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Résumé. — En 1984, Belavin, Polyakov et Zamolodchikov publient un article qui posera
les fondements de l’étude des théories conformes des champs en dimension deux. Suite à ce
travail précurseur les théories conformes des champs de Toda sont introduites dans la littérature
physique en tant que théories possédant, au-delà de la symétrie conforme, une symétrie étendue
communément appelée symétrie de spin supérieur ou W-symétrie. Ces théories de Toda forment
une famille de théories conformes des champs indéxée par les algèbres de Lie complexes, simples
et de dimension finie, pour lesquelles l’algèbre de symétrie contient l’algèbre de Virasoro. Par le
présent document nous décrivons un cadre probabiliste destiné à donner un sens mathématique
rigoureux à ces théories en nous appuyant sur leur définition par intégrale de chemin. Ce faisant,
sont retrouvées certaines des propriétés attendues de telles théories, telles l’anomalie de Weyl
correspondant à un changement conforme de métrique de fond ainsi que la présence de bornes
de Seiberg conditionnant l’existence des fonctions de corrélation.

1. Introduction

1.1. Toda Conformal Field Theories in the physics literature

In 1981, Polyakov presented in a pioneering work [Pol81] a canonical way of
defining the notion of random surface, usually called Liouville conformal field theory
(Liouville CFT hereafter), which is now considered to be an essential feature in the
understanding of non-critical string theory and two-dimensional quantum gravity.
A few years later Belavin, Polyakov and Zamolodchikov (BPZ) presented in their 1984
seminal work [BPZ84] a systematic procedure to solve models which like Liouville
CFT possess certain conformal symmetries, now referred to as two-dimensional
conformal field theories (CFTs in the sequel). The main input of their method was
to exploit the constraints imposed by conformal symmetry through the study of the
algebra of its generators, the Virasoro algebra, which in turn completely determines
(up to the so-called structure constants) the main quantities of interest, namely the
correlation functions of certain special operators, thanks to a recursive procedure
dubbed the conformal bootstrap.

A natural question which appeared shortly after these developments was: what
happens when the algebra of symmetry strictly contains the Virasoro algebra? In
other words, do the same techniques apply when Virasoro symmetry is extended to
feature an additional level of symmetry? Certain extensions of the Virasoro algebra,
called W -algebras, have been first studied by Zamolodchikov in his work [Zam85]
where was presented the notion of higher-spin symmetry, and following this work
two-dimensional CFTs having this extended level of symmetry appeared in the
physics literature in [FL88, FZ87]. In addition to being an object of interest per
se, the study of CFTs with W -symmetry is crucial in the understanding of W -
strings, W -gravity theories or certain statistical physics systems (the articles [FZ85]
and [JMO88] provide explicit instances of such systems) and can be applied to
the understanding of some Wess–Zumino–Novikov–Witten models (such a link is
explained in [FOR+92]). From the representation theory viewpoint the study of
W-algebras has proved to be a seminal topic with numerous applications ranging
from integrable hierarchies to the geometric Langlands program (see [Ara17] and
the references therein).
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Toda Conformal Field Theories 33

Toda Conformal Field Theories are a family of two-dimensional CFTs indexed by
(finite-dimensional) semisimple and complex Lie algebras g. One of their features
is that they may be thought of as realizations of these algebras of symmetry since
they are assumed to provide highest-weight representations of W -algebras. In this
context, the primary fields, defined as random fields on a two-dimensional surface Σ
with special conformal covariance properties, are called Vertex Operators and their
correlations are defined as an average of the product of the fields (taken at different
points of the surface Σ) with respect to the law of a random map called the Toda
field. This construction can be made somehow explicit thanks to the fundamental
fact that Toda CFTs admit a path integral formulation: given a Riemannian metric
g on Σ (with associated scalar curvature Rg, gradient ∂g and volume form vg), the
Toda CFT associated to g is a theory of fields ϕ : Σ → (a, ⟨·, ·⟩) where (a, ⟨·, ·⟩)
is an Euclidean space naturally defined from g (see Subsection 2.1.2). Within this
framework, the (formal) path integral description of Toda CFT reads for arbitrary
test functions F

(1.1) ⟨F ⟩T,g :=
∫
F (ϕ)e−ST,g(ϕ,g)Dϕ

where Dϕ refers to the putative “uniform measure” on the space of square integrable
a-valued maps defined on Σ and ST,g is the Toda action given by

(1.2) ST,g(ϕ, g)

:= 1
4π

∫
Σ

(
⟨∂gϕ(x), ∂gϕ(x)⟩g +Rg⟨Q, ϕ(x)⟩ + 4π

r∑
i=1

µie
γ⟨ei,ϕ(x)⟩

)
vg(dx),

with
• (ei)1 ⩽ i ⩽ r a special basis of a made of so-called simple roots,
• ⟨·, ·⟩g the scalar product associated to the tangent space of a-valued functions

defined on Σ,
• the constants µi (1 ⩽ i ⩽ r), positive and dubbed the cosmological constants,
• γ > 0 the coupling constant,
• Q the a-valued background charge.

In order to ensure conformal symmetry, the background charge is related to the
coupling constant via the relation Q := γρ+ 2

γ
ρ∨ where ρ and ρ∨ are special vectors

in a (see Subsection 2.1.2. Let us emphasize that one recovers Liouville CFT when
g is the Lie Algebra sl2 (of 2 × 2 complex matrices with vanishing trace, in which
case r = 1) and that the convention for γ in this paper differs by a scaling factor of√

2 from the standard convention for Liouville CFT in the probabilistic literature.
The next Section 2 is devoted to providing more details on these notations.

At this stage, it is worth mentioning that the action functional (1.2) has a relevant
geometrical meaning in the context of W -geometry, introduced by Gervais and
Matsuo in [GM92]. Though we will not prove the following claim in this paper, the
connection with W -geometry can be recast in the probabilistic language as follows.
Up to renormalizing the measure (1.1) by its total mass, the Toda field ϕ can be
understood as a random map from the Riemannian surface (Σ, g) to a whose law is
described by
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34 B. CERCLÉ, R. RHODES & V. VARGAS

(1.3) ∀ F test function, Egγ,µ[F (ϕ)] := ⟨F ⟩T,g
⟨1⟩T,g

.

At this informal level of discussion, we expect that, in the semi-classical limit γ → 0
such that for all 1 ⩽ i ⩽ r, µi = Λ

γ2 with fixed Λ > 0, the law of the Toda field
(rescaled by γ) will converge to the (classical) solution of the Toda equation:

(1.4) 2∆gu = Rgρ
∨ + 4πΛ

r∑
i=1

eie
⟨ei,u⟩ on Σ.

We expect this conjecture to be true at the level of large deviations (or semi-classical
analysis) in the spirit of the paper [LRV22]. Yet one has to be cautious here because
the normalization constant ⟨1⟩T,g may become infinite depending on the topology of Σ.
In the rest of the document, we will focus on the case where Σ is the Riemann sphere
S2 (though the present framework can be extended to other topologies), in which
case ⟨1⟩T,g = ∞. Still one can define quantities with insertion of a certain number
of Vertex Operators, whose parameters obey the Seiberg bounds [Sei90] in order
to ensure existence of the corresponding correlation function (see next subsection).
Interestingly, it is explained in [GM92] that in this setup (that is Σ = S2) sln Toda
equations (where one adds appropriate conical singularities) can in some sense be
interpreted as compatibility equations for a meromorphic embedding of a two-sphere
into a complex projective plane CPn, thus establishing a correspondence between
solutions of the Toda equation (1.4) and certain meromorphic embeddings from
CP1 to CPn, a problem which somehow provides a generalization of the celebrated
uniformisation of Riemann surfaces. More details can be found in Subsection 5.2.

1.2. A probabilistic construction

Though an algebraic approach to CFTs was developped shortly after the BPZ
paper (see the notion of Vertex Operator Algebra [Bor86, FLM89]), a probabilistic
approach to conformal invariance was only developed recently following the intro-
duction by Schramm [Sch11] of random curves, called Schramm–Loewner Evolutions
(SLEs), which describe (conjecturally at least) the interfaces of critical models of
statistical physics (such as percolation or the Ising model). More recently, there
has been a huge effort in probability theory to make sense of Liouville CFT within
the realm of random conformal geometry and the scaling limit of random planar
maps (see [LG13, Mie13, GM21, DM21, DDDF20, DFG+20]). Another approach,
based on the path integral formulation of Liouville CFT in the physics literature,
was developed in [DKRV16, DRV16, HRV18, GRV19] to give a rigorous probabilistic
construction of the correlation functions of Liouville CFT. This construction initiated
a program [KRV19] to lay the mathematical foundations of the conformal bootstrap
procedure envisioned in physics by BPZ, namely that one can express the Liouville
CFT correlation functions in terms of representation theoretical special functions.
The building blocks are an explicit formula for the three point correlation functions
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(or equivalently the structure constants) and a recursive procedure for the higher cor-
relations. The explicit formula for the three-point structure constants discovered in
the physics literature, the celebrated DOZZ formula, was recovered probabilistically
in [KRV20] and a probabilistic justification of the conformal bootstrap formalism
for the higher order correlations was provided recently in [GKRV20].

Building on [DKRV16], our goal here is to provide a probabilistic definition of
Toda CFTs in the case where we consider the underlying Lie algebra to be a finite-
dimensional simple and complex Lie algebra, and when the manifold on which the
theory is constructed is the (Riemann) sphere. To do so we follow the ideas developed
in the case of Liouville CFT (which corresponds to the sl2 case) in [DKRV16] and
interpret the path integral formulation of the theory as a formal way of defining a
measure on some functional space. More precisely we interpret the mapping defined
via the path integral (1.1) as a measure F 7→ ⟨F ⟩T,g on the Sobolev space with
negative index H−1(S2 → a, g) (which we define in (2.4)); in order to construct
this measure we introduce a probabilistic framework which involves two objects:
the Gaussian Free Field (GFF) and the exponential of the GFF called Gaussian
Multiplicative Chaos (GMC).

The presence of the GFF is related to the presence of the square gradient term
in the Toda field action and has proven to be particularly relevant in the context
of constructive conformal field theory. But as opposed to Liouville CFT where only
one GFF is involved in the construction, in Toda CFTs we have to consider several
GFFs that are coupled in a way that is prescribed by the underlying structure of
the Lie algebra. The fields of Toda CFTs are well-defined but non-regular since they
exist only in the sense of Schwartz distributions; therefore the exponential terms
that appear in (1.2) are not well-defined objects. However, GMC theory provides a
way of making sense of these terms as (random) Radon measures.

