of the initial triangles and
diangles, with no modification of the degrees. The boundary lengths are given by:

(3.1) procedure I:


2a = e1 + e2

2b = e2 + e3

2c = e3 + e1

procedure II:


2a = e2

2b = 2e1 + e2 + e3

2c = e3

Here, a, b and c may either be integers or half-integers. They are all integers (i.e.,
the map is bipartite) if e1, e2 and e3 have the same parity in case I, or if e2 and
e3 are even in case II. Otherwise, two of them are half-integers and the third is an
integer, and the map is quasi-bipartite.
We also see that, since e1, e2 and e3 are assumed nonnegative, we have the “triangle

inequality” b 6 c+ a in case I, while we have b > c+ a in case II (in both cases, we
have a 6 b+ c and c 6 a+ b). Upon permuting a, b and c in case II, it is possible to
obtain any possible triple of boundary lengths in a bipartite or quasi-bipartite map
with three boundaries.
This suggests to introduce the following definition: a map with three boundaries is

said of type I (respectively II) if the largest of the three boundary lengths is smaller
than or equal to (respectively larger than or equal to) the sum of the two other
boundary lengths. Clearly a map with three boundaries is either of type I or type II,
and may be both in the equality case. We may now state the main bijective result
of this paper, illustrated by Figure 1.1 in the case of procedure I.

Theorem 3.1. — For e1, e2 and e3 fixed nonnegative integers, the assembling
procedure I (respectively II) is a bijection between the set of quintuples made of two
bigeodesic triangles and three bigeodesic diangles of nonnegative exceedances e1, e2
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and e3, where at least one element differs from the vertex-map, and the set of essen-
tially bipartite planar maps with three tight boundaries of type I (respectively II),
where the lengths of the boundaries are given by (3.1).

e1
e2

FB

FA

FC
e3

e1

e2 FB

FC

e1
e2

FA

FC

FB
e3

e3

e1

e2

FA

FC FB

e3

FA

type I

type II

Figure 3.3. When the triangles and diangles have no inner faces, the assembling
procedures I and II generate maps corresponding to the generic cases I and II
of Figure 1.3.

It is instructive to examine the case where the triangles and diangles have no
inner faces: the triangles are then reduced to the vertex-map, while the diangles
are segments of lengths e1, e2 and e3 (see Figure 3.3). When these lengths are all
positive, we recover precisely from the assembling procedures I and II the two generic
maps I and II displayed in Figure 1.3. The degenerate cases correspond to having
one or two lengths vanish, and the case e1 = e2 = e3 = 0 (all diangles reduced to
the vertex-map) is pathological when there are no inner faces.
To establish Theorem 3.1, two statements remain to be proved. First, we need to

show that the boundaries of the maps resulting from the assembling procedures are
indeed tight: this will be done in Section 4, see Proposition 4.4. Second, we must check
that both procedures are bijections: for this, we will exhibit the inverse bijections
in Section 5, see Propositions 5.14 and 5.16. Both proofs are most conveniently
performed by considering the universal cover of a map with three boundaries, which
we introduce in the next section. Before this, let us explain why Theorem 3.1 implies
Theorem 1.1, and also sketch the inverse of procedure I in the simpler case of maps
with three boundary-vertices (e1 = e2 = e3 = 0).
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3.3. Enumerative consequences

Recall that Ta,b,c denotes the generating function of essentially bipartite planar
maps with three tight boundaries of lengths 2a, 2b, 2c, with the weighting convention
of Theorem 1.1. As discussed in Section 1, this theorem is implied by the following
corollary of Theorem 3.1.
Corollary 3.2. — We have

(3.2) Ta,b,c = Ra+b+cX
3Y 2

t6
− t−11a=b=c=0

where X and Y are the generating functions of bigeodesic balanced diangles and
triangles, respectively, as defined in Section 2.
Proof. — By Proposition 2.2, the generating function of quintuples made of two

bigeodesic triangles and three bigeodesic diangles of nonnegative exceedances e1,
e2 and e3, is equal to Re1+e2+e3X3Y 2. We exclude the quintuple with all elements
reduced to the vertex-map by subtracting a term t51e1=e2=e3=0.
We then apply Theorem 3.1 and note that, by (3.1), we have e1 +e2 +e3 = a+b+c

and 1e1=e2=e3=0 = 1a=b=c=0 both in procedures I and II. The claim then follows
from the fact that the weight of a quintuple, defined according to the conventions
of Section 2, is equal to t6 times that of the corresponding map, defined as in
Theorem 1.1. This is clear for face weights since the inner faces are not modified by the
bijection. For vertex weights, the corrective factor t6 comes from the identifications
between attachment points, see again Figures 3.1(a) and 3.2: there are generically
twelve attachment points in a quintuple, and they are identified in pairs so lead to
six vertices in the assembled map. We still obtain a difference of six in the situations
where some diangles or triangles are reduced to the vertex-map. Note that the gluing
between blue and red edges does not require corrective factors, since by convention
the vertices which are incident to red edges and which are not attachment points
receive no weight. In particular, potential boundary-vertices are obtained from such
unweighted vertices, as wanted. �

3.4. Disassembling a triply pointed map

We now sketch the proof of Theorem 3.1 in the case of procedure I with e1 = e2 =
e3 = 0, which generates a triply pointed map (three boundary-vertices). Boundary-
vertices are always considered tight, so we only have to exhibit the inverse bijection.
The key point is to identify the attachment points: once we know them, the decom-
position into diangles and triangles is done by cutting along leftmost bigeodesics.
Consider a planar bipartite map with three marked distinct vertices vA, vB and

vC (as there are no boundary-faces, being essentially bipartite is the same as being
bipartite). Let us denote by dAB, dBC and dCA their mutual distances. By the triangle
inequalities and bipartiteness, there exists three nonnegative integers rA, rB and rC ,
at most one of them vanishing, such that

(3.3) dAB = rA + rB, dBC = rB + rC , dCA = rC + rA.
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We then consider the set SAB of geodesic vertices between vA and vB which are at
distance rA from vA (hence distance rB from vB). In the generic situation where
rA, rB, rC are all nonzero, we may single out canonically two “extremal” elements vAB
and vBA of SAB as follows. For v and v′ in SAB, consider the two leftmost bigeodesics
towards vA and vB which are launched from v and v′: these bigeodesics delimit two
regions, which turn out to be balanced bigeodesic diangles. Then, vAB and vBA are
chosen in such a way that the diangle not containing vC is the largest possible (and
contains in particular all other elements of SAB), and such that vA, vAB, vB and vBA
appears in clockwise order around it. See Figure 3.4 for an illustration. We similarly
define the vertices vBC , vCB, vCA and vAC . In this way, we obtain three balanced
bigeodesic diangles (the specific choice of rA, rB, rC ensures that these are disjoint),
and the complementary region forms two bigeodesic triangles, thereby giving the

vA

vB vC

vACvBA

vCB

vBC

vAB vCA

SAB}

Figure 3.4. Sketch of the decomposition of a triply pointed map, with marked
vertices vA, vB and vC . The set SAB consists of geodesic vertices between vA
and vB at distance rA from vA. We pick its extremal elements vAB and vBA,
from which the two leftmost bigeodesics launched towards vA and vB delimit a
maximal diangle containing all other elements of SAB, but not vC . Similarly, we
construct two other disjoint diangles, formed by leftmost bigeodesics launched
from vertices vBC and vCB, vCA and vAC respectively. The complementary region
consists of two geodesics triangles (one inside and one outside).
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quintuple we are looking for. Note that some diangles or triangles may be reduced to
the vertex-map, for instance it may happen that vAB = vBA (resp. vAB = vBC = vCA),
in which case the corresponding diangle (resp. triangle) is equal to the vertex-map.
In the situation where, say, rC vanishes, vC is actually an element of SAB: we

simply cut the map along the leftmost bigeodesic launched from vC towards vA and
vB, which transforms the map into a single balanced bigeodesic diangle. This may
be seen as a degeneration of the generic situation, upon taking vC = vAB = vBA =
vBC = vCB = vCA = vAC , all other elements of the quintuple being equal to the
vertex-map.
This informal discussion overlooks some important details, such as the fact that,

in general, the leftmost bigeodesics merge before reaching vA, vB or vC . We shall
be more precise below when discussing the general inverse bijection, which applies
to both types of boundaries (vertices or faces). Still, the core idea will be the same:
upon defining in a suitable way the distances dAB, dBC , dCA between the three bound-
aries, we will define some parameters rA, rB, rC via the equilibrium conditions (3.3),
and we will then construct some equilibrium vertices, analogous to the vertices
vAB, vBA, vBC , vCB, vCA, vAC defined above. Once these equilibrium vertices are con-
structed, the decomposition is done by cutting along leftmost bigeodesics. The main
change induced by the presence of boundary-faces is that all this construction must
be performed on the universal cover of the map, which we will define now.

4. The universal cover of a map with three boundaries

In this section we introduce the universal cover of a map with three boundaries,
which will be one of our main topological tools. Its construction and some of its
properties are discussed in Section 4.1. We explain in Section 4.2 how to visualize the
assembling procedures directly on the universal cover, before proving in Section 4.3
that the maps resulting from the assembling procedures have tight boundaries.

4.1. Construction and properties of the universal cover

Let M be a map with three boundaries ∂A, ∂B, ∂C , that are either boundary-faces
or boundary-vertices. We view M as a graph embedded in a topological sphere S ′,
and we let xA, xB, xC be three distinguished points of S ′, such that xi belongs to
the ith boundary component, that is xi = ∂i in the case of a boundary-vertex, or
xi ∈ ∂i in the case of a boundary-face. We let S be the triply punctured sphere
S ′ \ {xA, xB, xC}.

4.1.1. The universal cover of the triply punctured sphere

The universal cover of the surface S is the data of a simply connected topological
space S̃ and of a mapping p : S̃ → S such that for every x ∈ S, there is a
neighborhood U of x in S such that p−1(U) is a disjoint union of open sets Ui,
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S∅
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x̃A

x̃C

x̃B x̃B′

Figure 4.1. A part of the universal cover of the triply punctured sphere. The
ideal corners x̃A, x̃B, x̃C , x̃B′ correspond respectively to the punctures xA, xB, xC
and xB again.

with p|Ui : Ui → U a homeomorphism. The pair (S̃, p) is unique up to the natural
notion of isomorphism.
It will be useful to consider the following concrete construction. Let S0 denote

the unit square with its four corners removed, and with its four sides denoted by
sa, sa, sc, sc in counterclockwise direction. Note that the space obtained by gluing S0
along its sides by identifying sa with sa and sc with sc (with a head to tail matching
of their orientations so that the resulting surface is orientable) is homeomorphic to
the triply punctured sphere S, and we let p : S0 → S be the resulting projection.
Let F = 〈a, c〉 be the free group with two generators a, c, that is the set of reduced

finite words w made of the four letters a, a, c, c, where a = a−1, c = c−1 are the
inverses of a, c (we thus let a = a, c = c). Here, we say that a word is reduced if
it does not contain an occurrence of any letter followed immediately by its inverse.
The group operation is defined by letting vw be the reduced word obtained from
the concatenation of v and w. The empty word ∅ is the neutral element of F . We
identify F with its Cayley graph with generators {a, a, c, c}, which is the infinite
4-regular tree with root ∅, and we let |w| be the length of the word w, which is also
its distance in the tree to the root.
For every w ∈ F , we let Sw be a copy of S0, that we can view as {(x, w) : x ∈ S0},

with its four sides denoted by sw
a, s

w
a, s

w
c, s

w
c, again oriented counterclockwise around

Sw. We consider the space S̃ obtained by gluing the spaces Sw along their sides, in
such a way that sw

l is glued with swl
l for every letter l ∈ {a, a, c, c} (with a head to

tail matching of their orientations). See Figure 4.1. We then extend the projection p
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to a mapping p : S̃ → S by letting p(x, w) = p(x) for every x ∈ S0 and w ∈ F . This
is easily seen to be the universal cover of S.
The universal cover comes with its group of automorphisms Aut(p), that are the

homeomorphisms u : S̃ → S̃ such that p◦u = p. This group is isomorphic to the free
group F via the natural action of F on S̃ defined by w · (x, v) = (x, wv). Note that
the element of Aut(p) corresponding to w sends Sv to Swv, which may be arbitrarily
far apart. We denote by A and C the elements of Aut(p) corresponding to the action
of a and c respectively. It will be also convenient to introduce the automorphisms
B := A−1C−1 and B′ := C−1A−1 corresponding the respective actions of the elements
b := a c and b′ := c a of F .
Classically, S̃ is a topological space homeomorphic to the open unit disk. In fact, the

universal cover of the triply punctured sphere can also be constructed via hyperbolic
geometry, see e.g. [Sti92, Section 5.3]. Figure 4.3 (left) displays the connection with
our present construction: the gluing of the squares (Sw)w∈F can be realized as a
regular tiling in the hyperbolic plane made of ideal quadrangles.
For our purposes, it will be convenient to augment S̃ by adding back the corners

of the squares Sw, and we denote the resulting space by S̃ ′. Note that, after gluing,
a corner is common to infinitely many squares: for instance, the corner denoted x̃A
on Figure 4.1 is common to all the squares San for n ∈ Z, similarly x̃C is common to
all the Scn , while x̃B (resp. x̃B′) is common to all the Sbn and Sbnc (resp. S(b′)n and
S(b′)na). The corners form a subset of the ‘ideal boundary’ of S̃ (which corresponds
to the boundary of the disk in Figure 4.3), and we therefore call them ideal corners.
The projection p : S̃ → S extends to a continuous mapping(1) from S̃ ′ to the sphere
S ′, and the group of automorphisms Aut(p) acts naturally on S̃ ′, each ideal corner
being left invariant by an infinite cyclic subgroup.
Finally, we recall that for any continuous path γ : [0, 1] → S and any γ̃(0) ∈

p−1(γ(0)), there is a unique continuous path γ̃ : [0, 1]→ S̃ starting at γ̃(0) and such
that p ◦ γ̃ = γ. This path is called the lift of γ starting at γ̃(0). The lift remains
well-defined if the endpoint γ(1) is one of the punctures xA, xB, xC , in that case γ̃(1)
is an ideal corner. Lifting a path joining two punctures may be done by splitting the
path at an intermediate point, and choosing a preimage for that point.

4.1.2. Lifting the map M on the universal cover

We now explain how the above considerations interact with the mapM . By viewing
the (oriented) edges of M as paths in S ′ parametrized by [0, 1], we can consider the
lifts of these edges in S̃ ′, which form an embedded graph M̃ in S̃ ′.
The resulting embedded graph M̃ is an infinite map in the non-compact surface

S̃ ′, with some faces or vertices of infinite degrees (see Figure 4.2 and the right of

(1)Note however that, if we identify S̃ with the open unit disk as in Figure 4.3, then p does not
extend to a continuous function on the closed unit disk. It only admits non-tangential limits at the
ideal corners, which form a dense countable subset of the unit circle. This is consistent with the
topology of S̃′ resulting from the gluing of squares: in the hyperbolic plane picture, given an ideal
corner x̃, a neighborhood basis for x̃ consists of the interiors of horocycles of center x̃.

TOME 5 (2022)



1060 J. BOUTTIER, E. GUITTER & G. MIERMONT

xA = ∂A

xB

∂B

xC

∂C

x̃A = ∂̃A

∂̃C

x̃C

x̃B x̃B′∂̃B ∂̃B′

Figure 4.2. A part of the universal cover of a dumbbell-shaped map, having
two boundary-faces ∂B and ∂C and one boundary-vertex ∂A = xA. We display
in green the distinguished ideal vertex ∂̃A = x̃A, and the contours (oriented
counterclockwise by convention) of the distinguished ideal faces ∂̃B, ∂̃C and ∂̃B′ .
The embedding is good, according to the definition given in Section 5.1.

Figure 4.3. Left: the regular tiling of the hyperbolic plane (here represented in
the Poincaré disk model) realizing the gluing of squares of Figure 4.1. Right: the
corresponding representation of the universal cover of the dumbbell-shaped map
of Figure 4.2. The green vertex at the ideal corner x̃A has infinite degree. The
contour of ∂̃C follows a horocycle with center the ideal corner x̃C .
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Figure 4.3 for an example). More precisely, M̃ has two possible types of vertices
and faces: regular vertices and faces, which are the preimages of the non-boundary
vertices and faces of M (keeping the same finite degree), and ideal vertices and faces,
which have infinite degree, project to the boundaries of M , and are in bijection with
the ideal corners of S̃ ′.
Let us provide some elements of justification to this dichotomy. First, since p :

S̃ → S is a cover, it is immediate that a non-boundary vertex of M , being placed
at a point of S, lifts to vertices of M̃ with the same finite degree. Next, if f is a
face of M which is not a boundary-face, then (at least when f is not incident to
a boundary-vertex, otherwise we have to adapt slightly the argument) its contour
∂f is homotopic in S to a point, so that its lifts form closed paths in S̃ bounding
the preimages of f by p (which therefore keep the same finite degree). Now, if f
is a boundary-face of M , then its contour ∂f is not homotopic to a point, so that
its preimages in S̃ are domains bounded by lifts of ∂f , which form infinite paths
of edges, resulting in ideal faces with infinite degree. Finally, a boundary-vertex v
of M , being placed at a puncture, lifts to an ideal corner x̃ of S̃ ′, and has infinite
degree since x̃ is common to infinitely many squares Sw contributing at least one
edge incident to x̃.
We call the infinite map M̃ the universal cover of the mapM . We endow the set of

its vertices V (M̃) with the graph distance d̃, as for finite maps. The automorphism
group of M̃ is the same as that of S̃, Aut(p). It acts freely on the regular vertices
and faces, but each ideal vertex or face is left invariant by an infinite cyclic subgroup,
precisely the same as that fixing the corresponding ideal corner of S̃ ′. We point
out that, in the concrete construction of S̃ done above, it comes endowed with a
distinguished fundamental domain S∅, which in turn distinguishes four ideal corners
x̃A, x̃B, x̃C and x̃B′ (see again Figure 4.1), and therefore four ideal vertices or faces
∂̃A, ∂̃B, ∂̃C and ∂̃B′ of M̃ (see again Figure 4.2). We emphasize that this “rooting”
results from our construction of S̃ and not from any extra data on M other than its
distinguished boundaries.
Note that there is an important flexibility in our construction. Indeed, we can

choose in an arbitrary way the embedding ofM in S or the projection p : S0 → S: the
resulting S̃, M̃ and extension of p to S̃ will always be the same, up to isomorphisms.
This observation will be useful in Section 5.
Finally, we record the important observation that, if M is essentially bipartite,

then its universal cover M̃ is bipartite. Indeed, every simple cycle in M̃ is contractible
and encloses a finite number of faces of finite even degree, thus has even length.

