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Abstract. — It was shown by Gersten that a central extension of a finitely generated
group is quasi-isometrically trivial provided that its Euler class is bounded. We say that a
finitely generated group G satisfies Property QITB (quasi-isometrically trivial implies bounded)
if the Euler class of any quasi-isometrically trivial central extension of G is bounded. We exhibit
a finitely generated group G which does not satisfy Property QITB. This answers a question
by Neumann and Reeves, and provides partial answers to related questions by Wienhard and
Blank. We also prove that Property QITB holds for a large class of groups, including amenable
groups, right-angled Artin groups, relatively hyperbolic groups with amenable peripheral
subgroups, and 3-manifold groups.

Finally, we show that Property QITB holds for every finitely presented group if a conjecture
by Gromov on bounded primitives of differential forms holds as well.

Résumé. — Gersten a montré qu’une extension centrale d’un groupe de type fini est quasi-
isométriquement triviale lorsque sa classe d’Euler est bornée. On dit qu’un groupe G de type
fini vérifie la propriété QITB (quasi-isométriquement trivial implique borné) si la classe d’Euler
de toute extension centrale quasi-isométriquement triviale de G est bornée. Nous exhibons un
groupe de type fini G qui ne satisfait pas la propriété QITB. Cela répond à une question de
Neumann et Reeves et fournit des réponses partielles à des questions reliées de Wienhard et
Blank. Nous prouvons également que la propriété QITB est satisfaite par une grande classe
de groupes, contenant les groupes moyennables, les groupes d’Artin à angle droit, les groupes
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226 R. FRIGERIO & A. SISTO

relativement hyperboliques avec des sous-groupes périphériques moyennables et les groupes de
3-variétés.

Enfin, nous montrons que la propriété QITB est valable pour tout groupe de présentation finie
si une conjecture de Gromov sur les primitives bornées de formes différentielles est également
valable.

1. Introduction

Let
1 // Z

i // E
π // G // 1

be a central extension of groups, where G and Z (hence, E) are finitely generated.
Any such extension defines a cohomology class ω ∈ H2(G,Z), which will be called
the Euler class of the extension. It is well known that the Euler class completely
determines the isomorphism class of a central extension (see Section 2), and it is
natural to investigate which geometric features it encodes.

We say that a class ω ∈ H2(G,Z) is bounded if it lies in the image of the comparison
map H2

b (G,Z) → H2(G,Z), i.e. if it can be described by a bounded cocycle (see
Section 2 for the precise definition). Following [Ger, Ger92, KL01], we say that the
extension of finitely generated groups

1 // Z
i // E

π // G // 1
is quasi-isometrically trivial if there exists a quasi-isometry

f : E −→ Z ×G

such that the following diagram commutes, up to bounded error:

E
π //

f
��

G

Id
��

Z ×G
π2 // G .

Here π2 : Z × G → G is the projection on the second factor, and, for clarity, the
diagram commuting up to bounded error means that given a word metric dG on G
we have suph∈E dG(π(h), π2(f(h))) < +∞.

It was first shown by Gersten [Ger92, Ger] that a central extension is quasi-
isometrically trivial provided that its Euler class is bounded. In this paper we
address the following:

Question 1.1. — Is the Euler class of a quasi-isometrically trivial extension
necessarily bounded?

Question 1.1 was first asked by Neumann and Reeves in [NR96, NR97] (see
also [Why10, Remark 2.6]). Moreover, it turns out to be equivalent to questions
on ℓ∞-cohomology posed in [Bla14, Wie12] (see Question 1.13 and Proposition 1.14),
and related to a Conjecture by Gromov (see Conjecture 1.18 and Corollary 1.20).
We provide here a negative answer to Question 1.1:

ANNALES HENRI LEBESGUE



Central extensions and bounded cohomology 227

Theorem 1.2. — There exists a quasi-isometrically trivial central extension of a
finitely generated group G by Z whose Euler class is not bounded.(1)

Definition 1.3. — LetG be a finitely generated group. ThenG satisfies Property
QITB (“quasi-isometrically trivial ⇒ bounded”) if the following condition holds: for
every finitely generated abelian group Z, the Euler class of any quasi-isometrically
trivial central extension of G by Z is bounded.

Theorem 1.2 states that there exists a finitely generated group G which does not
satisfy Property QITB. Nevertheless, we show that Property QITB holds for large
families of groups:

Theorem 1.4. — Suppose the finitely generated group G belongs to one of the
following families:

(1) amenable groups;
(2) relatively hyperbolic groups with respect to a finite family of amenable

peripheral subgroups (in particular, hyperbolic groups);
(3) right-angled Artin groups;
(4) fundamental groups of compact orientable 3-manifolds.

Then G satisfies Property QITB.
For amenable and right-angled Artin groups we can prove more, at least when we

extend by a torsion-free abelian group (meaning that we consider a central extension
where the group on the left is torsion-free abelian). We call a central extension of
G virtually trivial if it pulls back to a trivial central extension on a finite-index
subgroup of G, see Definition 5.12. It is easy to check that virtually trivial central
extensions are quasi-isometrically trivial.

Theorem 1.5. — Let G be a finitely generated amenable group, or a finitely
generated right-angled Artin group. Then a central extension of G by a finitely
generated torsion-free abelian group is quasi-isometrically trivial if and only if it is
virtually trivial.

We remark that the torsion-freeness assumption cannot be dropped, see Re-
mark 5.16. However, even without that assumption, one can replace “if and only
if it is virtually trivial” with “if and only if its Euler class has finite order”, see
Theorem 5.15.

Our strategy to prove Theorems 1.4 and 1.5 is as follows. We first show that
they hold for amenable groups. Then, for every group G, we introduce the subspace
Ham

2 (G,R) ⊆ H2(G,R) generated by those elements of H2(G,R) which lie in the
image of a map f∗ : H2(A,R) → H2(G,R), where f : A → G is a homomorphism
and A is amenable. Whenever Ham

2 (G,R) = H2(G,R) we are able to prove that
any quasi-isometrically trivial extension by a torsion-free abelian group is virtually
trivial. In order to prove Property QITB for all the groups listed in the statement
of Theorem 1.4, we then observe that such property holds whenever every element
in the annihilator of Ham

2 (G,R) is bounded.
(1) Since the first version of this paper appeared on ArXiv, a finitely presented example of a group
with the same property has been found [AM22].

TOME 6 (2023)



228 R. FRIGERIO & A. SISTO

Further examples of groups satisfying Property QITB may be built thanks to the
following results:

Proposition 1.6. — Let G1, G2 be groups satisfying Property QITB. Then the
direct product G1 ×G2 satisfies Property QITB.

Proposition 1.7. — Let G = G1 ∗H G2 be a transverse amalgamated product,
where H is amenable. If G1, G2 satisfy Property QITB, then G satisfies Property
QITB.

We refer the reader to Definition 5.18 for the notion of transverse amalgamated
product. Free products are particular cases of transverse amalgamated products,
hence we get the following:

Corollary 1.8. — IfG1, G2 satisfy Property QITB, then the free productG1∗G2
satisfies QITB.

Using Propositions 1.6 and 1.7 one can prove that the fundamental groups of many
higher dimensional graph manifolds defined in [FLS15] satisfy QITB.

Before investigating the relationship between Property QITB and other cohomo-
logical properties of groups, we ask here the following question, which shows that,
surprisingly enough, the geometry of central extensions seems to still be quite elusive.

Question 1.9. — If 1 → Z → E → G → 1 is a quasi-isometrically trivial
extension, then Z is undistorted in E. There is no apparent reason why the converse
of this statement should also hold. Therefore, we ask here the following question:
does there exist a non-quasi-isometrically trivial extension 1 → Z → E → G → 1
for which Z is undistorted in E?

Weakly bounded cochains

Let A be an abelian group (we will be mainly interested in the cases when either A
is finitely generated, or A = R). We denote by C∗(G,A) the bar resolution of G with
coefficients in A (see e.g. [Bro82, Chapter III]). Recall that a cochain ω ∈ Cn(G,A)
(which is a map ω : Gn → A) is bounded if the set ω(Gn) is bounded as a subset of
A (if A is a finitely generated abelian group, this amounts to asking that ω(Gn) be
finite). Following [NR96, NR97] (where only the case of degree 2 was considered), we
say that a cochain ω ∈ Cn(G,A) is weakly bounded if, for every fixed (n− 1)-tuple
(g2, . . . , gn) ∈ Gn−1, the set

ω(G, g2, . . . , gn) ⊆ A

is bounded.
Bounded cochains provide a subcomplex C∗

b (G,A) of C∗(G,A) (while weakly
bounded cochains do not). The cohomology of C∗

b (G,A) is denoted by H∗
b (G,A). The

inclusion of bounded cochains into ordinary cochains induces the comparison map

c∗ : H∗
b (G,A) → H∗(G,A) .
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We say that a class α ∈ H∗(G,A) is bounded if it may be represented by a bounded
cocycle, i.e. if it lies in the image of the comparison map c∗, and weakly bounded if
it may be represented by a weakly bounded cocycle.

Suppose now that A is finitely generated. As mentioned above, Gersten proved
that a central extension is quasi-isometrically trivial provided it may be described
by a bounded cocycle. Neumann and Reeves then observed that a central extension
of a finitely generated group is quasi-isometrically trivial if and only if its Euler class
is weakly bounded (see Corollary 2.5). Therefore, Theorem 1.2 implies the following:

Corollary 1.10. — There exist a finitely generated group G and a class α ∈
H2(G,Z) such that α is weakly bounded, but not bounded.

Moreover, Theorem 1.4 and Propositions 1.6 and 1.7 imply that weak boundedness
and boundedness are indeed equivalent (in degree 2) for a large class of groups.

ℓ∞-cohomology

A key ingredient in our proof of Theorem 1.2 is the fact that weakly bounded
classes may be characterized in terms of the ℓ∞–cohomology H∗

(∞)(G,A) of G, which
was first defined by Gersten in [Ger, Ger92], and further studied e.g. in [Bla14,
BNW12a, Ger98, Mil22, Min99, Min00].

The ℓ∞–cohomology of a group G in degree ⩽ n was originally defined via the
cellular cohomology complex of an Eilenberg–MacLane space X for G, under the
assumption that X has a finite n-skeleton. It was observed by Wienhard [Wie12,
Section 5] (see also [Bla14, Section 6.3]) that ℓ∞–cohomology may be defined in purely
algebraic terms (i.e. without referring to any cellular complex providing a model for
G, hence without restricting to groups admitting models with finite skeleta). Recently,
Milizia [Mil22] extended Gersten’s definition of the ℓ∞-cohomology H∗

(∞)(X,A) of a
cellular complex X to avoid any assumption on the skeleta of X. He also proved that
H∗

(∞)(X,A) is canonically isomorphic to H∗
(∞)(G,A) whenever X is an Eilenberg–

MacLane space for G. This approach has the advantage to provide a topological
interpretation of H∗

(∞)(G,A) also when G is not finitely presented (or even finitely
generated). This topological interpretation will prove very useful in our proof of
Theorem 1.2.

