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Résumé. — Nous complétons l’étude des caractères sur les réseaux semisimples de rang
supérieur initiée dans [BH21, BBHP22], le cas manquant étant celui des réseaux dans les
groupes algébriques simples en caractéristique quelconque. Plus précisément, nous étudions les
propriétés dynamiques de l’action par conjugaison de tels réseaux sur l’espace des fonctions
de type positif. Nos résultats principaux concernent l’existence et la classification des carac-
tères desquels nous déduisons des applications en dynamique topologique, théorie ergodique,
représentations unitaires et algèbres d’opérateurs. Notre théorème clé est une extension du
théorème de structure Nevo–Zimmer noncommutatif obtenu dans [BH21] au cas des groupes
algébriques simples définis sur des corps locaux quelconques. Nous déduisons aussi un analogue
noncommutatif du théorème du facteur de Margulis pour les sous-algèbres de von Neumann
de la frontière de Poisson noncommutative des groupes arithmétiques de rang supérieur.

1. Introduction and statements of the main results

For any countable discrete group Γ, we denote by P(Γ) ⊂ ℓ∞(Γ) the weak-∗
compact convex set of all positive definite functions φ : Γ → C normalized so that
φ(e) = 1. We endow the space P(Γ) with the affine conjugation action Γ ↷ P(Γ).
Recall that for any positive definite function φ ∈ P(Γ), there is a unique (up to
unitary conjugation) GNS triple (πφ, Hφ, ξφ), where πφ : Γ → U (Hφ) is a unitary
representation and ξφ ∈ Hφ is a unit cyclic vector such that φ(Γ) = ⟨πφ(Γ)ξφ, ξφ⟩
for every Γ ∈ Γ. Thus, one can always regard any positive definite function as
a coefficient of a unitary representation. For standard facts on operator algebras
(C∗-algebras and von Neumann algebras), we refer the reader to [Tak02].

A conjugation invariant positive definite function φ ∈ P(Γ) is called a character
and we denote by Char(Γ) ⊂ P(Γ) the weak-∗ closed convex subset of all characters
on Γ. Any non-trivial group Γ always possesses at least two characters: the trivial
character 1Γ and the regular character δe whose GNS representation coincides with
the left regular representation λ : Γ → U (ℓ2(Γ)). Any finite dimensional unitary
representation π : Γ → U (n) gives rise to the character trn ◦π. Also, any probability
measure preserving (pmp) action Γ ↷ (X, ν) gives rise to the character φν : Γ → C :
g 7→ ν(Fix(g)) where Fix(g) = {x ∈ X | gx = x} for every g ∈ Γ. Note that φν = δe
if and only if the pmp action Γ ↷ (X, ν) is essentially free, that is, for almost every
x ∈ X, we have StabΓ(x) = {e}.

We now review the notions of charmenable and charfinite groups that were recently
introduced in [BBHP22]. We denote by Rad(Γ) the amenable radical of Γ, that is,
the largest normal amenable subgroup of Γ.

Definition 1.1 ([BBHP22]). — We say that Γ is charmenable if it satisfies the
following two properties:

(P1) Every nonempty Γ-invariant weak-∗ compact convex subset C ⊂ P(Γ) con-
tains a fixed point, that is, a character.

(P2) Every extremal character φ ∈ Char(Γ) is either supported on Rad(Γ) or its
GNS von Neumann algebra πφ(Γ)′′ is amenable.

Moreover, we say that Γ is charfinite if it also satisfies the following three properties:
(P3) Rad(Γ) is finite.
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(P4) Γ has a finite number of isomorphism classes of unitary representations in
each given finite dimension.

(P5) Every extremal character φ ∈ Char(Γ) is either supported on Rad(Γ) or its
GNS von Neumann algebra πφ(Γ)′′ is finite dimensional.

Recall that a tracial von Neumann algebra M ⊂ B(L2(M)) is amenable if there
exists a state φ ∈ B(L2(M))∗ such that φ(xT ) = φ(Tx) for every T ∈ B(L2(M))
and every x ∈ M and φ|M is a faithful normal tracial state on M .

Before reviewing previous works and providing examples, let us first recall some
striking properties of charmenable and charfinite groups. In that respect, denote by
Sub(Γ) ⊂ 2Γ the closed subset of all subgroups of Γ endowed with the conjugation
action Γ ↷ Sub(Γ). The topology on Sub(Γ) induced from the product topology
on 2Γ is called the Chabauty topology. Following [AGV14], an Invariant Random
Subgroup, or IRS for short, is a Γ-invariant Borel probability measure on Sub(Γ).
Following [GW15], a Uniformly Recurrent Subgroup, or URS for short, is a nonempty
Γ-invariant minimal closed subset of Sub(Γ).

Any charmenable group Γ enjoys the following properties: any normal subgroup
N ◁ Γ is either amenable or coamenable; for any URS X ⊂ Sub(Γ), either all the
elements of X are contained in Rad(Γ) or X carries an IRS; any nonamenable unitary
representation π : Γ → U (Hπ) weakly contains the left regular representation λ.
Moreover, in that case, the C∗-algebra C∗

π(Γ) ⊂ B(Hπ) generated by π(Γ) has a
unique trace and a unique maximal proper ideal.

Any charfinite group enjoys the following properties: any normal subgroup N ◁ Γ
is either finite or has finite index; any ergodic IRS and any URS of Γ is finite. Any
charmenable group Γ with property (T) and such that Rad(Γ) is finite is charfinite.
For all these facts, we refer the reader to [BBHP22, Section 3]. In particular, charfinite
groups satisfy the conclusion of Margulis’ normal subgroup theorem [Mar91] and
Stuck–xZimmer’s stabilizer rigidity theorem [SZ94]. The motivation for studying
charmenable and charfinite groups comes from these fundamental results as well
as other results regarding the classification of characters (see [Bek07, CP22, Pet14,
PT16]).

The first class of charfinite groups were obtained in [BH21]. More precisely, the
main results of [BH21] show that lattices in higher rank connected simple Lie groups
with finite center are charfinite. New classes of charmenable and charfinite groups
were subsequently obtained in [BBHP22]. Indeed, [BBHP22, Theorem A] shows
that irreducible lattices in products of (at least two) simple algebraic groups are
charmenable (resp. charfinite if one of the factors has property (T)). Moreover, for
every d ⩾ 2 and every nonempty (possibly infinite) set of primes S ⊂ P, the
S-arithmetic group SLd(Z[S−1]) is charfinite. We refer the reader to the recent
survey [Hou21] for further details and results.

The goal of the present paper is to complete the above picture by showing that
lattices in higher rank simple algebraic groups defined over a local field k of arbitrary
characteristic are charfinite.

Theorem 1.2. — Let k be a local field. Let G be an almost k-simple connected
algebraic k-group such that rkk(G) ⩾ 2. Then every lattice Γ < G(k) is charfinite.
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Theorem 1.2 provides several new classes of charfinite groups.

Example 1.3. — Let d ⩾ 3 be an integer and k a local field. Then any lattice
Γ < SLd(k) is charfinite. In particular, let p ∈ P be a prime and q = pr for
r ⩾ 1. Denote by Qp the local field of p-adic numbers and by Fq((t)) the local field
of formal power series in one variable t over the finite field Fq. Then any lattice
Γ < SLd(Qp) and any lattice Γ < SLd(Fq((t))) is charfinite. In particular, the lattice
SLd(Fq[t−1]) < SLd(Fq((t))) is charfinite. We also refer to [LL20] for the character
classification of SLd(Fq[t−1]).

Before stating our next result regarding charmenability of higher rank arithmetic
groups, let us review some terminology. Let K be a global field and G an almost
K-simple connected algebraic K-group. Let S be a (possibly empty, possibly infinite)
set of non-Archimedean inequivalent absolute values on K. Let O < K be the ring
of integers and OS the corresponding localization, that is,

OS = {α ∈ K | ∀ s ∈ S, s(α) ⩽ 1} .

Fix an injective K-representation ρ : G → GLn and write
ΛS = ρ−1(GLn(OS)) ⩽ G(K).

The triple (K,G, S) is said to be of
• compact type if for every absolute value v on K, the image of ΛS in G(Kv) is

bounded;
• simple type if there exists a unique absolute value v on K such that the image

of ΛS in G(Kv) is unbounded;
• product type otherwise.

The triple (K,G, S) is said to be of higher rank if it is either of product type or of
simple type and rkKv(G) ⩾ 2. A subgroup Γ ⩽ G(K) is called S-arithmetic if it is
commensurable with ΛS. It is called arithmetic if it is S-arithmetic for some S as
above and we regard its type as the type of (K,G, S).

Combining Theorem 1.2 with [BBHP22, Theorem A], we infer that all higher rank
arithmetic groups are charmenable.

Theorem 1.4. — Let K be a global field and G an almost K-simple con-
nected algebraic K-group. Let S be a (possibly empty, possibly infinite) set of non-
Archimedean inequivalent absolute values on K. Then any higher rank S-arithmetic
group Γ ⩽ G(K) is charmenable.

Assume further that there exists an absolute value υ on K such that G(Kυ) has
property (T) and for which the image of Γ in G(Kυ) is unbounded. If either S is
finite or G is simply connected, then Γ is charfinite.

For a C∗-algebra A ⊂ B(H) and n ⩾ 1, Mn(A) = Mn(C) ⊗ A ⊂ B(H⊕n) is
naturally a C∗-algebra. Let A,B be C∗-algebras. A linear map Φ : A → B is said to
be unital completely positive (ucp) if Φ is unital and if for every n ⩾ 1, the linear map
Φ(n) : Mn(A) → Mn(B) : [aij]ij 7→ [Φ(aij)]ij is positive. Any unital ∗-homomorphism
π : A → B is a ucp map. When A or B is commutative, any unital positive linear
map Φ : A → B is automatically ucp (see e.g. [Pau02, Theorems 3.9 and 3.11]).
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As in [BH21], our proof of Theorem 1.2 is based on a noncommutative analogue of
Nevo–Zimmer structure theorem (see [NZ99, NZ02]) which has further applications.

Theorem 1.5. — Let k be a local field. Let G be an almost k-simple connected
algebraic k-group such that rkk(G) ⩾ 2 and set G = G(k). Let P < G be a minimal
parabolic k-subgroup and set P = P(k). Let M be an ergodic G-von Neumann
algebra and E : M → L∞(G/P ) a faithful normal ucp G-map. The following
dichotomy holds:

• Either E is G-invariant, that is, E(M) = C1.
• Or there exist a proper parabolic k-subgroup P < Q < G and a G-equivariant

unital normal embedding ι : L∞(G/Q) ↪→ M where Q = Q(k) such that
E ◦ ι : L∞(G/Q) ↪→ L∞(G/P ) is the canonical unital normal embedding.

Both the statement and the proof of Theorem 1.5 are similar to [BH21, Theo-
rem 5.1], but extra difficulties appear in the proof to handle simple algebraic groups
in positive characteristic. Assume that E : M → L∞(G/P ) is not invariant. Firstly,
we construct in Theorem 3.1 an abelian G-von Neumann subalgebra M0 ⊂ M for
which the restriction E|M0 : M0 → L∞(G/P ) is not invariant either. We point out
that compared to the proof of [BH21, Theorem 5.1], some of the arguments have
been simplified by making use of the so-called maximal compact models. We are
grateful to Amine Marrakchi for sharing this idea with us. Secondly, we prove in
Theorem 4.1 a generalization of the commutative Nevo–Zimmer structure theorem
for stationary actions of higher rank simple algebraic groups on standard probabil-
ity spaces (see [NZ02, Theorem 1] for actions of higher rank connected simple Lie
groups). Along the way, we also prove some useful facts regarding closed subgroups
of algebraic groups that are of independent interest. Then Theorem 1.2 follows from
Theorem 1.5 by using an induction argument in a similar fashion as [BBHP22].

For a countable discrete group Λ and a nonsingular action Λ ↷ (Y, η) on a standard
probability space, we denote by L(Λ ↷ Y ) the group measure space von Neumann
algebra. The von Neumann algebra L(Λ ↷ Y ) is generated by a copy of the group
von Neumann algebra L(Λ) = {ug | g ∈ Λ}′′ ⊂ B(ℓ2(Λ)) and a copy of L∞(Y, η) in
such a way that

∀ g ∈ Λ,∀ F ∈ L∞(Y, η), ugFu
∗
g = F ◦ g−1.

