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1. Introduction

In this note, we offer a new proof of the following result:

Theorem 1.1. — For every n ⩾ 2, there exist only finitely many maximal
arithmetic reflection groups Γ ⊂ Isom(Hn).

Nikulin proved in [Nik80] that there were at most finitely many maximal arithmetic
reflection groups in each dimension n where the degree of the adjoint trace field is
fixed. Therefore Theorem 1.1 follows from bounding the degree of the number field
and our main contribution is to give a new proof of the following:

Theorem 1.2. — For every n ⩾ 2, there exists dn > 0, such that if Γ is arithmetic
reflection group in Hn, then degree of the adjoint trace field of Γ over Q is at most dn.

The fact that Theorem 1.1 implies finiteness of all maximal arithmetic reflection
groups can be deduced in a variety of ways from prior work of Nikulin, Prokhorov
and Vinberg, see the introduction to [ABSW08] or the survey [Bel16]. We note here
that we do not use that the reflection group is maximal in our proof of Theorem 1.2.

We briefly discuss the prior history of finiteness of maximal arithmetic reflec-
tion groups, referring the reader to Belolipetsky’s excellent survey for more details
on this and other related points [Bel16]. In [LMR06], Long, Maclachlan and Reid
prove finiteness of arithmetic surfaces of genus zero, which implies the desired result.
Shortly afterwards, Agol proved finiteness of maximal arithmetic Kleinian reflec-
tion groups in [Ago06]. Following that work there were two independent proofs
of finiteness in higher dimensions, one by Nikulin and one by Agol, Belolipetsky,
Storm and Whyte [ABSW08, Nik07]. Roughly [ABSW08] generalizes the proofs
of [Ago06, LMR06] to higher dimensions using some new inputs, while [Nik07] uses
older reflection group technology from Nikulin’s prior work on finiteness to prove the
case of general dimension by induction where the base case depends on the results
in dimension 2 and 3. In either case, the proofs relies in the end in a central way
on deep results in the theory of automorphic forms that provide an absolute lower
bound on the first eigenvalue of the Laplacian on the relevant orbifolds. Our main
motivation in writing this note is to give a proof that is independent of the spectral
bounds and the theory of automorphic forms.

Our main tool will be the following:

Lemma 1.3 (Arithmetic Margulis Lemma). — For every n > 0, there exists ϵn

such that if Γ ⊂ Isom(Hn) is an arithmetic group whose trace field has degree d over
Q, then for every x ∈ Hn, the group:

Γx := ⟨{γ ∈ Γ | dHn(γx, x) ⩽ ϵnd}⟩

is virtually solvable.

This lemma is proven in [MHR22] using Breuillard’s height gap theorem from [Bre11].
Breuillard’s proof of the height gap theorem is also far from elementary, but a recent
elementary proof was obtained by the second author with Chen and Lee [CHL21]. In
particular, our proof of Theorem 1.1 does not rely on heavy machinery from number
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theory or representation theory in any way. We thank Ian Agol for suggesting that
it might be interesting to find such a proof.

We mention briefly here that once Theorem 1.2 was known, further work has
been done on explicitly computing dn. For a fairly up to date account of these
developments see [Bel16, Section 5]. Only d2 has been computed exactly in more
recent work of Linowitz [Lin18]. To achieve anything in this direction by our methods
would require an effective version of Lemma 1.3 and so an effective version of the
height gap theorem. This seems quite difficult in general, but could perhaps be easier
in the explicit settings required for the study of hyperbolic reflection groups.

We finish this introduction by giving an outline of the Proof of Theorem 1.2 in the
case n = 2. Assume Γ is an arithmetic reflection group generated by reflections in
the sides of an acute-angled polygon P in H2. Let E = {e1, e2, . . . , ek} be the edges
of P and consider the collection of balls B = {B1, B2, . . . , Bk} of radius ϵ2d

2 centered
at the midpoints of the edges of P , where ϵ2 is the constant in Lemma 1.3 and d is
the degree of the trace field of Γ.

