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118 T. Delcroix & S. Jubert

Résumé. — Le second auteur a démontré l’équivalence entre l’existence de métriques
de Kähler extrémales sur les fibrations principales semisimples toriques et une notion de
K-stabilité uniforme à poids, lue sur le polytope moment. Dans cet article, nous obtenons
plusieurs conditions suffisantes de K-stabilité uniforme à poids qui peuvent être vérifiées de
manière effectives, et nous explorons les nouveaux exemples que ces conditions fournissent en
petite dimension.

1. Introduction

Calabi’s work has been extremely influential in Kähler geometry, his name being
still associated to some of the most fundamental objects of interest. The present
article is motivated by two of these, Calabi’s extremal Kähler metrics and Calabi’s
ansatz.

Extremal Kähler metrics provide a natural notion of canonical Kähler metrics in a
given Kähler class on a compact Kähler manifold X: they are the metrics that achieve
the minimum of the L2-norm of the scalar curvature. Kähler metrics with constant
scalar curvature (cscK metrics for short) are special cases of such metrics, but Calabi
showed in [Cal82] that there may exist extremal Kähler metrics when there exists no
cscK metrics at all, by exhibiting extremal Kähler metrics on Hirzebruch surfaces.
In order to show this, Calabi relied on the simple yet powerful idea that one should
search for extremal Kähler metrics among those Kähler metrics that behave well
with respect to the geometry of the manifold.

This was not a new idea of course. Matsushima showed for example [Mat57] that
cscK metrics must behave well with respect to biholomorphism. More precisely, the
automorphism group of X must be the complexification of the isometry group of
the cscK metric, if it exists. This is preventing Hirzebruch surfaces from admitting
cscK metrics as their automorphism group is non-reductive.

Calabi went further and restricted to metrics that respect the structure of P1-
bundles of Hirzebruch surfaces. He was then able to translate, for such metrics,
the extremal property into a simple ODE and to solve it, showing the existence of
extremal Kähler metrics. His construction was later referred to as Calabi’s ansatz,
used in various situations and generalized in various directions. It would be easy
to fill pages with a bibliographical review of these, but it is not the purpose of
this introduction. We only stress that a common theme is usually the desire to get
explicit existence results or criterions. An influential illustration is [ACGTF08], where
a variant of Calabi’s ansatz was used to show that on various P1-bundles, existence of
extremal Kähler metrics reduces to checking the positivity of a polynomial on [−1, 1],
the so-called extremal polynomial. In the series of papers leading to [ACGTF08] (see
also [HS02]), the general idea of Calabi’s ansatz was actually pushed way further,
allowing for example to consider certain fibrations with toric fiber.

The interest for such fibrations was significantly renewed last year, when the second
author proved in [Jub21], using the breakthrough results of Chen and Cheng [CC18],
that a uniform version of the Yau–Tian–Donaldson conjecture holds for semisimple
principal toric fibrations, a very large class of toric fibrations. While it allows to
translate the question of existence of extremal Kähler metrics on such manifolds into
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Effective weighted stability 119

a question of convex geometry on their moment polytopes, it is not yet an explicitly
checkable criterion, as the conditions to check still form an infinite dimensional space.
Motivated by the more practical philosophy behind Calabi’s ansatz, we prove in the
present paper various sufficient conditions of existence of extremal Kähler metrics
which may be easily checked. Our approach is based on an initial idea by Zhou and
Zhu [ZZ08], exploited in greater generality by the first author in [Del22].

The previous paragraphs are meant as an introduction to our results, and it
should be stressed that it presents as such a biased and very incomplete historical
account of the study of extremal Kähler metrics on manifolds with large symmetry.
We refer to Székelyhidi’s book [Szé14], Gauduchon’s lecture notes [Gau10] for a
general introduction to extremal Kähler metrics, and to Donaldson’s remarkable
survey [Don08] and Apostolov’s lecture notes [Apo22] for some of the more specific
aspects of manifolds with large symmetry. More recent developments very related to
our work will be discussed at the beginning of Section 3.

Let us now highlight in the remainder of this introduction our main results. For this,
a few notations are needed, and the full details will be given in Section 3. Semisimple
principal toric fibrations are certain holomorphic fiber bundles π : Y → B where
the basis B = ∏

a Ba is a product of Hodge manifolds (Ba, ωa) with constant scalar
curvature sa, and where the fiber X is toric under a compact torus T. They are
constructed from certain types of principal T-bundles, essentially determined by the
data of a tuple (pa) of one-parameter subgroups of T. In this paper, a one-parameter
subgroup pa : S1 → T of T will be identified with the element of the Lie algebra of
T determined by the image of 1 ∈ R = Lie(S1) under the differential of pa at the
neutral element. In particular, it defines a linear function on the dual of the Lie
algebra of T. On such manifolds, a Kähler class is called compatible if it decomposes
as the sum of a relative Kähler class induced by a Kähler class [ωX ] on X, and a sum
of real multiples caπ∗[ωa] of the pull-backs of the Kähler classes [ωa]. An admissible
Kähler class contains admissible Kähler metrics, that behave well with respect to
the fibration structure.

Theorem 1.1. — Assume that Y is a semisimple principal toric fibration, that
the toric fiber X is Fano equipped with the Kähler class [ωX ] = t2πc1(X), and let
[ωY ] be an admissible Kähler class. Assume that for all a, 2 dim(Ba)ca ⩾ tsa and
that at every vertex x of the moment polytope P of (X, [ωX ]),

2 (dim(Y ) + 1) +
∑

a

tsa − 2 dim(Ba)ca

pa(x) + ca

− tlext(x) ⩾ 0

where lext is the extremal affine function. Then there exists an extremal Kähler
metric in [ωY ].

Recall that, when a maximal torus of automorphisms of Y is fixed, the scalar cur-
vature of an invariant extremal Kähler metric, if it exists, is a holomorphy potential
of a well defined vector field called the extremal vector field. In the statement above,
the extremal function is encoding the extremal vector field, and a choice of maximal
torus of automorphisms of Y is implicitly assumed. We will explain why it reduces
to an affine function on the polytope P in Section 3.
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120 T. Delcroix & S. Jubert

We actually prove a much more general sufficient condition, Theorem 2.6, that does
not require the fiber to be Fano. Since we obtain already a wealth of new examples
with this particular case, and it is a natural generalization of the P1-bundle case, we
focus on this result for the introduction.

In the case when the fibration is Fano itself, and not only its fiber, then t = 1 and
sa = 2 dim(Ba)ca so one gets a particularly simple criterion:

Corollary 1.2. — A Fano semisimple principal toric fibration Y admits an
extremal Kähler metric in c1(Y ) if its extremal affine function lext satisfies

sup lext ⩽ 2(dim(Y ) + 1)

and the latter obviously needs only be verified at vertices of the moment polytope.

We provide, for the reader’s convenience, an elementary Python program imple-
menting the sufficient condition from Theorem 1.1 in the case when there is only one
factor in B and the fiber is of dimension one or two. It would be easy to imitate these
to allow greater flexibility in the data. It may be used either with all the data given
numerically, or some of the data treated as variable. We use this to our advantage
to prove the existence of extremal Kähler metrics in a wide range of Kähler classes
for some examples of fibrations.

Proposition 1.3. — Let Y = PB(OB ⊕ H−p1 ⊕ H−p2), where B is a Kähler–
Einstein Fano threefold, H is the smallest integral divisor of 2πc1(B) and 1 ⩽ p1 ⩽ p2.
Then there exists an extremal Kähler metric in the Kähler class c1(X) + λc1(B) for
λ ⩾ 9p2, where c1(X) and c1(B) respectively denote the relative first Chern class
and the pull-back of the first Chern class, by an abuse of notations.

Here, Y is a semisimple principal fibration over the base B, with fiber the projective
space X = P2. More generally, projectivizations of direct sums of line bundles can
often be considered as semisimple principal fibrations, as explained in Section 3.3.

The article is organized as follows. In Section 2, we prove a general sufficient condi-
tion for weighted uniform K-stability of labelled polytopes, and consider the special
case of monotone polytopes. Section 3 explains the geometric origin of weighted
uniform K-stability of labelled polytopes, with a particular emphasis on semisimple
principal toric fibrations. In Section 4, we put together the two aspects to prove
Theorem 1.1 and Corollary 1.2 using the monotone case of Section 2, as well as more
general statements. We present various examples of applications of the sufficient
condition in Section 5, including Proposition 1.3. Finally, we include in an appendix
elementary Python programs computing the sufficient condition for fibrations with
only one factor in the basis, and a one or two dimensional Fano fiber.
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2. Weighted K-stability of labelled polytopes: a sufficient
condition

2.1. Weighted K-stability of labelled polytopes

Let V be an affine space of dimension ℓ, equipped with a fixed Lebesgue measure
dx. A labelled polytope in V is a pair (P, L) where P is a (compact, convex) polytope
in V and L = (Lj)d

j=1 is a minimal set of defining affine functions for P , that is,
P = {x ∈ V | ∀ j, Lj(x) ⩾ 0}

where d is the number of facets (codimension one faces) of P . We denote by Fj :=
{x ∈ P | Lj(x) = 0} the facet of P defined by Lj.

Definition 2.1. — The labelled boundary measure dσ is the measure on ∂P
whose restriction to the facet Fj is defined by dLj ∧ dσ = −dx.

Note that the labelled boundary measure depends heavily on the choice of labelling
(Lj). For example, for any tuple (rj) of positive real numbers, the tuple (L′

j) = (rjLj)
is another labelling of P . The associated labelled boundary measure dσ′ satisfies
dσ′ = 1

rj
dσ on Fj. In particular, if the rj are not all equal, there is no obvious relation

between dσ and dσ′. Similarly, the notion of weighted uniform K-stability that we
are about to define depends heavily on the choice of labelling.

Let v be a continuous, positive function on P , and let w be a continuous function
on P . Following [Don02, Lah19, LLS16], we define the (v, w)-Donaldson–Futaki in-
variant of the labelled polytope (P, L) as the functional F on the space of continuous
functions on P such that
(2.1) F(f) := 2

∫
∂P

f(x)v(x)dσ −
∫

P
f(x)w(x)dx.

Following [His20, NS21], we also set

∥f∥J = inf
l ∈ Aff(V )

∫
P

(
f + l − inf

P
(f + l)

)
dx

where Aff(V ) denotes the space of affine functions on V .

Definition 2.2. — A labelled polytope (P, L) is (v, w)-uniformly K-stable if
there exists a λ > 0 such that for any continuous convex functions f on P ,
(2.2) F(f) ⩾ λ∥f∥J .

Remark 2.3. — Note that F is linear, and the right-hand side of (2.2) is always
non-negative, hence the following is a necessary condition for (2.2) to hold:
(2.3) ∀ f ∈ Aff(V ), F(f) = 0.

We will explain in Section 3 the geometric significance of this notion for various
choices of v and w, let us for now just highlight that when v and w are constant, the
functional F first appeared in [Don02] as an expression of the (Donaldson–)Futaki
invariant for toric test configurations in the study of K-stability of toric manifolds,
whence the name.
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We denote by CV0(P ) the space of continuous convex functions on P , and by
CV1(P ) the space of all convex functions f on P which are the restrictions to P of
a continuously differentiable function defined on an open subset of V containing P .
Note that by uniform approximation by smooth functions, it is enough to consider
only functions in CV1(P ) to check condition (2.2).

In order to deal more efficiently with the right hand side of (2.2), following [Don02],
we consider the following normalization of functions. We choose a point x0 in the
interior P 0 of the polytope P . It allows to choose a linear complement CV1

∗(P ) to
Aff(V ) in CV1(P ), defined by

(2.4) CV1
∗(P ) :=

{
f ∈ CV1(P )

∣∣∣∀ x, f(x) ⩾ f(x0) = 0
}

.