This interpretation allows to construct a regularized partition function by taking
F = 1 in (1.1); however and similarly to the existence of Seiberg bounds in Liouville
CFT [Sei90] this partition function will not converge in relation with an obstruction of
geometrical nature: the Gauss–Bonnet theorem entails that classical Toda equations
(i.e the equations of motion associated to this action) cannot admit solutions on the
Riemann sphere. This difficulty can be overcome by looking at special functionals F
that admit Vertex Operators as factors; by adding these extra terms to the measure
the partition function becomes the correlation function of Vertex Operators and
is predicted to exist as long as some conditions on these operators are satisfied.
To define these Vertex Operators one relies on a regularization of the Toda field and
introduces the regularized Vertex Operator Vα,ε(z), which is expressed for z on the
Riemann sphere in terms of the Toda field Φ and a weight α ∈ a: up to constant
terms, Vα,ε(z) is defined as ε|α|2/2e⟨α,Φε⟩ where Φε is the field Φ smoothed up at scale
ε (its definition will be made precise in Subsection 2.2.3). Our main result provides
a necessary and sufficient condition that ensures the existence of the correlation
functions (defined as limits of ⟨∏N

k=1 Vαk,ε(zk)⟩T,g when the cut-off ε is sent to 0).
Moreover, the correlations are indeed conformally covariant as predicted by CFT:

Theorem 1.1. — Let g be a finite-dimensional simple and complex Lie algebra
and assume that γ ∈ (0,

√
2). If g is any Riemannian metric in the conformal class of

TOME 6 (2023)
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the standard round metric on the sphere ĝ, let ⟨∏N
k=1 Vαk,ε(zk)⟩T,g be the regularized

correlation function of the g-Toda theory. Then:
1. (Seiberg bounds): The limit〈

N∏
k=1

Vαk(zk)
〉
T,g

:= lim
ε→0

〈
N∏
k=1

Vαk,ε(zk)
〉
T,g

exists and is non trivial if and only if the two following conditions hold for all
i = 1, . . . , r:

• ⟨∑N
k=1 αk−2Q,ω∨

i ⟩ > 0 where the (ω∨
i )1 ⩽ i ⩽ r are the fundamental cowei-

ghts (i.e form the basis dual to that of the simple roots),
• for all 1 ⩽ k ⩽ N , ⟨αk −Q, ei⟩ < 0.

2. (Conformal covariance): For any Möbius transform of the plane ψ〈
N∏
k=1

Vαk(ψ(zk))
〉
T,g

=
N∏
k=1

|ψ′(zk)|−2∆αk

〈
N∏
k=1

Vαk(zk)
〉
T,g

.

where the conformal weights are given by ∆αj := ⟨αj2 , Q− αj
2 ⟩.

3. (Weyl anomaly): For appropriate φ (more precisely φ ∈ C̄1(R2): see nota-
tions in Section 2) then〈

N∏
k=1

Vαk(zk)
〉
T,eφĝ

= e
cT
96πSL(φ,ĝ)

〈
N∏
k=1

Vαk(zk)
〉
T,ĝ

where SL is the Liouville functional (with vanishing cosmological constant)

SL(φ, ĝ) :=
∫
S2

(
|∂ĝφ|2ĝ + 2Rĝφ

)
dvĝ,

and the central charge cT is given by cT = r + 6|Q|2.

The value of the central charge can be described explicitly in terms of the coupling
constant γ and the underlying Lie algebra. Indeed, finite-dimensional and simple
complex Lie algebras are completely classified and belong (up to isomorphism) to
finitely many families of Lie algebras (see Subsection 2.1.2) for which the central
charge is explicit: see (2.16) or (3.6).

Our main statement can be understood as a rigorous definition of the correlation
functions of Toda CFTs, but also of the law of the Toda field Φ (when we have fixed
marked points (z,α) = (zk, αk)1 ⩽ k ⩽ N that satisfy the Seiberg bounds) by setting

(1.5) E(z,α) [F (Φ)] :=

〈
F

N∏
i=1

Vαi(zi)
〉
T,g〈

N∏
i=1

Vαi(zi)
〉
T,g

where F is any bounded and continuous functional on

H−1
(
S2 → a, g

)
and

〈
F

N∏
i=1

Vαi(zi)
〉
T,g
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is the limit of ⟨F ∏N
k=1 Vαk,ε(zk)⟩T,g when the cut-off ε goes to 0 (this more general

case can be handled similarly to the case F = 1).

Remark 1.2. — The above construction can be generalized when one considers
as underlying Lie algebra any semisimple and complex Lie algebra. Indeed, from
the classification of semisimple Lie algebras (see for instance [Hum72]), such a Lie
algebra can be written as a direct sum of simple Lie algebras g = ⊕p

k=1gk. Moreover
a general property of Toda CFTs (which can be derived from the form of the Toda
field action) is that for A,B two semisimple and complex Lie algebras

(1.6)
〈

N∏
k=1

V(αk,βk)(zk)
〉A⊕B

T,g

=
〈

N∏
k=1

Vαk(zk)
〉A
T,g

〈
N∏
k=1

Vβk(zk)
〉B
T,g

,

where with the notation ⟨·⟩gT,g we have stressed the dependence on the Lie Alge-
bra g. This provides a way of constructing correlation functions for general finite-
dimensional and semisimple complex Lie algebras. The latter equation also implies
that the central charges add up, in the sense that

(1.7) cT,A⊕B = cT,A + cT,B

where here again the notation cT,g stresses the dependence on the Lie Algebra g.

1.3. Future directions

The present document represents the starting point of a mathematical study of
Toda CFTs, whose understanding has proved to be key in many domains of both
the physics and mathematics community. In particular the probabilistic framework
introduced to give a meaning to Toda CFTs will hopefully initiate a thorough
investigation of this family of CFTs from a mathematical viewpoint. Let us highlight
below some outlooks we find particularly relevant and that the setup introduced in
this paper should hopefully allow to address.

Integrability

One of the main specificities of Toda CFTs is the existence of a higher level
of symmetry encoded by W -algebras. This symmetry arises via so-called Ward
identities involving holomorphic currents and that constrain correlation functions.
In the context of the sl3 Toda CFT, it has been proved by Y. Huang and the first
author in [CH22] that, thanks to the present probabilistic framework, it is possible
to provide a rigorous meaning to such identities from which can be derived a BPZ-
type differential equation for certain four-point correlation functions. This should
pave the way to the computation of some Toda three-point correlation functions,
as predicted in the physics literature, and that generalize the celebrated DOZZ
formula [DO94, ZZ96, KRV20] for Liouville CFT. Subsection 5.1 provides additional
details with respect to this integrability perspective.
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Conformal bootstrap

The conformal bootstrap is a powerful tool for solving CFTs, based on a systematic
exploitation of the constraints imposed by conformal symmetry. In Liouville CFT it
takes the form of a recursive procedure to compute any correlation function from
three-point correlation functions, given the knowledge of the so-called conformal
blocks. Recently it was shown by Guillarmou, Kupiainen and the last two authors
in [GKRV20] that such a procedure was indeed valid for Liouville CFT, based on
a mathematically rigorous setup. Proving that such a machinery would work for
Toda CFTs is more involved and at the moment remains an open question, even in
the physics literature, and would require a spectral analysis of certain commuting
Hamiltonians acting on a Fock space.

W-geometry

In Liouville CFT, critical points of the action functional describe conformal metrics
with constant negative curvature and represent classical fields of the theory. A
standard way to recover such fields from the quantum model is to perform a semi-
classical analysis, that is to study the behaviour of the theory when the coupling
constant —representing the level of randomness considered— is taken to zero. This
has been successfully carried out by H. Lacoin and the last two authors in [LRV22]
for Liouville CFT on the sphere. The question of performing a similar analysis and
its meaning in the framework of Toda CFTs is discussed in Subsection 5.2 below.

2. Background and notations

2.1. Some reminders on conformal geometry and Lie algebras

2.1.1. Conformal geometry on the Riemann sphere

The sphere S2 can be mapped by stereographic projection to the (compactified)
plane (i.e. the Riemann sphere) which we view both as R2 ∪ {∞} and C∪ {∞}. We
will work under this more convenient framework in the sequel.

Metrics on the Riemann sphere. We will consider differentiable conformal
metrics on the two-dimensional sphere S2; they can be identified via stereographic
projection with metrics on the plane of the form g = eφĝ with ĝ is the standard
round metric

(2.1) ĝ := 4
(1 + |x|2)2 |dx|2,

and φ ∈ C̄1(R2) where, for k ⩾ 0, C̄k(R2) stands for the space of functions
φ : R2 → R for which both φ and x 7→ φ(1/x) are k-times differentiable with
continuous derivatives. The reader may check that the metric ĝ is the pushforward
(via stereographic projection) of the standard metric on the Riemann sphere S2.
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We will thus work with such metrics g on the plane, for which we will denote by
∂g the gradient, △g the Laplace–Beltrami operator, Rg = −△g ln

√
det g the Ricci

scalar curvature and vg the volume form. If u, v ∈ R2, we denote by (u, v)g the inner
product with respect to the metric g (| · |g stands for the associated norm). When no
index is given, this means that the object has to be understood in terms of the usual
Euclidean metric on the plane (i.e. ∂, △, R, v and (·, ·)). Since the stereographic
projection is an isometry, we already know that the spherical metric ĝ is such that
Rĝ = 2 (its Gaussian curvature is 1) with total mass vĝ(R2) = 4π.

More generally, two metrics g and g′ will be said to be conformally equivalent
when

g = eφg′

for φ ∈ C̄1(R2). It is readily seen that as soon as g′ is in the conformal class
of the spherical metric —that is when g′ = eφĝ with φ ∈ C̄1(R2)— one has∫
R2(|∂g′φ|2g′ + 2Rg′φ) dvg′ < ∞. Furthermore, for φ ∈ C̄2(R2), the curvatures of two

such metrics are related by the relation
(2.2) Rg = e−φ

(
Rg′ − ∆g′φ

)
.

In what follows and for given metrics g and h ∈ C̄1(R2), we will denote by mg(h)
the mean value of h in the metric g, that is the quantity

(2.3) mg(h) := 1
vg (R2)

∫
R2
h(x) vg(dx)

and work in the Sobolev space H1(R2, g), which is the closure of C∞
c (R2) with respect

to the Hilbert-norm
(2.4)

∫
R2
h(x)2 vg(dx) +

∫
R2

|∂gh(x)|2g vg(dx).

The continuous dual of H1(R2, g) will be denoted H−1(R2, g). It may be useful to
note that the Dirichlet energy is a conformal invariant, that is to say is independent
of the metric within a given conformal class:

(2.5)
∫
R2

|∂g′h(x)|2g′ vg′(dx) =
∫
R2

|∂gh(x)|2g vg(dx).

