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Abstract. — Let | · | be the standard Euclidean norm on Rn and let X = (Rn, ∥ · ∥) be
a normed space. A subspace Y ⊂ X is strongly α-Euclidean if there is a constant t such that
t|y| ⩽ ∥y∥ ⩽ αt|y| for every y ∈ Y, and say that it is strongly α-complemented if ∥PY ∥ ⩽ α,
where PY is the orthogonal projection from X to Y and ∥PY ∥ denotes the operator norm of
PY with respect to the norm on X. We give an example of a normed space X of arbitrarily
high dimension that is strongly 2-Euclidean but contains no 2-dimensional subspace that is
both strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-complemented, where ϵ > 0 is an absolute
constant. This property is closely related to an old question of Vitali Milman. The example is
probabilistic in nature.

Résumé. — Soit | · | la norme euclidienne standard sur Rn et soit X = (Rn, ∥ · ∥) un
espace normé. Un sous-espace Y ⊂ X est fortement α-euclidien s’il existe une constante t telle
que t|y| ⩽ ∥y∥ ⩽ αt|y| pour tout y ∈ Y, et fortement α-complémenté si ∥PY ∥ ⩽ α, où PY

est la projection orthogonale de X sur Y et ∥PY ∥ désigne la norme d’opérateur de PY par
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428 W. T. GOWERS & K. WYCZESANY

rapport à la norme sur X. Nous donnons un exemple d’un espace normé X avec une dimension
arbitrairement grande qui est fortement 2-euclidien mais ne contient pas de sous-espace à
2 dimensions qui soit à la fois fortement (1 + ϵ)-euclidien et fortement (1 + ϵ)-complémenté,
où ϵ > 0 est une constante absolue. Cette propriété est étroitement liée à une vieille question
de Vitali Milman. L’exemple est de nature probabiliste.

1. Introduction

A famous theorem of Dvoretzky [Dvo61] which, in particular, solved an important
conjecture posed by Grothendieck [Gro56], asserts that for every positive integer
k and every ϵ > 0 there exists a positive integer n = n(ϵ, k) such that every
normed space of dimension at least n has a subspace Y of dimension k such that
d(Y, ℓk

2) ⩽ 1 + ϵ, where d is the Banach–Mazur distance given by

d(X, W ) = inf
{
∥T∥ ·

∥∥∥T −1
∥∥∥ ∣∣∣T : X → W is a linear isomorphism

}
.

This number has an intuitive geometric meaning: if X = (Rn, ∥ · ∥X) and W =
(Rn, ∥ · ∥W ) are normed spaces with d(X, W ) ⩽ d, and KX and KW are the unit
balls of X and W , respectively, then there exists a linear map A : Rn → Rn such
that KX ⊂ AKW ⊂ dKX .

A highly influential second proof of Dvoretzky’s theorem was given by Vitali
Milman [Mil71], which exploited measure concentration and led to many other
arguments based on the same fundamental idea. In his paper, Milman established
a sharp dependence of n on k. More precisely, he showed that k ⩾ cϵ2 log n, and
demonstrated that in fact the conclusion of Dvoretzky’s theorem holds for a random
subspace (of appropriate dimension) with probability close to 1. For a comprehensive
exposition we refer the reader to [AAGM15, Chapter 5].

Let us call an n-dimensional normed space X C-Euclidean if d(X, ℓn
2 ) ⩽ C.

A fairly straightforward use of Milman’s method yields the following statement.

Theorem 1.1 (V. D. Milman [Mil71]). — For every C > 1 and every ϵ > 0 there
exists c > 0 such that for every n ∈ N, every n-dimensional C-Euclidean normed
space X has a subspace Y of dimension at least cn that is (1 + ϵ)-Euclidean.

In other words, under the additional hypothesis that X is C-Euclidean, one can
obtain a linear dependence between the dimension of Y and the dimension of X.

There is a vast literature on finding “nice” subspaces of normed spaces under
various conditions (see for example [AAGM15, BL89, FLM77, GM01, Lin92, LS08,
Mil92, Sch13, STJ80]), but most of this literature pays little attention to how those
subspaces sit in the main space. In particular, a desirable property for a subspace
Y ⊂ X is that it should be complemented. In an infinite-dimensional context, one
says that Y is complemented if Y = PX for a continuous projection P on X. In
a finite-dimensional context, we need a more quantitative definition: Y is said to
be α-complemented if Y = PX for a projection P of operator norm at most α. In
geometric terms this means that there exists a projection P : X → Y such that
PKX ⊂ αKX ∩ Y .

ANNALES HENRI LEBESGUE



A counterexample to a strengthening of a question of V. D. Milman 429

There are several open problems about the existence of complemented subspaces.
For example, it is not known whether there is a constant C such that for every k
there exists n0 such that for every n ⩾ n0, every n-dimensional normed space has a
C-complemented subspace of dimension at least k and codimension at least k. (For
a partial result in this direction, see [STJ09].)

In this paper we consider the following question of Milman. To the best of our
knowledge it has not appeared in print, except in a related paper of ours [GW22].
However, it has been promoted by Milman for many years in private correspondence
with several mathematicians.

Question 1.2. — Let k ∈ N, let C ∈ R, and let ϵ > 0. Does there exist
n ∈ N such that every C-Euclidean normed space X of dimension at least n has a
k-dimensional subspace Y that is (1 + ϵ)-Euclidean and (1 + ϵ)-complemented?
We do not answer the question, but we give a negative answer to a question that is
sufficiently close to Milman’s to suggest very strongly that Milman’s question has a
negative answer.

To describe our result, we introduce two further definitions. We shall write | · | for
the standard Euclidean norm on Rn.

Definition 1.3. — A normed space X = (Rn, ∥·∥) is called strongly α-Euclidean
if there is a constant t > 0 such that t|x| ⩽ ∥x∥ ⩽ αt|x| for every x ∈ X.

Definition 1.4. — A subspace Y of X = (Rn, ∥ · ∥) is called strongly α-
complemented if the orthogonal projection PY : X → Y has norm at most α,
i.e. ∥PY x∥ ⩽ α∥x∥ for all x ∈ X.
Note that the first definition is stronger than being α-Euclidean, because instead
of asking for any linear map T such that |Tx| ⩽ ∥x∥ ⩽ α|Tx|, we ask for T to be
a multiple of the identity. In other words, we require the unit ball KX to satisfy
tB ⊂ KX ⊂ αtB, where B is the Euclidean unit ball and not merely an ellipsoid.
Also, the second definition is stronger than simply being α-complemented because we
require the projection to be orthogonal with respect to the standard inner product
on Rn.