Then, any f ∈ CV1(P ) can be written uniquely as f = f ∗ + f0, where f0 is affine
and f ∗ ∈ CV1

∗(P ), and we will use these notations in the following. By linearity,
F(f) = F(f ∗) if F vanishes on Aff(V ).

Lemma 2.4. — The labelled polytope (P, L) is (v, w)-uniformly K-stable if and
only if there exists λ > 0 such that for all f ∈ CV1(P ),

(2.5) F(f) ⩾ λ∥f ∗∥L1

where ∥·∥L1 denotes the L1-norm on P with respect to the Lebesgue measure dx.

Proof. — From [NS21, Proposition 4.1(3)], there exists a constant C1 > 0 such
that for all continuous convex functions on P ,

∥f∥J ⩽ ∥f∥L1 ⩽ C1∥f∥J

The equivalence between condition (2.2) and condition (2.5) follows immediately. □

Remark 2.5. — Condition (2.5) is the condition that we will effectively use in the
sequel, so one might wonder why we introduced the first definition. The point is that
by Lemma 2.4, condition (2.5) is independent of the choice of x0, and condition (2.2)
makes it perfectly clear. In the more familiar unweighted case, the equivalence
between various notions of K-stability of polytopes was fully worked out by Nitta
and Saito [NS21].

2.2. The sufficient condition

Let C0(P,R) denote the space of continuous functions on P , and let C1(P,R) denote
the space of functions that are the restriction to P of continuously differentiable
functions defined in an open subset of V containing P .

Recall that Fj denotes the facet of P defined by Lj. For each j, let Pj be the cone
with basis Fj and vertex x0 as illustrated in Figure 2.2. For a function f ∈ C1(P,R),
we denote by dxf its differential at x ∈ P . The following is the main technical result
of our paper, it imitates quite closely part of the proof by Zhou and Zhu [ZZ08] of a
coercivity criterion for the modified Mabuchi functional on toric manifolds.
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Figure 2.1. The cone decomposition

•x0

Fj

Pj

Theorem 2.6. — Let v ∈ C1(P,R) be a positive function on P and let w ∈
C0(P,R). Assume that F vanishes on Aff(V ) and that for all j = 1, . . . , d, for all
x ∈ Pj,

(2.6) 1
Lj(x0)

(
v(x)(ℓ + 1) + dxv(x − x0)

)
− w(x)

2 ⩾ 0,

then (P, L) is (v, w)-uniformly K-stable.

Proof. — Since Lj(x) = 0 for x ∈ Fj, we have Lj(x0) = dxLj(x0 −x) for all x ∈ Fj.
In particular, ∫

Fj

f(x)v(x)dσ =
∫

Fj

f(x)v(x)−dxLj(x − x0)
Lj(x0)

dσ.

For each facet F of ∂Pj different from Fj, and x ∈ F , the interior product ιx−x0(dx)
vanishes since it vanishes on the affine space spanned by F . If we further use that
−dLj ∧ dσ = dx on Fj, we obtain∫

Fj

f(x)v(x)dσ = 1
Lj(x0)

∫
∂Pj

f(x)v(x)ιx−x0 (dx) .

Hence by Stokes theorem we obtain∫
Fj

f(x)v(x)dσ = 1
Lj(x0)

∫
Pj

(
v(x)dxf(x − x0) + ℓf(x)v(x) + f(x)dxv(x − x0)

)
dx.

Summing the previous identities over j we get

F(f) =
d∑

j=1

2
Lj(x0)

∫
Pj

(
dxf(x − x0) − f(x)

)
v(x)dx

+
d∑

j=1

∫
Pj

(
2

Lj(x0)
(
(ℓ + 1)v(x) + dxv(x − x0)

)
− w(x)

)
f(x)dx.

(2.7)

Assume condition (2.6) is satisfied and (P, L) is not (v, w)-uniformly K-stable.
We will show contradiction to a stronger condition than condition (2.5). Namely,

assume that condition (2.6) is satisfied and that there exists a sequence of {fk}k ∈N
in CV1(P ) such that
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124 T. Delcroix & S. Jubert

(2.8) lim
k → ∞

F (f ∗
k ) = 0 and ∀ k ∈ N,

∫
∂P

v(x)f ∗
k (x) dσ = 1.

Recall from [Don02, Lemma 5.1.3] (see [NS21, Proposition 5.1.2] for a detailed
proof and explicit constant C) that there exists a positive constant C > 0 such that
for all f ∈ CV1(P ), ∫

∂P
f ∗(x) dσ ⩾ C∥f ∗∥L1 .

As a consequence, since v > 0 on P , there exists a constant C ′ > 0 such that for all
f ∈ CV1(P ), ∫

∂P
v(x)f ∗(x) dσ ⩾ C ′∥f ∗∥L1 .

In particular, the sequence {f ∗
k } has bounded L1 norm. By [Don02, Corollary 5.2.5],

{f ∗
k }k∈N converges (up to a sub-sequence, still denoted by f ∗

k ) locally uniformly in
P 0 to a convex function f ∗

∞ which still satisfies inf f ∗
∞ = f ∗

∞(x0) = 0. Since in
addition all f ∗

k are smooth and convex we have dxf ∗
k (x−x0)−f ∗

k (x) ⩾ 0. Then, since
condition (2.6) is assumed to hold, all terms of the sum in (2.7) are non-negative.
Evaluating (2.7) at f ∗

k and passing to the limit reveals that limk→∞ dxf ∗
k (x − x0) −

f ∗
k (x) = 0 almost everywhere in P 0, showing that f ∗

∞ is affine on P 0. Using again
inf f ∗

∞ = f ∗
∞(x0) = 0, we conclude that f ∗

∞ is the zero function on P 0.
The local uniform convergence of {f ∗

k } to the zero function shows that

lim
k → ∞

∫
P

f ∗
k (x)w(x) dx = 0

that is,

lim
k → ∞

2
∫

∂P
f ∗

k (x)v(x) dσ −F (f ∗
k ) = 0

which is in contradiction with condition (2.8).
From this contradiction it follows that there exists a constant µ > 0 such that for

all f ∈ CV1(P ),

F(f) ⩾ µ
∫

∂P
v(x)f ∗(x) dσ

⩾ µC ′∥f ∗∥L1

which concludes the proof of the Theorem 2.6. □

Remark 2.7. — We stress that the property of (v, w)-uniform K-stability is inde-
pendent of the choice of x0 ∈ P 0 in the previous section, but condition (2.6) depends
on that choice. It is possible and useful in practical uses of the condition to vary this
x0 according to the data of the problem, see 5.3.1.

Remark 2.8. — Condition (2.6) depends continuously on the labelled polytope,
the weights v and w, and the choice of x0.
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2.3. Case of monotone polytopes

Let us recall the terminology of monotone polytopes, used in [Leg16].

Definition 2.9. — A labelled polytope (P, L) is monotone if there exists an
x0 ∈ P 0 such that L1(x0) = L2(x0) = · · · = Ld(x0).

There is thus an obvious choice of x0 in that case. Our sufficient condition indeed
becomes much simpler in that case, since the decomposition of the polytope may
essentially be forgotten.

Corollary 2.10. — Let (P, L) be a monotone labelled polytope with L1(x0) =
L2(x0) = · · · = Ld(x0) = t. Let v ∈ C1(P,R) such that v is positive on P and let
w ∈ C0(P,R). Assume that F vanishes on Aff(V ) and that for all x ∈ P ,

(2.9) 1
t

(
v(x)(ℓ + 1) + dxv(x − x0)

)
− w(x)

2 ⩾ 0,

then (P, L) is (v, w)-uniformly K-stable.

The conditions involved form a finite set of conditions to check, contrary to the
definition of (v, w)-uniform K-stability. It is furthermore easy to implement in a
computer program, via formal or numerical computations depending on the data
(P, L, v, w). The same is true for the more general Theorem 2.6, but the decomposition
in cones makes it a bit more tedious.

3. Geometric origin of weighted K-stability of polytopes

3.1. Weighted cscK toric manifolds

The results from Section 2 are motivated by the study of the existence of weighted
cscK metrics on toric manifolds, as studied in [Jub21].

Let T be an ℓ-dimensional compact torus. We denote by t its Lie algebra and by
Λ ⊂ t the lattice of generators of circle subgroups, so that T = t/2πΛ. Let (X, ω,T)
be a compact Kähler toric manifold. Denote by µ the moment map of X with respect
to the action of T, and let P = µ(X) ⊂ t∗ be the moment polytope. The polytope P
is a Delzant polytope [Del88], and in particular, there is a natural choice of labelling
L of P such that all the differentials dLj of the defining affine functions Lj are
primitive elements in the lattice Λ.

Remark 3.1. — We focus here on smooth manifolds, but let us mention that the
cases of orbifolds or pairs would also be natural settings to consider. In these situa-
tions, the labelling could be more general (see [Abr01] for orbifolds and [DGSW18]
for pairs), thus justifying our choice to allow arbitrary labellings in the previous
section.

In the context of toric manifold, the v-weighted scalar curvature was introduced
in [LLS16]. To avoid introducing too much notation, we give the definition of [Lah19],
which makes sense for general compact Kähler manifold and coincide with the one
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126 T. Delcroix & S. Jubert

of [LLS16] in the toric context. Let C∞(P,R) denote the space of restrictions to P of
smooth functions defined on an open set containing P , and C∞(P,R>0) the subspace
of positive functions.

Definition 3.2 (Weighted cscK metrics). —
(1) For v ∈ C∞(P,R>0), define the v-scalar curvature of ω as the function

Scalv(ω) := v(µ)Scal(ω) + 2∆ω

(
v(µ)

)
+ Tr

(
Gω ◦ (Hess(v) ◦ µ)

)
,

where Scal(ω) is the usual scalar curvature of the Riemannian metric gω

associated to ω, ∆ω is the Riemannian Laplacian of gω, Hess(v) is the Hessian
of v viewed as a bilinear form on t∗ whereas Gω is the bilinear form with
smooth coefficients on t, given by the restriction of gω on fundamental vector
fields.

(2) If furthermore w ∈ C∞(P,R), then ω is a (v, w)-cscK metric if

Scalv(ω) = w ◦ µ

In general, no YTD correspondence is proved for the existence of weighted cscK
metrics on toric manifolds. However by analogy with the unweighted cscK case, there
is a known candidate for the corresponding K-stability condition, which translates
on the polytope as Definition 2.2. In fact, the direction from existence of weighted
cscK metrics to K-stability was proved in general by Li, Lian, Sheng [LLS17].

Theorem 3.3 ([LLS17, Theorem 2.1]). — If ω is a (v, w)-cscK metric, then (P, L)
is (v, w)-uniformly K-stable.

The converse direction is in general much harder, but is known for special choices
of weights.

• If v and w are constants, this is the uniform YTD conjecture for cscK metrics
on toric manifolds. If v is constant and w is affine, this is the uniform YTD
conjecture for extremal metrics on toric manifolds. Both these conjectures
were proved recently [Apo22, His20, Leg19, Li20, LLS21, NS21] thanks to the
breakthrough of Chen–Cheng [CC18], its adaptation by He to the extremal
setting [He19], and earlier works, notably [Don02, ZZ08].

• If only v is constant, the converse of Theorem 3.3 is known for all w ∈ C∞(P,R)
by [LLS21].

• For v-solitons on Fano toric manifolds, which correspond to choosing an ar-
bitrary weight v ∈ C∞(P,R>0) and w(x) = 2(ℓv(x) + dxv(x)) (see [AJL22,
Proposition 1]), it was proved first in [BB13] that the converse of Theorem 3.3
holds for general weight v, and much earlier in [WZ04] for the weight cor-
responding to Kähler–Ricci solitons. We note that [LH20] proved that the
general uniform YTD conjecture holds for v-solitons on general Fano man-
ifolds, and refer to Section 4.4 for a discussion of v-solitons on semisimple
principal toric fibrations.