If Λ ↷ (Y, η) is essentially free and ergodic, then L(Λ ↷ Y ) is a von Neumann
factor whose type coincides with the type of the action Λ ↷ (Y, η) (see e.g. [Tak03,
Theorem XIII.1.7]). For lattices in higher rank simple algebraic groups, we present
yet another application of Theorem 1.5 (or rather Theorem 5.4). Our next result may
be regarded as a noncommutative analogue of Margulis’ celebrated factor theorem
(see [Mar91, Theorem IV.2.11]).

Theorem 1.6. — Let k be a local field. Let G be an almost k-simple connected
algebraic k-group such that rkk(G) ⩾ 2 and set G = G(k). Let P < G be a minimal
parabolic k-subgroup and set P = P(k). Assume that G is center free, that is,
Z (G) = {e}.
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Then for every intermediate von Neumann subalgebra L(Γ) ⊂ M ⊂ L(Γ ↷ G/P ),
there exists a unique parabolic k-subgroup P < Q < G such that M = L(Γ ↷ G/Q),
where Q = Q(k).

In particular, the k-rank rkk(G) is an invariant of the inclusion L(Γ) ⊂ L(Γ ↷
G/P ).

The group measure space von Neumann algebra L(Γ ↷ G/P ) is an amenable type
III1 factor. In case k = R, L(Γ ↷ G/P ) coincides with the noncommutative Poisson
boundary of the lattice Γ (see [Fur67, Izu04]). Theorem 1.6 was recently announced
and stated in [Hou21] in the case of lattices in higher rank simple Lie groups with
trivial center (see [Hou21, Corollary F]).

Besides this introduction and the next preliminary section, the paper contains three
other sections. In Section 3, we prove the first half of Theorem 1.5 by constructing a
non-trivial G-invariant abelian von Neumann subalgebra M0 = L∞(X, ν) for which
the corresponding nonsingular action G↷ (X, ν) has large stabilizers. In Section 4,
we prove the second half of Theorem 1.5 and we generalize the Gauss map technique
introduced by Nevo–Zimmer in [NZ02] to algebraic groups defined over a local field
of arbitrary characteristic. In Section 5, we prove Theorems 1.2, 1.4 and 1.6. We also
discuss the relevance of Theorem 1.6 regarding Connes’ rigidity conjecture for group
von Neumann algebras of higher rank lattices.
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2. Preliminaries

2.1. Structure of (almost) simple algebraic k-groups

Let k be a local field, that is, k is a nondiscrete locally compact field of arbitrary
characteristic. An algebraic k-group G is an algebraic group that is defined over k. In
this paper, all algebraic k-groups G are assumed to be affine (or linear). We denote
by G0 the (Zariski) connected component in G of the identity element. Then G is
(Zariski) connected if G = G0.

Let G be a connected algebraic k-group. We say that G is semisimple (resp.
reductive) if its radical (resp.unipotent radical) is trivial. We say that G is absolutely
almost simple if it is semisimple and all its proper algebraic normal subgroups are
finite. We say that G is almost k-simple if it is semisimple and all its proper k-closed
normal subgroups are finite. Note that since G is connected, finite normal subgroups
of G are contained in Z (G).

Let G be an almost k-simple connected algebraic k-group. We will be using the
following notation throughout:

• T will denote a maximal k-split torus of G, Φ+ a choice of positive roots,
and ∆ the corresponding set of simple positive roots.
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• P will denote the corresponding minimal parabolic k-subgroup, and more gen-
erally, for every subset θ ⊂ ∆, Tθ ⊂ T and Pθ will denote the corresponding
torus and parabolic k-subgroup.

• V (resp. Vθ) will denote the unipotent radical of P (resp. Pθ). For each θ,
one has the Levi decomposition Pθ = HθVθ, where the reductive group Hθ

is the centralizer of Tθ inside G.
• The opposite parabolic k-subgroups will be denoted by P, Pθ and their

unipotent radical will be naturally denoted by V, Vθ.
• We will consider the corresponding groups of k-points: G = G(k), T = T(k),
P = P(k), V = V(k), P = P(k), V = V(k), and similarly, Tθ, Pθ, Vθ, Hθ,
P θ, V θ.

With this notation, for every θ, the product map Vθ×Pθ → G is a k-isomorphism
onto a Zariski dense and open subset of G. At the level of k-points, the set V θPθ
is co-null inside G with respect to the Haar measure. This implies the following
classical observation.

Lemma 2.1. — There is a measure class preserving isomorphism G ≃ V θ × Pθ,
where each of the groups is endowed with its Haar measure class. This isomorphism
is equivariant under the left-right action of V θ × Pθ. Since Hθ normalizes V θ and is
contained in Pθ this isomorphism maps the left action Hθ ↷ G to the product action

Hθ × V θ × Pθ → V θ × Pθ : (h, v, p) 7→
(
hvh−1, hp

)
.

We will also denote by G+ the subgroup of G generated by Ru(P)(k) where P runs
through the set of all proper parabolic k-subgroups of G and Ru(P) denotes the
unipotent radical of P, see [Mar91, I. 1.5.2]. Note that by [Mar91, Theorem I.2.3.1],
G+ is a closed, normal and cocompact subgroup of G. When G is k-anisotropic, G+

is trivial. When G is k-isotropic, if k is of characteristic 0 then G/G+is finite, if
k = R then G+ is the identity component in G and if k = C then G+ = G.

2.2. Group actions on operator algebras

We will be interested in group actions on C∗-algebras and von Neumann algebras.
We refer to [BH21, Section 2.1] for the precise continuity requirements about such
actions, examples, and connections between group actions on C∗-algebras and von
Neumann algebras.

Definition 2.2. — Consider a locally compact second countable (lcsc) group G
with a closed subgroup P < G and a von Neumann action σ : P ↷ M . We have
two commuting actions of G and P on the tensor product von Neumann algebra
L∞(G) ⊗ M ; the G-action is given by the automorphisms λg ⊗ id for all g ∈ G,
while the P -action is a product action described by the automorphisms ρp ⊗ σp,
p ∈ P . Here λ and ρ denote the actions of G on L∞(G) induced by left and right
multiplication respectively. Then IndGP (M) = (L∞(G) ⊗ M)(ρ⊗σ)(P ) is the induced
von Neumann algebra and λ ⊗ id : G ↷ IndGP (M) is the induced action. We will
simply denote by M̃ = (L∞(G) ⊗M)P the induced von Neumann algebra.

TOME 6 (2023)



304 U. BADER, R. BOUTONNET & C. HOUDAYER

Given P < G as above, if N,M are two P -von Neumann algebras with a normal,
P -equivariant unital completely positive (ucp) map E : M → N , then Ẽ := id ⊗E
is a normal, G-equivariant ucp map Ẽ : M̃ → Ñ . So, induction is functorial in this
sense.

Let us introduce some more language attached to the category of G-von Neumann
algebras with morphisms given by normal equivariant ucp maps. We will use the
letter σ : G↷M to denote the action of G on the von Neumann algebra M .

Definition 2.3. — Consider two G-von Neumann algebras N and M and a
G-equivariant normal ucp map E : M → N . Then E is said to be G-invariant if
E(σg(x)) = E(x) for every x ∈ M , g ∈ G. Equivalently, this means that E(M) ⊂ NG.
We say that E is faithful if E(x∗x) = 0 implies x = 0, for every x ∈ M . The support
of E is the smallest projection p ∈ M such that E(p) = 1. Thus E is faithful if and
only its support is 1.

The plan in this section is to make further observations about induction in specific
situations. For that, we need to discuss compact models associated with von Neumann
actions. Given a locally compact group G and a G-von Neumann algebra M , the
G-action on M need not be norm continuous in general. However, there always
exists a weak-* dense C*-subalgebra A ⊂ M which is globally invariant under
G and on which the action G ↷ A is norm continuous (see the proof of [Tak03,
Proposition XIII.1.2]). By analogy with the commutative case, we call A together
with its G-action, a compact model of M . It is sometimes convenient to find separable
compact models, but in general there is no canonical choice of such. In contrast,
there is always a canonical choice of a compact model if one ignores this separability
condition.

Definition 2.4. — Given a G-von Neumann algebra M , the set of elements
x ∈ M such that the map g ∈ G 7→ σg(x) is norm continuous is a G-invariant
C*-subalgebra of M . It is the largest compact model for M , and called the maximal
compact model. Its elements are said to be G-continuous(1) .

For example, when G is discrete the maximal compact model is the whole of M .
Here is our most fundamental example:

Lemma 2.5. — Consider a lcsc group G with a closed subgroup H < G. Endow
G/H with its unique G-invariant measure class. Then the maximal compact model
for the translation action G ↷ L∞(G/H) is contained in the C∗-algebra Cb(G/H)
of all bounded continuous functions on G/H.

Proof. — Let f ∈ L∞(G/H) be G-continuous and take an approximate unit fn ∈
Cc(G), n ∈ N. Then fn∗f converges to f in norm. Moreover, each fn∗f is continuous
on G/H, hence so is f . □

Remark 2.6. — As we will see, the above lemma will allow us to avoid the use of
separability arguments. So the content of this section does not make any separability
assumption on the involved algebras. This is not so important for our purposes, since

(1)There is a similar terminology in [BBHP22, Section 5], but it refers to a different notion.
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our noncommutative Nevo–Zimmer theorem can be reduced to the version where
the algebra M is separable, but we point it out anyway.

We will need the following refinement of the previous lemma.
Lemma 2.7. — Consider a lcsc group G and a von Neumann algebra N . Then

λ ⊗ id is a G-action on L∞(G) ⊗ N . The maximal compact model of this action
is contained in the C∗-algebra Cb(G,N) of bounded, norm continuous functions
G → N (which is naturally embedded inside L∞(G) ⊗N as the multiplier algebra
of C0(G) ⊗min N).

Proof. — Take a G-continuous element f ∈ L∞(G)⊗N . For every ψ ∈ N∗, the map
id ⊗ψ is G-equivariant and norm continuous, so it maps f to a G-continuous element
of L∞(G). Thanks to Lemma 2.5, this gives a norm bounded map N∗ → Cb(G).
In particular, for every g ∈ G, we may compose this map with the evaluation state
at g, to get a linear functional on N∗, that is, an element f(g) ∈ N . Moreover, we
observe that since f is G-continuous, the function f : G → N obtained this way is
norm continuous.

Denote by A ⊂ L∞(G) ⊗N the maximal compact model for the G-action. By the
previous paragraph, we obtain a *-homomorphism ι : A → Cb(G,N). It is easily
seen that ι is injective. Moreover A contains C0(G) ⊗min N and it is clear that
on this algebra ι corresponds to the identification C0(G) ⊗min N ≃ C0(G,N). So,
starting with f1 ∈ C0(G)⊗minN and f2 ∈ A, ι(f1f2) = ι(f1)ι(f2) ∈ C0(G,N). Hence
f1f2 ∈ C0(G) ⊗min N , proving that f2 belongs to the desired multiplier algebra. □

Consider two G-von Neumann algebras M and N , with a G-equivariant normal
ucp map E : M → N . Then E carries any compact model of M into the maximal
compact model of N . In the special case where N is of the form L∞(G/H) for some
closed subgroup H < G, Lemma 2.5 ensures that E maps the maximal compact
model A of M inside Cb(G/H). Composing with the evaluation map at the coset
H ∈ G/H, we obtain an H-invariant state ϕ : A → C. This observation is used to
prove the next proposition.

Proposition 2.8. — Let G be a lcsc group and P < G a closed subgroup. If M
is a G-von Neumann algebra with a faithful normal G-equivariant ucp map E : M →
L∞(G/P ), then there exists a P -von Neumann algebra N with a normal P -invariant
state ψ : N → C and a von Neumann embedding ι : M → Ñ = (L∞(G) ⊗N)P such
that E = (id ⊗ψ) ◦ ι.

The proposition relies on the following classical lemma.
Lemma 2.9. — Consider two von Neumann algebras with normal states (M,ϕ)

and (N,ψ). Consider a weakly dense ∗-subalgebra A ⊂ M and a state preserving
∗-homomorphism α : A → N . If ψ is faithful on α(A)′ ∩ N , then α extends to a
normal ∗-homomorphism M → N .

Proof. — Without loss of generality, we may replace N by its subalgebra α(A)′′.
In this case, the assumption is that ψ is faithful on the center of N . This implies
that the associated GNS representation πψ is faithful on N . Indeed, there exists
a unique central projection z ∈ Z (N) such that ker(πψ) = Nz. Then we have
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ψ(z) = ⟨πψ(z)ξψ, ξψ⟩ = 0. Since ψ|Z (N) is faithful, it follows that z = 0 and so πψ is
faithful on N .