These are natural strengthenings to consider, in the light of the fact that Milman’s
proof of Theorem 1.1 begins by observing that without loss of generality X is strongly
C-Euclidean and then proceeds to find a strongly (1 + ϵ)-Euclidean subspace. Thus,
one would expect Question 1.2 to have a positive answer if and only if the following
question also has a positive answer.

Question 1.5. — Let k ∈ N, let C ∈ R, and let ϵ > 0. Does there exist n ∈ N
such that every strongly C-Euclidean normed space X of dimension at least n has
a k-dimensional subspace Y that is strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-
complemented?

Our main theorem is an example that shows that the answer to Question 1.5 is
negative.

Theorem 1.6. — There exist constants ϵ > 0 and C ∈ R such that for all
sufficiently large n ∈ N there is an n-dimensional normed space that is C-Euclidean
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but contains no 2-dimensional subspace that is both strongly (1 + ϵ)-Euclidean and
strongly (1 + ϵ)-complemented.
The rest of the paper is devoted to a proof of the above theorem. In the next section
we will give some preliminary definitions and lemmas. We define the normed space
in Section 3. In the final two sections we first outline the proof and then give it in
detail.

2. Good vectors

We start with a definition that allows us to reformulate in a convenient way the
condition that Y is strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-complemented.

We write ⟨·, ·⟩ for the standard inner product.
Definition 2.1. — Let X = (Rn, ∥ · ∥) be a normed space and let x ∈ X. We

say that x is ϵ-good if
⟨x, z⟩ ⩽ (1 + ϵ)∥z∥

∥x∥
|x|2,

for every vector z ∈ Rn.
Note that x is ϵ-good if and only if λx is ϵ-good for every λ ̸= 0.

To see what this definition means geometrically, consider the orthogonal projection
Px on to the 1-dimensional subspace of Rn generated by x. Writing x′ for the
normalized vector x/|x|, this has the formula

Pxz = ⟨x′, z⟩x′.

Hence, the operator norm of Px (as a map from X to X) is the maximum of the
quantity

⟨x′, z⟩∥x′∥
∥z∥

= ⟨x, z⟩∥x∥
|x|2 ∥z∥

over all non-zero z ∈ Rn. It follows that x is ϵ-good if and only if Px has operator
norm at most 1 + ϵ. This is also equivalent to saying that the subspace Span(x) is
strongly (1 + ϵ)-complemented, and hence that

Px(KX) ⊂ (1 + ϵ)KX ∩ Span(x).
We now show that a subspace Y of a space X is strongly (1 + ϵ)-Euclidean and

strongly (1 + ϵ)-complemented for some small ϵ if and only if every y ∈ Y is δ-good
for some small δ.

Lemma 2.2. — Let X = (Rn, ∥ · ∥) be a normed space and let Y ⊂ X be a
subspace.

(1) If Y is strongly (1 + ϵ)-complemented and strongly (1 + ϵ)-Euclidean, then
every y ∈ Y is (2ϵ + ϵ2)-good.

(2) If ϵ ⩽ 1/36π2 and every point in Y is ϵ-good, then Y is strongly (1 + ϵ)-
complemented and strongly (1 + 3π

√
ϵ)-Euclidean.

Before we prove the statement, note that this characterization reduces Question 1.5
to the following question.
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Question 2.3. — Let ϵ > 0, C ⩾ 1 and k ∈ N. Does there exist n such that if
∥ · ∥ is a norm on Rn such that |x| ⩽ ∥x∥ ⩽ C|x| for every x ∈ Rn, then the space
(Rn, ∥ · ∥) has a subspace Y of dimension k such that every y ∈ Y is ϵ-good?

Proof of Lemma 2.2. — Let PY be the orthogonal projection onto Y . If Y
is strongly (1 + ϵ)-Euclidean and strongly (1 + ϵ)-complemented, then ∥PY x∥ ⩽
(1 + ϵ)∥x∥ for every x ∈ X and there exists λ ∈ R such that λ|y| ⩽ ∥y∥ ⩽ (1 + ϵ)λ|y|
for every y ∈ Y . From this it follows that for every y ∈ Y and every x ∈ X we have

⟨y, x⟩ = ⟨y, PY x⟩ ⩽ |y| |PY x| ⩽ |y| 1
λ

∥PY x∥ ⩽ (1 + ϵ)λ |y|2

∥y∥
1
λ

(1 + ϵ)∥x∥

= (1 + ϵ)2 ∥x∥
∥y∥

|y|2,

which implies that every point y in Y is (2ϵ + ϵ2)-good, as claimed.
Conversely, assume that every point in Y is ϵ-good, so that for every y ∈ Y and

every x ∈ X we have the inequality

⟨y, x⟩ ⩽ (1 + ϵ)∥x∥
∥y∥

|y|2.

Choose x ∈ X. Then PY x ∈ Y , so

|PY x|2 = ⟨PY x, PY x⟩ = ⟨PY x, x⟩ ⩽ (1 + ϵ) ∥x∥
∥PY x∥

|PY x|2,

and therefore ∥PY x∥ ⩽ (1+ϵ)∥x∥. It follows that Y is strongly (1+ϵ)-complemented.
Now assume for a contradiction that the subspace Y is not strongly (1 + a)-

Euclidean with 0 < a. In particular, this means that we can find two unit vectors
y, w ∈ Y such that ∥y∥ = ∥w∥(1 + a). Without loss of generality we may assume
that a ⩽ 1/2.

Let us consider a sequence of unit vectors w = x0, x1, . . . , xm−1, xm = y that are
equally spaced along the shortest arc that joins w to y (which is unique, since w
cannot equal −y). By the pigeonhole principle there exists i such that

∥xi∥(1 + a)1/m ⩽ ∥xi+1∥.

We shall choose m to ensure that xi is a witness for xi+1 not being ϵ-good. Indeed,
if we assume that m is at least 3π2/a then since the angle between xi and xi+1 is at
most π/m we get that

⟨xi+1, xi⟩
∥xi+1∥

∥xi∥ |xi+1|2
⩾ cos (∠xixi+1) (1 + a)1/m ⩾

(
1 − π2

2m2

)(
1 + a

m
− a2

2m

)

⩾ 1 + a

m
− a2m2 + π2m + π2a

2m3 ⩾ 1 + a

2m
.