If a ball Bi ∈ B intersects three edges (or intersect two other balls in B), the group
generated by reflections in these three sides will be typically a non-virtually solvable
group(1) , therefore if d is sufficiently large, Lemma 1.3 implies the balls in B typically
cannot have triple intersections and intersect at most two edges of P . To illustrate
the argument, assume there are no triple intersections of balls of B and that each
ball in B intersects only one edge, and so half of each ball is contained in P . This
implies that the area of P has to be greater than k

4Vol(BH2(ϵ2d)), but elementary
hyperbolic geometry shows that P has volume at most (k − 2)π. If d is sufficiently
large both inequalities are not possible. In the case n ⩾ 3, we will apply a similar
argument to a two-dimensional face of P , in this case we will also need to make use
of the simplicity of such polyhedra due to Vinberg and a theorem of Andreev.

Remark. — Very shortly after we shared a draft of this paper, Jean Raimbault
replied with an even shorter proof of Theorem 1.1. Raimbault’s proof uses [MHR22,
Theorem D] and a remarkable new result: for any reflection hyperbolic manifold in
dimension n, the thin part has at least a fixed proportion of the volume [Rai22].
Since [MHR22, Theorem D] uses the trace formula, we remark here that it is also
possible to produce a proof of Theorem 1.1 using [MHR22, Theorem C], Raimbault’s
lower bound on the volume of the thin part, and Nikulin’s results from [Nik80]. While
Raimbault’s proof is shorter and more conceptual than ours, it seems interesting to
publish our approach as the proof is more elementary and the ideas might prove
useful for a variety of problems concerning real and complex hyperbolic lattices
generated by torsion elements.

(1) unless the three edges are adjacent and meet at right angles, a problematic case that requires
further considerations
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2. Proof of Theorem 1.2

Definition 2.1. — For a hyperplane H in Hn, let IH be the involution in Hn

with respect to H. Let us define Fix(H) to be the set of fixed points of IH in the
boundary ∂Hn.

Let P be the acute-angled hyperbolic polytope defining Γ, and so there exists a col-
lection of oriented hyperplanes {Hα}α ∈ I , such that P = ⋂

H+
α and Γ = ⟨{IHα}α ∈ I⟩.

We will argue by contradiction and suppose that Γ is defined over a number field
of degree d ⩾ dn, where dn is the smallest positive integer such that the ball B of
radius dnϵn/4 in H2 satisfies:

(2.1) VolH2

(
Bdnϵn/4

)
⩾ 12π

where ϵn is the constant in the Arithmetic Margulis Lemma 1.3.
For now, we work with any acute angled polyhedron P , where the associated

group Γ is not necessarily arithmetic or even cofinite volume. Our other main tool,
Lemma 2.6, holds in this generality.

We will make use of the following results of Andreev [And71] and Vinberg about
the polyhedron P .

Theorem 2.2 (Vinberg [Vin85, Cor. Thm 3.1]). — Let P be an acute-angled
polytope in Hn. Then P is simple, meaning that for every k, each face of codimension
k is contained in exactly k codimension-one faces.

We note for clarity that the polytope here is contained in Hn and so face in this
statement does not include vertices at infinity. In [Vin85], Vinberg proves this result
for the polygon before defining vertices at infinity and never claims the analogous
result for vertices at infinity. The statement is not true for vertices at infinity. This
is easily seen by considering the all right dodecahedron in dimension 3 where some
vertices at infinity have links that are squares not triangles or the all right 24-cell
in dimension four which has vertices at infinity with links that are cubes and not
simplices.

Theorem 2.3 (Andreev). — Let P be an acute-angled polyhedron and suppose
{Fi} is a (finite or countable) collection of codimension one faces of P and {Hi} is
the corresponding collection of hyperplanes in Hn. Then

dim
(
∩i ∈ IFi

)
= dim

(
∩i ∈ IHi

)
.