Since α is state preserving, it induces a Hilbert space isomorphism U : L2(A, ϕ) →
L2(N,ψ). By density of A inside M , we have the equality L2(A, ϕ) = L2(M,ϕ). Then
we may define a normal ∗-homomorphism α̃ : M → B(L2(N,ψ)) by the formula
α̃(x) = Uπϕ(x)U∗, for all x ∈ M . We observe that for all x ∈ A, α̃(x) = πψ(α(x)).
In particular, α̃ maps M into πψ(N). We may compose this morphism with π−1

ψ to
get the desired extension. □

Proof of Proposition 2.8. — Consider E : M → L∞(G/P ) as in the statement of
the proposition. Denote by A ⊂ M the maximal compact model for the G-action.
By Lemma 2.5, E maps A into Cb(G/P ), and thus composing E|A with the evaluation
map at P , we obtain a P -invariant state ψ on A. Denote by N := πψ(A)′′ the von
Neumann algebra generated by A in the GNS representation associated to (A,ψ).
We sill denote by σ : G↷ A the norm continuous action.

The embedding ι is first defined on A by the formula ι(a)(g) = πψ(σg−1(a)), for all
a ∈ A, g ∈ G. One easily checks that this defines a G-equivariant ∗-homomorphism

A → Cb(G,N)P ⊂ (L∞(G) ⊗N)P .
Moreover, for every a ∈ A, g ∈ G, we have

(id ⊗ψ)(ι(a))(gP ) = ψ(ι(a)(g)) = ψ(σg−1(a)) = E(σg−1(a))(P ) = E(a)(gP ).
So (id ⊗ψ) ◦ ι = E.

We now check that ι as above extends to M . If νP denotes a faithful normal state
on L∞(G/P ), then ϕ1 := νP ◦E and ϕ2 := νP ◦ (id ⊗ψ) are normal states on M and
Ñ respectively, and we have ϕ2 ◦ ι = ϕ1. So by the previous lemma, we only need to
check that ϕ2 is faithful on ι(A)′ ∩ Ñ . Equivalently, we need to check that id ⊗ψ is
faithful on ι(A)′ ∩ Ñ . This follows from the next two claims:

Claim 1. — ι(A)′ ∩ Ñ = (L∞(G) ⊗ Z (N))P (which coincides with the center
of Ñ).

Note that ι(A)′ ∩ Ñ is globally G-invariant. So we only need to check that every G-
continuous element f ∈ ι(A)′∩Ñ belongs to L∞(G)⊗Z (N). By Lemma 2.7, f may be
viewed as a continuous function G → N . So for every a ∈ A, we may view the equality
fι(a) = ι(a)f inside Cb(G,N). This gives f(g)πψ(σg−1(a)) = πψ(σg−1(a))f(g) for
every g ∈ G, a ∈ A. Since πψ(A) is weakly dense in N , we conclude that f(g) ∈ Z (N)
for every g ∈ G. Hence f ∈ Cb(G,Z (N))P ⊂ (L∞(G) ⊗ Z (N))P .

Claim 2. — Eψ := id ⊗ψ is faithful on (L∞(G) ⊗ Z (N))P .
Since ψ is a vector state on N attached to a cyclic vector, ψ is faithful on Z (N).

Hence Eψ = id ⊗ψ is faithful on L∞(G) ⊗ Z (N).
□

When considering induced algebras, we will also use the following variation of
Lemma 2.7.

Lemma 2.10. — Consider a lcsc group G with a closed cocompact subgroup
Q < G and consider a Q-von Neumann algebra N with its induced G-von Neumann
algebra Ñ = (L∞(G) ⊗ N)Q. Denote by A ⊂ N the maximal compact model for
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the Q-action. Then the maximal compact model B ⊂ Ñ for the induced G-action
is the C∗-subalgebra Cb(G,A)Q consisting of bounded, norm continuous, A-valued
equivariant functions.

Proof. — By Lemma 2.7, B is contained in Cb(G,N), and thus in Cb(G,N)Q.
Moreover, for f ∈ B and g ∈ G, we know that the map h ∈ G 7→ f(hg) ∈ N is
norm continuous. Restricting this map to gQg−1, we deduce that the map q ∈ Q 7→
f(gq) = σq(f(g)) is continuous. So f(g) ∈ A, and thus f ∈ Cb(G,A)Q, as desired.
The converse inclusion is easy. □

2.3. C*-algebraic lemmas

In this section, we record lemmas about extremal states on C*-algebras, which will
be used to make the passage from the noncommutative setting to the commutative
setting explicit. Our C*-algebras will be assumed to be unital. When A is a C∗-
algebra, we denote by S (A) the state space of A.

Definition 2.11. — A state on a unital C*-algebra A is called approximately
extremal if it belongs to the weak-* closure of the set of extremal states on A.

Lemma 2.12. — Consider two C*-algebras A ⊂ B. Then every extremal state on
A is the restriction of an approximately extremal state on B.

Proof. — Denote by r : S (B) → S (A) the restriction map. It follows from Hahn–
Banach theorem that r is surjective. Denote by S ⊂ S (B) the set of approximately
extremal states on B. We know that the closed convex hull of r(S ) is r(S (B)) =
S (A). Hence, by Krein–Milman theorem, the closed set r(S ) contains the extremal
points in S (A). This is what we wanted. □

Lemma 2.13. — If B is a C*-algebra and A ⊂ B is a central C∗-subalgebra, then
the restriction to A of an extremal state of B is extremal on A.

Proof. — Take an extremal state ϕ ∈ S (B). We only need to check that ϕ is
multiplicative on A. Take a ∈ A, 0 ⩽ a ⩽ 1. Since a is in the center of B, the
positive linear functional ϕa : x ∈ B 7→ ϕ(ax) is such that 0 ⩽ ϕa ⩽ ϕ. By
extremality of ϕ, it follows that ϕa = λϕ for some scalar λ. Evaluating at 1 gives
λ = ϕ(a), which proves that a belongs to the multiplicative domain of ϕ. Thus ϕ is
multiplicative on A, as desired. □

Lemma 2.14. — Consider a lcsc group G with a closed cocompact subgroup
Q < G and a C*-action on a unital C*-algebra Q ↷ A. Consider the induced
C∗-algebra B := Cb(G,A)Q, together with its G-action by left translation. For
g ∈ G, denote by eg : B → A the evaluation morphism at g and consider the set
S := {ψ ◦ eg | ψ ∈ S (A), g ∈ G} ⊂ S (B). Then

(1) S is weak-∗ closed inside S (B);
(2) Every extremal state on B belongs to S , hence so does every approximately

extremal state;
(3) Every state in S is fixed by some conjugate of the kernel of the action Q↷ A.
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Proof. — Before proving each of these statements, let us prove that S coin-
cides with the subset S ′ ⊂ S (B) consisting of states whose restriction to the
C*-subalgebra Cb(G)Q ≃ C(G/Q) is extremal. It is clear that S ⊂ S ′. Conversely,
take ϕ ∈ S ′.

There exists x ∈ G/Q such that ϕ coincides with the evaluation map at x on
C(G/Q). Write x = gQ for some g ∈ G. Denote by I ⊂ Cb(G,A)Q the kernel of
the evaluation morphism eg : Cb(G,A)Q → A at the point g. By Q-equivariance,
I coincides with the ideal of functions which vanish on the whole coset gQ. Note
that C(G/Q) is in the multiplicative domain of ϕ.

Fix f ∈ I and ε > 0. By continuity of f , we may find a function f0 ∈ C(G/Q)
which is equal to 1 at the point x = gQ, and such ∥ff0∥ < ε. Thus |ϕ(f)| =
|ϕ(f0)ϕ(f)| = |ϕ(f0f)| ⩽ ∥f0f∥ < ε. Since this holds for every ε > 0, we find that
ϕ(f) = 0, and thus, ϕ vanishes on I. So ϕ factors to a state on A via the evaluation
map eg. This implies that ϕ ∈ S , as desired.

(a) Since C(G/Q) is abelian, the set of its extremal states is weak-* closed, equal
to the set of multiplicative characters. So S = S ′ is weak-* closed as well.

(b) By Lemma 2.13, the restriction of an extremal state on B to the central
subalgebra C(G/Q) is still extremal.

(c) Let g ∈ G, ψ ∈ S (A) and ϕ = ψ ◦ eg ∈ S (B). Denote by R the kernel
of the action Q ↷ A. Take f ∈ Cb(G,A)Q and h ∈ gRg−1. Denoting by
r := g−1h−1g ∈ R, we have
ϕ(σh(f)) = ψ

(
f

(
h−1g

))
= ψ(f(gr)) = ψ(σr(f(g))) = ψ(f(g)) = ϕ(f). □

3. Reduction to the commutative setting

Our proof of Theorem 1.5 is split in two halves. The first half is the following
theorem, which simultaneously achieves two goals:

• it reduces to the case where M = L∞(X, ν) is a commutative von Neumann
algebra;

• and similarly to Nevo–Zimmer’s approach, it reduces to the case where the
stabilizer of almost every point of X has positive dimension in G.

The second half will then be to deduce the conclusion of Theorem 1.5 from there.
This will be achieved in Section 4, by adapting the Gauss map trick from [NZ02]
to the general setting of algebraic groups over local fields. In fact, to be able to use
this Gauss map in positive characteristics, one needs to know a bit more than just
positive dimension of point stabilizers.

Theorem 3.1. — Let k be a local field. Let G be an almost k-simple connected
algebraic k-group such that rkk(G) ⩾ 2 and set G = G(k). Let P < G be a minimal
parabolic k-subgroup and set P = P(k). Let M be a G-von Neumann algebra and
E : M → L∞(G/P ) a faithful normal ucp G-map. The following dichotomy holds:

• Either E is G-invariant.
• Or there exists a commutative G-von Neumann subalgebra M0 ⊂ M such

that the action G+ ↷ M0 is non-trivial and moreover, when writing M0 =

ANNALES HENRI LEBESGUE



Charmenability of higher rank arithmetic groups 309

L∞(X, ν), the corresponding nonsingular action G↷ (X, ν) has the following
property: for almost every x ∈ X, the stabilizer Gx < G contains the k-points
of a non-trivial k-split torus of G.

We note that there is no ergodicity assumption for the G-action on M in this
theorem. The rest of this section is devoted to proving Theorem 3.1. To this end,
let us consider our almost simple k-group G with k-rank at least 2, and setting
G := G(k), let us consider a von Neumann action G ↷ M , with a G-equivariant
faithful normal ucp map E : M → L∞(G/P ). Here P = P(k), where P denotes a
minimal parabolic k-subgroup of G.

More generally, we will freely use the notation introduced in Section 2.1.
Let us assume that E is not G-invariant. This means that E(M) is not contained

in the scalars. Since G has rank at least 2, the intersection of all L∞(G/Pθ), for
θ ⊊ ∆, is equal to the scalars inside L∞(G/P ). Thus there exists a proper subset
θ ⊊ ∆ such that the range of E is not contained in L∞(G/Pθ).

For notational simplicity, we write Q := Pθ, U := Vθ, H := Hθ, so that Q = HU
and S := Tθ. We denote by Q and U the opposite parabolic group and its unipotent
radical.

Lemma 3.2. — E is not H-invariant on MU .

Proof. — To prove this, denote by B ⊂ M the maximal compact model for the
U -action. By Lemma 2.1 we note that, as a U -algebra, L∞(G/P ) is isomorphic
with L∞(U) ⊗N0, with N0 := L∞(Q/P ). Moreover in this isomorphism, L∞(G/Q)
identifies with L∞(U) ⊗ 1. So, when thinking only in terms of U -algebras, we may
view E as a ucp map E : M → L∞(U) ⊗N0, the range of which is not contained in
L∞(U) ⊗ 1.

Restricting to compact models, and using Lemma 2.7, we obtain a ucp map
E : B → Cb(U,N0). Since E is normal, we may find b0 ∈ B, u ∈ U , such that
E(b0)(u) is not a scalar inside N0. By equivariance of E, the element b1 := σu−1(b)
satisfies E(b1)(e) /∈ C.

Fix now a torus element s ∈ S such that limn→ +∞ s−nusn = e, for all u ∈ U , and
define a ucp map Es : M → M as a point-ultraweak limit of the maps En

s : x 7→
1
n

∑n
k=1 σsk(x). We note that Es is not normal in general.

Claim. For every b ∈ B, we have Es(b) ∈ MU = BU and (E ◦ Es)(b) ∈ Cb(U,N0)
is the constant function equal to E(b)(e).