4.2. Visualizing the assembling procedures on the universal cover

We now explain how the assembling procedures I and II can be visualized on
the universal cover of the triply punctured sphere. Let us start again from three
(bigeodesic) diangles and two triangles, as at the beginning of Section 3. In the
description given in Section 3.1, the assembling was done in two successive operations,
attachment then red-to-blue gluing. Here, it is convenient to give an alternative (but
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u41

e1

e2

e3

u2

u3

u4

u1

u2

u3
u4

u1

u23

u34

u12

M

Figure 4.4. The partially assembled map M obtained from three bigeodesic
diangles and two bigeodesic triangles. See again Figure 1.1 for a concrete example.

equivalent) description in which the assembling is done even more progressively, by
doing first a partial attachment and a partial red-to-blue gluing, thereby giving a
partially assembled map, and then completing the assembling by another round of
attachment and red-to-blue gluing.
Precisely, the partially assembled map, which we denote by M, is constructed

as displayed on Figure 4.4. Namely, we identify some of the attachment points of
the diangles and triangles together, but some of them, denoted u1, u2, u3 and u4,
remain unattached for now. Note that the attachments that we perform are exactly
those which are common to procedures I and II, see again Figures 3.1(a) and 3.2.
This results in a map with one unique special face. We then perform red-to-blue
gluing counterclockwise around the special face (i.e. with this face on the left), with
the important prescription that we do not perform gluings which would require
passing over the attachment points u1, . . . , u4. For instance, a red edge preceding
the attachment point u1 on the right triangle remains unglued, since it would be
glued with a blue edge beyond u1. The partially assembled map M is a planar
bipartite map with one boundary-face and eight distinguished incident corners: the
attachment points u1, u2, u3, u4, at which we switch from blue to red when turning
counterclockwise around M, and the corners u12, u23, u34, u41 at which we switch
back from red to blue. In the situation displayed on Figure 4.4, u12 corresponds
to a corner of the right triangle, but it could also be, say, a corner of the middle
diangle, if the latter were longer. It is straightforward to check that [u1, u12] (resp.
[u41, u12]) is a strictly geodesic (resp. geodesic) boundary interval ofM, as defined
in Section 2.1, and similarly for the other intervals aroundM. Furthermore, by the
definition of exceedances, we see that

d(u1, u12) + e1 + e2 = d(u12, u2),
d(u2, u23) + e2 = d(u23, u3),

d(u3, u34) + e1 + e3 = d(u34, u4),
d(u4, u41) + e3 = d(u41, u1),

(4.1)
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where d denotes the graph distance inM and where, by a slight abuse, we iden-
tify corners with their incident vertices. Note that the boundary-face ofM is not
necessarily simple, as there may be contacts between the different blue intervals (as
said in the caption of Figure 2.2, such contacts may exist in a diangle of positive
exceedance, and may subsist in the partial gluing, for instance if all the remaining
pieces are equal to the vertex-map).
In order to complete the assembling procedures, we have to identify the remaining

attachment points u1, . . . , u4 together: let MI (resp. MII) be the map obtained
fromM by identifying u1 with u2 and u3 with u4 (resp. u1 with u4 and u2 with u3).
Note that these identifications are exactly those which are specific to Figure 3.1(a)
(resp. Figure 3.2). In the terminology of Section 3.1, the maps MI and MII have
three “special” faces, and we complete the assembling procedures by performing
red-to-blue gluing in each special face. It is straightforward to check that, for both
procedure I and procedure II, we obtain the same final result as with the previous
construction.
The interest of our alternative description is that it is now easier to visualize the

universal cover of the resulting assembled maps. Precisely, we consider the square
tiling (Sw)w∈F of Section 4.1, and inside each square Sw we place a copy Mw of
the partially assembled map M. We then identify the attachment points of these
copies together as follows. In the case of procedure I displayed on Figure 4.5, the
attachment point uw

1 of Mw is identified with the attachment point uwa
2 of Mwa,

and uw
3 is identified with uwc

4 , for all w ∈ F . Similarly, in the case of procedure II,
looking again at Figure 3.2, we see that the attachment point uw

2 ofMw is identified
with the attachment point uwa

3 of Mwa, and uw
4 is identified with uwc

1 . Of course,
these identifications require to deform the copies, and we can place the identified
attachment vertices on the sides of the squares if we want. At this stage, we obtain
infinite maps denoted by M̃I and M̃II, which are the respective universal covers of
MI andMII, upon seeing their three special faces as the three boundaries.
To complete the assembling procedure in the universal cover, we have to perform

a final round of red-to-blue gluing in each special (ideal) face. To better understand
how this works, it is useful to set up some notations. We first introduce the shorthand
notations

(4.2) I1 := [u41, u12], I2 := [u12, u23], I3 := [u23, u34], I4 := [u34, u41]

for the sides of M (so that Ij is a bigeodesic launched from the assembling point
uj). We also introduce the unified notations

(4.3) procedure I:


Ia := I1

Ia := I2

Ic := I3

Ic := I4

procedure II:


Ia := I2

Ia := I3

Ic := I4

Ic := I1

and, for w ∈ F and l ∈ {a, a, c, c}, we let Iw
l be the corresponding side of the

copy Mw. The interest of the unified notations is that the attachment point of
Iw

l is identified with that of Iwl
l , regardless of whether we apply procedure I or II.
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x̃A

x̃C

x̃B x̃B′M∅

Ma
Ma

McMc

G
x̃

Ax̃
x̃

Ax̃

A2x̃

ỹ
Bỹ

ỹ

Figure 4.5. A visualization of the assembling procedure I in the universal cover of
the triply punctured sphere. Inside each square Sw of the tiling of Figure 4.1, we
place a copyMw of the partial gluingM of Figure 4.4. By attaching these maps
together via their attachment points as displayed with the arrows, and deforming
appropriately to perform the identification of vertices, we obtain the universal
cover of the mapMI. To complete the assembling, we have to match and glue
the red and blue edges of the ideal faces together (some identification between
vertices are shown with dotted lines), thereby leaving only blue unmatched edges
incident to ideal faces. Procedure II works just the same, except that we have to
rotate each mapMw by a quarter-turn clockwise. We display in purple the path
G and its vertices x̃, Ax̃, A2x̃, ỹ, Bỹ, as defined in Section 4.3 (in the displayed
situation we have ∆a,∆c > 0 but ∆a = 0). By Lemma 4.1, G is a geodesic in M̃ .
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As is apparent on (4.3), switching from procedure I to procedure II amounts on
the universal cover to rotating eachMw by a quarter-turn clockwise. Furthermore,
the red part of Iw

l and the blue part of Iwl
l are incident to the same special face,

and appear successively counterclockwise around it. Thus, in the red-to-blue gluing
operation, the red edges in Iw

l will first look for blue matches in Iwl
l . Observe that, in

all this discussion, we can return from the universal cover to the sphere by dropping
the copy superscript.
Let us first consider the case l = a: by (4.1), we see that the red part of Ia has ∆a

fewer edges than the blue part of Ia, with

(4.4) procedure I: ∆a := e1 + e2, procedure II: ∆a := e2.

Since ∆a is always nonnegative, when we complete the assembling of M, the red
part of Ia is thus completely glued to the beginning of the blue part of Ia (starting
at the attachment point). If ∆a > 0, there remains an unmatched blue part of length
∆a which forms the contour of the boundary face ∂A; if ∆a = 0, ∂A is instead a
boundary-vertex as explained in Section 3.1. Translated in the universal cover, the
red part of Iw

a is completely glued to the beginning of the blue part of Iwa
a (starting at

the attachment point). If ∆a > 0, the remaining unmatched blue part of Iwa
a forms a

lift of the contour of the boundary face ∂A; if ∆a = 0, we only get an “exposed” blue
vertex which we can place at an ideal corner of S̃ ′ in order to form an ideal vertex
of the map.
The case l = c is entirely similar, the red part of Ic having ∆c fewer edges than

the blue part of Ic, with

(4.5) procedure I: ∆c := e1 + e3, procedure II: ∆c := e3.

The cases l = a and l = c are slightly more involved since they must be considered
altogether to construct the boundary ∂B. Let ∆a (resp. ∆c) be the difference between
the length of the blue part of Ia (resp. Ic) and that of the red part of Ia (resp. Ic).
The relations (4.1) imply that ∆b := ∆a + ∆c is given by

(4.6) procedure I: ∆b := e2 + e3, procedure II: ∆b := 2e1 + e2 + e3

and is therefore always nonnegative, but the signs of ∆a and ∆c themselves are not
fixed since they depend on the sizes of different diangles and triangles. We therefore
have three generic situations:

(i) ∆a and ∆c are both nonnegative,
(ii) ∆a is negative (hence ∆c is positive),
(iii) ∆c is negative (hence ∆a is positive).
Let us discuss these three situations, illustrated on Figure 4.6. In the situation (i),

all the red edges of Ia (resp. Ic) are matched to blue edges of Ia (resp. Ic). This
implies two things about the universal cover, one good and one bad. The good thing
is that we only have “nearest neighbor” gluings, as in the cases l = a, c discussed
before: all the red edges of Iw

a (resp. Iw
c ) are matched to blue edges of Iwa

a (resp. Iwc
c ).

The bad thing is that, since there are some unmatched blue edges in both Ia and
Ic (unless we are in the degenerate situation where ∆a or ∆c vanishes), the lifts of
the contour of ∂B do not remain in a single copyMw, but we have to consider two
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I∅c
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Figure 4.6. The three generic situations corresponding to the possible signs of
∆a and ∆c: (i) ∆a,∆c > 0, (ii) ∆a < 0 and ∆c > 0, (iii) ∆a > 0 and ∆c < 0. In
case (ii), some of the red edges of Ia

a are matched to blue edges of Iab
c = Ic

c , and
similarly for case (iii) mutatis mutandis.

neighboring copies, sayMw andMwa, to obtain such a lift as the concatenation of
the unmatched blue parts of Iw

a and Iwa
c .

In the situation (ii), some red edges of Ia do not find blue matches in Ia, and
therefore find them in Ic. This implies two things about the universal cover, one bad
and one good. The bad thing is that there are now “next nearest neighbor” gluings
in the universal cover, namely some red edges of Iw

a are matched to blue edges of Iwb
c ,

where we recall that b = a c is an element of length 2 in F . The good thing is, since
all unmatched blue edges are found on Ic, the corresponding unmatched blue part
of Iw

c forms a complete lift of the contour of ∂B that remains in the single copyMw.
The situation (iii) is entirely similar to the situation (ii), upon interchanging the

roles of a and c, and therefore changing b into b′ = c a.
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4.3. Tightness of the boundaries resulting from the assembling
procedures

We are now in position to prove that the maps resulting from the assembling
procedures have tight boundaries. Starting from three diangles and two triangles,
we denote byM the partially assembled map as defined in the previous subsection,
and by M the completely assembled map (done according to procedure I or II). As
we have seen, the universal cover M̃ of M can be constructed directly by gluing
infinitely many copies ofM along their boundaries.
A key ingredient in our proof is the path G displayed on Figure 4.5 and defined as

follows. It consists of two parts which are both “launched” from the attachment point
between the copiesM∅ andMa, and which go “towards” the ideal corners x̃A and
x̃B, respectively, by following the blue boundaries. More precisely, the part towards
x̃A starts with the blue part of I∅a , then continues with the unmatched blue part of
Ia

a , then that of Ia2
a , Ia3

a , etc. Let us denote by x̃ the last vertex on the blue part of
I∅a which is glued to the red part of Ia

a . Then, our path passes through the vertices
Anx̃ for all n > 0 (the unmatched blue part of Ian

a going from Anx̃ to An+1x̃). In the
case ∆a = 0, all the vertices Anx̃ are identified and placed at the ideal corner x̃A.
In this case, x̃A is reached in a finite number of steps by our path. As soon as ∆a
is positive, our path is infinite but, as visible on Figure 4.5, it still “tends” to x̃A in
a sense, as it meets at x̃ the contour of the ideal face containing x̃A, and follows it
counterclockwise onwards. The description of the part towards x̃B is similar and just
a bit more involved, for the reasons discussed at the end of Section 4.2: assume for
instance that we are in case (i) with ∆a,∆c > 0, then the path with the blue part of
Ia

a , continues with the unmatched blue part of Ib
c , then that of Iba

a , Ib2
c , Ib2a

a , etc. If
∆b > 0, the path meets at a vertex denoted ỹ the contour of the ideal face containing
x̃B, and follows it counterclockwise onwards, passing in particular through Bnỹ for
all n > 0. If ∆b = 0, the path reaches x̃B in a finite number of steps, and we set
ỹ := x̃B. Then, the key property of G is the following:

Lemma 4.1. — The path G is a geodesic in M̃ .

Proof. — Intuitively, the reason is that, in Figure 4.5, we glue the copies along
(bi)geodesics. More formally, consider a path γ in M̃ whose two endpoints are on G:
we need to show that the length of γ is at least that of the portion of G having the
same endpoints. Our proof is by induction on the number of copies visited by γ.
Precisely, we say that γ enters into k copies if it can be written as a concatenation

of paths γ0γ1 . . . γkγk+1, where γ0 and γk+1 are portions of G (which we do not
include into the copy count) and, for all i = 1, . . . , k, γi is a path in the copyMwi .
Without loss of generality, we may assume that the sequence (wi)ki=1 is consistent
with the structure of gluings discussed at the end of Section 4.2, that is to say in
the situation (i) we have wi+1w−1

i ∈ {a, a, c, c} for all i = 1, . . . , k − 1 and, in the
situations (ii) and (iii), we must also allow the values b, b and b′, b′, respectively. Note
that ideal vertices lead to identifications between vertices belonging to distant copies,
but we can always assume that the wi satisfy the above constraint by considering
that a long-range identification corresponds to a concatenation of several paths γi
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of length zero. We may also assume that w1 and wk are both of the form an, bn or
bna for some n > 0, as these correspond to the copies “carrying” G.
If γ enters into 0 copies, it is contained in G and we are done. If it enters into

k > 1 copies, we will show that we can modify it, without increasing its length,
so that it enters into at most k − 1 copies. For this, we pick an i such that |wi| is
maximal. Let l ∈ {a, a, c, c} be the last letter of wi, with the convention that l = a
if wi = ∅. Then, from the structure of gluings discussed above, from the definition
of G, and from the maximality of |wi|, we see that γi has its two endpoints on the
boundary interval Iwi

l which is geodesic in Mwi . Let γ′i be the portion of Iwi
l with

the same endpoints as γi: γi cannot be shorter than γ′i, so γ is not shorter than
the path γ′ := γ0 . . . γi−1γ

′
iγi+1 . . . γk+1. We claim that γ′ enters into (at most) k − 1

copies. Indeed, for 1 < i < k, γ′i can be viewed as a path on the boundaries of the
copies Mwi−1 and Mwi+1—which are necessarily the same in the situation (i), but
could differ in the situations (ii) and (iii)—so that we may rewrite γi−1γ

′
iγi+1 as the

concatenation of (at most) two paths, each of them staying in one of these copies.
The argument is the same for i = 1 or i = k, upon understanding that Mw0 and
Mwk+1 refer to the path G. �

Remark 4.2. — The projection of G on the finite map M consists of a path
connecting the projection x of x̃ to the projection y of ỹ—this path is not a geodesic
in general— prolonged with infinitely many turns around ∂A and ∂B when these are
boundary-faces.

We will need another technical lemma about G and its two distinguished vertices
x̃ and ỹ:

Lemma 4.3. — Suppose that ∂A (resp. ∂B) is a boundary-face of M , and let c be
a cycle of M freely homotopic in S to, i.e. which can be continuously deformed into,
the contour of ∂A (resp. ∂B), oriented counterclockwise. Then, c can be lifted to a
path c̃ in M̃ going from a vertex z̃ to the vertex Az̃ (resp. Bz̃), with z̃ belonging to
G and situated between x̃ and ỹ.

Proof. — If ∂A is a boundary-face, we denote its contour by ∂̂A, which we orient
counterclockwise and view as a loop rooted at the projection x of x̃ on M . If c is
freely homotopic to ∂̂A, there exists a path γ going from x to a point z0 on c such
that γcγ−1 and ∂̂A are homotopic as loops rooted at x. Lifting these loops to M̃ , we
get paths with the same endpoints. Choosing the starting point to be x̃, the final
point must be Ax̃ (since it is the final point for the lift of ∂̂A), and we deduce that
γcγ−1 lifts to γ̃c̃0(Aγ̃)−1, where γ̃ is the lift of γ going from x̃ to a vertex z̃0, and c̃0
is a lift of c going from z̃0 to Az̃0.
If z̃0 lies on G we are done, otherwise we can tweak it as follows. Note that the

paths Anc̃0, n ∈ Z are all lifts of c, with the property that the endpoint of Anc̃0 is the
starting point of An+1c̃0. The concatenation of these paths is a doubly infinite path
c̃∞ in M̃ (whose projection to M circles around c indefinitely) which, by planarity,
necessarily crosses G at a vertex z̃ situated between x̃ and ỹ. Indeed, as visible on
Figure 4.5, the portion of G between x̃ and ỹ separates the copiesMw with a reduced
word w starting with the letter a, from the others. And, for n > 0 large enough,
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A−nz̃0 will be in the former set of copies, and Anz̃0 in the latter. The portion c̃ of
c̃∞ between z̃ and Az̃ is the wanted lift of c.
The reasoning in the case where ∂B is a boundary-face and c is a cycle freely

homotopic to its contour is entirely similar. �

Proposition 4.4. — The map M , assembled according to procedure I or II, has
tight boundaries.

