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ABSTRACT. — We study the Cauchy problem for the nonlinear wave equations (NLW) with
random data and/or stochastic forcing on a two-dimensional compact Riemannian manifold
without boundary. (i) We first study the defocusing stochastic damped NLW driven by additive
space-time white noise, and with initial data distributed according to the Gibbs measure. By
introducing a suitable space-dependent renormalization, we prove local well-posedness of the
renormalized equation. Bourgain’s invariant measure argument then allows us to establish
almost sure global well-posedness and invariance of the Gibbs measure for the renormalized
stochastic damped NLW. (ii) Similarly, we study the random data defocusing NLW (without
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stochastic forcing or damping), and establish the same results as in the previous setting.
(iii) Lastly, we study the stochastic NLW without damping. By introducing a space-time
dependent renormalization, we prove its local well-posedness with deterministic initial data in
all subcritical spaces.

These results extend the corresponding recent results on the two-dimensional torus obtained
by (i) Gubinelli-Koch-Oh—Tolomeo (2021), (ii) Oh-Thomann (2020), and (iii) Gubinelli-Koch—
Oh (2018), to a general class of compact manifolds. The main ingredient is the Green’s function
estimate for the Laplace—Beltrami operator in this setting to study regularity properties of
stochastic terms appearing in each of the problems.

RESUME. — On étudie le probléme de Cauchy pour I’équation des ondes non-linéaire (NLW)
avec donnée initiale aléatoire et/ou terme source stochastique sur une surface Riemannienne
compacte sans bord. (i) On commence par étudier NLW défocalisante amortie en présence
d’un terme de bruit blanc espace-temps additif, et avec donnée initiale aléatoire dont la loi est
la mesure de Gibbs. En introduisant une renormalisation appropriée, dépendante de la variable
d’espace, on montre le caractere localement bien posé de 1’équation renormalisée. Un argument
dii & Bourgain nous permet d’obtenir le caractere globalement bien posé presque siir ainsi
que l'invariance de la mesure de Gibbs sous le flot de I’équation NLW amortie stochastique.
(ii) De méme, on étudie le cas NLW défocalisante avec donnée initiale aléatoire (mais sans
terme source ni amortissement), et on montre un résultat similaire & celui obtenu dans le
cas précédent. (iii) Enfin, on étudie le cas NLW stochastique mais sans amortissement. En
introduisant une renormalisation dépendante du temps et de ’espace, on montre le caractere
localement bien posé pour toute donnée initiale déterministe de régularité (sous-)critique.

Ces résultats généralisent des travaux récents dans le cas du tore par (i) Gubinelli-Koch-Oh—
Tolomeo (2021), (ii) Oh-Thomann (2020), et (iii) Gubinelli-Koch—-Oh (2018), en étendant ces
résultats au cas d’une surface compacte plus générale. L’ingrédient principale est une estimation
sur les puissances de la fonction de Green associée a l'opérateur de Laplace-Beltrami, qui
permet d’étudier la régularité des termes stochastiques apparaissant dans ce probleme.

1. Introduction
1.1. Nonlinear wave equations

We investigate the stochastic damped nonlinear wave equations (SDNLW):
(1.1) ORu+ (1 — Ay)u+ dyu + ub = V2¢, (t,x) € Ry x M,

where the unknown wu is real-valued, k£ > 2 is an integer, and (M, g) is a two-
dimensional compact Riemannian manifold without boundary. In particular, we
study the Cauchy problem for (1.1) with random initial data of low regularity
distributed according to the Gibbs measure and with stochastic forcing £ given by
the space-time white noise. See below for precise definitions.

We also consider the nonlinear wave equations (NLW) without stochastic forcing:

(1.2) Ofu+ (1= Agu+u" =0, (t,z) € R x M,

with initial data distributing according to the Gibbs measure, as well as the stochastic
nonlinear wave equations (SNLW) with deterministic data:

(1.3) Ou+(1—Apu+u* =¢, (t,x) € R x M.

In the case of the two-dimensional torus T? = (R/Z)?, these equations have been
studied in recent works by Gubinelli-Koch-Oh-Tolomeo [GKOT21]|, Oh-Thomann
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[0OT20], and Gubinelli-Koch—Oh [GKO18]. Our main goal in this paper is to primarily
investigate the Cauchy problem for (1.1))) to extend the main results in [GKOT21,
0T20, GKO18] to a more general setting of two-dimensional compact Riemannian
manifolds without boundary.

Remark 1.1. — The equations (1.1), (1.2), and (1.3) indeed correspond to the
(stochastic) nonlinear (damped) Klein—-Gordon equations. As for local-in-time results,
the same results with inessential modifications also hold for the (stochastic) nonlinear
wave equations, where we replace (1—A,) in the left-hand side of (1.1), (1.2), and (1.3)
by —Agyu. In the following, we simply refer to (1.1), (1.2), and (1.3) as the (stochastic)
nonlinear wave equations.

1.2. The ®i-measure and the corresponding hyperbolic dynamical
problem

The motivation to study SDNLW comes from looking at a hyperbolic counterpart of
the so-called stochastic quantization equation (SQE) which is given by the following
parabolic equation

(1.4) O = Au+u’ — oo -u+¢,

where £ is as above and “oo-u” refers to a counter term arising in the renormalization
procedure. The equation (1.4) was introduced in [PW81] as a dynamical problem
whose limiting behavior of the solutions as t — 400 is at least formally given by the
P3-measure:

1
“dps = Z ' exp (—/ |Vul*dz — / u?dzr — f/ (u4 — 00 - uz) dac) du”.
M M 4 Jm

Hereafter, we use Z to denote various normalizing constants. This measure does not
make sense as it is, since, first of all, the measure “du” is not well defined. This is
overcome by viewing it as

(15) dp4 — Z—lef f/vl (u4,oo-u2)d:rdluo’

where (1 is a Gaussian measure on the Sobolev space H*(M) for any s < 0 with
covariance operator (1 — Ay)*~! (see (1.7) below). In particular, the nonlinearity u*
is not integrable with respect to o, and hence there is a need for a renormalization
in (1.5) and correspondingly in (1.4), which we discuss in the following subsection.

Now, for a stochastic hyperbolic equation with a general power nonlinearity, the
corresponding measure on the phase-space

H (M) = H (M) x H*H(M)
is given similarly by the formal Gibbs measure

dprsa (u,v) = e dudo,

(1) Our argument also works for (1.2) and (1.3).

TOME 6 (2023)



164 T. OH, T. ROBERT & N. TZVETKOV

where v = Qyu, and &(u,v) is the (renormalized) energy given by
1 1
E(u,v) = 3 /M {1)2 + | Vul* + u2}dx + 1w cuf T da,

and :u**!: denotes the renormalization of the nonlinearity. In this case, the full
measure is given by

(16) Ay (,0) = 271 Tt (g 20 ),

where p; is the white noise measure on M. Note that when there is no stochastic
forcing as in NLW (1.2), since it admits the Hamiltonian structure

0, (Z‘) = IV )€ (11, 0) with J = (_01 é) ,

then the energy £ is preserved along the flow, and so at least formally pj.,; is invariant
for (1.2). On the other hand, adding a stochastic forcing in the equation breaks down
the Hamiltonian structure and in particular changes the equation satisfied by the
speed v = Oyu. Thus, in order for p; to be stationary for v, one needs to add an extra
damping term, making the equation into a Langevin equation with the momentum
v = Oyu. This leads us to consider (1.1).%

1.3. Renormalization of the nonlinearity

Let us now describe the renormalization procedure. Let {¢,}n>0¢ be an orthonor-
mal basis of L*(M) consisting of real-valued C™(M)-eigenfunctions of —A, with
corresponding eigenvalues {\?}, - assumed to be arranged in increasing order, so
that for any u € D'(M), where D’(M) is the dual of C°°(M), one can decompose

U= Z Py

n=0

for some sequence {a,},>o of real numbers. Then, we can see u = g ® pq as the
Gaussian probability measure induced under the map

(L.7) X : (wo,wi) € Qo x Qy — (ug?, uit)

= (Z g"(w(])son, > hn(wl)son> € H* (M),

n>=0 <>\n> n>0

where (\,) = /1 + A2 and {(gn, hn)}n>0 is a sequence of independent standard
real-valued Gaussian random variables on a probability space (29 X 1, F, Py @ Py).
From Weyl’s law (2.3), which in particular says that A, ~ n%, it is easy to see that
the convergence of these series holds in L?(Qq x Qy; H*) whenever s < 0. Moreover
supp u C H?® for any s < 0 but u(H°) = 0.

Now, the space-time white noise £ is a centered Gaussian random variable on a prob-
ability space (€2, P) with values in the space of Schwartz distributions &'(R; D'(M)),

) In the physics literature, when k is odd the stochastic equation (1.1) is then known at the
“canonical” stochastic quantization [RSS85] of the ®5+-measure (1.6).
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which is delta correlated. This means that for any space-time test functions n,n €

S(R; C>*°(M)), we have
E[Em&@m)] = (mm) 1z,
where (-,-);2 stands for the usual inner product on L*(R x M). In the following,

we impose that the space-time white noise ¢ is independent of g,,, h, in (1.7).
In particular, we see that £ is given by 0;B, where B is a two-sided cylindrical
Wiener process on L?*(M), defined as

(1.8) B(t) = > Bu(t)en,

with 3,(0) = 0 and 3,(t) = (£, 10,4 - ¥n)t,e- Here, (-, ), denotes the duality pairing
on R x M. As a result, we see that {3, },>0 is a family of mutually independent (and
independent of g, h, above) two-sided Brownian motions on (£2,P). In particular,
we have B € C%(R; W*=1>(M)) almost surely for any b € [0, %) and s < 0. In the
following, we look at the base probability space (29 x 2 x Q, Py @ P; ® P) as

(1 (M) x 2 peF),
where
=@ p1 = X, (Po@P) = (Py@P;) o X
is the push-forward of X defined in (1.7).

With these notations at hand, let us first discuss the renormalization for (1.1). A
solution u to (1.1) can be represented through Duhamel’s formula:

(1.9) u(t) = 0V (t)uo+ V(t)(uo+u1) —/Ot V(t—t’)uk(t’)dtur\/ﬁ/ot V(t—t)dB(t),

where (ug,u) is as in (1.7), and

(1.10) O (5~ )

is the propagator for the damped Klein-Gordon equation: 9u+ (1 — Ay)u+ du = 0,
i.e. the (deterministic) linear part of (1.1).
We see that the roughness of a solution u already appears at the linear level:

(L11) By (t) = O (W + V(0o + ) + V2 | Vit —¢)dB(E),

which lies in C(R; H*(M)) almost surely for any s < 0 (see Proposition 3.8 below).
The strategy to define the product «* in the Duhamel formula (1.9) is then to regu-
larize the rough term Wg,,, and to replace u¥ by another well-chosen® polynomial
such that, as we remove the regularization, the corresponding renormalized power:
uF: converges to some finite random variable almost surely.

More precisely, for any N > 0, let Py be (a smooth version of) the frequency

projection on the set of frequencies {), < N} (see (2.4) below). For each (¢,z) €

() 1n particular, note that the renormalized power defined below is a monic polynomial with
its lower-order coefficients becoming infinite as the regularization is removed, which justifies the
notation oo - u in (1.4) for the cubic case.
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R x M, PyU4amp(t, ) is then a mean-zero real-valued Gaussian random variable
with variance

def

ox(2) € E[(PyVaamp(t, 7))°] = B [(Pyuo())’]

2

—2,2)2 ¥n(7)
- go ¢0 (N /\n> <)\n>2 - O(lOg N)7
where the second equality results from the invariance of (the truncated version of) the
Gaussian measure p under the (truncated) linear stochastic damped wave equations
given by Proposition 3.8, and the last estimate comes from Lemma 2.1 along with
Weyl’s law (2.3). We note that oy (z) in (1.12) is time independent.

As in the case M = T? investigated in [OT18, OT20, GKO18], when the truncated
nonlinearity (Pyu)* is replaced by the Wick ordered monomial defined for all®
(t,z) € R x M by

(1.13) ((Pyu): (t,2) = Hy(Pyu(t, 2);on(2)),

where Hy(x,0) is the kth Hermite polynomial, the renormalized powers of the
stochastic contribution : (PyWqamp)® : converge almost surely to some random

variable : W} . See Section 3 below.

(1.12)

1.4. Well-posedness of the renormalized dynamics

In view of the above discussion, we look at the following smoothed renormalized
version of (1.1):

(1.14) Dun + (1 — Ag)uy + dun + Hk(uN; JN(x)) = V2PyE,
. (UN, atUN) ’t:O = (PNUO; PNU1) )

(t,x) € Ry x M, with the random initial data (ug,u;) given by (1.7). Our main
result is then the following.

THEOREM 1.2. — Let k > 2 be an integer and s < 0. Then, there exists a stopping
time T', p®P-almost surely positive, such that for any N € N, there exists a unique so-
lution uy to (1.14) which belongs p®P-almost surely to C’([O, TY; HS(./\/I)). Moreover,

{un}nen converges p@P-almost surely to a stochastic process u € C’([O, T}, Hs(./\/l)) .

Remark 1.3. —
(i) Formally, the limiting process u is a solution of the full equation:
(1.15) FPu+ (1 — Ay)u+ du+ uk: = V2€.

This is only formal since the renormalized nonlinearity (1.13) is only defined
for smoothed (i.e. frequency truncated) noise and data.

(DWhen M = T?, since the Gaussian process P nWaamp (¢, z) is also stationary in z, on is then
independent of x. Here the renormalization must be defined pointwise in x.
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(ii) The limit v in Theorem 1.2 is unique in the class
Wgamp + C([0,T1; H* (M) € C([0,T]; H (M)

for0<1—35 <1

(iii) The full Wick ordered nonlinearity is actually well defined on the above class
(see (3.1) below), which justifies that u “is a solution” of the full renormalized
dynamics (1.15).

We now investigate the global well-posedness of (1.15) and the invariance of the
Gibbs measure (1.6) when k£ > 3 is an odd integer. Instead of considering the
approximate dynamics given by truncating the noise and the initial data (asin (1.14)),
we truncate the nonlinearity and look at the following approximate dynamics:

{8152UN + (1 - Agl)UN + druy + PNHk:(PNUN; UN(f)) = \/55,

(1.16)
(UNﬁtUN)h:o = (an Ul) ~ PNk+15

where pn 41 is the truncated Gibbs measure, defined in (5.2) below. Here, the
notation (ug, u1) ~ pyr+1 Mmeans that the random initial data (ug,u;) has the law
PN k+1- Since py g+1 <K p, the same local well-posedness and convergence result as in
Theorem 1.2 also holds for (1.16), and gives again al®) local solution (u, d,u) to (1.15).
Then we can exploit the invariance of py k11 under the flow of (1.16) by following
Bourgain’s argument as in [Bou94, Bou96, Tzv08, BT08b, BTT13|, and extend the
local well-posedness result into a global one.

THEOREM 1.4. — Let k > 3 be an odd integer® and s < 0. Then, the limit
(u,Opu) of the dynamics (1.16) can be p ® P-almost surely extended globally in
time, thus defining a global measurable flow map ®(t) : H5(M) x Q — H5(M).
Moreover, the Gibbs measure py1 is invariant, in the sense that for any t > 0 and
any F' € Cy(H*(M);R), we have

/s(M)/QF[q)(t)<u0’uhwﬂdmw)dpkﬂ(uoaul) = /HS(M) F(ug, uq)dpgr1(ug, ).