The ℓ∞-cohomology of a group comes with a natural map

ι∗ : H∗(G,A) →H∗
(∞)(G,A).

In Section 3 we provide a direct proof of the following:

Proposition 1.11. — Let α ∈ Hn(G,A), n ∈ N. Then α is weakly bounded if
and only if ιn(α) = 0.

As a corollary, we recover the following characterization of quasi-isometrically
trivial central extensions, which was proved by Kleiner and Leeb via a different
strategy (see also [Why10, Theorem 0.3]):
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Theorem 1.12 ([KL01, Theorem 1.8]). — Let α ∈ H2(G,Z) be the Euler class
of a central extension of a finitely generated group. Then ι2(α) = 0 in H2

(∞)(G,Z) if
and only if the extension is quasi-isometrically trivial.

Since bounded classes are weakly bounded, Proposition 1.11 implies that the
composition

(1.1) Hn
b (G,A) cn

// Hn(G,A) ιn // Hn
(∞)(G,A)

is the zero map for every n ∈ N, a result which was already known (at least for
A = R) to Gersten (see [Ger98, Proposition 10.3] for the case where G admits an
Eilenberg–MacLane model with a finite n-skeleton, and [Wie12] or [Bla14] for the
general case). The following question was posed (for A = R) by Wienhard in [Wie12,
Question 8] and by Blank in [Bla14, Question 6.3.10]:

Question 1.13. — When is the sequence (1.1) exact?

The results proved in this paper partially answer this question. Indeed, since the
kernel of ιn coincides with the space of weakly bounded classes, the sequence (1.1)
is exact if and only if every weakly bounded n-class is bounded. For a fixed group
G, it is not difficult to show that this condition holds for A = Z if and only if it
holds for every A, as A varies in the class of finitely generated abelian groups (see
Proposition 2.6). Therefore, we have the following:

Proposition 1.14. — The sequence

H2
b (G,Z) cn

// H2(G,Z) ιn // H2
(∞)(G,Z)

is exact if and only if the group G satisfies Property QITB.

Some subtleties arise when comparing the case with integral coefficients with the
case with real coefficients. By Lemma 2.8 and Proposition 3.1, if the sequence

(1.2) Hn
b (G,R) cn

// Hn(G,R) ιn // Hn
(∞)(G,R)

is exact, then the sequence

(1.3) Hn
b (G,Z) cn

// Hn(G,Z) ιn // Hn
(∞)(G,Z)

is also exact. As a corollary of Theorem 1.2 we then have the following:

Corollary 1.15. — Let n = 2. There exists a finitely generated group G for
which the sequences (1.2) and (1.3) are not exact.

On the contrary, the same sequences are exact for all the groups listed in the
statement of Theorem 1.4 (see Section 5).

The question whether the exactness of sequence (1.3) implies the exactness of (1.2)
seems quite tricky: it would hold, for example, provided that the answer to Ques-
tion 1.16–(2) were positive.
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Question 1.16. — Let us say that a class α ∈ Hn(G,R) is integral if it belongs to
the image ofHn(G,Z) via the change of coefficients homomorphism. As a consequence
of Lemma 2.8, an integral class α ∈ Hn(G,R) is (weakly) bounded if and only if it is
the image of a (weakly) bounded class in Hn(G,Z) under the change of coefficients
homomorphism.

(1) Does every bounded class in Hn(G,R) belong to the R-linear subspace
spanned by integral bounded classes? Or, equivalently, does the image of
Hn
b (G,Z) in Hn(G,R) span (over R) the space of bounded classes in

Hn(G,R)?
(2) Does every weakly bounded class in Hn(G,R) belong to the R-linear subspace

spanned by weakly bounded integral classes?
Our example of a finitely generated group which does not satisfy Property QITB is

not finitely presented. In Section 3 we show that in higher degrees it is possible (and
much easier) to find finitely presented groups supporting weakly bounded classes
that are not bounded:

Proposition 1.17. — For every n ⩾ 3, there exists a finitely presented group
for which the sequences (1.2) and (1.3) are not exact.

As discussed in the following subsection, the situation in degree 2 seems to be very
different.

Property QITB and bounded differential forms

In [Gro93], Gromov proposed the following:
Conjecture 1.18 ([Gro93, p. 93]). — Let V be a closed Riemannian manifold,

and let α ∈ H2(V,R). Then α is d̃-bounded if and only if it is bounded.(2)

Recall from [Gro91, Gro93] that a class α ∈ H2(V,R) is d̃-bounded if the following
holds: if ω ∈ Ω2(V ) is a closed differential form representing α via the de Rham
isomorphism, and ω̃ ∈ Ω2(Ṽ ) is the lift of ω to the universal covering Ṽ of V , then
ω̃ = dφ for some φ ∈ Ω1(Ṽ ) such that sup

x∈ Ṽ |φx| < +∞. Moreover, α is bounded if
it lies in the image of the comparison map between the singular bounded cohomology
of V and the usual singular cohomology of V , i.e. if it admits a representative c in
the singular chain complex such that c(σ) is uniformly bounded as σ varies among
all the singular simplices in V .

The study of the growth of primitives in non-compact manifolds was initiated by
Sullivan [Sul76], Gromov [Gro81] and Brooks [Bro81] and has then been proved to be
closely related to coarse invariants of (fundamental) groups (see e.g. [NS10, Żuk00]).
We refer the reader e.g. [Sik01] for a brief account on the topic, and for a self-contained
proof of the fact that bounded classes are d̃-bounded, and to [BI07, CHLI04, Wie12]
for further developments of the theory.

In Section 3 we prove the following:
(2) In view of the finitely presented example mentioned in the previous footnote, and Corollary 1.20,
this conjecture is now known to be false.
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Theorem 1.19. — Let V be a closed Riemannian manifold. Then V satisfies the
statement of Conjecture 1.18 if and only if the sequence

H2
b (π1(V ),R) cn

// H2 (π1(V ),R) ιn // H2
(∞) (π1(V ),R)

is exact (and, if this condition holds, then π1(V ) satisfies QITB).

Since the class of fundamental groups of compact Riemannian manifolds coincides
with the class of finitely presented groups, we obtain the following:

Corollary 1.20. — If Conjecture 1.18 holds and G is a finitely presented group,
then the sequence

H2
b (G,R) c2

// H2(G,R) ι2 // H2
(∞)(G,R)

is exact. In particular, Gromov’s Conjecture would imply that every finitely pre-
sented group satisfies QITB. In fact, Gromov’s conjecture would be equivalent to
the fact that every finitely presented group satisfies QITB provided that the answer
to Question 1.16–(2) were affirmative for every finitely presented group.

Note however that Gromov himself stated in [Gro93] that “the evidence in favour of
the conjecture is rather limited and it would be safe to make some extra assumption
on π1(V )”.

Plan of the paper

In Section 2 we introduce bounded and weakly bounded cochains, and we prove
that a central extension is quasi-isometrically trivial if and only if its Euler class is
weakly bounded. In Section 3 we introduce Gersten’s ℓ∞-cohomology, we prove the
characterization of weakly bounded cochains described in Proposition 1.11 (which
allows us to recover Theorem 1.12 by Kleiner and Leeb), and we prove Proposi-
tion 1.17 and Theorem 1.19. Section 4 is devoted to the proof of Theorem 1.2,
i.e. to the construction of a finitely generated group admitting a quasi-isometrically
trivial extension with an unbounded Euler class. In Section 5 we construct exam-
ples of groups satisfying Property QITB, and we prove Theorems 1.4 and 1.5, and
Propositions 1.6 and 1.7.
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2. Preliminaries

Quasi-isometries

Let us briefly recall the definition of quasi-isometry. If (X, d), (Y, d′) are metric
spaces, a map f : X → Y is a quasi-isometric embedding if there exist constants
k ⩾ 1, c ⩾ 0 such that

d(x1, x2)
k

− c ⩽ d(f(x1), f(x2)) ⩽ k · d(x1, x2) + c

for every x1, x2 ∈ X. A map g : Y → X is a quasi-inverse of f if it is a quasi-isometric
embedding, and the maps g ◦ f : X → X, f ◦ g : Y → Y are uniformly close to the
identity of X and Y , respectively. A quasi-isometry is a quasi-isometric embedding
that admits a quasi-inverse.

If G is a finitely generated group and S is a finite symmetric generating set for
G (symmetric meaning that s ∈ S if and only if s−1 ∈ S), then the Cayley graph
CS(G) of G with respect to S is the graph having G as set of vertices and G × S
as set of edges, where the edge (g, s) joins g with gs. The graph CS(G) is endowed
with a path metric for which every edge is isometric to a segment of unitary length.
It is well known that, if S, S ′ are finite generating sets for G, then the identity of G
extends to a quasi-isometry between CS(G) and CS′(G). Thus, one can define the
quasi-isometry type of G as the quasi-isometry type of any of its Cayley graphs.

Notation

If g ∈ G then we denote by ∥g∥S the distance in CS(G) between g and the identity
of the group (i.e. the minimal number of factors needed to describe g as a product
of elements of S and their inverses).

(Weakly) bounded classes

Let A be an abelian group (as in the introduction, we assume that either A is
finitely generated, or A = R). Recall from the introduction that a class α ∈ H∗(G,A)
is bounded if it may be represented by a bounded cocycle, and weakly bounded if it
may be represented by a weakly bounded cocycle.

A 2-cocycle ω ∈ C2(G,A) is normalized if ω(1, G) = ω(G, 1) = 0, where 1 is the
identity of G. It is well known that every cohomology class may be represented by a
normalized cocycle.

Lemma 2.1. — Let S = {x1, . . . , xn} be a symmetric set of generators of G, and
let ω ∈ C2(G,A) be a normalized cocycle. Suppose that |ω(g, xi)| ⩽ C for every
g ∈ G, i = 1, . . . , n. Then

|ω(G, g)| ⩽ 2C∥g∥S for every g ∈ G .

In particular, ω is weakly bounded.
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Proof. — Let g be an element of G. We will prove by induction on ∥g∥S that

|ω(G, g)| ⩽ 2C∥g∥S .

The case ∥g∥S = 0 follows from the fact that ω is normalized. Assuming the inequality
for all elements of length j − 1, if ∥g∥ = j and g = g′xi with ∥g′∥S = j − 1, then for
every h ∈ G we have (by using the cocycle relation):

|ω(h, g)| = |ω(h, g′) − ω(g′, xi) + ω(hg′, xi)|
⩽ |ω(h, g′)| + |ω(g′, xi)| + |ω(hg′, xi)|
⩽ 2C ∥g′∥S + C + C = 2C∥g∥S .