Proof. — Let us first prove that the boundary ∂A is tight. If it is a boundary-vertex
this is a tautology, otherwise it is a boundary-face of length ∆a > 0, and we need to
show that any cycle c freely homotopic to its contour has length at least ∆a. Let us
lift c to a path c̃ as in Lemma 4.3. Then, the length of c is at least d̃(z̃, Az̃) which,
by the triangle inequality, satisfies
(4.7) d̃(z̃, Az̃) > d̃(z̃, Ax̃)− d̃(Ax̃,Az̃).
As G is a geodesic by Lemma 4.1, and as x̃ lies between z̃ and Ax̃ on G, we have
(4.8) d̃(z̃, Ax̃) = d̃(z̃, x̃) + d̃(x̃, Ax̃) = d̃(z̃, x̃) + ∆a.

But we have d̃(z̃, x̃) = d̃(Ax̃,Az̃) since A is an automorphism of M̃ , hence
(4.9) d̃(z̃, Az̃) > ∆a

as wanted. The proof for ∂B is entirely similar, using again Lemma 4.3, and replacing
in the above argument ∆a by ∆b, A by B, and x̃ by ỹ. Finally, for ∂C , we notice
that throughout this section it plays a symmetric role to ∂A, viewing all the figures
upside down (i.e. rotated by 180 degrees). �
To conclude this section, let us note that, symmetrically to the definition of G,

we may define another geodesic G ′ that consists of two parts launched from the
attachment point between the copiesM∅ andMc and going towards the ideal corners
x̃C and x̃B′ , respectively. Then, the copyM∅ is delimited by the four geodesics G,
AG, G ′ and CG ′, upon removing their pairwise common parts. Furthermore, AG (resp.
CG ′) may be viewed as a geodesic launched from the attachment point betweenM∅
andMa (resp.Mc).

5. Decomposing a map with three tight boundaries

In this section we complete the proof of Theorem 3.1: starting from an essentially
bipartite planar map M with three tight boundaries ∂A, ∂B, ∂C of respective lengths
2a, 2b, 2c > 0 on the triply punctured sphere S, we want to disassemble M into two
bigeodesic triangles and three bigeodesic diangles with nonnegative exceedances, in
a way that inverts the assembling procedure.
We already sketched in Section 3.4 the decomposition in the case of triply pointed

maps (a = b = c = 0). In order to generalize it to the case a, b, c > 0, we have
to find an analog of the equilibrium conditions (3.3), which involve the distances
dAB, dBC , dCA between the boundary-vertices. When some boundaries are faces, we
need appropriate analogs of these distances: it turns out that such analogs may be
constructed using so-called Busemann functions defined on the universal cover M̃ of
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the map M . From this, we will obtain the equilibrium vertices, from which we will
launch leftmost bigeodesics giving the decomposition we are looking for.
Our presentation is done in several steps. First, we discuss in Section 5.1 some

graph-theoretical properties of the infinite map M̃ , via the notion of good embed-
ding. Busemann functions, associated with infinite geodesics, are then introduced in
Section 5.2. We then explain in Section 5.3 how tight boundaries give rise to specific
Busemann functions on M̃ . In Section 5.4, we adapt the notion of leftmost bigeodesic
to M̃ , and use it to state the crucial diangle lemma. We construct equilibrium ver-
tices in Section 5.5, and use them to state the no less crucial triangle lemma. We
apply all these tools in Sections 5.6 and 5.7 to exhibit the inverses of the assembling
procedures I and II, respectively.

5.1. Graph-theoretical properties of the universal cover

Let us start by discussing some properties of the underlying graph of M̃ , which is
infinite. For this, it is useful to introduce the notion of “good embedding”.
Recall from Section 4.1 that the map M̃ is obtained by lifting the map M in the

universal cover S̃ of the triply punctured sphere S, and that we constructed S̃ as a
square tiling (Sw)w∈F dual to the infinite 4-regular tree F . Let us denote by Σ the
projection of the boundaries of the square S∅ (hence of any square Sw) on the sphere
S ′: it is a path connecting xA to xC via xB, see again Figure 4.1.
In general, the edges of M̃ may connect vertices belonging to squares arbitrarily

far from each other in F , since the edges of M may cross Σ in an arbitrarily compli-
cated manner. We can simplify the situation by an appropriate deformation of the
embedding of M in S (hence, of the embedding of M̃ in S̃). More precisely, we say
that we have a good embedding if every edge of M , with its endpoints excluded, is
either entirely contained in Σ, or intersects it in at most one point. Note that, in the
latter case, the endpoints may also belong to Σ. See again Figure 4.2 for an example.
Lemma 5.1. — Every map M with three boundaries admits a good embedding.
Proof. — Consider the first derived map M ′ of M , which is defined [Tut63] as

the triangulation obtained by superimposing M with its dual—which creates a
quadrangulation called the derived map [Sch15] ofM—and splitting each quadrangle
into two triangles by connecting each vertex of M to all neighboring dual vertices.
The vertex set of M ′ can be partitioned into {W,W ∗,W †}, where W , W ∗ and W †

correspond respectively to the vertices, faces and edges of M , and the edges of M ′

correspond to the incidence relations in M . Note that the vertices of M ′ have even
degree, and those in W † have degree four.
The boundaries ∂A, ∂B, ∂C of M become vertices in M ′, which we can place at the

punctures xA, xB, xC of S. Let P be a simple path on M ′ connecting xA to xC via
xB, and going “straight” at every vertex in W †. Such a path always exists and, by
deforming M ′ in such a way that P coincides with Σ, we get a good embedding
of M . �
When the embedding of M is good, which we will assume from now on, the lifted

edges of M̃ remains “local” with respect to the tiling (Sw)w∈F , i.e. they may only
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connect vertices lying in the same square or in neighboring squares (i.e. squares
Sw, Sw′ with w−1w′ ∈ {a, a, c, c}). In particular, when we remove the finitely many
vertices belonging to the square S∅ (including those possibly placed on its boundaries
and at its ideal corners) and their incident edges, then M̃ is disconnected in four
infinite pieces. It follows that M̃ has infinitely many ends in the graph-theoretical
sense. These ends are in natural bijection with those of the infinite 4-regular tree F .
Recall that M̃ has two possible types of vertices, namely regular vertices with

finite degree, and ideal vertices (placed at ideal corners of S̃ ′) with infinite degree. In
the absence of ideal vertices (i.e. when M has only boundary-faces), the underlying
graph of M̃ is locally finite. In the presence of ideal vertices, we have the following
weaker property:

Lemma 5.2. — Let v and v′ be two vertices of M̃ , and r a nonnegative integer.
Then, the number of simple paths from v to v′ having length at most r is finite.

Proof. — Since we have a good embedding, we may keep track of the squares
visited by a path on M̃ :

• when following an edge between regular vertices, we may either remain in the
same square Sw, or move to a neighboring square Swl, l ∈ {a, a, c, c},
• when passing through an ideal vertex projecting to xA (if there are any), we
may jump from the square Sw to any square of the form Swan , with n ∈ Z
arbitrary,
• similarly, when passing through an ideal vertex projecting to xC (if there are
any), we may jump from Sw to any square Swcn , n ∈ Z,
• finally, when passing through an ideal vertex projecting to xB (if there are
any), we may jump from Sw to squares of the form Swbn , Swabn , Swbnc or Swabnc,
with n ∈ Z and b = a c (see again Figure 4.1).

Without loss of generality, we may assume that the initial vertex v belongs to the
square S∅. Then, we may reach after r steps only squares of the form Sw1ln1

1 ···wsl
ns
s
,

where w1, . . . , ws are elements of F such that |w1|+ · · ·+ |ws|+ s 6 2r, l1, . . . , ls are
equal to a, b or c, and n1, . . . , ns are arbitrary integers. Hence, generally speaking,
infinitely many squares may be reached.
However, here we fix the endpoint v′, hence the final square Sw1ln1

1 ···wsl
ns
s
. We claim

that, on any simple path from v to v′ with length at most r, we may only visit
squares of the form Sv1lm1

1 ···vslmss , where v1, . . . , vs are elements of F at bounded
distance from the neutral element ∅, and m1, . . . , ms are integers such that either
|mi| 6 r, or |mi − ni| 6 r. The reason is that, if we perform a “big jump” (larger
than r) at an ideal vertex, then we cannot “undo” the jump in less than r steps
since we cannot revisit the same ideal vertex again—here we use the fact that F is
a free group, whose Cayley graph is a tree. Therefore, the number of squares that
may be visited is finite, and since each square contains finitely many vertices, the
claim follows. �

Note that Lemma 5.2 becomes false if, instead of simple paths, we consider general
paths, or even nonbacktracking paths. Indeed, without the simplicity assumption, it
is possible to do arbitrarily big jumps, then undo them.
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Note also that we have not used the fact that the boundaries of M are tight, in
fact all the discussion in this subsection remains valid without this assumption.

5.2. Infinite geodesics and Busemann functions

Next, we introduce the main tool that will allow us to decompose maps with tight
boundary-faces. This tool is the notion of Busemann function, a classical object of
metric geometry, see for instance [BBI01, Chapter 5]. In the infinite map M̃ , we
define an infinite geodesic (also called a geodesic ray in metric geometry) as an
infinite sequence (γ(t))t∈N of vertices such that
(5.1) d̃ (γ(t), γ(t′)) = |t− t′|
for all t, t′ (recall that d̃ denotes the graph distance in M̃). A biinfinite geodesic is
defined in exactly the same way, except that the sequence is indexed by Z instead of
N. To simplify our discussion, we overlook the fact that the map may be non simple,
which would in all rigor require to specify which edges are visited by the geodesic.
With an infinite geodesic γ, we may associate its Busemann function Bγ which

assigns to a vertex v the quantity
(5.2) Bγ(v) = lim

t→+∞
d̃(v, γ(t))− t.

This quantity is well-defined since the function t 7→ d̃(v, γ(t)) − t is nonincreasing,
by virtue of the triangle inequality, and bounded from below by −d̃(v, γ(0)). In fact,
since we are in a discrete metric space, we have Bγ(v) = d̃(v, γ(t)) − t for t large
enough. We also have Bγ(γ(t)) = −t for all t.
It is not difficult to check that Bγ is a 1-Lipschitz function, changes parity along

each edge since the map M̃ is bipartite, and admits no local minimum: every vertex
v has an adjacent vertex v′ such that Bγ(v′) = Bγ(v)− 1.
For a biinfinite geodesic γ, we define its Busemann function Bγ in the same way.

Note that a change of parametrization t 7→ t + t0 of γ changes Bγ by a constant,
so a Busemann function should really be viewed as “defined modulo a constant”.
Note however that the change of parametrization t 7→ −t gives rise to a different
Busemann function.

Lemma 5.3. — Let γ, γ′ be two infinite geodesics, and suppose that there exists
a finite set V0 of vertices whose removal splits M̃ in several connected components,
such that γ and γ′ eventually belong to different connected components (i.e. γ(t)
remains in one connected component and γ′(t) in another for large enough t). Then,
the function Bγ +Bγ′ admits a global minimum, which is reached at some v0 ∈ V0.
Furthermore, there exists at least one biinfinite geodesic along which Bγ is strictly
increasing and Bγ′ is strictly decreasing, and a vertex v, not necessarily in V0, belongs
to such a geodesic if and only if it is a global minimum of Bγ +Bγ′ .

Proof. — Let v0 be a vertex at which Bγ +Bγ′ attains its minimum in the finite
set V0. For a given v, take t large enough so that Bγ(v) = d̃(v, γ(t)) − t, Bγ′(v) =
d̃(v, γ′(t))− t, and so that γ(t) and γ′(t) are in different connected components after
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removing V0. By the triangle inequality, we have Bγ(v) +Bγ′(v) > d̃(γ(t), γ′(t))− 2t,
and we have d̃(γ(t), γ′(t)) = d̃(γ(t), v1)+ d̃(v1, γ

′(t)) for some v1 ∈ V0 since a geodesic
path from γ(t) to γ′(t) necessarily meets V0 at some vertex v1. We get
(5.3) Bγ(v) +Bγ′(v) >

(
d̃(v1, γ(t))− t

)
+
(
d̃(v1, γ

′(t))− t
)
> Bγ(v1) +Bγ′(v1),

which is at least Bγ(v0) +Bγ′(v0). This proves the first claim.
Consider now an arbitrary minimizer v of Bγ+Bγ′ . Since Bγ has no local minimum,

we can construct an infinite path starting at v along which Bγ is strictly decreasing,
and similarly we can construct another infinite path starting at v along which Bγ′ is
strictly decreasing. It is straightforward to check that, reversing the direction of the
second path and concatenating it with the first one, we get a biinfinite geodesic with
the wanted property, and that conversely any such geodesic can only pass through
minimizers of Bγ +Bγ′ . �

Note that, in this subsection, we have not used the fact that M̃ is planar. In fact,
our discussion (including Lemma 5.3) holds for an arbitrary infinite graph.

5.3. Busemann functions associated with tight boundaries

We will now exploit the assumption that M has tight boundaries. Consider a
boundary of M , say ∂A of length 2a. As discussed in Section 4.1, ∂A has a distin-
guished lift ∂̃A which is an ideal vertex if a = 0, and an ideal face if a > 0. In this
latter case, we let γA be the biinfinite path on M̃ obtained by following the contour
of ∂̃A in the counterclockwise direction. Choosing a reference point γA(0) arbitrarily,
γA is parametrized by Z.

Lemma 5.4. — If ∂A is a tight boundary-face inM , then γA is a biinfinite geodesic
in M̃ .

Proof. — If we view the contour of ∂A as a biinfinite sequence of vertices (λA(t),
t ∈ Z) obtained by cycling infinitely many times around ∂A, then [CdVE10, Propo-
sition 2.5]—which is closely related to the wrapping lemma of [BG14]—implies that
any path of the form (λA(t + l), 0 6 t 6 m) for l ∈ Z and m ∈ N is shortest in its
homotopy class with fixed endpoints (such a path is called ‘tight’ in [CdVE10], so
that our terminology agrees). Then, as noted in [CdVE10, Section 2.1], this property
is preserved by taking lifts in the universal cover (and in fact, even in arbitrary
covers). Since γA is one of these lifts, and since S̃ is simply connected, any two
paths between the same vertices in M̃ are homotopic, and we conclude that γA is a
geodesic between any pair of points it visits, which is the definition of a biinfinite
geodesic. �

We may therefore define the function d̃A : V (M̃)→ Z as follows:
• if a = 0, then we let d̃A be the distance in M̃ to the vertex x̃A,
• if a > 0, then we let d̃A = BγA be the Busemann function associated with γA.

Let us record the relation
(5.4) d̃A(Av) = d̃A(v)− 2a
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valid for any vertex v of M̃ , where A ∈ Aut(p) is the automorphism defined in
Section 4.1. This relation is immediate in the case a = 0; for a > 0 it follows from
the definition of the Busemann function BγA and the fact that A(γA(t)) = γA(t+ 2a)
for any t.
In a completely similar manner, we define the functions d̃B, d̃C and d̃B′ , which obey

relations similar to (5.4) mutatis mutandis. For later use, we record the following:

Lemma 5.5. — There exists a constant k ∈ Z such that, for any vertex v of M̃ ,
we have

d̃B′(Av) = d̃B(v) + k(5.5)
and

d̃B(Cv) = d̃B′(v)− k + 2b.(5.6)

Proof. — The first relation is a straightforward consequence of the fact that ∂̃B′ =
A∂̃B. The constant k is equal to 0 in the case b = 0 while, for b > 0, it satisfies
AγB(k) = γB′(0) (we could thus set it to 0 too by choosing the reference points on
∂̃B and ∂̃B′ appropriately).
For the second relation, we note that ∂̃B = C∂̃B′ hence there exists a constant k′

such that d̃B(Cv) = d̃B′(v) + k′. But, by the relation B = A−1C−1, we have
(5.7) d̃B(v) = d̃B(CABv) = d̃B′(ABv)+k′ = d̃B(Bv)+k′+k = d̃B(v)+k′+k−2b.
hence k′ = −k + 2b. �

Remark 5.6. — In this paper, we only consider the Busemann functions obtained
by following the contours of ideal faces counterclockwise. We surmise that considering
the clockwise orientation might be useful to study “strictly tight” boundaries, i.e.
boundaries whose contours are the unique paths of minimal length in their homotopy
class.

5.4. Leftmost bigeodesics and the diangle lemma

Throughout this section, we consider specifically the pair of ideal vertices/faces
(∂̃A, ∂̃B), but all the discussion can be adapted to any other pair, e.g. (∂̃A, ∂̃C),
(∂̃B, ∂̃B′), etc. We start by adapting the concepts of Section 2.1 to the context of the
infinite map M̃ and of Busemann functions.

5.4.1. Geodesics and bigeodesics

A geodesic towards ∂̃A is a path on M̃ along which d̃A is strictly decreasing, which
stops at ∂̃A if a = 0, and which continues forever if a > 0 (so that d̃A tends to −∞
along the path). Such a path γ is indeed a geodesic, i.e. satisfies d̃(γ(t), γ(t′)) = |t−t′|
for all t, t′ in its interval of definition. A geodesic towards ∂̃B is defined similarly.
A bigeodesic between ∂̃A and ∂̃B is a path which is both a geodesic towards ∂̃A in

one direction, and a geodesic towards ∂̃B in the other direction. Such bigeodesics
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always exist: this is clear when b = 0 (start at the vertex ∂̃B and follow a path along
which d̃A decreases) or similarly when a = 0; when ab > 0, we may invoke Lemma 5.3,
with V0 the set of vertices lying in the square S∅ (given a good embedding). We
define the distance d̃AB between ∂̃A and ∂̃B as
(5.8) d̃AB := min

v

(
d̃A(v) + d̃B(v)

)
.