Remark 1.5. — As pointed out above, Theorem 1.4 is concerned with the invari-
ance of the Gibbs measure py1 in (1.6) for the limit of the truncated equation (1.16).
The reason to consider this dynamics (rather than (1.14)) is that it also admits an
invariant (truncated) Gibbs measure py 41 (see the definition in (5.2) below), which
makes it easier to apply Bourgain’s invariant measure argument [Bou94, Bou96| to

(5)Actually, a straightforward adaptation of our argument shows that the limits obtained by (1.14)
or by (1.16) are the same. See also Remark 1.5 below.
(6) Here, we only consider the defocusing case, namely the case of an odd integer k € N with the
“4+7 sign in front of the nonlinear term on the left-hand side of (1.1), since in the focusing case the
density of

“dﬁk+1(u, 8tu) _ 6+ fM wktL d,u(u,@m)”
cannot be properly defined [BS96, OST20]. When k is even, there is no notion of focusing or
defocusing. When k£ = 2, it is still possible to construct a focusing Gibbs measure, at least on
the flat torus T?; see [Bou99, OST20]. This focusing Gibbs measure is, however, endowed with a
taming by a power of the Wick-ordered L?-norm, leading to a slightly different equation. Hence,
we do not consider it in this paper. A similar comment applies to Theorem 1.7.
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globalize the dynamics in Section 5. However, this approximation is somehow less
natural than (1.14) considered in Theorem 1.2, as this latter deals with solutions
arising from smooth approximations of the initial data and noise instead of trun-
cating the nonlinearity. It turns out that there are situations where the truncated
dynamics (1.16) is actually easier to handle than the natural approximation (1.14),
as one can benefit of the invariance of py k41 also in the local theory. We refer the
reader to the introduction of [ST20] for a more thorough discussion on this point.
In our case, the local theory and stability property established in Propositions 4.1
and 5.3 below are robust enough to handle both the truncated dynamics (1.16) and
the natural approximation (1.14), and the result of Theorem 1.4 should also hold
for the natural approximation (1.14) up to minor modifications of the argument
presented in Section 5.

As mentioned above, we can also look at the evolution of py,; under (a suitably
renormalized version of) the deterministic NLW (1.2) (i.e. without stochastic forcing
or damping). For this purpose, we first study the following renormalized NLW:

(1.17) DPun + (1 — Ag)uy + Hk(uN; UN(I)> =0
. (UN, 8tUN)|t:0 = (PNUO, PNU1) )

where (uo, u1) has the law u defined in (1.7). In this case we have similar results.

THEOREM 1.6. — Let k > 2 be an integer and s < (. Then, there exists
a stopping time T, p-almost surely positive, such that for u-almost every ini-
tial data (ug,u;) € H*(M) and for any N € N, there exists a unique solution
un € C([0,T]; H¥(M)) to (1.17). Moreover, {un}nen converges p-almost surely to
a function u € C([0,T]; H*(M)).

Here, the uniqueness of u is in the corresponding class:
2+ C([0,7]; H (M),

where s is as in Remark 1.3 (ii) and

sin (t4/1 — A
(1.18) 2(t) = S(t)(ug, u1) = cos (t\/l - Ag) uo + ( A g) (1
T =
is the linear solution with the random initial data (ug,u1) = (uy®,u7*) defined
in (1.7). Note that we have E[(Pyz(t,2))?] = on(x) as in (1.12), and hence the
renormalization in (1.17) is also defined by (1.13).

As before, we can alternatively look at the approximations given by solving the
truncated NLW:

(1.19) {8t2uN + (1= Ag)un + Py H, (PNUN; UN(.CE)) =0

(UN, 8tUN)|t:0 = (UO>U1) ~ PN k+1-

Due to the conservation of the energy and subsequently of the truncated Gibbs
measure, we also have a global statement for the limit of the solutions to (1.19).
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THEOREM 1.7. — Let k > 3 be an odd integer. Then, there exists a set ¥ of
full pyi1-measure such that for any initial data (ug,u;) € X, the limit (u,Ou) of
the solutions (uy, Oyuy) to (1.19) exists globally in time. Moreover, the flow map
O(t) : (ug,ur) — (u, Oyu) leaves the Gibbs measure py41 invariant. Namely, for any
t € R and any F € Cy(H*(M);R), we have

/S(M)F<(I)(t)(u0>ul))dpk-&-l(anUl) = /HS(M) F(UO,Ul)deH(UOaUl)-

Remark 1.8. — The same comment as in Remark 1.5 above also applies to the
result stated in Theorem 1.7. In particular, for the deterministic equation (1.2), the
approximation by smooth initial data in (1.17) (while studying the same equation)
is genuinely more natural than the one given by the truncated equation (1.19), since
in this case the use of randomness on initial data can be interpreted as a way to give
a meaning to limits of smooth solutions to (1.2) at a super-critical regularity. See,
for example, [BT08a, BT14, OPT22].

Finally, we consider the case with stochastic forcing but with deterministic initial
data and no damping™:

(1.20) {a’?uN + (1= Agun + Hk(UN; UN(t,x)) =Pyé

t,r) € R x M,
(U, atu)‘t:l) = (u07u1)7 ( )

for deterministic initial data in (ug,u1) € H*(M), where on(t,x) is as in (1.21)
below. Here, the renormalization is slightly different. Let us first define the stochastic
convolution

t sin — ¢ 1 - A tsin ((t —t')(\, /
v | (ﬂﬁ?ZM““QKA g s o

which is the solution of the linear stochastic wave equation with the zero initial data.
Then, from [t6’s isometry, we have for any x € M and t > 0:

(1.21) on(t,z)
[P (0] = X v (V) (o) [

- t sin (2¢(\,,))
<2<An>2 RS

waymfﬂ

) = O(tlog N).

=3 to (N2X2) (pn(2))?

n=0

As in (1.13), we thus define the renormalized Wick powers by
(1.22) L (PyU(t, )" Hy(PyU(t ) on(t ).

We emphasize here that since now Py W is not stationary in x or ¢, the renormalization
needs to be performed pointwise in both z and ¢.

(") Let us recall that the damping term was added in (1.1) in order to preserve the measure pj41.
Hence when there is no damping term as in (1.3) there is no point in considering random initial
data, since there is no invariant measure for (1.3).
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THEOREM 1.9. — Given an integer k > 2, let sy be the critical regularity
defined in (1.23) below. Let 0 < s; < 1 satisfying s > Seit if kK = 2,3 or 81 = Serit
when k > 4. Then, the truncated Wick ordered SNLW (1.20) is almost surely locally
well-posed in H* (M), in the sense that for any data (ug,u;) € H**(M) and any
s < 0, there exists an almost surely positive stopping time T' = T, (ug, u1) such that
for any N € N, there is a unique solution uy to (1.20) in the class

Py + X3 c C([0,7]; H¥(M)),

where the space X' is defined in (4.6) below. Moreover, the solutions uy converge
to a stochastic process u € C([0,T]; H*(M)) almost surely.

The critical exponent s corresponds to the one given by the deterministic well-
posedness theory:

(1.23) Serit = MaX(Sscal, Sconf, 0) = max (1 3 3 T i % i 1,0)
where Sqea and scong correspond respectively to the scaling invariance and the con-
formal symmetry.

Unlike in the previous models, there is no invariant Gibbs measure available
for (1.3), and as a consequence globalizing the solutions is not as straightforward.
We point out that in the special case M = T2, this has been investigated very
recently in [GKOT?21].

1.5. Scheme of proofs and organization of the paper

As transpired in the discussion above, the general strategy used in [DPDO03] (see
also [McK95, Bou96]) to prove Theorems 1.2, 1.6, and 1.9 is to look for a solution
under the form uy = ry + wy with v € {PyYaamp, 2v, PyV}, where wy is
expected to be smoother and hence falling into the scope of applicability of the
deterministic well-posedness theory. Then, we aim to solve the perturbed equation
for wy with the enhanced data set {wx(0), dwn(0),7n, ..., 7% }. Indeed, in view
of the formula (3.1) below for the renormalization of the sum, we see that wy solves
(in the case of (1.1))

k

(124) 6t2wN+(1 —Ag)wN+8th+Z (E) :’I“?V: u)JkV_Z — 0
=0

Hence it is enough to estimate the Wick ordered monomials : 7% : uniformly in N
in order to estimate :u% :. Then, we can solve the equation for wy uniformly in N
by a standard fixed point argument as in the deterministic setting. The difficulty
with working on a general compact Riemannian manifold without boundary appears
in the first step when trying to get good probabilistic estimates on the random
objects appearing after renormalization. Indeed, the Fourier analytic proofs of these
estimates in the previous works on T? [OT18, OT20, GKO18] fail here because of
the lack of structure of a commutative group and of uniform boundedness of the
eigenfunctions. Thus we cannot rely only on “global ”(on M) arguments. Instead,
we give a local description of the stochastic objects in the spirit of [BGT04], so that
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up to localizing and controlling various error terms which appear in this process, the
probabilistic estimates in the case of a manifold follow from analyzing the kernel
of some pseudo-differential operators (¥DOs) in R?. Note that the semi-classical
analysis that we employ is somehow non-standard, since not all the pseudo-differential
operators involved depend on the semi-classical parameter, so we have to work with
“semi” semi-classical WDOs.

Alternatively, in the context of parabolic singular stochastic PDEs, the authors
in [BB16] developed a functional calculus adapted to the heat semi-group on man-
ifolds, which enabled them to build a robust and general theory for the study of
singular stochastic PDEs in a more complex geometrical setting. Though we believe
that their approach could be adapted to treat our problem, it seems that the general
bound on the powers of the truncated Green function for the Laplace-Beltrami
operator established in Proposition 3.6, which is in the core of our proof, is new and
of independent interest. In particular, it would prove itself useful if one wishes to
extend the result of [DPDO03] for (1.4) on compact surfaces. See also Remark 3.9
below.

Another contribution of this work is to extend Bourgain’s invariant measure ar-
gument [Bou94, Bou96] to the case of a singular stochastic PDE, allowing us to
globalize the local result of Theorem 1.2. This argument has indeed previously been
used mainly in the context of a deterministic Hamiltonian PDE with random initial
data such as (1.2) considered here. In Section 5, we carefully detail its implementation
in the presence of a singular random forcing term.

We begin by recalling the tools that we need from spectral theory and semi-classical
calculus in Section 2, in particular the local description of semi-classical pseudodif-
ferential operators given in [BGT04] that we shall use extensively. In Section 3,
after recalling the basic tools from probability theory and Euclidean quantum field
theory, we establish the crucial probabilistic estimates on the aforementioned sto-
chastic objects. Sections 4 and 5 are dedicated to the proof of the local and global
well-posedness results and the invariance property of the Gibbs measure pg.1.

2. Functional calculus and semi-classical pseudo-differential
calculus

In this section, we collect the tools from micro-local analysis that we will need
in the next sections. Most of the background needed here can be found in [Zwol2],
except for the few results on the functional calculus which can be found in [Dav96].

2.1. Geometric setting

We begin by recalling the general setting for our results. We consider a d-dimensio-
nal® compact Riemannian manifold without boundary (M, g), on which we fix

(8) In this section we state some results for a general dimension d € N, but in the rest of the paper
we only consider d = 2.
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a finite atlas (U}, Vj, k;);je s for some finite index set J, i.e. the V; are open sets
covering M:
M= UV,
jeT

and U; are open sets in R?, with® some homeomorphisms ki U; CRY =V, C M
such that /<aj_1 o Kk, are smooth diffeomorphisms on U; N Uy, for any j, k € J such
that U; N Uy, # 0. We also fix an associated smooth partition of unity (x;);je7, i-e.
X; € C®(M) with supp x; C V; and for any z € M,

> xj(r) =1L

jeJ
For j € J and a smooth function u € C'*°(V}), the pull-back of u is then the function
Kiu = uo r; € C*(U;).

Given a local chart (U;,V}, k;), the metric g is given by a smooth mapping g :
r € U; = (9ms(2))mu=1..a Where (gm e(2))me=1..q4 is & symmetric positive definite
matrix, with inverse denoted by (§™*(2))m. r=1.. d-

The Laplace-Beltrami operator can then be described as the negative!®) operator

acting locally on smooth functions u € C*°(V;) by

*'ux:d¥ et g(z)g™ (x K (Xu
B = 3 et (et g™ (1)) (0

= (p2(z, D) + p1(z, D)) ’f; (Xju)

for any x € U;, where ); € C°(V;) satisfies x; = 1 on supp x;. Here p; is a
differential operator of order 1, and the differential operator py is given by

(2.1) pa(x, D) = Y g™ ()0, 0n,.

ml=1
In particular, since g is smooth with values in symmetric positive definite matrices
and M is compact, there exists ¢, C' > 0 such that for any = € U; ¢ 7 supp x}x; and
¢ € R? we have

(2:2) —CIEP < pal, §) < —clef,
We recall that —A, admits an orthonormal basis {¢,}n>0 C C°(M) of L*(M)

consisting of eigenfunctions with corresponding eigenvalues {\2}, > assumed to be
arranged in the non-decreasing order, and that we have Weyl’s law

(2.3) #{n >0, A\, <A}~ 2\
for any A > 0. In particular we have A\, ~ ni.

The eigenfunctions ¢,’s are not uniformly bounded (in n), but we have (see
e.g. [BTT18, Proposition 8.3]) that they are bounded in a mean value meaning:

(O)In the differential geometry literature, atlases are generally defined with the opposite convention
that U C M and k : U — x(U) C R, Here we chose to keep the convention of [BGT04].

(10) Again, it is common to define the Laplace-Beltrami operator as the positive operator —Ag, but
we stick to the negative one so that the wave equations (1.1)-(1.2)-(1.3) have the same formulation
as on T2.
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LEMMA 2.1. — Let d = 2. There exists C' > 0 such that for any A € R and
x € M, we have

1
1+ A2’

> 1(1\,A+1}(>\n)M <C DY 1aas(An)

n=0 ]' + /\721 n=0
where 1( p41) is the indicator function of the interval (A, A + 1].

Indeed, this lemma follows directly from the following asymptotic behavior for the
spectral function of Ay due to Hérmander [H6r68]: for any d € N, there exists ¢4 > 0
such that for any A > 0 and x € M,

e(z,A) = " (pn(@)? = ca” + O (A1),

A2 < A2

2.2. Functional calculus

We finally move onto the definition and the local description in terms of ¥DOs of
some operators used to describe the stochastic objects and to construct the Sobolev
and Besov spaces needed to measure them.

To this end, let us first define Py to be a smooth version of the Dirichlet projection
onto the frequencies {\, < N}. Namely, take a smooth even non-increasing cut-off
Yy € C3°(R) satisfying supp g C [—1,1] and ¢9 = 1 on [—1/2,1/2]. For any real-
valued v € L*(M), we have

u = Z <u7 SDTL>L2(M)907L7

n>0

where
(U, V) L2y = /M u(z)v(z)dx

is the inner product in L?(M) and we simply wrote dz for the volume density on
(M, g). For any N > 0, Py is then defined as the linear operator on L?(M) given
by

2
(2.4) Pyu = Z o (;\\;;) (U, ) L2(M) Pn-

n>0
In particular, if we define the finite-dimensional subspace of L*(M)

Ex = Span{¢,, A\, < N}

with the orthogonal projection

My : L*(M) — Ey,
then Py maps L?*(M) into Ex and
(2.5) [IyPy = Pylly = Py.
Next, we define the sets of dyadic integers for N as

20+ ={1,2,4, ...} and 2% =2%+\ {1}.
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Hereafter, we will use the Sobolev and Besov spaces W*?(M) and B; (M), s € R,
1 < p,q < 0o, which are defined via the norms

[

Z (An)*(us Pn) L2 (M) P

n=0

)

LP(M)

and

[[ul

S
Ne2N

For now the Besov norms of a function u are only defined in terms of projections
in the eigenfunction expansion of u. Although it is easy to handle these norms when
p = 2 (since the ¢,,’s form an orthonormal basis of L?(M)), we need an equivalent
characterization to be able to estimate them when p # 2.

Let us recall the definition of the L? functional calculus. For any bounded contin-
uous function f on R, we can define the bounded linear operator f(—A;) on L*(M)
as

n>=0
This defines a continuous linear map from Cy(R) to the space £(L*(M)) of bounded
linear operators on L*(M). More generally, if f € 8™ for some m > 0 (see (2.7)
below), then f(—A4,) is an unbounded operator on L*(M) with domain given by

D(f(-a0) - { M), (1 ()t < oo} |
For N € 2N, we define
U () = o (N722) — 4 (4N z)

and

U1(z) = o(w)
for N = 1. In view of the previous definition, we have Py = 1)o(—N24,) and for
N € 2V, we have
Py =Py = Un2(—4y).
Thus we need to give a local description of the bounded linear operators which
are functions of —A; on L*(M) given by the functional calculus. This is the content
of the next subsection.