Here the closures occurring in the statement occur in Hn and we assume a point in
the boundary of Hn has dimension −1 and that the empty set has dimension −∞.
One can read Andreev’s theorem as saying that the faces of the polygon do not have
“extra” intersections not already occurring in P .

We will use repetitively the following elementary facts:

Proposition 2.4. — If Γ is a virtually solvable discrete subgroup of Isom(Hn),
then there exists x ∈ Hn ∪ ∂Hn such that |Γx| ⩽ 2. Moreover if Γ is not finite, then
x ∈ ∂Hn.
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Proof. — If Γ is finite then Γ fixes a point in Hn, so assume Γ is infinite. Let Γ0 < Γ
be a finite index solvable subgroup which we can choose to be a normal subgroup.
Then Γ0 < P a parabolic subgroup of Isom(Hn), as can be seen, for example, by
considering its Zariski closure. By definition P is the stabilizer of a point x in ∂Hn

and Γ0 fixes this point. Either Γ also fixes x or Γ0 has more than one fixed point. It
is easy to see that the later case only occurs when Γ0 is the stabilizer of a geodesic
and that in this case it fixes exactly two points in ∂Hn which are permuted by Γ. □

Proposition 2.5. — Suppose H1 and H2 are two hyperplanes in Hn, and suppose
that H1 ∩ H2 ̸= ∅, then if x ̸∈ Fix(H1) ∪ Fix(H2) and Γ := ⟨IH1 , IH2⟩ is the subgroup
generated by reflections in H1, H2, then |Γx| ⩾ 3.

Proof. — The hypotheses imply that Hn \ Fix(H1) ∪ Fix(H2) has four components.
If one picks x in any of those four components, then Γx is easily seen to visit all four
components. □

We begin the proof of Theorem 1.2. Choose a 2-dimensional face F of P , and
cyclically enumerate its collection of edges e0, e1, . . . , em in such a way that ei is
adjacent to ei+1. By the simplicity of P we have that F is contained in exactly
H1, H2, . . . , Hn−2 hyperplanes determining faces of P and so F = (∩n−2

j=1 Hj)
⋂

P ,
and for each edge ei there exists a unique hyperplane Hei

such that ei = F ∩ Hei
.

Our main technical tool in the proof is:

Lemma 2.6. — Let ei, ej, ek be three different edges of F , let

Γ0 :=
〈
IHei

, IHej
, IHek

, IH1 , . . . , IHn−2

〉
then at least one of the following holds:

(1) Γ0 is not virtually solvable.
(2) The edges ei, ej, ek are all adjacent, and so up to reordering j = i+1, k = i+2.

Moreover the angles at ei ∩ ei+1, and ei+1 ∩ ei+2 are both π
2 .

Proof. — Observe that Γ0 is not finite, otherwise Γ0 has a fixed point in the
interior that must be in the intersection of H1, . . . Hn−2, Hei

, Hej
, Hek

, but that
would contradict the simplicity of P (Theorem 2.2).

We will show that if item 2) does not hold then Γ0 is not virtually solvable. By
Proposition 2.4 we have to show that if x ∈ ∂Hn, we must have |Γ0x| ⩾ 3

Let
H2 := H1 ∩ H2 · · · ∩ Hn−2

and consider the following cases:
Case 1: Suppose x ̸∈ H2, and so up to reordering suppose that IHn−2(x) ̸= x. If

either IHei
(x), IHej

(x), IHek
(x) are different than x, as Hn−2 intersect the hyperplanes

Hei
, Hej

, Hek
, then we can apply 2.5 to show |Γ0x| ⩾ 3. Therefore IHei

(x) = IHej
(x) =

IHek
(x) = x, moreover as IHn−2(x) is also not fixed by IHn−2 , the same argument shows

that both x and IHn−2(x) are fixed by IH1 , . . . IHn−3 , IHei
, IHej

, IHek
, but then the

line l := xIHn−2(x) must be fixed by IH1 , . . . IHn−3 , IHei
, IHej

, IHek
, and by Andreev’s

Theorem we must have that l contains a one dimensional face e of P , contradicting
the simplicity of P at e.
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Case 2: Suppose x ∈ H2. If IHei
(x) ̸∈ H2, then IHei