This denomination is consistent with the fact that, for a = b = 0, d̃AB is precisely the
graph distance in M̃ between x̃A and x̃B. For ab > 0, it is nothing but the minimal
value of the function BγA +BγB as considered in Lemma 5.3.
In the Poincaré disk representation of S̃, a geodesic towards ∂̃A forms a simple path

which “ends” at the ideal point x̃A, see again Figure 4.3. A bigeodesic between, say,
∂̃A and ∂̃B, forms a simple path connecting the ideal points x̃A and x̃B. By planarity,
this path splits the disk (hence M̃) in two regions, which we may distinguish as left
and right, given an orientation of the bigeodesic (say, from ∂̃B to ∂̃A). Note that the
interiors of these regions may be disconnected, if the bigeodesic passes through an
ideal vertex on its way.

5.4.2. Geodesic vertices

A geodesic vertex between ∂̃A and ∂̃B is a vertex belonging to a bigeodesic between
∂̃A and ∂̃B. It is straightforward to check (see again Lemma 5.3 in the case ab > 0)
that v is such a vertex if and only if
(5.9) d̃A(v) + d̃B(v) = d̃AB.

The quantity d̃A(v) is called the d̃A-latitude of the geodesic vertex v between ∂̃A and
∂̃B.
Lemma 5.7. — For any r ∈ Z, the set IAB(r) of geodesic vertices between ∂̃A

and ∂̃B having d̃A-latitude r is finite.
Proof. — If a = b = 0 then this is a corollary of Lemma 5.2. Suppose now that

a > 0. Given a good embedding, any bigeodesic between ∂̃A and ∂̃B must visit a
vertex in the square San , for any n > 0. Let us denote by rn the maximal d̃A-latitude
of a geodesic vertex belonging to San , then rn+1 = rn−2a < rn by (5.4). Hence there
exists an m such that rm < r. If b = 0, we see that any geodesic vertex of d̃A-latitude
r belongs to a geodesic (hence simple) path between ∂̃B and a vertex of Sam , so there
are finitely many of them by Lemma 5.2. If b > 0, adapting the previous reasoning
shows that there exists an ` such that the minimal d̃A-latitude of a geodesic vertex
in Sb` is larger than r. Therefore, any geodesic vertex of d̃A-latitude r belongs to a
geodesic (hence simple) path between a vertex of Sam and a vertex of Sb` , and again
there are finitely many of them by Lemma 5.2. �

5.4.3. Leftmost bigeodesic via a geodesic vertex

Given a geodesic vertex v between ∂̃A and ∂̃B, we may, as in Section 2, “launch”
from v the leftmost geodesics towards ∂̃A and ∂̃B (the planarity of M̃ is used to
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∂̃A

∂̃B

v

v′

GAB(v) GAB(v
′)

w

w′

DAB(v, v
′)

Figure 5.1. Illustration of the diangle lemma: we consider two geodesic vertices v
and v′ between ∂̃A and ∂̃B, such that v′ lies on the right of the leftmost bigeodesic
GAB(v) (shown in orange), and such that d̃A(v) > d̃A(v′). Then, GAB(v) and
GAB(v′) (shown in purple) delimit a region DAB(v, v′) (shown in white) which is
a bigeodesic diangle of nonnegative exceedance d̃A(v)− d̃A(v′).

identify the first edges of these leftmost geodesics, as in the finite case). The only
potential difficulty is that these geodesics may encounter ideal vertices of infinite
degree. However, by Lemma 5.7, only finitely many edges through a given ideal
boundary point make d̃A and d̃B decrease, therefore, when there are any, there is
always a leftmost one to be picked. Since v is a geodesic vertex, the concatenation of
these two geodesics, oriented all the way from ∂̃B to ∂̃A, forms a bigeodesic between
∂̃A and ∂̃B which we call the leftmost bigeodesic via v and denote GAB(v). Note that
the leftmost geodesic towards ∂̃A eventually merges with it: this is obvious for a = 0
since the ideal vertex x̃A = ∂̃A is reached in finitely many steps; for a > 0, setting
γA as in Section 5.3, then the leftmost geodesic from v merges with γA at the vertex
γA(t) for the smallest value of t such that d̃A(v) = d̃(v, γA(t))− t. Of course, a similar
property holds for the leftmost geodesic towards ∂̃B.

5.4.4. The diangle lemma

Consider two geodesic vertices v and v′ between ∂̃A and ∂̃B, such that v′ lies on
the right of the leftmost bigeodesic GAB(v) (oriented from ∂̃B to ∂̃A) or on it, and
such that d̃A(v) > d̃A(v′). This situation is illustrated on Figure 5.1.
We claim that the leftmost bigeodesic GAB(v′) remains on the right of GAB(v).

Indeed, as we start from v′ and follow a geodesic towards ∂̃A, it is not possible to

ANNALES HENRI LEBESGUE



Bijective enumeration of planar bipartite maps with three tight boundaries 1077

pass to the left of GAB(v), since the latter consists of a leftmost geodesic towards
∂̃A and we started on its right. Furthermore, when we actually follow the leftmost
geodesic from v′ towards ∂̃A, then we will eventually meet GAB(v) at a vertex w

(since all leftmost geodesics towards ∂̃A eventually merge with it), and follow it
onwards. Similarly, as we start from v′ and follow the leftmost geodesic towards ∂̃B,
it is again not possible to pass to the left of GAB(v), hence GAB(v′) stays to the right
of GAB(v). In particular, v lies on the left of GAB(v′), hence on the right of GBA(v′)
(oriented from ∂̃A to ∂̃B). As we have d̃B(v′) > d̃B(v), we see that v and v′ play
a completely symmetric role, upon exchanging the roles of A and B and viewing
Figure 5.1 upside-down. We denote by w′ the vertex at which GAB(v) and GAB(v′)
merge when going towards ∂̃B. Note that it is possible that GAB(v) and GAB(v′) have
intermediate contacts at vertices of d̃A-latitude strictly included between d̃A(v′) and
d̃A(v).
We now consider the closed region DAB(v, v′) delimited by GAB(v) and GAB(v′)

(precisely, the region which is on the right of GAB(v) and on the left of GAB(v′), when
orienting them from ∂̃B to ∂̃A), which we prune at w and w′ to remove their (possibly
infinite) common parts towards ∂̃A and ∂̃B. Note that DAB(v, v′) is connected but its
interior may be disconnected when there are intermediate contacts between GAB(v)
and GAB(v′). As a degenerate case, it is possible to have GAB(v) = GAB(v′), and then
DAB(v, v′) consists of a segment joining v = w′ to v′ = w.

Lemma 5.8 (Diangle lemma). — DAB(v, v′) is a bigeodesic diangle of nonnegative
exceedance d̃A(v)− d̃A(v′).

Proof. — We have to check that DAB(v, v′) satisfies the axioms of Section 2.3.
First we observe that it is by construction a finite map with one boundary-face
(the interior of a closed cycle on M̃ always contains finitely many vertices, edges
and faces).
Then, to make the correspondence with the notations of Section 2.3, we take

w12 = v, w21 = v′, v1 = w and v2 = w′ (see again Figure 2.2) and the corners
c1, c12, c2, c21 are selected in a natural manner. The boundary intervals [c1, c2] and
[c2, c1] are geodesic since they correspond to parts of the bigeodesics GAB(v) and
GAB(v′). The boundary intervals [c12, c2] and [c21, c1] are strictly geodesic since GAB(v)
and GAB(v′) are actually leftmost bigeodesics: no geodesic between v and w′ can enter
into DAB(v, v′), and similarly between v′ and w. Finally, w (resp. w′) is by definition
the only vertex common to [c21, c1] and [c1, c2] (resp. [c12, c2] and [c2, c1]). �

So far, our construction depends on the choice of geodesic vertices v and v′ satisfying
the aforementioned properties that v′ is on the right of GAB(v) and that d̃A(v) >
d̃A(v′). However, given two latitudes r > r′ such that the sets IAB(r) and IAB(r′),
as defined in Lemma 5.7, are both nonempty, there exists a canonical choice of
such vertices. Indeed, we may consider the leftmost element v of IAB(r), defined
as the only vertex v ∈ IAB(r) such that the region on the left of GAB(v) (again
oriented from ∂̃B to ∂̃A) contains no other element of IAB(r). Similarly, we choose v′
to be the rightmost element of IAB(r′). Clearly v′ is on the right of GAB(v), which
actually passes through the leftmost element of IAB(r′). This choice of v and v′
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makes DAB(v, v′) the largest possible, as in the case of triply pointed maps discussed
in Section 3.4, and we will always encounter such maximal diangles in the following.

5.5. Equilibrium vertices and the triangle lemma

In the previous subsection, we have only considered the pair (∂̃A, ∂̃B). Let us now
add ∂̃C in the game: our purpose is to construct a bigeodesic triangle TABC which,
interestingly, is canonical in the sense that it is entirely determined by the triplet
of distinguished ideal corners (x̃A, x̃B, x̃C) of S̃ ′. Indeed, as discussed in Section 4.1,
this triplet distinguishes the triplet (∂̃A, ∂̃B, ∂̃C) of ideal vertices/faces of M̃ .
Recall the definition (5.8) of the distance d̃AB between ∂̃A and ∂̃B, and define d̃BC

and d̃CA similarly. Inspired by the equilibrium conditions (3.3), we define rA, rB and
rC by
(5.10) d̃AB = rA + rB, d̃BC = rB + rC , d̃CA = rC + rA.

Note that rA, rB and rC may now be negative, since the “renormalized” distances
d̃AB, d̃BC and d̃CA may be negative in the presence of ideal faces. From the very
definition of Busemann functions and from the bipartiteness of M̃ , we get that the
quantity d̃A(v) + d̃B(v) has the same parity for all v, which is also necessarily the
parity of d̃AB. We immediately deduce that d̃AB + d̃BC + d̃CA is even, hence rA, rB
and rC are integers.
We claim that the sets IAB(rA) (as defined in Lemma 5.7), IBC(rB) and ICA(rC)

are always nonempty: this is true when ∂̃A, ∂̃B, ∂̃C are all ideal faces, since the
bigeodesics between them are infinite and therefore pass through geodesic vertices
of any latitude; this is also true when ∂̃A, ∂̃B, ∂̃C are all ideal vertices, as IAB(rA)
projects to the set SAB considered in Figure 3.4 and similarly for the other sets; the
other cases are left to the reader.
Furthermore, even though we had to choose a reference point along ∂̃A to define the

Busemann function d̃A when a > 0, and similarly for ∂̃B and ∂̃C , the sets IAB(rA),
IBC(rB) and ICA(rC) do not depend on these choices. Indeed, as we change the
reference point along ∂̃A, say, d̃A is changed by a constant, but rA gets changed by
the same constant. We also have the identification IAB(rA) = IBA(rB).
We now define vAB to be the rightmost element of IAB(rA) (again orienting from

∂̃B to ∂̃A), and define vBC and vCA similarly by permuting A,B,C cyclically. We
call vAB, vBC and vCA equilibrium vertices, as they satisfy

d̃A(vAB) = d̃A(vCA) = rA,

d̃B(vAB) = d̃B(vBC) = rB,

d̃C(vBC) = d̃C(vCA) = rC .

(5.11)

By the previous paragraph, the equilibrium vertices are intrinsic to M̃ .
Consider now the leftmost bigeodesics GAB(vAB), GBC(vBC) and GCA(vCA). We

will show that they delimit a region TABC which is a bigeodesic triangle. For this,
we first state some technical lemmas.
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Lemma 5.9. — Let v be a vertex strictly to the left of the leftmost bigeodesic
GAB(vAB). Then, we have d̃C(v) > rC .

Proof. — Since x̃C is on the right of GAB(vAB), any geodesic from v towards ∂̃C
must cross GAB(vAB), at a vertex denoted w such that d̃C(v) > d̃C(w). As w is a
geodesic vertex between ∂̃A and ∂̃B, we have d̃A(w) + d̃B(w) = d̃AB = rA + rB,
and therefore we have either d̃A(w) 6 rA or d̃B(w) 6 rB. In the former case, the
definition of d̃CA implies that d̃C(w) + d̃A(w) > d̃CA = rC + rA hence d̃C(w) > rC .
The same conclusion holds in the latter case, using rather d̃BC . �

Corollary 5.10. — Unless we have vAB = vBC = vCA, the vertices vBC and
vCA are both strictly to the right of GAB(vAB).

Proof. — Since vBC and vCA are both at d̃C-latitude rC , they cannot be strictly on
the left of GAB(vAB) by the previous lemma. If one of them, say vBC , is on GAB(vAB),
then it is equal to vAB since these two vertices are at the same d̃B-latitude rB. But
then, vAB = vBC belongs to ICA(rC), and is clearly the rightmost element vCA of
that set. �

Reasoning as in the discussion of the diangle lemma, we deduce from Corollary 5.10
that GBC(vBC) and GCA(vCA) remain on the right of GAB(vAB). Furthermore, the
two bigeodesics GAB(vAB) and GCA(vCA) merge at a vertex vA when following them
towards ∂̃A, but are disjoint before. Similarly, we introduce the merging vertices vB
and vC of the bigeodesics going towards ∂̃B and ∂̃C , respectively.
We now consider the cycle on M̃ obtained by following GAB(vAB) from vA to

vB, then GBC(vBC) until vC , and finally GCA(vCA) until we return to vA. It is a
simple counterclockwise cycle which delimits a region denoted TABC . See the left of
Figure 5.2 for an illustration (ignoring the right of this figure for now). Note that
TABC is reduced to a single vertex if and only if vAB = vBC = vCA. This situation
happens when there exists a vertex which is a geodesic vertex between ∂̃A and ∂̃B,
between ∂̃B and ∂̃C , and between ∂̃C and ∂̃A, all at the same time. Such a vertex, if
it exists, is necessarily unique by planarity(2) .

Lemma 5.11 (Triangle lemma). — TABC is a bigeodesic triangle.

Proof. — To make the correspondence with the notations of Section 2.4, we take
v1 = vA, v12 = vAB, etc. (see again Figure 2.5), and the corners c1, c12, . . . are selected
in a natural manner. It is then straightforward to check that TABC satisfies all the
axioms defining bigeodesic triangles, since it is delimited by leftmost bigeodesics,
and every geodesic from vA to vB inside TABC must pass through vAB as we chose it
to be the rightmost element of IAB(rA), and similarly for vBC and vCA. �

We have constructed the bigeodesic triangle TABC associated with the triplet of
ideal corners (x̃A, x̃B, x̃C) of S̃ ′, but we can adapt the construction to any other triplet.
Note however that our construction depends at several places (e.g. in Lemma 5.9) on

(2)Two such vertices may exist on the sphere (consider the situation vAB = vBC = vCA and
vBA = vCB = vAC on Figure 3.4), but here we are in the disk with ∂̃A, ∂̃B and ∂̃C on the (ideal)
boundary.
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∂̃C

∂̃B′

A−1∂̃C

C−1∂̃A

vB′C

vC

∂̃A
vA

vAC

TACB′

vB′A

vCB′

vCAvBC

vAB

TABC

vB

∂̃B

vBA

Figure 5.2. Illustration of the decomposition of a map of type I. Cutting along
the leftmost bigeodesics launched from the equilibrium vertices (shown in black),
we delimit the two geodesic triangles TABC and TACB′ (shown in green), and three
geodesic diangles of nonnegative exceedances (shown in light blue). Altogether,
these five regions form the domainMABCB′ of Lemma 5.13, containing exactly
one preimage of each inner face of M .

the fact that x̃A, x̃B and x̃C appear in counterclockwise order along the ideal bound-
ary of S̃ ′, and we shall therefore assume the same order for other triplets. Specifically,
we will consider later on the triangles TACB′ , TABB′ and TBCB′ corresponding to such
triplets.

5.6. Decomposing a map of type I

Let us consider the bigeodesic triangles TABC and TACB′ , as constructed in the
previous subsection. From the fact that x̃A, x̃B, x̃C and x̃B′ are the four ideal corners
of a fundamental domain of S̃, it is tempting to identify TABC and TACB′ with the
two triangles appearing in the assembling procedure. For this, we need to make sure
that they do not overlap. Recall the notations from Section 5.5, which we complete
with notations pertaining to the triangle TACB′ : we let r′A, r′C and r′B be the integers
such that
(5.12) d̃AC = r′A + r′C , d̃CB′ = r′C + r′B, d̃B′A = r′B + r′A,
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and we let vAC , vCB′ and vB′A be the corresponding equilibrium vertices, see Fig-
ure 5.2. Then, the triangles TABC and TACB′ do not overlap if the leftmost bigeodesic
GAC(vAC) remains on the right of GAC(vCA) (oriented from ∂̃C to ∂̃A). We may ensure
this by invoking the diangle lemma (Lemma 5.8), and more precisely by identifying
the region delimited by these two bigeodesics with the diangle DAC(vCA, vAC) as de-
fined (mutatis mutandis) in Section 5.4. But, for this, the assumption of the diangle
lemma must be satisfied, namely we must have d̃A(vCA) > d̃A(vAC), i.e. rA > r′A.

Lemma 5.12. — The difference rA − r′A of d̃A-latitude between vCA and vAC is
equal to a+ c− b.

Proof. — By the equilibrium conditions (5.10) and (5.12), we have

(5.13) rA − r′A =

(
d̃AB − d̃B′A

)
−
(
d̃BC − d̃CB′

)
2 .

Therefore, we must compare d̃AB to d̃B′A, and d̃BC to d̃CB′ . For this, we will use the
symmetries of M̃ . Consider first the action of A on the Busemann functions. By (5.4)
and (5.5), we have

(5.14) d̃B′A = min
v

(
d̃B′(v) + d̃A(v)

)
= min

v

(
d̃B′(Av) + d̃A(Av)

)
= min

v

(
d̃B(v) + k + d̃A(v)− 2a

)
= d̃AB + k − 2a.

Similarly, considering now the action of C, the analog of (5.4) for C and (5.6) imply

(5.15) d̃BC = min
v

(
d̃B(v) + d̃C(v)

)
= min

v

(
d̃B(Cv) + d̃C(Cv)

)
= d̃CB′−k+2b−2c.