Here we used the fact that for 0 < γ < 1 and a > 0 we have that (1 + a)γ ⩾
1 + γa − γ(1−γ)

2 a2 ⩾ 1 + γa − γa2

2 , and the assumptions that 0 < a ⩽ 1/2 and
m ⩾ 3π2/a.
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It follows that the point xi+1 is not a
2m

-good. Therefore, if every point is ϵ-good,
we must have that a

⌈6π2/a⌉ ⩽ ϵ, which implies that a ⩽ 3π
√

ϵ. Thus, we find that Y

is strongly (1 + 3π
√

ϵ)-Euclidean, which completes the proof of Lemma 2.2. □

Next, we give an equivalent condition for a point to be ϵ-good for some small ϵ.
Before we state the result, let us recall that a support functional of a norm ∥ · ∥ at
x is any non-zero linear functional f such that for every y with ∥y∥ ⩽ ∥x∥ we have
f(y) ⩽ f(x). Geometrically, if τ is the value of a support functional f at x such that
∥x∥ = 1, then H = f−1(τ) is a hyperplane that is tangent to the unit ball of the
norm ∥ · ∥ at x. Note that if the norm is differentiable, then writing g(x) for ∥x∥, we
have that any multiple of g′(x) is a support functional at x.

In the next proposition, we shall use the standard identification of Rn with its
dual. That is, we identify a vector z with the linear functional y 7→ ⟨y, z⟩.

Proposition 2.4. — Let (X, ∥ · ∥) be a normed space and suppose that |x| ⩽
∥x∥ ⩽ C|x| for every x ∈ X. For every δ > 0 there exists ϵ > 0 such that if x ∈ X
is any ϵ-good point, then there exist y, z such that |x| = |y|, |x − y| < δ|x|, z is a
support functional at y and |y − z| < δ|x|. Conversely, for every ϵ > 0 there exists
δ > 0 such that if there exist y, z such that |y − z| < δ|x|, z is a support functional
at y and |x − y| < δ|x|, then x is an ϵ-good point.

Proof. — We shall do the second part first. Let 0 < ϵ ⩽ 1 and suppose that there
exist y, z such that z is a support functional for y, and |y − x| and |z − y| are both
at most δ|x|.

Now let w ∈ X. Then

⟨w, x⟩ = ⟨w, z⟩ + ⟨w, y − z⟩ + ⟨w, x − y⟩ ⩽ ⟨w, z⟩ + 2δ|w||x|.

But z is a support functional for y, so

⟨w, z⟩ ⩽ ∥w∥ ∥z∥∗ = ∥w∥⟨y, z⟩
∥y∥

We also have that

∥y∥ ⩾ ∥x∥ − C|x − y| ⩾ ∥x∥ − Cδ|x| ⩾ (1 − Cδ)∥x∥.

Finally, since |x − z| ⩽ 2δ|x| we have that |z| ⩽ (1 + 2δ)|x|, so

⟨y, z⟩ = ⟨x, z⟩ + ⟨y − x, z⟩ ⩽ |x||z| + δ|x||z| ⩽ (1 + δ)(1 + 2δ)|x|2.

Putting all this together, we find that

⟨w, x⟩ ⩽ (1 + δ)(1 + 2δ)
1 − Cδ

∥w∥
∥x∥

|x|2 + 2δ|w||x| ⩽
(

(1 + δ)(1 + 2δ)
1 − Cδ

+ 2Cδ

)
∥w∥
∥x∥

|x|2.

It can be checked that if we set δ = ϵ/5C, then the factor in brackets is at most
1 + ϵ.

For the other direction, assume that for all y such that |y| = |x| and |x − y| < δ|x|
we have that |y − z| > δ|x|, where z is the support functional at y, chosen such that
|z| = |y|.
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We can assume that |x| = 1 and that for every unit vector y with |y − x| < δ, we
have that |y − z| ⩾ δ. It follows that

⟨y, z⟩ = 1 − |y − z|2/2 ⩽ 1 − δ2/2

and therefore that

|z − ⟨y, z⟩y|2 = 1 − ⟨y, z⟩2 ⩾ δ2 − δ4/4,

which implies that the component of z orthogonal to y has size at least
√

3δ/2 ⩾ δ/2.
It follows that for any γ < δ we can find a path on the unit sphere that starts at x

and ends at a point at distance at least γ from x such that the norm ∥ · ∥ decreases
at a rate of at least δ/2 along the path. This gives us a unit vector ȳ such that
|ȳ − x| ⩽ γ and

∥ȳ∥ ⩽ ∥x∥ − γδ/2 ⩽ ∥x∥(1 − γδ/2C).

It follows that ⟨x, ȳ⟩ > 1 − γ2/2, so

⟨x, ȳ⟩ >
(1 − γ2/2)

(1 − γδ/2C)
∥ȳ∥
∥x∥

|x|2.

Setting γ = δ/2C, we deduce that x is not δ2/8C2-good. □

3. Definition of the norm and an important observation

The norm has a fairly simple definition. Let P be a random orthogonal projection
of rank n/2 and let A = I + P . Then we define

(3.1) ∥x∥ = ⟨x, Ax⟩1/2 + ηn−1/2∥x∥1,

where η > 0 is an absolute constant to be chosen later. (Note that |x| ⩽ ∥x∥ ⩽
(
√

2 + η)|x|, so as long as η ⩽ 2 −
√

2, this norm is strongly 2-Euclidean.) The first
part of this norm is a weighted ℓ2 norm with respect to a random orthonormal basis,
where half the weights are 2 and half are 1, and the second is a multiple of the
standard ℓ1 norm. Our aim now is to prove that with probability greater than zero
(and in fact close to 1) there is no 2D subspace that consists entirely of ϵ-good points,
for some absolute constant ϵ > 0. That is, we will prove Theorem 1.6 and therefore
give a negative answer to Question 1.5.

The next lemma tells us what the support functionals are at a vector x. Let us
use the notation sign(t) for the multivalued function from R to R that takes t to 1
if t > 0, to -1 if t < 0, and to any element of [−1, 1] if t = 0. Then if x ∈ Rn we
write sign(x) for the result of applying the multivalued function sign pointwise. Let
us also write ∥x∥A for ⟨x, Ax⟩1/2.