(x) is not fixed by some
IHl

, and as Hei
intersects Hl, Lemma 2.5 implies that |Γ0(x)| ⩾ 3. Similarly we

can assume that IHej
(x), IHek

(x) ∈ H2. Let li, lj, lk be the lines containing ei, ej, ek

respectively.
Suppose x ̸∈ Fix(Hei

) ∪ Fix(Hej
) ∪ Fix(Hk) and |Γ0x| = 2, then the line

l := xIHei
(x) must be orthogonal to all three of Hei

, Hej
, Hek

and each of them con-
tains a codimension one face of P , and this contradicts the convexity of P . Therefore
we can assume that IHei

(x) = x. If lj (similarly lk) intersects li and the angle at the
intersection is not π

2 , it follows that all x, IHej
(x) and IHei

IHej
(x) are all distinct and

we are done. Therefore we have (up to renaming) that either:
Case 2a: The line li intersects lk at angle π

2 but li does not intersect lj (in the
interior of H2). In this case the set {x, IHek

(x), IHej
(x), IHej

(IHek
(x))} contains at

least three different points and so |Γ0(x)| ⩾ 3.
Case 2b: The line li does not intersect lj ∪ lk in the interior of H2. By Andreev’s

theorem 2.3 again, if li intersects either lj or lk at infinity, it does so in a vertex at
infinity of P and then by convexity only one of the two intersections can occur at x.
In this case, we can suppose that IHek

(x) ̸= x, and we have that IHek
(x) is not fixed

by IHei
therefore x, IHek

(x), IHek
IHei

(x) are all distinct. We remark that this case is
not actually needed for the proof of our main results, since non-compact arithmetic
reflection groups all have trace field Q.

Case 2c: The line li intersects both lj and lk perpendicular. In this case Andreev’s
Theorem 2.3 implies that ej, ei, ek are adjacent and perpendicular as in item 2) and
we are done. □

To illustrate Lemma 2.6 and for ease of use, we state the following easy corollary.
Corollary 2.7. — Let E = {ei1 , . . . , eik

} be a set of k different edges of F , let

ΓE :=
〈
IHe1

, · · · , IHeik
, IH1 , . . . , IHn−2

〉
.

If k > 3 then ΓE is not virtually solvable. Moreover if k = 3 and F has finite volume
and three sides, then ΓE is also not virtually solvable.

Proof. — If k > 4, we can simply pick three non-adjacent edges in E , and apply
Lemma 2.6, noting that the second conclusion cannot hold. If k = 4, then if ΓE is
virtually solvable so is the group generated by omitting any edge from E . This implies
that each triple of edges is adjacent with all angles right angles. In other words F
has four sides with all right angles, which is impossible in hyperbolic geometry.
The last statement is just the fact that hyperbolic triangle groups are not virtually
solvable. This can be deduced from Lemma 2.6, since the configuration in the second
conclusion of that lemma cannot be a hyperbolic triangle even with the last vertex
at infinity, since the angle sum is at least π. □

We now restrict our attention to polygons P for which Γ is an arithmetic lattice.
Definition 2.8. — We say that an edge ei of F is small (or large) if the hyperbolic

length l(ei) ⩽ ϵd
2 (l(ei) > ϵd

2 ), where ϵ is the constant in the Arithmetic Margulis
Lemma 1.3.