2.3. Pseudo-differential calculus
We begin by collecting a few facts about (semi-classical) WDOs. First, for d € N

and any m € R we say that a function f € C*(R?) belongs to the space S™ if for
any multiindex 8 € N? and any ¢ € R?,

(2.7) 92 F(©)] S @m
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where (£) = /1 + |£]? and |S] is the length of the multiindex 3. Here we use the
notation A < B if there exists ¢ > 0 (independent of the sets where A and B vary)
such that A < ¢B. We also use the notations A ~ Bif A < Band B S A,and A K B
if we can take ¢ = 10712, We extend this definition to functions a : R x R¢ — R,
which belong to the symbol class S™ if a € C*°(R? x R?) and satisfy for any «, 3 € N4
and (z,¢) € R x RY,

(2.8) 0e0fa(x, €)| S (&),

Then for m € R and a symbol a € 8™ we define the semi-classical ¥DO of order m
with symbol a with respect to some semi-classical parameter'!) b e (0,1] to be the
linear operator acting on Schwartz functions u € S(RY) by the quantization rule

(2.9) a(x,hD)u = (271r)d /Rd e Ea(z, hE)a(E)dE,

and u stands for the Fourier transform of u. Hereafter we systematically neglect the
constants 27 appearing either in (2.9) or in the Fourier transform.

A particular case of Fefferman’s result [Fef73] is that a (semi-classical) ¥DO of
order 0 extends to a bounded linear operator on LP(R?) (with norm independent
of h in the semi-classical case), for any 1 < p < oo. It is also well-known (see for
example [Zwol2]) that the composition of YDOs of order m; and my gives a ¥DO
of order my + msy, and moreover the symbolic calculus gives

a(x,hD) o b(z,hD) = (a#b)(z, hD),
where for arbitrary M € N,

(2.10) (a#tb)(z, he) = Mi cahl® (9 a- 02b) (x, h€) + Ogmpema—n (W) .

|a|=0
Here we use the notation Ogm+my-m (hM) to mean
Ogmysmy—m (W) = BMry 0 4(2, AD)
for some ry7,p € S™FT™~M (and depending continuously upon a and b for the
composition). This implies that if a € 8™, then for any s € R, a(z,hD) maps
continuously H*(R%) into H*~™(R%), and for any u € S(R?) we have the estimate(!?

(2.11) la(w, RD)ul e mgmay S R0 |

Here s A0 = min(s,0). This follows directly from the uniform (in k) L? boundedness
of the semi-classical DO (hD)* ™a(x, hD)(hD)~* which is of order 0, and the
estimates (€)* < RIN(REYs and (h€)® < h*O(€)® for any s € R and ¢ € R?,

Let us now give a local description in terms of WDOs of the bounded linear
operators on L*(M) given by the previous functional calculus. If v is any smooth
and compactly supported function, we can also view ¢(—N"2A,) as a semi-classical

(D1 the following, we will take for the semi-classical parameter h = N~! for some N € N.

(12) The operator norm of a(xz, hD) : H*(R%) — H*~™(R?) depends on h here because we always
work with classical Sobolev spaces, as opposition to the semi-classical Sobolev spaces generally
used in the semi-classical analysis. This is due to the “hybrid” nature of our problem where we
have to measure the composition of classical YDOs with semi-classical ones.
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UDO (with semi-classical parameter h = N~!) in local coordinates. Indeed, let us
recall the result of [BGT04, Proposition 2.1].

PROPOSITION 2.2. — Let ¢ € C(R), k : U C R =V C M be a coordinate
patch, and x,x € C5°(V) with X = 1 on supp x. Then there exists a sequence of
symbols (a4 )m>o in C°(U x RY) with the following properties:

(i) for any M € N, any h € (0,1] and any s € R, 0 < 0 < M, we have the
expansion

K (X@D (—thg) v) — > h™ap(x, hD)r*(Xv)

m=0

(2.12)

Hs+o’ (Rd)
S thmax(0'+s,0',|s|) H,Ul

Hs (M)

for any v € C*°(M);
(ii) for any x € U the principal symbol is given by

ao(,€) = X(k(@)) ¢ = pa(,€)),

where p, has been defined in (2.1);
(iii) for all m > 0, a,, is supported in

(2.13) {(:L‘,f) c U xR, k(x) € suppy, —po(z,€) € supp @Z)}.

In particular, this means that for ¢ € C§°(R), the semi-classical operator ¢ (—h%A,)
€ L(L*(M)) defined by the functional calculus can be described locally by some
¥DOs with symbol in*3)

S (R xR = ) ™ (R xR?).
meER

Note that the smoothing property of the remainder in (2.12) is only stated for s = 0
in [BGT04, Proposition 2.1], but one can derive the bound in (2.12) by the same
computation as in [BGT04] and using (2.11).

Remark 2.3. — This result relies on describing (—A4;) through Helffer-Sjostr-
and’s formula

B(=A,) = —i[cézz(z)(z—i— Az,

where QZ is an almost analytic extension of ¢, and using that the resolvent (z+ A,)™*
is locally a WDO of order —2. In particular, one can see that the above integral is
absolutely convergent for any function v in the class

A=) S™"R)

(which contains C§°(R)), so that the integral representation of )(—A) also holds
for ¢ € A (see [Dav96, Chapter 2]). Using the same argument, for any ¢ € S™(R),
m < 0, then ¢(—4,) is locally given by a YDO of order —2m with principal symbol

w( —pg(x,f)) csSm (Rd X ]Rd) .

(13) See also [Zwol2, Section 14.3.2).
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Using the previous proposition, we get the following Bernstein type estimate for
the LP(M) — L9(M) mapping property of the operator (—h?A,). See [BGT04,
Corollary 2.4].

COROLLARY 2.4. — Under the conditions of the previous proposition, for any
1 < p < g < oo, there exists C' > 0 such that for any u € C*°(M) and h € (0, 1],

[v (=r22y) “HLq(M) < ChG ) | o

2.4. More on the function spaces

In order to close the fixed point argument in the proofs of the well-posedness
results, we will need a fractional Leibniz rule in B;,q(./\/l). First, we need an equivalent
characterization of the topology on the Besov spaces B, ,(M).

PROPOSITION 2.5. — Let k : U C R* = V C M be a coordinate patch and
X € C3°(V). For any s € R and 1 < p,q < oo, there exist ¢,C' > 0 such that for any
u € C®(M),

(2.14) clixullg v < K" (x)ll g may < Cllullsg,(m)-

Proof. — First, observe that it is enough to establish the right-hand side inequality,
since by duality it holds

|| xul B3 (M) = / XU - U = sup /d K* () - K*(X)
1l ,,S o <1 Il s <t 7R
P ,q P ,q
S s R e I G ey S O
||u||B_ISI(M)<1 ’ r’.q ,
p,q

where in the last step we used the right-hand side inequality in (2.14). This shows
that the left-hand side inequality follows from the right-hand side one.
We thus need to estimate

S NG (DY ()L ey
N e 2%+

where {0}y 9z, is an inhomogeneous dyadic partition of unity in R%. We first take

a fattened version 1Z n2 of Yz, where ¢y2 is the multiplier in the definition of Py,
and decompose

On(D)r*(xu) = > On(D)K" (xun,)
N1EQZ+
= 3 On(D)E (xun,) + Y. On(D)E* (xtwz(—Ag)un, ) ,
Ni~N Ny AN

where uy, = lez(—Ag)u. To bound the terms in the second sum above, we have the
following lemma.
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LEMMA 2.6. — Let k and x as in Proposition 2.5. Then for any u € LP(M),
p > 1, and any N, Ny € 2%+ with (N V N;) > (N A Ny), we have for arbitrary B > 0:

(2.15) |08 (D)r* (xthyz (= Ag)u)

With this lemma at hand, we can finish establishing the right-hand side inequality
in (2.14). Indeed, for the almost diagonal terms, we have from Minkowski’s inequality,
the uniform boundedness of the Littlewood-Paley projectors 6 (D) on LP(R?), and
Holder’s inequality with Fubini’s theorem that

rmey ~ NV N1~ full o agy-

L o V2O (D)™ (Xt g (974 Y o (), (324
S ” Ly NN un, ||e‘]1\]1 (22+)e§V(22+)LP(M)
S llul

By (M)

while for the off-diagonal terms we have from Minkowski’s inequality and Lemma 2.6
applied to uy, with B > 2|s|:

H 1y, enOn (D) (X@ZN% (_Ag)uNl)

S HlNl %JNNS<N V Nl)*BuNl

o, (2Z+ )LP(Rd)Z}Vl (2Z+)

o8 (2% ) Lr (el (27+)

< [V Pun, S llul

th, (24) 1P(M BpalM)*

This concludes the proof of Proposition 2.5, assuming Lemma 2.6. OJ

Proof of Lemma 2.6. — For M > 1 to be chosen later, we use Proposition 2.2 to
decompose

QN(D)/Q*(XQZle(—Ag)U) = QN(D) { 2_: Nl_mam(:n, Nl_lD)/{*(Xu) + U—M,Nl} )

where

U prv, S NP | e )

H51(M)
for any s1,s2 > 0 with s; + so < M, in view of Proposition 2.2 (i) with s = —sy and
0 = S1 + Sso.

Note that from the support property (2.13) of a,, and the assumption (N V N7) >
(N A Ny), we have from the symbolic calculus that 6y (D) o a,,(z, Ny ' D) vanishes at
infinite order, but we have to be cautious with the dependence in N and N; within
the remainder in (2.10). Namely for any A > 1, we use the composition rule (2.10)
to expand

Ox (D) 0 ay, (z, N;'D)
A-1
= 3 eV {070 (6) - 070w, N ) (. D) + N1 (. D)

|| =0

= NﬁArA,N,Nl (.’IJ, D)
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for some constants c,. Indeed the last equality results of the support property of a,,
and the assumption (N V Nj) > (N A Np) so that the supports (in &) of Oy and
am(x, N{ *€) are disjoint. Here 74y n, is a YDO with symbol

(2.16) Z Co /Rd /Rd /01 e‘iz.glaaeN(§+§l)aaam (a:—l—tz, N1_1§> (1 —t)A_ldtdfldz.

|al=A

This is obtained as a by-product of the proof of the symbolic product rule for ¥DOs:
writing down the symbol of the composition, performing the Taylor expansion of
this symbol and integrating by parts gives the sum for || < A, and the rest which
corresponds to the symbol in (2.16). In particular, in view of the support properties
in & of On(€) and a,,(x, N7 '€) (and the boundedness of M), we can integrate by
parts the kernel

1 G,
Rann (2,y) = (2n) /Rd Ty, Ny (2, €)dE

of 7a N n, (2, D) with respect to z in (2.16) to get some negative powers of &;. Indeed,
for any ¢; € N, we integrate by parts to get

RA’Nle(l',y) = Z Co, /Rd /Rd /Rd /01<€1>€16i(z-§1(my)'é)aaeN(£+§l)

|a|=A
(D) (0%, (2 + t2, Ny 1E) 71) (1 — 1) dtdgy dde.

Similarly, in order to get some decay in x, we can integrate by parts in £ to get for
any f, € N

Rann (7,y)

B Z o /]Rd /]Rd /]Rd /01<€1>_£1 (x —y) e Fa T

|a|=A
X (De)* [6“%(5 +&)(D2)" (0% (v +t2, NT'€) ) (1 — t)A_l} dtde, dzde.
We finally integrate by parts in & to get some decay in z, leading to

Raonn (x,y

)
= X o [, [ L[ @)

|a|l=A

x (Dg)% {aaw&)fsejv(g +&)(D)" (0%am (x+t2, NTE)) (1 — )

dtde,dzd¢.

In view of (N V Ny) > (N A N;) and the localization of £ and (£ + &), we have the
localization [£1]| ~ (N V Ny ). Moreover, for fixed &;, in view of the support properties
of O and a,, then £ lies in a set of size at most (N A N;)¢. Hence for any £y, o, {3 > 2
the integrand is absolutely integrable and we get the bound

R (2.9)] S (N A NN VN (=),
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We can then integrate in = or y provided that we take {5 > d, to obtain
[Ranm ey + [ Rann llreers S (N A NN VN4,
This is enough to estimate the contribution

NAN;™[|0x(D) 0 @y, (2, N7'D) 5 (Xu)

Lr(R4)

by the right-hand side of (2.15) in view of Schur’s lemma, since ¢; € N is arbitrary.
As for the remainder in the use of Proposition 2.2, we first take M = B+ s+ 52+ 10
with s; and s, large enough so that, by Sobolev embedding, H*!(R?) c LP(R?), and
by Sobolev embedding and the compactness of M, LP(M) C H*2(M). Then, in
the case N < Nj, we use the boundedness of Oy(D) : LP(R?) — LP(R?) to bound

10N (D)U-nt.3: || oy S 1U-n1,84

In the other case N > Nj, using that 0y is then supported on an annulus we have

H*1(R%) S N1S1+327MHUHH—S2(M) S NfBHUHLP(M)'

HHN(D)UMJVI HLP(Rd) S NﬁBHUM,Nl HH81+B(]R<d)
S NN | oy S N 7P ([l o)
This concludes the proof of the Lemma 2.6. 0J
Using Proposition 2.5, the finiteness of J and that the embeddings and the frac-
tional Leibniz rule hold on R¢, we get the following consequences of Proposition 2.5.
COROLLARY 2.7. — Let M be any compact Riemannian manifold of dimension
d without boundary.

(i) For any s € R we have B;,(M) = H*(M), and more generally for any
2 <p<ooande >0 we have

|

B oo (M) S lullwsrvy S llul Bj 5(M) S lul ByEE(M)*

(ii) Let s € R and 1 < py < po < 00 and g € [1,00]. Then for any f € B,
we have

(M)

1,9

Bs. (M)

P1,9

1 (yy) S
(M)

p1 P2
BPQJI

(iii) Let o, f € R with o+ 5 > 0 and py,p2, q1, G2 € [1,00] with
1 1 1 1 1
=—+ — and =
p D1 D2
Then for any f € By , (M) and g € BS
moreover it holds

@1 G2
M), we have fg € B? (M), and

| =

—~

19l asany S N NBg, 0yl Bg, . an)-

Proof. — The first estimate in (i) is a direct consequence of the boundedness of
(Py — Pyy2) provided by Corollary 2.4, whereas the second one follows from the
square function estimate given in [BGT04, Corollary 2.3], and the last one from
Cauchy-Schwarz inequality. Similarly, (ii) follows directly from Corollary 2.4.
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For the product rule (iii), we take a partition of unity {x;};c7 and a fattened
version {X;};je 7, so that using Proposition 2.5, we have

1791l gensny S 506G - X59)]

BSAB(RA)

Then using the standard product rule for Besov spaces on R? (see [BCD11], using
the paraproduct estimates of Theorems 2.82 and 2.85), we can estimate the term

above with

jed
We can then use the finiteness of J along with Proposition 2.5 to conclude. 0

w0 f)]

B\ qp (RY) ’H;()ng) HBIE%QQ CON

3. Probabilistic estimates
3.1. Probabilistic tools and construction of the Gibbs measure

We recall briefly here some basic probabilistic estimates and the outline of the
construction of the Gibbs measure. A fully detailed construction on a 2d-manifold can
be found in [OT18] in the context of the nonlinear Schrodinger equation, which, up
to replacing the Laguerre polynomials used in [OT18] with the Hermite polynomials,
can be adapted in a straightforward manner to treat the invariant measure for (1.1)
and (1.2).

Let us first recall a few facts about the Hermite polynomials Hy(x;0). They are
defined through the generating function

txfaﬁ tk
eI =y k'Hk(x o),
k>0
for any ¢,z € R. When o = 1 we simply write Hy(z;1) = Hy(x), and we have the
scaling property
k 1
Hy(z;0) = 02 Hg (0'_51‘) :

Moreover, the following formula hold:

(3.1) Hy(x+y;0) =) (E) Hy(z;0)y* ",

=0
and
(3.2) O Hy(x;0) = kHyp_1(x;0).
Now if we define the (spatial) white noise on M
fO = Z GnPn,
n>=0

where g, are as in (1.7), then we can define the white noise functional to be the
action of the distribution &, extended to L? functions, i.e.

W f e LHM) — Wy = (f,&) r2m) € L*(Q).
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It is easy to see that W is unitary, and moreover we have the relation
(3.3) E[He(OWp) Ho(Wy)| = 0k 9)

for any f, g normalized L? functions, where 4y ¢ stands for Kronecker’s delta function.
As in [GKO18], we also have the following lemma.

LEMMA 3.1. — Let f, g be centered jointly Gaussian random variables with vari-
ances oy and o4, then
k
(3.4) E[Hy (f;04) He (;04) | = drek!E[ fg] .

See [Nua06, Lemma 1.1.1].
Now, if we then define the real-valued random variables G 41 on (H*(M), p1o) as

1
Gva(u) = 5 [ (Pru) 1 (@): da.

then we have the following lemma.