Lemma 3.1. — The support functionals at x are multiples of Ax
∥x∥A

+ηn−1/2 sign(x).
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Proof. — Given y such that ∥y∥ ⩽ ∥x∥ we must show that ⟨ Ax
∥x∥A

+ηn−1/2 sign(x), y⟩
can be bounded above by ⟨ Ax

∥x∥A
+ ηn−1/2 sign(x), x⟩. Indeed, we have that〈

Ax

∥x∥A

+ ηn−1/2 sign(x), y

〉
= ⟨Ax, y⟩

∥x∥A

+ ηn−1/2⟨sign(x), y⟩ ⩽ ∥y∥A + ηn−1/2∥y∥1

= ∥y∥

with equality if y = x, which finishes the proof. □

Corollary 3.2. — Let Q be such that P + Q = I, let ϵ be sufficiently small
and let Y be a subspace that consists entirely of ϵ-good points. Then for every unit
vector x ∈ Y there exists a unit vector y with |x − y| ⩽ δ and a value of sign(y) such
that

d
(
ηn−1/2 sign(y), PY + QY

)
⩽ 7δ,

where δ tends to zero with ϵ.

Proof. — By Lemma 3.1 and Proposition 2.4 we find that if a unit vector x is
ϵ-good, then there exists a unit vector y, a value of sign(y), and a scalar µ such that
|y − x| < δ and ∣∣∣∣∣µ

(
Ay

∥y∥A

+ ηn−1/2 sign(y)
)

− y

∣∣∣∣∣ < δ/3,

where δ > 0 tends to zero with ϵ. Since |Ay| ⩽
√

2∥y∥A and n−1/2| sign(y)| ⩽ 1, our
assumption that

√
2 + η ⩽ 2 implies that µ ⩾ (1 − δ/3)/2. For sufficiently small ϵ,

we therefore have that µ ⩾ 1/3.
Recalling that A = I + P and rearranging, we obtain the inequality

(3.2)
(

1
µ

− 2
∥y∥A

)
Py +

(
1
µ

− 1
∥y∥A

)
Qy ≈δ ηn−1/2 sign(y),

where we write u ≈δ v to mean that |u − v| ⩽ δ. (We shall use this convenient
notation throughout the rest of this paper.)

Finally, noting that and that max(| 1
µ

− 2
∥y∥A

|, | 1
µ

− 1
∥y∥A

|) ⩽ 3 and that |Py − Px|
⩽ |y − x| ⩽ δ and the same for |Qy − Qx|, we get that(

1
µ

− 2
∥y∥A

)
Px +

(
1
µ

− 1
∥y∥A

)
Qx ≈7δ ηn−1/2 sign(y).

Therefore, we get that for every x ∈ Y there is a unit vector y with |x − y| ⩽ δ and
such that d(ηn−1/2 sign(y), PY + QY ) ⩽ 7δ, which finishes the proof. □

Corollary 3.2 tells us, in particular, that if we have a 2-dimensional subspace Y that
consists entirely of ϵ-good points, then every unit vector x ∈ Y is close to a vector y
such that n−1/2 sign(y) is close to the subspace PY + QY , which has dimension at
most 4. This is the main observation we shall use to obtain a contradiction. (In fact,
what we shall use is the slightly weaker approximation (3.2).)
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4. Outline of the proof and some technical lemmas

Let us call a non-zero vector a sign vector if all its coordinates have the same
absolute value. As before, we write X for (Rn, ∥ · ∥), though sometimes we abuse
notation and use X to refer simply to the vector space Rn.

In order to show that the norm defined in (3.1) indeed constitutes a counterexample
to Question 1.5, that is, that there is no two-dimensional subspace of (Rn, ∥ · ∥) that
consists entirely of ϵ-good points, we shall obtain a contradiction using more precise
versions of the following statements.

(1) Every ϵ-good point is close to PX or QX.
(2) With high probability, no point that is close to PX or QX can be approxi-

mated by a point with only a few distinct coordinates.
(3) If Y is a 2-dimensional subspace that consists entirely of ϵ-good points, then

for every x ∈ Y there exists x′ close to x such that sign(x′) is close to the
subspace PY + QY .

(4) Using the first two statements, we deduce that the vectors sign(x′) are not
approximately contained in a 4-dimensional subspace.

Corollary 3.2 is our precise version of Statement 3. Let us now prove Statement 1,
which is also fairly simple.

Lemma 4.1. — Let x be an ϵ-good vector in (X, ∥ · ∥), such that |x| = 1. Then
either d(x, PX) ⩽ 3δ+2η or d(x, QX) ⩽ 3δ+2η, where δ is given by Proposition 2.4.

Proof. — From the beginning of the proof of Corollary 3.2 we obtain a unit vector
y such that |x − y| ⩽ δ and such that

Ay

∥y∥A

+ ηn−1/2 sign(y) ≈δ λy,

where we have written λ for 1/µ and used the fact that µ ⩾ 1/3.
We have that

d(x, PX) ⩽ d(x, y) + d(y, PX) ⩽ δ + |y − Py| = δ + |Qy|

and similarly for d(x, QX). Hence, our goal is to bound min{|Py|, |Qy|}.
But |Ay| ⩾ ∥y∥A, and ηn−1/2| sign(y)| ⩽ η, so λ ⩾ 1 − η − δ and

|Ay − λ∥y∥Ay| < (δ + η)∥y∥A ⩽
√

2(δ + η).
Thus, y is an approximate eigenvector of A and it remains to prove that an approx-
imate eigenvector of A must be close to an eigenvector. (This is of course false for
general linear maps.)

Since P + Q = I, we have y = Py + Qy and Ay = 2Py + Qy, so if ν is any scalar,
then

|Ay − νy|2 = (2 − ν)2|Py|2 + (1 − ν)2|Qy|2.
Writing 2 − ν = a + 1/2 and 1 − ν = a − 1/2, one can rewrite the right-hand side as(

a + |Py|2 − |Qy|2

2

)2

+ 1
4

(
1 −

(
|Py|2 − |Qy|2

)2
)

,
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from which we see that if |Ay − νy|2 ⩽ τ then(
|Py|2 − |Qy|2

)2
⩾ 1 − 4τ,

which implies that either |Py|2 ⩽ 2τ or |Qy|2 ⩽ 2τ . In our case, we may set
τ = 2(δ + η)2, so min{|Py|, |Qy|} ⩽ 2(δ + η), which gives us the bound stated. □

Next, we formulate and prove a suitable version of Statement 2. We begin with a
crude upper bound for the volume of the γ-expansion of the unit sphere of a subspace
of dimension cn. (Much more accurate estimates exist, but for us a simple argument
suffices.)

Lemma 4.2. — Let m = cn and let γ > 0. Assume that 2n+1γ ⩾ 1. Then the
probability that a random unit vector has distance at most γ from a given subspace
Y ⊂ X of dimension m is at most 24nγn−m.