Proposition 2.9. — There are no two consecutive small edges ei, ei+1 in F .
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Proof. — Let’s argue by contradiction, suppose that i = 2 and that e2, e3 are small,
and assume that F has at least four edges. Let

Γ4 :=
〈
IHe1

, IHe2
, IHe3

, IHe4
, IH1 , . . . IHn−2

〉
.

By the arithmetic Margulis lemma Γ4 applied to the vertex e2 ∩ e3, Γ4 is virtually
solvable, but then this contradicts Corollary 2.7. For the case of F having 3 sides, the
argument is similar and simpler. One considers the vertex where the two consecutive
short edges meet and notices that this vertex is close to all hyperplanes in F . The
Margulis Lemma then implies that the group generated by the reflections giving all
faces of F is virtually solvable and this is impossible by Corollary 2.7. □

So from now on we can assume that there are no two small consecutive edges in
F , and so at least m/2 among e1, e2, . . . , em are large.

Proposition 2.10. — If ei is large, there exists qi ∈ ei such that the ball Bi

in the plane containing F with center qi and radius ϵd/4 satisfies that half of Bi is
contained in F , more precisely Vol(Bi ∩ F ) = 1

2Vol(Bi).

Proof. — Consider a closed ball Bi of radius ϵd/4 centered at the midpoint pi of
si. We will slide the ball Bi along si (moving the center pi in the edge ei) until half
of Bi is totally contained in F as follows:

Let xi, yi be the vertices of ei. If Bi does not intersect another edge of F we are
done. Suppose that Bi intersects another edge ej ̸= ei, we start moving Bi as follows:

Case 1: If ej is adjacent to ei, say ej = ei−1, we slide Bi towards yi, until either
the interior of half of Bi is totally contained in F and we are done, or until at some
point Bi intersects three different edges including ei−1(tangencies count), so we have
that Bi intersects ei, ei−1 and ek, k ̸= i, i − 1, and moreover the angle at xi is less
than 90 degrees. By the Arithmetic Margulis Lemma applied to the center of Bi, we
have that Γ0 := ⟨IHei

, IHei−1
, IHek

, IH1 , . . . IHn−2⟩ is virtually solvable, contradicting
Lemma 2.6, and so this triple intersection is not allowed.

Case 2: The idea is the same. If ej is not adjacent to ei, we slide Bi towards
xi until half of Bi is totally contained in F , or until half of Bi intersects another
edge ek. By the Arithmetic Margulis Lemma applied to the center of Bi, we have
that Γ0 := ⟨IHei

, IHej
, IHek

, IH1 , . . . IHn−2⟩ is virtually solvable, and so by Lemma 2.6
ej, ek, ei are consecutive and the angles at ej ∩ ek, ek ∩ ei are π

2 , we now slide Bi

towards yi until half of Bi is either totally contained in P or we have that Bi intersects
ei, ej and another edge el (different that ek). In this case, again by the Arithmetic
Margulis Lemma and Lemma 2.6, we have ei, el, ej are adjacent and perpendicular.
This then implies that F has four edges and all angles π

2 , which is impossible. □

We can now finish the proof of Theorem 1.2 by the following volume considerations.
For every large edge ei consider the half ball Bi ∩F , observe that by the Arithmetic

Margulis Lemma and Lemma 2.6, no four of these half balls intersect non-trivially.
If four balls did intersect non-trivially, the group generated by the reflections in the
corresponding sides would be virtually solvable by the Arithmetic Margulis Lemma,
which easily contradicts Lemma 2.6 or Corollary 2.7. Now recalling that F has m
edges and at least m/2 large edges, we have:
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3Vol(F ) ⩾
∑

i large
Vol(Bi ∩ F ) ⩾ m

2
Vol(B1)

2
Subdividing F into triangles, elementary hyperbolic geometry shows (m − 2)π
⩾ Vol(F ), which implies that 12π > vol(B1) and contradicts that d ⩾ dn by equa-
tion (2.1).