Green kernels. Given a metric g on the Riemann sphere that is conformally
equivalent to the spherical metric ĝ, we denote by Gg the Green function of the
problem

△gu = −2π (f −mg(f)) on R2,
∫
R2
u(x) vg(dx) = 0

where f belongs to the space L2(R2, g) and u is in H1(R2, g). This means that the
solution u can be expressed as

(2.6) u =
∫
R2
Gg(·, x)f(x)vg(dx) =: Ggf

with mg(Gg(x, ·)) = 0 for all x ∈ R2. The kernel Gg has an explicit expression given
by (see [DKRV16, Equation (2.9)])

(2.7) Gg(x, y) = ln 1
|x− y|

−mg

(
ln 1

|x− ·|

)
−mg

(
ln 1

|y − ·|

)
+ θg
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where
θg := 1

vg(R2)2

∫
R2

∫
R2

ln 1
|x− y|

vg(dx)vg(dy).

For instance for the spherical metric this becomes

(2.8) Gĝ(x, y) = ln 1
|x− y|

− 1
4 (ln ĝ(x) + ln ĝ(y)) + ln 2 − 1

2 .

Another well-known property of these Green functions (see [DKRV16, Proposi-
tion 2.2] for instance) is that they are conformally covariant in the sense that:

Lemma 2.1 (Conformal covariance). — Let ψ be a Möbius transform of the
Riemann sphere and g be a Riemannian metric conformally equivalent to the spherical
one. Then
(2.9) Ggψ(x, y) = Gg (ψ(x), ψ(y))

where gψ(z) = |ψ′(z)|2 g(ψ(z)) is the pullback of the metric g by ψ.
Again let us register what happens for the spherical metric:

(2.10) Gĝ (ψ(x), ψ(y)) = Gĝ(x, y) − 1
4 (ϕ(x) + ϕ(y))

where ϕ is such that eϕ = ĝψ
ĝ

.

2.1.2. Lie algebras and the Toda field action

We provide here the background on Lie algebras needed to make sense of the path
integral definition of Toda CFTs. We will be very synthetic and refer for instance to
the textbook [Hum72] for additional details.

Finite-dimensional simple and complex Lie algebras. Simple Lie algebras
are (non-Abelian) Lie algebras enjoying the remarkable property that they do not
admit any proper, nonzero ideals. When they are finite-dimensional and complex,
such an assumptions leads to a classification of such Lie algebras up to isomorphism.
Namely a simple and complex Lie algebra is either isomorphic to a classical Lie
algebra, that is one of the Lie algebras (An)n ⩾ 1 (corresponding to sln+1), (Bn)n ⩾ 2
(for o2n+1), (Cn)n ⩾ 3 (spn) and (Dn)n ⩾ 4 (o2n), or an exceptional Lie algebra, that is
either E6, E7, E8, F4 or G2.

To any finite-dimensional simple and complex Lie algebra g is naturally attached
an Euclidean space (a, ⟨·, ·⟩). This finite-dimensional real vector space is such that
the Cartan subalgebra of g can be written as a ⊕ ia, and comes equipped with a
(positive definite) scalar product ⟨·, ·⟩. This scalar product is inherited from the
Killing form κ of g in that both are proportional one to the other. This Euclidean
space is unique up to isomorphism and can be thought of as Rr endowed with its
standard scalar product, where r is the rank of g. This Euclidean space also comes
with a special basis (ei)1 ⩽ i ⩽ r made of so-called simple roots. This basis satisfies the
property that

(2.11) 2⟨ei, ej⟩
⟨ei, ei⟩

= Ai,j for all 1 ⩽ i, j ⩽ r
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where A is the Cartan matrix of g, explicit for g as considered. For instance the
sln Cartan matrix is tridiagonal with 2 on the diagonal and −1 on the entries (i, j)
with |i − j| = 1. In general the entries of this matrix are integral, equal to 2 on
the diagonal and non-positive elsewhere; the matrix is invertible. It is common to
renormalize the scalar product so that the longest roots have squared norm 2, which
we will do in the sequel. The renormalization constant used

is given by 2h∨, where h∨ is the so-called dual Coxeter number, an explicit positive
integer that depends on the underlying Lie algebra.

It is very natural to introduce the basis of the fundamental weights (ωi)1 ⩽ i ⩽ r,
which is a basis of a defined by setting

(2.12) ωi :=
r∑
l=1

(
A−1

)
i,l
el.

They are defined so that (δij is the Kronecker symbol)

(2.13) ⟨e∨
i , ωj⟩ = δij, ⟨ωi, ωj⟩ =

r∑
l,l′=1

(
A−1

)
i,l
Al,l′

(
A−1

)
l′,j

=
(
A−1

)
i,j

where e∨
i := 2 ei

⟨ei,ei⟩ is the coroot associated to ei. The Weyl vector which is defined
by

(2.14) ρ :=
r∑
i=1

ωi

naturally enjoys the property that ⟨ρ, e∨
i ⟩ = 1 for all 1 ⩽ i ⩽ r. We will also consider

the Weyl vector associated to the coroots by considering the vector ρ∨ = ∑r
i=1 ω

∨
i

where the (ω∨
i )1 ⩽ i ⩽ r are defined in such a way that ⟨ω∨

i , ej⟩ = δi,j for all 1 ⩽ i, j ⩽ r.
The squared norm of the Weyl vector can be expressed explicitly in terms of the Lie
algebra under consideration via the Freudenthal–de Vries strange formula for simple
Lie algebras [FdV69, Equation (47.11)](1)

(2.15) |ρ|2 = h∨ dim g

12 ·

Using the explicit values of h∨ and dim g this quantity is seen to given by

n(n+ 1)(n+ 2)
12 for An,

n(2n− 1)(2n+ 1)
12 for Bn,

n(n+ 1)(2n+ 1)
12 for Cn,

(n− 1)n(2n− 1)
6 for Dn,

(2.16)

and 78, 399
2 , 620, 39, 14

3 for the exceptional Lie algebras E6, E7, E8, F4 and G2. More
generally we can explicitly compute the values of |ρ∨|2 and ⟨ρ, ρ∨⟩ in all the cases
considered (see Table (3.6) below).

(1)This equation differs from the one in [FdV69] by a multiplicative factor 2h∨. This is due to our
normalization convention for the scalar product ⟨·, ·⟩ on a∗.
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To finish this quick introductory part on simple Lie algebras let us mention the
following duality relation between two vectors α, β ∈ a

(2.17) ⟨α, β⟩ =
r∑
i=1

⟨α, ωi⟩ ⟨β, e∨
i ⟩ ,

which follows from the fact that, since ⟨ωi, e∨
j ⟩ = δij, one has α = ∑r

i=1⟨α, ωi⟩e∨
i .

Toda field action. Given φ and ϕ two differentiable maps from R2 to a(2) , φ =∑r
i=1 φiωi and ϕ = ∑r

i=1 ϕiωi, let us set

(2.18) ⟨∂gφ, ∂gϕ⟩g :=
r∑

i,j=1
⟨ωi, ωj⟩(∂gφi, ∂gϕj)g.

Recall that we have defined the Toda field action ST,g in the metric g for the Lie
algebra g by the expression

(2.19) ST,g(ϕ, g)

:= 1
4π

∫
R2

(
⟨∂gϕ(x), ∂gϕ(x)⟩g +Rg ⟨Q, ϕ(x)⟩ + 4π

r∑
i=1

µie
γ⟨ei,ϕ(x)⟩

)
vg(dx)

where we have introduced the background charge

(2.20) Q := γρ+ 2
γ
ρ∨,

µ := (µ1 > 0, · · · , µr > 0) are the cosmological constants and γ > 0 is the coupling
constant. In the sequel, we assume that γ satisfies the condition

(2.21) γ ∈
(
0,

√
2
)
.

The condition on γ is the optimal condition ensuring that the probabilistic construc-
tion makes sense(3) : this will become clear later when connecting to GMC theory. For
later purpose we stress the following crucial property of the background charge Q:

(2.22) For all 1 ⩽ i ⩽ r, ⟨Q, ei⟩ = γ
⟨ei, ei⟩

2 + 2
γ

and ⟨Q, e∨
i ⟩ = γ + 4

γ⟨ei, ei⟩
·

The path integral we aim to construct corresponds to a measure on a suitable space
of maps ϕ : R2 → a formally corresponding to

(2.23) e−ST,g(ϕ,g)Dϕ.

As we will explain below, this can be achieved thanks to the introduction of the
GFF.

(2)The scalar field φ being studied in Toda CFTs usually has values in a∗. To keep notations simple
we adopt the convention that φ actually takes values in the space of roots a. This identification is
possible thanks to the Riesz representation theorem.
(3) Recall that here our convention on γ is different from the standard convention for Liouville CFT
in the probabilistic literature by a factor of

√
2.
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2.2. Probabilistic interpretation of the path integral

2.2.1. Gaussian measure interpretation of the squared gradient

The Toda field action can be decomposed as a sum of different terms. The first
one is the quadratic term

1
2π

∫
R2

⟨∂gϕ(x), ∂gϕ(x)⟩g vg(dx) = 1
2π

∫
R2

⟨ϕ(x),−△gϕ(x)⟩g vg(dx) =: ⟨ϕ,−△gϕ⟩g
which is reminiscent of a Gaussian measure. Indeed, the measure formally written as

(2.24) e− 1
2 ⟨ϕ,−△gϕ⟩gDϕ,

when restricted to the space

Σ :=
{
ϕ ∈ H−1

(
R2 → a, g

)
;
∫
R2
ϕ(x) vg(dx) = 0

}
where H−1(R2 → a, g) is the set of a-valued (generalized) functions with each compo-
nent (with respect to a basis of a) in H−1(R2, g), can be understood as the measure
on a Gaussian space (⟨ϕ,−△gf⟩g)f ∈ H1 with covariance kernel given by ⟨h,−△gf⟩g.
In other words we are looking for a Gaussian field enjoying the property that
(2.25) [⟨ϕ,−△gf⟩g⟨ϕ,−△gh⟩g] = ⟨h,−△gf⟩g
for f, g ∈ H1(R2 → a, g). When r = 1, this is achieved by introducing the GFF
Xg with vanishing vg-mean on the sphere, that is a centered Gaussian random
distribution with covariance kernel given by the Green function Gg (see [Dub09,
She07] for more details on this object). An important feature of the GFF is that it
is not defined pointwise but rather belongs to the distributional space H−1(R2, g).
For generic rank this is done by considering additional fields and setting

(2.26) Xg :=
r∑
i=1

Xg
i ω

∨
i ,

where Xg
1 , . . . , X

g
r are r such GFFs with covariance structure given by

(2.27) E
[
Xg
i (x)Xg

j (y)
]

= ⟨ei, ej⟩Gg(x, y).