Proof. — A spherical cap in Sn−1 of Euclidean radius 2γ has volume at most
(4γ)n−1 ⩽ 8nγn = (8γ)n. By standard estimates, we can also find a γ-net of Y of
cardinality at most (3/γ)m. But every point of Sn−1 that is within γ of Y is within
2γ of a point in the γ-net, and from this the result follows. □

Lemma 4.3. — Let k be a positive integer, let c, γ > 0, and let Y be a ran-
dom subspace of ℓn

2 of dimension m. Then the probability that Yγ = {x ∈ ℓn
2 :

d(x, Y ) ⩽ γ} contains a unit vector x with at most k distinct coordinates is at most
(3/γ)k(48k)nγn−m.

Proof. — The number of partitions of {1, 2, . . . , n} into k sets is at most kn, and
for each partition E1, . . . , Ek the set of vectors that are constant on each Ei is a
k-dimensional subspace, so there is a γ-net of the unit sphere of this subspace of size
at most (3/γ)k.

The probability that Yγ contains a vector with at most k distinct coordinates is
at most the probability that Y2γ contains a point in one of these γ-nets, which is at
most

(3/γ)k(24k)n(2γ)n−m ⩽ (3/γ)k(48k)nγn−m

by Lemma 4.2 and a union bound. □

We present one more technical lemma that is similar to Lemma 4.3, and which
will be an important part of the argument. Again we make no attempt to optimize
bounds.

Lemma 4.4. — Let Z be a random subspace of ℓn
2 of dimension m. Then the

probability that Zγ contains a unit vector with support size at most r is at most
288nγn−m−r.

Proof. — The number of sets of size at most r is
(

n
r

)
⩽ 2n. For each such set E

the size of a γ-net of the unit sphere of the space of vectors supported on E is at
most (3/γ)r, and for each point in such a net the probability that it is in Z2γ is at
most 24n(2γ)n−m. Therefore, the probability we wish to bound is at most

2n(3/γ)r24n(2γ)n−m ⩽ 288nγn−m−r,

which proves the lemma. □
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The key point we shall need from the above lemma is that for any c > 0 there
exists γ > 0 such that if n − m − r ⩾ cn, then the probability that Zγ contains a
point with small support is small. In particular, we have the following statement.

Corollary 4.5. — Let γ = 2−37. Let X = ℓn
2 with n ⩾ 2, and let P : X → X be

a random orthogonal projection of rank n/2 and let Q = I −P . Then the probability
that either PX2γ or QX2γ contains a unit vector of support size at most n/4 is at
most (2

3)n.

Proof. — Applying Lemma 4.4, we find that the probability that PX2γ contains
a vector of support size at most n/4 is at most 288n(2γ)n/4 = (288/512)n. The same
is true of QX2γ and the result follows with room to spare. □

For the remainder of the paper, we shall assume that P has been chosen in such a
way that neither PX2γ nor QX2γ contains a vector of support size at most n/4, and
neither PXγ nor QXγ contains a vector with at most five distinct coordinates. By
Lemma 4.3 and Corollary 4.5 such a P exists.

5. The set of signs cannot be squeezed into a 4-dimensional
subspace

Before we move to the heart of the argument, which will be a precise version of
Statement 4, let us remark that as we move forward we shall be dealing with many
parameters. Since we do not wish to choose them straight away we make sure that
it is easy to keep track of all the dependencies by stating them clearly and giving
each one a label.

If Y is a 2-dimensional subspace that consists entirely of ϵ-good points, then the
equation (3.2) from the proof of Corollary 3.2 gives us for each unit vector x ∈ Y a
unit vector y with |x − y| ⩽ δ and coefficients αy and βy such that
(5.1) n−1/2 sign(y) ≈δ/η αyPy + βyQy,

where αy = η−1(λ − 2/∥y∥A) and βy = η−1(λ − 1/∥y∥A).
Recall also from the beginning of the proof of Lemma 4.1 that we also have the

equivalent formula
ηn−1/2 sign(y) ≈δ λy − Ay

∥y∥A

,

from which it follows that |λ| ∈ [1 − δ − η,
√

2 + δ + η], since ∥y∥A ⩽ |Ay| ⩽
√

2∥y∥A.
Therefore, provided that
(5.2) δ + η ⩽ 2 −

√
2

it follows that λ ∈ [
√

2 − 1, 2]. In particular, it follows that |αy| and |βy| are at most
2η−1. This bound will be important later. Suppose now that
(5.3) 3δ + 2η ⩽ γ.

If x ∈ Y is a unit vector, then by Lemma 4.1, either d(x, PX) or d(x, QX) is at
most 3δ + 2η. Therefore, for every y ∈ Yγ, either d(y, PX) or d(y, QX) is at most
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3δ + 2η + γ ⩽ 2γ, so by the assumption made at the end of the previous section, y
has support size at least n/4. That is, every vector in Yγ has support size at least
n/4. We shall use this property frequently in the rest of the section.

We will now use the fact that the subspace Y is 2-dimensional to get a convenient
re-parametrization of the unit sphere of Y . Indeed, there exist non-negative real
numbers r1, . . . , rn and phases ϕ1, . . . , ϕn ∈ [0, 2π) such that each unit vector in Y
is equal to

x = x(θ) =
(

r1 sin(θ + ϕ1), . . . , rn sin(θ + ϕn)
)

for some θ ∈ [0, 2π). Note that by looking at Eθ |x(θ)|2 we find that ∑i r2
i = 2.

Lemma 5.1. — Let δ, ξ > 0 x and y be two vectors in Rn such that |x − y| ⩽ δ.
Then the number of i such that |xi| ⩾ ξn−1/2 and sign(xi) ̸= sign(yi) is at most
ξ−2δ2n.

Proof. — For each such i we have that |xi − yi|2 ⩾ ξ2n−1, and our hypothesis is
that ∑i |xi − yi|2 ⩽ δ2. □

Let α > 0 be a constant to be chosen later, let E = {i : ri ⩾ αn−1/2}, and
write PE for the coordinate projection onto E. It will also be convenient to write E0
for {1, 2, . . . , n} \ E, which we think of as the set of coordinates where Y almost
vanishes.

Lemma 5.2. — Let 0 < c, ξ < 1 and let θ be chosen uniformly at random from
[0, 2π). Then with probability at least 1 − ξ/αc, the number of i ∈ E such that
|x(θ)i| < ξn−1/2 is less than c|E|.

Proof. — We will use Markov’s inequality to upper bound the probability of the
complementary event. In order to estimate the expected number of i ∈ E such
that |x(θ)i| < ξn−1/2 recall that since ri ⩾ αn−1/2 for every i ∈ E, and x(θ)i =
ri sin(θ + ϕi), we have that for each i ∈ E,

P
[
|x(θ)i| < ξn−1/2

]
⩽ P

[
| sin(θ + ϕi)| < ξ/α

]
.