LEMMA 3.2. — Let Gy +1 be the random variable on (H*(M), uo) defined above.

(i) {GNgs1}tnven Is a Cauchy sequence in LP(ug) for any finite p > 1, thus
converging to some Gy1 € LP(uo);

(i) e~“~r+1 converges to e C+1 almost surely and in LP(ug) for any finite p > 1.

This last convergence result allows to define the Gibbs measure pp.1 as the limit
in total variation of Zy'e GNk+idy.

The proof of (i) for p = 2 follows from a direct computation using (3.3) and
Lemma 2.1, and for p > 2 it is a consequence of the case p = 2 along with the
following Wiener chaos estimate (see [Sim74]):

LEMMA 3.3. — Let d,m € N and Q(X1,...,X,,) be a polynomial of degree d in
m variables. Let {g,} be as in (1.7). Then for any p > 2 we have

d
(35) HQ (917 BRI gm)HLP(Q) < (p - 1)2 HQ (gla R gm)“LQ(Q) :

This lemma is itself a consequence of the hypercontractivity of Ornstein—Uhlenb-
eck’s semi-group [Nel66]. As for Lemma 3.2 (ii), it then follows from the same argu-
ment as in [OT18, Proposition 4.5].

As explained in the introduction, Lemma 3.2 allows us to define the Gibbs measure
prs1 on H*(M) by the formula (1.6). In particular, pp.; < p as e”“k+1 is a finite
positive random variable, so that supp prr1 = supp u C H*(M) for any s < 0 but
prr1(H°) = 0.

3.2. Stochastic estimates for (1.1) and (1.2)

Now we move onto the construction of the Wick ordered monomials : W&
and their large deviation bounds. We first deal with the stochastic objects for (1.2),
and so we recall that zy = PyS(t)(ug, u1) is the truncated linear solution with the

random initial data (ug,u1) given in (1.7).
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PROPOSITION 3.4. — Forany k> 1, T >0,0<e < 1land 1 < p,q < oo™,

the random variables { H,(P xS (t)(ug, u1); 0n(x))} N en form a Cauchy sequence in
LP(; L9([0, T); W—=2°(M))). Moreover, there exists C' > 0 such that for any T, R > 0
and N € N the following tail estimate holds:

36)  ul|[H(PyS@) (0, u)ion(2))

Denoting the limit by : 2% :, it also holds Hy(PyxS(t)(ug,u1);on(z)) —: 2% in
L([0,T], W=5°(M)), u-almost surely, and : 2*: also satisfies the tail estimate (3.6).
Moreover, for k = 1 we have z € C([0,T]; W=5>°(M)) N CL([0,T], W=1=52(M)),
p-almost surely, for any € > 0. Lastly, we also have the following tail estimate for
the convergence:

2

2 _ 2
> R) < Ce CRFT ot

LLW e

37) a1 (P S0 (w0, 0); o, ()

— Hi (P, S (1) (w0, ur); o (1))

for some 0 < € < € and any Ny > Nj.

LLW &0

Proof. — We begin by proving that Hy(PxS(t)(uo, u1); on(2)) is uniformly bound-
ed in LP(p; LY([0, T); W=5°°(M))). Note that it is enough to consider the case p, ¢ > 2.
In the following, we write x,y for the space variables on M and x,y for the points
in R2. Let us start with the following lemma which collects the main properties of
Py S(t)(ug, ur) that we will use.

LEMMA 3.5. — The measure  is invariant under the transformation (ug, u;) —
(S(t)(ug, ur), 0:S(t)(ug, uy)), for any t € R. Moreover, if we define the (truncated)
covariance function

def

bt xy) [ g [P S () w0, 1) (P S (82) (o, ) () dp(ut, ),

then we have for any (t,x) € R x M

2

68 | S(M)’(1—Ag);ng(PNS(t)(uo,ul)(x);ON(X)> (0, 1)

£ —

— K [(1 AN (1= AR (WN(t,t,xl,XQ)k)}
Lastly, we have the identity
(3.9) (%, y) E (bt xy) = (Py © Py)y(x.y),

where v is the Green function for the Laplace—Beltrami operator on M, i.e. vy is the
kernel of (1 — Ay)™!:

X]=X2=X

Vxy) = %(a)%(ﬂ

n=0 n>2

(14) Unlike when M = T2, it is not as straightforward to get the convergence of Hy(zy; on(x)) in
C([0, T]; W—5°°(M)) almost surely when ¢ > 2, which prevents us from taking ¢ = oo. See also
Remark 3.7 below.
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Here the notation (Py ® Py)7y(x,y) means that we apply Py to both (-, y)
and 7y(x,-). Note that since 7 has a diagonal expansion on the basis ¢, ® @, of
L*(M x M), this is the same as (P% ® Id)y or (Id ® P%)7.

Proof of Lemma 3.5. — In order to prove the invariance, we first compute for
(ug®, ui*) given by (1.7):

S(1) (uso, usr) = Zo <f:> { cos(t{An))gn(wo) + sin(E(An) )V (w1) |

(pn t
= n(wo, w1),
Z 0

where for any t € R, {¢.},>0 is a family of independent real-valued standard
Gaussian random variables on 2y x €2y, and similarly for 0,5 (¢)(ug®, ). In particular
this shows that if (ug,u;) ~ p then for any t € R, (S(¢)(uo, u1), 0:S(t)(ug, u1)) ~ p
too.

Next, with the definition of the operator (1 — Ag)’%, we compute for any fixed
(t,x) € [0,T] x M:

A

(1- Ak’ H, (PuS(t) (ug?, us") (x); o (x)) : dPydP,

— SON(X)QDR’ (X)
N n,nz’;N W /MXM ©n(X1) o (X2)

< B | B (PaS(0)(ug?, u) (x) o (1))

x Hi(PuS(t) (us?, ) (o) aN(XQ))] dxdxs

where the expectation is taken with respect to Py ® P;. We can then use (3.4) and
the definition of vy (¢, t,x1,X2) to continue with

©n (X)Pm (x )/ .
klvn(t, t . y dx.d
nnZGN An)E(Anr)E S mxm YN (E: X1, X2) 0 (X1) o (X2) dX1 X2

— K {(1 — At (1= Ag)e ('yN(t,t,Xl,Xg)kﬂ

This shows (3.8).
As for (3.9), in view of the definitions of the (truncated) covariance function v and
of the propagator S(t), we can compute

(310) YN (tl,tQ,X,y) = Z 1/}0 (N_2)\$L1) wo <N_2/\$Lz) SDTH Sonz /QO /Q1

ni,ng =0

X]=X2=X

[( C08(t1 (A, )) gy + 50t (), ) % ((€08(E2(Ang) )9 + it (t2(An)) hn2)] AP, dP;
= 3 RN MCOS ((h _ t2)<>\n>)-
n>0 <)\TL>
The identity (3.9) thus follows from (3.10) by taking t; = to. O
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Note that in order to estimate the right-hand side of (3.8), we do not need the
smoothing in x;, and using Sobolev inequality in x; with some (large) p. and the
compactness of M, we have

(3.11) sup (1-— Ag);lg(l — Ag)é (VN(Xbxz)kﬂ

X1 =X2=X

S H(l ~ Ag)xs (7N(X1,X2)k)

Lpe (M) x Lo (M)

S =29 (%))

L®(MxM) '

The following proposition allows us to bound the powers of the covariance function
N, viewed through the identity (3.9).

PROPOSITION 3.6. — Let 7y : M x M — R be the truncated Green function
of the Laplace-Beltrami operator on M defined in (3.9). Then for any € > 0 and
k € N, there exists C = C(e, k) > 0 such that for any N € N,

< (O < 0.

(3.12) H(1 — Ag);f (’YN(Xla X2)’“)
L (MxM)

Moreover, {v%}ncn defines a Cauchy sequence in

€

WO,fs,OO(M % M) — {U c D/(M X ./\/l), (1 — Ag);QEU(Xl’X2)

< oo}
L®(MxM)

and satisfies

(313) 0= < ONF?,

Lo (MxM)

(/le (X17 XQ)k - ’yNz (Xla XQ)k)

for any N; < N2 € N and some 0 < € < ¢ and C' > 0 independent of Ny, No.
Finally, if Py is defined similarly to Py but with another cut-off ¢ in place of
Yo with the same properties, then

< CON¢,

(314) 0= a0 (Bhobxx) - Pt x)')
L®(MxM)

We postpone the proof of this proposition and finish the proof of Proposition 3.4.
Now, for any finite p > 1, we first use Sobolev inequality to get for any t € R:

[ (ParS (O o, )i () .. [ (PovS(O (s, )i () .
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for some r. € [2,400). Thus if p > max(q,r.), using Minkowski’s inequality, the
Wiener chaos estimate (3.5) along with (3.8), (3.11) and Proposition 3.6 with the
compactness of M, we obtain

| Hi (P S (1) (to, ua) (x); o (%))

LLLLW =0

S |1 = 2075 B (P (8) (o, ) 0s 7 ()

Ly |l g Lre
< 2 H(l _Ag)*%Hk(PNS(t)(uo,ul)(X);UN(X)> 12
m L%er
1
= PV = Al (L= At ()| Py
X1=Xe=X|| L2 L2

Sk Tl/qpk/Z'

This proves that { H,(PnS(t)(uo, u1)(X); o5 (X)) } v en is bounded in LP(p; LI([-T, T;
W==°(M))) for any finite p,q > 1 with p large enough. Using then Chebyshev’s
inequality, we get that there is C' > 0 such that for any p > 1 and R > 0

(11 (PrS (O, ) (0 v () . > )
< R_pHHk(PNS(t)(uo,ul)(x);UN(X))

P
LE LW =00

< CPpPaTiR™P,

and optimizing in p leads to (3.6).
Now for any N7 < N,, we can compute, similarly to (3.8),

/HS(M) ’(1 — Ay [Hk (P S() (o, ur) (x); 0, (%))
2dM(U0, U1)

— Hy (P S(0) (0, 1) (0): o, ()|

= k1 [(1 = A (1 = Ay (PR v(x1, x2)F — 2Py, (31, %2)"
+ P, (x1, X2)k)}

9
X]=X2=X

where we used that Py,Py, = Py, for Ny > N;. Then (3.13)-(3.14) in Propo-
sition 3.6 show that the sequence {Hy(PnS(t)(uo,u1)(X);0n(x))}nen defines a
Cauchy sequence, thus converging to some : 2% : in LP(u; L4([—T,T]; W=5°)) and
from the same argument as above with (3.13) we get the tail estimate (3.7). Then,
as in the proof of [OPT22, Proposition 3.2], Borel-Cantelli’s lemma yields that
Hi(PnS(t)(ug, uy)(x); on(x)) converges to : 2% : in LI([-T,T]; W=5°°), u-almost
surely, and moreover : 2* : also satisfies (3.6).

Lastly, we prove the continuity in time of z. If we define the translation operator
T o u— u(-+ h) for any h € [—1, 1], we can use (3.10) and the mean value theorem
to estimate
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L 1= 2072z = )1,

Z Som spm / / ©ny (X1)Pny (X2)

ni,n2

{’Y(Xla Xg) — (t + h,t, %, X2)}dX1dX2

<3 2 G nng) s 30 £

50 <)\ >2+2€ n/) ~> =0 <)\n>2+e
uniformly in h € [-1,1], x € M and t € R. Finally, using Lemma 2.1, we obtain
the bound
e 2 X 2
[ 0= a5z = 2] di S Y 07 Y L () £
(M) k>0 n>0 <)‘n>
1
SR DR ™ D Loy (A
k>0 n>0 <)\n>
1
SIA ). e S RIS
2

Hence using Sobolev’s and Minkowski’s inequalities as above, together with the
Wiener chaos estimate (3.5)

(3.15) 1Tz = 2) Oy -eme S |12,

uniformly in ¢ € [0,7], which suffices to conclude that z € C([0,T]; W~5>°(M))
almost surely by using Kolmogorov’s continuity criterion for p large enough. We can
use the same argument to bound 9z in C([0, T]; W~175°°(M)) almost surely, which
concludes the proof of Proposition 3.4. O

Proof of Proposition 3.6. — We now give the proof of (3.12). Since this is clear
for N < 1, we can assume that N > 1. First, in view of the finiteness of 7, it is
enough to fix j,j; € J and to estimate

(5 @ )" {360, )1 = Agly * (v, 3)* |

where for functions f on M x M and (z,y) € U; x U;, we write (k; ® k;j,)" f(x,y) =
f(’%j(x)a Kj1 (y))

By a variant of Proposition 2.2 (see Remark 2.3) with fixed z € RY, we can write

(3.16)

9
Lo (R2 xR2)

(rj ® Kj,)" {Xij1<1 — Ag);g(w)k}
= @i—<(y, D) {<HJ' ® k)" (injl (’YN)k)} +GomN

for some symbol aj, . € S7°(R? x R?) with compact support in y included in Uj,,
some fattened version x;, of x;,, and for arbitrary M > 0 with

|G| S N e (e )|

Lo (R2)x H1(R2) ™ Loo(M)xH=%2(M)
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for any s, $o > 0 with s; + so < M. In particular the contribution of this last term

0 (3.16) is

G|
] P

S 1600 ey S ¥ I epgimian

e o, (Bt (0%

X,y EM n=>0 n=>0

=0 (NQ_M log(N)k> :

where the last two estimates come from Cauchy—Schwarz inequality and (1.12). This
term is uniformly bounded by choosing M > 2.

Taking again fattened versions of x;, X, (which to simplify notations we still write
Xjs Xj,) it then remains to estimate

aj, (g, D){ (55 @ r3,)" () }k

Now, in view of the definition of the functional calculus and (3.9), we can see vy
as the kernel of the YDO (1 — A,)~'¢2(—N24A,). First, using e.g. [Hor07, Theo-
rem 18.1.24], we can expand the resolvent as

/{?(Xj(l — Ag)_l) = aj (v, D)K;X; + Rj 3

for some symbol a; 5 € S7?(R? x R?) compactly supported in z in U;, and some
smoothing operator R;_3 of order —3 satisfying for any s € R

< 1.
Hs(M)—Hs+3(Rd) ™~

|54

Next, using Proposition 2.2, and dropping the tilde for the fattened cut-offs, we get
the expansion

(XJ( ) Q/}O ( )Xj1)
= {aj —a(x D)’f X + R, 3]¢0 ( Ag) X1
= a; 2z, D) (K}x;) (Zl N7"a; 0 (2, N7'D) 15 (x;x5) + Rj,—M,NXj1>
m=0

+ R a5 (=N?Ag) X1,
where R; _jn is a smoothing operator of order —M, with

. < Nsits2a—M
HR ’*M’NHH—sz(MHHﬂ(Rd) SN ’

for any s1, s > 0 with s; + s9 < M.
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Then, taking M = 1 in the above expansion, we have for any (z,y) € U; x U}, and
(x,y) = (r;(2), K5, (1)):

def
)= (55 @ 15)* (G (x5 (V) (%, )

= (10 ® )" (% () Kol ) + x5, () K ().

where K is the kernel of

YN (T, Y
(3.17) o

(3.18) (I{;Xj) aj_o(x, D) (/ij*»)zj) e (—pﬂ (x, N_ID)) :

and K the one to

(3.19) (#5x5) @5, 2(2, D) (83%;) Bjmarn + 15 00) Ry —s0f (—N724,) -

Here (;;, = /{j_l o kj, is a diffeomorphism on U; N Uj;,, provided that supp x; N

supp xj, # 0, otherwise the contribution of Ky in (3.17) vanishes. Let us also decom-
pose K1 = K1 + K5 corresponding to the two operators in (3.19).

We will use that we can bound these kernels by the operator norm of the corre-
sponding operators from H~!17°(R?) (or H~17°(M)) to H**(R?). For K, 1, since
aj—o(x, D) is bounded from H*!'(R?) to H**"?(R?), and using the smoothing prop-
erty of R; M for M = 1, we deduce that for s; = —1 + 6 and sy = 1+ ¢ for
some 0 < § < 5=, the operator with kernel K;; maps H'7°(M) to H'*°(R?) with
operator norm bounded by N2~ Thus we obtain

(3820) [}, 06 K120 g
< [ (s5x5) @52, D) (55%5) Byaaw (5, %31)
S | Ricar (55,x0)
SN ()

26—1
SNTT,

‘H*1*5(M)—>H1+5(R2)

’H—l—é(M)aH—H“S(RQ)

‘H—1—5(M)—>H—1—5(M)

where in the last step we used the product rule of Corollary 2.7 (iii).
As for K, we have that || R; || g-2+6( v mirsmz) S 1 and since we assumed that
N > 1 we also have that [|1o(—N2A4)|| g-1-s(p) s m-2+50 S N? 71 Thus we also

have the bound

261
H i (XJlKl Q)HLOO (R2xR2) SNT

Now we compute
k * k
NG = ((Id @ G)" (K (o) Ko) )

+Z< ) ( o ( X“Kl))[md@(yyh)* [ffg*' (Xijl)KoDkie.