For u ∈ U , the sequence (σs−nusn(b) − b)n∈N, converges in norm to 0 and hence so
does the sequence of its Cesaro average. This implies that

∥σu (En
s (b)) − En

s (b)∥ ⩽
1
n

n∑
k=1

∥σs−kusk(b) − b∥ → 0.

So a fortiori the ultraweak limit σu(Es(b)) − Es(b) is 0, proving the first part of the
claim.

As explained in Lemma 2.1, E carries the s-action on M to the diagonal action
on L∞(U) ⊗N0 deduced from the conjugation action s↷ U on the one hand, and
the translation action s ↷ Q/P on the other hand. But since s centralizes H and
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belongs to P , the Levi decomposition Q = HU implies that s acts trivially on Q/P .
So in summary, E ◦ σs = (σs ⊗ id) ◦ E.

Now, for f ∈ Cb(U,N0), the sequence ((σsn ⊗ id)(f))n∈N converges pointwise to
the constant function equal to f(e). By Lebesgue convergence theorem, it converges
a fortiori in the ultraweak topology inherited from the embedding Cb(U,N0) ⊂
L∞(U) ⊗N0. Hence the Cesaro average of this sequence also ultraweakly converges
to f(e). In view of the previous paragraph, in the special case where f = E(b), the
Cesaro average is precisely E ◦En

s (b). Since E is normal, taking ultraweak limits, we
find E ◦ Es(b) = limnE ◦ En

s (b) = E(b)(e), as claimed.
We can now conclude the proof of the lemma as follows. Assume that E is H-

invariant on MU . Then since Q acts ergodically on L∞(G/P ), we conclude that in
fact E maps MU into C. In particular, for the element b1 ∈ B defined above, we
have E(Es(b1)) ∈ C. By the claim, we have E(Es(b1)) = E(b1)(e). This contradicts
the choice of b1. □

Denote by R := SU and R := SU the solvable radical of Q and Q respectively.

Lemma 3.3. — In fact, E is not H-invariant on MR.

Proof. — Consider the non-empty compact convex space

C :=
{
Φ : MU → MU ucp map

∣∣∣E ◦ Φ = E|
MU and Φ is H-equivariant

}
,

with respect to the point-ultraweak topology. Since S centralizes H and acts trivially
on L∞(G/P )U (by Lemma 2.1), we may define an action of S on C by the formula
s · Φ := σs ◦ Φ, for all s ∈ S, Φ ∈ C . This is a continuous affine action. So by
amenability of S, it admits a fixed point Φ. The range of Φ is contained in MR and
E ◦ Φ = E on MU . Since E is not H-invariant on MU , it cannot be H-invariant on
Φ(MU), and a fortiori on MR. □

By Proposition 2.8, we may find a P -von-Neumann algebra N with a P -invariant
state ψ and a normal G-equivariant embedding into the induced algebra M ⊂ Ñ :=
(L∞(G) ⊗N)P , such that E is the restriction to M of Ẽ = id ⊗ψ.

We prove that ÑR is actually contained in a nice G-invariant subalgebra of Ñ .
This unfortunately only holds after cutting down by a suitable projection. In the
commutative setting, this projection is not relevant. This consideration already
appeared in [BH21].

For this, we denote by q ∈ N the support projection of ψ restricted to (NR)′ ∩N .
Since R is normal inside P , q is P -invariant. Set p = 1 ⊗ q ∈ Ñ and observe that
p ∈ Ñ is G-invariant. In view of Lemma 2.1, Ñ = IndGP (N) = IndGQ(IndQP (N)) may
be identified with

L∞(U) ⊗NQ where NQ = IndQP (N) = (L∞(Q) ⊗N)P .

This isomorphism maps ÑR to 1 ⊗NS
Q and the projection p is mapped to 1 ⊗ (1 ⊗ q),

with 1 ⊗ q ∈ NQ.

Lemma 3.4. — The projection p ∈ Z (ÑR) is G-invariant and satisfies Ẽ(p) = 1
and pÑR ⊂ p(L∞(G) ⊗NR)P .
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Proof. — Using the identifications ÑR = 1 ⊗NS
Q and p = 1 ⊗ (1 ⊗ q), to prove the

lemma, it suffices to prove the following claim.
Claim. The projection (1 ⊗ q) ∈ NQ commutes with NS

Q and (1 ⊗ q)NS
Q =

(1 ⊗ q)NR
Q = (1 ⊗ q)(L∞(Q) ⊗NR)P .

Since R = SU is normal in Q and contained in P , the subalgebra NR ⊂ N is
P -invariant and R acts trivially on Q/P . This implies that NR

Q = IndQP (N)R =
IndQP (NR) = (L∞(Q) ⊗NR)P and that the ucp map EQ = id ⊗ψ : NQ → L∞(Q/P )
is R-invariant. Moreover, 1 ⊗ q is precisely the support projection of EQ on the
von Neumann subalgebra (L∞(Q) ⊗ ((NR)′ ∩ N))P = (NR

Q )′ ∩ NQ. So, composing
EQ with any faithful normal state on L∞(Q/P ), we get an R-invariant state ψQ
on NQ such that 1 ⊗ q is the support of ψQ restricted to (NR

Q )′ ∩ NQ. In the GNS
representation of (NQ, ψQ), 1 ⊗ q is the orthogonal projection onto the closed linear
span of (NQ)′NR

QξψQ
.

Let now x ∈ NS
Q and g ∈ U . Pick sn ∈ S such that limn sngs

−1
n = e. For all

a ∈ (NQ)′ and y ∈ NR
Q , n ∈ N, we have∥∥∥(σg(x) − x)ayξψQ

∥∥∥ ⩽ ∥a∥ · ∥(σg(x) − x)y∥ψQ
= ∥a∥ ·

∥∥∥(
σsngs

−1
n

(x) − x
)
y

∥∥∥
ψQ

which tends to 0 as n → ∞. This proves that σg(x(1 ⊗ q)) = σg(x)(1 ⊗ q) = x(1 ⊗ q).
Hence x(1 ⊗ q) ∈ NU

Q ∩ NS
Q = NR

Q . Since 1 ⊗ q commutes with NR
Q , we further get

x(1⊗q) = (1⊗q)x(1⊗q). The same equality for x∗ leads to (1⊗q)x(1⊗q) = (1⊗q)x.
Hence (1 ⊗ q) ∈ (NS

Q)′ and (1 ⊗ q)NS
Q = (1 ⊗ q)NR

Q .
This finishes the proof of the claim and the proof of the Lemma 3.4. □

Keep the notation NQ as in the proof of Lemma 3.4 and observe that Ñ is naturally
identified with IndGQ(NQ) = (L∞(G) ⊗NQ)Q.

We now denote by M1 ⊂ M the G-invariant von Neumann subalgebra generated
by MR. When viewed inside Ñ , M1 commutes with p, because MR commutes with
p and p is G-invariant. By the previous lemma, we have M1p ⊂ (L∞(G) ⊗ qNR

Q )Q.
Since Ẽ(p) = 1 and E is faithful on M1 ⊂ M , the central support of p ∈ M ′

1
inside M1 is 1. Hence the cut-down morphism M1 → M1p is injective. So abusing
with notation, we view M1 as a G-invariant von Neumann subalgebra of (L∞(G) ⊗
N1)Q, with N1 = qNR

Q . We then define the commutative G-invariant von Neumann
subalgebra M0 := Z (M1) ⊂ M .

Lemma 3.5. — The action of G+ ↷M0 is non-trivial and hence M0 is non-trivial.
Proof. — By Lemma 2.1, (L∞(G) ⊗N1)Q is identified with L∞(U) ⊗N1, and the

R = SU -action is explicit in this description. Denote by A1 ⊂ M1 the maximal
compact model for the G-action on M1. It is in particular contained in the maximal
compact model for the U -action, and thus, it is contained inside Cb(U,N1).

Denote by N2 ⊂ N1 the von Neumann subalgebra generated by all the values of
the functions inside A1 ⊂ Cb(U,N1). Then we have A1 ⊂ Cb(U,N2) ⊂ L∞(U) ⊗N2,
so that M1 ⊂ L∞(U) ⊗N2.

Claim 1. — M1 contains 1 ⊗N2.
Take f ∈ A1 and u ∈ U . It suffices to check that 1 ⊗ f(u) ∈ M1. Replacing f by

σu−1(f), we may assume that u = e. Then choose a sequence (sn)n∈N in S such that
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limn s
−1
n vsn = e for all v ∈ U . Then the sequence σsn(f) ∈ A1 converges pointwise

to 1 ⊗ f(e) ∈ Cb(U,N2). So a fortiori, it converges to 1 ⊗ f(e) ultraweakly, which
implies that 1 ⊗ f(e) ∈ M1, as claimed.

So thanks to the claim we have inclusions
1 ⊗N2 ⊂ M1 ⊂ L∞(U) ⊗N2.

In particular, 1 ⊗ Z (N2) ⊂ M0 ⊂ L∞(U) ⊗ Z (N2).
Claim 2. — M1 ̸= 1 ⊗N2.
Indeed, otherwise U would act trivially on M1. By Tits’ simplicity theorem [Tit64],

this would imply that G+ itself acts trivially on M1. So in this case E would be
G+-invariant on M1. Since G+ acts ergodically on G/P , we would conclude that E
is in fact G-invariant on M1, contradicting Lemma 3.3. This proves Claim 2.

To conclude the lemma, it suffices to prove that U acts non-trivially on M0. Let
us assume the contrary and derive a contradiction. We could do this by combining
a result of Ge-Kadison from [GK96] and a direct integral argument as it was done
in [BH21]; we will provide a different argument, not involving direct integrals.

If U acts trivially on M0, then M0 = 1 ⊗ Z (N2). Denote by Φ : N2 → Z (N2)
a proper normal conditional expectation. Here proper means that Φ(x) belongs to
the ultraweak closure of {uxu∗ | u ∈ U (N2)} for all x ∈ N2. Such a conditional
expectation exists by [GK96, Theorem C]. Because Φ is proper, the map id ⊗Φ :
L∞(U) ⊗ N2 → L∞(U) ⊗ Z (N2) maps M1 into M1 ∩ (L∞(U) ⊗ Z (N2)) = M0 =
1 ⊗ Z (N2).

Take a normal faithful state ψ on Z (N2), and denote by ϕ := ψ ◦ Φ. Then ϕ is
faithful on Z (N2). Moreover, (id ⊗ϕ)(M1) ⊂ (id ⊗ψ)(1 ⊗ Z (N2)) = C.

Claim 3. — The set Λ := {aϕb | a, b ∈ N2} is norm dense in (N2)∗.
The annihilator of Λ in N2 is a weak-* closed two sided ideal of N2, hence of the

form zN2 for some z ∈ Z (N2). Since ϕ is faithful on Z (N2) we must have z = 0.
So the claim follows from Hahn–Banach theorem.

Since M1 contains 1 ⊗ N2, we find that (id ⊗ψ′)(M1) = C, for every ψ′ ∈ Λ.
Hence this also holds for every ψ′ ∈ (N2)∗. It follows from [GK96, Theorem B] that
M1 = 1 ⊗N2. This contradicts Claim 2; the proof of the Lemma 3.5 is complete. □

Denote by A0 ⊂ M0 the maximal compact model for the G-action. and denote by
X the Gelfand spectrum of A0, so that A0 ≃ C(X). Then M0 = L∞(X, ν) for some
Borel measure ν on X(2) .

Lemma 3.6. — Every x ∈ X is fixed by a conjugate of the torus S.

Proof. — We want to show that every extremal state on A0 is fixed by some
conjugate of S. We note that A0 is naturally embedded in the maximal compact
model B0 of the G-von Neumann algebra (L∞(G) ⊗N1)Q. By Lemma 2.12, we know
that every extremal state on A0 is the restriction to A0 of an approximately extremal
state on B0. Since the embedding A0 ⊂ B0 is G-equivariant, all we have to do is
to check that every approximately extremal state on B0 is fixed by some conjugate
of S.
(2)We can require that ν is a probability measure if we replace M0 by a G-invariant separable
subalgebra on which the G+-action is still non-trivial.
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By Lemma 2.10, we know that B0 is equal to Cb(G,C)Q, where C ⊂ N1 is the
maximal compact model for the Q-action. Since the torus S is contained in the
kernel of the action Q↷ C, the result follows from Lemma 2.14. □

So M0 = L∞(X, ν) satisfies all the desired properties, which ends the proof of
Theorem 3.1.