Further, note that | sin(θ + ϕ)| on the interval [0, 2π) has the same distribution
as sin θ on the interval [0, π/2). But if θ belongs to that interval, then sin θ ⩾ 2θ/π
with equality only at 0 and π/2, so sin θ < ξ/α only if θ < πξ/2α, which is true
with probability less than ξ/α. Therefore, the expected number of i ∈ E such that
|x(θ)i| < ξn−1/2 is less than ξ|E|/α.

It follows that

P
[∣∣∣ {i ∈ E : |x(θ)i| < ξn−1/2

} ∣∣∣ ⩾ c|E|
]
⩽

ξ|E|α−1

c|E|
= ξ

αc
,

which, by taking the complement, completes the proof. □
We will now introduce a notion of a “typical” θ (and x(θ)).
Definition 5.3. — For choices of ξ and c that we shall make later, we call θ and

x(θ) typical if
(i) the number of i ∈ E such that |x(θ)i| < ξn−1/2 is less than c|E| (that is, the

conclusion of Lemma 5.2 holds), and
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(ii) there is no i ∈ E with θ + ϕi ∈ {0, π}.

Note that the second condition, which is there for convenience, holds with proba-
bility 1 and ensures that sign(x(θ))i ∈ {−1, 1} for every i ∈ E. Later we shall want
to be sure that typical vectors exist, for which Lemma 5.2 tells us that a sufficient
condition is the inequality
(5.4) ξ < αc.

Let us now define Σ to be the set of all vectors of the form n−1/2PE sign(x(θ))
such that x(θ) is a typical element of the unit sphere of Y . Let β > 0 be another
parameter to be chosen later, and let V ⊂ Σ be the maximal centrally symmetric
β-separated subset of Σ. Assume that V consists of 2k vectors (that is k antipodal
pairs) and note that V is a β-net of Σ.

We will now show, assuming that
(5.5) β ⩽ 1,

that the set V is non-empty.

Lemma 5.4. — Let Y be a 2-dimensional subspace that consists entirely of ϵ-good
points and let β ⩽ 1. Then every maximal centrally symmetric β-separated subset
V of

V ⊂ Σ =
{
n−1/2PE sign(x(θ)) : x(θ) is a typical unit vector in Y

}
,

has cardinality at least 2.

Proof. — Since Y is a subspace that consists entirely of ϵ-good points we have
that Y ⊂ PXγ or Y ⊂ QXγ and we chose P in such a way that both PX2γ and
QX2γ do not contain a vector of support size at most n/4 (recall the last paragraph
in Section 4). It follows that every vector in Y , and even in Yγ, has support size at
least n/4. Recall that, for any vector, we denote its set of “large” coordinates by
E = {i : ri ⩾ αn−1/2} and note that for every y ∈ Y we have |y − PEy| < α and,
clearly, PEy has support size |E|. Assuming that
(5.6) α ⩽ γ,

it follows that for every y ∈ Y the set of large coordinates E has cardinality at least
n/4.

Thus, Σ consists of vectors whose norm is at least n−1/2|E|1/2 ⩾ 1/2 (and at
most 1), so as long as β ⩽ 1, which we assumed, we can choose any typical vector
x(θ), and let V = {±n−1/2PE sign(x(θ))}, and thereby obtain a β-separated subset
of Σ. This proves the result. □

Since V is centrally symmetric it has even cardinality. Let this cardinality be 2k.
We now consider three cases.

5.1. Case 1: k = 1.

Let ζ = ξ/αc and let V = {v, −v}. Since θ is typical with probability at least
1 − ζ, every closed interval of length greater than 2πζ contains a typical θ. If
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n−1/2PE sign(x(θ)) ≈β v, then n−1/2PE sign(−x(θ)) ≈β −v, so there is at least one θ
such that n−1/2PE sign(x(θ)) ≈β v and one such that n−1/2PE sign(x(θ)) ≈β −v.

Let A be the set of typical x(θ) such that n−1/2PE sign(x(θ)) ≈β v and note that
−A is the set of typical x(θ) such that n−1/2PE sign(x(θ)) ≈β −v. Note also that
every typical x(θ) belongs to A or −A, and that therefore neither A nor −A is empty.
Writing B for the set of points at distance at most πζ from A, we also have that
B and −B are closed and that B ∪ −B is the entire unit circle of Y . To see the
last assertion, let x(θ0) be a point in the unit circle of Y . Then the closed interval
of length 2πζ centred at θ0 contains a typical point θ, so x(θ) belongs to A ∪ (−A)
and therefore x(θ0) ∈ B ∪ −B, as the distance from x(θ0) to x(θ) is at most πζ.
Since the unit circle is connected, B ∩ −B is non-empty, from which it follows that
there exist typical unit vectors x, y ∈ Y such that |x − y| ⩽ 2πζ and such that
n−1/2PE sign(x) ≈β v, and n−1/2PE sign(y) ≈β −v.

It follows that n−1/2PE sign(x) differs from v in at most β2n/4 coordinates, and
n−1/2PE sign(y) differs from −v in at most β2n/4 coordinates. Therefore, PE sign(x)
and PE sign(y) are equal in at most β2n/2 coordinates. Moreover, by Lemma 5.1, the
number of i for which sign(xi) ̸= sign(yi) and |xi| ⩾ ρn−1/2 is at most ρ−2(2πζ)2n =
(2πξ

αcρ
)2n.

From these two facts it follows that the number of coordinates i ∈ E for which
|xi| ⩾ ρn−1/2 is at most ((2πξ

αcρ
)2 + β2

2 )n. Therefore, we find that x has distance at
most ρ from a vector of support size at most ((2πξ

αcρ
)2 + β2

2 )n.
If we choose parameters in such a way that

(5.7) ρ ⩽ γ

and

(5.8)
(

2πξ

αcρ

)2

+ β2

2 < 1/4

we obtain a contradiction with the fact that Yγ does not contain a vector of support
size less than n/4.

5.2. Case 2: 2 ⩽ k ⩽ 4

Let V = {±v1, . . . , ±vk}. Since each vi is of the form n−1/2PE sign(x(θ)) for some
typical vector x(θ) ∈ Y , it takes values ±n−1/2 in E.

We now show that either this case can be reduced to the case k = 1 with β replaced
by 48β or there is a subset V ′ of V consisting of at least two antipodal pairs such
that V ′ is a 3κ-separated κ-net of Σ and β ⩽ κ ⩽ 16β.