We first deal with the terms with ¢ > 1. Since a;, . € S7(R? x R?), in particular
it is bounded on LP(R?) for any 1 < p < oo (see e.g. [Fef73]), hence using as above
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the Sobolev inequality W& (R?) C L>°(R?) for some 7. > 1, and the compactness
of supp(x}(x;X; ) Ko) and supp 7, (x;, K1), we get the crude estimate

aj1,—a(ya D) {<K/}(1 (Xj1K1>>é ((Id ® Cj’jl )* (H; (Xijl) KO)>k_e} Lo° (R2xRR2)

(k% Ot Kl))e ((1d @ ¢g)™ (K5 (ixi) KO))]HZ

Loo(R2 xR2)

‘ (XiXa) HLoo (R2xR2)

]1 leKl H

Lo (R2 xR2)

Along with the previous bounds for K;; and K o, we finally obtain

(3.21) ||aj, (v, D) (V&)

’LOO(RQXRQ)

ajl,_g(y,D)<(1d ® Gan)" (7 Oaaxan) Ko) >k

~Y

Lo (R2xR2)
T SR G = -
=1
Now, with the definition of Ky, we proceed as in (3.20) to get the rough bound
(| Kol| oo (2 xR2)
S H (R*‘XJ) (w)aj—(z, D) (ﬁ*}(}) (2)95(=ps2) (3:, N_lD) HH*1*5(R2)—>H1+6(R2)

< [vi(pi) (2. 7' D) SN

H-1- 5R2)~>H 1+6(R2) ~

so that with our choice for §, the second term in the right-hand side of (3.21) is
O(N=%) for &' =1 — 2kd > 0. We are then left with estimating

Aji,—e (y, D) ((Id ® ijjl)*(ﬁ;(Xijl)K(])) k

Loo(R2 xR2)

First, to deal with (; j,, since the symbol class S in (2.8) is invariant by diffeo-
morphisms for any m € R (see e.g. [Hor07, Theorem 18.1.17]), we can then write

aj,,-(y, D) ( (14 Gi)" (K5 (x53) Ko) )k

= (Id® ()" (53'1,5(1/, D) (k5 (x;x) KO)k>

for some a;, . € S7°.
Next, we compute the symbol ¢o(z, ) of (3.18) as

(3.22) colz,€) = (rix;) (@) /]R 2 /R e (n, 64 &) (k%) (@ + 1)
x U8 (—pjz (z + 21, N7¢)) d€aday.

First, since p;» and (k}X;) are smooth in z; with bounded derivatives, we can
integrate by parts in x; to get enough decay in &;. Using that a;_» is a YDO of
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order —2, which therefore satisfies the bound (2.8) with m = —2, this gives for any
aeN

()1 £ (k) @) [, [ €)*e+)
(1= 82)" ((55%) @+ a0)ud (=pia (@ + 21, N71¢)) )| devdn.

Now, when a derivative in x; hits ¢3(—p;2(z + z1, N71£)), we pick up a term
(1—02)pj2(x + 21, N7'E) = O((N71E)?) by (2.8) which, due to the localization
|€] < N on the support of Y2(—pj;2(x 4+ z1, N71&)), is then bounded uniformly in N.
Thus we see that the term on the second line above can be bounded by

1 (2 + a1 € supp (1)) 1(1¢] < N).

Then we can take « large enough to ensure that the integral in & converges, so that
we arrive at

ol O S () @1l S N) [ ()72 + €)%y
< (55x;) @1(jel < M) €~

Now, the kernel K| is related to the symbol ¢o(z, ) via the formula,
KO(:L‘7 y) = /RQ ei(a:—y)fc()(x’g)dg = ‘/—-.g_l(c()>(x7 T — y)u

where ]-'g ! means the inverse Fourier transform in the ¢ variable. This means that
((li;(Xth))(y)Ko)k can be seen as

((Fu‘;(xjle)) (?J)KO)k = (R 06x)) ) F (eo ) (@ox — ),

where *Ig stands for the iterated convolution in the & variable:

(Co*lg) (x,&) = /5 H co(x, &;)dg;.

0=&1+ +5kj 1

(3.23)

Next, using that a;, . € S7(R? x R?), we have for any £, ¢, € R?,
|, —=(y, ) S ()77 S (€€ = &)°,

and since #%(x;x;,) € Cg°(R?), we can compute

<. D) ( (3 000)) W)Eo)

L (R2xR?)

= H/R eiyfﬁjl,-a(y,é‘)/Z (k5 Cea)) (€ = €)™ (cont) (r, —6)drdé

Loo(R2 xR2)

< sup sup /R e te =€ (¢ — 07| (coxt) (2 —¢0)| déade

T € supp(ff;-xg') y €supp £} (XjXJl

S osup /R? (&)°° ‘(CO*g) (z, _fl)‘ dg;.

T € supp(n;xj)
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Thus, expanding the iterated convolution above and using the triangle inequality
with the bound (3.23), we get the estimate

3:2) a5, D) (55000 o)

Loo(R2 xR2)

k
</ ot e T e

=1
where .
Trn ={(&, ... &) € (R?), &l SN, =1,..., k}.
So it remains to bound the integral in (3.24), uniformly in N. By symmetry in
&1, o, &, it is enough to bound the contribution of

Tin ={(&, ... &) €Tan, &Gl = >4}
First, to estimate the integral in &, if (& + -+« 4+ &) = (&) then we have

Lo (@t @@ e S [ (607 S {6e)

1€k| > [€k—1l €k] = |€k—1l

On the other hand, in the case (§; + -+ + &) < (&) we have

/ (Gt + &) (&) e S <£k—1>_%/ (Gt &) 2 2dg, S (Ghr) 2
€] = 1§k—1] R2

Hence we end up with the bound
k—2

L teen 8 e 2dgdgnn,
Pr—1,n —1
for which we can integrate successively in [€g_1| = |&ko| = -+ = &)

T

3

T ddeis < [ (6a) ™% TT 6 deeis

=1 k2N

S [ 1061 S N)@) > ids < O < oo
R2

/Fk_1 (E1)72 72

~
Il
—

uniformly in N. This proves (3.12).

For (3.13), we can decompose locally yn, = Kon, + Ny 'Ky n, and vy, = Ko n, +
Ny'K 1N, similarly as above, and following the computations we end up with esti-
mating

~ k k
o c9) (K, = 0)
which follows as before except that we notice that the corresponding symbols satisfy
(CO,N1 *’5) (z,8) — (Co,Ng*Ig) (,%)

k

k
1T com (=) — 1 CO,NQ(SC,&)> 11 4.
/=1

(=1

So=E1+ +£k<

In view of (3.22), for the integral above to be non-zero, this requires at least one of
the & to be in the region Ny < |§| < Ny; otherwise, in the case all || < N; we have

both ¢¥¢(—pja(z, Ny '&)) =1 = ¢3(—pj2(z, Ny '&)) and we see that [Tj_, con, (z, &)
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= I, con(7,&). For Ny < |&] < No, we can then replace the factor (&) 23

in the corresponding integral by N, i (¢)7277 and finish integrating as above. The
estimate (3.14) follows from the same argument, replacing Ny < |§] < N2 by
|Sel ~ NV O

Remark 3.7. — In Proposition 3.4, we only estimated the higher Wick powers : 2 :,

¢ > 2, in Li([0,T); W=°(M)) and did not show the continuity in time for these
objects. Though we would only need a very rough bound in space (just to get a
power of h as in (3.15)), the global argument as the one we used for z does not seem
to apply since we would need to estimate a product of k£ eigenfunctions ¢y, ... ¢n,,
for which it is not clear if there is an “off-diagonal decay” allowing to sum on
ni, ..., ng even after regularizing the product. On the other hand, a local argument
as in Proposition 3.6 also fails since contrary to the truncation operator y2(—A4,),
the wave operator cos(hy/1 — A) for the linear wave equations does not belong to
the usual symbol class SY defined in (2.8). However, we might be able to overcome
this difficulty by replacing the local description of vy in terms of DO by a local
description of yx(t 4 h,t) in terms of Fourier integral operators by following the
construction in e.g. [BGT04, MSS93]. We chose not to pursue this point further
since our proof of well-posedness only requires the Wick powers to be controlled in
La([0, T); W—=°°(M)) for some large but finite p,q € [1, c0).

Next, we prove a similar statement as in Proposition 3.4 but for the solution
P nV4amp to truncated linear stochastic damped wave equations

o) (o o o )

with data given by (uN,vN)‘t_O = Pn(up,u1) ~ (Pn)sp. Recall that Waump
= Waamp (o, u1,w) is the random variable on H*(M) x 2 defined in (1.11).

PROPOSITION 3.8. — (Py).p is invariant under (3.25), in the sense that for any
continuous and bounded test function F' € Cy(H*(M);R) and any ¢t > 0,

/S(M)/QF[(PN\Pdamp(uoaUlgw)aatPN\IJdamp(U(),ul,W)):|d]P)(CU)d/JJ(UO’ul)
= se (M) FKPNU(),PNul)}d/L(uo,ul).
Moreover for any k € N, T >0,0<e < 1and 1< p,q < oo then

{Hk (PN‘Ddamp(Uo, Uz, w); UN(JT))}

is a Cauchy sequence in

NeN

17 (p @ B L0, T): W% (M)))

and converges almost surely to a limit : W% e L([0,T]; W~5°°(M)). Moreover

damp *
Hi (PN damp (w0, w1, w); on () and :WE - obey the tail estimates (3.6) and (3.7),

damp *
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and we also have WUy, € C([0,T]; W52 (M)) N CH([0,T]; W—="1°(M)) almost
surely, as well as the tail estimate

—eR?
(3.26) 1@ P (| (Yaarmp: 0 Waamp) | oo zpp—s) > B) < Ce™
Lastly, p is invariant under (ug, 1) — (Vdamp; Ot Wdamp), i the same sense as above.

Remark 3.9. — Note that in the case of the stochastic quantization equation (1.4)
treated in [DPDO03], the truncated stochastic convolution

t !
sn(t) = Py / =) Bs=1) g By

o0

has the same covariance function vy as for zy and P xWqamp, S0 we can use the same
argument as in Propositions 3.4 and 3.8 to estimate the Wick powers of 3. In turn
this would generalize the result of Da Prato and Debussche [DPDO03] to the case of a
general compact boundaryless Riemannian surface, which to the authors knowledge
would be new.

Proof of Proposition 3.8. We only prove the first assertion, since the rest of the
proposition follows from the same analysis as for Proposition 3.4. Namely, once
we have the invariance of (Py).pu, we know that PyWg.mp, has the same (spatial)
covariance function vy as Py S(¢)(uo, u1), so we can write

/ “M) /Ql(l - Ag)‘%Hk(PN\I:damp(u(),ul,w)@s,x);aN(x))fdp(w)du(uo,ul)

— Kl {(1 — Al (1= Ag)er (VN(XhXﬁk)}

where 7y is the same as in Lemma 3.5, and the same computations as in the proof
of Proposition 3.4 apply.

Proving the invariance of iy = (Px ). is equivalent to showing L%y = 0, where
Ly is the infinitesimal generator of (3.25) and E% is its dual acting on probability
measures on Ey X Ey by

y
X1 =X2=X

Y F e C(Ey x Ex;R), /

EN XEN

Flu,0)d(Chun) = [ (ExF)uv)dun(u,v)

ENXEN

But in view of (3.25), we have Ly = L} + L3, where L} is the generator for the
linear wave equations, and £% the one for an Ornstein—Uhlenbeck process. More
precisely, (3.25) can be seen as a system of SDEs in R*~  where Ay = dim Ey,
given by

da, = b,dt
dby = —(\a2andt + (= badt + V2o (N2A2) dB,)

whose infinitesimal generator is given by

,nIO,...,AN—l,

,CNf (ao, ey CLAN—la bo, ey bAN—l)
An—1

2
= > b0 f = (M) ?n0h, f = bpOh, f+ 100 (N7202) 07 f.
n=0
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Now if we set
Ay—1

Lf= Y ~buhf+do (N2X2) 02 f

n=0

we recognize the generator of the Ornstein—Uhlenbeck process

an(t) = an(0),
bu(t) = €70, (0) + /2t (N72A2) Jy e =d, (1),

and a straightforward computation using [t6’s isometry gives that b, is a mean 0
Gaussian random variable with variance

21 —e 2
2

E (b, (1)?) = ¢ (ba(0)?) + 20 (N7222)

In particular, in view of (1.7), E(b,(t)?) = o(N2X2)? = E(b,(0)?), which means
that L% preserves py. On the other hand, we have

An—1

Ly = Z 0104, — (An)2an0,,
n=0

which is the generator of the truncated linear wave equations seen as the Hamiltonian
system of ODEs

d
*n:bm
{dta TLZO,...,AN—L

Now the energy of this system

1 AN—].
(c;(],N (CLO, ceey QA N1, bo, RN bANfl) = 5 Z (()\n>2ai + bi)

n=0

is conserved, and by Liouville’s theorem, this system preserves the Lebesgue measure
Hﬁﬁg Y da,db,, so we see that the measure

An—1
e—fo,N(am s @A N —1,00, -, bANfl) H dandbn

n=0

is also conserved, which is nothing else than the conservation of uy in view of (1.7).
All in all, £%uy = 0 which concludes the proof of the invariance.

The invariance of p for (¥, 0, V) then follows from the invariance of (Py),u for
(PyV, PO V) along with the almost sure convergence of (PyV, Pn0,V)(t) towards
(¥, 0,0)(t) in H*(M) for any t > 0 and the weak convergence of (Py),pu towards p
(which is clear from the convergence almost surely and in LP(€y x Q1; H*(M)) for
any p > 1 of the series in (1.7)).
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Finally, in order to show the last tail estimate (3.26), in view of (1.11) we can first
separate

1@ P(I1(Vaamps % ¥aamp) oo ry0-+) > R)

< (;gg 0V (uio + V(1) o + 1wl - 2 R)

+p (Sup RV (tyug + OV (1) (o + wa)| S R)

—1— NV
t<T H-1-¢

> R)
H—< "

t
+P (Sup /0 OV (t — t')dB(t') > R)
H-1—¢

t<T

=TI+ 1T+ 104 IV.

+P (Sup / Vit - ¥)dB(E)

t<T

We begin by estimating I. Using Chebyshev’s inequality, the boundedness of &/ V(t):
H*(M) — H71(M), for any s € Rand j > 0, and the Wiener chaos estimate (3.5)
with the fact that (ug,u1) is Gaussian, we get a constant C' > 0 such that we can
bound for any T, R,e > 0 and p > 1

p
I < RE [(p 10V (o + V() (a0 + u1>||Hs) < RVE| (0, u)|..

t<T

P
2

SR — 15 (Ell(uo, un)|3--)* < CP(p— IR

Optimizing in p finally leads to
(s l0V O + V) + )l 2 R) S e
t<T

for some ¢ > 0 independent of 7" and R. The estimate on II is similar. As for III, we
first use Doob’s martingale inequality (see e.g. [DPZ14, Theorem 3.9]) to bound

/O Vit —t)dB(Y) Z}

and then conclude as above since fj V (t —t')dB(t') is Gaussian. The same argument
applies to IV, which finally leads to (3.26). O

I S R PsupE {

t<T

Remark 3.10. — Note that the proof of the invariance of (Py).u above works
equally well for (ITy).pu. Of course, the estimates on the Wick powers require the
smooth cut-off Py instead of the sharp cut-off I1y.