Plugging these relations into (5.13) gives the wanted difference a+ c− b. �

We conclude that TABC and TACB′ do not overlap when a + c − b > 0. However,
as we are trying to find a decomposition of M (and not just M̃), we actually want
the stronger property that the projections of TABC and TACB′ on M do not overlap.
This property is ensured by the following:

Lemma 5.13. — Let vBA := A−1vB′A and vB′C := C−1vBC , and let MABCB′

be the domain delimited by the bigeodesics GAB(vBA), GBC(vBC), GCB′(vB′C) and
GB′A(vB′A), pruned from their common parts (see again Figure 5.2). Then,MABCB′

contains exactly one preimage of each inner face of M .
Furthermore, when M is of type I, then both triangles TABC and TACB′ are con-

tained in MABCB′ , and their complement consists of the three geodesic diangles
DAC(vCA, vAC), DAB(vBA, vAB) and DB′C(vCB′ , vB′C), with nonnegative exceedances
equal to a+ c− b, b+ a− c and c+ b− a, respectively.

Proof. — The first claim means thatMABCB′ is essentially a fundamental domain
for the action of Aut(p). Indeed, the bigeodesics delimitingMABCB′ can be viewed
as paths connecting the ideal points x̃A, x̃B, x̃C and x̃B′ : the bigeodesic GAB(vBA)
connects x̃A and x̃B and the bigeodesic GB′A(vB′A) is (upon reversing its orientation)
its image by A, connecting x̃A and x̃B′ . Similarly, GCB′(vB′C) connects x̃C and x̃B′
and GBC(vBC) is (upon reversing its orientation) its image by C connecting x̃C
and x̃B. This pattern mimics precisely that of the four sides of the square S∅ in
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Figure 4.1, even though the topology of the quadrangleMABCB′ is not necessarily
that of a square as it may have pinch points if two of its boundaries come into
contact. The similitude with S∅ (whose sides do reach the ideal points) may be
further improved by adding toMABCB′ the common parts of its boundary geodesics
so as to eventually reach x̃A, x̃B, x̃C and x̃B′ (possibly after infinitely many steps).
We are still left with a final (but somewhat irrelevant) slight difference with the
situation of Section 4.1: when, say, ∂A is a boundary-face, the projection on the
sphere p(GAB(vBA)) = p(GB′A(vB′A)) actually never reaches the puncture xA, but
rather wraps eventually around ∂A forever. This issue can be fixed by stopping the
path at the first time it hits ∂A, replacing the final part with a segment entering
inside ∂A to reach xA (and doing similar fixes at ∂B and ∂C if needed). All in all, the
above differences do not concern the inner faces of M , which therefore lift to unique
preimages inMABCB′ .
We now turn to the second claim. We have seen that TACB′ is on the right of
TABC when a + c − b > 0, and each of these triangles has one side in common
with MABCB′ (namely along GBC(vBC) for TABC and along GB′A(vB′A) for TACB′).
Checking that both triangles are contained in MABCB′ therefore boils down to
checking that their other sides are well placed, namely that the boundary GAB(vAB)
of TABC is on the right of boundary GAB(vBA) ofMABCB′ and that the boundary
GCB′(vB′C) ofMABCB′ is on the right of the boundary GCB′(vCB′) of TACB′ . But this
can be done exactly in the same way as for proving that GAC(vAC) is on the right
of GAC(vCA), via the diangle lemma. Indeed, the reasoning done at the beginning of
this subsection—including Lemma 5.12—pertains to the quadruplet of ideal corners
(x̃A, x̃B, x̃C , x̃B′), and relies on the key relations x̃B′ = Ax̃B = C−1x̃B. But, at
a fundamental level, A, B and C play a completely symmetric role, and redoing
our reasoning with the quadruplets (x̃B, x̃C , x̃A, x̃C′) and (x̃B′ , x̃A, x̃C , x̃A′), with
x̃C′ := Bx̃C = A−1x̃C and x̃A′ := B′x̃A = C−1x̃A, we find that the remaining
pieces of the puzzle of Figure 5.2 are the bigeodesic diangles DAB(vBA, vAB) and
DB′C(vCB′ , vB′C) of respective exceedances b+ a− c and c+ b− a, which are indeed
nonnegative since M is assumed of type I. �

Proposition 5.14. — The procedure which, to the map M of type I, associates
the two bigeodesic triangles TABC and TACB′ , and the three bigeodesic diangles
DAC(vCA, vAC), DAB(vBA, vAB) and DB′C(vCB′ , vB′C), is the inverse of the assembling
procedure I.
Proof. — By comparing Figures 4.5 and 5.2, it is plain that disassembling a mapM

of type I by cutting its universal cover M̃ along leftmost bigeodesics as in Figure 5.2,
then reassembling the pieces following procedure I as in Figures 4.4 and 4.5, restores
M after projecting M̃ on S by p.
It remains to check that, conversely, if we assemble two triangles and three diangles

together, then disassemble the result, we recover the original pieces. We thus start
with two triangles and three diangles, and perform a partial gluing, as described
in the Figure 4.4 of Section 4.1. We note that the obtained “bigeodesic quadrangle”
M is of the same form as that,MABCB′ , displayed on Figure 5.2. Working directly
on the universal cover, we then have to glue copiesMw ofM along the scheme of
Figure 4.5.
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Let us for now forget the decomposition interpretation of Figure 5.2 described
in its caption and reinterpret it instead as the result of the procedure described
in Figure 4.5, once completed by a gluing of all the red and blue intervals facing
each other. We may then view the light blue and green domains in this figure as
representing the copyM∅ ofM, together with its diangle/triangle components. We
may also view the vertices vAB, . . . as the associated attachment points ofM∅ and
of its internal components.
With this new interpretation of the figure, we already know from Lemma 4.1

that the four sides of the quadrangle M∅ lie along four geodesic paths in M̃ : the
bigeodesic denoted G in Section 4.3, its image by A, and a symmetric bigeodesic G ′
(launched from the attachment point between the copies M∅ and Mc and going
towards the ideal corners x̃C and x̃B′) and its image by C. Clearly, G is a bigeodesic
between ∂̃A and ∂̃B and it is in fact the leftmost bigeodesic GAB(vBA) launched from
vBA (which is de facto a geodesic vertex). This is a straightforward consequence of
the fact that, from vBA to ∂̃A (respectively to ∂̃B), G is glued to only red segments
on its left. Similarly, G ′ is the leftmost bigeodesic GCB′(vB′C). Since vB′A = AvAB
and vBC = CvB′C , the two other sides ofM∅ are the leftmost bigeodesics GB′A(vB′A)
and GBC(vBC). From the definition of bigeodesic diangles and triangles, the paths
passing via vAB, vCA, vAC and vCB′ are clearly leftmost bigeodesics withinM∅ and
coalesce with either G or G ′ outside ofM∅, hence they are leftmost bigeodesics in
M̃ which we thus identify as GAB(vAB), GCA(vCA), GAC(vAC) and GCB′(vCB′).
To recover the original interpretation of Figure 5.2, it remains to show that vAB,

vBC and vCA are actually the equilibrium vertices for ∂̃A, ∂̃B and ∂̃C , while vAC , vCB′
and vB′A are the equilibrium vertices for ∂̃A, ∂̃C and ∂̃B′ . Since TABC is a bigeodesic
triangle, we deduce that vAB and vCA have the same d̃A-latitude, vAB and vBC the
same d̃B-latitude and vBC and vCA the same d̃C-latitude. Since these vertices are
all geodesic vertices (so that, e.g. d̃A(vAB) + d̃B(vAB) = d̃AB = rA + rB), we deduce
that they obey the relation (5.11) imposed on equilibrium vertices. Otherwise stated,
the vertices vAB, vBC and vCA belong to the respective sets IAB(rA), IBC(rB) and
ICA(rC), as defined in Section 5.5. Furthermore, since these vertices are the three
attachment points of a bigeodesic triangle, they are necessarily the rightmost elements
of their respective sets, hence they are indeed the equilibrium vertices associated with
(∂̃A, ∂̃B, ∂̃C), and TABC indeed coincides with the triangle constructed in Section 5.5.
Performing the same reasoning on the triangle denoted TACB′ , we eventually recover
precisely the original decomposition interpretation of Figure 5.2, as described in its
caption. Proposition 5.14 follows. �

We conclude this section with two remarks. First, when M has no inner face, M̃
has only ideal faces and is actually a tree. We find that the triangles TABC and TACB′
are reduced to single vertices, while the diangles are reduced to segments, thereby
inverting the assembling of Figure 3.3 for type I. Second, in the case a = b = c = 0,
the current disassembling procedure coincides with that of Section 3.4. Indeed, we
only have ideal vertices in this case, so that d̃AB is just the graph distance between
∂̃A and ∂̃B in M̃ and coincides with the graph distance dAB between ∂A and ∂B in
M , and similarly for the other pairs of ideal vertices. The decomposition of M̃ which
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we perform here just projects to the decomposition of M performed in Section 3.4
(note that, in that section, the vertices denoted vAB, vBC and vCA are the projections
of those which we consider here, while vBA, vCB and vAC are the projections of vB′A,
vCB′ and vAC respectively).

5.7. Decomposing a map of type II

∂̃B

∂̃C

∂̃B′

∂̃A

wAB

wBB′
wB′A

wAB′

wCB

TABB′

wB′B

wCB′

wBC

TBCB′

Figure 5.3. Illustration of the decomposition of a map of type II. The two geodesic
triangles TABB′ and TBCB′ (shown in green) and the three bigeodesic diangles
(shown in light blue) form the domainM′

ABCB′ of Lemma 5.15.

Suppose now that we have a map M of type II. Without loss of generality, we
may assume that ∂B is the longest boundary, i.e. we have b > a + c. Then, the
decomposition of the previous subsection might fail, since now d̃A(vCA)− d̃A(vAC) =
rA − r′A = a + c − b 6 0, hence it is not possible in general to apply the diangle
lemma (it could happen that the bigeodesics GAC(vCA) and GAC(vAC) cross each
other).
Then, the trick is to “perform a flip” and, instead of the triangles TABC and TACB′ ,

to consider rather the triangles TABB′ and TBCB′ , see Figure 5.3. The equilibrium
vertices of TABB′ (resp. TBCB′) are denoted wAB, wBB′ and wB′A (resp. wBC , wCB′
and wB′B). We now have the following counterpart of Lemma 5.13:
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Lemma 5.15. — Let wAB′ := AwAB and wCB := CwCB′ , and let M′
ABCB′ be

the domain delimited by the bigeodesics GAB(wAB), GBC(wCB), GCB′(wCB′) and
GB′A(wAB′), pruned from their common parts (see again Figure 5.3). Then,M′

ABCB′

contains exactly one preimage of each inner face of M .
Furthermore, when M is of type II, then both triangles TABB′ and TBCB′ are

contained in M′
ABCB′ , and their complement consists of the three geodesic dian-

gles DBB′(wB′B, wBB′), DAB′(wB′A, wAB′) and DBC(wCB, wBC), with nonnegative
exceedances equal to b− a− c, 2a and 2c, respectively.
Proof. — The first claim is similar to that of Lemma 5.13, and is proved in the

same way.
For the second claim, we apply again the diangle lemma, and all boils down to

proving that
d̃B(wB′B)− d̃B(wBB′) = b− a− c,
d̃A(wB′A)− d̃A(wAB′) = 2a,
d̃C(wBC)− d̃C(wCB) = 2c.

(5.16)

For the first relation, by considering the equilibrium conditions in TABB′ and TBCB′
we find that

(5.17) d̃B(wB′B)− d̃B(wBB′) =

(
d̃BC − d̃AB

)
−
(
d̃CB′ − d̃B′A

)
2

and we observe that the right-hand side is nothing but the opposite of that of (5.13).
Thus, by Lemma 5.12, it is equal to b − a − c as wanted. For the second relation
of (5.16), we simply note that d̃A(wAB) = d̃A(wB′A) by the definition of equilibrium
vertices, and that d̃A(wAB′) = d̃A(wAB) − 2a by (5.4). For the third relation, we
proceed in the same way, with C instead of A. �

Proposition 5.16. — The procedure which, to the map M of type II, associates
the two bigeodesic triangles TABB′ and TBCB′ , and the three bigeodesic diangles
DBB′(wB′B, wBB′), DAB′(wB′A, wAB′) and DBC(wCB, wBC), is the inverse of the as-
sembling procedure II.
The proof is entirely similar to that of Proposition 5.14. Note that, whenM has no

inner face, M̃ has only ideal faces and is actually a tree. We find that the triangles
TABB′ and TBCB′ are reduced to single vertices, while the diangles are reduced to
segments, thereby inverting the assembling of Figure 3.3 for type II. The proof of
Theorem 3.1 is now complete.

6. Equivalence with the Eynard–Collet–Fusy formula, and
limiting statistics in random maps with boundaries

In this section, we discuss the relation of our work with the Eynard–Collet–Fusy
(ECF) formula for (quasi-)bipartite maps with three boundaries—see [Eyn16, Propo-
sition 3.3.1] and [CF12]—and we show that it entails interesting properties of the
statistics of distances and areas in random maps and their scaling limits.
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Let L1, L2, L3 be positive integers or half-integers whose sum is an integer. Let
GL1,L2,L3 be the generating function of essentially bipartite planar maps with three
(non necessarily tight) rooted boundary-faces of degrees 2L1, 2L2, 2L3, counted with
a weight t per vertex and a weight g2k per inner face of degree 2k. Here, a boundary-
face is said rooted if one its incident corners is distinguished. We also let R be the
generating series defined at (1.2), and we introduce the notation

(6.1) α(2L) := (2L)!
bLc!

⌊
L− 1

2

⌋
!
, L ∈ 1

2Z.

The ECF formula states that

(6.2) GL1,L2,L3 = α(2L1)α(2L2)α(2L3) ·RL1+L2+L3
d ln(R)
dt

.

We will show in Section 6.2 how one can recover this formula from Theorem 1.1. To
this end, we first establish in Section 6.1 some facts about the structure of minimal
cycles homotopic to the boundaries in general pairs of pants. For the record, and
since this will be useful for the probabilistic considerations of Section 6.3, we also
recall the formula for the generating function GL1,L2 of essentially bipartite annular
maps, namely maps with two rooted boundary-faces of lengths 2L1 and 2L2, with
L1, L2 positive integers or half-integers whose sum is an integer:

(6.3) GL1,L2 = α(2L1)α(2L2)
L1 + L2

·RL1+L2 .

This formula appears in various places in the literature, for instance it is the case r = 2
of [CF12, Theorem 1.1], see also [Bud17, Proposition 4] or [Cur19, Theorem 3.12],
and [Bou19, Equation (2.1)] for a derivation based on the slice decomposition.

6.1. The structure of outermost minimal separating cycles

LetM be a planar map with three boundary-faces ∂1, ∂2, ∂3, that are not supposed
to be tight. We consider the problem of finding cycles homotopic to the boundaries ∂i
ofM , with minimal length. The optimization problems of finding shortest paths with
certain topological constraints on surfaces have been investigated in the literature
on effective geometry and computer science. In particular, some of the ideas used
in this section are similar to [CdVL07, CdVE10]. We mention that the discussion
below generalizes easily to maps with more than three boundaries.
As in Section 4, we may and will assume that M is a map on the triply punctured

sphere S, and we denote the punctures by x1, x2, x3. For i ∈ {1, 2, 3}, let C(i)
min(M)

be the set of cycles in M that are freely homotopic to the contour of ∂i in the
punctured sphere S, and that have minimal possible length. This minimal length
will be denoted by 2`i(M), where `i(M) is a positive integer or half-integer. Note
that, when M is essentially bipartite, 2`i(M) has the same parity as the degree of ∂i.
Our goal is to collect a number of facts about the structure of C(i)

min(M). In particular,
we will see that it carries a natural order relation which makes it a lattice.
As in the preceding sections, it will be useful to work on the universal cover M̃ of

M introduced in Section 4, which is a map on the universal cover p : S̃ → S. We will
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however use a slightly different index notation, replacing ∂A, ∂B, ∂C with ∂1, ∂2, ∂3,
xA, xB, xC with x1, x2, x3. The automorphisms A,B,C are renamed A1, A2, A3, and
the distinguished ideal corners x̃A, x̃B, x̃C are renamed x̃1, x̃2, x̃3, see for instance
Figure 4.1 for a reminder of the former notation (we will not use x̃B′ here).
The boundary-faces of M are lifted in M̃ to faces of infinite degrees, similarly

to Figure 4.2, but whose contours are now not necessarily geodesic, and not even
necessarily simple curves, since the boundaries of M are not assumed to be tight.
From the “concrete” construction of M̃ in Section 4, for i ∈ {1, 2, 3}, we can naturally
distinguish a particular lift of ∂i by choosing ∂̃i to be the infinite face of M̃ that
is incident to the ideal boundary point x̃i. Note that ∂̃i is invariant under the
automorphism Ai. If ci is a cycle that is homotopic to the contour ∂̂i of ∂i, then we
can reason exactly as in the beginning of the proof of Lemma 4.3, which did not make
use of the fact that the boundaries are tight. Namely, we let γ be a path from some
arbitrary point x on ∂̂i to some point z on ci such that γciγ−1 and ∂̂i are homotopic
as loops rooted at x, and then lift those two paths to obtain a path c̃i0 from a vertex
z̃ in M̃ to Aiz̃ that is a lift of ci. The concatenation of the paths Ani c̃i0, n ∈ Z, seen
up to increasing reparametrization, is then a biinfinite path c̃i whose projection via
p is a path that circles indefinitely around ci, and which we call a biinfinite lift of
ci. Moreover, c̃i is invariant under Ai. Let U0 be the finite set of words w such that
c̃i0 visits the domains Sw, in the former notation of Section 4.1. Then by invariance
under Ai, c̃i visits Ani Sw, n ∈ Z, w ∈ U0. Now, from the way in which domains are
connected together, we see that all domains of the form Ani S∅, n ∈ Z must be visited,
so that c̃i remains at bounded “distance” from ∂̃i (where distance is measured in
terms of number of domains Sw to cross). In this sense, c̃i converges to the ideal
boundary point x̃i, that is incident to the infinite face ∂̃i. Consequently, if j 6= i
and ci, cj are two cycles that are respectively freely homotopic to the contours of
∂i and ∂j, their biinfinite lifts c̃i, c̃j defined as above converge to two different ideal
boundary points.
Now, if ĉi is another biinfinite lift of ci, there is an automorphism W such that

ĉi = Wc̃i. If W ∈ {Ani , n ∈ Z}, we have ĉi = c̃i, and otherwise, ĉi is a distinct infinite
path that is invariant under the automorphisms WAniW

−1, n ∈ Z. In the latter case,
this infinite path visits domains of the form WAni Sw where n ∈ Z and w belongs
to a finite set of words, which implies that ĉi converges to the ideal corner Wx̃i,
distinct from x̃i. For this reason, we can single out the biinfinite lift c̃i constructed
above, which converges to the distinguished ideal boundary vertex x̃i, and call it the
canonical biinfinite lift of ci.
Now fix i ∈ {1, 2, 3}, let ci ∈ C(i)

min(M), and let ĉi be any biinfinite lift of ci
in M̃ , passing through an arbitrary point ẑ projecting to a point of ci. Similarly
to Lemma 5.4 above, the minimality of the length of ci, and Proposition 2.5 and
Lemma 2.1 in [CdVE10], imply the following result.
Lemma 6.1. — The path ĉi is a biinfinite geodesic in M̃ , separating S̃ into two

connected components.
Note that we can view the two components of M̃ \ ĉi as the “left” and “right”

component, since M̃ is oriented, and we can assume that ci circles counterclockwise

TOME 5 (2022)



1088 J. BOUTTIER, E. GUITTER & G. MIERMONT

around the puncture xi. Given the fact that the latter (which we view as a point
“outside” the surface) belongs to the region of the complement of ci located to its
left, we call the left region of M̃ \ ĉi the outer domain of ĉi, and the right region
the inner domain. Note that both domains of ĉi determine ĉi as their boundaries, by
Jordan’s theorem.
We now define a partial order relation on C(i)

min(M). Let ci1, ci2 ∈ C
(i)
min(M), and c̃i1, c̃i2

be their canonical biinfinite lifts. We write ci1 �(i) ci2 if the outer domain of c̃i1 is
included in the outer domain of c̃i2. The fact that this indeed defines a partial order
is easy and left to the reader.