□

Remark 2.2. — Our terminology slightly differs from Neumann and Reeves’.
In fact, our weakly bounded cocycles correspond to right weakly bounded cocy-
cles in the terminology introduced in [NR96, NR97], where a cocycle ω ∈ Z2(G,A)
is called left weakly bounded if ω(g,G) is a bounded subset of A for every g ∈ G,
and weakly bounded if it is both right weakly bounded and left weakly bounded.
It is not difficult to show that a class in H2(G,A) admits a left weakly bounded
representative if and only if it admits a right weakly bounded representative. In
fact, it turns out that left weak boundedness, right weak boundedness and weak
boundedness are equivalent for elements of H2(G,A), by [NR97, Theorem 4.1].

The Euler class of a central extension

Let us now consider a central extension

1 // Z
i // E

π // G // 1 ,

and let s : G → E be a section of π : E → G. For g1, g2 ∈ G, the element
s(g1)s(g2)s(g1g2)−1 lies in the kernel of π, hence in the image of i. Up to identi-
fying i(Z) with Z we may thus define the cochain ω ∈ C2(G,Z) given by

ωs(g1, g2) = s(g1)s(g2)s(g1g2)−1 ∈ Z .

Let us recall the following well-known facts (see e.g. [Bro82, Chapter 4]):
(1) The cochain ωs is a cocycle;
(2) If s′ is another section of π, then ωs′ is cobordant to ωs; therefore, the class

[ωs] ∈ H2(G,Z) does not depend on the choice of s, and will be called the
Euler class of the extension;

(3) If ω′ is any representative of the Euler class, then there exists a section
s′ : G → E such that ω′ = ωs′ ;

(4) The cocycle ωs is normalized if and only if s(1) = 1 (in this case, we say that
s is normalized too).
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Two central extensions are isomorphic if they are described by the rows of a
commutative diagram as follows:

1 // Z
i //

Id
��

E
π //

h
��

G //

Id
��

1

1 // Z
i // E ′ π // G // 1 ,

where h is a homomorphism (hence, an isomorphism). It is readily seen that isomor-
phic central extensions share the same Euler class. In fact, it readily follows from the
facts listed above that, via the Euler class, the module H2(G,Z) classifies central
extensions of G by Z up to isomorphism.

The Euler class of a quasi-isometrically trivial central extension

The following characterization of quasi-isometrically trivial extensions was proved
by Kleiner and Leeb [KL01] in the case when Z is a finitely-generated torsion free
abelian group (i.e. Z ∼= Zn). However, the proof in [KL01] works verbatim in the
general case.

Proposition 2.3 ([KL01, Proposition 8.3]). — Let

1 // Z
i // E

π // G // 1

be a central extension. Then the following conditions are equivalent:
(1) The extension is quasi-isometrically trivial.
(2) The projection π admits a Lipschitz section s : G → E.

It is almost tautological that the 2-cocycle ω associated to a section s : G → E
is bounded if and only if s is a quasihomomorphism in the sense of Kapovich and
Fujiwara [FK16]. Therefore, a group G satisfies Property QITB if and only if the
existence of a Lipschitz section for a central extension of G implies the existence of
a quasihomomorphic section for the same extension. We refer the reader to [Heu20]
for a discussion of (not necessarily central) extensions with bounded Euler class in
terms of quasihomomorphisms.

The following Lemma 2.4 and its immediate Corollary 2.5 play a fundamental
role in our study of quasi-isometrically trivial central extensions. They are stated
in [NR96, Section 4]. For the sake of completeness, we provide here a proof of
Lemma 2.4.

Lemma 2.4. — Let s : G → E be a normalized section for the central extension

1 // Z
i // E

π // G // 1 ,

and let ω ∈ C2(G,Z) be the associated 2-cocycle. Then s is Lipschitz if and only if
ω is weakly bounded.
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Proof. — Suppose s is Lipschitz. Let S = {x1, . . . , xn} be a symmetric set of
generators for G, S ′ = {z1, . . . , zk} a symmetric set of generators for Z, and let S
be the set of generators for E given by {s(xi), i(zj) | i = 1, . . . , n , j = 1, . . . , k}.
We also denote by dG, dZ and dE the word metrics on G,Z and E induced by S, S ′

and S, respectively. Since dE–balls of finite radius only contain a finite number of
elements of i(Z), in order to show that ω is weakly bounded it suffices to show that,
for every h ∈ G, the value of

∥ω(g, h)∥S =
∥∥∥s(gh)−1s(g)s(h)

∥∥∥
S

is uniformly bounded as g varies in G. But, if k is a Lipschitz constant for s, then∥∥∥s(gh)−1s(g)s(h)
∥∥∥
S
⩽
∥∥∥s(gh)−1s(g)

∥∥∥
S

+ ∥s(h)∥S = dE(s(gh), s(g)) + ∥s(h)∥S
⩽ kdG(gh, g) + ∥s(h)∥S = kdG(h, 1) + ∥s(h)∥S ,

which is independent of g, as required.
On the other hand, suppose that there exists C ⩾ 0 such that ∥ω(G, xi)∥S′ ⩽ C

for every i = 1, . . . , n. Let g be an element of G. We show by induction on ∥g∥S
that

∥s(g)∥S ⩽ (1 + C)∥g∥S .
The case ∥g∥S = 0 follows from the fact that s is normalized. Let us assume the
above inequality for all g′ ∈ G with ∥g′∥S ⩽ j − 1, and suppose ∥g∥S = j. Then
g = g′xi for some g′ ∈ G with ∥g′∥S = j − 1 and some xi ∈ S. Now

∥s(g)∥S = ∥s(g′)s(xi)i(−ω(g′, xi))∥S
⩽ ∥s(g′)∥S + ∥s(xi)∥S + ∥i(−ω(g′, xi))∥S
⩽ (1 + C) ∥g′∥S + 1 + ∥ω(G, xi)∥S′

⩽ (1 + C)(∥g∥S − 1) + 1 + C = (1 + C)∥g∥S .
By Lemma 2.1 we now have

∥ω(G, x)∥S′ ⩽ 2C∥x∥S for every x ∈ G .

Take g, h ∈ G and suppose dG(g, h) = k. Then g = hx, where ∥x∥S = k. We have
s(g) = s(hx) = s(h)s(x)i(−ω(h, x)) ,

hence
dE(s(g), s(h)) = dE(s(h)s(x)i(−ω(h, x)), s(h)) = ∥s(x)i(−ω(h, x))∥S

⩽ ∥s(x)∥S + ∥i(ω(h, x))∥S ⩽ ∥s(x)∥S + ∥ω(h, x)∥S′

⩽ (1 + C)∥x∥S + 2C∥x∥S = (1 + 3C)dG(g, h) .
This concludes the proof of Lemma 2.4. □

Corollary 2.5. — A central extension of G by Z is quasi-isometrically trivial
if and only if its Euler class is a weakly bounded element of H2(G,Z).

The following proposition shows that, in order to detect Property QITB, it is
sufficient to deal with extensions of G by Z.
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Proposition 2.6. — Let G be a finitely generated group. Then every weakly
bounded class in H2(G,Z) is bounded if and only if every weakly bounded class in
H2(G,Z) is bounded for every finitely generated abelian group Z.

Proof. — The “if” part of the statement is obvious. Let then Z be a finitely
generated abelian group, and assume that every weakly bounded class in H2(G,Z)
is bounded. Let us consider a weakly bounded cocycle ω ∈ C2(G,Z). We have
Z ∼= Zk ⊕ F , where F is a finite abelian group, hence we may consider ω as a map

ω : G2 → Zk ⊕ F , ω = (ω1, . . . , ωk, ωF ) ,

where ωi(g1, g2) (resp. ωF (g1, g2)) is the ith component of the projection of ω(g1, g2)
onto Zk (resp, the projection of ω(g1, g2) onto F ). Since ω is weakly bounded, every
ωi is also weakly bounded. Under our assumptions, this implies that ωi is cobordant
to a bounded cocycle ω′

i ∈ C2(G,Z) for every i = 1, . . . , k. This easily implies that
the cocycle ω is cobordant to the cocycle ω′ = (ω′

1, . . . , ω
′
k, ωF ) in C2(G,Z). But ω′

is bounded, and this concludes the proof. □
Putting together Proposition 2.6 and Corollary 2.5 we get the following:
Corollary 2.7. — Let G be a finitely generated group. Then the following

conditions are equivalent:
(1) G satisfies Property QITB.
(2) Every weakly bounded class in H2(G,Z) is bounded.

Integral vs. real coefficients

Bounded cohomology with real coefficients is better understood than bounded
cohomology with integral coefficients (for example, for amenable groups the real
bounded cohomology vanishes, while bounded cohomology with integral coefficients
may be non-trivial). Therefore, before proceeding with our investigation of Property
QITB, we first point out the following results, which sometimes will allow us to work
with real coefficients, rather than with integral ones.

Lemma 2.8. — Let α ∈ Hn(G,Z), and denote by αR the image of α in Hn(G,R)
under the change of coefficients map. Then:

(1) α is weakly bounded if and only if αR is weakly bounded;
(2) α is bounded if and only if αR is bounded.

Proof. — Statement (2) is proved in [Min01, Theorem 15] and in [Fri17, Proposi-
tion 2.18], and the very same argument also implies (1). □

Corollary 2.9. — For every n ∈ N, if every weakly bounded class in Hn(G,R)
is bounded, then every weakly bounded class in Hn(G,Z) is bounded and G satisfies
Property QITB.

Proof. — Let us denote by ψ : Hn(G,Z) → Hn(G,R) the change of coefficients
map, and let β ∈ Hn(G,Z) be weakly bounded. Then ψ(β) ∈ Hn(G,R) is weakly
bounded, hence bounded by hypothesis. Lemma 2.8 now implies that β is bounded,
as desired. The last assertion now follows from Corollary 2.7. □
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3. ℓ∞-cohomology

As mentioned in the introduction, weakly bounded classes may be characterized
in terms of the so-called ℓ∞-cohomology of G, which we are now going to define.

Let A be either a finitely generated abelian group, or the field of real numbers,
and let ℓ∞(G,A) be the module of bounded functions from G to A (here in the case
where A is finitely generated abelian, we say that a function is bounded if and only
if it takes finitely many values). We can endow ℓ∞(G,A) with the structure of a left
G-module via the left action defined by

(g · f)(h) = f
(
g−1h

)
, f ∈ ℓ∞(G,A) , g, h ∈ G .

We then denote by C∗
(∞)(G,A) the cochain complex C∗(G, ℓ∞(G,A)), and we define

the ℓ∞-cohomology H∗
(∞)(G,A) of G as the cohomology of the complex C∗

(∞)(G,A)
(we refer the reader e.g. to [Bro82] for the definition of cohomology with twisted
coefficients).