• Finally, as we shall explain in details in the next sections, the converse of
Theorem 3.3 was proven by the second author for weights corresponding to
extremal Kähler metrics on semisimple principal toric fibrations [Jub21].
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3.2. Construction of semisimple principal toric fibration

In this section we briefly recall the construction of semisimple principal toric
fibrations introduced in [ACGTF04]. We take the point of view of [AJL22], which
generalized the construction when the fiber is not necessarily toric.

Let T be an ℓ-dimensional compact torus with Lie algebra t. Let πB : Q −→ B be
a principal T-bundle over a n-dimensional product of cscK manifold (B, JB, ωB) :=∏k

a=1(Ba, Ja, ωa) satisfying the Hodge condition ωa ∈ H2(Ba,Z). We supposed that
Q is equipped with a principal connection θ ∈ Ω1(Q) ⊗ t whose curvature satisfies

dθ =
k∑

a=1
π∗

B(ωa) ⊗ pa,

where pa ∈ t define one-parameter subgroups of T. Let (X, JX , ωX) be a toric
projective manifold under the action of T. Since T acts on various spaces, to avoid
confusion, we under-script the space on which T acts, e.g. TX acts on X. We consider
the 2(ℓ + n) dimensional smooth manifold
(3.1) Y := (X × Q)/T,

where the TX×Q-action on (X ×Q) is given by γ ·(x, q) = (γ ·x, γ−1 ·q), x ∈ X, q ∈ Q
and γ ∈ T. Let H := ann(θ) ⊂ TQ be the horizontal distribution on the principal
bundle Q with respect to θ. We consider the smooth section of the endomorphism
of T (X × Q)

JY := JX ⊕ JB,

where JB acts on Q via the unique horizontal lift of vector fields on B to H. The
section JY is invariant with respect to the TQ×X-action and it is shown in [AJL22,
Section 5] that JY descends to a complex structure (still denoted by JY ) on Y .

Let P ⊂ t∗ be the Delzant polytope associated to (X, JX , ωX ,T) [Del88]. By
definition the T-action on X is hamiltonian and we denote by µ : X −→ P its
moment map. We consider the 2-form on X × Q

(3.2) ωY := ωX +
k∑

a=1
(pa ◦ µ + ca) π∗

B(ωa) + dµ ◦ θ,

where the k-tuple of real constants (ca) are such that for all a, pa ◦ µ + ca > 0 and
dµ ◦ θ is a 2-form understood as the contraction of the t-valued one form θ and the
t∗-valued one form dµ. It is shown in [AJL22, Section 5] that ωY is basic with respect
to TX×Q and as such, it is the pullback of a Kähler form (still denoted by ωY ) on Y .
The TX-action on X induces an action on X × Q by the natural TX-action on the
first factor. This action commutes with TX×Q and therefore descends to a TY -action
on Y . The Kähler form ωY on Y defined via the basic 2-form (3.2) on X × Q is
TY -invariant (see [AJL22, Section 5] for more details).

The Kähler metrics ωa on Ba, the connection form θ and the constants pa ∈ t are
fixed. The Kähler manifold (Y, JY , ωY ,T) is a fiber bundle over B with fiber the
toric Kähler manifold (X, JX , ωX ,T). Following [ACGTF11] we define:

Definition 3.4. — The Kähler manifold (Y, JY , ωY ,T) defined above is called a
semisimple principal toric fibration. The T-invariant Kähler metric ωY on Y defined
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from the T-invariant Kähler metric ωX on X is called a compatible Kähler metric.
A Kähler class αY ∈ H2(Y,R) containing a compatible Kähler metric is called a
compatible Kähler class.

In this setup, the constants ca can vary and they parameterize the compatible
Kähler classes.

Let P 0 be the interior of P and X̊ := µ−1(P 0) be the dense open subset of
X of regular orbits for the TX-action. The T-action on X extends to an effective
holomorphic action of the complexified torus TC := T⊗C. Fixing any point x0 ∈ X̊,
we can identify (X̊, JX) and the orbit TC · x0 ∼= (C∗)ℓ of x0:

(3.3)
(
X̊, JX

) ∼= (C∗)ℓ.

Restricting the TX×Q-action to X̊ × Q, we define

Y̊ :=
(
X̊ × Q

)
/T.

By (3.3) Y̊ is T-equivariantly biholomorphic to a (C∗)ℓ-bundle over B. Since (X̊, JX)
compactifies to (X, JX), the complex principal (C∗)ℓ-bundle Y̊ compactifies to
(Y, JY ).

Remark 3.5. — Semisimple principal toric fibrations (Y, JY , ωY ,T) constructed
above correspond to semisimple rigid toric fibration introduced and studied in
[ACG06, ACGTF04, ACGTF08] when there is no blow-down and the basis B is
a global product of cscK Hodge manifolds.

A particular case, which will be of interest for us, is the case of Fano semisimple
principal toric fibrations. We recall a characterization of these from [AJL22]

Lemma 3.6 ([AJL22, Lemma 5.11]). — Assume that each Ba is a Fano Kähler-
Einstein manifold. Let ωa denote a Kähler-Einstein metric on Ba so that Ia[ωa] =
2πc1(Ba), where Ia denotes the Fano index of Ba. We fix a principal bundle with
connection (Q, θ) as before (with associated data (pa)). We further assume that
(X, ωX) is a Fano toric manifold with a T-invariant Kähler form ωX ∈ 2πc1(X), with
the natural choice of moment map µ. If for all a, pa ◦ µ + Ia > 0, then the semisimple
principal fibration Y associated to the above data is a Fano manifold, and ωY is in
2πc1(Y ) for the k-tuple (ca) = (Ia).

Note that in the above situation, the scalar curvature of ωa is indeed constant,
equal to 2naIa where na is the complex dimension of Ba.

3.3. Projectivization of sum of line bundles as semisimple principal toric
fibration

We now provide an effective way of constructing examples of semisimple principal
toric fibrations.

Let (B, ωB) := ∏k
a=1(Ba, ωa) be a product of compact complex manifolds Ba

endowed with cscK metrics ωa with [ωa] primitive element of H2(Ba,Z). We consider
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holomorphic line bundles Li −→ B, i = 1, . . . , ℓ, and we suppose that their first
Chern classes satisfy

−2πc1(Li) =
k∑

a=1
pai[ωa],

where by definition pai is the ωa-degree of L∗
i . The natural C∗

i -action on Li induces
an action of S1

i ⊂ C∗
i , providing a T-bundle π : Q −→ B, where T = ∏

i S1
i is a

compact ℓ-torus. We choose a Hermitian metric hi on Li and consider the norm
function ri(u) := (hi(u, u)) 1

2 for any u in Li. On L̃i, the C∗-bundle obtained from
Li by removing the zero section, ri is positive and we let ti = log(ri). We fix a basis
ξ = (ξi)ℓ

i=1 of the Lie algebra t of T and we denote by ξL̃i the generator of the
S1

i -action on L̃i. We then consider the t-valued one-form t := ∑ℓ
i=1 tiξi and we define

a connection one-form θ on Q as the restriction of dct to Q, seen as the T-bundle of
unit element on each (Li, hi). For all i = 1, . . . , ℓ, it satisfies

θ
(
ξL̃i

)
= ξi.

We obtain by construction

dθ =
ℓ∑

i=1
ξi ⊗ π∗ (ωhi

) =
ℓ∑

i=1
ξi ⊗

(
k∑

a=1
paiπ

∗(ωa)
)

=
k∑

a=1
pa ⊗ π∗(ωa),

(3.4)

where ωhi
is the opposite of the curvature form of the Chern connection of (Li, hi)

and pa = ∑ℓ
i=1 paiξi. We consider the ℓ-projective space (Pℓ, ωPℓ ,T) endowed of a toric

T-action with respect to a fixed Kähler metric ωPℓ . We fix the principal T-bundle
Q with its connection one form θ, the cscK Kähler manifolds (Ba, ωa) and the toric
Kähler manifold (Pℓ, ωPℓ ,T). From these data, we define a semisimple principal toric
fibration Y := Q ×T Pℓ. By construction, Y is biholomorphic to the total space of
the projective bundle P(E), E := O ⊕⊕ℓ

i=1 Li.
Suppose ωPℓ belongs to the first Chern class 2πc1(Pℓ) of Pℓ and denote by P the

canonical ℓ-simplex associate to (Pℓ, 2πc1(Pℓ),Tℓ) via Delzant correspondence [Del88].
By (3.4), any compatible Kähler metric on Y is of the form

(3.5) ωY =
k∑

a=1

(
ℓ∑

i=1
paixi + ca

)
π∗(ωa) + ωPℓ , x = (x)ℓ

i=1 ∈ P

with

(3.6) −ca >
ℓ∑

i=1
pai,

In the above formulas, by abuse of notation, ωPd denotes both the Kähler metric
on Pℓ and its induced metric in 2πc1(OE(ℓ + 1)). The tuples (ca) satisfying (3.6),
parametrize the compatible Kähler classes.

Furthermore, suppose that B is a product of Kähler-Einstein manifolds (B, ωB) :=∏k
a=1(Ba, ωa). By Lemma 3.6, if we choose ca equal to the Fano index Ia of Ba, the
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corresponding compatible Kähler form ωY defined in (3.5) belongs to the first Chern
class 2πc1(Y ). In particular, if

(3.7) −Ia >
ℓ∑

i=1
pai,

Y is a Fano manifold with compatible first Chern class.

3.4. Extremal metrics on semisimple principal toric fibrations

We begin this section by recalling a general characterisation of extremal metrics
on compact Kähler manifold (Y, JY ) in a fixed Kähler class αY . By definition a
Kähler metric ω is extremal if the symplectic gradient of its scalar curvature is real
holomorphic, i.e.

Lω−1(Scal(ω))JY = 0.

By a well-known result of Calabi [Cal85] an extremal metric needs to be invariant
by a maximal torus K in the reduced automorphism group Autred(Y ) of Y . Let us fix
such a torus K. For any K-invariant Kähler metric ω on Y the action of K on (Y, ω)
is hamiltonian and we denote by µω the corresponding moment map. By a result
of Guillemin–Sternberg [GS82] the image of µω is a convex compact polytope P in
the dual of the Lie algebra k of K. For any K-invariant metric ω in αY we normalize
µω in such way that its image equals P . It then follows from [FM95] and [Lah19,
Lemma 1] that a K-invariant metric ω ∈ αY is extremal if and only if

Scal(ω) = lext(µω),
where lext is the unique affine extremal function such that the Futaki invariant
vanishes

(3.8) F(l) :=
∫

Y
l(µω)(Scal(ω) − lext(µω))ωn

n! = 0,

for any l ∈ Aff(k∗).
We now suppose that (Y, JY , ωY ,T) is a semisimple principal toric fibration with

fiber (X, JX , ωX ,T) and that αY := [ωY ] is a compatible Kähler class on Y . Let
P denotes the Delzant polytope associated to (X, JX , ωX ,T). In general, TY is not
maximal in Autred(Y ). However, by [ACGTF11, Proposition 1], any compatible
Kähler metric (3.2) is invariant by a maximal torus KY ⊂ Autred(Y ) containing TY

such that the following exact sequence holds
(3.9) {0} −→ t −→ k −→ kB → {0},

where t := Lie(TY ), k := Lie(KY ) and kB := Lie(KB) where KB ⊂ Autred(B) is a
maximal torus such that ωB := ∑k

a=1 ωa is KB-invariant (without loss of generality
by Lichnerowicz–Matsushima Theorem).