Lemma 6.2. — If ci1, ci2 are elements of C(i)
min(M), and if c̃i1, c̃i2 are their canonical

lifts, then the intersection and union of their outer domains are simply connected
and bounded by two paths which we denote by c̃i1 ∧ c̃i2 and c̃i1 ∨ c̃i2. In turn, these two
paths project via p to two cycles ci1∧ ci2 and ci1∨ ci2 on M , which are the infimum and
supremum of {ci1, ci2} for the order �(i). In particular, (C(i)

min(M),�(i)) is a lattice.
Again, the proof of this statement is easy and relies on the observation that two

consecutive intersections of the paths c̃i1 and c̃i2 must arise in increasing order for
the parametrization of both paths, and be linked by arcs of same lengths, by the
geodesic property.
As a consequence, since (C(i)

min(M),�(i)) is clearly a finite lattice, it admits a smallest
element c(i), called the outermost minimal cycle homotopic to the contour of ∂i. It
also admits a maximal element, although we are not going to use this one in the
sequel. As a final observation, we state the following.
Lemma 6.3. — For every i, j ∈ {1, 2, 3}, the cycles c(i), c(j) do not cross each

other, but may however have edges in common. For i = j this means that the cycle
c(i) cannot be self-crossing, but may possibly visit some edges more than once.
Remark 6.4. — Though intuitively clear, this lemma has some subtlety to it. In

particular, the fact that c(i) may visit some edges twice does happen, see for instance
the contour of ∂B on the example displayed in Figure 4.2. The proof of the lemma
consists in showing that the outer domains of two distinct biinfinite lifts of c(i) and
c(j) cannot overlap. For i = j, this entails that the self-contacts of c(i), if there are
any, can occur only “from the inner side”. More precisely, the outer region of c(i),
which is comprised of the edges of M̃ that can be attained from ∂i without crossing
c(i), can be seen as a map with two boundaries, one of which is the contour of ∂i, and
the other being a simple boundary that results from cutting along c(i). This remark
will be useful in the next section.
Proof. — In this proof, we let A = Ai to simplify the notation. If c(i) and c(j) cross

each other, then we can lift them into biinfinite geodesics c̃(i), ĉ(j) in the universal
cover that also cross each other, where we choose the first lift to be the canonical lift
of c(i), which is invariant under A. Note that ĉ(j) is not necessarily the canonical lift
of c(j), as it is determined by the choice of a lift of an intersection point of c(i) and
c(j). Necessarily, these two geodesic biinfinite lifts must converge to two distinct ideal
boundary points. Therefore, whenever ĉ(j) enters the outer region of c̃(i), it has to
eventually leave it. This reasoning holds also when i = j and c(i) has a self-crossing,
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upon noting that c̃(i) and ĉ(i) denote two lifts of c(i) which are necessarily different,
since they are simple paths that cross each other.
So there is then a subpath of ĉ(j) within the outer region of c̃(i), say between the

two points x̃ and z̃, meaning that ĉ(j) is entirely contained in the open outer region
of c̃(i) between these points. Now assume without loss of generality that z̃ belongs
to the portion of c̃(i) between Anx̃ and An+1x̃ for some n > 0, and distinct from
Anx̃. If n = 0 we arrive at a contradiction, because we can follow the arc of ĉ(j)
between points x̃ and z̃, then the arc of c̃(i) between z̃ and Ax̃ to form a new geodesic
arc c̃ between x̃ and Ax̃ that is contained in the (closed) outer domain of c̃(i), and
therefore projects via p to a cycle that is strictly smaller than c(i) in C(i)

min(M).

x̃ Ax̃ A2x̃ A3x̃ c̃(i)

ĉ(j)

ỹ Aỹ

Aĉ(j)

A−1ĉ(j)

A−1x̃

z̃A−1z̃ Az̃

A4x̃

s

t

u

Figure 6.1. Illustration of the proof of Lemma 6.3. The bottom black line is the
biinfinite geodesic c̃(i), whose outer domain, represented as the upper-half of the
picture, is visited by the blue path ĉ(j). The proof consists in showing that the
portion of the blue arc between ỹ and Aỹ projects via p to a cycle of C(i)

min(M)
which is strictly smaller than its minimal element, a contradiction.

Next, let us assume that n > 1. Let 2` = 2`i(M) be the length of the cycle c(i),
that is in particular the length of the arc of c̃(i) between Amx̃ and Am+1x̃ for every
m ∈ Z. In particular, the length of the arc of c̃(i) between x̃ and z̃ equals 2n` + `′

for some `′ ∈ (0, 2`], and this is also the distance between its extremities since c̃(i) is
a geodesic path.
Then the arc of ĉ(j) between x̃ and z̃ enters the Jordan domain (see the yellow

domain in Figure 6.1) formed by the arcs of c̃(i) and A−1ĉ(j) between the points A−1x̃
and A−1z̃, and has to leave it through some point ỹ since z̃ is not in this domain.
Since we assumed that the arc of ĉ(j) between x̃ and z̃ is entirely contained in the
outer domain of c̃(i), it must be that ỹ belongs to the arc of A−1ĉ(j) between A−1x̃
and A−1z̃. Now by applying the automorphism A, Aỹ has to be the intersection
point of the arc of ĉ(j) between x̃ and z̃ with the arc of Aĉ(j) between Ax̃ and Az̃.
In particular, ĉ(j) contains an arc (between ỹ and Aỹ) that is strictly contained in
the outer domain of c̃(i). Since one of its extremity is the image of the other by
A, this arc projects to a cycle c of M that is homotopic to the boundary ∂i. So if
we can show that its length is 2` (in fact, we will show that this length can be at
most 2`, which is even better!), we will obtain that c is in C(i)

min(M) but c ≺(i) c(i), a
contradiction.
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So let t be the length of the arc of ĉ(j) between ỹ and Aỹ, and let s, u be the
lengths of the arcs between x̃ and ỹ, and between Aỹ and z̃ respectively. Then u is
also the length of the arc of A−1ĉ(j) between ỹ and A−1z̃.
Now the length of the concatenation of the arc of ĉ(j) between x̃ and ỹ, the arc of

A−1ĉ(j) between ỹ and A−1z̃, and the arc of c̃(i) between A−1z̃ and z̃ equals s+u+2`,
and has to be greater than or equal to the distance between its extremities x̃ and z̃,
which is 2n`+ `′ as mentioned above. Therefore, we obtain s+u > 2(n−1)`+ `′. On
the other hand, since ĉ(j) is a geodesic path, this distance 2n` + `′ is also equal to
s+ t+u, which is at least t+ 2(n−1)`+ `′. So we obtain that t 6 2`, as wanted. �

6.2. A re-derivation of the ECF formula for pairs of pants

We now use the above discussion to introduce a bijective decomposition of planar
maps with three boundary-faces which are not necessarily tight. Let M be such a
map, with boundaries denoted ∂1, ∂2, ∂3 as before. For every i = 1, 2, 3, we let c(i)

be the minimal element of (C(i)
min(M),�(i)), as defined in the previous subsection.

By Lemma 6.3, these cycles cannot cross, so they split the map M into four parts
M (0),M (1),M (2),M (3) where, for i = 1, 2, 3, M (i) is the part of M delimited by the
(non self-crossing) cycle c(i) and containing the face ∂i, whileM (0) is the remainder of
the map delimited by the three cycles c(1), c(2), c(3). By Remark 6.4, for i ∈ {1, 2, 3},
we may view M (i) as a map with two boundaries, one being given by the contour of
∂i, and the other being a simple boundary resulting from cutting along c(i).
In order to be consistent with the ECF formula, the boundary-faces of M are

assumed to be rooted. This induces a canonical rooting of the boundary-faces of
M (0) by, say, considering the leftmost shortest path starting at the root of ∂i and
ending on c(i).
To characterize the resulting maps, we need an extra definition: a boundary-face is

said strictly tight if its contour is the unique cycle of minimal length in its homotopy
class. A strictly tight boundary-face is to a tight boundary-face what a (red) strictly
geodesic boundary interval is to a (blue) geodesic boundary interval, as we defined
in Section 2.1.

Proposition 6.5. — Let L1, L2, L3, l1, l2, l3 be positive integers or half-integers.
Then, the mapping M 7→ (M (0),M (1),M (2),M (3)) is a bijection between:

• the set of planar maps M which have three rooted boundary-faces of lengths
2L1, 2L2, 2L3 and whose minimal separating cycles have lengths 2`i(M) = 2li,
• and the set of quadruplets (M (0),M (1),M (2),M (3)) made of a planar map
M (0) with three rooted tight boundary-faces of lengths 2l1, 2l2, 2l3, and of
three annular maps M (1),M (2),M (3) where, for i = 1, 2, 3, the map M (i) has
a rooted boundary of length 2Li and a strictly tight unrooted boundary of
length 2li.

The mapM is essentially bipartite if and only ifM (0),M (1),M (2),M (3) are essentially
bipartite. (In this case, M exists if and only if L1 + L2 + L3, L1 − l1, L2 − l2 and
L3 − l3 are all nonnegative integers.)
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Proof. — The tightness properties of the boundaries of M (0),M (1),M (2),M (3) re-
sult from the fact that c(i) is the minimal element of C(i)

min(M) for i = 1, 2, 3.
The mapping is a bijection since we may conversely (re)assemble a map M from

a quadruplet. Note that there are a priori (2l1) · (2l2) · (2l3) ways to perform the
(re)assembling, but only one of them is consistent with the rootings. Indeed, in M (i)

we consider the leftmost shortest path starting with the root and ending on the
unrooted boundary, and this singles out the position at which we must align the
root on the ith boundary of M (0). �

We refer to the areas (number of faces) of the annular maps M (1),M (2),M (3) as
the exterior areas of M , denoted by A1(M), A2(M), A3(M) respectively, and to the
area of the map M (0) as the interior area of M , denoted by A0(M). In this way, the
exterior area Ai(M) (i = 1, 2, 3) is the minimal area bounded by the contour of ∂i
and by a cycle homotopic to it of minimal possible length(3) .
For the purposes of the next section, we also consider the case where M is an

annular map whose two boundary-faces ∂1, ∂2 are rooted and not necessarily tight.
The contours of the two boundaries are now homotopic, hence there is now a single
set Cmin(M) of separating cycles of minimal length (this length is denoted 2`(M)).
In this set we may find two “extremal cycles”, closest to ∂1 and to ∂2 respectively. By
splitting M along these two cycles, we obtain three pieces M (0),M (1),M (2), where
M (0) is a map with two rooted tight boundary-faces both of length 2`(M), while
M (1) and M (2) have one rooted boundary-face and another strictly tight unrooted
boundary-face of length 2`(M). This decomposition yields a bijection analogous to
that of Proposition 6.5. We define the interior and exterior areas of M accordingly:
for i = 0, 1, 2, we let Ai(M) be the area of M (i).
We now recall known enumerative results about the annular maps with (strictly)

tight boundaries considered above. We mention that these results may be obtained
by specializing [BF12, Theorem 34] or [BG14, Equations (9.18) and (9.19)], which
deal with the more general setting of maps with girth/irreducibility constraints, but
we refer to [Bou19, Section 2.2] for a more elementary presentation in the current
setting. It uses a slice decomposition expressed in the universal covers of the annular
maps, similarly to the present paper.

Proposition 6.6 (see e.g. [Bou19, Theorem 2.1]). — Let L, l be positive integers
or half-integers such that L−l is a nonnegative integer. Then, the generating function
of essentially bipartite annular maps with a rooted boundary-face of degree 2L and
a strictly tight unrooted boundary-face of degree 2l, counted with a weight g2k per
inner face of degree 2k and a weight t per vertex not incident to the unrooted
boundary, is given by

(
2L
L−l

)
RL−l, where R is as usual defined by (1.2).

The generating function of essentially bipartite annular maps with two tight rooted
boundary-faces of degree 2l, counted with a weight g2k per inner face of degree 2k
and a weight t per vertex is equal to 2lR2l.

(3)As was pointed to one of the authors by Marco Mazzucchelli, this area is related to the notion
of flat topology (here “flat” stands for the musical symbol [) on homology classes introduced by
Whitney and Federer in geometric measure theory, see for instance the Introduction in [MN16].
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We now re-derive the ECF formula (6.2). Indeed, the last two propositions imply
that the generating function GL1,L2,L3 of essentially bipartite planar maps with three
rooted boundary-faces of lengths 2L1, 2L2, 2L3 is equal to

∑
2l1,2l2,2l3 > 0
Li−li ∈Z

(
2L1

L1 − l1

)
RL1−l1

(
2L2

L2 − l2

)
RL2−l2

(
2L3

L3 − l3

)
RL3−l3(2l1)(2l2)(2l3)Tl1,l2,l3

where the factors 2li account for the extra rooting of the faces in the tight maps
counted by Tl1,l2,l3 . Using Theorem 1.1 and the hypergeometric identity

∑
2l > 0

(2l)
(

2L
L− l

)
= α(2L),

we recover precisely (6.2).
Similarly, the generating function of essentially bipartite annular maps with two

rooted boundary-faces of lengths 2L1, 2L2 is equal to

(6.4) GL1,L2 =
∑

2l > 0
L1−l∈Z

(
2L1

L1 − l

)
RL1−l

(
2L2

L2 − l

)
RL2−l(2l)R2l

and we recover (6.3) by another hypergeometric identity.

6.3. Scaling limits of separating loop statistics

In this section we show how our results can be used to deduce statistical properties
of random annular maps and pairs of pants with a large area. This will be done
by deriving a scaling limit result for the minimum cycle lengths, as well as for the
exterior and interior areas of the associated decomposition. For simplicity, we focus
on the simplest case of bipartite quadrangulations, for which g2k = gδk,2, although
our results should have extensions to much more general models of random maps.
Let us recall some classical probability densities:

(6.5) pa(x) = 1√
2πa

e−x
2/2a , x ∈ R

the Gaussian density (of variance a > 0),

(6.6) qx(a) = x

a
pa(x) = x√

2πa3
e−x

2/2a , a > 0

the stable-1/2 density (with parameter x > 0), and

(6.7) ra(x) = x

√
2π
a
pa(x) = x

a
e−x

2/2a , x > 0

the size-biased Gaussian absolute value density, also known as Rayleigh density (with
parameter a > 0). All the random variables considered below will be defined on some
common probability space (Ω,F ,P).
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Theorem 6.7. — Let Mn be a uniformly random quadrangulation with two
rooted boundaries of lengths 2Ln1 and 2Ln2 and n inner faces, where the integers
Lni , i ∈ {1, 2} satisfy Lni ∼ Li

√
2n as n → ∞ for some L1,L2 ∈ (0,∞). Then we

have the following convergence in distribution for the rescaled minimal half-length
of a separating cycle and for the rescaled exterior/interior areas of Mn:

(6.8)
(( 2

n

)1/4
` (Mn) , A1 (Mn)

n
,
A0 (Mn)√

2n

)
−→ (R,A,B).

Here R and A are independent random variables, R follows a Rayleigh law of
parameter Leff = (L−1

1 + L−1
2 )−1 and A has density qL1(a)qL2(1 − a)/qL1+L2(1) for

a ∈ (0, 1). Finally, the random variable B has conditional density qR given (R,A),
and in particular it is independent of A.

Remark 6.8. — Note that this theorem implies in particular that A0(Mn)/n→ 0
in probability, and so (A1(Mn) + A2(Mn))/n → 1 in probability. One can also be
more explicit by computing the Laplace transform of the Rayleigh random variable,
which yields

(6.9) E
[
e−uB

]
=
√

2π (2uLeff)1/4 euLeff Π
(√

2uLeff

)
,

where Π(x) =
∫∞
x p1(y)dy is the Gaussian tail distribution function.