If we consider A as a trivial G-module, then we can equivariantly embed A into
the submodule of ℓ∞(G,A) given by the constant maps. This map induces a chain
map ι∗ : C∗(G,A) → C∗

(∞)(G,A), which defines in turn a map

ι∗ : H∗(G,A) → H∗
(∞)(G,A) .

We are now ready to prove Proposition 1.11 from the introduction, which we recall
here for the convenience of the reader. As mentioned in the introduction, Corollary 2.5
and Proposition 1.11 allow us to recover Kleiner and Leeb’s characterization via ℓ∞-
cohomology of quasi-isometrically trivial central extensions.

Proposition 3.1. — Let α ∈ Hn(G,A), n ⩾ 2. Then α is weakly bounded if
and only if ιn(α) = 0.

Proof. — Let ω ∈ Cn(G,A) be a representative of α, and suppose ιn(α) = 0. This
means that there exists a cochain φ ∈ Cn−1

(∞) (G,A), i.e. a map φ : Gn−1 → ℓ∞(G,A),
such that, for every g1, . . . , gn, h ∈ G,
ω(g1, . . . , gn) = (δφ)(g1, . . . , gn)(h)

= g1 · (φ(g2, . . . , gn))(h) +
n−1∑
i=1

(−1)iφ (g1, . . . , gigi+1, . . . , gn) (h)

+ (−1)nφ (g1, . . . , gn−1) (h)

= φ (g2, . . . , gn)
(
g−1

1 h
)

+
n−1∑
i=1

(−1)iφ (g1, . . . , gigi+1, . . . , gn) (h)

+ (−1)nφ (g1, . . . , gn−1) (h) .
By setting h = 1, we obtain

ω(g1, . . . , gn) = φ(g2, . . . , gn)(g−1
1 ) +

n−1∑
i=1

(−1)iφ(g1, . . . , gigi+1, . . . , gn)(1)

+ (−1)nφ(g1, . . . , gn−1)(1) .
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Therefore, if we set
f ∈ Cn−1(G,A) , f (g1, . . . , gn−1) = −φ (g1, . . . , gn−1) (1) ,

then
|(ω + δf)(g1, . . . , gn)| =

∣∣∣φ(g2, . . . , gn)
(
g−1

1

)
− φ(g2, . . . , gn)(1)

∣∣∣
⩽ 2∥φ(g2, . . . , gn)∥∞ .

Hence
|(ω + δf)(G, g2, . . . , gn)| ⩽ 2∥φ(g2, . . . , gn)∥∞ < +∞ ,

and α is weakly bounded.
Suppose now that ω ∈ Cn(G,A) is a weakly bounded representative of α, and set

φ : Gn−1 → ℓ∞(G,A) , φ(g1, . . . , gn−1)(h) = ω
(
h−1, g1, . . . , gn−1

)
(the fact that φ is well-defined is due to the weak boundedness of ω). Then, for every
g1, . . . , gn, h ∈ G we have

(δφ)(g1, . . . , gn)(h)

= ω
(
h−1g1, g2, . . . , gn

)
+

n−1∑
i=1

(−1)iω
(
h−1, g1, . . . , gigi+1, . . . , gn

)
+ (−1)nω

(
h−1, g1, . . . , gn−1

)
= ω (g1, . . . , gn) ,

where the last equality is due to the fact that ω is a cocycle. Thus ιn(α) = 0, as
desired. □

Higher degrees

As we explain below, the following result readily implies Proposition 1.17 from the
introduction.

Proposition 3.2. — Let A = R or Z, let G be an n-dimensional non-amenable
Poincaré duality group, and let G′ = G× Z. Then the sequence

Hn+1
b (G′, A) cn+1

// Hn+1(G′, A) ιn+1
// Hn+1

(∞) (G′, A)

is not exact.

Proof. — By Lemma 2.8 and Proposition 3.1, it is sufficient to prove the proposition
for A = Z.

We first show that
(3.1) Hn+1

(∞) (G′,Z) = 0 .

Since G′ is an (n+ 1)-dimensional Poincaré duality group, we have
Hn+1

(∞) (G′,R) = Hn+1 (G′, ℓ∞(G′,R)) ∼= H0 (G′, ℓ∞(G′,R)) .
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It was first observed in [BNW12b] that H∗(G′, ℓ∞(G′,R)) is isomorphic to the so-
called uniformly finite homology of G′ (see also [BD15, DL17]). By a fundamental
result by Block and Weinberger, amenable groups can be characterized as those
groups for which uniformly finite homology does not vanish [BW92] in degree 0.
Since G′ contains the non-amenable group G as a subgroup, it is itself non-amenable,
hence Hn+1

(∞) (G′,R) = 0. In order to get (3.1) it is now sufficient to recall from [Ger96,
Proposition 7.2] that Hn+1

(∞) (G′,Z) ∼= Hn+1
(∞) (G′,R). As usual, Gersten proved this

fact under the assumption that G′ admits a finite n-skeleton. For the general case,
observe that the short exact sequence 0 → Z → R → R/Z → 0 of coefficients induces
the short exact sequence of G′-modules 0 → ℓ∞(G′,Z) → ℓ∞(G′,R) → ℓ∞(G′,R/Z)
→ 0, hence the short exact sequence of complexes
(3.2) 0 → C∗

(∞)(G′,Z) → C∗
(∞)(G′,R) → C∗

(∞)(G′,R/Z) → 0 .

Observe now that ℓ∞(G′,R/Z) ∼= Hom(ZG′,R/Z) as G′-modules, and recall that
Hom(ZG′,R/Z) is an injective G′-module (see e.g. [Bro82, Proposition 6.1]). There-
fore, Hn

(∞)(G′,R/Z) = Hn(G′, ℓ∞(G,R/Z)) = 0 for every n ⩾ 1. By looking at the
long exact sequence in cohomology induced by (3.2) we may now conclude that
Hn

(∞)(G′,Z) ∼= Hn
(∞)(G′,R) for every n ⩾ 1.

Let now α ∈ Hn+1(G′,Z) be bounded. The group homomorphism h : G × Z →
G×Z, h(g,m) = (g, 2m) induces the multiplication by 2 on Hn+1(G′,Z). Since maps
induced by homomorphisms do not increase the seminorm of cohomology classes,
this implies that ∥α∥∞ = 0. Thus ⟨α, β⟩ = 0 for every β ∈ Hn+1(G′,Z). Since G′ is
an (n + 1)-Poincaré duality group, this implies in turn that α = 0. We have thus
shown that both maps in the sequence of the statement (with A = Z) are null. Since
Hn+1(G′,Z) ̸= 0, the sequence is not exact. □

The following corollary implies Proposition 1.17 from the introduction.

Corollary 3.3. — Let A = Z or R. For every n ⩾ 3, let Gn = Γ2 ×Zn−2, where
Γ2 is the fundamental group of the closed oriented surface of genus 2. Then the
sequence

Hn
b (Gn, A) cn

// Hn(Gn, A) ιn // Hn
(∞)(Gn, A)

is not exact.

Proof. — We can apply the previous proposition to the non-amenable (n − 1)-
dimensional Poincaré duality group G = Γ2 × Zn−3. □

Property QITB and Gromov’s Conjecture

The strategy described in Proposition 3.2 cannot be implemented in degree 2.
Indeed, as stated in the introduction we have the following:

Theorem 3.4 (Theorem 1.19). — Let V be a compact Riemannian manifold.
Then the following are equivalent:

(1) A class α ∈ H2(V,R) is d̃-bounded if and only if it is bounded.
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(2) The sequence

H2
b (π1(V ),R) c2

// H2(π1(V ),R) ι2 // Hn
(∞)(π1(V ),R)

is exact.
In particular, by Corollary 2.9 and Proposition 3.1, if V satisfies Gromov’s Conjec-
ture 1.18, then π1(V ) satisfies Property QITB.

Proof. — We denote by Ω∗
♭ (Ṽ ) the space of bounded differential forms on Ṽ with

bounded differential, and by H∗
♭ (Ṽ ) the associated cohomology (caveat: H∗

♭ (Ṽ ) is
not at all equal to H∗

b (Ṽ ,R); indeed, since Ṽ is simply connected, Hn
b (Ṽ ,R) = 0 for

every n ⩾ 1 [Gro82, page 40], [Iva87, Theorem 2.4], [FM23, Corollary 4], while we
will see below that H∗

♭ (Ṽ ) is isomorphic to H∗
(∞)(Ṽ ,R), which is often non-trivial in

positive degree).
Observe that, if ω is a k-differential form on V , then the pull-back ω̃ to Ṽ is equi-

variant with respect to a cocompact action, hence it belongs to Ω∗
♭ (Ṽ ). We thus have a

map ψ : H∗(V ) → H∗
♭ (Ṽ ), where H∗(V ) denotes the usual de Rham cohomology of V .

Via the identification H∗(V ) ∼= H∗(V,R) due to de Rham isomorphism, the kernel
of ψ coincides with the space of d̃-bounded classes defined in the introduction, by
definition of d̃-bounded.

Every smooth manifold admits a PL-structure [Whi40, Mun66], hence V is homeo-
morphic to the geometric realization of a simplicial complex. If we endow the universal
covering Ṽ with the induced simplicial structure, integration provides a chain map
Ω∗
♭ (Ṽ ) → C∗

(∞)(Ṽ ,R), where C∗
(∞)(Ṽ ,R) denotes here the space of bounded cellular

cochains on Ṽ . If we denote by H∗
(∞)(Ṽ ,R) the cohomology of C∗

(∞)(Ṽ ,R), we thus
get a map

I∗ : H∗
♭ (Ṽ ) → H∗

(∞)(Ṽ ,R) .

It is shown in [Mil22, Theorem 1.11] (see also [Min99, Theorem 3.1]) that the map
I∗ is an isomorphism in every degree. Moreover, by lifting cellular cochains from V
to Ṽ we get a well-defined map ι∗V : H∗(V,R) → H∗

(∞)(Ṽ ,R).
It readily follows from the explicit description of the de Rham isomorphism that

the following diagram is commutative:

H∗(V ) ψ //

∼=
��

H∗
♭ (Ṽ )

∼=
��

H∗(V,R)
ι∗V // H∗

(∞)(Ṽ ,R) ,

where the vertical arrows correspond to the de Rham isomorphism and to the map
I∗. Therefore, a class α ∈ H∗(V,R) is d̃-bounded if and only if it belongs to the
kernel of ι∗V , and condition (1) is equivalent to the exactness of the sequence

H2
b (V,R)

c2
V // H2(V,R)

ι2V // H2
(∞)(Ṽ ,R) .
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Let us now set G = π1(V ), and let f : V → X be a classifying map, where X is
a K(G, 1)-space. We then have canonical identifications H∗(X,R) ∼= H∗(G,R) and
H∗
b (X,R) ∼= H∗

b (G,R) (see e.g. [Fri17, Chapter 5]). We may assume that V and X
share the same 2-skeleton. In particular, the 2-skeleton of X is finite, and we have
a canonical identification H∗

(∞)(X̃,R) = H∗
(∞)(G,R) (see e.g. [Bla14, Mil22, Wie12];

indeed, in Gersten’s original approach the module H∗
(∞)(G,R) was defined via this

identification). We thus have the following commutative diagram, where the vertical
arrows are all induced by f : V → X:

(3.3) H2
b (G,R)

c2
G //

f∗
b

��

H2(G,R)
ι2G //

f∗

��

H2
(∞)(G,R)

f∗
(∞)
��

H2
b (V,R)

c2
V // H2(V,R)

ι2V // H2
(∞)(Ṽ ,R) .