Since V is a β-net of Σ, then if it is 3β separated then we are done. If not, we can
find i ̸= j such that |vi − vj| ⩽ 3β. Then we can remove ±vj from V and we will
still have a 4β-net. Similarly, if V ′ = V \ {±vj} is 12β-separated we are done, but
if it contains two distinct elements vi, vj such that |vi − vj| ⩽ 12β, then again we
can remove ±vj and we will still have a 16β-net. Finally, if there are two distinct
elements vi, vj with |vi − vj| ⩽ 48β, then we may remove ±vj and end up with V ′ of
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the form {v, −v} and we are back in case k = 1. However, now β is replaced by 48β,
which we must allow for when choosing our parameters, so we need to strengthen
condition (5.5) to the condition
(5.9) β ⩽ 1/48.

If the process stops before we reach k = 1, then we have a 3κ-separated κ-net
V ′ = {±v1, . . . , ±vm} of Σ such that 2 ⩽ m ⩽ 4 and κ ⩽ 16β as claimed.

Recall that every interval of length greater than 2πζ contains a typical θ, and
hence by a connectedness argument similar to the one used for the case k = 1 there
must exist θ, ϕ, and vi ̸= ±vj such that

|θ − ϕ| ⩽ 2πζ,∣∣∣n−1/2PE sign(x(θ)) − vi

∣∣∣ ⩽ κ,

and ∣∣∣n−1/2PE sign(x(ϕ)) − vj

∣∣∣ ⩽ κ.

Since |vi ± vj| ⩾ 3κ, it follows that n−1/2|PE sign(x(θ)) − PE sign(x(ϕ))| and
n−1/2|PE sign(x(θ)) + PE sign(x(ϕ))| are both at least κ. Now recall equation (5.1)
saying that for every x ∈ Y we can find y with |x − y| ⩽ δ such that

n−1/2 sign(y) ≈δ/η αyPy + βyQy

for some constants αy and βy. Let us choose y(θ) and y(ϕ) that have this relationship
with x(θ) and x(ϕ), respectively.

By Lemma 5.1 and the assumption that x is typical, the number of coordinates in
E such that sign(x(θ)) and sign(y(θ)) differ is at most c|E| + ξ−2δ2n ⩽ (c + ξ−2δ2)n,
so

n−1/2
∣∣∣PE sign(x(θ)) − PE sign(y(θ))

∣∣∣ ⩽ 2
(
c + ξ−2δ2

)1/2
,

and similarly for ϕ. If we choose parameters in such a way that
(5.10) c + ξ−2δ2 ⩽ β4/256,

it follows that these distances are both at most β2/8.
Let us write α(θ) instead of αy(θ), and similarly for ϕ. Then

n−1/2 sign(y(θ)) ≈δ/η α(θ)Py(θ) + β(θ)Qy(θ),
and

n−1/2 sign(y(ϕ)) ≈δ/η α(ϕ)Py(ϕ) + β(ϕ)Qy(ϕ).
Also, since |θ − ϕ| ⩽ 2πζ, we have |x(θ) − x(ϕ)| ⩽ 2πζ (because |x(θ) − x(ϕ)|

< |θ − ϕ|), and therefore |y(θ) − y(ϕ)| ⩽ 2πζ + 2δ. It follows that∣∣∣α(ϕ)Py(ϕ) + β(ϕ)Qy(ϕ) − (α(ϕ)Py(θ) + β(ϕ)Qy(θ))
∣∣∣ ⩽ 2(πζ + δ)(|α(ϕ)| + |β(ϕ)|).

Now recall that |α(ϕ)| and |β(ϕ)| are both at most 2η−1. We therefore obtain the
approximation

n−1/2 sign(y(ϕ)) ≈σ α(ϕ)Py(θ) + β(ϕ)Qy(θ),
where σ = δ/η + 8(πζ + δ)/η = (8πζ + 9δ)/η.
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It is convenient to encapsulate our knowledge so far as an approximate matrix
equation (

α(θ) β(θ)
α(ϕ) β(ϕ)

)(
Py(θ)
Qy(θ)

)
≈σ n−1/2

(
sign(y(θ))
sign(y(ϕ))

)
where by ≈σ in this context we mean that the approximation holds coordinatewise.

The rough idea of what we shall now do is as follows. Because sign(y(θ)) and
sign(y(ϕ)) are not roughly proportional to each other, the matrix ( α(θ) β(θ)

α(ϕ) β(ϕ) ) is well-
invertible, which allows us to deduce from the approximate matrix equation that
Py(θ) and Qy(θ) can both be approximated by linear combinations of n−1/2 sign(y(θ))
and n−1/2 sign(y(ϕ)), with coefficients that are not too large. Therefore, y(θ) can
as well, which implies that x(θ) can be. But sign(y(θ)) and sign(y(ϕ)) take at most
two values each on almost all of E, and x(θ) is small outside E, so x(θ) can be
approximated by a vector whose coordinates have at most five distinct values. Then
we can obtain a contradiction from Lemma 4.3.

To carry out this argument we begin by making precise the statement that
sign(y(θ)) and sign(y(ϕ)) are not roughly proportional.

Lemma 5.5. — Let u and v be vectors in Rn that take values ±n−1/2 in a set
E of size m. Suppose that there are r values in E with ui = vi and s values with
ui ̸= vi. Then for every λ ∈ R, |u − λv| ⩾ 2(rs/mn)1/2.

Proof. — We have that
n|u − λv|2 ⩾ r(1 − λ)2 + s(1 + λ)2

=
(
1 + λ2

)
m + 2λ(s − r).

This is minimized when λ = (r − s)/m, and the minimum works out to be 4rs/m.
The lemma follows on dividing both sides by n and taking the square root. □

We showed earlier that the distance between n−1/2PE sign(x(θ)) and ±n−1/2

PE sign(x(ϕ)) is at least κ, which by assumption is at least β. It follows further
that the conditions of Lemma 5.5 apply to n−1/2 sign(x(θ)) and n−1/2 sign(x(ϕ))
with both r and s at least β2n/4. Therefore, using the trivial bound |E| ⩽ n, we
deduce that

n−1/2
∣∣∣ sign(x(θ)) − λ sign(x(ϕ))

∣∣∣ ⩾ β2/2.