4. Algebraic factors

Whenever X is a standard Borel space, we denote by Prob(X) the space of all
Borel probability measures on X. A standard Borel space (X, ν) endowed with a
Borel probability measure is called a standard probability space. All probability
spaces we consider are assumed to be standard. Recall that for any lcsc group G,
a Borel probability measure µ ∈ Prob(G) is said to be admissible if the following
three conditions are satisfied:

(1) µ is absolutely continuous with respect to the Haar measure;
(2) supp(µ) generates G as a semigroup;
(3) supp(µ) contains a neighborhood of the identity element.

In this section, we let k be a local field and G an algebraic k-group which is
assumed to be connected and absolutely almost simple (in particular, we make
no rank assumption in this section). We will use the notation from Section 2.1.
We consider the central isogenies π̃ : G̃ → G and π̄ : G → Ḡ, where G̃ and Ḡ
denote the simply connected cover and adjoint quotient of G correspondingly, and
let π = π̄ ◦ π̃ : G̃ → Ḡ.

Our goal is to prove the following theorem.
Theorem 4.1. — Assume G is absolutely almost simple. Let µ be an admissible

probability measure on G and let (X, ν) be an ergodic (G, µ)-stationary space. If for
a.e. x ∈ X the stabilizer Gx contains the k-points of a non-trivial split torus in G,
then exactly one of the following two options holds.

• The measure ν is G-invariant and there exists an almost everywhere defined
measurable G-map G/G+ → X.

• The measure ν is not G-invariant and there exists a proper parabolic k-
subgroup Q < G and an almost everywhere defined measurable G-map
X → (G/Q)(k).

Our proof of Theorem 4.1 relies on some results which might be of independent
interest in the theory of algebraic groups over local fields. It is a general fact that
non-discrete closed subgroups of G “tend to be algebraic”. In Proposition 4.3 we
make this vague statement more precise. In order to prove this over a local field
of arbitrary characteristic we use the above assumption that the group contains
the k-points of a split torus, but we comment here that this assumption could be
dramatically relaxed in most situations. However, we choose not to elaborate further
on this point here. Proposition 4.3 implies Theorem 4.4, which is a non-stationary
version of Theorem 4.1. Proposition 4.5 describes cocompact algebraic subgroups of
G and Proposition 4.6 uses the latter to describe stationary measures on G-algebraic
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varieties. In turn, Proposition 4.6 is used to deduce Theorem 4.1 from Theorem 4.4.
We note that the proofs below are sometimes intricate, due to phenomena of positive
characteristic.

For every closed subfield of finite index, k0 < k, we may perform restriction of
scalars from k to k0 and obtain a k0-algebraic group, denoted Rk0(G), such that
Rk0(G)(k0) is naturally isomorphic to G. Therefore, any given subgroup L < G may
be viewed as a subgroup of Rk0(G)(k0) and we may consider the Zariski closure of
L in Rk0(G). We will use freely the common abuse of notation, and call the Zariski
closure of L in Rk0(G) its k0-Zariski closure in G. In particular, we will say that L
is k0-Zariski dense in G if it is Zariski dense in Rk0(G).

In order to formulate properly Proposition 4.3 we will need the following lemma
that, in particular, assigns to certain subgroups L < G subfields kL < k.

Lemma 4.2. — Assume k is a non-Archimedean local field and consider a closed
subgroup L < G which is Zariski dense in G. Then there exists a closed subfield
of finite index kL < k, an absolutely simple adjoint algebraic kL-group H̄ and a
k-isogeny ϕ̄ : H̄k → Ḡ which has nowhere vanishing derivatives such that the closure
of the derived subgroup π̃−1(L ∩ U)′ is the image under ϕ̃ : H̃k → G̃ of an open
subgroup of H̃(kL) < H̃(k) = H̃k(k).

Here H̄k and H̃k stand for the k-groups obtained from H̄ and H̃ by extending the
scalars from kL to k, where H̃ is the simply connected cover of H, π′ : H̃ → H̄ the
corresponding central kL-isogeny and ϕ̃ is the pull back of ϕ along π′.

Proof. — Using van Dantzig’s Theorem, we choose a compact open subgroup
U of the totally disconnected locally compact group G = G(k) and note that
L ∩ U < G is Zariski dense by [BF20, Lemma 7.5], as it is commensurated by L.
We are thus able to apply [Pin98, Theorem 0.2(a)] to the Zariski dense compact
subgroup π̄(L ∩ U) < Ḡ(k) and deduce that there exists a closed subfield of finite
index kL < k, an absolutely simple adjoint algebraic kL-group H̄ and a k-isogeny
ϕ̄ : H̄k → Ḡ which has nowhere vanishing derivatives such that the closure of the
derived subgroup π̃−1(L ∩ U)′ is the image under ϕ̃ : H̃k → G̃ of an open subgroup
of H̃(kL) < H̃(k) = H̃k(k). □

The subfield kL < k is independent of the choice of the compact open subgroup
U < G by [Pin98, Theorem 0.2(b)] and commensurability. We thus get a well defined
G-equivariant map L 7→ kL from the space of closed Zariski dense subgroups of G
to the space of closed subfields of finite index of k.

Proposition 4.3. — Assume G is absolutely almost simple. Let L < G be a
proper closed subgroup which contains the k-points of a non-trivial split torus in G
and does not contain G+. Then there exists a closed subfield of finite index k0 < k
such that L is not k0-Zariski dense.

We obtain the following more precise statement.
• If L is not Zariski dense in G, then we can clearly take k0 = k.
• If L is Zariski dense in G, then in case k is Archimedean, we can take k0 = R.

Otherwise, we can take k0 = kL, where kL is the subfield given in Lemma 4.2,
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unless the characteristic of k is 2 or 3, in which case we can take either k0 = kL
or k0 = F (k), where F : k → k is the Frobenius endomorphism.

Proof. — We assume as we may that L is Zariski dense in G. Note that by [Mar91,
Theorem I.2.3.1(a) and Proposition I.1.5.5] we have that G+ = π̃(G̃(k)) and we
recall that this is a closed, cocompact subgroup. We set G̃ = G̃(k), Ḡ = Ḡ(k),
Ḡ+ = π(G̃), L̃ = π̃−1(L) and L̄ = π̄(L), thus L̃ and L̄ are Zariski dense in G̃ and Ḡ
correspondingly. Since the restriction of scalar functor applied to a central isogeny
is a central isogeny, it is enough to show that L̄ is not k0-Zariski dense in Ḡ. We
proceed to show that.

In case k is Archimedean the proof is quite standard: L̄ is not R-Zariski dense
in Ḡ, as it is contained in the stabilizer of the Lie-algebra of L in the real adjoint
representation of G. Here we consider G as a real Lie group and use the fact that
G+ is the identity connected component of G as such, thus the Lie algebra of L
is a non-trivial sub Lie-algebra of the Lie-algebra of G, and in particular it is not
G-invariant, as the adjoint representation is irreducible.

From now on we will assume as we may that k is non-Archimedean and consider
the field kL given in Lemma 4.2. We will show that if kL ⪇ k is a proper subfield
then L̄ is not kL-Zariski dense in Ḡ and if kL = k then necessarily the characteristic
of k is 2 or 3 and L̄ is not F (k)-Zariski dense in Ḡ. This will finish the proof.

We fix a compact open subgroup U < G and consider, along with the field kL,
the absolutely simple adjoint algebraic kL-group H̄ and the k-isogeny ϕ̄ : H̄k → Ḡ
which has nowhere vanishing derivatives such that π̃−1(L ∩ U)′ is the image under
ϕ̃ : H̃k → G̃ of an open subgroup of H̃(kL) < H̃(k) = H̃k(k). We set M = L ∩ U ,
M̄ = π̄(M) < L̄ and M̃ = π̃−1(M) < L̃. Note that π̃−1(L ∩ U)′ = M̃ ′ is the image
under ϕ̃ : H̃k → G̃ of an open subgroup of H̃(kL).

We now claim that if kL ⪇ k is a proper subfield then L̄ is not kL-Zariski dense in
Ḡ. By contradiction, assume that kL ⪇ k and L̄ is kL-Zariski dense in Ḡ. Note that
M̄ is a compact open subgroup of L̄, thus L̄ commensurates M̄ . By the kL-Zariski
density assumption on L̄, we get by [BF20, Lemma 7.5] that M̄ is kL-Zariski dense
in Ḡ. Thus by the kL-simplicity of Ḡ we deduce that M̄ ′ is kL-Zariski dense in Ḡ
as well. However, since kL ⪇ k we get that ϕ̃−1(M̃ ′) is not kL-Zariski dense in H̃k,
as the kL-points of its kL-Zariski closure are contained in H̃(kL) which is a proper
subgroup of H̃(k) = H̃k(k) and it follows that M̄ ′ is not kL-Zariski dense in Ḡ. This
gives the desired contradiction.

From now on we assume as we may that kL = k and argue to show that necessarily
the characteristic of k is 2 or 3 and L̄ is not F (k)-Zariski dense in Ḡ. We have
that ϕ̃−1(L̃) is open in H̃ = H̃(k), as it contains ϕ̃−1(M̃ ′), and it is non-compact,
as it contains the k-points of the ϕ̃ ◦ π̃-preimage of a split torus of G. It follows by
Howe–Moore Theorem that ϕ̃−1(L̃) = H̃ (see [HM79, Theorem 5.1]). We conclude
that ϕ̄ is not an isomorphism. Indeed, if it was then also ϕ̃ was an isomorphism and
we would get G+ = π̃(G̃) = π̃ ◦ ϕ̃(H̃) = π̃(L̃) < L, which contradicts our assumption
that L does not contain G+. We are thus in a very special situation where ϕ̄ is
a k-isogeny which is not an isomorphism which has nowhere vanishing derivatives.
Such non-standard isogenies are discussed in [Pin98, §1]. They appear only in a
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few special cases: either the characteristic of k is 3 and the root systems of Ḡ and
H̄ are of type G2 or the characteristic of k is 2 and the root systems of Ḡ and H̄
are of types Bn, Cn or F4 and Cn, Bn or F4 correspondingly. In particular, if the
characteristic of k is not 2 or 3 then such non-standard isogenies do not exist. We
thus have that the characteristic of k is 2 or 3 and the types of Ḡ and H̄ are as
above and we are left to show that L̄ is not F (k)-Zariski dense.

By [Pin98, Propositions 1.6 and 1.7] there exists an absolutely simple adjoint
k-group H̄♯ and isogenies

ψ : H̄ → H̄♯, ψ♯ : H̄♯ → H̄F and χ : H̄♯ → Ḡ

such that ϕ̄ = χ ◦ ψ and ψ♯ ◦ ψ = F ∗ : H̄ → H̄F , where H̄F is the k-group obtained
from the k-group H̄ by extending scalars via F : k → k and F ∗ is the Frobenius
isogeny. Setting θ = ψ♯ ◦ χ−1 we have F ∗ = ψ♯ ◦ ψ = ψ♯ ◦ χ−1 ◦ χ ◦ ψ = θ ◦ ϕ̄ and
thus obtain the following diagram which presents some of the groups and isogenies
relevant to our discussion.

(4.1)
H̃ G̃

H̄ Ḡ H̄F

ϕ̃

π′ π

ϕ̄

F ∗

θ

We note that, by the construction of ψ in [Pin98, Propositions 1.6], we have that
ψ(H̄) is a proper subgroup of H̄♯ = H̄♯(k), thus ϕ̄(H̄) = χ ◦ ψ(H̄) is a proper
subgroup of Ḡ = χ(H̄♯). We claim further that ϕ̄(H̄) is not F (k)-Zariski dense in
Ḡ. Applying θ, it is enough to show that F ∗(H̄) = θ ◦ ϕ̄(H̄) is not F (k)-Zariski
dense in θ(Ḡ). Since θ is injective, it is thus enough to show that the group F ∗(H̄)
equals the group of F (k)-points of its F (k)-Zariski closure in H̄F . Therefore, we
need to understand RF (k)(H̄F ) and the image of RF (k)(F ∗) in it. We construct the
extension of scalars of H̄ via F : k → k in two stages: we define H̄F (k) to be the
F (k)-group obtained by extending the scalars of H̄ via F : k → F (k) and we view
H̄F as the k-group obtained by extending the scalars of H̄F (k) via the inclusion
F (k) → k. The adjunction of restriction and extension of scalars functors provides a
canonical inclusion, called the unit map, of F (k)-groups H̄F (k) → RF (k)(H̄F ) and we
identify H̄F (k) with its image in RF (k)(H̄F ). By the definition of F ∗, we have that the
image of RF (k)(H̄) under RF (k)(F ∗) is H̄F (k), the map being the application of F on
the k-coordinates. In particular, on the level of F (k)-points, RF (k)(F ∗) provides an
isomorphism RF (k)(H̄)(F (k)) ≃ H̄(k) ≃ H̄F (k)(F (k)). We conclude that the F (k)-
Zariski closure of F ∗(H̄) is H̄F (k) and its group of F (k)-points is again F ∗(H̄). This
finishes the proof of the claim that ϕ̄(H̄) is not F (k)-Zariski dense in Ḡ.