Using that V and X share the same 2-skeleton (and the fact that singular homology
may be computed via cellular cochains), it is easy to show that f ∗ and f ∗

(∞) are both
injective.

(2) ⇒ (1): Let us suppose the top row of the diagram is exact, and take an element
α ∈ H2(V,R) with ι2V (α) = 0. Since the pull-back of α to Ṽ is null (as an ordinary
cohomology class), α vanishes on every homology class which may be represented
by a sphere. As a consequence, there exists β ∈ H2(G,R) with f ∗(β) = α. Together
with the injectivity of f ∗

(∞), the fact that ι2V (α) = 0 now implies that ι2G(β) = 0.
We thus have β = c2

G(βb) for some βb ∈ H2
b (G,R). By the commutativity of the left

square of the diagram, this implies that α is bounded, hence condition (2) holds.
(1) ⇒ (2). Suppose now that the bottom row of the diagram is exact, and take

β ∈ ker i2G ⊆ H2(G,R). Then f ∗(β) lies in the image of c2
V . Now a fundamental

theorem by Gromov ensures that f ∗
b is an isomorphism [Gro82, Corollary (A), p. 40],

[Iva87, Theorem 4.3], [FM23, Theorem 3], and this (together with the injectivity of
f ∗) implies that β is bounded, as desired. □

4. A group without Property QITB

We are now ready to exhibit a finitely generated group G admitting a quasi-
isometrically trivial central extension whose Euler class is not bounded.

Remark 4.1 (The idea of the construction). — We briefly and informally describe
the group that we will be studying. Start with a free product Ĝ of countably many
copies of the fundamental group of the genus-2 surface. Any cohomology class of
degree 2 on Ĝ that takes unbounded values on the surfaces cannot be bounded.
However, all these classes are weakly bounded, the rough reason being the following.
Each such class can be represented by the (infinite) sum ω of pull-backs of 2-cocycles
on the copies of the fundamental group of the genus-2 surface, where we take the pull-
back under the natural projection to a factor of the free product. Since the genus-2
surface is hyperbolic, these 2-cocycles may be chosen to be bounded. Moreover, for
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any pair (g1, g2) of elements of Ĝ, only a finite number of projections of g1 and g2
on the free factors of Ĝ are non-trivial. Putting all these facts together it is easy to
show that the set ω(Ĝ, g1, g2) is bounded, hence every degree-2 class on Ĝ is weakly
bounded.

The idea is then to “make Ĝ finitely generated”. This can be done by adding
“stable letters” ti to Ĝ that conjugate the generators of each of the surface groups
to the generators of the “next” surface group. In this way, the generators of the
first surface group and the stable letters suffice to generate the new group G. Notice
that Ĝ is the fundamental group of a locally CAT(0) complex obtained by gluing
surfaces and squares (we do not need this fact), which is one way to control the
(co)homology of G. The idea is that some of the cohomology classes on Ĝ that we
discussed above should be the pull-back of weakly bounded classes on G, and we
believe that it is possible to show this using CAT(0) techniques. However, below we
actually give a different description of G that will allow us to use small-cancellation
techniques instead. (We will not need the equivalence of the two descriptions.)

4.1. Description of the group

Let us now proceed with the construction. Let G be the finitely generated group
described by the following (infinite) presentation P :

⟨a1, a2, a3, a4, t1, t2, t3, t4 | r0, r1, . . . , ri, . . . ⟩ ,

ri =
[
ti1a1t

−i
1 , t

i
2a2t

−i
2

]
·
[
ti3a3t

−i
3 , t

i
4a4t

−i
4

]
,

where [w1, w2] denotes the commutator w1w2w
−1
1 w−1

2 . We denote by F8 the free group
on the generators a1, . . . , a4, t1, . . . , t4, and by N the normal closure of the relations
ri in F8, so that G ∼= F8/N .

Notice that all relations are products of two commutators, and therefore are best
thought of as yielding a closed surface of genus 2 in the corresponding presentation
complex. As in the heuristic explanation above, the standard generators of the
fundamental groups of any two such surfaces are conjugate, but the conjugating
elements are different so one can expect that the whole fundamental groups are
not conjugate to each other. Indeed, we will show that the surfaces yield distinct
elements in homology.

4.2. Properties of the group

A key property of the group G is that its presentation P satisfies the following
small cancellation condition:

Lemma 4.2. — The presentation P satisfies the C ′(1/7) small cancellation con-
dition. Moreover, no ri is a proper power in F8.

Proof. — Observe that |ri| = 16i+ 8. Moreover, if i < k, then the longest common
pieces shared by ri and rk (or by their cyclically conjugate words) are of the form
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p = tija
±1
j t−ij . Therefore, |p|/|ri| ⩽ (2i + 1)/(16i + 8) = 1/8 < 1/7, and |p|/|rk|

< |p|/|ri| < 1/7, and this proves the first statement.
In order to show that no ri is a proper power, first observe that the elements

ti1a1t
−i
1 , t

i
2a2t

−i
2 , t

i
3a3t

−i
3 , t

i
4a4t

−i
4 , t1, t2, t3, t4 provide a free basis of F8 (in fact, they

obviously generate F8, which is Hopfian). Therefore, we have ri = [x, y] · [z, t] for
elements x, y, z, t of a free basis of F8. Let us identify elements of F8 with their
reduced form with respect to this basis, and suppose by contradiction ri = hn

for some n > 1. Since the first letter of ri is x, we have an equality of reduced
words h = xmwx−m′ for some m ⩾ 1 (while possibly m′ = 0) and some word w in
x, y, z, t. We first show that m = m′. In fact, if m > m′ (resp. m < m′), then the
reduced form of ri = hn would contain at least n occurrences of x with a positive
(resp. negative) exponent, against the fact that ri = [x, y] · [z, t]. Hence m = m′

and ri = hn = xmw′x−m, where w′ is the reduced form of wn. In particular, the
last letter of the reduced form of ri should be equal to x−1, against the fact that
ri = [x, y] · [z, t]. This concludes the proof. □

Let us now describe the second cohomology group of G. We denote by X the
presentation complex associated to P , that is, the CW-complex having exactly one
vertex, one edge for each generator of P, and one 2-cell for each relation of P
(with attaching map prescribed by the corresponding relation). By construction we
have π1(X) ∼= G. Moreover, since the relators of the presentation P are not proper
powers in F8, and P satisfies the C ′(1/7)-cancellation property, X is aspherical
(see e.g. [Ol’91, Theorem 13.3]), and we have a canonical isomorphism H2(G,Z)
∼= H2

cell(X,Z).
We compute the (co)homology of X (hence, of G) via cellular (co)chains. Let ci be

the cell corresponding to the relation ri. By construction, the boundary of ci is zero,
hence ci is a cycle which defines a class [ci] ∈ Hcell

2 (X,Z). For every α ∈ H2
cell(X,Z)

we set αi = ⟨α, [ci]⟩, where
⟨·, ·⟩ : H2

cell(X,Z) ×Hcell
2 (X,Z) → Z

denotes the Kronecker pairing. We then set
ψ : H2

cell(X,Z) → ZN , ψ(α) = (α0, . . . , αi, . . . ) .
Since ∂ci = 0 for every i ∈ N, the space C2

cell(X,Z) contains no non-trivial cobound-
aries (indeed, for every φ ∈ C1

cell(X,Z) and every i ∈ N we have δφ(ci) = φ(∂ci) = 0,
hence δφ = 0). On the other hand, since X is 2-dimensional, every Z-valued map on
the set of 2-cells of X is a cocycle. These facts immediately imply the following:

Proposition 4.3. — The map ψ : H2
cell(X,Z) → ZN is an isomorphism.

We have already observed that there is a canonical isomorphism H2(G,Z) ∼=
H2

cell(X,Z). Henceforth, we will denote by the same symbol cohomology classes
which correspond to each other under this isomorphism.

Proposition 4.4. — Let α ∈ H2(G,Z) be bounded. Then the sequence ψ(α) ∈
ZN is bounded.

Proof. — Let us denote by αR ∈ H2(X,R) the image of α under the change
of coefficients map and the canonical isomorphism between cellular and singular
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homology. The change of coefficients map H2(G,Z) → H2(G,R) is obviously norm
non-increasing, and the canonical isomorphism H2(G,R) ∼= H2(X,R) is isometric
(see e.g. [Fri17, Theorem 5.5]). As a consequence, we have ∥αR∥∞ ⩽ ∥α∥∞.

For every i ∈ N, the relation ri is the product of two commutators. As a conse-
quence, there exists a map ji : Σ2 → X such that j∗

i (αR) = αi[Σ2]∗, where Σ2 is
the genus-2 surface, and [Σ2]∗ ∈ H2(Σ2,R) is the real fundamental coclass of Σ2.
A standard duality result between bounded cohomology and ℓ1-homology implies
that the ℓ∞-norm ∥[Σ2]∗∥∞ of [Σ2]∗ is the inverse of the simplicial volume of the
closed surface of genus 2, which is equal to 4 (see e.g. [Fri17, Proposition 7.10 and
Section 8.12]). Moreover, group homomorphisms induce norm non-increasing maps
on cohomology. Therefore, we have

|αi| = ∥j∗
i (αR)∥∞

∥[Σ2]∗∥∞
= 4 ∥j∗

i (αR)∥∞ ⩽ 4∥αR∥∞ ⩽ 4∥α∥∞

whence the conclusion. □

In order to show that the group G does not satisfy Property QITB, we now look
for a weakly bounded class α ∈ H2(G,Z) such that ψ(α) is not bounded. To this
aim we first give the following:

Definition 4.5. — We say that a class α ∈ H2(G,Z) with ψ(α) = (αi)i∈N is
slow if

lim sup
i→ +∞

|αi|
i

< +∞ .

If α is slow, then we set

Λ(α) = sup
i∈N

|αi|
2i+ 1 < +∞ .