By construction (3.1), there is an embedding of the space of T-invariant smooth
functions C∞

T (X) on X in the space of T-invariant smooth functions C∞
T (Y ) on Y

(3.10) C∞
T (X) ⊂ C∞

T (Y ).
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Moreover, by computations in [ACG06, p. 380], the scalar curvature Scal(ωY ) of
compatible Kähler metric ωY on Y corresponding to a Kähler metric ωX on X
belongs to C∞

T (X) ⊂ C∞
T (Y ) and is equal to

(3.11) Scal(ωY ) =
k∑

a=1

sa

pa ◦ µωX
+ ca

+ 1
v(µωX

)Scalv(ωX),

where sa are the constant scalar curvatures of ωa and na := dim(Ba), Scalv(ωX) is
the v-weighted scalar curvature of ωX (see Definition 3.2) with respect to the weight
v(x) := ∏k

a=1(pa(x) + ca)na . It then follows from (3.9) and (3.11) that (3.8) reduces
to an equation on X and is equivalent to∫

X

(
Scalv(ωX) − w(µωX

)
)

l(µωX
)ωℓ

X = 0,

for every l ∈ Aff(t∗), where the moment maps µωX
are normalized such that

µωX
(X) = P and w(x) := (lext(x) −∑k

a=1
sa

pa(x)+ca
)v(x). To summarize we have the

following (see [ACGTF11, Section 3.5] or [AJL22, Lemma 5.14] for more details).

Proposition 3.7. — The affine extremal function lext of a compatible Kähler
class belongs to the image of the map Aff(t∗) ↪→ Aff(k∗) induced by (3.9).

Remark 3.8. — It follows from Proposition 3.7, [AJL22, (27)] and [Lah19, Lem-
ma 15] that the Futaki invariant (3.8) restricted to Aff(t∗) ⊂ Aff(k∗) coincides, up to
a positive multiplicative constant, to the weighted Donaldson–Futaki invariant (2.1)
for the weights (3.12).

We now state the main existence result of this section, which is one of the main
results of [Jub21].

Theorem 3.9 ([Jub21, Theorem 3]). — Let (Y, JY , ωY ,T) be a semisimple prin-
cipal bundle with Kähler toric fiber (X, JX , ωX ,T) and denote by P its moment
polytope. Then there exists an extremal Kähler metric in [ωY ] if and only if P is
(v, w)-uniformly K-stable, where

v(x) =
k∏

a=1
(pa(x) + ca)na

w(x) =
(

lext(x) −
k∑

a=1

sa

pa(x) + ca

)
v(x),

(3.12)

and lext is the unique affine function such that (2.3) holds for (v, w). Equivalently,
there exists a (v, w)-cscK metric in [ωX ].

Proof. — We only sketch the proof of the direction “(v, w)-uniform K-stability
implies existence of a (v, w)-weighted cscK metric” which is key in the present paper,
and refer to the original paper [Jub21] for details and the converse direction. We
fix the weights (v, w) given by (3.12). By Proposition 3.7 and (3.11), compatible
extremal metrics on Y correspond to (v, w)-cscK metrics on X via (3.2). Then,
the existence of (v, w)-cscK metric in [ωX ] implies the existence of a (compatible)
extremal metric in [ωY ]. The main ingredient is the existence result of cscK metric of
Chen–Cheng [CC18, CC21a, CC21b], extended by He [He19] to the extremal case:
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Theorem 3.10 (Chen–Cheng, He [CC18, CC21a, CC21b, He19]). — Let α be
a Kähler class on a compact Kähler manifold Y and K be a maximal torus in the
reduced automorphism group Autred(Y ). Then there exists an extremal metric in
α if and only if the K-relative Mabuchi energy MK is KC-coercive, i.e. there exists
C > 0 and D > 0 such that

MK(φ) ⩾ C inf
γ ∈KC

d1(0, γ · φ) − D,

for every φ ∈ K̊K(Y, ω̃0).

In the above statement, ω̃0 ∈ α is a fixed K-invariant Kähler metric,
MK : KK(Y, ω̃0) −→ R

is the K-relative Mabuchi energy [Gua99, Mab86] defined on the space of K-relative
Kähler potential KK(Y, ω̃0) := {φ ∈ C∞

K (Y ) | ω̃φ := ω̃0 + ddcφ > 0}, K̊K(Y, ω̃0) ⊂
KK(Y, ω̃0) is the space of normalized potential (with respect to the vanishing of the
Aubin–Mabuchi functional), d1 is the Darvas distance [Del88] and KC := K ⊗ C is
the complexification of K. Moreover KC acts on K̊K(Y, ω̃0) via the natural action
on K-invariant Kähler metrics in [ω̃0]. Originally [He19], the coercivity condition
in Theorem 3.10, was expressed in term of the complexification of a maximal com-
pact connected subgroup of Autred(Y ) (not necessarily commutative). As observed
in [Jub21, Section 5], the same arguments as in [CC18, He19] provide this statement.

The proof of Theorem 3.9 is divided in two steps:
(1) show that the (v, w)-uniform stability with respect to the weights (3.12) of

the polytope P implies the TC-coercivity of the weighted Mabuchi energy
Mv,w corresponding to (X, JX , [ωX ],T);

(2) adapt the continuity path (3.13) involved in the proof of Cheng–Cheng and He
to obtain the existence of a compatible extremal metric in [ωY ] (or equivalently
a (v, w)-weighted cscK metric in [ωX ]).

The weighted Mabuchi energy Mv,w mentioned above is the one introduced by
Lahdili [Lah19].

Step 1. — The first step is an adaptation of [Don02, ZZ08] which established
this result in the unweighted case, i.e. when v = 1 and w = lext. Fix ω0 ∈ [ωX ] a
T-invariant Kähler metric. On a toric Kähler manifold, a T-invariant Kähler metric
ω ∈ [ω0] can be defined via two functions: a T-invariant ω0-relative Kähler potential
φ ∈ KT(X, ω0) and a symplectic potential u ∈ S(P,L), which, by definition, S(P,L)
is the space of smooth strictly convex functions on P 0 which satisfy the so-called
Abreu boundary conditions [Abr03, Gui94]. There is a well-known correspondence
between a symplectic and a Kähler potential defining the same Kähler metric [ACG06,
ACGTF04, Don02, Gui94]. Via this correspondence we can consider the weighted
Mabuchi energy Mv,w as a functional on S(P,L). A first step is to show, as in the
case v = 1 [Don02, Proposition 3.3.4], that Mv,w extends to the space CV∞(P )
of smooth convex functions on P 0 and continuous on P , and that a symplectic
potential u ∈ S(P,L) defining a (v, w)-weighted cscK metric realizes the minimum
of Mv,w over CV∞(P ). This is proven in [Jub21, Proposition 7.7]. The idea is then,
as in [ZZ08], to compare Mv,w and Mv,w0 , where the weight w0 is the v-weighted
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scalar curvature Scalv(u0) of (the Kähler metric defined by) any fixed symplectic
potential u0. Then u0 trivially solves

Scalv(u) = w0, u ∈ S(P,L),
In other words, there exists a (v, w0)-cscK metric in [ωX ]. We deduce that Mv,w0 is
bounded from below on CV∞(P ) by the discussion above. Consequently, by compar-
ing Mv,w and Mv,w0 and using our hypothesis, we can show that [Jub21, Proposi-
tion 7.9] (or [ZZ08] for v = 1)

Mv,w(u) ⩾ C∥u∗∥L1 − D,

for any u ∈ S(P,L). There D > 0 and C > 0 are uniform in u and ∥ · ∥L1 is the
L1-norm on P with respect to the Lebesgue measure. Denote by dX

1 the Darvas
distance on KT(X, ω0). For a (normalized) Kähler potential φ ∈ KT(X, ω0) corre-
sponding to (normalized) symplectic potential u ∈ S(P,L) via the correspondence
described above, we can show that dX

1 (0, φ) ⩽ A∥u∥ + B, for some positive constant
A and B. We deduce that

Mv,w(φ) ⩾ C ′ inf
γ ∈TC

dX
1 (0, γ · φ) − D′.

for any φ (normalized) T-invariant Kähler potential, where C ′ and D′ are positive
constant. We refer to [Jub21, Section 7.6] for the precise normalization of symplectic
and Kähler potentials.

Step 2. — The proof of the direction “coercivity implies existence” in Theorem 3.10
is based on the resolution of the following continuity path

(3.13) t
(
Scal(ω̃φ) − lext(µω̃φ)

)
=
(
1 − t)(Λω̃φ(χ̃) − n − ℓ

)
,

where t ∈ [0, 1], χ̃ is a fixed Kähler metric in [ω̃0], dim(Y ) = n + ℓ, φ ∈ KK(Y, ω̃0)
and Λω̃φ(χ̃) is the symplectic trace of χ̃ with respect to ω̃φ. Chen–Cheng and He
showed that there exists t0 ∈ (0, 1) such that

S̃ := {t ∈ [t0, 1] such that ∃ φt ∈ KK(Y, ω̃0) solution of (3.13)}
is non-empty, open and closed in [t0, 1].

We come back to the case of semisimple principal toric fibration. We fix a
T-invariant Kähler metric ω0 ∈ [ωX ] and the induced compatible Kähler metric
ω̃0 ∈ [ωY ], see (3.2). It follows from (3.10) and (3.9) (see [ACGTF11, Lemma 7] for
a proof) that
(3.14) KT(X, ω0) ⊂ KK(Y, ω̃0),
where K is a maximal torus in Autred(Y ) containing T such that (3.9) holds. Moreover,
for every φ ∈ KT(X, ω0), seen as function on Y , the Kähler metric ω̃φ := ω̃0 + ddcφ
is a compatible Kähler metric in [ωY ] in the sense of Definition 3.4. Also, ω̃φ on Y
is the metric induced by ωφ on X via (3.2) (see [ACGTF11, Lemma 7] or [AJL22,
Lemma 5.5]). Following [ACGTF11], we then refer to the image of (3.14) as the
space of compatible Kähler potentials. Additionally, (3.11), (3.14), [AJL22, (27)] and
Proposition 3.7 (see also [AJL22, Lemma 5.10]) show that
(3.15) MK|KT(X,ω0) = Mv,w.
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Let dY
1 be the Darvas distance on KK(Y, ω̃0) [Del88]. By [AJL22, Corolarry 6.5] and

since v > 0,
(3.16) dX

1 (0, φ) ⩾ A dY
1 (0, φ)

for any φ ∈ KT(X, ω0) ⊂ KK(Y, ω̃0), where A > 0. By (3.11), the restriction of (3.13)
to the space of compatible Kähler potentials KT(X, ω0) ⊂ KK(Y, ω̃0) is equal to
(3.17) t(Scalv(ωφ) − w(µωφ)) = (1 − t)(Λω̃φ(χ̃) − n − ℓ),
We now want to show that there exists t0 ∈ (0, 1) such that

S := {t ∈ [t0, 1] such that ∃ φt ∈ KT(X, ω0) ⊂ KK(Y, ω̃0) solution of (3.17)}
is non-empty, open and closed in [t0, 1]. Since any TC-orbit is included in a KC-orbit,
the TC-coercivity is stronger than the KC-coercivity. Then, by (3.15), (3.16) and
Step 1, MK is KC-coercive on the space of compatible potentials KT(X, ω0) suitably
normalized. As observed in [Jub21, Lemma 6.3], we can choose χ̃ such that (3.17)
is an equation on X and admits a solution φt0 ∈ KT(X, ω0) for some t0 ∈ (0, 1),
showing that S is non-empty. The openness follows from an application of the Implicit
Function Theorem [Jub21, Proposition 6.4]. From the openness, the closedness of
KT(X, ω0) in KK(Y, ω̃0) (see [Jub21, Section 3.4]) and Step 1, following the proof
of Theorem 3.10, we obtain a sequence of compatible Kähler metric ω̃φj

such that
ωj := γ∗

j (ω̃φj
), γj ∈ KC, converge to an extremal metric ω1. The space of (normalized)

compatible Kähler potential K̊T(X, ω0) is not stable under the action of KC, then
either ωj or ω1 is compatible in general. However, we can show (see [Jub21, Proof
of Proposition 6.5]) that ω1 is of the form of (3.2), for a possibly different principal
connection θ and Kähler metrics ωa. Moreover, we can argue that the Kähler metric
ω1 ∈ [ωX ] defining ω1 via (3.2) is a weighted (v, w)-cscK metric for the same weights
(3.12), see [Jub21, Proof of Proposition 6.5]. □

Note that condition (2.3) corresponds to the vanishing of the modified Futaki
character, and lext encodes the extremal vector field. In particular the extremal
metric above is cscK if and only if lext is constant.