This property implies that for any pair of vectors u, v ∈ a we have
(2.28) E [⟨Xg(x), u⟩⟨Xg(y), v⟩] = ⟨u, v⟩Gg(x, y).

To summarize we may wish to interpret the formal Gaussian measure (2.24) re-
stricted to Σ as

Z(g)−1
∫
F (ϕ)e− 1

4π

∫
R2 ⟨∂gϕ(x),∂gϕ(x)⟩g vg(dx)Dϕ = E [F (Xg)]

for any continuous and bounded functional F on H−1(R2 → a, g), where Z(g) stands
for the total mass of the Gaussian integral (2.24)

Z(g) :=
(

det(Σ)
volg(R2)r

)− 1
2

,
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where Σ is the covariance matrix

(2.29) Σ := −△g

2π ⊗ A

with A the Cartan matrix of g and det(Σ) is given by a regularized determinant. To
be more specific, the Laplacian −∆g

2π acting over H1(R2 → R, g) has positive (apart
from the zero eigenvalue) and discrete spectrum (λj)j ⩾ 0, thanks to which one can
define its spectral Zeta function ζ(s) := ∑

j ⩾ 1 λ
−s
j for Re(s) ≫ 1. The associated

regularized determinant is then given by

det
(

−∆
2π

)
= exp

(
−∂sζ(s)|s=0

)
.

A remarkable property of the partition function Z(g) is its variation under a con-
formal change of metric. Indeed in the r = 1 case it is proved in [OPS88, Equation
(1.13)] that

log det (−△g′)
volg′(R2)r = log det (−△g)

volg (R2)r + 1
96π

∫
R2

(
|dφ|2g + 2Rgφ

)
vg(dx)

with g′ = eφg. For r > 1 since △ acts independently on the r components of a map
R2 → Rr we see that det(−△g) = det(−△1

g)r where △1 denote the Laplace operator
acting on H1(R2 → R, g). Therefore

(2.30) log det (−△g′)
volg′ (R2)r = log det (−△g)

volg (R2)r + r

96π

∫
R2

(
|dφ|2g + 2Rgφ

)
vg(dx).

As a consequence, up to a global factor, one has

(2.31) Z (eφĝ) = det(A)− 1
2 e

r
96π

∫
R2(|dφ|2ĝ+2Rĝφ)vg(dx)

within the conformal class of the spherical metric ĝ.
However in the above construction we do not take into account the fact that the

GFF Xg has zero mean in the metric g and, because the kernel of the Laplace
operator △ over H1(R2 → a, g) consists of constant functions, we can actually shift
the field Xg by a constant function without affecting Equation (2.25). To overcome
this issue we will introduce so-called zero modes in the interpretation of the squared
gradient term as a Gaussian measure. To do so we introduce the Lebesgue measure
dc on a by setting for each positive measurable function F : a → R

(2.32)
∫
a
F (c) dc := det(A) 1

2

∫
Rr
F

(
r∑
i=1

ciω
∨
i

)
dc1 . . . dcr,

where dc1, . . . , dcr stands for the Lebesgue measure with respect to each variable
ci

(4) . By doing so we are led to the following probabilistic interpretation of the formal
(full) Gaussian measure (2.24)

(2.33)
∫
F (ϕ)e− 1

2 ⟨ϕ,−△gϕ⟩gDϕ = Z(g)
∫
a
E
[
F
(
Xg + c)

)]
dc

(4)The prefactor det(A) 1
2 in the equation comes from the fact that the basis (ω∨

i )1 ⩽ i ⩽ r is not
orthonormal.
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for each continuous and bounded functional F on H−1(R2 → a, g) and g in the
conformal class of the spherical metric.

2.2.2. Gaussian Multiplicative Chaos interpretation of the exponential potential

It remains to treat the other terms that appear in the Toda field action (1.2):
1

4π

∫
R2

(
Rg(x)⟨Q, ϕ(x)⟩ + 4π

r∑
i=1

µie
γ⟨ei,ϕ(x)⟩

)
vg(dx).

The first term perfectly makes sense if we remember that the GFF has a meaning
in the distributional sense. However the second term does not make sense because
of the lack of regularity of the field. For it to be meaningful we need to make use of
the notion of Gaussian Multiplicative Chaos (see [Kah85, RV14]) which relies on a
proper renormalization of some regularization of the GFF.

Definition 2.2. — Let ηε := 1
ε2η( ·

ε
) be a smooth mollifier. We define the regu-

larized field Xε by considering the convolution approximation of X:
(2.34) Xε := X ∗ ηε.

Definition 2.3. — Assume that γ <
√

2 and consider the GFF Xg
i = ⟨ei, Xg⟩

from Equation (2.27). From (2.39) and basics of GMC theory [RV14], the following
convergence holds in probability in the space of Radon measures (equipped with the
weak topology):

(2.35) Mγei,g(dx) := lim
ε→ 0

e
⟨γei,Xg

ε (x)⟩− 1
2E
[
⟨γei,Xg

ε (x)⟩2
]
vg(dx).

The random measure Mγei,g(dx) is non trivial (i.e. different from 0) and is called the
Gaussian Multiplicative Chaos (GMC) measure associated to the field ⟨γei, Xg⟩.

More generally the GMC measure

Mα,g(dx) := lim
ε→ 0

e
⟨α,Xg

ε (x)⟩− 1
2E
[
⟨α,Xg

ε (x)⟩2
]
vg(dx)

exists and is non trivial if and only if ⟨α, α⟩ < 4.

Remark 2.4. — The statement of [DKRV16, Proposition (2.5)] can be easily
adapted to show that the regularized GFF thus defined has a variance which
evolves as

E
[
X ĝ
i,ε(x)X ĝ

j,ε(x)
]

= ⟨ei, ej⟩
(

− ln ε− 1
2 ln ĝ(x) + θη + o(1)

)
when ε goes to 0, and where we have set θη :=

∫
C
∫
C η(x)η(y) ln 1

|x−y|v(dx)v(dy) +
ln 2 − 1

2 (recall that v denotes the standard Lebesgue measure). As a consequence
the GMC measure defined above and the limiting measure defined by

lim
ε→ 0

εγ
2
e

〈
γei,X

ĝ
ε (x)+Q

2 ln ĝ− γeiθη
2

〉
v(dx)

actually define the same random measure.
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In the end we interpret the path integral of Toda CFTs in a probabilistic way by
making the identification for F ∈ H−1(R2 → a, g):

(2.36) Z(g)−1
∫

Σ
F (ϕ)e−ST,g(ϕ,g)Dϕ :=

lim
ε→ 0

∫
a
E
[
F
(
Xg
ε + Q

2 ln g + c)
)
e− 1

4π

∫
R2 Rg(x)⟨Q,Xg

ε (x)+c⟩vg(dx)−
∑r

i=1 µie
γ⟨ei,c⟩Mγei,g

ε (C)
]
dc,

when the limit exists and where g = eφĝ is in the conformal class of the spherical
metric.

2.2.3. Vertex Operators

There is a class of functionals F which play a key role in the study of Toda CFTs;
usually referred to as Vertex Operators, computing their correlation functions is often
one of the main issue in the study of two-dimensional CFTs. As we will see below,
they enjoy a certain conformal covariance identity which is the starting point in the
understanding of the theory.

In Toda CFTs these Vertex Operators formally correspond to taking F (ϕ) =
e⟨α,ϕ(z)⟩ for z ∈ R2 and α ∈ a but since such F are not defined on H−1(R2 → a, g),
one must use a regularization procedure in order to define their correlations. This
motivates the following definition:

Definition 2.5. — For z ∈ C and α ∈ a the regularized Vertex Operator V g
α,ε(z)

is defined by

(2.37) V g
α,ε(z) := ε

|α|2
2 e

〈
α,Xg

ε (z)+Q
2 ln g+c−αθη

2

〉
where Xg

ε (z) is the field regularized as above.
Similarly to the GMC measure, this regularized Vertex Operator has same limit

when ε → 0 as the Wick exponential

(2.38) e
⟨α,X ĝ

ε (x)+c⟩− 1
2E
[
⟨α,X ĝ

ε (x)⟩2
]
ĝ(x)⟨

α
2 ,Q−α

2 ⟩.
Indeed for α ∈ a the variable ⟨α,Xg

ε ⟩ is given by the following formula

⟨α,Xg
ε ⟩ =

r∑
i=1

⟨α, ωi⟩Xg
i,ε

and thus has the following covariance structure, for α, β ∈ a

(2.39) E [⟨α,Xg
ε (x)⟩⟨β,Xg

ε (y)⟩] = ⟨α, β⟩Gg,ε(x, y)
where Gg,ε is the covariance kernel of the field Xg

ε .

3. General definitions and existence theorems

Having introduced the probabilistic tools allowing to translate in mathematical
terms the path integral formulation of Toda CFTs, we are now ready to investigate
the existence of the partition function and of the correlation functions.
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3.1. Toda CFT measure and correlation functions

To start with, recall that we have given in (2.36) a meaning to the measure on the
space H−1(R2 → a, g) formally defined by the expression (2.23) by setting for F a
positive measurable function on H−1(R2 → a, g):

⟨F ⟩T,g := Z(g)

lim
ε→ 0

∫
a
E
[
F
(
Xg
ε + Q

2 ln g + c
)
e− 1

4π

∫
R2 Rg(x)⟨Q,Xg

ε (x)+c⟩vg(dx)−
∑r

i=1 µie
γ⟨ei,c⟩Mγei,g

ε (C)
]
dc.

The mapping F 7→ ⟨F ⟩T,g generates a measure on H−1(R2 → a, g). It is worth
noticing that this measure has infinite mass because of the c → −∞ behaviour of
the integrand, but is non trivial as we will see below.

Indeed, there is a special family of functions F that deserve special attention: these
are the Vertex Operators which allow to define the correlations function of Toda
CFTs. Fix an integer N ⩾ 1 and N distinct points z1, . . . , zN ∈ C with respective
associated weights α1, . . . , αN ∈ a. The regularized correlation function is defined
by the expression :

(3.1) ⟨Vα1,ε(z1) · · ·VαN ,ε(zN)⟩T,g :=

Z(g)
∫
a
E
[(

N∏
k=1

V g
αk,ε

(zk)
)
e− 1

4π

∫
R2 Rg(x)⟨Q,Xg

ε (x)+c⟩vg(dx)−
∑r

i=1 µie
γ⟨c,ei⟩Mγei,g

ε (C)
]
dc.