The rest of this section is devoted to the proof of Theorem 4.10, which states
that a class in H2(G,Z) is weakly bounded if and only if it is slow. Since there
obviously exist slow classes α ∈ H2(G,Z) for which ψ(α) is not bounded (for example,
one may take the class α such that ψ(α) = (1, 2, 3, 4, . . . ) or such that ψ(α) =
(log 1, log 2, log 3, . . . )), Propositions 4.4 and Theorem 4.10 imply the existence of
weakly bounded classes in H2(G,Z) which are not bounded, thus showing that G
does not satisfy Property QITB.

It is well known that groups admitting a finite C ′(1/7) presentation have lin-
ear Dehn function, and are therefore word hyperbolic. We have shown above that
H2(G,Z) is not finitely generated, hence our group G does not admit a finite pre-
sentation (thus, it cannot be hyperbolic). Nevertheless, we are now going to study a
suitably modified Dehn function for the presentation P . We first define a notion of
area which takes the value 2i+ 1 on the relation ri.

Definition 4.6. — Let w be a word in N < F8. We then set

A(w) = min
{

k∑
l=1

(2il + 1)
∣∣∣∣∣w =

k∏
l=1

wlr
±1
il
w−1
l , k, il ∈ N, wl ∈ F8

}
.

The proof of the following proposition provides a linear isoperimetric inequality
(with respect to our definition of area) for the infinite presentation P .
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Proposition 4.7. — For every w ∈ N ,

A(w) ⩽ |w| .

Proof. — We prove the statement by induction on |w|, the case |w| = 0 being
obvious. Thus, let |w| > 0. By the Greendlinger’s Lemma, there exist a subword
w0 of w and a cyclic permutation r′

i of a relation ri such that w0 is also an initial
subword of r′

i, and |w0| > (1−3/7)|ri| = (4/7)|ri|. We thus have r′
i = w0v, w = uw0z,

and |v| = |r′
i| − |w0| < (3/7)|r′

i|. We also have w = uw0z = ur′
iv

−1z, and, since r′
i is

conjugate to ri and w is conjugate to r′
iv

−1zu,

A(w) = A
(
r′
iv

−1zu
)
⩽ 2i+ 1 + A(v−1zu) .

But∣∣∣v−1zu
∣∣∣ ⩽ |w| − |w0| + |v| ⩽ |w| − (1/7)|ri| = |w| − (16i+ 8)/7 < |w| − 2i− 1 ,

hence A(v−1zu) ⩽ |w| − 2i − 1 by our inductive hypothesis, and A(w) ⩽ |w|, as
desired. □

It is proved in [Mil22] that, in the context of cellular cohomology with real coeffi-
cients, weakly bounded classes may be characterized as those classes which admit
representatives satisfying a linear isoperimetric inequality, in the following sense:

Definition 4.8. — Let X̃ be the universal covering of X, endowed with the
induced cellular structure. For every n ∈ N, let us endow the cellular chain module
Ccell
n (X̃,R) with the ℓ1-norm defined by∥∥∥∥∥∥

∑
c∈Sn

ac · c

∥∥∥∥∥∥
1

=
∑
c∈Sn

|ac| ,

where Sn is the set of n-cells of X̃. Let α ∈ Hn
cell(X,R). Then α satisfies a linear

isoperimetric inequality if it admits a representative z ∈ Cn
cell(X,R) such that the

following condition holds: if z̃ ∈ Cn
cell(X̃,R) is the pull-back of z to X̃, then there

exists a constant K ⩾ 0 such that

|z(c)| ⩽ K · ∥∂c∥1 for every c ∈ Ccell
n (X,R) .

Proposition 4.9. — Let G and X be respectively the group and the presentation
complex associated to the presentation P described in Subsection 4.1.

Let α ∈ H2(G,Z) and let αR ∈ H2
cell(X,R) be the corresponding class in the

cellular homology of X with real coefficients. Then α is weakly bounded if and only
if αR satisfies a linear isoperimetric inequality.

Proof. — By Lemma 2.8, the class α is weakly bounded if and only if the cor-
responding class αR in H2(G,R) is so. Moreover, Proposition 3.1 shows that the
set of weakly bounded classes in H2(G,R) coincides with the kernel of the map
ι2 : H2(G,R) → H∗

(∞)(G,R) described in Section 3. Now the conclusion follows
from [Mil22, Theorem 1.8], together with the fact (also proved in [Mil22]) that the
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following diagram is commutative:

H∗(G,R) ι∗ //

∼=
��

H∗
(∞)(G,R)

∼=
��

H∗
cell(X,R)

ι∗X // H∗
(∞)(X̃,R) .

□
As explained above, the following theorem concludes the proof of Theorem 1.2

from the introduction.
Theorem 4.10. — Let α ∈ H2(G,Z). Then α is weakly bounded if and only if

it is slow.
Proof. — By Proposition 4.9, we need to show that the class αR ∈ H2

cell(X,R)
corresponding to α satisfies a linear isoperimetric inequality if and only if Λ(α)
< +∞.

We have already observed that there are no coboundaries in C2
cell(X,R), hence the

class αR admits a unique representative in C2
cell(X,R), namely the function (still

denoted by αR) which takes the value αi on the cell ci. We denote by α̃R the pull-back
of αR to X̃. Moreover, for every i ∈ N we fix a lift c̃i of ci to X̃.

Using that the relation ri has length 16i+ 8, it is not difficult to show that, if c̃i is
a lift of ci to X̃, then ∥∂c̃i∥1 = 16i+8. Therefore, if αR satisfies a linear isoperimetric
inequality, then there exists K ⩾ 0 such that

|αi| = |αR(ci)| = |α̃R(c̃i)| ⩽ K · (16i+ 8) ,
hence Λ(α) < +∞.

Let us now suppose that α is slow, so that there exists Λ ⩾ 0 such that |αi| ⩽ Λ
(2i+ 1) for every i ∈ N. Let c̃ ∈ C2

cell(X̃,R) be any chain. By [AG99, Theorem 3.3],
we have ∂c̃ = ∑k

h=1 ahγh, where ah ∈ R and γh is (the integral chain corresponding
to) a simple closed loop in the 1-skeleton of X̃. Moreover, the γh are coherent
(according to the terminology of [AG99]), which is equivalent to the fact that ∥∂c̃∥1 =∑k

h=1 |ah| · ∥γh∥1. Simple closed loops in the 1-skeleton of X̃ correspond to words in
N < F8, while (conjugates of) relations in P correspond to (translates of) cells c̃i in
X̃. Under this correspondence, Proposition 4.7 may be restated as follows: for every
h = 1, . . . , k, we have γh = ∂bh, where

bh =
l∑

j=1
gj · c̃ij ,

for some g1, . . . , gl in G = π1(X) ∼= Aut(X̃), and ∑l
j=1(2ij + 1) ⩽ ∥γh∥1. As a

consequence,

|α̃R(bh)| =

∣∣∣∣∣∣
l∑

j=1
α̃R
(
gj · c̃ij

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
l∑

j=1
αR(cij )

∣∣∣∣∣∣ ⩽
l∑

j=1
Λ (2ij + 1) ⩽ Λ∥γh∥1 .

By construction, we have ∂c̃ = ∑k
h=1 ah∂bh, thus the chain c̃−∑k

h=1 ahbh is a cycle,
hence a boundary (recall that X is aspherical, hence X̃ is contractible). But X̃ is a
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2-dimensional cellular complex, thus c̃ = ∑k
h=1 ahbh and

|α̃R(c̃)| =
∣∣∣∣∣α̃R

(
k∑

h=1
ahbh

)∣∣∣∣∣ ⩽
k∑

h=1
|ah| · |α̃R(bh)| ⩽

k∑
h=1

Λ|ah| · ∥γh∥1 = Λ∥∂c̃∥1 .

This shows that αR satisfies a linear isoperimetric inequality, and concludes the
proof of Theorem 4.10. □

5. Groups with Property QITB

The main goal of this section is to prove Theorem 1.4. We prove (1) in Corollary 5.2,
(2) in Theorem 5.10, (3) follows from Corollary 5.9 together with Remark 5.6, and (4)
is Theorem 5.22.

Amenable groups

We first prove that amenable groups satisfy Property QITB.

Proposition 5.1. — Let G be an amenable group, and let α ∈ Hn(G,R) be
weakly bounded. Then α = 0.

Proof. — Let µ be a right-invariant mean on ℓ∞(G,R). Let ω ∈ Cn(G,R) be a
weakly bounded representative of α, and define f ∈ Cn−1(G,R) as follows. For every
(g2, . . . , gn) ∈ Gn−1, the function

h(g2, ..., gn) : G → R , h(g2, ..., gn)(g1) = ω(g1, g2, . . . , gn)
is bounded. We may thus set

f(g2, . . . , gn) = µ
(
h(g2, ..., gn)

)
for every (g2, . . . , gn) ∈ Gn−1 .

For every g ∈ G let us denote by rg : G → G the right multiplication by g. Since ω
is a cocycle, for every (g2, . . . , gn+1) ∈ Gn the function

h(g3, ..., gn+1) ◦ rg2 −
(
n+1∑
i=2

(−1)ih(g2, ..., gigi+1, ..., gn+1)

)
− (−1)n+1h(g2, ..., gn)

takes the constant value ω(g2, . . . , gn+1) on G. Therefore, by using that µ is linear
and right-invariant, we have

ω(g2, . . . , gn+1)

=µ
(
h(g3, ..., gn+1)

)
−
(
n+1∑
i=2

(−1)iµ
(
h(g2, ..., gigi+1, ..., gn+1)

))
− (−1)n+1µ

(
h(g2, ..., gn)

)
= δ(f)(g2, . . . , gn+1) .

Thus ω is a coboundary, and α = 0, as desired. □

Putting together Corollary 2.9 and Proposition 5.1 we get the following:

Corollary 5.2. — Every amenable group satisfies Property QITB.
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Remark 5.3. — Together with Proposition 1.11, Proposition 5.1 implies that, if
G is amenable, then the map

ιn : Hn(G,R) → Hn
(∞)(G,R)

is injective. This result was first proved in [Ger, Theorem 10.13] under the assump-
tion that G admits an Eilenberg–MacLane model with a finite n-skeleton, and by
Wienhard [Wie12, Proposition 5.3] in the general case (see also [Bla14, Section 6.3]).

In fact, Proposition 5.1 could be deduced from Proposition 1.11 and [Wie12,
Proposition 5.3]. We preferred to add here our proof of Proposition 5.1 because it is
very elementary and self-contained.