Remark 3.11. — It is remarkable that the condition depends on the base only
through the constants (sa) and the existence of a principal T-bundle with connection
with corresponding data (pa). In particular, when we obtain an existence result for
extremal Kähler metrics, we usually actually obtain the existence of extremal Kähler
metrics over a full deformation family of cscK manifolds. This is exactly this fact
which is used in the Proof of Proposition 5.1 to obtain an existence condition of
extremal metric on CP2-bundles over any Kähler–Einstein Fano threefold depending
only on the cohomology class and the degrees of the line bundles.

4. Geometric applications of the sufficient condition

4.1. The general statement

We use the same notations as in Section 3 for semisimple principal toric fibrations
and the same notations as in Section 2 for the decomposition of polytopes.
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Corollary 4.1 (of Theorem 2.6). — The semisimple principal toric fibration
(Y, ωY ) admits an extremal Kähler metric in [ωY ] if there exists an x0 ∈ P 0 and
corresponding cone decomposition P = ⋃

j Pj such that for all j and for all x ∈ Pj

1
Lj(x0)

(
ℓ + 1 +

k∑
a=1

napa(x − x0)
pa(x) + ca

)
− 1

2

(
lext(x) −

k∑
a=1

sa

pa(x) + ca

)
⩾ 0.

Proof. — By Theorem 3.9, the sufficient condition of Theorem 2.6 translates as a
sufficient condition of existence of extremal Kähler metrics. To obtain the statement
above, it suffices to note that for the weight v involved, we have

dxv(y) =
(

k∑
a=1

napa(y)
pa(x) + ca

)
v(x).

so that in the condition in Theorem 2.6, we can factor by v(x) which is positive
everywhere. □

4.2. Fibrations with Fano fiber

We now turn to the fibrations with Fano fiber, in order to use Corollary 2.10. With
the same notations as in Section 3.4, we now assume furthermore that the toric fiber is
a Fano manifold, and that the Kähler class [ωX ] is a multiple of the anticanonical class
2πc1(X). As a consequence, the moment polytope P is a dilation of a reflexive lattice
polytope. This implies that the labelled polytope (P, L) corresponding to the lattice
polytope P is monotone, with a preferred point x0 and L1(x0) = · · · = Ld(x0) = t.
Assuming without loss of generality that the (anti-)canonical normalization is used
for the moment polytope of the fiber, we may further assume that x0 = 0, and
t = [ω]

2πc1(X) .

Corollary 4.2. — The semisimple principal toric fibration (Y, [ωY ]) with Fano
toric fiber admits an extremal Kähler metric in [ωY ] if ∀ x ∈ P ,

(4.1) 2
(

ℓ +
∑

a

na

)
+ 2 +

∑
a

tsa − 2naca

pa(x) + ca

− tlext(x) ⩾ 0

Note that ℓ +∑
a na = dim(Y ).

Proof. — Since all Lj(x0) are equal to t, the condition from Corollary 4.1 further
simplifies to

2ℓ + 2 +
k∑

a=1

2napa(x) + tsa

pa(x) + ca

− tlext(x) ⩾ 0 ∀ x ∈ P

as for Corollary 2.10. Writing 2napa(x) = 2na(pa(x)+ca)−2naca yields the statement.
□

While simple enough, and tractable with numerical optimization techniques, the
inequality involved is a polynomial inequality in several variables, whose degree can
be equal to the dimension of the basis plus one. It is difficult to solve formally, but
there is a further reduction that allows to get a simpler condition which can be
checked by a finite number of evaluations of polynomial functions.
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Corollary 4.3. — Assume furthermore that for all a, ca ⩾ tsa

2na
. Then the

semisimple principal toric fibration (Y, [ωY ]) admits an extremal Kähler metric in
[ωY ] if inequation (4.1) is satisfied at every vertex of P .

Proof. — The inverse of an affine function is convex on the locus where this affine
function is positive. Hence under the condition in the statement, the function tsa−2naca

pa+ca

is concave on P . Condition (4.1) thus amounts to checking the non-negativity of a
concave function on a convex polytope: it is enough to check the non-negativity on
vertices. □

Remark 4.4. — In the case of a simple principal toric fibration, that is, if there is
only one factor in the basis, then the condition becomes extremely simple for classes
with ca ⩾ tsa

2na
: it is enough to check a degree two polynomial inequation on every

vertex of the moment polytope. This is actually used in most of the examples of
Section 5, see e.g. Proposition 5.1 or Proposition 5.3.

Remark 4.5. — We can write a similar statement for the general case of toric
fibrations, by working on the cone decomposition. In that case the conditions to
impose are: for all j, for all a, Lj(x0)sa − 2na(pa(x0) + ca) ⩽ 0 and condition (4.1)
is satisfied at all vertices of Pj, that is, some vertices of P and x0.

4.3. Extremal metrics in the anticanonical class

An important special case when the toric fiber is Fano is given by the semisimple
principal toric fibrations which are themselves Fano. By our general sufficient condi-
tion, we obtain a very simple condition for the existence of extremal Kähler metrics
on Fano toric fibrations.

Corollary 4.6. — A Fano semisimple principal toric fibration Y admits an
extremal Kähler metric in c1(Y ) if its extremal function lext satisfies:
(4.2) sup lext ⩽ 2(dim(Y ) + 1)

Proof. — By Lemma 3.6, for all a, sa = 2naca and the condition from Corollary 4.2
becomes

2 dim(Y ) + 2 − lext ⩾ 0 on P □
Of course, as in Corollary 4.3, it is enough to check this condition on vertices of

the polytope. Furthermore, if lext is constant, it is equal to 2 dim(Y ) since the class
is the anticanonical one. As a consequence, the condition is strictly satisfied:
(4.3) 2 dim(Y ) + 2 − lext = 2 > 0.

In particular, we recover that a Fano toric fibration with vanishing Futaki invariant
admits a Kähler-Einstein metric :

Proposition 4.7 ([AJL22]). — Let (Y, ωY ) be a Fano semisimple principal toric
fibration with vanishing Futaki invariant. Then there exists a Kähler–Einstein metric
in 2πc1(Y ).

More interestingly, we have the following consequence.
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Proposition 4.8. — Let (Y, ωY ) be a Fano semisimple principal fibration. Then
on a neighborhood of the anticanonical class, a compatible Kähler class admits a
cscK metric if and only if its Futaki invariant vanishes.

Proof. — By Remark 2.8, the non-negativity condition in Theorem 2.6 varies
continuously with the weight. By equation (4.3), that condition is strictly satisfied
at the anticanonical class, so it is satisfied on a neighborhood of this class. The only
added assumption in Theorem 2.6 translates as vanishing of the Futaki invariant. □

Remark 4.9. — Of course, if the Futaki invariant of the anticanonical class van-
ishes, this is already known by Lebrun–Simanca [LS93] and [AJL22]. Similarly, if
the anticanonical class is strictly K-unstable, nearby classes will be as well. However,
in the present setting, working directly with the condition it is not hard to find an
explicit neighborhood which works. Furthermore, the statement applies even when
we do not know whether there exists an extremal Kähler metric or not in the an-
ticanonical class. In the current state of knowledge, it could also happen that the
anticanonical class is K-semistable (for the notion of relative K-stability adapted to
extremal Kähler metrics), and the above proposition would still apply in that case.
This is a further illustration of a phenomenon observed in [Del22].

4.4. Weighted solitons on Fano semisimple principal toric fibrations

Recall a v-soliton is a Kähler metric ω such that

Ric(ω) − ω = 1
2ddclog(v),

where Ric(ω) is the Ricci form of ω. On Fano semisimple principal toric fibrations Y
with fiber X, a Kähler metric ωY ∈ 2πc1(Y ) is a v-soliton if and only if its correspond-
ing metric ωX ∈ 2πc1(X) is (vv0, ṽ)-cscK (see [AJL22, Lemma 2.2, Lemma 5.11])
for the weights ṽ := 2(ℓv0(x)v(x) + dx(v0v)(x)) and v0 is defined in (3.12). Since the
polytope must be reflexive hence monotone, one has x0 = 0, t = 1 and condition (2.9)
becomes v ⩾ 0 on the polytope, which is obviously satisfied. Moreover, by [Jub21,
Proposition 7.8], the (v, ṽ)-uniform K-stability implies the coercivity of the corre-
sponding weighted (v, ṽ)-Mabuchi functional. Thanks to [LH20, Theorem 3.5], we
obtain the existence of a weighted soliton in 2πc1(Y ). This result was obtained
in [AJL22, Theorem 3], by applying K-stability arguments from [LH20]. The proof
proposed above allows to remain fully on the differential geometric side.

Corollary 4.10 ([AJL22, Theorem 3]). — Let Y be a Fano semisimple principal
toric fibration with associate Delzant polytope P . Consider the weighted Donaldson–
Futaki invariant F for the weights corresponding to v-solitons defined above. Then,
if F vanishes, there exists a v-soliton in 2πc1(Y ).

5. Examples
5.1. Examples of bases

In this section, we comment on examples of possible bases for the semisimple
principal toric fibration construction. This allows to determine possible values of
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sa to plug into the condition. The easiest way to get a cscK basis is to choose a
Kähler–Einstein manifold, equipped with a multiple of its first Chern class when it
is definite, and with an arbitrary Kähler class for Calabi–Yau manifolds.

For canonically polarized manifolds, there always exists a Kähler–Einstein metric
in −2πc1(X), and there exists such manifolds in every dimension. In particular, the
value sa = −2na

ka
are always allowed, for ka ∈ Z>0. For manifolds with zero first Chern

class, there always exist Kähler–Einstein metrics with zero scalar curvature. For the
positive curvature case, since the projective space of dimension n is a Kähler–Einstein
manifold of index n + 1, all the values sa = 2na(na+1)

ka
are allowed, for ka ∈ Z>0. More

generally, for a Kähler–Einstein Fano basis of dimension na and index Ia, then all
the values sa = 2naIa

ka
are allowed, for ka ∈ Z>0. Note that the Fano index of an

n-dimensional Fano manifold is always an integer between 1 and n + 1. Here are
a couple known results on existence of Fano Kähler–Einstein manifolds when n is
small or I is large:

• if I = n + 1 then X = Pn is the n-dimensional projective space, and it is
Kähler–Einstein,

• if I = n then X = Qn is the n-dimensional quadric, and it is Kähler–Einstein,
• if n = 1 then X = P1, I = 2 and it is Kähler–Einstein,
• if n = 2 then P2 (index 3), X = P1 × P1 (index 2) and the blowups of P2

(index 1) at three or more points are Kähler–Einstein,
• if n = 3, then the existence of Kähler–Einstein metrics on a general mem-

ber of a deformation family of smooth Fano threefolds was recently settled
in [ACC+23], and the families where the general member is not Kähler–
Einstein are the following, in the labelling used in [ACC+23], 2.23, 2.26, 2.28,
2.30, 2.31, 2.33, 2.35, 2.36, 3.14, 3.16, 3.18, 3.21, 3.22, 3.23, 3.24, 3.26, 3.28,
3.29, 3.30, 3.31, 4.5, 4.8, 4.9, 4.10, 4.11, 4.12, 5.2.