The correlation function is then set to be the limit when ε → 0 of the above
regularization:
(3.2) ⟨Vα1(z1) · · ·VαN (zN)⟩T,g := lim

ε→ 0
⟨Vα1,ε(z1) · · ·VαN ,ε(zN)⟩T,g .

The next subsection is devoted to the study of the convergence of this correlation
function.

3.2. Existence of the correlation function

The form of the correlation function (3.1) is not really convenient when it comes to
investigating its convergence as ε → 0. To obtain a reformulation of the correlation
functions, we introduce the random measures

(3.3) Zγei
(z,α)(dx) := e

γ
N∑
j=1

⟨αj ,ei⟩Gĝ(x,zj)
Mγei,ĝ(dx)

and we define

(3.4) s :=

N∑
j=1

αj − 2Q

γ
as well as, for all i, si :=

〈
N∑
j=1

αj − 2Q,ω∨
i

〉
γ

·

The expression of the Vertex Operator as a Wick exponential (2.38) allows us to
interpret the product in the regularized correlation function as a Girsanov transform
(see Theorem 6.3), and has the effect of shifting the law of the GFF Xg. This
reformulation is essential to prove the following result:
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Theorem 3.1. — Existence and non triviality of the correlation function ⟨Vα1(z1)
· · ·VαN (zN)⟩T,g do not depend on the background metric g in the conformal class of
the spherical metric. Furthermore:

1. (Seiberg bounds): The correlation function ⟨Vα1(z1) · · ·VαN (zN)⟩T,g exists
and is non trivial if and only if the two following conditions hold for all
i = 1, . . . , sr:

• si > 0,
• for all 1 ⩽ k ⩽ N , ⟨αk −Q, ei⟩ < 0.

2. (Conformal covariance): Let ψ be a Möbius transform of the plane. Then

⟨Vα1(ψ(z1)) · · ·VαN (ψ(zN))⟩T,g =
N∏
k=1

|ψ′(zk)|−2∆αk ⟨Vα1(z1) · · ·VαN (zN)⟩T,g .

where the conformal weights are given by ∆αj := ⟨αj2 , Q− αj
2 ⟩.

3. (Weyl anomaly): If φ ∈ C̄1(R2) then we have the following relation

⟨Vα1(z1) · · ·VαN (zN)⟩T,eφĝ = e
cT
96πSL(φ,ĝ) ⟨Vα1(z1) · · ·VαN (zN)⟩T,ĝ

where SL is the Liouville functional

SL(φ, ĝ) :=
∫
R2

(
|∂ĝφ|2ĝ + 2Rĝφ

)
dvĝ,

and the central charge cT is given by cT = r + 6|Q|2.
4. (GMC representation): In the particular case where g = ĝ is the round

metric, one gets the following explicit expression for the correlation function

(3.5) ⟨Vα1(z1) · · ·VαN (zN)⟩T,ĝ

=
(

r∏
i=1

Γ(si)µ−si
i

γ

)
N∏
k=1

ĝ(zk)∆αke

∑
k<l

⟨αk,αl⟩Gĝ(zk,zl)
E
[
r∏
i=1

Zγei
(z,α)(C)−si

]
.

The items 2 and 3 above characterize the theory as a CFT with central charge cT ,
where cT is given for g simple by:

(3.6)
g cT,g
An n+ n(n+1)(n+2)

2 (γ + 2
γ
)2

Bn n+ γ2 n(2n−1)(2n+1)
2 + 2n(n+ 1)(4n− 1)

+ 4
γ2n(n+ 1)(2n+ 1)

Cn n+ γ2 n(n+1)(2n+1)
2 + 2n(n+ 1)(4n− 1)

+ 4
γ2n(2n− 1)(2n+ 1)

Dn n+ (n− 1)n(2n− 1)(γ + 2
γ
)2

g cT,g
E6 6 + 468(γ + 2

γ
)2

E7 7 + 1197(γ + 2
γ
)2

E8 8 + 3720(γ + 2
γ
)2

F4 4 + 234γ2 + 330 + 468 4
γ2

G2 2 + 28γ2 + 192 + 84 4
γ2

Proof. — The proof follows closely that developed in [DKRV16] for the case where
g = sl2, that is when the CFT being studied is Liouville CFT. The main difference
lies in the fact that many of the quantities involved are no longer scalar but rather
vectors of the Euclidean space a. Likewise several GMC measures, stemming from
the form of the Toda action (1.2), need to be considered.
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We start with the first and fourth items. To prove these items we rely on Lemma 4.1
from Section 4 below, which provides sufficient conditions ensuring that the expres-
sion (3.5) does make sense probabilistically speaking. Anticipating on the conformal
anomaly formula, we can assume that we work with the spherical metric ĝ, which is
such that

1
4π

∫
C

〈
Q+X ĝ, c

〉
Rĝ(x)vĝ(dx) = 2⟨Q, c⟩

since X ĝ has zero mean value in the metric ĝ. Under such an assumption the
expressions of the Vertex operators Vαk,ε(zk) as Wick exponentials (2.38) allow to
interpret them as Girsanov weights that have the effect of shifting the law of the
GFF by an additive term. More precisely, it follows from Theorem 6.3 that

E
[
N∏
k=1

V g
αk,ε

(zk)F
(
X ĝ
ε

)]
= E

[
F

(
X ĝ
ε +

N∑
k=1

αkGĝ,ε(·, zk)
)]

(3.7)

where Gĝ,ε, the covariance kernel of X ĝ
ε , is a mollified version of Gĝ. This allows to

rewrite the regularized correlation function as
N∏
k=1

ĝ(zk)∆αke

∑
k<l

⟨αk,αl⟩Gĝ,ε(zk,zl) ∫
Rr
e

r∑
i=1

γsici

E

e−
r∑
i=1

µie
γciZ

γei
(z,α),ε(C)

 dc1 . . . dcr

where Zγei
(z,α),ε(dx) := eγ

∑N

k=1⟨αk,ei⟩Gĝ,ε(x,zj)Mγei,ĝ(dx). Now, if one of the si is non-
positive, then the whole integral can be lower-bounded by∫

Rr
e

r∑
i=1

γsici

e
−

r∑
i=1

µie
γciM

dc1 . . . dcrP
(
∀ 1 ⩽ i ⩽ r, Zγei

(z,α),ε(C) ⩽M
)

= +∞

where M > 0 is taken so that P
(
∀ 1 ⩽ i ⩽ r, Zγei

(z,α),ε(C) ⩽M
)
> 0 (to see why this

is possible note that Gĝ,ε(x, ·) is bounded over C and apply Lemma 4.1 with all the α
taken equal to zero). Therefore the ε-regularized partition function is infinite if one
of the si is non-positive. Conversely if these si are all positive and using Lemma 4.1
we can make the change of variable yi = µie

γciZγei
(z,α),ε(C) for 1 ⩽ i ⩽ r in the integral

so that we are left with
N∏
k=1

ĝ(zk)∆αke

∑
k<l

⟨αk,αl⟩Gĝ,ε(zk,zl) ∫
(0,∞)r

E

 r∏
i=1

(
µiZ

γei
(z,α),ε(C)

)−si

γ
ysi−1
i e−yi

 dy1 . . . dyr.

Using Fubini–Tonelli’s theorem the latter can be evaluated and is found to be equal
to

N∏
k=1

ĝ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ,ε(zk,zl)
E

 r∏
i=1

(
µiZ

γei
(z,α),ε(C)

)−si

γ


∫

(0,∞)r

r∏
i=1

ysi−1
i e−yi dy1 . . . dyr

=
(

r∏
i=1

Γ(si)µ−si
i

γ

)
N∏
k=1

ĝ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ,ε(zk,zl)
E
[
r∏
i=1

Zγei
(z,α),ε(C)−si

]
.

TOME 6 (2023)



50 B. CERCLÉ, R. RHODES & V. VARGAS

To conclude for the first and fourth item it remains to show that:
• If for all 1 ⩽ i ⩽ r, and 1 ⩽ j ⩽ N , ⟨αj, ei⟩ < ⟨Q, ei⟩, then

lim
ε→ 0

E
[
r∏
i=1

Zγei
(z,α),ε(C)−si

]
= E

[
r∏
i=1

Zγei
(z,α)(C)−si

]
> 0.

• If for some 1 ⩽ i ⩽ r and 1 ⩽ k ⩽ N , ⟨αk, ei⟩ ⩾ ⟨Q, ei⟩, then

lim
ε→ 0

E
[
r∏
i=1

Zγei
(z,α),ε(C)−si

]
= 0.

Let us assume that for all 1 ⩽ i ⩽ r, and 1 ⩽ k ⩽ N , ⟨αk, ei⟩ < ⟨Q, ei⟩. Then we
know from Lemma 4.1 that the family of random variables (∏r

i=1 Z
γei
(z,α),ε(C)−si)ε ⩾ 0

have (uniformly bounded in ε) positive moments of all orders. Thus we can write
that

E
[∣∣∣∣∣

r∏
i=1

Zγei
(z,α),ε(C)−si −

r∏
i=1

Zγei
(z,α)(C)−si

∣∣∣∣∣
]

⩽ E
[∣∣∣Zγe1

(z,α),ε(C)−s1 − Zγe1
(z,α)(C)−s1

∣∣∣ r∏
i=2

Zγei
(z,α),ε(C)−si

]

+ E
[∣∣∣∣∣

r∏
i=2

Zγei
(z,α),ε(C)−si −

r∏
i=2

Zγei
(z,α)(C)−si

∣∣∣∣∣Zγe1
(z,α)(C)−s1

]

⩽ E
[∣∣∣Zγe1

(z,α),ε(C)−s1 − Zγe1
(z,α)(C)−s1

∣∣∣p] 1
p E

[
r∏
i=2

Zγei
(z,α),ε(C)−qsi

] 1
q

+ E
[∣∣∣∣∣

r∏
i=2

Zγei
(z,α),ε(C)−si −

r∏
i=2

Zγei
(z,α)(C)−si

∣∣∣∣∣
p] 1

p

E
[
Zγe1

(z,α)(C)−qs1
] 1
q

where we have used Hölder inequality with some p = q
q−1 > 1. Therefore we can

proceed by induction on r so that the only point to check is

lim
ε→ 0

E
[∣∣∣Zγe1

(z,α),ε(C)−s1 − Zγe1
(z,α)(C)−s1

∣∣∣p] 1
p = 0.