3.3. Estimate on the stochastic convolution

As for the nonlinear wave equations with random initial data, the key point in the
analysis of the stochastic nonlinear wave equations (1.3) is the following proposition.
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Let us recall here that the (truncated) stochastic convolution (solution of the linear
stochastic wave equation) is defined by

t sin ((t —t')y/1— Ag>

Un(t,z) = Py /O N

and the cylindrical Wiener process B is defined in (1.8). The corresponding renor-
malization is given in (1.22).

dB(t')

PROPOSITION 3.11. — Let 0 <e < 1, k € N, T € (0;1] and p,q € [1,00). Then,
{H,(PyU(w);on(t,%x))}nen Is a Cauchy sequence in LP($2; L4([0, T); W—5°(M))).
In particular, denoting the limit by : U*: | we also have that H,(Py¥(w);on(t,x))
converges almost surely towards : W*: in L4([0,T]; W=5°(M)), and for k = 1, we
have that U belongs almost surely to C([0, T]; W=5°(M))NC([0, T]; W —=~1°(M)).
Moreover Hy(PyV(w);on(t,%x)), : Wk 1 and U respectively obey the tail esti-
mates (3.6), (3.7), and (3.26).

Proof. — As before, we can compute for fixed t € [0,7] and x € M
: 2
E U(1 _A,)§H, (PN\II(w,t,x); aN(t,x))\ ]

SOn

n,n’ >0

PN\IJ w t Xl) CTN(t,Xl))

x Hi, (PN W (t,X2); o (,%2)) |0 (X1) g (X2)dx1 .

Now we use (3.4), hence

E U(l — Ag)_zl—lk(PN\P(w,t,x);JN(t,X))ﬂ

Pn(X) ow(x) : k
—k'n%;o T /w [ (1, 3)] ey

— K ((1 — A (1= Ag)s WV(X“XQ)V)

x1:x2:x’
where we define
(X1, X2) d:efE[PN\IJ(w,t,Xl) . PN\I/(w,t,Xg)}

t{sin((t—t){\,
e

n>0 <An>

the last equality resulting from It6’s isometry. In particular, in view of the second
line in (1.21), we see that 74 can be decomposed as

] dt’) P (X1)n(X2),

¢ t ~t
N = §7N + YN

where ~y is given in (3.10), and

’7N X1,X2 Z % ( 2/\2) W@n(xl)%pn(xﬁ'

n=0
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Hence, using the product estimate of Corollary 2.7 (iii), we get for any t € [0, T

k

St

¢ ¢ k—¢
_£& _£& ry ry
B (MxBato o~ I ()

H (va)k

_£ _£
Boo oo (M) X BooToo (M)

< a L ~t [[F—t
& _&
~ ;) H’YNHBOO?OO(M)XBOO?OO(M) HVN

B 00 (M) X BSg o6 (M)

Now from Proposition 3.6, we have that ||y, -5.- 5.~ is bounded uniformly in N for

any € > 0. As for the other term, we can estimate it directly with Cauchy—Schwarz
inequality and Lemma 2.1:

~t
|7 By o (M)X B2, oo (M)
= sup M;M;

M1, My € 2%+

3 v (N2) v (34) wg (12) " ) )

< sup MM

~

My, My € 2%+

X sup
X1,X2 €M

N|=

Tt (Z o (N722) g (A2) v (X2) W?”)

x1,X2 €M \ >0

N

. (zo s (2) s (2) <Ai>3%<x2>2)

1
< su M?* A2 A2
~ M1~M£)§N 1 7§0¢M% ( n) ¢M22( n) </\n>3
< sup ME'<C < +o00
M1<N

uniformly in N € N.
Thus we can conclude as in the proof of Proposition 3.4 that E|(1 — Ag)~° :
Wk (¢,2): |? is uniformly bounded in N, from which we get a uniform bound in

L2 (; L([0, T); W= (M) )

for any 1 < p,q < c.
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As for the convergence of Hy(PnV(w,t,x);on(t,x)), we have again for Ny < Ny

2

]E’(l — A3 {Hk (Py,W(w,t,%); 0w, (%)) — H(Pw,¥(w, £, %); on, (t,x))}

_& _E& k
= KL= Ag) (1= A | (PR, (1, %2)

- 2(PN1PN27t(X1a X2))k + (P?Vﬂt(Xl’ X2)>k}

X1 =X2=X

S H (P?vﬂt(xbxz))k - 2(PN1PN27t(X17X2))k

+ (P2 (x1, %))

_£ _£ .

Writing as above P%, +' = LP%, v + P3,7", we then estimate for ¢ € [0,7] the
contribution of

H (P?vﬂt(xla X2))k - (PN1PN27t(X17 X2))k

_E _E
BooZoo (M) X Bog oo (M)
k

>3

£=0

- (PN1PN27(X17 XQ))6<PN1PN27/t(X1, Xg))

(Phrta ) (PR30 )

k—¢

£ £
BooToo (M) X Boo oo (M)

< sup
<k

{(P%\Tﬂ(Xl’XQ))K - (PNlPNQ’Y(XhXQ))e]

(P?Vﬁt(xl, X2))k_é

_£ _£

- H (PN1PN27(X1, X2))€ {(P?VQ’V%XL X2))k7€

- (PN1PN2f7t (Xh XQ))

k—¢

_£ —£

Sj g(l—i—ﬂ).

u
<
Using again the product estimate of Corollary 2.7 (iii), we bound

IS H(P?vﬂ(xhxz))é - (PNleﬂ(Xh?Q))Z

k—¢

_ £

Boo oo (M) X Boo o (M)

X P?Vglvt(Xl? X2)

BSe 0 (M)X B o0 (M)
SN

for some 0 < & < e. This follows from (3.13)-(3.14) similarly as in the proof of
Proposition 3.4, along with the previous bound on ‘. As for II, we use also the
product estimate to get

TOME 6 (2023)



200 T. OH, T. ROBERT & N. TZVETKOV

£

y4
II S H (PN17(X17 X2>>

(P?Vﬁt(xl’XQ))k - (PNleﬁt(xl,XQ))kie

)
BSo,00 (M) X B5g 06 (M)

and we can gain a small negative power of N; in the second term by proceeding as
for the bound on 7' above and using that the supremum of M7~ now runs over
Ny S M; S Ns. The second contribution (P37 (x1,%2))" — (PNlPN2’yt(X1,X2))k is
estimated similarly. This shows that { Hi(PyV(w,t,x);0n(t,X))}nen is a Cauchy
sequence in LP(€2; L9([0, T]; W=5°°(M))) for any finite p,q > 1.

Let us finally turn to the continuity property of ¥y and W. As in the previous
section, we compute for any h,t € [0,7] and x € M

E[(1 - Ag)*(m¥ — ¥)(w,1,x)|

R e

N /Ot sin (¢ +h —t)(\n)) sin((tt')<)\n>>rdt,

(An)

2
u(x)* ()
~ s {h o (5
= <)\ >2+25 ~ !
which leads as in the previous section to ¥ € C'([0,T]; W~5>°(M)) almost surely.
Lastly, the tail estimate is obtained through the same argument as in the previous
section. This concludes the proof of Proposition 3.11. 0

2

4. Local well-posedness results
4.1. Proof of Theorems 1.2 and 1.6

We begin by establishing a general local well-posedness result for a perturbed
version of (1.2). Let us consider the nonlinear wave equations with a general nonlin-
earity

(4.1) {c‘ﬁw (1= Agw + vdw + Fe(w) = 0

(w, Oyw) =0 = (0,0)

where

k=1
Fi(w) =w"+>" fa'
=0
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for some functions f; : R* x M — R, and v € {0,1}. Note that here we only
consider the dynamics (4.1) starting from zero initial data, as the data for the
Cauchy problem is contained in the forcing terms f,. This is not a restriction, as
the case of a general initial data (w, ;w)|;—o = (wp, w;) can be put in the form (4.1)
by decomposing w = (0,V (t)wy + V (t)(wo + wy)) + W where W solves (4.1) with
Fp(W) = W¥ + 351 £, for some data f, depending on f, and (wg, w).
PROPOSITION 4.1. — There exists g = €¢(k) > 0 such that if s; = 1 — ¢ for any

0 < e < &g, then for any q > 1 there exists C' > 0 such that for any R > 1> 6 > 0,
and any f, € L([0,1]; W~2°(M)) with

||szLq< ><R,£:o,...,k—1,

[0,1;W 5% (M)

if we set ,
s=C(0R™)" €(0,1]
then (4.1) admits a unique solution w € C([0,d]; H*1(M)) N C([0,d]; H*~1(M)),
which satisfies
[(w, Gew)l| o gaer) < 0-
Moreover, the flow map

(for s feor) € L2 ([0, 1 W52(M)) — (w, Bw) € C ([0, ) H (M)

is continuous. Lastly, the same local well-posedness result holds if we replace Fj,
in (4.1) by

(4.2) Fyi(w) =Py ((PNw)k + kf fe(Pwa) ,

=0
uniformly in N € N.

Proof. — For 6 € (0,1}, v € {0,1}, let us define the nonlinear operator on
C([0, 6]; H™ (M)) by

NN
o) sin (( ) i g

Ts(w)(t) = - [ ‘ot Fo(w)dt.

v2
— T A

We shall prove that for § small enough, Ts defines a contraction mapping in a ball
of radius @ in C([0, §]; H* (M)) N CL([0,d]; H5~1(M)).

We use (2.6) to define and evaluate the H*'(M) norm of the operators, and that
H*'(M) = B3%(M), so that we get the first bound

k—1
ICTs(), 2D llcoaeny S 0] 3o + 2 e

LiHs171

k
< e

k—1

¢
LiB;5 + g} Hfzw
We begin by treating the first term, which we can simply estimate by
SO HwkH S 5HwH’zg°L2k-

L};Big ~ L$L? ~

1p—¢ "
L5B2,2

Jo*
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Thus, provided that € < %, we can use Sobolev’s inequality to get the bound

"]y eas S S0l

As for the other terms, we now use the product rule in Corollary 2.7 (iii), to get for
(=1, . k-1

Hﬁw\L%r5N5QHﬂHmBzwa1MH%%§ S 57 fell -l 5,
and then use that
lwllzgens,, S Nwlipesy,
forany £ =1, ..., k— 1, provided that ¢ < (k - The term for ¢ = 0 is estimated

directly, so that all in all we arrive at
1(Cs(w), L)l oo gaeesy < 1dllwlige o
+ 07 Z 1Fell oy 0o 0l e o

In particular for R > 1> 6 > 0and 6 = C(AR™')7, Y5 maps the ball of radius 6 in
itself. From the same computations, if T is defined similarly to Y5 with respect to
another data w(, w, f, ..., fi_; then we get

(4.3) [|Ts(w) — Tfs(w/)HC([o,a];Hﬁ)

, , k—1
< ead |jw = g ey (Jeollzgeraos + [l o)

k-1

1
+ 207 || fo — fOHLqW"oo +035q > { | fe — feHLqW 00 ”w”LOOHsl
=1

/ / ! -1
0= 0 e W2 5.0 (oo + )},

and similarly for the time derivative. This shows the contraction property and the
continuous dependence on the f,’s up to taking ¢ smaller depending on ¢y, co,c3. U

With Proposition 4.1 at hand, we can now get our main local well-posedness
results.

Proof of Theorems 1.2 and 1.6. We begin by proving Theorem 1.2. Recall that we
see Wamp as a random variable on (H*(M) x Q, u ® P). For any M € N we take
EM = {<UQ,U1,U)) S HS(M) X Q, \deamp € C([O, 1], ng,oo(M))
and V{=1, ..., k,
HHZ (PN\I/damp(UOa Uy, (,U), O-N(x)> - qulamp(u(b Uy, w) :

2 (oW 2= (m)) =0

and sup ||Hy (PyYaamp (g, U1, w); x . gM}.
918 Ve (P a0 1053 ) 5
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In view of the large deviation bounds given by Proposition 3.8, we see that

2
(4.4) pRP(HI (M) x Q\ Zy) < CemME,
Moreover, (1.24) and Proposition 3.8 show that for any (ug,ui,w) € Xy, we can
apply Proposition 4.1 with R = M, = 1and f, = (];)Hg(PN\Ifdamp(uo, uy,w);on(z))
for any N € NU {oo}, with the convention that

Poo\deamp = \Ildamp and H€ (Poo‘ljdamp (Uo, Uy, W ) ( )) = \Ilgamp(u(]a Uy, w) s

We thus get solutions wy and w., = w to (1.24) on [() T) with T = CM~? inde-
pendent of N. Moreover since PV qump € C([0, T]; W™3°(M)), N € NU {oo}, we
have

un = PN\IJdamp + Wy € PN\Pdamp + C ([07 T]v H™ (M)) N Cl ([07 T]’ H* (M)) .
Hence in view of Proposition 3.8 we have uy and u in
C ([0, 7; H=(M)) n ¢ ([0, T]; H75(M))

and using again Proposition 3.8, we get the convergences PyW¥qamp — Vaamp and
wy — w. From the continuous dependence in Proposition 4.1, we thus get that
uy — w in C([0,T); H=¢(M)). The proof of Theorem 1.2 is completed by taking

Y = liminf >,

=

which, by (4.4) and Borel-Cantelli’s lemma, is of full probability. The proof of
Theorem 1.6 follows through the same argument, with PyS(t)(ug,u1) in place of
P n Y damp (o, u1,w) and (H*(M), p) in place of (H¥(M) x Q, u @ P). O

2. Deterministic estimates

We collect here the deterministic estimates needed to prove Theorem 1.9. Let us
recall from [GKO18] that for s; € (0,1), a pair (¢q,r) is s;-admissible (respectively
(q,7) dual s;-admissible) if 1 <§<2<¢< 00,1 <7<2<7r <o0and

1 2 1 2 2 1 1 2 1_5
—+-=1-s1==+=--2, —+-<5, and —+=2>=>_.
q T q T q r 2 q 1T 2

Let us then consider the following inhomogeneous linear wave equations
(4.5) (OF+1—Aypu=f on [0,T] x M,
' (u, Oyu) ‘t:o = (ugp,u1) € H** (M)

for some T' € (0,1]. For s; € (0,1) and (g, r) an s;-admissible pair (respectively (g, 7)
a dual s;-admissible pair), we set

(16) X3t = C (0, T); H (M) 0 C" ([0, 7] H*~H(M)) 1 L9 ([0, T); L' (M)

and
Xit = L}([0,7); H 71 (M) + L7([0, T); L'(M)).
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LEMMA 4.2. — Let u be a solution of (4.5), then the following Strichartz estimate
holds:

(4.7) [[ul

xa S (w0, ua)]

asr + || f]

51 .
XT

Proof. — Due to the finite speed of propagation and in the absence of boundary,
this follows from the same Strichartz estimates as in [Kap91, MSS93] for the variable
coefficients linear wave equations on R2. [l

Next, we recall the following technical result from [GKO18].

LEMMA 4.3. — Let s; be as in Theorem 1.9. Then there exist an s,-admissible
pair (q,r) and a dual sy-admissible pair (q,T) satisfying

(4.8) qg=kq, r=kr
where the first inequality is strict in the case s1 > Sepit -

Proof. — This is the content of the discussion in [GKO18, Subsection 3.1]. O

4.3. Proof of Theorem 1.9

We finally prove the local result for SNLW. As above, we define for N € NU {oo}
and (ug, u1) € H' (M),

Yr(w) = cos (t\/l - Ag> up + sin (

k tsin ((t —t — A
_ez:%) @/o e 1” : g) Hy (PyU(¢);on(t, @) w' " (t)dt,

t/1— Ag)
1—A

with the same convention as above for N = oo.
We then prove a result similar to [GKO18, Proposition 3.5].

PROPOSITION 4.4. — Let k € N and s; be as in Theorem 1.9, and take (q,r) and
(q,7) given by Lemma 4.3. Then there exist 0 < ¢ < 1 and o > 0 such that for any
N € NU {00},

(4.9) 1Pl er S (o, wn)llyer + | Hie Py E(E); ot 2)] g pres s
k—1 1k
Ty [ (Prw ) on(t, o), 5o ol + Tl

for some large p. Moreover, a similar estimate holds for the difference as in (4.3).