5.2. P2-fiber over Fano threefold

We consider the 2-dimensional projective space (P2,T2, 2πc1(P2)). Identifying the
lattice Λ of T2 with Z2, we consider its labelled moment polytope (P, L) in R2

(5.1) P =
{
(x1, x2) =: x ∈ R2

∣∣∣L1(x) ⩾ 0, L2(x) ⩾ 0, L3(x) ⩾ 0
}

,

where L1(x) := x1 + 1, L2(x) := x2 + 1, L3(x) := −x1 − x2 + 1. Let (B, ωB) be a
KE Fano threefold with αB := [ωB] primitive element of H2(B,Z) proportional to
the first Chern class 2πc1(B). Let Li −→ B be a holomorphic line bundle of degree
−pi proportional to the anticanonical line bundle −KB, i.e. −piαB = 2πc1(Li).
We consider a simple principal toric fibration (i.e. the basis has only one factor)
π : Y := P(L0 ⊕ L1 ⊕ L2) −→ B. Since the holomorphic class of Y is invariant by
tensoring E := L0 ⊕ L1 ⊕ L2 with a line bundle, we can suppose without loss of
generality that L0 = O is the trivial line bundle and pi ⩾ 0, i = 1, 2. When B is a
local Kähler product of nonnegative cscK metric and p1 = p2 > 0 or p2 > p1 = 0, it
is known [ACGTF08, Proposition 11], that there exists an extremal metric in every
compatible Kähler classes. We then suppose p2 ⩾ p1 > 0.
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The compatible Kähler classes are parametrized by constants c and are of the form
(5.2) αc := 2πc1(OE(3)) + cπ∗(αB),
As introduced in Section 5.1, since B is a Fano threefold, the only possible Fano
indices I are 1, 2, 3 or 4. In the case where B is the quadric Q3 or the projective
space P3 (i.e. if I = 3 or I = 4 respectively), Leray–Hirch Theorem shows that
H2(Y,R) ∼= R2. It follows that, up to scaling, all Kähler classes are compatible,
i.e. of the form of (5.2). It is known that [ACGTF11, Theorem 4] for c sufficiently
large, the class αc is extremal. The following Proposition gives a precise value for c,
depending on p1 and p2, from which αc admits an extremal metric.

Proposition 5.1. — Let Y = PB(OB ⊕ H−p1 ⊕ H−p2), where B is a Kähler–
Einstein Fano threefold, H is the smallest integral divisor of 2πc1(B) and 1 ⩽ p1 ⩽ p2.
Then there exists an extremal metric in αc for c ⩾ 7p2.

Proof. — Since the arguments are identical for each Fano index I, we give the
proof only for I = 4.

By Corollary 4.3, for c ⩾ 4, it is sufficient to check (4.1) evaluated in each vertex
v1 := (−1, 2), v2 := (−1, −1), v3 := (2, −1) of the polytope P .

Using Program 2 in Appendix A, we find that the LHS of (4.1) evaluated in v1 is
a rational fraction in the variables c, p1, p2:

LHS of (4.1) = P (c, p1, p2)
Q(c, p1, p2)

.

We give the explicit expression of the polynomials P and Q in Appendix B. Suppose
now c ⩾ 7p2 and p2 ⩾ p1 ⩾ 1. Then we can find two polynomials

R(c) := 12250c10 − 73500c9 − 295470c8 + 1296540c7 − 3657150c6 + 3776220c5

− 6537672c4 + 5624964c3 − 6193584c2 + 85920232c − 1889568
and

S(c) := 6125c10 + 18375c9 + 6615c8 + 19845c7 + 127575c6

+ 382725c5 + 17496c4 + 52488c3 − 288684c2 − 866052c

such that
0 < R(c) ⩽ P (c, p1, p2)

and
0 < S(c) and S(c) ⩾ Q(c, p1, p2).

It implies that
LHS of (4.1) = P (c, p1, p2)

Q(c, p1, p2)
⩾

R(c)
S(c) ⩾ 0.

We proceed analogously for the vertex v2 and v3. We conclude the proof by involving
Corollary 4.3. □

Remark 5.2. — In Proposition 5.1, we obtain a lower bound on c depending only
on p1 and p2. For given values of p1 and p2 it is possible to obtain a more optimal
result. Indeed, suppose p1 and p2 are fixed. Then, the LHS of (4.1) is a rational
fraction F depending only on the variable c. We then only need to look for constant α
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such that F is non-negative for c ⩾ α. For example, if B = P3, respectively B = Q3,
p1 = 1 and p2 = 2, (4.1) show the existence of an extremal metric in αc for c ⩾ 7.09,
respectively c ⩾ 9.08. We refer to Appendix A for further examples of application of
the sufficient condition on simple principal P2-fibrations.

5.3. Comments on the rank one case

5.3.1. Varying x0 and prescribing weighted scalar curvature on P1

As noted in Remark 2.7, it can be useful to vary the base point x0. In this short
paragraph, we want to illustrate this phenomenon in the simplest possible case, that
is, when working on the one-dimensional polytope [−1, 1] ⊂ R with the weights v ≡ 1
and arbitrary w. We further choose the lattice labelling of [−1, 1] induced by the
lattice Z ⊂ R (in other word, we work on the anticanonical moment polytope of P1).
More precisely, the labelling (L1, L2) is given by L1(x) = 1 + x and L2(x) = 1 − x.
Since v ≡ 1, we have dxv ≡ 0, hence condition (2.6) from Theorem 2.6 translates as

1
4w|[−1,x0] ⩽

1
1 + x0

and 1
4w|[x0,1] ⩽

1
1 − x0

The latter condition is illustrated in Figure 5.1, and it is obviously less restrictive if
one can choose x0 than the uniform condition corresponding to the obvious choice
of x0 = 0 for the monotone lattice polytope [−1, 1].

(-1,0) (1,0)•
x0

(
−1, 1

x0+1

)

(
1, 1

1−x0

)

Figure 5.1. Varying x0

We end this paragraph by recalling that (1, w)-uniform stability of the lattice
polytope [−1, 1] translates to existence of certain canonical Kähler metrics on P1

thanks to [LLS21].

5.3.2. Extremal metrics on P1-bundles

We have focused on applications of our sufficient condition to semisimple principal
toric bundles with dimension two toric fiber. This is because in the case of a one-
dimensional toric fiber, quite a few strong results have been shown in [ACGTF08].
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For example, it is proved in [ACGTF08, Proposition 11] that if all factors (Ba, ωa)
of the basis have non-negative constant scalar curvature, and the fiber is one-
dimensional, then there exists an extremal Kähler metric in all compatible Kähler
classes.

There cannot be such a result if some factors of the basis have negative constant
scalar curvature, as shown by examples in [ACGTF08]. More importantly, some of
these examples motivated the initial introduction of the notion of uniform K-stability,
as they are likely relatively K-polystable in the sense of [Szé07], but do not admit
extremal Kähler metrics.

On the positive side, by [ACGTF08, Theorem 1], there always exist extremal
Kähler metrics on a semisimple principal P1-fibration, when all the ca are large
enough, an example of existence of extremal Kähler metrics in an adiabatic regime
for fibrations. However, it is not so easy to derive explicit Kähler classes with extremal
Kähler metrics from this asymptotic proof. A possible approach to get explicit classes
with extremal Kähler metrics would be to compute the extremal polynomial (in the
terminology of [ACGTF08]) and check when it is positive. This is less practical than
our sufficient condition, which involves only checking the positivity of a polynomial
at two points. We provide in the appendix an elementary computer program which
checks whether our sufficient condition is satisfied for a simple principal P1-fibration,
which could easily be adapted to the case of a semisimple principal P1-fibration.

5.3.3. A more explicit example

Consider B a three-dimensional canonically polarized manifold, equipped with
its Kähler–Einstein metric in −2πc1(X), whose scalar curvature is thus equal to
−6. We consider the sufficient condition for existence of extremal Kähler metrics
in admissible Kähler classes on the P1-bundles P(OB ⊕ Km

B ). Up to rescaling and
symmetry, this amounts to checking (v, w)-uniform K-stability of the reflexive lattice
polytope [−1, 1] ⊂ R with respect to the weights

v(x) = (px + c)3 and w(x) =
(

lext(x) − −6
px + c

)
(px + c)3

where p ∈ Q, c ∈ R and c > p > 0. Our sufficient condition allows to obtain the
following explicit families of extremal Kähler classes. We only show an example with
very rough estimates to illustrate the results, but of course one could get much more
classes by using more precise estimates in the proof, and even more classes by using
the sufficient condition in Theorem 2.6 in its full generality.

Proposition 5.3. — With the above notations, if c ⩾ 15p, then [−1, 1] is (v, w)-
uniformly K-stable. The corresponding Kähler classes on the P1-bundles P(O ⊕ Km

B )
admit extremal Kähler metrics.

Proof. — Using Program 1 in the appendix or straightforward but tedious com-
putations, we obtain up to elementary simplifications that the sufficient condition
reads as

75c7 − 300c6 − 65c5p2 + 160c4p2 − 15c3p4 − 180c2p4 − 27cp6 + 48p6
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is greater than ∣∣∣−75c6p + 5c4p3 + 80c3p3 − 105c2p5 + 15p7
∣∣∣

Without attempting to give an optimal result, we may as well check that it is greater
than

75c6p + 5c4p3 + 80c3p3 + 105c2p5 + 15p7

since c and p are positive. Writing c = αp for some α > 1 and simplifying by p6, we
get a linear inequation in p

(5.3) pA + B ⩾ 0
where

A = 75α7 − 75α6 − 65α5 − 5α4 − 15α3 − 105α2 − 27α − 15
B = −300α6 + 160α4 − 80α3 − 180α2 + 48

Since α > 1, the coefficient A is larger than (75α − 307)α6 and in particular, it is
non-negative for α ⩾ 307

75 . Using the same lower bound for the leading coefficient,
inequation (5.3) is certainly satisfied at p = 1 if

(75α − 307)α6 − 300α6 − 160α4 − 80α3 − 180α2 − 48 ⩾ 0
Using again α > 1 and very rough estimates, this is implied by the inequality

(75α − 1075)α6 ⩾ 0
The latter is satisfied at least for α ⩾ 15, and since 15 ⩾ 307

75 , we obtain that if
α ⩾ 15, the sufficient condition is satisfied for all p ⩾ 1. □

Appendix A. An elementary Python program

We provide, as a courtesy to the reader, elementary Python programs using SymPy
that checks the sufficient condition from Corollary 4.3 for simple principal toric
fibrations (that is, the basis has only one factor) with Fano toric fiber X of dimension
one or two such that [ωX ] a multiple of 2πc1(X).