This fact has already been proved by the authors in [DKRV16, Lemma 3.3]. For the
second bullet point, let us introduce the set

P := {i = 1, . . . , r | ∃ 1 ⩽ k ⩽ N, ⟨αk −Q, ei⟩ ⩾ 0}

and assume that it is non-empty. Then we can write that, for positive 1
pi

and 1
q

summing to one,

E
[
r∏
i=1

Zγei
(z,α),ε(C)−si

]
⩽

∏
i∈ P

E
[
Zγei

(z,α),ε(C)−pisi
] 1
pi E

 ∏
i ̸ ∈ P

Zγei
(z,α),ε(C)−qsi

 1
q

.

Then we have already seen that the second expectation in the right-hand-side had a
finite limit as ε → 0 thanks to the results of Lemma 4.1. Conversely standard results

ANNALES HENRI LEBESGUE



Toda Conformal Field Theories 51

of the GMC theory (see again [DKRV16, Lemma 3.3] for instance) imply that for
any

i ∈ P , lim
ε→ 0

E
[
Zγei

(z,α),ε(C)−pisi
] 1
pi = 0.

This proves the first item in the statement of Theorem 3.1.
We now turn to the proofs of the second and third items. Let us start with the

third item. Since in the definition of the correlation function (3.1) the expressions
involved actually depend on Xg+c rather than Xg, by making the change of variable
in the zero mode c given by c ↔ c −mĝ(Xg) we can in fact rewrite Equation (3.1)
by replacing the field Xg + c by Xg −mĝ(Xg) + c. Using the fact that Xg −mĝ(Xg)
and X ĝ have same law, we can therefore assume that X has the law of a GFF with
vanishing mean with respect to the round metric X ĝ. Since g = eφĝ, we have that

⟨Vα1,ε(z1) · · ·VαN ,ε(zN)⟩g = Z(g)
N∏
k=1

e
⟨αk,Q⟩

2 φ(xk) × lim
ε→ 0

∫
a
eγ⟨s,c⟩E

 k∏
j=1

Ṽ ĝ
αj ,ε

(zj)e
− 1

4π

∫
CRg⟨Q,X⟩(x)vg(dx)−

r∑
i=1

µie
γci
∫
C e

γ2 φ(x)
2 V ĝγei,ε(x)vg(dx)

 dc
where this time regularization is done with respect to the round metric, and Ṽ is
the Vertex Operator without constant mode, that is

Ṽ g
α,ε(z) := ε

|α|2
2 e

〈
α,Xg

ε (z)+Q
2 ln g−αθη

2

〉
.

We will consider the term e− 1
4π

∫
CRg⟨Q,X⟩(x)vg(dx) as a Girsanov transform. Namely we

can use the fact that Rg(y)vg(dy) = (−∆ĝφ(y) + 2)vĝ(dy) (at least in the weak sense
since φ ∈ C̄1(R2)) and the definition of the Green function Gĝ to see that for any
α ∈ a:

E
[( 1

4π

∫
C
Rg(y)⟨Q,X⟩(y)vg(dy)

)
⟨α,X⟩(x)

]
=
〈
Q,

α

2

〉
(φ(x) −mĝ(φ)) ,

The variance of this expression is given by

E
[( 1

4π

∫
C
Rg(x)⟨Q,X⟩(x)vg(dx)

)2]

= 1
16π2

∫
C×C

Rg(x)Rg(y)E[⟨Q,X⟩(x)⟨Q,X⟩(y)]vg(dx)vg(dy)

= 1
16π2 |Q|2

∫
C×C

Rg(x)Rg(y)Gĝ(x, y)vg(dx)vg(dy)

= 1
16π2 |Q|2

∫
C
Rg(x)

(∫
C
Rg(y)Gĝ(x, y)vg(dy)

)
vg(dx)

= 1
8π |Q|2

∫
C
Rg(x) (φ(x) −mĝ(φ)) vg(dx)

= 1
8π |Q|2

∫
C

(−∆ĝφ(x) + 2) (φ(x) −mĝ(φ)) vĝ(dx)

= 1
8π |Q|2

∫
C

|∂ĝφ|2vĝ(dx).
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As a consequence we obtain thanks to Theorem 6.3 that

E
[
e− 1

4π

∫
CRg⟨Q,X⟩(x)vg(dx)F (X)

]
= e

1
16π |Q|2

∫
C|∂ĝφ|

2
vĝ(dx)E

[
F
(
X + Q

2 (φ(x) −mĝ(φ))
)]
.

Using like before the change of variable c ↔ c + Q
2mĝ(φ) and recollecting terms we

end up with
〈
Vα1(z1) · · ·VαN (zN)

〉
g

= Z(g)e
|Q|2
16π

∫
C|∂ĝφ|

2
vĝ×

lim
ε→ 0

∫
a
eγ⟨s,c⟩E


N∏
k=1

Ṽ ĝ
αk,ε

(zk)e
−

r∑
i=1

µie
γci
∫
C e

φ(x)
(
γ2 |ei|

2
4 − γ⟨Q,ei⟩

2

)
Ṽ γei,ε(x)vg(dx)

 dc.
Since thanks to Equation (2.22) we know that for all 1 ⩽ i ⩽ r, |γei|2

4 − γ⟨Q,ei⟩
2 = −1,

by the change of variable c ↔ c − Q
2mĝ(φ) we get that

⟨Vα1(z1) · · ·VαN (zN)⟩g =

Z(g)e
|Q|2
16π

∫
C |∂ĝφ|2vĝ+ |Q|2

4π

∫
C φvĝ × lim

ε→ 0

∫
a
E

 N∏
k=1

V ĝ
ε,αk

(zk)e
−

r∑
i=1

µi
∫
C V

ĝ
γei,ε

(x)vĝ(dx)
 dc,

whence the result, by using the expression (2.31) for the regularized determinant
Z(g).

For the second item, we see that according to our proof of the first item and more
precisely Equation (3.7), the quantity ⟨F ∏N

k=1 Vαk(zk)⟩ for F bounded continuous
over H−1(S2 → a, ĝ) is actually given by

Z(g)
N∏
k=1

ĝ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ(zk,zl)

∫
a
eγ⟨s,c⟩E

F (X ĝ + Q

2 ln ĝ + c +
N∑
k=1

αkGĝ(·, zk)
)
e

−
r∑
i=1

µie
γ⟨c,ei⟩Z

γei
(z,α)(C)

 dc.
Because ψ is a conformal map we know that the Riemannian metric ψ∗ĝ (that we
have denoted ĝψ before) lies within the conformal class of ĝ; as a consequence the
GFFs X ĝψ −mĝ(X ĝψ) and X ĝ have same law. Moreover from Lemma 2.1 we know
that X ĝψ has same law as X ĝ ◦ ψ. In a nutshell,

X ĝ ◦ ψ −mĝ

(
X ĝ ◦ ψ

) (law)= X ĝ.

Besides we saw in Equation (2.10) that

Gĝ (·, ψ(zk)) ◦ ψ + 1
4 (ϕ+ ϕ(zk)) = Gĝ(·, zk)
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where eϕ = ĝψ
ĝ

. Combining these two assertions yields that the laws of

X ĝ +
N∑
k=1

αkGĝ(·, zk)

and
(
X ĝ +

N∑
k=1

αkGĝ (·, ψ(zk))
)

◦ ψ + 1
4

N∑
k=1

αk (ϕ+ ϕ(zk)) −mĝ

(
X ĝ ◦ ψ

)
are actually the same. Since ĝψ = |ψ′|2 ĝ ◦ ψ the latter further implies that

Φz
ĝ

(law)= Φψz
ĝ ◦ ψ +Q ln |ψ′| − Q

2 ϕ+ 1
4

N∑
k=1

αk(ϕ+ ϕ(zk)) −mĝ

(
X ĝ ◦ ψ

)
where Φz

ĝ is a shorthand for X ĝ + Q
2 ln ĝ +∑N

k=1 αkGĝ(·, zk) and ψz := (ψ(z1), · · · ,
ψ(zN)). Therefore ⟨F ∏N

k=1 Vαk(zk)⟩ can be put under the form

Z(g)
N∏
k=1

ĝ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ(zk,zl) ∫
a
eγ⟨s,c⟩ dc

E
[
F

(
Φψz
ĝ ◦ ψ +Q ln |ψ′| + γs

4 ϕ+ c + 1
4

N∑
k=1

αkϕ(zk) −mĝ(X ĝ ◦ ψ)
)

e
−

r∑
i=1

µie
γ⟨c,ei⟩Z

γei
(z,α)(C)

 .
This motivates the shift in the zero mode c ↔ c+mĝ(X ĝ)− 1

4
∑N
k=1 αkϕ(zk)− γ

4 smĝ(ϕ).
After this change of variable we are left with

Z(g)
N∏
k=1

ĝ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ(zk,zl)
e− γ

4 ⟨s,αk⟩
∫
a
eγ⟨s,c⟩ dc

E
[
eγ⟨s,mĝ(X ĝ)⟩−mĝ(ϕ) γ

2⟨s,s⟩
4 F

(
Φĝ ◦ ψ +Q ln |ψ′| + 1

4s(ϕ−mĝ(ϕ))
)

e
−
∑r

i=1 µie
γ⟨c,ei⟩Z

γei
(z,α)(C)

]
.

Collecting up terms using (2.10) yields:

Z(g)
N∏
k=1

ĝψ(zk)∆αke

∑
k< l

⟨αk,αl⟩Gĝ(ψ(zk),ψ(zl)) ∫
a
eγ⟨s,c⟩ dc

E
[
eγ⟨s,mĝ(X ĝ)⟩−mĝ(ϕ) γ

2⟨s,s⟩
4 F

(
Φĝ ◦ ψ +Q ln |ψ′| + 1

4s(ϕ−mĝ(ϕ))
)

e
−

r∑
i=1

µie
γ⟨c,ei⟩Z

γei
(z,α)(C)

 .
The proof is completed by interpreting the exponential term e⟨s,mĝ(Xψ∗ĝ)⟩−

mĝ(ϕ)⟨s,s⟩
4 as

a Girsanov transform, whose effect is to shift the law of Φĝ◦ψ by −1
4s(ϕ−mĝ(ϕ)). □
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In the proof of the conformal covariance property we have shown a slightly more
general result. Indeed we have proved that under the Seiberg bounds and for any
Möbius transform of the plane, the following was true for any continuous and bounded
map F on H−1(S2 → a, ĝ):

(3.8)
〈
F (· ◦ ψ +Q ln |ψ′|)

N∏
k=1

Vαk(ψ(zk))
〉
g

=
N∏
k=1

|ψ′(zk)|−2∆αk

〈
F

N∏
k=1

Vαk(zk)
〉
g

.

This statement is usually referred to as the conformal covariance of the Toda field.