Theorem 6.9. — Let Mn be a uniformly random quadrangulation with three
rooted boundaries of lengths 2Ln1 , 2Ln2 and 2Ln3 and n inner faces, where the integers
Lni , i ∈ {1, 2, 3} satisfy Lni ∼ Li

√
2n as n→∞ for some L1,L2,L3 ∈ (0,∞). Then we

have the following convergence in distribution for the rescaled minimal half-lengths
of separating cycles in each homotopy class and for the rescaled exterior/interior
areas of Mn:

(6.10)
(( 2

n

)1/4
`i (Mn) , Ai (M

n)
n

)
i∈{1,2,3}

−→ (Ri,Ai)i∈{1,2,3} .

Here R1,R2,R3 are independent random variables, respectively with Rayleigh distri-
bution of parameter L1, L2 and L3, and (A1,A2,A3) is a random vector, independent
of (R1,R2,R3), with density

(6.11)
(∫ 1

0

qL1+L2+L3(x)
2
√

1− x
dx

)−1
qL1(a1)qL2(a2)qL3(a3)
2
√

1− a1 − a2 − a3

on the simplex {(a1, a2, a3) ∈ (0,∞)3 : a1 + a2 + a3 < 1}.

Remark 6.10. — That (6.11) is indeed a probability density is an easy exercise
using the semigroup property of the stable densities. The reason why we put a
constant 2 in the denominator is that it allows to view it as the conditional probability
density function of four independent random variables (ξ0, ξ1, ξ2, ξ3) where ξi follows
a stable(1/2) law with parameter Li for i ∈ {1, 2, 3}, and ξ0 follows a Beta(1,1/2)
random variable, given the singular event that∑3

i=0 ξi = 1. Note also that the integral
of the normalizing constant can be computed from the explicit form of qx(a), which
after a change of variables y = (1− x)/x yields

∫ 1
0 qL(x)dx/

√
1− x = exp(−L2/2).
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Remark 6.11. — Note that in both statements, we have the remarkable property
that the areas of the regions cut by the minimal length curves homotopic to the
boundaries are independent of these respective lengths. We also note that in the
setting of Theorem 6.9, the quantity min(`1(M), `2(M), `3(M)) is also the length
`min(M) of the shortest non contractible cycle in M . An immediate consequence
of this observation is that (2/n)1/4`min(Mn) converges in distribution to a random
variable with Rayleigh distribution of parameter Leff = (L−1

1 + L−1
2 + L−1

3 )−1. Re-
markably, this extends word by word the conclusion of Theorem 6.7, and asks the
question whether this further generalizes to maps with four boundaries or more.

Remark 6.12. — It is tempting to believe that these two theorems have conse-
quences for Brownian surfaces, that are the scaling limits in the Gromov–Hausdorff
sense of (say) random quadrangulations with a fixed topology [Bet16, BM22]. In
particular, we expect that for the Brownian annulus (k = 2), which is known [Bet16]
to be homeomorphic to a two-punctured sphere, there is a unique cycle of minimal
length separating the two boundaries, and that this cycle has a Rayleigh distribution
with parameter (L−1

1 + L−1
2 )−1. By letting the size of the second boundary L2 go

to infinity, we naturally expect to find the infinite Brownian disk with boundary
length L1 introduced in [BMR19], a random metric space homeomorphic to the
complement of the open unit disk in the plane. We conjecture that the shortest non-
contractible loop in this space has length distributed as a Rayleigh law of parameter
L1. This would be relevant in work by Riera [Rie22] on the isoperimetric profile of
the Brownian plane, but will be investigated elsewhere.

Let us prove these results. Since we are focusing on the case of quadrangulations,
from now on we will restrict the generating function R = R(t, (g2k, k > 1)) to the
special case g2k = gδk,2, yielding explicitly

(6.12) R = 1−
√

1− 12 gt
6g .

This implies the following well-known asymptotic enumeration formulas:

(6.13) [gn]R|t=1 ∼
12n√
πn3

, [gn] d ln(R/t)
dt

∣∣∣∣∣
t=1
∼ 12n

2
√
πn

.

From now on we will always implicitly assume that the vertex parameter t is set to
1. The coefficients of R and its powers admit some convenient probabilistic represen-
tations that we recall quickly here. Let Pn(k) = 2−n

(
n

(n+k)/2

)
be the probability that

a simple random walk starting from 0 equals k at time n. It satisfies a local limit
theorem (the summation index being due to parity reasons)

(6.14)
∑

k∈ 2Z+n

∣∣∣√nPn(k)− 2p1(k/
√
n)
∣∣∣ −→
n→∞

0 .

Let also Qk(n) = (k/n)Pn(k) be the probability that the simple random walk first
hits −k at time n. Then

(6.15)
∑

n∈ 2N+k

∣∣∣k2Qk(n)− 2q1
(
n/k2

)∣∣∣ −→
k→∞

0 .
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Then (6.12) and Lagrange’s inversion formula imply that for every n, k > 0,

(6.16) [gn]Rk = 12n2kQk(2n+ k) .

Proof of Theorem 6.7. — The number of annular quadrangulations Q(n;Ln1 , Ln2 )
with boundaries of lengths 2Ln1 , 2Ln2 and with n inner quadrangles is given by (6.3):
letting Ln = Ln1 + Ln2 and L = L1 + L2, this is

#Q (n;Ln1 , Ln2 ) = α (2Ln1 )α (2Ln2 )
Ln

[gn]RLn ∼
n→∞

12n 8Ln

n
·
√
L1L2

πL
qL(1) ,(6.17)

where the asymptotic formula is obtained from (6.16) and by applying (6.15) as well
as the easy asymptotics

α(2l) ∼ 4l
√
l/π,

also a consequence of (6.14). Now, by the same discussion as that leading to (6.4),
the number of quadrangulationsM ∈ Q(n;Ln1 , Ln2 ) that have `(M) = l, A0(M) = n0,
A1(M) = n1, hence A2(M) = n2 := n− n0 − n1, is given by

(6.18) [gn1 ]
(

2Ln1
Ln1 − l

)
RLn1−l [gn2 ]

(
2Ln2
Ln2 − l

)
RLn2−l [gn0 ] 2lR2l.

We rewrite this in “probabilistic” form as

(6.19) 12n 8Ln2lP2Ln1 (−2l)P2Ln2 (−2l)QLn1−l(2n1 + Ln1 − l)
×QLn2−l(2n2 + Ln2 − l)Q2l(2n0 + 2l).

Letting now n1 = bnac for some a ∈ (0, 1), l = b(n/2)1/4λc and n0 = bb
√

2nc, for
some λ, b > 0, we can use the local limit theorems to get the following asymptotics:

2lP2Ln1 (−2l)P2Ln2 (−2l) ∼
n→∞

√
L1L2

πL

( 2
n

)1/4
rLeff (λ) ,(6.20)

QLn1−l (2n1 + Ln1 − l)QLn2−l(2n2 + Ln2 − l) ∼n→∞
1
n2 qL1(a)qL2(1− a) ,(6.21)

Q2l(2n0 + 2l) ∼
n→∞

1√
2n
qλ(b) .(6.22)

Taking a quotient with (6.17), this implies that for l, n1, n0 as above,

(6.23) P
(
` (Mn) = l, A1 (Mn) = n1, A0 (Mn) = n0

)
∼

n→∞( 2
n

)1/4
rLeff (λ) 1

n

qL1(a)qL2(1− a)
qL(1)

1√
2n
qλ(b) .

Since the function of λ, a, b appearing in the right hand side (after removing the
factors involving n) is a probability density function on R+ × (0, 1) × (0,∞), we
easily conclude by Scheffé’s lemma. �

Proof of Theorem 6.9. — The number of quadrangulations Q(n;Ln1 , Ln2 , Ln3 ) with
three boundaries of perimeters 2Ln1 , 2Ln2 , 2Ln3 and with n inner quadrangles is given
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1096 J. BOUTTIER, E. GUITTER & G. MIERMONT

by the ECF formula: letting Ln = Ln1 + Ln2 + Ln3 and L = L1 + L2 + L3, this is

#Q (n;Ln1 , Ln2 , Ln3 ) = α (2Ln1 )α (2Ln2 )α (2Ln3 ) [gn]RLn d lnR
dt

∼
n→∞

4Ln
√
Ln1L

n
2L

n
3

π3/2 [gn]RLn d lnR
dt

(6.24)

The coefficient to extract in the right-hand side is given by a convolution of the form

[gn]Rk d lnR
dt

=
n∑

m=0
[gm]Rk

[
gn−m

] d lnR
dt

= 12n 2k
n∑

m=0
QLn(2m+ k)

[
gn−m

] 1
12n−m

d lnR
dt

,

(6.25)

where we have used again the probabilistic representation for the coefficients of Rk.
For our present purposes we should take k = Ln ∼ L

√
2n, but later we will also

need the asymptotic behaviour of the same quantity, where k is of smaller order n1/4.
So let us start with this simpler case, assuming that k = k(n) is bounded by Kn1/4

for some K > 0.
Note that, by the asymptotics (6.13), the coefficients cm = [gm]12−md lnR

dt
involv-

ing the logarithmic derivative of R are uniformly bounded by some constant C,
and equivalent to 1/2

√
πm as m → ∞. So if we fix β ∈ (1/2, 1), we can rewrite

using (6.13) the sum arising in (6.25) as

(6.26)
nβ∑
m=0

Qk(2m+ k)(1 + εn)
2
√
πn

+ rn

where εn is a sequence depending only on n and converging to 0, and rn > 0 is a
remainder term which is bounded by C∑m>nβ Qk(2m+ k). Our choice of β and the
fact that k 6 Kn1/4 then implies that rn → 0. So in this case,

(6.27) [gn]Rk d lnR
dt

∼ 12n 2k
2
√
πn

.

Now, for the slightly more delicate case where k = Ln, we rewrite the sum in (6.25) as

1
(Ln)2

×
[

n∑
m=0

cn−m

(
(Ln)2QLn (2m+ Ln)− 2q1

(
2m+ Ln

(Ln)2

))
+ 2

n∑
m=0

cn−mq1

(
2m+ Ln

(Ln)2

)]

and note that by boundedness of (cm) and the local limit theorem (6.15), the first
sum converges to 0 in absolute value. It remains to deal with the second sum. We
introduce some β ∈ (1/2, 1) and split the sum according to whether m 6 n− nβ or
n−nβ < m 6 n. In the first case we can use the asymptotics (6.13) and a comparison
with an integral to obtain

(6.28)
n−nβ∑
m=0

cn−mq1

(
2m+ Ln

(Ln)2

)
∼
√
n
∫ 1

0

q1
(
a/L2

)
2
√
π(1− a)

da ,
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while the sum over n− nβ < m 6 n is clearly O(n−β) by bounding the coefficients
cn−m by C and using the fact that q1 is bounded near 1/L2. Putting things together,
we obtain

(6.29) #Q (n;Ln1 , Ln2 , Ln3 ) ∼
n→∞

(8n)1/4 12n 8Ln

π2

√
L1L2L3

∫ 1

0

qL(t)
2
√

1− t
dt .

By Propositions 6.5 and 6.6 and Theorem 1.1, the number of quadrangulations
M ∈ Q(n;Ln1 , Ln2 , Ln3 ) such that `i(M) = li and Ai(M) = ni for i ∈ {1, 2, 3} is equal
to (letting n0 = n− n1 − n2 − n3)

(6.30)
3∏
i=1

[gni ] (2li)
(

2Lni
Lni − li

)
RLni −li × [gn0 ]Rld lnR

dt

= 12n 8Ln
3∏
i=1

(2li)P2Lni (−2li)QLni −li (2ni + Lni − li)×
1

12n02l [gn0 ]Rld lnR
dt

where l = l1 + l2 + l3 and where we have used once again the probabilistic rep-
resentation of the coefficients. Here the first two extracted coefficients count the
number of annular quadrangulations with a rooted boundary of perimeter 2Lni ,
and a strictly tight boundary of length 2li, and the last one counts the number of
(quadrangulated) pairs of pants with tight boundaries of perimeters 2li, i ∈ {1, 2, 3}.
Proposition 6.5 states that the boundaries of these pairs of pants should be marked,
and we have absorbed the corresponding factors 2li in the product before. We let
li = b(n/2)1/4λic and ni = bnaic for some λi > 0 and ai > 0, i ∈ {1, 2, 3}, such that
a0 = 1− (a1 + a2 + a3) > 0. Then, the local limit theorems give the asymptotics

2liP2Lni (−2li) −→
n→∞

√
2Li
π
rLi(λi) ,(6.31)

QLni −li (2ni + Lni − li) ∼n→∞
1
n
qLi(ai) .(6.32)

Together with (6.27), this implies by taking a quotient with (6.17) that for li, ni as
above,

(6.33) P
(
`i (Mn) = li, Ai (Mn) = ni, i ∈ {1, 2, 3}

)
∼

n→∞
3∏
i=1

( 2
n

)1/4
rLi(λi)×

1
n3

(∫ 1

0

qL(a)
2
√

1− a
da

)−1
qL1(a1)qL2(a2)qL3(a3)
2
√

1− a1 − a2 − a3
.

Since the function of λi, ai appearing in the right hand side (after removing the
factors involving n) is a probability density function on (R+)3 × {(a1, a2, a3) ∈
(0,∞)3 : a1 + a2 + a3 < 1}, we conclude by Scheffé’s lemma. �

7. Conclusion

In this work, we have enumerated bijectively essentially bipartite planar maps
with three tight boundaries, relying on a geometric decomposition of these objects
in terms of elementary pieces with certain geodesic boundaries.
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1098 J. BOUTTIER, E. GUITTER & G. MIERMONT

Let us mention a number of natural extensions of the present work that we plan
on studying in the future. The most natural extension consists in considering maps
with more than three boundaries and/or higher genus. We first remark that the
discussion of Section 6.1, hence Proposition 6.5, extend easily to arbitrary topologies:
a map M of genus g having n boundary-faces which are not necessarily tight can be
decomposed bijectively into a tuple (M (0),M (1), . . . ,M (n)), where M (0) is a map of
genus g with n tight boundary-faces, and whereM (1), . . . ,M (n) are “funnels”, namely
annular maps with one strictly tight boundary-face, as defined in Section 6.2. This
decomposition is closely related to the Joukowsky transform considered in [Eyn16,
Section 3.1.3.1]. Using enumerative results coming from topological recursion, we can
show that the generating function of essentially bipartite maps of genus g with n tight
boundary-faces of prescribed lengths 2`1, . . . , 2`n is a quasi-polynomial generalizing
the lattice count polynomial of [Nor10] (which we recover when setting the weights
for inner faces to zero). This will be discussed in a forthcoming paper.
Furthermore, it would be interesting to address the problem of the enumeration of

maps of genus g with n tight boundaries by a bijective approach. One might think
at first that our decomposition into bigeodesic triangles and diangles could easily be
extended without fundamental changes beyond the case (g, n) = (0, 3) considered
in the present paper. A closer look however shows that a number of new technical
questions arise in the general case: for instance, controlling the exceedances of the
diangles is not as simple as for pairs of pants where these exceedances are entirely
fixed by the boundary lengths. More important, making sure that the bigeodesics
used in the decomposition do not cross, and therefore lead to independent building
blocks, is more challenging for more boundaries or higher genus.
Still, we hope that the tight pairs of pants introduced in this work, or small varia-

tions thereof, will serve as new elementary pieces intervening in the decomposition of
such maps with higher topological complexity. Indeed, pants decompositions are the
canonical way to describe all Riemann surfaces, by cutting them along separating
cycles. In the context of maps, in order to get a canonical decomposition, one needs
to specify along which cycles we cut. In this respect, minimal separating cycles are
the natural candidates, but we must specify which of these minimal cycles we choose
among certain ordered sets C of such cycles. In Section 6.1, we explained why the
choice of “outermost” elements in the ordered set C was crucial to avoid possible
crossings of the various cutting cycles. If we now wish to split a map into two compo-
nents, the ordering of the set C of separating cycles is reversed when viewed from both
components and choosing its outermost element from both sides therefore produces
some overlap between the components, hence a decomposition into non independent
elements. To avoid such overlap, we must instead choose innermost elements from
both sides (so that the overlapping region now becomes an independent building
block), or at least from one side. We then face again the problem that, if we choose
only innermost elements, different cycles around a pair of pants may cross each other.
A probable solution is to consider a mixed prescription, with both outermost and
innermost elements, which would involve as building blocks pairs of pants with, say,
one strictly tight boundary and two tight ones. The question of their enumeration
is therefore an issue that we hope to better understand in the future.
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As we noticed above, Theorems 6.7 and 6.9 imply that minimal separating cycles in
random maps with the topology of the annulus or of the pair of pants admit Rayleigh
statistics in the scaling limit, with a parameter that depends in a similar and simple
way on the boundary lengths. One can naturally wonder whether these statistics also
arise for more boundaries or in higher genera. However, for four boundaries or more,
the minimal separating cycles are not necessarily separating only one boundary from
all the others, and it is likely that more complicated statistics would arise.
Another direction of study would be to control distances between the boundaries.

This program was achieved in the case of three boundary-vertices in [BG08] for planar
quadrangulations and in [FG14] for general planar maps. As discussed in Appendix B,
the results of [BG08] provide an explicit expression for the generating function Xs,t

(respectively Ys,t,u) of balanced bigeodesic diangles (respectively bigeodesic triangles)
with all inner faces of degree 4 and with, say red intervals of lengths s′ 6 s and t′ 6 t
(respectively of lengths s′ 6 s, t′ 6 t and u′ 6 u). Together with the generating
functionRs for elementary slices with (red) right boundary of length s′ < s−1 (s > 1),
known since the very introduction of slices in [BG12], it seems that we have all the
ingredients (at least for quadrangulations) for a proper refined enumeration of pairs
of pants with a control on the (properly defined) geodesic distances between their
boundary-faces or boundary-vertices. Indeed, the lengths s, t, u above, characterizing
the various building blocks, eventually fix the desired distances.
A final framework where our method is likely to apply is that of planar irreducible

maps or maps with girth constraints, for which an interesting connection with Weil–
Petersson volumes was recently pointed out by Budd [Bud22b, Bud22a]. Recall that
the girth is the length of the shortest cycle in the map and that a map is d-irreducible
if its girth is at least d and any cycle of length d is the contour of an inner face.
In [BG14], a slice decomposition was devised to enumerate such families of maps
with one or two boundaries. We expect that this decomposition may be extended to
three boundaries along lines similar to those of the present paper.