Proof. — The linear solution with the term for ¢ = k in T are directly estimated
with the Strichartz estimate (4.7) of Lemma 4.2 to give the first two terms in the
right-hand side of (4.9).
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As for the term ¢ = 0, we have from the Strichartz estimate (4.7) and Holder’s
inequality with (4.8)

tsin ((t—1t),/1 —A 1_k
/ (( ) 9) W (dt|| < Hw ‘ i S < Jlw ||quLk < T

0 V31— 4y o

Hence it remains to show

tsin((t—t'),/l—Ag) ) ) et

/ H(PyU(t);on(t',x) | w* ()l | .,

0 /1 — Ag Xp

ST |H(Py¥(t);on(t,z)) . lwllfz,
for ¢ =1, ..., k—1. As in [GKO18, Proposition 3.5], by interpolation we have for

any0<5<31/\(1—31)
(4.10) X3 o L([0,T); W= (M) and L ([0,T); W (M)) D X3,
with

(4.11) 1 _l-g/fss gL _Lloe/si e/s
a1 q 1 r
and
(a1z) Loloe/ms)  gfos) g 1 _1-e/(-s)  e/(L=s)

Q1 q 1 T r 2
Then, using Lemma 4.2 with the first embedding in (4.10), we have

/t sin ((t —t'),/1— Ag)
0 1—A,

H, (PN\Il(t’); on(t, x))wk_é(t’)dt'

X
S AT
S | H(Pyw @) on(t ) uwh o
T
S |H(PrE@);on(t o) &
T T~1’Oo

Next, we can use Corollary 2.7 (iii) and (i) with Holder’s inequality to estimate this
last term with

HHe(PN‘I’(t)WN(tax)) 1/(ifi)3_§ Hwkié LéT;B;?oo
< HHE(PN‘I’(t)§UN(t:x)) Aoty ||w||€ (=022 e 07

LT a1 92 W2

where ¢; < ¢2 < ¢. The proof of Proposition 4.4 is then completed once we notice

that for £ > 1,

1ol oo S Tl iz
T
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for some small o > 0 provided that (kK —1)¢2 < ¢; and (k — 1)r7 < r1, which can
be insured by taking ¢ small enough in view of the choice of ¢ and (4.8)-(4.11)-
(4.12). Lastly, we invoke the second embedding in (4.10) to conclude the proof of the
proposition. [

With this proposition at hand, we can conclude as in Subsection 4.1 in the sub-
critical case s > Sqit, With a stopping time 7" = T,,(||(uo, u1)||»s1) > 0. However,
1 _k

in the case k > 4 and s = S5 then we have T« ¢ = 1 and so we cannot recover
the contraction property by taking T = T,,(||(ug, u1)|l3=:1) small enough. Instead,
defining as in [GKO18] the slightly weaker norm

1—= =l
el = maax (Nl zg e g 2 el e )

we can repeat the argument as in the proof of Proposition 4.4 using the interpolation
inequality [Jul|poyer < [Jullyz1, to get

1T (w)]

yor SISE o, wn)llyze + | Hi(Py¥ () on(t, 7))

LLHs171

w5 + ol

g ool
Lbw ™3

+ Ta ; HHZ (PN\If(t); O'N(t, [L’))

and similarly for the difference estimate. Since || - |
T small enough such that

yor 0 as T'— 0, taking then

[15(t)(uo, ur)|

N D

o+ [ (P (0); o (0,0))

LiHs1-1 S

for some small 0 < # < 1, then T defines a contraction on the ball of radius € (in
Y;'). Lastly, repeating again the argument to obtain (4.9) with the interpolation
inequality we can control

fullss: = ITr (@l S o, )+ |He(Pa¥@sontt. )],
k—1
. k—¢ k
S LA O ATURES) | N (R

which shows that w € X7' and concludes the proof of Theorem 1.9.

5. Global well-posedness and invariance of the Gibbs
measure

In this last section, we present the proof of Theorem 1.4, the one for Theorem 1.7
following through the same argument. In the rest of the section, we then assume
that k is an odd integer, and we fix some parameters s < 0 < s5 < 57 < 1 4 s such
that 0 < —s <1 —5; <1 — 59 < 1. We also simply denote ¥ g,m, by ¥.
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5.1. The frequency truncated SDNLW

As in [Bou96, Tzv08, BT08b, BTT13], for any N € N and k > 2 we look at the
approximating equation

(5.1) {(83 tl-Qg+ at)u + PNHk;(PNuN; UN(x)) = V2¢,
(U, EM)LZO = (UO,U1).

Note that the same argument as in the previous section shows p ® P-almost sure
local well-posedness for (5.1), thus defining a local flow map

ON(t) : HI (M) x Q — HI(M).
We have the following global well-posedness result for (5.1).

PROPOSITION 5.1. — For any N € N, (5.1) is u ® P-almost surely globally well-
posed. Moreover, the truncated Gibbs measure

1

(52) de,k+1 = Z&l exp ( — m “

((Pyu) dm) du,
is invariant under (5.1), in the sense that for any F € Cy(H*(M);R) and any t > 0,

/ o /Q F[Q)N(t)(uo,ul,w)}dP(w)de’kH(uo,ul)

M) F(ug, u1)dpn g1 (uo, ur).
Proof. — After expanding the solution to (5.1) as uy = ¥ 4+ wy and writing the
equation for wy, we can apply Proposition 4.1 above to get local well-posedness for
wy, for all N € N; in the sense that there exists some stopping time 7T almost
surely positive such that there exists a unique solution wy € C([0, Tx]; H**(M)) N
CH([0, Tn]; H*71(M)) to

(5.3)

(07 +1— A+ ) wy + Fyp(wy) =0,
(U)N, ath>|t:0 - (07 0)7

where Fiyy is as in (4.2) with fr = H/(PnV(ugp, ur,w);on(z)), and with s; as in
Proposition 4.1 (with e replaced by —s). Thus justifies that the local flow map

OV (1) + (ug, ur,w) = (V(ug, ur, w)(t) + wy(£), W (ug, ug, w)(t) + dwn (1))

is indeed almost surely well-defined on [0, Ty] for some T = Ty (ug, u1,w) > 0.
Then, defining the energy

_ 1 2 2 2 1 k+1
gN = 5 //\/t {(81511}]\[) + ]VwN\ + wN}dx —+ m /M(PNUJN) dl’,
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we can use (5.3) and (3.1) to compute

d
&SN = —H@thH%z + <8th, PNHk<PNwN + PN\IJ; O’N(aj)) — PN(PNwN)k>

< <3th,PNHk(PN‘I’;UN($)>>
k—1 k
+> <€> <(9th7 Py [(PNwN)kZHK (PN‘I’; UN(I))} >,
=1
where (-, -) is the usual inner product in L*(M). With Ex(0) = 0, this gives
t
(5.4) En(t) < /0 <8th(t’), Py H, (Py (1) JN(x))>dt’

= k ! / Nkt / /
s @ / <8th(t ),Py {(PNwN(t )" H (Pau): aN(x))] >dt .
=1
The first term in the right-hand side of (5.4) can be estimated via Cauchy-Schwarz
and Young’s inequalities to get the bound

‘/Ot <athv(t’), Py H, (PN\II(t’); JN(I)>>dt/

S [ 10an (@) dt + [PrH Py () ox(0))

2

1212
t

S [ en)dt + (N, )
0

for some constant C'(N,t) almost surely finite for any finite N and ¢. In the second
step we used that for fixed N € N, PyH(PyY(t'); on(x)) is indeed smooth with
L*(R,; L*(M))-norm depending on (and blowing-up with) N, and that & is odd so
that the potential part of the energy is non-negative.

As for the terms in the sum above, even though we work with N fixed and do not
need to have bounds uniform in N, the homogeneity in the terms on the second line
of (5.4) does not allow us to conclude directly by a crude estimate on these terms
and Gronwall’s inequality when" % > 5. Thus we use the integration by part trick

of [OP16] to get for 1 < <k —1:
[ (o (e), P [ (Pawn (1) )t
— /0 t <k_i%a (Pywn ()" H (PyO(F); aN<a:>)> dt'
= o (Pyu() ™ H(Py¥(tion(a)) )

e[ (Pavan () AP AU () e (PaU (L) ox (0)) )l

T H(Pa(t); o (2))

(15 When k = 3, the integration by part trick is not needed, and one can instead use the argument
of [BT14].
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where we used (3.2) in the last step. The first term can be bounded by

{ Pavun () He (Pa¥(t): ox(a) )|

< |Pywn(t)||5eleh

Hg(PN‘I’(t)QUN(x))HLOO

€ k41 . B
< 7 Py @l + CE) He(Prw(t);on (@)
k41
<eEn(t) + Co)||Ho(PnU(®);on (@) ©
by using the compactness of M and Young’s inequality (since 1 < ¢ < k — 1), the
definition of £y and the same remark as above, for any 0 < ¢ < 1 so that we can
absorb the term with Ex(t) in the left-hand side of (5.4). Note that from the proof
of Proposition 3.8 we have that the second term is bounded by C(N,t) which is
almost surely finite for any finite ¢ > 0.
As for the other term, we have as above

‘/ < (Prwy (1), 0PN (t )Hz—1(PN\I/(t’);0N(9:)>>dt’
5/0 //vl (PNwN(t/))k—i—l dzdt’ + /Ot Hé?t‘I’N(t')H,% HHéfl (PN‘I’(t/);UN(m))

t
< / Ex(t)dt' + C(N,1).
0

k+1

dt’

7
o>

Hence using Gronwall’s inequality with Ex(0) = 0, we deduce that

sup E(t) S C(N, Ty) < o0
t<Tn

almost surely on the set {Tv < oco}. Finally, using again that & is odd, we conclude
that

sup H(wN(t),@th(t))H%l < sup En(t) < o0
t<Tn t<Tn

almost surely on {7y < oo}. This shows that wy exists globally, and so does uy.
As for the invariance of py 41 under the flow &V of (5.1), we can write

OV (t,w) = (Mx®™ (t,w), (1 = Tx) (¥, 8,¥)(t,w)) on (Ex x Ey) @& (Ex x Ex)

when we see (V(t,w), 0;¥(t,w)) as a measurable map from H*(M) to H*(M).
First, for the linear part (1 — IIy)(V(t,w), 0, ¥ (f,w)), we can repeat the argument

of Proposition 3.8 to get it leaves the Gaussian measure (1 — Il ), invariant; indeed,

we have for any F' € C,(H*(M);R) and initial data (ug,u;) with law (1 — Iy ).

Lo o F [0~ T80, 00, 01,0)] (), )
= lim_ / » /Q F [Pas(1 — T (¢, o, uy, )] dP(w)dp(uo, ur)

by the dominated convergence theorem, where U= (¥, 0;¥). Then from the same
argument as in the proof of Proposition 3.8 we have that [P /(1 —1IIy)].p is invariant
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for Pp (1 — In)(V(t,w), 0¥ (t,w)), so we can continue with

= lim FPuy(1—TIn)ug, Pasr(1 — I n)u)] dp(ug, u
M — o0 JHs (M) [ M< N) 0 M( N) 1)] M( 0 1)

_ /HS(M) F (1= TIx)uo, (1 — Ty)ur)] dps(ug, uy).

This shows the invariance of (1 — Iy ),p under (1 — Iy )(V(¢,w), 0,V (t,w)).
On the other hand, decomposing

yuy = Z anp, and Ilyouy = Z bnon,
An SN An <N

we can write IIy®" as the flow of the finite-dimensional system of stochastic differ-
ential equations (SDEs) on R?A»:

da,, = b,dt
Ay—1
(5.5)  {db, = [— (n)2an — <PNHk (PN S Gy JN(x)>,g0n> - bn] dt
n1=0
+V2dB,(t)
forn =0, ..., Ay — 1, where as in Proposition 3.8 we define Ay = dim Ey. If we
redefine the truncated energy
En(ag, ..., any—1,b0, ..., bay-1)
def 1 AN—l 5 o ) 1 AN—l

we can repeat the argument of the proof of Proposition 3.8 with £y instead of & x to
get that the truncated Gibbs measure Zy'e~¢N#+1 (I ), p, with the density e~ ¢nk+1
as in Lemma 3.2 and the partition function Zy, is invariant under the dynamics
of (5.5). All in all, this shows that the full dynamics ®" = (IIy®", (1—1Iy)(¥, 9,¥))
for (5.1) leaves py i1 = Zy'e” Nkt (Tl ) ® (1 — Iy),p invariant. O

5.2. Proof of Theorem 1.4

We now prove the almost sure global existence for (1.1) and the invariance of the
Gibbs measure. We begin by constructing a set of arbitrary small complementary
probability on which we have good control on the solution to (5.1). We follow
closely [BTT13] (see also [HM18] for the argument in the context of stochastic
equations).

For N € N, recall that ®V(¢) is the global stochastic flow map of (5.1) given by
Proposition 5.1, and take (ug, u;) with law py 1. Note that & (¢)(ug, u1) still exists
globally for py 11 @ P-almost every (ug, uy,w) since py p+1 < p. By Proposition 5.1,
we thus have that for any ¢y > 0, the law of ®V(¢o)(ug, u;) is also given by pn k1.
Moreover, since B in (1.8) is a cylindrical Wiener process on L?(M), we also have that
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for any ty > 0, the translation t +— ¢+, defines a measure-preserving transformation
Ty, on (2, P) given by

(5.6) B(t, 74, (w)) = B(t + to,w) — B(tg,w).
We can thus extend ®V(t) : H¥(M) x Q — H*(M) as a measure-preserving map
BV (1) (HS(M) X 8, pn g1 @ P) — (HS(M) X Q, pnt1 @ P)
(o, vy, w) (@N(t)(uo,ul,w),n(w)).

We then have the following control on ® (¢).

PROPOSITION 5.2. — There exists C' > 0 such that for all m, N € N, there exists
a measurable set X% C H*(M) x Q such that
(5.7) pngr1 @ P (HI (M) x Q\ ZR) <27,

and for all (ug,uy,w) € X% and t > 0, the solution ®V (t)(ug, uy,w) to (5.1) satisfies
k
(5.8) |97 (#) (o, ur, w)| :

Proof. — First, we recall that U = W4y, is the stochastic process on H*(M) x
defined by

W(t, o, u1,0) = OV (Do + V(O)(ug + 1) + V2 | V(= ¢)dBe ().

g S C'(m+log(1+1))

Then, for m,j € N, we set

(5.9) §=D"*(m+j)*

given by Proposition 4.1 with R = D(m +j)§, 0 = R7! and ¢ = 2, for some
D > 1 independent of N, m,j to be fixed later, such that as in Proposition 4.1 in

the nonlinear estimates we have C'67 R < % for various constants C' such as in (4.3).
Next, as in [BTT13] (see also [Bou94, Bou96]), we can define

4
SR V(a0 (B (D))
where [27/§] denotes the integer pa_r(’)c of 27/5, and
(5.10) B™(D) Y {(uo,ul,w) € H' (M) x Q,
H(\If(uo,ul,w),8,5\If(u0,u1,w)>‘

(5.11) V{e=1,..., k

k
2

’C([O,l];?—ts) S D(m +7)2,

Hg(PN\II(uo,ul,w);aN(x))
< D(m+ )3,
(512) || He(Par® (g, ug, w); o () — Hy (P (ug, ur, w); o ()

L2([0,1];W#0)

L2([071];WS’OO)

[SIE

< M=D(m+j)5, VM < N},

for some 0 < ¢ < —s in view of (3.7), and D > 1 is to be taken large enough but
independent of m, j, N. In particular, note that using (5.6) and Proposition 4.1 with
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the choice of ¢ in (5.9), for any a = 0, ..., [27/§] and éN(aé)(uo,ul,w) c Bﬁ’j(D)
we have that

wya(t) = OV (t + ad)(ug, ur,w) — W (£, 2" (a6) (uo, ur, w))
satisfies
(5.13) (wnar O o) ooy < D (m + 5)72,
where s; = 1 + 2s. This implies that for any a = 0,...,[27/d] and any (ug, u;,w) €

®N(ad) By (D), the use of (5.10) and (5.13) leads to

(5.14) || @~ (t + ad)(uo, us, W)HC([M];W)

< H(\I/ (t, CBN(a(S)(uo, ul,w)> , O (t, &DN(&(S)(uo,ul,w))) Hc
+ [[(wna: Orwn,a) HC([Oﬁ};HSl)

<Dm+4):+D Y (m+j)2 <Dim+j+1)2

([0,0]:7°)

provided that D is large enough.
Next, using that ®V(¢) : (H¥(M) X Q, pyis1 @ P) — (H¥ (M) X Q, pygr1 @ P) is

measure-preserving, we can estimate

PNg+1 QP (HS(M) x Q\ 2%’j>
[27/9] N '
< X pven ©P{ON () (H(M) x 2\ BYY(D)) }
< 2 prins @B (H(M) x 0\ B(D))

Using Cauchy-Schwarz inequality with the uniform (in N) integrability property of
the density e~ GNr+1(0) of PN k+1 given by Lemma 3.2, we can continue with

< 5 e, n P (M) x B(D))?
5 2(; pe P <H(\I’(u0,u17w)7 at\l/(uovulvw))HC([O,ﬂﬂ'ls) =~ D(m +]>§)2

-

+ Z TR IP’(HHg(PN\If(uo, Uy, Ww); UN(JJ)>

> D(m+j)’5)2

)

L2([0,1;W#22)

+) ,u®P(HHe(PM‘I/(UmUlaw);UM(m))

[ME

— H, (PN\IJ(UO, U, Ww); UN(ZE))

. .
Lol M~D(m + j)
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Using the tail estimates (3.6), (3.7) (which also hold for W) and (3.26) given by
Proposition 3.8 together with (5.9), we can finally bound for some 0 < £ € ¢ € —s

(5.15) pyp1 @ P (HS(M) x 2\ E%’j)

k ~
S 2]D4(m_|_j)2k{ —cD?(m+j)k +Z (e—cDZ(m-H IZ + Z e—cMED%(m-&-j)lz)}

M<N
5 2jD4(m _|_j)2ke—cDE(m+j) < 2—(m+j)

for D > 1, independently of N, m, j.
Next, we define

Em def n Em]

With this definition, we see that (5.7) is a direct consequence of (5.15). Moreover,
for any (ug,u1,w) € ¥ and ¢t > 0, if j € N is such that 277" < 1+¢ < 27, then (5.8)
follows from (5.14) since (ug, u1,w) € X. O

We can now finish the proof of the global existence. Let us set

Y™ = limsup XY

N =00
and
x=J o™
meN
First, we show that ¥ is of full py;1 ® P-measure. From Fatou’s lemma we get for

any m € N
Pry1 @ P(E™) > limsup ppp1 @ P (X))

N — oo

Using next the convergence of the density e ~#+1 of py .1 to that of pr,; given
by Lemma 3.2 (ii), and (5.15), we deduce the lower bound

pry1 @ P(SY) > limsup py 1 @ P(SR) > 1— Y 270",
N — o0 jeN

This proves that
Pt ©P(X) 2 lim pp @P(S7) > 11— lim Y- 270" =1,

jEN

Now for any (ug,u;,w) € X, we have by construction that there exists m € N,
C' > 0 and a sequence N, — oo such that for all j,p € Nand all 0 < ¢ < 27,

M\?r

(5.16) @™ (#) (uo, ul,w)HH CD(m+j+1)%.