4. A moment bound

We wish to extend here the validity of the probabilistic representation (3.5). The
point is that the explicit expression (3.5) allows us to isolate the constraints si > 0
in the product of Γ functions. This term can obviously be analytically removed. The
question is then to determine whether the expectation in (3.5) makes sense beyond
the range of parameters permitted by the Seiberg bounds. So we claim

Lemma 4.1 (Extended Seiberg bounds). — The bound

(4.1) E
[
r∏
i=1

(
Zγei

(z,α)

(
R2
))−si

]
< ∞

holds if and only if for all i = 1, · · · , r one has

(4.2) −si <
4

γ2⟨ei, ei⟩
∧ min
k=1, ..., N

1
γ

⟨Q− αk, e
∨
i ⟩

Proof. — We suppose that condition (4.2) holds. Let us consider the families of
indices

P := {i = 1, . . . , r | si ⩾ 0} and N := {i = 1, . . . , r | si < 0} .
Choose p > 1 such that for all i ∈ N ,

−psi <
2
γ2 ∧ min

k=1, ..., N

1
γ

⟨Q− αk, e
∨
i ⟩

and fix the conjugate exponent q > 1 such that 1
p

+ 1
q

= 1. By Hölder inequality we
can write that

E
[
r∏
i=1

(
Zγei

(z,α)

(
R2
))−si

]
⩽ E

[∏
i∈ P

(
Zγei

(z,α)

(
R2
))−qsi

]1/q

E
[ ∏
i∈ N

(
Zγei

(z,α)

(
R2
))−psi

]1/p

.

The product running over i ∈ P is finite because GMC admits negative moments of
all order (see [RV14, Theorem 2.12]). For the product running over i ∈ N , we use
Corollary 6.2 in appendix as well as the relation (2.39), which shows that the GFFs
⟨γei, Xg⟩ and ⟨γej, Xg⟩, for i ̸= j, are negatively correlated since ⟨γei, γej⟩ = γ2Ai,j
(recall that A is the Cartan matrix) and all off-diagonal elements of A are nonpositive.
Hence

(4.3) E
[ ∏
i∈ N

(
Zγei

(z,α)

(
R2
))−psi

]
⩽

∏
i∈ N

E
[(
Zγei

(z,α)

(
R2
))−psi

]
.
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The GMC measure which appears in the expression of Zγei
(z,α) is defined from the

GFF ⟨Xg, ei⟩. This GFF has the law of |ei|Xg
0 where we have denoted by Xg

0 the
real-valued field considered in [DKRV16, Lemma A.1]. This amounts to replacing the
coupling constant γ by γi := γ |ei| and the weight of the insertion by αik := ⟨αk, ei|ei|⟩
in the statement of [DKRV16, Lemma A.1]. This entails that the corresponding
expectation term is finite provided that −psi < 4

γ2
i

∧mink=1, ..., N
2
γi

(γi2 + 2
γi

−αik). The
latter can be rewritten under the form

−psi <
4

γ⟨ei, ei⟩
∧ min
k=1, ..., N

1
γ

(
γ + 4

γ⟨ei, ei⟩
−
〈
αk,

2ei
⟨ei, ei⟩

〉)
.

We conclude with the help of Equation (2.22) that each expectation in the product
above is finite thanks to our assumptions on the psi, 1 ⩽ i ⩽ r.

Conversely, assume that the expectation (4.1) is finite. By Corollary 6.2 in the
appendix applied to the function

H(x1, . . . , xr) = −
∏
i∈ N

x−si
i

∏
i∈ P

x−si
i ,

with the partition (P ,N ) of {1, · · · , r} and to the GFFs (⟨γei, Xg⟩)i=1, ..., r we deduce

E
[
r∏
i=1

(
Zγei

(z,α)

(
R2
))−si

]
⩾ E

[∏
i∈ P

(
Zγei

(z,α)

(
R2
))−si

]
E
[ ∏
i∈ N

(
Zγei

(z,α)

(
R2
))−si

]
.

Since GMC admits negative moments of all order [RV14, Theorem 2.12], the first
expectation in the right-hand side above is a finite constant C > 0. This implies that
the second expectation is finite too. From now on, we fix i0 ∈ N and j ∈ {1, . . . , N}.
Without loss of generality and for the sake of simplicity, we may assume that zj = 0.
Then we can choose δ > 0 such that minj′ ̸=j |z′

j| > 10 × δ and we can choose non
empty balls (Bi)i ̸=i0,i∈ N all of them at distance at least 10 × δ > 0 from each other
and all of them at distance at least 10 × δ from all the zj’s. Set Bi0 := B(0, δ).
Obviously we have

E
[ ∏
i∈ N

(
Zγei

(z,α)

(
R2
))−si

]
⩾ E

[ ∏
i∈ N

(
Zγei

(z,α) (Bi)
)−si

]
.

Consider the mean value of the field Y := 1
2πi
∮

|x|=2δX
g(x)dx

x
. A simple check of

covariances shows that the law of the field Xg − Y is the independent sum of the
field Xg

h—which coincides with Xg − Y outside of B(0, 2δ) and corresponds inside
B(0, 2δ) to the harmonic extension (component by component) of the field Xg − Y
restricted to the boundary ∂B(0, 2δ)—plus the Dirichlet field XD defined by

(4.4) XD =
r∑
i=1

ωiXD,i,

where (Xg
D,1, . . . , X

g
D,r) is a family of centered correlated Dirichlet GFFs inside

B(0, 2δ) with covariance structure given by
E
[
Xg
D,i(z)X

g
D,j(z′)

]
= Ai,jGD(z, z′)

and GD(z, z′) stands for the Dirichlet Green function inside B(0, 2δ). From now on
we will write Z⟨γei,Xg⟩

(z,α) (d2x) instead of Zγei
(z,α)(d2x) to indicate in the notations the
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dependence on the underlying Gaussian field. This means that, generally speaking,
we will write Z⟨γei,X⟩

(z,α) for

Z
⟨γei,X⟩
(z,α) (d2x) := lim

ε→ 0
e

N∑
j=1

⟨αj ,γei⟩Gĝ(x,zj)
ε

|γei|
2

2 e⟨γei,Xε(x)⟩vg(dx)

where Xε stands for the ε-regularization of the field X in the metric g. So we can
write

E
[ ∏
i∈ N

(
Z

⟨γei,Xg⟩
(z,α) (Bi)

)−si
]

= E
[
e−
∑

i∈ N si⟨γei,Y ⟩ ∏
i∈ N

(
Z

⟨γei,Xg−Y ⟩
(z,α) (Bi)

)−si
]
.

We can remove the factor e−
∑

i∈ N si⟨γei,Y ⟩ by viewing it as a Girsanov transform.
Namely, denote by σ2 the variance of the centered Gaussian random variable∑

i∈ N
si⟨γei, Y ⟩.

Then by Girsanov theorem we can write that weighting the law of Xg by

e
−
∑
i∈ N

si⟨γei,Y ⟩−σ2
2

amounts to shifting Xg by −∑
j ∈ N sjγej

1
2πi
∮

|x|=δ Gg(·, x)dx
x

. The values of the vari-
ance σ2 and of the covariance of Y with Xg − Y are actually irrelevant to conclude.
Indeed we only need to know that the variance σ2 is bounded, and that the covari-
ance of Y with Xg(x) − Y is uniformly bounded for x inside Bi and for all i ∈ N .
This is readily seen from their definition. This entails the existence of some positive
constant C > 0 such that

E
[
e

−
∑
i∈ N

si⟨γei,Y ⟩ ∏
i∈ N

(
Z

⟨γei,Xg−Y ⟩
(z,α) (Bi)

)−si
]
⩾ CE

[ ∏
i∈ N

(
Z

⟨γei,Xg−Y ⟩
(z,α) (Bi)

)−si
]
.

Using the decomposition of the law of Xg − Y = XD +Xg
h and independence of XD

and Xg
h, we get

E
[ ∏
i∈ N

(
Z

⟨γei,Xg−Y ⟩
(z,α) (Bi)

)−si
]

⩾ E
[(
Z

⟨γei0 ,XD⟩
(z,α) (Bi0)

)−si0
]
E

eminx∈Bi0
Xg
h

(x) ∏
i ̸ =i0,i∈ N

(
Z

⟨γei,Xg−Y ⟩
(z,α) (Bi)

)−si
 .

This implies that both expectations in the right-hand side are finite (they are ob-
viously nonzero). Finiteness of the first expectation above entails, like before by
adapting [DKRV16, Lemma A.1], that −si0 < 4

γ2⟨ei,ei⟩ ∧ 1
γ
⟨Q − αj, e

∨
i ⟩. Since the

argument is valid for all i0 ∈ N and all j ∈ {1, · · · , N}, this yields the result. □

5. Some detailed perspectives

Toda CFTs provide natural extensions of Liouville CFT with a higher level of
symmetry in addition to the Weyl anomaly which encodes the local conformal
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structure. In this document we have constructed Toda CFTs but we have not really
shed light on where this W-symmetry does appear in the model and how useful it
can be. We detail below some interesting questions related to this observation.

5.1. W-symmetry and local conformal structure of Toda theories

5.1.1. Local conformal structure of Toda Field Theories

In Liouville CFT, the Weyl anomaly (combined with diffeomorphism invariance of
the theory) is in some sense equivalent to the existence of a holomorphic current: the
stress-energy tensor T (z). The expression of this tensor can be obtained by formally
differentiating the correlation function with respect to the metric

⟨Tµ,ν(z)Vα1(z1) · · ·Vαk(zN)⟩g := 4π ∂

∂gµ,ν
⟨Vα1(z1) · · ·Vαk(zN)⟩g ,

and then setting T := Tz,z + c
12t where t is explicit and depends on the background

metric g. The first Ward identity

(5.1)
〈
T (z0)

N∏
k=1

Vαk(zk)
〉

=
(

N∑
k=1

∆αk

(z0 − zk)2 +
N∑
k=1

∂zk
z0 − zk

)〈
N∏
k=1

Vαk(zk)
〉

and the asymptotic behaviour of the stress-energy tensor T (z) ∼ 1
z4 near infinity

(which comes from the fact that we have conformally mapped the sphere to the
plane) usually ensure conformal covariance of the model. In a similar way Toda CFTs
feature higher-spin currents W(k)(z) which should encode higher-spin symmetry via
equations that take the same form as the Ward identity. As an application of our
formalism it is possible to check that these identities hold (at least in the simplest
sl3 case) and study the properties of integrability provided by the W-symmetry. This
has been recently carried out by the first author and Y. Huang in [CH22] where
Ward identities for the sl3 Toda CFT have been rigorously derived.