Appendix A. A slice-theoretic enumeration of triply pointed
maps

A.1. Recursion relation for R

Call R the generating function of elementary slices (i.e. tight slices of width 1). Let
us show that R satisfies the recursion relation (1.2), which determines it uniquely
as a formal power series in t and in the g2k’s. We use the notations of Figure 2.1
for tight slices, specialized to the case where the interval [c′, c′′] reduces to a single
oriented “base edge” e. Assuming that the slice is not reduced to e, we may consider
its base face f incident to e on its left, and look at the (clockwise) contour path
of f from v′ (incident to c′) to v′′ (incident to c′′): this path has length 2k − 1 if f
has degree 2k. Calling v the apex of the slice (vertex incident to c), we may record
the relative distances `i = d(v′, v) − d(vi, v) for the successively visited vertices vi,
i = 0, . . . , 2k − 1, along the contour path from v0 = v′ to v2k−1 = v′′. The sequence
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((i, `i))06 i6 2k−1 defines a directed path P of length 2k− 1 in Z2 from (0, `0) = (0, 0)
to (2k− 1, `2k−1) = (2k− 1, 1), with k ascending steps with `i− `i−1 = +1 and k− 1
descending steps with `i − `i−1 = −1. Let us now, for each visited vertex vi, cut the
slice along the leftmost geodesic Gi from vi to v. This results into a decomposition
of the slice into k components which are elementary slices, in correspondence with
the k ascending steps of P. More precisely, to each step with `i − `i−1 = +1 is
associated an elementary slice delimited by Gi−1 and Gi, whose base edge connects
vi−1 (at distance d(v, v′)− `i−1 from v) to vi (at distance d(v, v′)− `i−1 − 1 from v)
and whose apex is the first meeting point of Gi−1 and Gi towards v. As for a step
with `i − `i−1 = −1, it does not give rise to any component in the decomposition
since Gi starts by following (counterclockwise) the contour of f from vi (at distance
d(v, v′) − `i from v) to vi−1 (at distance d(v, v′) − `i − 1 from v) and then merges
with Gi−1, so that no faces lie in-between Gi−1 and Gi.
Starting conversely from the directed path P above, viewed as a sequence of edges

all colored in red, and from the k elementary slice components S1, . . . , Sk, we may
recover the original slice by: (i) gluing the (blue) base edge of Sj to (and above) the
(red) edge associated with the jth ascending step of P, then (ii) gluing each blue
boundary edge of a slice Sj to the first available red edge, if any, facing it on its
left (this edge may belong to the red boundary of a preceding slice component or
be associated with a descending step of P) and finally (iii) closing P by adding an
extra base edge e so as to form the base face f of degree 2k.
Once translated in the language of generating functions, the above bijective decom-

position yields the relation (1.2), where the first term t accounts for the elementary
slice reduced to a single edge and the kth term in the sum accounts for elementary
slices with a base face of degree 2k, with g2k the weight of this face, the factor

(
2k−1
k

)
the number of possible oriented paths P of length 2k − 1 with k ascending steps,
and the factor Rk the generating function for the k elementary slice components.

A.2. Proof of the relation T0,0,0 = d ln(R/t)/dt.

Take an elementary slice not reduced to a single edge. Upon gluing its two intervals
[c, c′] and [c′, c] (see again Figure 2.1 for the notations), we get a bipartite planar map
with both a marked oriented edge e (corresponding to the interval [c′, c′′] of length 1
oriented from c′ to c′′) and a marked vertex v (corresponding to the vertex incident
to c) which is closer to the endpoint than to the origin of e. Conversely, starting from
a bipartite planar map with a marked oriented edge e and a marked vertex v closer
to the endpoint than to the origin of e, the elementary slice leading to this marked
map by the above gluing is easily recovered by cutting the map along the leftmost
geodesic towards v starting with e. In the generating function R − t of elementary
slices not reduced to a single edge, the vertex incident to c′ receives a weight t while
that incident to c receives no weight. We immediately deduce that (R− t)/t is the
generating function of planar bipartite maps with a marked oriented edge e and a
marked vertex v closer to the endpoint than to the origin of e, where neither v nor
the origin v′ of e (necessarily distinct from v) receive the weight t. Alternatively, by
first choosing v′ then e, (R− t)/t is the generating function of planar bipartite maps
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with two distinct marked vertices v and v′ (which receive no weight t) and a marked
edge e incident to v′ and whose other extremity is at distance d(v′, v)− 1 from v. If
we now wish to compute instead the generating function B of doubly pointed maps,
without the marked edge e, we may proceed as follows: consider, for a map with
two marked distinct vertices v and v′ the (non-empty) counterclockwise sequence of
edges from v′ to a vertex at distance d(v′, v)− 1 from v, and cut the map along the
leftmost geodesics towards v starting with these successive edges. This results in a
non-empty cyclic sequence of a particular type of elementary slices, all not reduced
to a single edge, which are such that all the non-boundary edges incident to the
vertex v′ incident to the corner c′ lead to vertices at a distance larger than d(v′, v)
from v, the vertex incident to c. Call N the generating function of these particular
elementary slices (with the same weighting convention as for regular tight slices).
We deduce the relation B = − ln(1−N/t) (note that in B, maps are counted with
symmetry factors: a planar map with two marked distinct vertices may have a k-fold
symmetry by “rotating” around the axis of the two marked vertices. It then receives
the weight 1/k). As for the maps counted by (R− t)/t, the additional marked edge
e provides an origin for the cyclic sequence so that the above cutting now results in
a non-empty linear sequence of the same particular tight slices. We now deduce the
relation (R− t)/t = N/t/(1−N/t), from which we eventually get B = ln(R/t). Since
in B the two marked vertices have no weight, taking a derivative with respect to t in
B amounts to the marking of a third vertex on the map, distinct from the already
marked ones. We deduce that T0,0,0 = dB/dt = d ln(R/t)/dt = d lnR/dt− t−1.

Appendix B. Connection with well-labeled maps

We discuss here the connection between our decomposition into bigeodesic diangles
and triangles and another decomposition introduced in [BG08] to characterize the
three-point function of planar maps. We restrict our discussion to the case of quad-
rangulations, i.e. maps whose all inner faces have degree 4, and to the case where the
three boundaries are boundary-vertices. As first noted in [Mie09], such triply pointed
planar quadrangulations may be bijectively encoded by so-called planar well-labeled
maps, which are maps whose vertices carry integer labels with the constraint that

• the difference of labels between any two neighboring vertices is 0 or ±1.
For convenience, the corners of a well-labeled map receive the label of their incident
vertex.

More precisely, as shown in [Mie09], and in [BG08] in the specific case that we
consider here, one may establish a one-to-one correspondence between planar quad-
rangulations with three distinct vertices vA, vB and vC and planar well-labeled maps
with (generically) three faces fA, fB and fC satisfying the additional constraint that

• C1. the frontier between any two faces of the map (i.e. the set of vertices and
edges incident to both faces) is non-empty and the minimum label on this
frontier is 0.
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Figure B.1. Left: The construction of a quadrangulation with three boundary-
vertices vA, vB and vC from a well-labeled map with three faces fA, fB and
fC , as obtained by connecting each corner to its successor. Here rB = 2 and
rA = rC = 1. Right: Schematic picture of a 3-face well-labeled map satisfying C1.
Its skeleton is indicated by thick edges. Each frontier between two given faces
carries minimal label 0.

In the non-generic case where one of the three boundary-vertices is a geodesic vertex
between the other two, one of the faces in the well-labeled map degenerates into a
single vertex, and some of the arguments presented below must be adapted.
Given a planar well-labeled map with three faces satisfying C1, the associated triply

pointed quadrangulation is easily recovered as follows: calling 1− ri the minimum
label among vertices incident to the face fi (i ∈ {A,B,C}), we add a new vertex
vi with label −ri in this face. Within each face, we then connect each corner with
label ` to its successor, which is the first encountered corner with label `− 1 when
going counterclockwise around the face (i.e. with the face on the left). See the left
of Figure B.1 for an example. We finally remove the labels as well as the original
edges of the well-labeled map. In particular, the vertices of the quadrangulation are
identified with those of the well-labeled map, plus the three added vertices vA, vB
and vC .
An important property relating the well-labeled map to its associated quadrangu-

lation is the following:
• Any vertex v incident to fi (i ∈ {A,B,C}) with label `(v) is at a distance
ri + `(v) from vi in the quadrangulation (the property extends trivially to vi
itself since `(vi) = −ri).

From this property, it is then easily shown that those vertices of the frontier between
fi and fj which carry the (minimal) label 0 are precisely the geodesic vertices between
vi and vj (for i 6= j ∈ {A,B,C}) at distance ri from vi and rj from vj.
The generic topology of a planar well-labeled map with three faces satisfying C1

is shown on the right of Figure B.1. Its skeleton, obtained by iteratively removing
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Figure B.2. Schematic picture of the decomposition of a well-labeled map with
three faces satisfying C1 into five well-labeled components, two Y-diagrams and
three chains, by cutting each branch of the skeleton at their extremal vertices
labeled 0 as shown by dashed red lines. The ⊥ signs indicate attached well-
labeled subtrees. The cutting singles out two corners ĉA and ĉB on the chain
C(AB). Similarly, three corners c̃A, c̃B, c̃C are singled out on the Y-diagram Y(ABC).

all the leaves of the map so that all remaining vertices have degree at most 2, has
exactly two 3-valent vertices y(ABC) and y(BAC) and three linear branches between
them made of 2-valent vertices, each branch corresponding to a frontier between
two faces. From C1, each of the three branches carries a minimal label 0. The full
well-labeled map is made of this skeleton and a number of attached well-labeled
subtrees.
We may now perform a canonical decomposition of the map as in [BG08, Sec-

tion 4.3]. Namely, consider the branch at the frontier between, say fA and fB and
call vAB (respectively vBA) the vertex with label 0 closest to y(ABC) (respectively
closest to y(ACB)). We define vBC , vCB and vCA, vAC by cyclic permutation. Clearly,
from the above discussion, vAB and vBA are the extremal elements of SAB in the
sense of Figure 3.4. We may then cut the map at all the vij vertices, resulting in
five well-labeled tree components: the first two components, containing one of the
vertices y(ABC) or y(BAC), will be referred to as Y-diagrams and called Y(ABC) and
Y(BAC) accordingly.
The last three components, lying in-between vij and vji for some i 6= j ∈ {A,B,C},

will be called chains and denoted C(ij). In the cutting process, we must specify to
which component we attach the subtrees incident to the cutting vertices vij. We
use the convention shown on the left of Figure B.2. This is dictated by the fact
that we wish to retain in, say the chain C(AB) the subtree incident to vBA which
follows clockwise the leftmost corner incident to vBA in the face fA of the original
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Figure B.3. Schematic picture of the balanced bigeodesic diangle encoded by the
well-labeled chain C(AB) (see text). Its attachment points are the big blue dots.

well-labeled map, as this subtree may carry the successor of this corner. This choice
of cutting singles out de facto two corners at the extremities of the chain C(AB): a
corner ĉA at vBA and a corner ĉB at vAB, see the right of Figure B.2. Note that
we may identify those vertices of the chain originally in fA (respectively fB) as
the vertices lying in-between ĉA and ĉB (respectively in-between ĉB and ĉA) when
going clockwise around the chain. Similarly, the cutting process marks three corners
c̃A, c̃B, c̃C preceding the retained subtrees at the end of the branches of Y-diagram
Y(ABC), see the right of Figure B.2. By construction, the well-labeled chains have
nonnegative labels on the unique path linking their extremal corners, the latter
having label zero, while for Y-diagrams, all labels along the paths linking the three
extremal corners are strictly positive, except for the corners themselves, which have
label zero.
We now claim that the two Y-diagrams and the three chains resulting from the

decomposition of the well-labeled map precisely encode the two bigeodesic triangles
and the three bigeodesic diangles resulting from our decomposition of the associated
triply pointed quadrangulation. To see this, consider for instance the well-labeled
chain C(AB). We may associate to this chain a balanced bigeodesic diangle with
attachment points vAB and vBA as follows: calling 1− r′A (respectively 1− r′B) the
minimal label of the chain between ĉA and ĉB (respectively between ĉB and ĉA)
when going clockwise around the chain (with r′A 6 rA and r′B 6 rB), we attach to
ĉB a new branch, called the A-branch, made of r′A vertices with labels decreasing
from −1 to −r′A and to ĉA a new branch, the B-branch, made of r′B vertices with
labels decreasing from −1 to −r′B. These branches are represented as red lines in
Figure B.3. Each corner of the chain, except those incident to the new vertices of
the two added red branches, is then connected to its successor, possibly lying on
the newly added red branch (note that going counterclockwise around the external
face corresponds to going clockwise around the chain). The resulting object is a
map with one boundary-face and four boundary intervals, alternating between blue
(geodesic) intervals, corresponding to the sequence of successors of ĉA and that of ĉB,
and red (strictly geodesic) intervals, corresponding to the A- and the B-branch. This
is nothing but a bigeodesic diangle with attachment points vAB and vBA, which is
moreover balanced, with a blue and a red interval of the same length r′A and the other
two of the same length r′B. We can repeat the process to build balanced bigeodesic
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Figure B.4. Schematic picture of the bigeodesic triangle encoded by the well-
labeled Y-diagram Y(ABC) (see text). Its attachment points are the big red dots.

diangles from the chains C(BC) and C(CA). As for the well-labeled Y-diagrams, say for
instance Y(ABC): calling 1−r′′A the minimal label between c̃A and c̃C , we attach a new
red A-branch of length r′′A to the corner c̃C . We do the same by cyclic permutations
of the letters A,B,C. This gives rise to the red lines in Figure B.4. Finally, we
connect as before each corner not along the added red branches to its successor
(possibly lying on the newly added red branches). This clearly creates a bigeodesic
triangle: the fact that the attachment points of this triangles are “red” points in our
terminology is due to the fact that we chose the extremal 0 labels on each frontier so
that any geodesic between vi and vj (i 6= j ∈ {A,B,C}) within the triangle, which
must cross a vertex with label 0, has to pass via the appropriate attachment vertex.
The other triangle is obtained similarly from Y(ACB).
We now claim that gluing the three bigeodesic diangles and two bigeodesic triangles

associated to the three well-labeled chains and the two well-labeled Y-diagrams
according to our procedure I clearly reproduces the quadrangulation associated with
the well-labeled map at hand before its decomposition. This simply results from the
fact that the sequences of successors within the full well-labeled map after gluing
match precisely with the sequences of successors within each of its five well-labeled
components after identification of the glued blue and red intervals, see Figure B.5.
The paths along which the bigeodesic diangles and triangles are glued induce paths
in the resulting quadrangulation, that correspond precisely to leftmost geodesics
launched from the cutting points vij (i 6= j ∈ {A,B,C}) towards the vertices vi at
the extremity of the added red i-branches of the various well-labeled components
which have the smallest label, necessarily equal to −ri.
To conclude, we have a bijective correspondence between (i) balanced bigeodesic

diangles and well-labeled chains, and (ii) bigeodesic triangles and well-labeled Y-
diagrams. With this correspondence, our decomposition of planar quadrangulations
with three boundary-vertices matches precisely that of [BG08] for the associated
well-labeled maps with three faces.
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Figure B.5. The gluing of the bigeodesic triangle encoded by the Y-diagram YABC
and the bigeodesic diangle encoded by the chain C(AB) occurs along leftmost
geodesics launched from vAB in the original quadrangulation and correspond to
sequences of successors both in the well-labeled components (left) and in the
well-labeled map (right).

v

0

-1

−r

· ·
·

Figure B.6. The elementary slice encoded by a well-labeled planted tree with
root label 0 (see text).

As a direct enumerative consequence, we identify X and Y as the generating
functions of properly weighted well-labeled chains and Y-diagrams. More precisely,
if we let t and g = g4 be the inner vertex and face weights in the triply pointed
quadrangulation, each vertex of a well-labeled chain or Y-diagram receives the weight
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t and each edge the weight g. To include the possible degenerate cases (for instance
the case of well-labeled maps with two faces obtained whenever one of the boundary-
vertices is geodesic between the other two), the vertex map, with label 0, must be
considered as a well-labeled Y-diagram as well as a well-labeled chain. Viewed as
well-labeled object generating functions, X and Y are easily obtained as the power
series in t solutions (see [BG08] for a detailed derivation) of

(B.1) R = t+3g R2 , X = t+ 1
t
g R2X

(
1 + 1

t2
g R2X

)
Y = t+ 1

t6
g3R6X3 Y ,

where R is the generating function of well-labeled planted trees with root label 0.
Note that R matches our definition (1.2) for g2k = g δk,2, i.e. is also the generating
function of elementary slices with 4-valent inner faces only. That well-labeled planted
trees encode elementary slices is obtained along the same lines as before: calling
1− r the smallest label in the tree, we attach to the root-corner a branch of length
r with vertices having decreasing labels −1, · · · ,−r as in Figure B.6. Connecting
each corner not incident to one of the new added vertices to its successor creates a
map with a single boundary face, with 4-valent inner faces, having a blue (geodesic)
interval from the extremity v of the added branch to the root vertex counterclockwise
around the map, and a geodesic interval from the root vertex to v, whose portion
which goes from the new added vertex with label −1 to v is strictly geodesic (hence
represented in red). This is precisely an elementary slice.
A simple parametrization of X and Y is obtained by introducing the power series

x solution of

(B.2) x = g R2

t

(
1 + x+ x2

)
as it allows to write

(B.3) X = t
1− x3

1− x , Y = t

1− x3 .
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