We denote N̄ = π◦ϕ̃(H̃) = ϕ̄◦π(H̃) and conclude that it is not F (k)-Zariski dense in
Ḡ, as N̄ < ϕ̄(H̄). Since ϕ̃−1(L̃) = H̃, we have that ϕ̃(H̃) < L̃ < π−1(L̄), thus N̄ < L̄.
We claim that N̄ is normal in L̄. Denoting H̄ = H̄(k) and H̄+ = π′(H̃) < H̄, we have
that H̄+ is normal in H̄. Thus N̄ = ϕ̄◦π′(H̃) = ϕ̄(H̄+) is normal in ϕ̄(H). Therefore,
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we will be done by showing that L̄ < ϕ̄(H̄). To show this, we fix ḡ ∈ L̄ and argue
to show that ḡ ∈ ϕ̄(H̄). We will denote by ι = innḡ the corresponding conjugation
automorphism of Ḡ and we will denote by ι̃ the corresponding k-automorphism of G̃.
Since (ι̃ ◦ ϕ̃)−1(ι̃(M̃ ′)) = ϕ̃−1(M̃ ′) is open in H̃(k), we get that the triple (k, H̄, ι ◦ ϕ̄)
satisfies [Pin98, Theorem 0.2(a)] for the compact group ι(M̄) as well as for its finite
index subgroup ι(M̄) ∩ M̄ (we remind the reader that M̄ is commensurated in L̄).
Thus, we obtain by the uniqueness statement of [Pin98, Theorem 0.2(b)] that there
exists a k-automorphism α of H̄ such that ι ◦ ϕ̄ = ϕ̄ ◦ α. However, H̄ is an adjoint
group and its Dynkin diagram is of type Bn, Cn, F4 or G2, thus have no non-trivial
automorphism. Therefore, every automorphism of H̄ is inner and we conclude that
α = innh̄ for some h̄ ∈ H̄. We thus get

innḡ ◦ϕ̄ = ι ◦ ϕ̄ = ϕ̄ ◦ α = ϕ̄ ◦ innh̄ = innϕ̄(h̄) ◦ϕ̄

and therefore innḡ = innϕ̄(h̄) on Ḡ, as ϕ̄ is dominant. Since Ḡ is adjoint we conclude
that indeed ḡ = ϕ̄(h̄) ∈ ϕ̄(H̄). This finishes the proof of the claim that N̄ is normal
in L̄.

Since N̄ is not F (k)-Zariski dense in Ḡ and it is normal in L̄, we conclude by
F (k)-simplicity that L̄ is not F (k)-Zariski dense in Ḡ. This finishes the proof of
Proposition 4.3. □

Theorem 4.4. — Assume G is absolutely almost simple. Let X be an ergodic
G-space. If for a.e. x ∈ X the stabilizer Gx contains the k-points of a non-trivial
split torus in G, then exactly one of the following two options holds.

• There exists an almost everywhere defined measurable G-map G/G+ → X.
• There exists an infinite closed subfield k0 < k, a proper k0-algebraic subgroup

H < Rk0(G) and an almost everywhere defined measurable G-map X →
(Rk0(G)/H)(k0).

Proof. — If G+ is in the kernel of the G-action on X then X is an ergodic G/G+-
space and by the compactness of G/G+ the action is in fact transitive. In that case
the first bullet clearly holds. We thus assume from now on that G+ is not contained
in the kernel of the G-action on X and argue to show that the second bullet holds.

We let Sub(G) be the space of closed subgroup of G endowed with the Chabauty
topology and consider the stabilizer map

X → Sub(G), x 7→ Gx,

taking a point in x to its stabilizer in G. This map is measurable by [AM66, Chap-
ter II, Proposition 2.3]. By ergodicity we deduce that on a full measure subset of
X, G+ is not contained in Gx. Without loss of the generality, we will assume that
this is the case for every x ∈ X. Similarly, we assume that for every x, Gx is a
closed subgroup of G which contains the k-points of a non-trivial split torus in G.
By Proposition 4.3 we get that for every x ∈ X there exists a closed subfield of finite
index kx < k such that Gx is not kx-Zariski dense.

Next, we claim that there exists a single closed subfield of finite index k0 < k such
that for almost every x ∈ X, Gx is not k0-Zariski dense in G. If k is Archimedean
this follows by setting k0 = R. We now assume that k is non-Archimedean and prove

TOME 6 (2023)



318 U. BADER, R. BOUTONNET & C. HOUDAYER

this claim. We use [Pin98, Proposition 1.11] to fix a k-representation ρ of G which
is a non-constant absolutely irreducible subquotient of the adjoint representation.
We consider the map Sub(G) → Sub(k) taking a closed subgroup of G to the closed
subfield of k generated by all traces of all ρ(g), where g ranges over all elements of
all the compact open subgroups of L. As in the proof of [GL18, Proposition 5.4], this
map is Borel measurable. It is clearly G-invariant map. We conclude, by ergodicity,
that the composed map X → Sub(G) → Sub(k) is essentially constant. We assume
as we may that this map is actually constant and denote its value by k1. We note
that by [BF20, Lemma 7.5], for every x ∈ X, every compact open subgroup of
Gx is Zariski dense in G. From [Pin98, Proposition 0.6(a)] we conclude that if the
characteristic of k is not 2 or 3 then for every x ∈ X, k1 = kGx and we conclude
from Proposition 4.3 that in this case Gx is not k1-Zariski dense, which proves the
claim upon setting k0 = k1. We assume now that the characteristic of k is 2 or 3.
By Proposition 4.3 we have that for every x ∈ X, Gx is not F (kGx)-Zariski dense.
By [Pin98, Proposition 0.6(a)] we have that for every x ∈ X, F (kGx) < k1 < kGx .
From k1 < kGx we get that for every x ∈ X, Gx is not F (k1)-Zariski dense and from
F (kGx) < k1 we get that k1, thus also F (k1), is a closed subfield of finite index in k.
The claim now follows by setting k0 = F (k1).

From now on we will identify G with the group of k0-points in the restriction of
scalars of G from k to k0, namely Rk0(G)(k0). We consider the k0-algebraic group
Rk0(G) and the corresponding Zariski closure map,

z : Sub(G) → Sub(G), H 7→ H̄Z(k0),

taking a closed subgroup of G to the group of k0-points of its Zariski closure in
Rk0(G). Noting that Rk0(G) is k0-almost simple, we have that the only normal
proper k0-subgroups of Rk0(G) are central, (hence finite). We conclude that the map
X → Sub(G), x 7→ z(Gx) is not essentially constant.

Next, we fix a faithful k0-linear representation Rk0(G) → SLn and consider Rk0(G)
as a subvariety of the space of matrices, which we identify with the vector space kn2

0 .
We thus identify Sub(G) as a closed subspace of Cl(kn2

0 ), the space of closed subsets
of kn2

0 . We set A = k0[x1, . . . , xn2 ] and consider the map taking x ∈ X to the ideal
Ix ◁ A consisting of the polynomials vanishing on Gx < kn

2
0 . We conclude that this

map is not essentially constant.
We denote by Ai < A the linear subspace consisting of polynomials of degree

bounded by i. We consider the “chopping map” σi : A → Ai, which takes poly-
nomial to the sum of its monomials of degree bounded by i. We let Gr(Ai) =
∪dim(Ai)
d=0 Gr(d,Ai) be the full Grassmannian of Ai and consider the map

ψ : X → Gr(Ai), x 7→ σi(Ix).

This is a composition of the stabilizer map X → Cl(kn2
0 ), x 7→ Gx and the map

Cl(X) → Gr(Ai), taking F ⊂ kn
2

0 to the image under σi of its annihilating ideal. As
noted above, the first map is measurable by [AM66, Chapter II, Proposition 2.3].
The second map is measurable by [GL18, Proposition 4.2]. We conclude that ψ is
measurable as well. Picking i large enough we make sure that ψi is not essentially
constant and we set E = Ai and ψ = ψi. By ergodicity, we conclude that the
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image of ψ is contained in Gr(d,E) for some 0 < d < dim(E). We let V be the
k0-algebraic variety corresponding to Gr(d,E). By [BF20, Proposition 4.2] we get a
G-map ϕ : X → (Rk0(G)/H)(k0), for some k0-algebraic subgroup H < Rk0(G), such
that X → V(k0) factors via ϕ. As ψ is not essentially constant, we conclude that H
is a proper k0-subgroup of Rk0(G). This finishes the proof of Theorem 4.4. □

Proposition 4.5. — Let G be a k-isotropic almost k-simple connected algebraic
k-group and H a k-subgroup of G. Then either H0, the identity component of H, is
reductive or there exists a proper parabolic k-subgroup Q < G such that H < Q.
If H is a proper subgroup of G and H(k) is cocompact in G(k) then H0 is not
reductive, thus the second option holds.

Proof. — Assume first that H0 is not reductive, thus its unipotent radical U is
non-trivial and H is contained in its normalizer. By [BT71, Corollary 3.9(ii)], applied
over k̄, the algebraic closure of k, there exists a proper parabolic subgroup Q < G
which contains H. We need to show that Q is defined over k. This follows directly
from [BT71, Corollary 3.9(ii)] in case U is defined over k, which is always the case
if k is of characteristic 0. For the general case, we use [Bor91, Corollary 18.8] to
deduce that G is split over ks, the separable closure of k in k̄, thus Q is defined
over ks. By the fact that H is defined over k, we get that U is stable under all
automorphisms of k̄ which preserve k, Autk(k̄). Applying [BT71, Corollary 3.9(iii)]
we have that Q is invariant under Autk(k̄) as well. Identifying Autk(k̄) ≃ Autk(ks)
with the Galois group of ks over k, we conclude by [Bor91, Theorem AG14.4] that
indeed, Q is defined over k.

Next we will assume that H is a proper subgroup of G, H0 is reductive and
H = H(k) is cocompact in G. We will argue to show a contradiction. By the main
result of [Ric77] and [Hab78] we have that the variety G/H is affine. We note that
G(k) is Zariski dense in G, thus its image B = G(k)/H(k) is Zariski dense in
G/H. We conclude that StabG(B̄Z) = G and thus N = FixG(B̄Z) is normal in G.
By the k-almost simplicity of G, we conclude that N is central in G, hence finite.
Using [BDL17, Proposition 4.10] we conclude that G is compact. It follows that G
is k-anisotropic, which gives the desired contradiction. □

Proposition 4.6. — Let G be a k-isotropic almost k-simple connected algebraic
k-group. Let H < G be a k-subgroup such that (G/H)(k) admits a µ-stationary
probability measure ν with respect to some admissible probability measure µ on G.
Then there exists a proper parabolic k-subgroup Q < G such that H < Q.

Proof. — Set G = G(k) and H = H(k). Let P < G be a minimal parabolic k-
subgroup and set P = P(k). By [BS06, Corollary 5.2] there is a µ-stationary measure
ν0 on G/P such that (G/P, ν0) forms the Furstenberg-Poisson boundary of (G, µ).
By [BS06, Corollary 2.16] we have a “boundary map” β : G/P → Prob((G/H)(k))
such that ν is the barycenter of β∗ν0. We denote by ξ the image of the base coset
under β. Thus, ξ is a P -invariant probability measure on (G/H)(k).