5.1.2. Integrability for the sl3 Toda CFT

The structure of W -algebras is much more complicated that the Virasoro one
(for instance higher-spin tensors feature higher derivatives and the commutation
relations of their modes are no longer linear) and the tools used to prove integrability
of Liouville theory come with additional complications. However and based on the
exploitation of the symmetries of the model a first step towards integrability of the
sl3 Toda CFT has been carried out by the first author and Huang in [CH22] where a
differential equation for some four-point correlation functions has been derived. This
differential equation is the starting point for a mathematically rigorous computation
of certain three-point correlation functions in the sl3 Toda CFT, predicted in the
physics literature [FL05, Equation (14)]. This question is being investigated by the
first author.
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5.2. The semi-classical limit and Toda equations in W-geometry

Let us comment here on the geometrical signification of sln Toda CFTs. Their
path integral formulation rely on the action functional (1.2) that corresponds to the
quantization (i.e. where we have introduced a coupling constant and considered an
appropriate renormalization of the field and cosmological constants) of the action

ScT (ϕ, g) := 1
4π

∫
Σ

(
⟨∂gϕ(x), ∂gϕ(x)⟩g + 2Rg ⟨ρ, ϕ(x)⟩ + 2Λ

n−1∑
i=1

e⟨ei,ϕ(x)⟩
)

vg(dx),

whose critical point is given by the solution of the Toda equation (1.4). Such a critical
point exists and is unique as soon as Σ admits a metric for which Rg is negative
and constant; when the surface has the topology of the sphere or the torus one may
need the field to have certain logarithmic singularities in order for such a problem
to admit a unique solution.

In the simplest case where n − 1 = 1 the equation corresponds to the Liouville
equation that describes (the conformal factor of) Riemannian metrics with constant
negative curvature equal to −Λ within the conformal class of (Σ, g). In general,
such an interpretation remains possible but instead of working in the setup of
conformal geometry the good framework to consider is the one of W-geometry. The
interested reader may find more details on W -geometries in the work of Gervais and
Matsuo [GM92]. One of its important features is that, in a way similar to the fact
that W -algebras admit the Virasoro algebra as a subalgebra, W -geometries in some
sense contain two-dimensional Riemannian geometry. To be more specific, the notion
of W -surface associated with the pair (S2, sln) may be defined as a holomorphic
embedding (f(z), f̄(z̄)) from S2 ≃ CP1 into the complex projective space CPn−1

equipped with its Fubini–Study metric gFS. This embedding naturally comes along
(5) with a family of 2(n − 1) orthogonal vectors (v1, · · · , vn−1; v̄1, · · · , v̄n−1) on
CPn−1 such that v1, v̄1 are tangent while the others are normal—to the embedded
surface. Renormalizing these vectors one may then define a Frenet-Serret frame
(e1, · · · , en−1; ē1, · · · , ēn−1), that is an orthonormal basis of the projective space
that is “adapted” to the form of this embedding. Now on the one hand, the (covariant)
derivatives of these vectors can be related to the Riemann curvature tensor R of
CPn−1 via the Gauss-Codazzi equations as follows:

(5.2)
[
∇, ∂̄

]
ek =

n−1∑
l=1

R
(
∂f, ∂̄h

)l
k

el.

On the other hand and using the explicit expression of the vectors (vl, v̄l)1 ⩽ l ⩽ n−1
we can get an explicit expression for the [∇, ∂̄]ek in terms of the ⟨φ, ei⟩ := − ln τi,
1 ⩽ i ⩽ n− 1, where |vi|2 = τiτi+1 and τ1, τn are determined by the embedding. For
these explicit computations to be consistent with the Gauss–Codazzi equations (5.2)
we need φ to be a solution to the an-valued Toda equation:

(5.3) ∆φ+
n−1∑
i=1

eie
⟨ei,φ⟩ = 0 on C

(5) For these vectors to be everywhere well-defined one may assume that some Wronskian that can
be associated to the embedding does not vanish.
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with the prescribed asymptotic
(5.4) φ ∼ −4ρ ln |z| as z → ∞.

Therefore Toda equations can in some sense be interpreted as compatibility equations
for a holomorphic embedding of a two-sphere into a complex projective plane; yet
there is another interpretation of these equations as zero-curvature conditions for
the second and third fundamental forms of the embedding, a fact which was already
noticed in [LS79]. In brief we may establish a correspondence between solutions of
the Toda equation (5.3) and certain holomorphic embeddings from CP1 to CPn,
which in some sense generalizes the problem of Uniformisation of Riemann surfaces.
Note that here and unlike what has been studied in this document the Toda equation
is related to the problem of finding a metric with constant positive curvature. The
study is slightly more involved in the negative curvature case (since it requires
the addition of singular points in the embedding) and will not be detailed in the
present document. Details can be found in the aforementioned article by Gervais
and Matsuo [GM92] and subsequent works.

From the quantum theory viewpoint, since we have constructed Toda CFTs via a
quantization of this classical model, it is natural to expect that when the coupling
constant γ (which characterizes the level of randomness) is taken to zero —and
under the appropriate renormalizations ϕ∗ = γϕ, αk = χk

γ
and µi = Λ

γ2 for fixed χk
and Λ > 0— we recover the solution of the classical Toda equation (1.4) (when it
exists and is unique). Performing such a semi-classical analysis has been successfully
done by H. Lacoin and the last two authors in [LRV22] for Liouville CFT, where a
large deviation principle has been discovered; it should be reasonable to expect that
the result extends for the general sln Toda CFTs on the sphere.

6. Appendix

In the appendix, we gather rather general and classical results on Gaussian vectors:
first comparison lemmas and then a statement of the Girsanov theorem.

Lemma 6.1. — Let F be some smooth function defined on (Rn)r with at most
polynomial growth at infinity for F as well as for its derivatives up to order 2. Assume
that for (x1, · · · , xr) ∈ (Rn)r (where xi = (xi1, · · · , xin)) the following inequalities
hold:

for all i ̸= j and k, k′ ∂2F

∂xik∂x
j
k′

⩾ 0.

Let X := (X1, · · · , Xr) and X̃ := (X̃1, · · · , X̃r) be two centered Gaussian vectors
in (Rn)r such that
1) for all i ̸= j and k, k′

E
[
X i
kX

j
k′

]
⩽ E

[
X̃ i
kX̃

j
k′

]
.

2) for all i, X i as the same law as X̃ i.
Then the following inequality holds:

E
[
F
(
X1, · · · , Xr

)]
⩽ E

[
F
(
X̃1, · · · , X̃r

)]
.

TOME 6 (2023)



60 B. CERCLÉ, R. RHODES & V. VARGAS

Proof. — For t ∈ [0, 1], we set Xt =
√
tX +

√
1 − tX̃, where X and X̃ are inde-

pendent, and
G(t) = E[F (Xt)].

By using Gaussian integration by parts, we get the following relation

G′(t) = 1
2

d∑
i=1

n∑
k=1

E
[
∂F

∂xik
(Xt)

(
1√
t
X i
k − 1√

1 − t
X̃ i
k

)]

= 1
2

d∑
i=1

n∑
k=1

d∑
i′=1

n∑
k′=1

E
[

∂2F

∂xik∂x
i′
k′

(Xt)
]

E
[(√

tX i′

k′ +
√

1 − tX̃ i′

k′

)( 1√
t
X i
k − 1√

1 − t
X̃ i
k

)]

= 1
2

d∑
i=1

n∑
k=1

d∑
i′ ̸=i

n∑
k′=1

E
[

∂2F

∂xik∂x
i′
k′

(Xt)
] (

E
[
X i′

k′X i
k

]
− E

[
X̃ i′

k′X̃ i
k

] )
⩽ 0.

Therefore G(1) ⩽ G(0). □

Corollary 6.2. — Let H be some smooth function defined on (R+)r with
at most polynomial growth at infinity for H as well as for its derivatives up to
order 2 and consider a partition P1, . . . , Pm of the set {1, . . . , r}. Assume that for
(x1, · · · , xr) ∈ Rr

+, the following inequality holds for all s, s′ ∈ {1, . . . , m} with
s ̸= s′, all i ∈ Ps and all j ∈ Ps′

∂2H

∂xi∂xj
⩾ 0.

Further assume that X1, · · · , Xr is a family of continuous centered Gaussian fields
respectively defined over domains Di ⊂ Rn (for i = 1, . . . , r) such that for all
s, s′ ∈ {1, . . . , m} with s ̸= s′, all i ∈ Ps and all j ∈ Ps′

∀ x ∈ Di,∀ x′ ∈ Dj, E[X i(x)Xj(x′)] ⩽ 0.

Let X̃ = (X̃1, · · · , X̃r) be another family of continuous centered Gaussian fields
such that:

(1) for all s = 1, . . . , m, (X̃ i)i∈Ps has same distribution as (X i)i∈Ps .
(2) the families (X̃ i)i∈P1 , . . . , (X̃ i)i∈Pm are independent.

Eventually, let f1, . . . , fr be a family of positive functions each of which respec-
tively defined on Di. For i = 1, . . . , r, we set

M i :=
∫
Di
eX

i(x)− 1
2E[Xi(x)2]fi(x) dx and M̃ i :=

∫
Di
eX̃

i(x)− 1
2E[Xi(x)2]fi(x) dx.

Then the following inequality holds

E
[
H
(
M1, · · · , M r

)]
⩽ E

[
H
(
M̃1, · · · , M̃ r

)]
.
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Proof. — Up to a discretization of the fields, it suffices to apply Lemma 6.1 with

F
(
X1, . . . , Xr

)
:= H

∑
k1

p1
k1e

γX1
k1

− γ2
2 E

[(
X1
k1

)2
]
, · · · ,

∑
kr

prkre
γXr

kr
− γ2

2 E
[
(Xr

kr)
2
]

for some nonnegative numbers piki obtained by discretizing fi over Di. □

After these two comparison lemmas we recall the statement of the Girsanov (or
Cameron–Martin) theorem, see e.g. [RY91, Chapter VIII]. It can be adapted in a
way similar to the above proof via a regularization procedure in order to fit to the
GFF we have considered throughout the present document:

Theorem 6.3 (Girsanov theorem). — Let D be a subdomain of C and
(X(x))x∈D := (X1(x), · · · , Xn−1(x))x∈D

be a family of smooth centered Gaussian field; also consider Z any Gaussian variable
belonging to the L2 closure of the subspace spanned by (X(x))x∈D. Then, for any
bounded functional F over the space of continuous functions one has that

E
[
eZ−

E[Z2]
2 F (X(x))x∈D

]
= E

[
F
(
X(x) + E [ZX(x)]

)
x∈D

]
.
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