Other examples

Let G be a group. We say that a class α ∈ H2(G,R) is amenable if there exist an
amenable group A and a homomorphism f : A → G such that α lies in the image
of f∗ : H2(A,R) → H2(G,R). The amenable classes generate a linear subspace of
H2(G,R) that we denote by Ham

2 (G,R). It readily follows from the definitions that,
if f : G1 → G2 is a homomorphism, then

f∗(Ham
2 (G1,R)) ⊆ Ham

2 (G2,R) .
Remark 5.4. — It is well known that any element α ∈ H2(G,R) is represented by

a surface, i.e. that α = f∗(β) for some β ∈ H2(Γg,R), where Γg is the fundamental
group of the closed connected orientable surface of genus g, g ⩾ 1. In fact, one may
define the genus of a class α as the minimal g ∈ N such that α = f∗(β) for some
β ∈ H2(Γg,R). The class α is toral if its genus is equal to or smaller than 1.

Observe that, if K < Γg and g ⩾ 2, then Ham
2 (K,R) = 0. In fact, if the index of K

in Γg is infinite, then K is free, and H2(K,R) = 0 (hence, a fortiori, Ham
2 (K,R) = 0),

while if the index of K in Γg is finite, then K = Γg′ for some g′ ⩾ g ⩾ 2. Since
any amenable subgroup of Γg′ is either trivial of infinite cyclic, and the degree-2
homology with real coefficients of infinite cyclic groups vanishes, also in this case
we may conclude that Ham

2 (K,R) = 0. Building on this remark, one may wonder
whether amenable classes defined above should in fact be toral. However, it is shown
in [BG88] that, for every g ∈ N, there exist a nilpotent (hence, amenable) group N
and a class α ∈ H2(N,R) which does not lie in the subspace generated by classes of
H2(N,R) with genus smaller than g.

Recall that there exists a duality pairing
⟨· , ·⟩ : H2(G,R) ×H2(G,R) → R .

We denote by Ann(Ham
2 (G,R)) ⊆ H2(G,R) the annihilator of Ham

2 (G,R) in
H2(G,R), i.e. the subspace of coclasses φ ∈ H2(G,R) for which

⟨φ, α⟩ = 0 ∀ α ∈ Ham
2 (G,R) .

Notice that φ ∈ Ann(Ham
2 (G,R)) if and only if ⟨φ, α⟩ = 0 for all amenable classes

α (amenable classes might form a proper subset of Ham
2 (G,R)). If f : G1 → G2 is a

homomorphism, then
f ∗ (Ann(Ham

2 (G2,R))) ⊆ Ann (Ham
2 (G1,R)) .
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Definition 5.5. — We say that a group G has Property (∗) if Ham
2 (G,R) =

H2(G,R).
Of course, any amenable group has Property (∗). Interesting non-amenable exam-

ples are given by:
Remark 5.6. — If G is a right-angled Artin group, then G admits a classifying

space (the Salvetti complex) whose 2-skeleton is obtained by gluing tori. From this,
one can deduce that H2(G,R) is generated by toral classes, so that, in particular,
we see that right-angled Artin groups have Property (∗).

Definition 5.7. — We say that a group G has Property (∗∗) if every class in
Ann(Ham

2 (G,R)) is bounded, i.e.

Ann (Ham
2 (G,R)) ⊆ c

(
H2
b (G,R)

)
,

where c : H2
b (G,R) → H2(G,R) is the comparison map.

Of course, if a group G has Property (∗) then it also has Property (∗∗). Prop-
erty (∗∗) is significant in our context due to the following:

Proposition 5.8. — Let α ∈ H2(G,R) be weakly bounded. Then α ∈ Ann(Ham
2

(G,R)).
Proof. — Let α ∈ H2(G,R) be a weakly bounded class, and let β be an amenable

class. Then there exist an amenable group A and a homomorphism f : A → G such
that β = f∗(βA) for some βA ∈ H2(A,R). Being the pull-back of a weakly bounded
class, the element f ∗(α) ∈ H2(A,R) is weakly bounded itself. Since A is amenable,
Proposition 5.1 ensures that f ∗(α) = 0, hence

⟨α, β⟩ = ⟨α, f∗(βA)⟩ = ⟨f ∗(α), βA⟩ = 0 .
We have thus shown that α belongs to Ann(Ham

2 (G,R)). □
Proposition 5.8 and Corollary 2.9 readily imply the following:
Corollary 5.9. — Suppose G has Property (∗∗). Then G satisfies QITB.
Theorem 5.10. — Let G be relatively hyperbolic w.r.t. the finite collection of

subgroups H = {H1, . . . , Hk}, and suppose that every Hi has Property (∗). Then
G has Property (∗∗).

Proof. — Let us consider the commutative diagram

H2
b (G,H,R)

c1
��

ib // H2
b (G,R)

c2
��

H2(G,H,R) i // H2(G,R) j // ⊕k
i=1 H

2(Hi,R) ,

where the bottom row is exact (see e.g. [BE78]). Let α ∈ Ann(Ham
2 (G,R)). Since

group homomorphisms preserve the annihilators of amenable classes, j(α) ∈ ⊕k
i=1 Ann

(Ham
2 (Hi,R)). Since each Hi has Property (∗), this means that j(α) = 0, hence

α = i(β) for some β ∈ H2
b (G,H,R). Now the comparison map in relative coho-

mology for relative hyperbolic pairs is surjective [Fra18], hence β = c1(η) for some
η ∈ H2

b (G,H,R), and α = c2(ib(η)) is a bounded class in H2(G,R), as desired. □
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Corollary 5.11. — Let G be relatively hyperbolic w.r.t. the finite collection
of subgroups H = {H1, . . . , Hk}, and suppose that every Hi is amenable. Then G
satisfies Property QITB.

As already mentioned in the statement of Theorem 1.4, the previous corollary
implies that every hyperbolic group satisfies Property QITB. In order to prove this
fact, however, there is no need to introduce the machinery above: indeed, Neumann
and Reeves [NR97] and Mineyev [Min01] proved that, if G is hyperbolic, then every
class in H2(G,Z) is bounded, hence G trivially satisfies Property QITB.

Virtually trivial central extensions

Definition 5.12. — We say that a central extension

1 // Z // E
π // G // 1

is virtually trivial if there exists a finite-index subgroup G′ of G such that the induced
extension

1 // Z // π−1(G′) π // G′ // 1
is trivial.

Lemma 5.13. — A central extension by a finitely generated torsion-free abelian
group is virtually trivial if and only if its Euler class has finite order.

Proof. — Let 1 // Z // E
π // G // 1 be a central extension with Euler

class α ∈ H2(G,Z).
Suppose first that α has order n ∈ N, n > 0, and let ω be a representative of α.

Then nω = δf for some 1-cochain f ∈ C1(G,Z). Thus f defines a homomorphism
f̂ : G → Z/nZ. Since the target group is finite, the kernel is a finite index subgroup
G′ < G. Take g ∈ G′. Then f(g) ∈ nZ. Since Z is torsion-free, there exists a
unique element h(g) = f(g)/n ∈ Z, and we have ω = δh on G′. This implies that
the restriction of ω to G′ is a coboundary, which in turn shows that the induced
extension of G′ is trivial.

Conversely, suppose that there exists a subgroup G′ of G of index n ∈ N, n > 0,
such that the induced extension of G′ is trivial. Let res : H2(G,Z) → H2(G′, Z) and
trans : H2(G′, Z) → H2(G,Z) be the restriction and the transfer map, respectively,
and recall that trans ◦ res : H2(G,Z) → H2(G,Z) is the multiplication by n (see
e.g. [Bro82, Proposition 9.5]). We then have res(α) = 0, whence nα = trans(res(α))
= 0, i.e. α has finite order in H2(G,Z). □

Lemma 5.14. — Let G be a finitely generated group, let Z be a finitely generated
abelian group, and let j : H2(G,Z) → H2(G,Z ⊗ R) be the change of coefficients
map induced by the natural map Z → Z ⊗ R. Then ker j is equal to the torsion
subgroup of H2(G,Z).

Proof. — Since H2(G,Z ⊗ R) is torsion-free, every element of H2(G,Z) of finite
order lies in ker j.
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Let now α ∈ ker j. By looking at the commutative diagram

H2(G,Z) φ //

j
��

HomZ(H2(G,Z), Z)

��
j′

��
H2(G,Z ⊗ R) // HomZ(H2(G,Z), Z ⊗ R)

we obtain that φ(α) lies in ker j′, and this readily implies that φ(α) has finite order,
i.e. there exists n ∈ Z \ {0} such that φ(nα) = 0. Indeed, for every c ∈ H2(G,Z)
we have that φ(α)(c) is an element of the kernel of the map Z 7→ Z ⊗ R, and there
exists some (uniform) n such that for any such element z we have nz = 0.

By the Universal Coefficient Theorem for cohomology we now have the exact
sequence

0 → Ext1(H1(G,Z), Z) → H2(G,Z) −→ HomZ(H2(G,Z), Z) → 0 .

Since G and Z are finitely generated, Ext1(H1(G,Z), Z) is a torsion group. Thus
nα, which belongs to (the image of) Ext1(H1(G,Z), Z), has finite order, and hence
α has finite order as well. □

Since amenable groups and right-angled Artin groups satisfy Property (*), the
following result implies Theorem 1.5 from the introduction.

Theorem 5.15. — Suppose that the group G satisfies Property (*). Then a
central extension of G by the finitely generated abelian group Z is quasi-isometrically
trivial if and only if its Euler class has finite order. Moreover, if Z is torsion-free
then this happens if and only if the extension is virtually trivial.

Proof. — Let Z be any finitely generated abelian group. We first prove that a class
in H2(G,Z) is bounded if and only if it has finite order.

By Proposition 5.8, any bounded class α ∈ H2(G,R) vanishes on Ham
2 (G,R) =

H2(G,R). By the Universal Coefficient Theorem, this implies that α = 0. Therefore,
the comparison map c2 : H2

b (G,R) → H2(G,R) is null. Observe now that Z ∼= Zk⊕F ,
where F is finite. Then Z ⊗ R ∼= Rk, thus the comparison map H2

b (G,Z ⊗ R) →
H2(G,Z ⊗ R) is null. By looking at the commutative diagram

H2
b (G,Z) //

��

H2(G,Z)
j
��

H2
b (G,Z ⊗ R) // H2(G,Z ⊗ R)

we can then deduce that every bounded class in H2(G,Z) is contained in ker j. By
Lemma 5.14, we conclude that bounded classes have finite order in H2(G,Z).

On the other hand, if α ∈ H2(G,Z) has finite order, then j(α) = 0 in H2(G,Z⊗R).
The very same argument as in the proof of Lemma 2.8 now shows that α is bounded.