Next, we apply [Sha99, Theorem 1.1] (see also [BDL17, Proposition 1.9]) for the
k-algebraic group P to find a normal k-subgroup P0 < P such that P/P0 is compact,
where P0 = P0(k), such that the measure ξ is supported on the variety of P0-
fixed points in G/H. In particular, we deduce that this variety is non-empty. Upon
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conjugating H, we may thus assume that P0 < H. Since P0 < G is cocompact, as
both P0 < P and P < G are, it follows that H < G is cocompact. We are now done,
by Proposition 4.5. □

Proof of Theorem 4.1. — We consider the dichotomy provided by Theorem 4.4.
If X is a factor of G/G+ then it carries an invariant probability measure, the image
of the Haar measure of G/G+, which must coincide with ν by ergodicity. Then we
get the first case of Theorem 4.1. We thus assume as we may that there exists an
infinite closed subfield k0 < k, a proper algebraic k0-subgroup H < Rk0(G) and
an almost everywhere defined measurable G-map X → (Rk0(G)/H)(k0). We endow
(Rk0(G)/H)(k0) with the pushforward stationary measure. Using Proposition 4.6
we find a proper parabolic k0-subgroup Q0 < Rk0(G) such that H < Q0. We thus
obtain a k0-quotient map Rk0(G)/H → Rk0(G)/Q0 and the resulting composition

X → (Rk0(G)/H)(k0) → (Rk0(G)/Q0)(k0).
By the discussion in [Spr98, §16.2.6] there exists a parabolic k-subgroup Q < G such
that Q0 = Rk0(Q). Since (Rk0(G)/Q0)(k0) = Rk0(G)(k0)/Q0(k0) = G(k)/Q(k) =
(G/Q)(k), we get the desired map X → (G/Q)(k). The proof is complete, noting
that the space (G/Q)(k) admits no G-invariant measure, as any such measure must
be supported on G-invariant points. □

5. Proofs of the main results

5.1. Uniqueness of equivariant measurable maps

In this subsection, we prove a useful fact regarding uniqueness of equivariant
measurable maps. Following [BFGW15], whenever G is a locally compact second
countable group, (X, ν) a standard probability G-space and Z a standard Borel
G-space, we denote by MapG(X,Z) the set of all equivalence classes of measurable
G-maps ζ : X → Z.

Proposition 5.1. — Let k be a local field. Let G be a k-isotropic almost k-simple
connected algebraic k-group. Let P < Q < G be proper parabolic k-subgroups so
that P < G is a minimal parabolic k-subgroup. Endow the homogeneous space
(G/P)(k) = G(k)/P(k) with its unique G(k)-invariant measure class and denote by
p : G(k)/P(k) → G(k)/Q(k) the canonical G(k)-map.

Then for every lattice Γ < G(k), we have

MapG(k)

(
G(k)/P(k),Prob(G(k)/Q(k))

)
=

{
x 7→ δp(x)

}
= MapΓ

(
G(k)/P(k),Prob(G(k)/Q(k))

)
.

Proof. — Denote by p∗ : Prob(G(k)/P(k)) → Prob(G(k)/Q(k)) the pushforward
G(k)-map.

Firstly, assume that rkk(G) = 1. Then Γ ↷ G(k)/P(k) is a convergence action in
the sense of [BF14, Section 3] and [BF14, Theorem 3.2] implies that G(k)/P(k) →
Prob(G(k)/Q(k)) : x 7→ δp(x) is the essentially unique measurable Γ-map (resp.
G(k)-map).
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Secondly, assume that rkk(G) ⩾ 2. In this paragraph, we explain a standard
procedure that will allow us to replace G by its simply connected cover G̃ and assume
in the next paragraph that G is simply connected. Denote by G̃ the simply connected
cover of G and by π̃ : G̃ → G the corresponding central isogeny. Following [Mar91,
Theorem I.2.3.1], we have G(k)+ = π̃(G̃(k)) and G(k)/G(k)+ is a compact abelian
group of finite exponent. Since rk(G) ⩾ 2, G(k) has property (T) and so does
its lattice Γ < G(k). In particular, Γ is finitely generated. This further implies
that the image of Γ in G(k)/G(k)+ is finite and so Γ+ := Γ ∩ G(k)+ has finite
index in Γ. So it is a lattice in both G(k) and G(k)+. Observe that it suffices to
prove that G(k)/P(k) → Prob(G(k)/Q(k)) : x 7→ δp(x) is the essentially unique
measurable Γ+-map. Therefore, we may pull back the whole situation in G̃. We then
use the discussion from [BBHP22, Example 2.14]. Set P̃ = π̃−1(P) and Q̃ = π̃−1(Q)
and Γ̃ = π̃−1(Γ). Note that P̃ < Q̃ < G̃ are proper parabolic k-subgroups and
P̃ < G̃ is a minimal parabolic k-subgroup by [Bor91, Theorem 22.6(i)]. Moreover,
as G̃(k)-spaces, we may identify G̃(k)/P̃(k) with G(k)/P(k) and G̃(k)/Q̃(k) with
G(k)/Q(k). Since ker(π̃ : G̃(k) → G(k)+) is finite by [Mar91, Corollary 2.3.2(a)], it
follows that Γ̃ < G̃(k) is a lattice. It remains to show that the map

G̃(k)/P̃(k) → Prob
(
G̃(k)/Q̃(k)

)
: gP̃(k) 7→ δgQ̃(k)

is the essentially unique measurable Γ̃-map. Thus, from now on and for the rest of
the proof, we may assume that G = G̃ is simply connected.

Following [Sha99, Proposition 1.4], we denote by P0 the k-discompact radical of P
in the sense that P0 < P is the maximal k-subgroup with no non-trivial k-compact
image. Moreover, P0 ◁ P is a normal k-subgroup and (P/P0)(k) is compact. For
notational convenience, set G = G(k), Q = Q(k), P = P(k) and P0 = P0(k).
Denote by p0 : G/P0 → G/P : gP0 7→ gP the canonical factor G-map. Since P0 < G
is noncompact, Howe–Moore theorem (see [HM79, Theorem 5.1]) implies that the
nonsingular action Γ ↷ G/P0 is ergodic.

Let Φ : G/P → Prob(G/Q) be any measurable Γ-map. Then Φ0 = Φ ◦ p0 :
G/P0 → Prob(G/Q) is a measurable Γ-map. By [BFGW15, Theorem 4.1] (whose
proof carries over to the positive characteristic case thanks to [BDL17, Proposition 1.9
and Corollary 1.10]), Φ0 is a G-map. Since Φ0 = Φ ◦ p0 and since p0 : G/P0 → G/P
is a factor G-map, this further implies that Φ is a G-map.

Fix an admissible Borel probability measure µ ∈ Prob(G). Then [BS06, Corol-
lary 5.2] implies that there exists a unique µ-stationary Borel probability measure
ν ∈ Prob(G/P ) that isG-quasi-invariant and such that (G/P, ν) is the (G, µ)-Poisson
boundary. Since any µ-stationary Borel probability measure on G/Q is G-quasi-
invariant and since G↷ G/Q is transitive whence ergodic, η = p∗(ν) ∈ Prob(G/Q)
is the unique µ-stationary Borel probability measure on G/Q (see e.g. [BS06, Propo-
sition 2.6]). Then [BS06, Corollary 2.17] further implies that Φ = {x 7→ δp(x)}. □

Remark 5.2. — Let G be an almost k-simple connected algebraic k-group such
that rkk(G) ⩾ 2. Let Γ < G(k) be a lattice. We point out that in this setting,
Margulis’ factor theorem [Mar91, Theorem IV.2.11], which is stated when G is
simply connected, actually holds without assuming that G is simply connected.
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Indeed, keep the same notation as in the statement and the proof of Proposition 5.1.
Let ρ : G(k)/P(k) → X be a measurable Γ-map. As in the proof of Proposition 5.1,
since G̃(k)/P̃(k) ∼= G(k)/P(k) as G̃(k)-spaces, we can regard ρ : G̃(k)/P̃(k) → X as
a measurable Γ̃-map, where Γ̃ = π̃−1(Γ+) and Γ+ = Γ ∩ G(k)+. Applying Margulis’
factor theorem [Mar91, Theorem IV.2.11] to the lattice Γ̃ < G̃(k), there exist a
parabolic k-subgroup P̃ < Q̃ < G̃ and a Γ̃-equivariant measurable isomorphism
ψ : X → G̃(k)/Q̃(k). Then we can regard ψ : X → G(k)/Q(k) as a Γ+-equivariant
measurable isomorphism where Q = π̃(Q̃). By the proof of Proposition 5.1, ψ ◦ ρ :
G(k)/P(k) → G(k)/Q(k) is the canonical factor map and so is Γ-equivariant. Since
ρ : G̃(k)/P̃(k) → X is a factor Γ-map, it follows that ψ : X → G(k)/Q(k) is a
Γ-equivariant measurable isomorphism.

Remark 5.3. — Let G be an almost k-simple connected algebraic k-group such
that rkk(G) ⩾ 2. Let P < Q < G be proper parabolic k-subgroups so that
P < G is a minimal parabolic k-subgroup. Let Γ < G(k) be a lattice. Set H = Γ
or H = G(k). Let M be an ergodic H-von Neumann algebra and E : M →
L∞(G(k)/P(k)) a faithful normal ucp H-map. Let ι : L∞(G(k)/Q(k)) ↪→ M
be a H-equivariant unital normal embedding. Then Proposition 5.1 implies that
E ◦ ι : L∞(G(k)/Q(k)) ↪→ L∞(G(k)/P(k)) is the canonical unital normal em-
bedding. Moreover, L∞(G(k)/Q(k)) lies in the multiplicative domain of E. Thus,
upon shrinking the parabolic k-subgroup Q if necessary and using [Mar91, Theo-
rem IV.2.11] in case H = Γ, we may identify the multiplicative domain of E with
L∞(G(k)/Q(k)) as H-von Neumann algebras. Recall that the multiplicative domain
of E : M → L∞(G(k)/P(k)) is the largest von Neumann subalgebra of M on which
E is multiplicative (see [BO08, Definition 1.5.8].

5.2. The noncommutative Nevo–Zimmer theorem

Firstly, we prove the noncommutative Nevo–Zimmer for ergodic actions of higher
rank simple algebraic groups on arbitrary von Neumann algebras, namely Theo-
rem 1.5.

Proof of Theorem 1.5. — We let k be a local field, G be an almost k-simple
connected algebraic k-group such that rkk(G) ⩾ 2 and P < G be a minimal
parabolic k-subgroup. We set G = G(k) and P = P(k). We let M be an ergodic
G-von Neumann algebra and E : M → L∞(G/P ) be a faithful normal ucp G-
map. We assume that E is not G-invariant and argue to show that there exist a
proper parabolic k-subgroup Q with P < Q < G and a G-equivariant unital normal
embedding L∞(G/Q) ↪→ M , where Q = Q(k). By Remark 5.3, we will obtain the
last statement of the second item.

In case G is absolutely almost simple, the proof follows directly by combining
Theorem 3.1 and Theorem 4.1. Let us elaborate. By the first theorem, we find a
G-equivariant embedding L∞(X) → M , where X is a G-space which satisfies the
stabilizer assumption of the second theorem and on which the G+-action is non-
trivial. Since M is G-ergodic, we get that so is X. Thus X satisfies the concluded
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dichotomy of the second theorem. Since the first option is ruled out by the G+-
non-triviality, we get that the second option holds - there exist a proper parabolic
k-subgroup Q < G and an almost everywhere defined measurable G-map X →
(G/Q)(k) = G/Q. Composing the map thus obtained L∞(G/Q) → L∞(X) with the
given map L∞(X) → M , we indeed get a G-equivariant unital normal embedding
L∞(G/Q) ↪→ M . This finishes the proof, under the assumption that G is absolutely
almost simple.

We now turn to the general case where G is not necessarily absolutely almost
simple. At first, we use Theorem 3.1 only to reduce the general case to the case
M = L∞(X, ν), where X is a G-space on which the G+-action is non-trivial.
As above, X is G-ergodic. We let X̄ = X//G+ be the space of ergodic compo-
nents of the G+-action on X and π : X → X̄ the corresponding measurable G-map.
We note that X̄ is an ergodic G/G+-space and G/G+ is a compact group, thus X̄
is a transitive G/G+-space. We conclude that there exists an intermediate closed
subgroup G+ < H < G such that X̄ ≃ G/H as a G-space. Thus, we have a measur-
able G-map π : X → G/H. Write X1 = π−1({H}) for the fiber over the base point
H ∈ G/H. Observe that X1 is a measurable H-space that is G+-ergodic. Moreover,
we may regard X = IndGH(X1) as the induced G-space of the H-space X1.

Claim. — There exists a faithful normal ucp H-map E1 : L∞(X1) → L∞(G/P )
that is not H-invariant.

Proof of the Claim. — Up to taking a compact model, we may assume that
X is a compact metrizable G-space. Fix an admissible Borel probability measure
µ ∈ Prob(G). By [BS06, Corollary 5.2], there exists a unique µ-stationary measure
νP ∈ Prob(G/P ) such that (G/P, νP ) is the (G, µ)-Poisson boundary. Set ν =
νP ◦ E ∈ Prob(X). Denote by β : G/P → Prob(X) : b 7→ β(b) the measurable
boundary G-map corresponding to E : L∞(X) → L∞(G/P ). By transitivity, we
may assume that the map β is everywhere defined and strictly G-equivariant. We
have Bar(β∗νP ) = ν. Simply denote by m the unique G-invariant Borel probability
measure on the compact G-space G/H.