BIBLIOGRAPHY

[ABSW08] Ian Agol, Mikhail Belolipetsky, Peter Storm, and Kevin Whyte, Finiteness of arithmetic
hyperbolic reflection groups, Groups Geom. Dyn. 2 (2008), no. 4, 481–498. ↑152

[Ago06] Ian Agol, Finiteness of arithmetic Kleinian reflection groups, Proceedings of the in-
ternational congress of mathematicians (ICM), Madrid, Spain, August 22–30, 2006.
Volume II: Invited lectures, European Mathematical Society, 2006, pp. 951–960. ↑152

[And71] E. M. Andreev, Intersection of plane boundaries of a polytope with acute angles, Math.
Notes 8 (1971), 761–764. ↑154

[Bel16] Mikhail Belolipetsky, Arithmetic hyperbolic reflection groups, Bull. Am. Math. Soc. 53
(2016), no. 3, 437–475. ↑152, 153

[Bre11] Emmanuel Breuillard, A height gap theorem for finite subsets of GLd(Q̄) and nona-
menable subgroups, Ann. Math. 174 (2011), no. 2, 1057–1110. ↑152

[CHL21] Lvzhou Chen, Sebastian Hurtado, and Homin Lee, A height gap in GLd(Q̄) and almost
laws, https://arxiv.org/abs/2110.15404, 2021. ↑152

[Lin18] Benjamin Linowitz, Bounds for arithmetic hyperbolic reflection groups in dimension 2,
Transform. Groups 23 (2018), no. 3, 743–753. ↑153

[LMR06] Darren D. Long, Colin Maclachlan, and Alan W. Reid, Arithmetic Fuchsian groups of
genus zero, Pure Appl. Math. Q. 2 (2006), no. 2, 569–599. ↑152

[MHR22] Fraczyk Mikolaj, Sebastian Hurtado, and Jean Raimbault, Homotopy type and homology
versus volume for arithmetic locally symmetric spaces, https://arxiv.org/abs/2202.
13619, 2022. ↑152, 153

[Nik80] Vyacheslav V. Nikulin, On the arithmetic groups generated by reflections in Lobachevsky
spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980), no. 3, 637–669. ↑152, 153

[Nik07] , Finiteness of the number of arithmetic groups generated by reflections in
lobachevsky spaces, Izv. Math. 71 (2007), no. 1, 53–56, translation from Izv. Ross.
Akad. Nauk, Ser. Mat. 71, No. 1, pp. 55-60 (2007). ↑152

[Rai22] Jean Raimbault, Coxeter polytopes and Benjamini–Schramm convergence, https://
arxiv.org/abs/2209.03002, 2022. ↑153

[Vin85] Ernest B. Vinberg, Hyperbolic reflection groups, Russ. Math. Surv. 40 (1985), no. 1,
31–75. ↑154

Manuscript received on 28th July 2022,
revised on 31st October 2022,
accepted on 4th November 2022.

Recommended by Editors J. V. Pereira and V. Guirardel.
Published under license CC BY 4.0.

eISSN: 2644–9463
This journal is a member of Centre Mersenne.

ANNALES HENRI LEBESGUE

https://arxiv.org/abs/2110.15404
https://arxiv.org/abs/2202.13619
https://arxiv.org/abs/2202.13619
https://arxiv.org/abs/2209.03002
https://arxiv.org/abs/2209.03002
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/


Finiteness of arithmetic reflection groups 159

David FISHER
Rice University Math Department
MS 136 P.O. Box 1892
Houston, TX 77005-1892 (USA)
df32@rice.edu
Sebastian HURTADO
Department of Mathematics
PO Box 208283 New Haven,
CT 06520-8283 Mailcode: 376 (USA)
sebastian.hurtado-salazar@yale.edu

TOME 6 (2023)

http://ahl.centre-mersenne.org/
mailto:df32@rice.edu
mailto:sebastian.hurtado-salazar@yale.edu

	1. Introduction
	2. Proof of Theorem 1.2
	References