We have thus shown that a class in H2(G,Z) is bounded if and only if it has
finite order. By Corollary 5.9, this implies that a central extension of G by Z is
quasi-isometrically trivial if and only if its Euler class has finite order. We conclude
applying Lemma 5.13. □
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Remark 5.16. — Lemma 5.13 (and Theorem 5.15) cannot hold in general for
extensions by finitely generated abelian groups with torsion. For example, let us
consider Thompson’s group T . It is shown in [GS87] that H1(T,Z) = 0, H2(T,Z)
= Z2. If n > 1 is any integer, we then deduce from the Universal Coefficient Theorem
that H2(T,Zn) = Z2

n. In particular, there exists a non-trivial class α ∈ H2(T,Zn).
This class has obviously finite order. Nevertheless, the unique finite-index subgroup
of T is T itself, thus α does not vanish on any finite-index subgroup of T . The central
extension of T by Zn with Euler class α is quasi-isometrically trivial (since its Euler
class is obviously bounded), but not virtually trivial.

(Amalgamated) products of groups with Property QITB

We now prove Propositions 1.6 and 1.7 from the introduction.

Proposition 5.17 (Proposition 1.6.). — Let G1, G2 be groups satisfying Prop-
erty QITB. Then the direct product G1 ×G2 satisfies Property QITB.

Proof. — As usual, we prove that every weakly bounded class in H2(G,Z) is
bounded, under the assumption that the same condition holds in H2(Gi,Z), i = 1, 2.

Let α ∈ H2(G,Z) be weakly bounded, and denote by pi : G → Gi the projection,
and by ji : Gi → G1 ×G2 the inclusion. By the Künneth formula, we have

H2(G1 ×G2,Z) ∼=
(
H1(G1,Z) ⊗H1(G2,Z)

)
⊕H2(G1,Z) ⊕H2(G2,Z) .

More precisely, any element β ∈ H2(G1 ×G2,Z) may be decomposed as

β = β + (j1)∗(β1) + (j2)∗(β2) ,

where β corresponds to a class in H1(G1,Z) ⊗ H1(G2,Z) under the above identi-
fication, and βi ∈ H2(Gi,Z) for i = 1, 2. Let now αR ∈ H2(G1 × G2,R), βR ∈
H2(G1 ×G2,R) be the classes corresponding to α, β under the change of coefficients
homomorphism (thus, αR is also weakly bounded).

Since any class in H1(Gi,Z) is the pushforward of a class in H1(Z,Z) via some
homomorphism fi : Z → Gi, the class β is the push-forward of an element of H2(Z×
Z,Z) via a homomorphism Z×Z → G1 ×G2 of the form f1 × f2. As a consequence,
βR is amenable, and (pi)∗(β) = 0 for i = 1, 2. Since αR is weakly bounded, by
Proposition 5.8 we thus get ⟨α, β⟩ = ⟨αR, βR⟩ = 0. Moreover, for i = 1, 2 we have
⟨p∗
i (j∗

i (α)), β⟩ = ⟨j∗
i (α), (pi)∗(β)⟩ = 0.

Let us now set
α′ = α− p∗

1(j∗
1(α)) − p∗

2(j∗
2(α)) .

We will prove that α′ vanishes on β, by showing that it vanishes on its summands
β, (j1)∗(β1) and (j2)∗(β2).

The above computations show that

⟨α′, β⟩ = ⟨α, β⟩ − ⟨p∗
1(j∗

1(α)), β⟩ − ⟨p∗
2(j∗

2(α)), β⟩ = 0 .
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Moreover, we have
⟨α′, (j1)∗(β1)⟩ = ⟨α, (j1)∗(β1)⟩ − ⟨p∗

1 (j∗
1(α)) , (j1)∗(β1)⟩ − ⟨p∗

2 (j∗
2(α)) , (j1)∗(β1)⟩

= ⟨j∗
1(α), β1⟩ − ⟨j∗

1(α), (p1 ◦ j1)∗ (β1)⟩ − ⟨j∗
2(α), (p2 ◦ j1)∗ (β1)⟩

= ⟨j∗
1(α), β1⟩ − ⟨j∗

1(α), β1⟩ − ⟨j∗
2(α), 0⟩ = 0 ,

and a similar computation implies that ⟨α′, (j2)∗(β2)⟩ = 0 too.
We have thus shown that α = p∗

1(j∗
1(α)) + p∗

2(j∗
2(α)) + α′, where α′ ∈ H2(G,Z) is

such that ⟨α′, β⟩ = 0 for every β ∈ H2(G,Z). Since α is weakly bounded, j∗
i (α) ∈

H2(Gi,Z) is also weakly bounded, for i = 1, 2. But Gi satisfies Property QITB,
hence j∗

i (α) is bounded for i = 1, 2, and also p∗
1(j∗

1(α)) + p∗
2(j∗

2(α)) is bounded.
In order to conclude, it is thus sufficient to show that α′ is also bounded. However,

since ⟨α′, β⟩ = 0 for every β ∈ H2(G,Z), the image of α′ in H2(G,R) is trivial, hence
α′ is bounded by Lemma 2.8. □

Definition 5.18. — An amalgamated product G = G1 ∗H G2 is transverse if,
denoting i1 : H → G1 and i2 : H → G2 the inclusions defining the amalgamated
product, the map

(i1)∗ ⊕ (i2)∗ : H1(H,R) → H1(G1 R) ⊕H1(G2,R)
is injective.

Proposition 5.19 (Proposition 1.7). — Let G = G1 ∗H G2 be a transverse
amalgamated product, where H is amenable. If G1, G2 satisfy Property QITB, then
G satisfies Property QITB.

Proof. — Let α ∈ H2(G,Z) be weakly bounded, and denote by αR ∈ H2(G,R)
the image of α via the change of coefficients map. Then αR is weakly bounded, and
by Lemma 2.8 we are left to show that αR is bounded.

By definition of transverse amalgamated product, the map H1(H,R) → H1(G1,R)
⊕ H1(G2,R) is injective. By looking at the Mayer-Vietoris sequence for the triple
G1, G2, H, one can then deduce that the map H2(G1,R) ⊕H2(G2,R) → H2(G,R) is
surjective, which implies in turn that the restriction map r : H2(G,R) → H2(G1,R)⊕
H2(G2,R) is injective.

Let us now consider the commutative diagram

H2
b (G,R) rb //

c

��

H2
b (G1,R) ⊕H2

b (G2,R)

c′

��
H2(G,R) r // H2(G1,R) ⊕H2(G2,R) .

Since α is weakly bounded, its restrictions in H2(G1,Z) and in H2(G2,Z) are also
weakly bounded, hence bounded, since G1 and G2 satisfy QITB. Together with the
fact that the change of coefficients map takes bounded cochains to bounded cochains
(and commutes with restrictions), this implies that r(αR) lies in the image of the
comparison map c′. Since H is amenable, the map rb is surjective (see [BBF+14]),
hence there exists β ∈ H2

b (G,R) such that c′(rb(β)) = r(αR). Using that r is injective
we then get c(β) = αR, i.e. αR lies in the image of the comparison map. This concludes
the proof. □
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Remark 5.20. — Let G1, G2, H and G be as in the statements of the previous
propositions. The proofs above may be easily adapted to show the following:

(1) If bothG1 andG2 have Property (∗) (resp. (∗∗)), thenG1×G2 has Property (∗)
(resp. (∗∗)).

(2) If both G1 and G2 have Property (∗) (resp. (∗∗)), then G1 ∗H G2 has Prop-
erty (∗) (resp. (∗∗)).

3-manifold groups

In order to prove that 3-manifold groups also satisfy Property QITB we first recall
that C2(G,R) is endowed with an ℓ1-norm such that ∥c∥1 = ∑ |a(g1,g2)| for every chain
c = ∑

a(g1,g2)(g1, g2). We then endowH2(G,R) with the induced quotient ℓ1 seminorm
(which is sometimes called the Gromov seminorm) such that, if β ∈ H2(G,R), then
∥β∥1 is the infimum of the ℓ1-norms of the representatives of β in C2(G,R). Let
us denote by N2(G,R) the subspace of H2(G,R) given by classes with vanishing
ℓ1-seminorm. It is well known that, if A is an amenable group, then the ℓ1-seminorm
vanishes on H2(A,R). Since group homomorphisms induce seminorm non-increasing
maps on homology, this readily implies that Ham

2 (G,R) ⊆ N2(G,R).
Proposition 5.21. — Let G be a group such that H2(G,R) is finite dimensional

(this is the case, e.g., if G is finitely presented). Then G satisfies (∗∗) if and only if
N2(G,R) = Ham

2 (G,R).
Proof. — Suppose first thatN2(G,R) = Ham

2 (G,R), and take α ∈ Ann(Ham
2 (G,R))

= Ann(N2(G,R)). Then α defines a linear map H2(G,R)/N2(G,R) → R. Since
H2(G,R) is finite dimensional, this map is continuous with respect to the quotient
ℓ1-norm on H2(G,R)/N2(G,R). By [BG88, Proposition 1.1], this implies that α may
be represented by a bounded cocycle. Thus G satisfies (∗∗).

Suppose now that N2(G,R) ̸= Ham
2 (G,R), and take an element β ∈ N2(G,R)

\ Ham
2 (G,R). By the Universal Coefficient Theorem, we may construct an element

α ∈ Ann(Ham
2 (G,R)) such that ⟨α, β⟩ = 1. Since ∥β∥1 = 0, the class α cannot be

represented by any bounded cocycle. Thus G does not satisfy (∗∗). □

Theorem 5.22. — Let G be the fundamental group of a compact orientable 3-
manifold. Then G satisfies Property QITB.

Proof. — Let M be a compact orientable 3-manifold. The decomposition of M
into prime summands M1, . . . , Mk decomposes G as the free product of the groups
Gi = π1(Mi), i = 1, . . . , k. By Corollary 1.8, we may thus assume that M is prime.
Moreover, if M ∼= S2 ×S1, then π1(M) = Z obviously satisfies Property QITB, hence
we are reduced to study the case when M is irreducible. We will show that, under
this assumption, we have that G = π1(M) satisfies (∗∗), hence Property QITB.

Being the fundamental group of a compact manifold, G is finitely presented, hence
by Proposition 5.21 it suffices to show that N2(G,R) = Ham

2 (G,R). Recall that the
inclusion Ham

2 (G,R) ⊆ N2(G,R) always holds, and take an element β ∈ N2(G,R). If
G is finite, then of course β ∈ Ham

2 (G,R). Since irreducible 3-manifolds with infinite
fundamental groups are aspherical, we may thus identify H2(G,R) with H2(M,R).
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The module H2(M,R) is itself endowed with an ℓ1-seminorm (see e.g. [Gro82]),
and the identification H2(G,R) ∼= H2(M,R) is isometric, hence we may consider
β as an element of H2(M,R) with vanishing seminorm. A result of Gabai [Gab83,
Corollary 6.18] now ensures that, since ∥β∥1 = 0, also the Thurston norm of β
vanishes. Therefore, as an element of H2(M,R), the class β is represented by a
finite union of spheres and tori (in fact, since M is aspherical, by a finite union of
tori) [Thu86]. This immediately implies that β ∈ Ham

2 (G,R), whence the conclusion.
□
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