Thus the global well-posedness part of Theorem 1.4 follows from the following
proposition.
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PROPOSITION 5.3. — Let m,j € N, N, = 0o and (ug, u1,w) € MNpen EN Then
{®Ne () (ug, ur, w) — V() (ug, ur, w) }pen is a Cauchy sequence in C([0, 27]; H2(M)).
In particular, {®™» (t)(ug, u1,w)}pen is a Cauchy sequence in C([0,27]; H*(M)). Here
s<0<sy<s1<ltswithO< —s<1—51<1—s8<1.

Note that contrary to [BTT13], we prove convergence for ®Mv(t)(ug,u;,w) —
U (t)(uo, ur,w) instead of Py, ®N*(t)(uo, ur,w), as in [Bou96)]. This allows us to prove
the convergence in the stronger topology of H*2 (M) instead of H*(M), which is
used to control the difference between the flow initiated at ®™(ad)(ug, u1,w) and at
DN (ad)(ug, ur,w) fora =1, ..., [27/4].

First, note that since our general local well-posedness result in Proposition 4.1 is
robust enough, we can use the same argument as for the proof of Theorem 1.2 in the
previous section, with the truncated dynamics (1.16) in place of (1.14), to get that the
limit ®(t)(ug, u1,w) = (u, Ou) = limy_ o0 PN (t)(ug, u1,w) exists in C([0, T]; H*(M))
on a set 3 of full 1 ® P-probability, for a random time T' = T'(uq, u1,w) p® P-almost
surely positive, and coincides with the local solution constructed in Theorem 1.2.
Then we use the previous proposition to construct iteratively ®(¢)(ug, u1,w) on larger
and larger time intervals. Indeed, up to replacing > by > N f], which is still of full
probability, we can use Proposition 5.3 along with the definition of >, to get that
for any (ug,u;,w) € Z there exists m € N and N, — oo as p — oo such that
(w0, u1,w) € Nyjen Xy In view of the previous proposition, it follows from (5.16)
that for any ¢ > 0

[SIE

19 (t) (uo, ur, w)

In particular ®(t)(ug, u1,w) is globally defined for any (ug,u;,w) € .

The invariance of pyy1 then follows directly from the invariance of py, 41 un-
der (5.1) along with the convergence of ®Nv(t)(ug,u;,w) towards ®(t)(ug,us,w)
given by the previous proposition and the convergence of py, x+1 towards pyi1 given
by Lemma 3.2. Indeed, as in [Tol20], for any initial data (ug, u1) with law p, any test
function ' € Cy(H*;R) and any ¢ > 0, we have by Lemma 3.2, Proposition 5.3 and
the dominated convergence theorem

/S(M)/QF CID(t)(uo,ul,w)}dﬂj’(w)dpkﬂ(uo,ul)

s = pango H@Np (t)(uo, u1, w)HH CD (m +log(1 + t))

— 7 / / () (o, ur, ) e G410 AP () dpa(ug, wn)
=, le/ J F{<I>Np<t><uo,ul,w)]e*GNM*l(“O)dP(w)du(uo,u1>
e} p s JQ
where Z = [55 () € ~Gre (W) gy (ug, up) and Zy, = Jrs(m Gnp k1040 (g, uy ). Now

we can use the invariance of py, 141 under PN (t) glven by Proposition 5.1, and we
can continue with

= plgglo F(“o; uy)dpn, k11

= / an Uy dpk+1
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This shows the invariance of pyy;. Hence the proof of Theorem 1.4 will be completed
once we prove the proposition.

Proof of Proposition 5.3. — Let us fix m, j € N, § > 0 asin (5.9), and (ug, u1,w) €
Npen 2n7 - In the following, we fix two (large) integers N, M € {N,}pen. Again, we
write

(wy, Own) (t) = OV (1) (uo, ur, w) — W(t, ug, uy, w),

and we denote by ®¥(¢) (respectively ®2(¢)) the first (respectively second) com-
ponent of ®V(¢). We will control inductively the difference (wy(t),wn(t)) —
(war(t), dywar(t)) on the time intervals [ad, (a + 1)d], a =1, ..., [27/6]. We begin by
controlling the difference on the first time interval, corresponding to a = 0.

Then on [0, ], we have for N < M:

Z <12> /ot Vit — t'){PM {He (PM\Ij(tla Ug, U1, W); UM(x)) (PMwM(t,))k_e]

_ Py [Hg (Pt ug, ur, w)i o) (PNwN(t’))k_q }dt’

-£(0) ool

=0

+ Py KHe (PM\II(t’, Up, Up, W); O'M(x>)
— H, (PN\IJ(t’, Ug, Uy, W); UN(x))> (PMwM(t'))k_q

+ Py {HE(PN\II(t’,uo, U, W); O'N(:E)) <(PMwM(t’)>k_z - (PNwN(t')Y_éﬂ }dt'
=: I + 114 III.

To estimate these terms, we proceed as in the proof of Proposition 4.1. We begin
with

[ Tl (o, m22)
k

S

=0

(Pas = P) | Hi(Par ¥l .0 () (Parn)

Ll([O,é];HS2*1)

Ns2—51

N
M=

{Hg <PM\IJ(u0, U, w); JM(ZL‘)> (PMwM)k_q

=0

L1([0,6);H51~1)

k
< NS2-51§3 H(P U(ug, ur,w); o ;p) Pywuyllfst
~Y ZZZD f M ( 0 1 ) M( ) LQ([O,l];W57OO) || M M”C([O,M,H 1)
< C(m,j)N*=—°,

for some constant C'(m, j) independent of N, M, where the second to last estimate
comes from the same argument as in the proof of Proposition 4.1, and the last one
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from the condition (5.11) given by (ug,u1,w) € By’ (D), with (5.13) and the choice
of § in (5.9).

Similarly, we bound

1Tl 0,63 52

[H4<PM\IJ(UO, Uy, w); oM(w)>

- HZ(PN\P(UO’ U1, w); UN@))} (PMwM>k_£ L1([0,8);H5271)

< (ﬁ{l Hk(PM\II(uO,ul,w);UM(x)) - Hk(PN\I’(U(J;UhW);UN(?U))

k-1

T

L2([0,0;H*2~1)

He(Par(u, ur,w); onr(x)) = He(Pa¥(ug, ug,w); on ()

L

< C(m,j)N—F,

L2([0,6];W=>°)

where the last bound comes from (5.12) given by (ug, u1, w) € By’ (D) and from (5.13)
with the choice of ¢.

Finally, we can further decompose

Il = :Zj <lz> /Ot V(t— t’)PN{Hg(PN\IJ(t',uo,ul,w>; on())
szv(t')k—z _ (PNwN(t/))k_€> n <(PMU)M(t,))k_e B wM(t’)k—€>

+ (wM(t’)k—f - wN(t’)k—f)] }dt’ — T, + 1M, + I,

We estimate similarly as before

k—1

1

ML ooy S D 62
=0

Hg(PN\I/(Uo, Uy, LU); O'N(.Qf))

L2((0,1;W*=)
k—0—1 k—0—1
XH(l_PN)wNHC([o,a];Hsz (H Nt NH ([0.3]; H52)+H NH ([0 H52>)
< C(m, j)N=2~%,

where the first estimate follows from the same argument as in the proof of Proposi-
tion 4.1, provided that s, < 57 <1+ s < 1 is close enough to 1. The same argument

applies to Il and gives the same bound (with M in place of N), and the last term
can be bounded similarly by

k—1
LTS vt

H, (PN\I/(uO, Uy, w); JN(x))

L2([0,1];Ws:0)

k-1 k—t—1
X HwM - wNHC([O,é];HS2) (H MHC(M o2y T H NHc(oa] H52)>
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1 N2
< CozD(m A+ j)2|lwy — wi |l eo.s):m52),

where the last estimate comes again from (5.11) thanks to (ug, uy,w) € By’ (D), and
from (5.13) with the argument of Proposition 4.1 applied with sy (provided that so
is sufficiently close to 1). With our choice of C82D(m + j)2 = C62R < 5, we can
absorb this last term in the left-hand side of (5.17).

The same arguments also apply to control ®Y(¢) — ®3(¢) on [0, ]. Therefore,
gathering the estimates above leads to

(5.18) || @M () (ug, ur, w) — @ (£) (o, ua, w)|| < C(m, j)(N=~ 4+ N7°)

C([0,0];H2)

for any N < M. In particular this shows the convergence on the time interval [0, J].
We now investigate the convergence on the second time interval [0,2d]: we first
decompose

H‘I’M(t +0) (uo, ur,w) — @ (t + ) (uo, ua, u})HC([M];HS?)

< @M ()@ (8) (uo, ur, w) — N (£)DY (5) (uo, ul,w)HC(MHSQ)

+ [N (DM (8) (uo, w1, w) — BV (£) DN (5) (uo, ul,w)HC(Mm) .

Note that replacing ¥ (uy, uy, w) by \IJ(&)M((S) (o, u1,w)) in the previous estimates
and using that we still have ®M (6)(ug, u;,w) € By’ by choice of (ug,uy,w) € 3777
shows that the first term above is still bounded by

| @ (0B (6) (w0, s, w) = SN ()Y (8) (o, 11, )| e

< C(m,j) <N52751 + N75>

for any N < M.
Thus we need to deal with the second term. We can redefine

war(t) = @V (1) (8) (g, uy, w) — W (, M (6) (uo, ua, w))
and

w (t) = Y (1) (8) (ug, ur, w) — W (£, @ (0) (o, w1, w)) ,

and since N, M € {Np},en and (ug, u1,w) € Nyen Emj we have in particular that

both ®M(8)(ug, u1,w) € By (D) and N (8)(uo, u1,w) € B’ (D) so that both wyy
and wy are well-defined and enjoy the bound (5.13). Moreover, by definition of ®(¢)
and W, they satisfy the following Duhamel formula:

wy = zk: (E) /OtV(t — )Py

£=0

{Hg (Pqu(t', &M (8) (utg, ur,w) ); JN(x)> (PNwM(t’))k_z}dt’,
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and

wy = zkj (’;) /Olt V(t— )Py

=0

~ ¢
{H@ (PN\IJ<t’, O (6) (uo, ua, w)); UN(x)> (PNwN(t’))k }dt’.
To estimate in C(]0, §]; H*>(M)) the difference

Y (£)D™ (0) (o, ur, w) — B (1) @™ (8) (o, us, w)
= \Il(t, &)M(é)(uo,ul,w)) - \If(t, @N(é)(uo,ul,w)) + wy — wy,

we first bound directly the linear terms by

H\I/ (t, EIv>M(<5)(u0, ul,w)) - (t, EIVDN((S)(UO, ul’w>)HC([o,5];H52)

< || @M (6) (o, ua, w) — O (8) (o, ur, )|
< Cfm, ) (N + N-7)

H32

thanks to (1.11) and (5.18).
To estimate the difference of the nonlinear components, we decompose

0o ot
(PNwM(t’)>k_Z — H, (PN\IJ (t’, &)N(é)(uo,ul,w)) ;UN(x)> (PNUJN(t/))k_Z }dt'
-5 () L re- e [n(eestednmmyona)

~ Ho(Po® (#,8Y () w0, ur,)) 0w (@) ) | (Povwnas )
+ Hy (PN\II (t’, N (6) (ug, ur, w)) ;UN(x)>

[(PNwM(t’))ke _ (PNwN(t’))kq }dt’

—: IT + III.
First note that we can estimate III exactly as Il in (5.17), giving the bound

1T . S2—81 1
HIHHC([O,d];HS2) < C(m, )N + §HwM N wNHC([o,a];HS2)'
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Finally, we estimate the remaining term by

- k
HHHC([O,J];H”) S ;

— Hy(Pot (% (3) (uo, u1.0)) 0 (2))

Ho(Pt (8(0) (w0, g, ) s 0w (a)

(PNwM>k_é

L ([0,6);Ho2~1)

Writing then

Hy(u; on) — He(v; on) fi‘i < > (u: o) (0 — )’

thanks to (3.1), we can then estimate the previous term with

Pt (BY(6) o, 1)) — Pt (% (6)un 1) |

X Hy <PN\IJ (&)N(é)(uo’ ul’w)) ;UN<x)> <PNwM)k_e L2([0,6):H2-1)

2 || H; (PN\I/ (EIVDN(é)(uo, ul,w)) ;UN(x)>

L2([0,1;W#22)

£—i Hk*f

X ||W (@M(d)(uo, ul,w)) - (@N(d)(uo, ul,w)>

C([0,8];H%2) M c([0,8);Hs2)’

provided again that sy is close enough to 1 (depending on k). Using then that
DN (6)(ug, ur,w) € By’ (D) and (5.13),(5.18), we finally get
g <) (4257

Gathering the estimates above, we obtain

H’LUM — wNHC([U,(S};HS2) < 4C(m,j) <N82—81 + N—e)

which leads to

|(wny, Dewn) (¢ + 8) = (war, Drwar ) (t + 6))| < Cy(m, j) (N2 4+ N7%)

C([0,6];H°2)
for some larger constant Cy(m, j) > C(m, j). This shows that {(wy,, wy,)}pen is
also a Cauchy sequence in C([0, 2d]; H*>(M)).

We can then proceed inductively on a = 0, ..., [27/§] and repeat the previous
estimates by using that at each step ®N (ad)(ug, u,w) € B’ (D) since (ug, u1,w) €
¥’. Thus we deduce that there exists a (large) constant Cy;/5(m, j) > 0 such that
for any N, M € {N,},en with N < M it holds

(5.19)

(wn, Oywn) — (war, Oyway) H < Cyiss(m, j) (NSTS1 + N’E) .

C([0,29]H52)

This is enough to show the convergence of {®™(t)(ug,u,w) — ¥(t)(uo, ur,w)}
in C([0,27]; H*2(M)). As a result, {@Np(t)(uo,ul,w)}peN converges in C([0, 2’],
H°(M)). This concludes the proof of Proposition 5.3.
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Remark 5.4. — By slightly modifying the proof of Proposition 5.3, we can indeed

show that for (up,u;,w) € X, the entire sequence {@N(t)(uo, ul,w)}NeN converges
in C'([0,27]; H*(M)) for any j € N. See for example [0O0T22, Corollary 9.11].
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