The only data from the simple principal toric bundle needed to compute the
condition is:

• from the basis, the dimension n ∈ Z and scalar curvature s ∈ Q
• from the Fano toric fiber of dimension ℓ ∈ {1, 2}, the reflexive moment

polytope P ⊂ Rℓ = Zℓ ⊗ R, and the multiple t = [ωX ]
2πc1(X) ∈ R

• the one-parameter subgroup p from the principal bundle, identified with
an integer p ∈ Z if the fiber is one-dimensional, and with an element p =
(p1, p2) ∈ Z2 if the fiber is of dimension two,

• and the constant c ∈ R defining the admissible Kähler class.
We wish to compute the expression given by the right-hand side of (4.1)

test = 2(ℓ + n + 1) + ts − 2nc

p(x) + c
− tlext(x)

in order to check the condition. For this, it suffices to compute the extremal function
lext by solving the linear system which defines it. Our short programs compute lext,
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then test, then evaluate test at the vertices of P and returns the minimum if all
data are explicitly given. It the minimum returned by the program is non-negative,
the data correspond to a simple principal toric fibration with an admissible Kähler
class and c > ts

2n
, then there exists an extremal Kähler metric. We may also let some

of the data remain unknown and treat them as variables.
1 import sympy as sym
2 # variable on the line (here the fiber is one - dimensional )
3 x = sym. symbols (’x’)
4 # data of the simple principal toric fibration
5 p, c = sym. symbols (’p,c’)
6 n, s, t = 3, -6, 1
7 # weights
8 l = c+p*x
9 v, w0 = l**n, -s*l**(n -1) # for now , unknown l_ext is replaced with

zero
10 # Donaldson - Futaki invariant with weights (v,w0)
11 def DF0(f):
12 interior =sym. integrate (f*w0 , (x, -t, t))
13 facets =(f*v).subs(x,-t)+(f*v).subs(x,t)
14 return ( interior + facets )
15 # Compute the extremal function lext
16 X=sym. Matrix (2, 1, [1, x])
17 M=sym. Matrix (2, 2, lambda i,j:
18 sym. integrate (X[i ,0]*X[j ,0]*v, (x, -t, t)))
19 V=sym. Matrix (2, 1, [DF0 (1) , DF0(x)])
20 Lext=M. LUsolve (V)
21 lext =(( Lext.T)*X)[0 ,0]
22 # Compute expression test at the two vertices and print it
23 test =2*(1+1+ n)+(t*s -2*n*c)/l-t*lext
24 print(sym. factor (test.subs(x,-t)))
25 print(sym. factor (test.subs(x,t)))

Program 1. Rank one simple principal toric fibrations
Program 1 prints the condition to check when c and p are variables, n = 3, s = −6

and t = 1, as used in Proposition 5.3. By modifying Line 5 and 6, one can obtain
the conditions for an arbitrary simple principal P1-bundle.

1 import sympy as sym
2 # variables on the plane
3 x1 , x2 = sym. symbols (’x1 ,x2’)
4 # data of toric fibration and admissible Kahler class
5 c, p1 , p2 , n, s, t = 12, 1, 2, 3, 18, 1
6 ## weights associated to the data
7 l=c+p1*x1+p2*x2
8 v=l**n
9 w0=-s*l**(n -1) # for now , unknown l_ext replaced with zero

10 # list of vertices of the polytope
11 vert= [[2*t,-t], [-t,-t], [-t ,2*t]]
12 # Donaldson - Futaki invariant with weights (v,w0)
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13 def DF0(f):
14 interior =sym. integrate (sym. integrate (f*w0 ,
15 (x2 ,-t,t-x1)) ,(x1 ,-t ,2*t))
16 facet1 =sym. integrate ((2*f*v).subs(x2 ,-t) ,(x1 ,-t ,2*t))
17 facet2 =sym. integrate ((2*f*v).subs(x2 ,t-x1),
18 (x1 ,-t ,2*t))
19 facet3 =sym. integrate ((2*f*v).subs(x1 ,-t) ,(x2 ,-t ,2*t))
20 return ( interior + facet1 + facet2 + facet3 )
21 # Compute the extremal function l_ext
22 X=sym. Matrix (3, 1, [1, x1 , x2])
23 M=sym. Matrix (3, 3, lambda i,j:
24 sym. integrate (sym. integrate (X[i ,0]*X[j, 0]*v,
25 (x2 ,-t,t-x1)) ,(x1 ,-t ,2*t)))
26 V=sym. Matrix (3, 1, [DF0 (1) , DF0(x1), DF0(x2)])
27 Lext=M. LUsolve (V)
28 lext =(( Lext.T)*X)[0 ,0]
29 # Compute and print the minimum of expression test on
30 # vertices
31 test =2*(1+2+ n)+(t*s -2*n*c)/l-t*lext
32 test_vertices =test.subs(x1 ,vert [0][0]) .subs(x2 ,vert [0][1])
33 for i in range (1, len(vert)):
34 test_vertices =sym.Min( test_vertices ,
35 test.subs(x1 ,vert[i][0]).subs(x2 ,vert[i][1]))
36 print("The minimum of expression test on vertices is ",
37 test_vertices )

Program 2. Simple principal P2 toric fibrations
Program 2 computes the condition when all the data are given the fixed values

(c, p1, p2, n, s, t) = (12, 1, 2, 3, 18, 1). Changing the values on the right-hand side of
Line 5 allows to check the sufficient condition for arbitrary fixed values. If one wants
one or several of the above quantities to be treated as variables, for example c, p1
and p2, it suffices to remove these and the corresponding values on the right in Line
5 and add the line

6 c, p1 , p2 = sym. symbols (’c,p1 ,p2’)

Since the program will now compute values of test as symbolic expressions, it will
no longer be able to determine the minimum. One should thus replace Lines 28–32
for example by

28 print(sym. separatevars (test.subs(x1 ,vert [2][0]) .
29 subs(x2 ,vert [2][1]) ))

to get the expressions from Appendix B, to be used in the proof of Proposition 5.1.
Similarly, it is very easy to modify the program to consider another Fano toric

surface as fiber (Recall that there are five smooth Fano toric surfaces: P1 × P1 and
the blowups of P2 at up to three fixed points under the torus action). It suffices to
modify Lines 10–18 according to the desired polytope. For example, if one wants to
work with fiber the first Hirzebruch surface (i.e. the blowup of P2 at one point), then
it suffices to replace Lines 10–18 with

ANNALES HENRI LEBESGUE



Effective weighted stability 145

10 # list of vertices of the polytope
11 vert= [[-t,-t], [t,-t], [t,0], [-t,2t]]
12 # Donaldson - Futaki invariant with weights (v,w0)
13 def DF0(f):
14 interior =sym. integrate (sym. integrate (f, (x2 , -t, t-x1)),
15 (x1 , -t, t))
16 facet1 =sym. integrate (f.subs(x2 ,-t), (x1 , -t, t))
17 facet2 =sym. integrate (f.subs(x2 ,t-x1), (x1 , -t, t))
18 facet3 =sym. integrate (f.subs(x1 ,-t), (x2 , -t, 2t))
19 facet4 =sym. integrate (f.subs(x1 ,t), (x2 , -t, 0))
20 return ( interior + facet1 + facet2 + facet3 + facet4 )

Appendix B. Complement of proof of Proposition 5.1

P (c, p1, p2)
:= 12250c10 + 24500c9p1 − 39690c8p2

1 + 18060c7p3
1 − 22470c6p4

1 − 31752c5p5
1

− 53376c4p6
1 + 22740c3p7

1 − 57024c2p8
1 + 1312p1

10 − 49000c9p2

+ 34650c7p2
1p2 + 286860c6p3

1p2 + 152460c5p4
1p2 + 360972c4p5

1p2

− 59520c3p6
1p2 + 230112c2p7

1p2 + 18288cp8
1p2 − 464p9

1p2 − 127890c8p2
2

− 212310c7p1p
2
2 − 615510c6p2

1p
2
2 − 373212c5p3

1p
2
2 − 921924c4p4

1p
2
2

− 425376c2p6
1p

2
2 − 160632cp7

1p
2
2 − 19296p8

1p
2
2 + 141540c7p3

2 + 657300c6p1p
3
2

+ 603288c5p2
1p

3
2 + 1408632c4p3

1p
3
2 + 390936c3p4

1p
3
2 + 571536c2p5

1p
3
2

+ 349440cp6
1p

3
2 + 41376p7

1p
3
2 − 328650c6p4

2 − 531720c5p1p
4
2 − 1421136c4p2

1p
4
2

− 806100c3p3
1p

4
2 − 829080c2p4

1p
4
2 − 497592cp5

1p
4
2 − 22416p6

1p
4
2 + 212688c5p5

2

− 43812c3p5
1p

2
2 + 860184c4p1p

5
2 + 849456c3p2

1p
5
2 + 906192c2p3

1p
5
2

+ 485712cp4
1p

5
2 − 7488p5

1p
5
2 − 286728c4p6

2 − 527016c3p1p
6
2 − 725760c2p2

1p
6
2

− 329952cp3
1p

6
2 + 127890c8p1p2 + 7352cp9

1 + 22656p4
1p

6
2 + 150576c3p7

2

+ 363168c2p1p
7
2 + 156096cp2

1p
7
2 − 25728p3

1p
7
2 − 90792c2p8

2 − 46368cp1p
8
2

+ 16992p2
1p

8
2 + 10304cp9

2 − 7040p1p
9
2 + 1408p1

20 + 132300c7p2
1 + 105840c6p3

1

− 11340c5p4
1 + 125496c4p5

1 + 151200c3p6
1 − 79056c2p7

1 + 60048cp8
1

− 12096p9
1 − 396900c7p1p2 − 449820c6p2

1p2 − 260820c5p3
1p2 − 374220c4p4

1p2

− 420336c3p5
1p2 + 358992c2p6

1p2 − 364176cp7
1p2 + 17712p8

1p2 + 396900c7p2
2

+ 714420c6p1p
2
2 + 601020c5p2

1p
2
2 + 378756c4p3

1p
2
2 + 743904c3p4

1p
2
2

− 557280c2p5
1p

2
2 + 734832cp6

1p
2
2 + 84240p7

1p
2
2 − 476280c6p3

2 − 680400c5p1p
3
2

− 282744c4p2
1p

3
2 − 728784c3p3

1p
3
2 + 99792c2p4

1p
3
2 − 1073520cp5

1p
3
2

− 287280p6
1p

3
2 + 340200c5p4

2 + 45360c4p1p
4
2 + 568512c3p2

1p
4
2 + 829440c2p3

1p
4
2
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+ 1551312cp4
1p

4
2 − 244944c3p1p

5
2 − 241056c2p7

2 − 736128cp1p
7
2 − 18144c4p5

2

+ 415152p5
1p

4
2 − 279072p2

1p
7
2 + 184032cp8

2 + 139968p1p
8
2 − 31104p9

2

− 1175472c2p2
1p

5
2 − 1732752cp3

1p
5
2 − 358992p4

1p
5
2 + 81648c3p6

2

+ 843696c2p1p
6
2 + 1436400cp2

1p
6
2 + 323568p3

1p
6
2

Q(c, p1, p2)
:= 6125c9 + 2205c7p2

1 + 210c6p3
1 + 14175c5p4

1 − 7812c4p5
1 + 24c3p6

1

+ 9072c2p7
1 − 5004cp8

1 + 688p9
1 − 2205c7p1p2 − 315c6p2

1p2 − 28350c5p3
1p2

− 31752c2p6
1p2 + 20016cp7

1p2 − 3096p8
1p2 + 2205c7p2

2 − 315c6p1p
2
2 + 42525c5p2

1p
2
2

− 7812c4p3
1p

2
2 + 4356c3p4

1p
2
2 + 40824c2p5

1p
2
2 − 40320cp6

1p
2
2 + 4464p7

1p
2
2

+ 210c6p3
2 − 28350c5p1p

3
2 − 7812c4p2

1p
3
2 − 8592c3p3

1p
3
2 − 22680c2p4

1p
3
2

+ 50904cp5
1p

3
2 − 1176p6

1p
3
2 + 19530c4p4

1p2 − 72c3p5
1p2

+ 14175c5p4
2 + 19530c4p1p

4
2 + 4356c3p2

1p
4
2 − 22680c2p3

1p
4
2 − 56196cp4

1p
4
2

− 1224p5
1p

4
2 − 7812c4p5

2 − 72c3p1p
5
2 + 40824c2p2

1p
5
2 + 50904cp3

1p
5
2 − 1224p4

1p
5
2

+ 24c3p6
2 − 31752c2p1p

6
2 − 40320cp2

1p
6
2 − 1176p3

1p
6
2 + 9072c2p7

2 + 20016cp1p
7
2

+ 4464p2
1p

7
2 − 5004cp8

2 − 3096p1p
8
2 + 688p9

2

BIBLIOGRAPHY

[Abr01] Miguel Abreu, Kähler metrics on toric orbifolds, J. Differ. Geom. 58 (2001), no. 1,
151–187. ↑125