We claim that MapG(G/P,Prob(G/H)) = {m} is the singleton that consists of the
constant function equal to m. Indeed, let Φ : G/P → Prob(G/H) be any measurable
G-map. By transitivity, we may assume that Φ is strictly G-equivariant and write
η = Φ(P ) ∈ Prob(G/H). Then η is P -invariant. Since G+ acts trivially on G/H, η
is also G+-invariant. Since G = G+ ·P , it follows that η is G-invariant and so η = m.
Thus, Φ is the constant function equal to m. Using Furstenberg’s boundary map
(see e.g. [BS06, Theorem 2.16]), it also follows that m ∈ Prob(G/H) is the unique
µ-stationary Borel probability measure on G/H.

Recall that we have the measurable G-map π : X → G/H. Denote by π∗ :
Prob(X) → Prob(G/H) the pushforward measurable G-map. Since π∗(ν) ∈
Prob(G/H) is µ-stationary, it follows that π∗(ν) = m by the previous paragraph.
Moreover, the previous paragraph implies that the measurable G-map π∗◦β : G/P →
Prob(G/H) is essentially constant equal to m. Then for almost every b ∈ G/P , we
may disintegrate β(b) ∈ Prob(X) with respect to the factor map π : (X, β(b)) →
(G/H,m) and write β(b) =

∫
G/H β(b, gH) dm(gH) where β(b, gH) ∈ Prob(π−1(gH)).
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We then obtain a measurable G-map Ψ : G/P × G/H → Prob(X) : (b, gH) 7→
β(b, gH). Since H ↷ G/P is transitive, it follows that G↷ G/P ×G/H is transitive
as well. We may then assume that Ψ is everywhere defined and strictly G-equivariant.
For every gH ∈ G/H, write ν(gH) =

∫
G/P β(b, gH) dνP (b) ∈ Prob(X). Observe that

the everywhere defined measurable map G/H → Prob(X) : gH 7→ ν(gH) gives the
disintegration of ν ∈ Prob(X) with respect to the factor map π : (X, ν) → (G/H,m).

Define the measurable H-map β1 : G/P → Prob(X1) : b 7→ β(b,H) and set
ν1 = Bar(β1∗νP ) =

∫
G/P β(b,H) dνP (b) ∈ Prob(X1). Consider the corresponding

faithful normal ucp H-map E1 : L∞(X1, ν1) → L∞(G/P ) such that νP ◦ E1 = ν1.
We have that E1 is not H-invariant, because otherwise η ∈ Prob(X1) would be
H-invariant and thus ν ∈ Prob(X) would be G-invariant, which in turn would imply
that E is G-invariant. We note that E1 is also not G+-invariant either, as G+ ↷ G/P
is transitive hence ergodic. □

We let G̃ be the simply connected cover of G and let π̃ : G̃ → G be the corre-
sponding central isogeny. We set G̃ = G̃(k) and recall that π̃(G̃) = G+. We recall
that there exists a finite separable field extension k1 of k and an absolutely almost
simple simply connected algebraic k1-group G1 such that G̃ is isomorphic to Rk1

k (G1)
as k-groups. For a reference of this fact, see [Tit66, 3.1.2] or [Spr98, Example 16.2.9].
We denote by G1 = G1(k1) and identify G̃ with G1. We note that the parabolic
k1-subgroups of G1 are in one to one correspondence with the parabolic k-subgroups
of G̃ and thus also of G. This follows for example from the discussion in [Spr98,
§16.2.6]. In particular, if Q1 is a parabolic k1-subgroup in G1, then we may identify
(G1/Q1)(k1) ≃ (G/Q)(k) for some parabolic k-subgroup Q < G and vice versa.
This identification is equivariant with respect to the map obtained by composing

G1 ≃ G̃ → G+ < G.

In particular, we let P1 < G1 be the minimal parabolic k1-subgroup corresponding
to the minimal parabolic k-subgroup P < G.

Next, we consider the H-space X1 as a G1-space, via the above continuous homo-
morphism G1 → H. Set M1 = L∞(X1). We apply Theorem 4.1 and we infer that
there exist a proper parabolic k1-subgroup P1 < Q1 < G1 and a G1-equivariant
unital normal embedding L∞((G1/Q1)(k1)) ↪→ M1. Then L∞((G1/Q1)(k1)) is nec-
essarily contained in the multiplicative domain of the faithful normal ucp G1-map
E1 (see Remark 5.3). We may further assume that the multiplicative domain of
E1 coincides with the G1-von Neumann algebra L∞((G1/Q1)(k1)). Write Q < G
for the parabolic k-subgroup corresponding to the parabolic k1-subgroup Q1 < G1.
We set Q = Q(k) and identify (G/Q)(k) with G/Q (see [Bor91, Proposition 20.5]).
We may identify L∞((G1/Q1)(k1)) with L∞(G/Q) as G1-von Neumann algebras.
Since E1 : M1 → L∞(G/P ) is H-equivariant, its multiplicative domain coincides
with L∞(G/Q) as H-von Neumann algebras. Therefore, the factor map X1 → G/Q
corresponding to the embedding L∞(G/Q) ↪→ L∞(X1) is H-equivariant.

Inducing the resulting factor H-map X1 → G/Q from H to G, we get a factor
G-map

X ≃ IndGH X1 → IndGH G/Q ≃ G/Q×G/H → G/Q.
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The proof is now complete, interpreting this factor map as a G-equivariant unital
normal embedding L∞(G/Q) ↪→ M . □

Secondly, we prove the noncommutative Nevo–Zimmer for ergodic actions of lat-
tices in higher rank simple algebraic groups on arbitrary von Neumann algebras

Theorem 5.4. — Let k be a local field. Let G be an almost k-simple connected
algebraic k-group such that rkk(G) ⩾ 2 and set G = G(k). Let P < G be a minimal
parabolic k-subgroup and set P = P(k). Let Γ < G be a lattice. Let M be an ergodic
Γ-von Neumann algebra and E : M → L∞(G/P ) a faithful normal ucp Γ-map. The
following dichotomy holds:

• Either E is Γ-invariant.
• Or there exist a proper parabolic k-subgroup P < Q < G and a Γ-equivariant

unital normal embedding ι : L∞(G/Q) ↪→ M where Q = Q(k) such that
E ◦ ι : L∞(G/Q) ↪→ L∞(G/P ) is the canonical unital normal embedding.

Proof. — We may consider the induced von Neumann algebra G ↷ M̃ together
with the faithful normal ucp G-map Ẽ : M̃ → L∞(G/P ) and we apply Theorem 1.5.
If Ẽ is G-invariant, then E is Γ-invariant (see [BBHP22, Lemma 4.6]).

Next, assume that there exist a proper parabolic k-subgroup P < Q < G and a
G-equivariant unital normal embedding L∞(G/Q) ↪→ M̃ , where Q = Q(k). We note
that C(G/Q) is contained in the maximal compact model Ã ⊂ M̃ for the G-action.
By Lemma 2.7, Ã is contained in Cb(G,M)Γ. Composing the resulting embedding
C(G/Q) → Cb(G,M)Γ with the evaluation morphism ev : Cb(G,M)Γ → M at the
identity element 1 ∈ G, we obtain a unital ∗-homomorphism ι : C(G/Q) → M .
Observe that ev is Γ-equivariant and so is ι. Using Proposition 5.1, we may extend
ι : L∞(G/Q) ↪→ M to a Γ-equivariant unital normal embedding such that E ◦ ι :
L∞(G/Q) ↪→ L∞(G/P ) is the canonical unital normal embedding. □

5.3. Proofs of Theorems 1.2 and 1.4

Proof of Theorem 1.2. — Using a combination of Theorem 5.4 and [BBHP22,
Corollary 4.20], we infer that Γ is charmenable. Since Γ has property (T) and since
Rad(Γ) = Z (Γ) is finite, it follows that Γ is charfinite. □

Proof of Theorem 1.4. — It suffices to combine Theorem 1.2 and [BBHP22, The-
orem A] following the lines of [BBHP22, Sections 6 and 7]. □

5.4. The noncommutative Margulis factor theorem

Connes showed in [Con80] that for any icc countable discrete group Γ with property
(T), the type II1 factor M = L(Γ) has countable outer automorphism group Out(M)
and countable fundamental group F (M). This result prompted Connes to conjecture
that L(Γ) should retain Γ (see [Con94, Problem V.B.1]).

Connes’ rigidity conjecture. — Assume that Γ1 and Γ2 are icc countable
discrete groups with property (T) such that L(Γ1) ∼= L(Γ2). Show that Γ1 ∼= Γ2.
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A first deep result towards Connes’ rigidity conjecture was obtained by Cowling-
Haagerup in [CH89] where they showed that lattices in Sp(n, 1)/{±1} retain the inte-
ger n ⩾ 2. In the last twenty years, there has been tremendous progress
regarding the structure and the classification of group (resp. group measure space)
von Neumann algebras thanks to Popa’s deformation/rigidity theory (see the sur-
veys [Ioa18, Pop07, Vae10]). In that respect, an icc countable discrete group Γ is said
to be W∗-superrigid if whenever Λ is another discrete group such that L(Γ) ∼= L(Λ),
then Γ ∼= Λ. Then Connes’ rigidity conjecture asks whether every icc countable
discrete group with property (T) is W∗-superrigid. In [IPV13], Ioana–Popa–Vaes
obtained the first examples of W∗-superrigid groups. The examples of W∗-superrigid
groups constructed in [IPV13] are generalized wreath products and so they don’t
have property (T). Very recently, Chifan–Ioana–Osin–Sun constructed in [CIOS21]
the first class of W∗-superrigid groups with property (T) and thus solved Connes’
rigidity conjecture.

Connes’ rigidity conjecture is particularly relevant and still wide open for the
class of higher rank lattices with property (T). Let k be a local field. Let G be an
almost k-simple connected algebraic k-group such that rkk(G) ⩾ 2 and P < G be
a minimal parabolic k-subgroup. Set P = P(k) and G = G(k). Let Γ < G be a
lattice and denote by B = L(Γ ↷ G/P ) the group measure space von Neumann
algebra associated with the nonsingular action Γ ↷ G/P . In case G is center free,
that is Z (G) = {e}, L(Γ) is a type II1 factor. Moreover, the action Γ ↷ G/P is
essentially free (see [BBHP22, Lemma 6.2]) and ergodic. Then B is an amenable
type III1 factor (see e.g. the proof of [BN13, Proposition 4.7]).

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. — Let L(Γ) ⊂ M ⊂ B be an intermediate von Neumann
subalgebra. Denote by {ug | g ∈ Γ} ⊂ L(Γ) the canonical unitaries implementing
the action Γ ↷ G/P . By [BH22, Lemma 3.2], the conjugation action Γ ↷ B is
ergodic. Consider the canonical conditional expectation E : B → L∞(G/P ). Then
Φ = E|M : M → L∞(G/P ) is a Γ-equivariant faithful normal ucp map. Using
Theorem 5.4, there are two cases to consider.

(i) Assume that Φ : M → L∞(G/P ) is invariant. Then for every x ∈ M and
every g ∈ Γ, we have E(xu∗

g) ∈ C1. Then [Suz20, Corollary 3.4] implies that
M = L(Γ).

(ii) Assume that Φ : M → L∞(G/P ) is not invariant. Then there exist a
proper parabolic k-subgroup P < Q < G and a Γ-equivariant unital nor-
mal embedding ι : L∞(G/Q) ↪→ M where Q = Q(k), such that Φ ◦ ι :
L∞(G/Q) ↪→ L∞(G/P ) is the canonical unital normal embedding. Then we
have L(Γ ↷ G/Q) ⊂ M ⊂ B. Since the action Γ ↷ G/Q is essentially
free (see [BBHP22, Lemma 6.2]), a combination of [Suz20, Theorem 3.6]
and [Mar91, Theorem IV.2.11] shows that there exists a parabolic k-subgroup
Q < R < G such that with R = R(k), we have M = L(Γ ↷ G/R).

It is known that there are exactly 2rkk(G) intermediate parabolic k-subgroups P <
Q < G. Therefore, the k-rank rkk(G) is an invariant of the inclusion L(Γ) ⊂ L(Γ ↷
G/P ). □
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