[Abr03] , Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and
contact topology: Interactions and perspectives, AMS Fields Institute Communica-
tions, vol. 35, American Mathematical Society, 2003, pp. 1–24. ↑132

[ACC+23] Caroline Araujo, Ana-Maria Castravet, Ivan Cheltsov, Kento Fujita, Anne-Sophie
Kaloghiros, Jesus Martinez-Garcia, Constantin Shramov, Hendrik Süß, and Nivedita
Viswanathan, The Calabi problem for Fano threefolds, 2023, available at https://
www.maths.ed.ac.uk/cheltsov/research.html. ↑138

[ACG06] Vestislav Apostolov, David M. J. Calderbank, and Paul Gauduchon, Hamiltonian
2-Forms in Kähler Geometry, I General Theory, J. Differ. Geom. 73 (2006), no. 3,
359–412. ↑128, 131, 132

[ACGTF04] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W.
Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. II: Global classification,
J. Differ. Geom. 68 (2004), no. 2, 277–345. ↑127, 128, 132

[ACGTF08] , Hamiltonian 2-forms in Kähler geometry. III: Extremal metrics and stability,
Invent. Math. 173 (2008), no. 3, 547–601. ↑118, 128, 138, 140, 141

[ACGTF11] , Extremal Kähler metrics on projective bundles over a curve, Adv. Math. 227
(2011), no. 6, 2385–2424. ↑127, 130, 131, 133, 139

[AJL22] Vestislav Apostolov, Simon Jubert, and Abdellah Lahdili, Weighted K-stability and
coercivity with applications to extremal Kahler and Sasaki metrics, https://arxiv.
org/abs/2104.09709v2, 2022. ↑126, 127, 128, 131, 133, 134, 136, 137

ANNALES HENRI LEBESGUE

https://www.maths.ed.ac.uk/cheltsov/research.html
https://www.maths.ed.ac.uk/cheltsov/research.html
https://arxiv.org/abs/2104.09709v2
https://arxiv.org/abs/2104.09709v2


Effective weighted stability 147

[Apo22] Vestislav Apostolov, The Kähler geometry of toric manifolds, Lecture Notes of CIRM
winter school 2019, https://arxiv.org/abs/2208.12493, 2022. ↑119, 126

[BB13] Robert J. Berman and Bo Berndtsson, Real Monge–Ampère equations and Kähler–
Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse, Math. 22 (2013),
no. 4, 649–711. ↑126

[Cal82] Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Annals
of Mathematics Studies, vol. 102, Princeton University Press, 1982, pp. 259–290. ↑118

[Cal85] , Extremal Kähler metrics, II, Differential Geometry and Complex Analysis
(I. Chavel and H. M. Farkas, eds.), Differential geometry and complex analysis, vol.
dedic. H. E. Rauch, Springer, 1985, pp. 95–114. ↑130

[CC18] Xiuxiong Chen and Jingrui Chen, On the constant scalar curvature Kähler metrics (III)
– general automorphism group, https://arxiv.org/abs/1801.05907, 2018. ↑118, 126,
131, 132

[CC21a] Xiuxiong Chen and Jingrui Cheng, On the constant scalar curvature Kähler metrics.
I: A priori estimates, J. Am. Math. Soc. 34 (2021), no. 4, 909–936. ↑131, 132

[CC21b] , On the constant scalar curvature Kähler metrics. II: Existence results, J. Am.
Math. Soc. 34 (2021), no. 4, 937–1009. ↑131, 132

[Del88] Thomas Delzant, Hamiltoniens périodiques et image convexe de l’application moment,
Bull. Soc. Math. Fr. 116 (1988), no. 3, 315–339. ↑125, 127, 129, 132, 134

[Del22] Thibaut Delcroix, Uniform K-stability of polarized spherical varieties, https://arxiv.
org/abs/2009.06463, 2022. ↑119, 137

[DGSW18] Ved Datar, Bin Guo, Jian Song, and Xiaowei Wang, Connecting toric manifolds by
conical Kähler–Einstein metrics, Adv. Math. 323 (2018), 38–83. ↑125

[Don02] Simon K. Donaldson, Scalar curvature and stability of toric varieties, J. Differ. Geom.
62 (2002), no. 2, 289–349. ↑121, 122, 124, 126, 132

[Don08] , Kähler geometry on toric manifolds, and some other manifolds with large
symmetry, Handbook of geometric analysis. No. 1, Advanced Lectures in Mathematics
(ALM), vol. 7, International Press, 2008, pp. 29–75. ↑119

[FM95] Akito Futaki and Toshiki Mabuchi, Bilinear forms and extremal Kähler vector fields
associated with Kähler classes, Math. Ann. 301 (1995), no. 2, 199–210. ↑130

[Gau10] Paul Gauduchon, Calabi’s extremal metrics: An elementary introduction, 2010, Lecture
Notes, Preprint, p. 7. ↑119

[GS82] Victor W. Guillemin and Shlomo Sternberg, Convexity properties of the moment
mapping, Invent. Math. 67 (1982), 491–513. ↑130

[Gua99] Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kähler
metrics on toric bundle, Math. Res. Lett. 6 (1999), no. 5-6, 547–555. ↑132

[Gui94] Victor W. Guillemin, Kähler structures on toric varieties, J. Differ. Geom. 40 (1994),
no. 2, 285–309. ↑132

[He19] Weiyong He, On Calabi’s extremal metrics and properness, Trans. Am. Math. Soc.
372 (2019), no. 8, 5595–5619. ↑126, 131, 132

[His20] Tomoyuki Hisamoto, Stability and coercivity for toric polarizations, https://arxiv.
org/abs/1610.07998v3, 2020. ↑121, 126

[HS02] Andrew D. Hwang and Michael A. Singer, A momentum construction for circle-
invariant Kähler metrics, Trans. Am. Math. Soc. 354 (2002), no. 6, 2285–2325. ↑118

[Jub21] Simon Jubert, A Yau–Tian–Donaldson correspondance on a class of toric fibration,
https://arxiv.org/abs/2108.12297v3, 2021. ↑118, 125, 126, 131, 132, 133, 134, 137

TOME 6 (2023)

https://arxiv.org/abs/2208.12493
https://arxiv.org/abs/1801.05907
https://arxiv.org/abs/2009.06463
https://arxiv.org/abs/2009.06463
https://arxiv.org/abs/1610.07998v3
https://arxiv.org/abs/1610.07998v3
https://arxiv.org/abs/2108.12297v3


148 T. Delcroix & S. Jubert

[Lah19] Abdellah Lahdili, Kähler metrics with weighted constant scalar curvature and weighted
K-stability, Proc. Lond. Math. Soc. 119 (2019), no. 4, 1065–1114. ↑121, 125, 130, 131,
132

[Leg16] Eveline Legendre, Toric Kähler–Einstein metrics and convex compact polytopes,
J. Geom. Anal. 26 (2016), no. 1, 399–427. ↑125

[Leg19] , A note on extremal toric almost Kähler metrics, Moduli of K-stable varieties,
Springer INdAM Series, vol. 31, Springer, 2019, pp. 53–74. ↑126

[LH20] Chi Li and Jiyuan Han, On the Yau–Tian–Donaldson conjecture for generalized Kähler-
Ricci soliton equations, accepted by emphCommunications on Pure and Applied Math-
ematics, https://arxiv.org/abs/2006.00903, 2020. ↑126, 137

[Li20] Chi Li, Geodesic rays and stability in the cscK problem, https://arxiv.org/abs/
2001.01366, 2020. ↑126

[LLS16] An-Min Li, Zhao Lian, and Li Sheng, Some Estimates for a Generalized Abreu’s
Equation, Differ. Geom. Appl. 48 (2016), 87–103. ↑121, 125, 126

[LLS17] , Interior regularity for a Generalized Abreu Equation, Int. J. Math. 28 (2017),
no. 7, article no. 1750053. ↑126

[LLS21] , Extremal metrics on toric manifolds and homogeneous toric bundles, https:
//arxiv.org/abs/2110.08491, 2021. ↑126, 140

[LS93] Claude LeBrun and Santiago R. Simanca, On the Kähler classes of extremal metrics,
Geometry and global analysis (Sendai, 1993), Tohoku University, Sendai, 1993, pp. 255–
271. ↑137

[Mab86] Toshiki Mabuchi, K-energy Maps Integrating Futaki Invariants, Tôhoku Math. J. 38
(1986), no. 1-2, 575–593. ↑132

[Mat57] Yozô Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une
certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150. ↑118

[NS21] Yasufumi Nitta and Shunsuke Saito, A uniform version of the Yau–Tian–Donaldson
correspondence for extremal Kähler metrics on polarized toric manifolds, https://
arxiv.org/abs/2110.10386v1, 2021. ↑121, 122, 124, 126

[Szé07] Gábor Székelyhidi, Extremal metrics and K-stability, Bull. Lond. Math. Soc. 39 (2007),
no. 1, 76–84. ↑141

[Szé14] , An introduction to extremal Kähler metrics, Graduate Studies in Mathematics,
vol. 152, American Mathematical Society, 2014. ↑119

[WZ04] Xu-Jia Wang and Xiaohua Zhu, Käwhler-Ricci solitons on toric manifolds with positive
first Chern class, Adv. Math. 188 (2004), no. 1, 87–103. ↑126

[ZZ08] Bin Zhou and Xiaohua Zhu, Relative K-stability and modified K-energy on toric
manifolds, Adv. Math. 219 (2008), no. 4, 1327–1362. ↑119, 122, 126, 132, 133

Manuscript received on 11th February 2022,
revised on 11th July 2022,
accepted on 10th October 2022.

Recommended by Editors X. Caruso and X. Chu.
Published under license CC BY 4.0.

eISSN: 2644–9463
This journal is a member of Centre Mersenne.

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/2006.00903
https://arxiv.org/abs/2001.01366
https://arxiv.org/abs/2001.01366
https://arxiv.org/abs/2110.08491
https://arxiv.org/abs/2110.08491
https://arxiv.org/abs/2110.10386v1
https://arxiv.org/abs/2110.10386v1
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


Effective weighted stability 149

Thibaut DELCROIX
IMAG, Univ Montpellier,
CNRS, Montpellier (France)
thibaut.delcroix@umontpellier.fr
Simon JUBERT
Departement de Mathématiques,
UQAM, C.P. 8888,
Succursale Centre-ville,
Montréal (Quebec),
H3C 3P8 (Canada)
Institut de Mathématiques
de Toulouse
Université Paul Sabatier
118 route de Narbonne
31062 Toulouse (France)
simonjubert@gmail.com

TOME 6 (2023)

http://ahl.centre-mersenne.org/
mailto:thibaut.delcroix@umontpellier.fr
mailto:simonjubert@gmail.com

	1. Introduction
	Acknowledgements

	2. Weighted K-stability of labelled polytopes: a sufficient condition
	2.1. Weighted K-stability of labelled polytopes
	2.2. The sufficient condition
	2.3. Case of monotone polytopes

	3. Geometric origin of weighted K-stability of polytopes
	3.1. Weighted cscK toric manifolds
	3.2. Construction of semisimple principal toric fibration
	3.3. Projectivization of sum of line bundles as semisimple principal toric fibration
	3.4. Extremal metrics on semisimple principal toric fibrations

	4. Geometric applications of the sufficient condition
	4.1. The general statement
	4.2. Fibrations with Fano fiber
	4.3. Extremal metrics in the anticanonical class
	4.4. Weighted solitons on Fano semisimple principal toric fibrations

	5. Examples
	5.1. Examples of bases
	5.2. ¶2-fiber over Fano threefold
	5.3. Comments on the rank one case
	5.3.1. Varying x0 and prescribing weighted scalar curvature on ¶1
	5.3.2. Extremal metrics on ¶1-bundles
	5.3.3. A more explicit example


	Appendix A. An elementary Python program
	Appendix B. Complement of proof of Proposition 5.1
	References