Therefore, using the fact that
n−1/2

∣∣∣ sign(x(θ)) − sign(y(θ))
∣∣∣ ⩽ β2/8

and
n−1/2

∣∣∣ sign(x(ϕ)) − sign(y(ϕ))
∣∣∣ ⩽ β2/8,

we find that

n−1/2
∣∣∣ sign(y(θ)) − λ sign(y(ϕ))

∣∣∣ ⩾ β2

2 − β2

8 (|λ| + 1) ⩾ β2/8

when |λ| ⩽ 2. In case |λ| ⩾ 2 we can instead use the bound(
1 + λ2

)
m + 2λ(s − r) ⩾ (|λ| − 1)2m
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to deduce that

n−1/2
∣∣∣ sign(x(θ)) − λ sign(x(ϕ))

∣∣∣ ⩾ β2

2 (|λ| − 1),

from which it follows that

n−1/2
∣∣∣ sign(y(θ)) − λ sign(y(ϕ))

∣∣∣ ⩾ β2

2 (|λ| − 1) − β2

8 (|λ| + 1),

which is again at least β2/8.
Now that we have shown in a precise sense that n−1/2 sign(y(θ)) and n−1/2

sign(y(ϕ)) are not approximately proportional to each other, we turn to deduc-
ing that the matrix ( α(θ) β(θ)

α(ϕ) β(ϕ) ) is well-invertible, by which we simply mean that its
determinant is not too small.

Lemma 5.6. — Let A = ( a b
c d ) be a 2 × 2 real matrix, let x and y be vectors in a

Euclidean space such that ⟨x, y⟩ = 0, and let(
u
v

)
=
(

a b
c d

)(
x
y

)
.

Then there exists λ such that |u − λv| ⩽ |x| |y| | det(A)|
|v|

Proof. — Consider first the case where x and y are unit vectors. Then

|u − λv|2 = (a − λc)2 + (b − λd)2

=
(
c2 + d2

)
λ2 − 2(ac + bd)λ + a2 + b2.

This is minimized when λ = ac+bd
c2+d2 , and the minimum is

a2 + b2 − (ac + bd)2

c2 + d2 = (ad − bc)2

c2 + d2 ,

which proves the result.
In the general case, we have that(

a b
c d

)(
x
y

)
=
(

a|x| b|y|
c|x| d|y|

)(
x/|x|
y/|y|

)
.

Using the case for unit vectors, we deduce that there exists λ such that

|u − λv|2 ⩽
|x|2|y|2 det(A)2

c2|x|2 + d2|y|2
,

and again the result is proved. □

Let us now apply this lemma with A = ( α(θ) β(θ)
α(ϕ) β(ϕ) ), x = Py(θ) and y = Qy(θ). Let

( u′

v′ ) = A( x
y ) and let u = n−1/2 sign(y(θ)), v = n−1/2 sign(y(ϕ)). The approximate

matrix equation proved earlier states that |u − u′| ⩽ σ and |v − v′| ⩽ σ. It follows
from the lemma that there exists λ such that

|Py(θ)| |Qy(θ)| | det(A)|
|v′|

⩾ |u′ − λv′| ⩾ |u − λv| − (1 + |λ|)σ.
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But we have shown that n−1/2| sign(y(θ)) − λ sign(y(ϕ))| ⩾ β2/8 for every λ. Since
we also know that |Py(θ)| ⩽ 1 and |Qy(θ)| ⩽ 1, it follows that

| det(A)| ⩾
(
β2/8 − (1 + |λ|)σ

)
|v′|.

From the proof of the last lemma it follows that the minimum distance is achieved
when

λ = α(ϕ)α(θ)|x|2 + β(ϕ)β(θ)|y|2

|v′|2
.

Recall also from the beginning of the section that α(ϕ), α(θ), β(ϕ), β(θ) ⩽ 2η−1.
Since |v′ − v| ⩽ σ, v = n−1/2 sign(y(ϕ)), and every y(ϕ) has support size at least n/4,
we get that |v′| ⩾ 1/2 − σ.

Hence
|λ| ⩽ 4

η2(1/2 − σ)2 .

Assuming that
(5.11) σ ⩽ β2η2/210

we may deduce that σ(1 + |λ|) ⩽ β2/16 and hence that | det A| ⩾ (1/2 − σ)β2/16 ⩾
β2/64.

Let us rewrite the approximate matrix equation as(
α(θ) β(θ)
α(ϕ) β(ϕ)

)(
Py(θ)
Qy(θ)

)
=
(

u′

v′

)
≈σ n−1/2

(
sign(y(θ))
sign(y(ϕ))

)
.

Then (
Py(θ)
Qy(θ)

)
= det(A)−1

(
β(ϕ) −β(θ)

−α(ϕ) α(θ)

)(
u′

v′

)
.

Since the coefficients of A have absolute value at most 2η−1, it follows that both
Py(θ) and Qy(θ) are linear combinations of u′ and v′ with coefficients of absolute
value at most 128η−1β−2. Using again the fact that |u′ − n−1/2 sign(y(θ))| and |v′ −
n−1/2 sign(y(ϕ))| are both at most σ, it follows that both Py(θ) and Qy(θ) can be
approximated to within 256η−1β−2σ by the corresponding linear combinations of
n−1/2 sign(y(θ)) and n−1/2 sign(y(ϕ)), and hence that y(θ) can be approximated to
within 512η−1β−2σ by a linear combination of n−1/2 sign(y(θ)) and n−1/2 sign(y(ϕ))
with coefficients of absolute value at most 256η−1β−2.

Now recall that
n−1/2

∣∣∣PE sign(x(θ)) − PE sign(y(θ))
∣∣∣ ⩽ 2

(
c + ξ−2δ2

)1/2
,

and similarly for ϕ, which implies in particular that n−1/2PE sign(y(θ)) and
n−1/2PE sign(y(ϕ)) can be approximated to within 2(c + ξ−2δ2)1/2 by vectors whose
coordinates take just the values ±n−1/2 on E. This is because x(θ) and x(ϕ) are
typical, which implies, by the second condition in the definition of “typical”, that
all coordinates of PE sign(x(θ)) and PE sign(x(ϕ)) are ±1.

Putting together the bounds obtained in the last two paragraphs we get that
PEy(θ) can be approximated by a linear combination of n−1/2PE sign(x(θ)) and
n−1/2PE sign(x(ϕ)) to within 512η−1β−2σ + 1024η−1β−2(c + ξ−2δ2)1/2. Thus, PEy(θ)
can be approximated by a vector with at most four distinct coordinates.
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This in turn implies that PEx(θ) can be approximated to within δ + 512η−1β−2σ +
1024η−1β−2(c + ξ−2δ2)1/2 by such a vector. But |x(θ) − PEx(θ)| ⩽ α, so we end up
with the conclusion that x(θ) can be approximated to within α + δ + 512η−1β−2σ +
1024η−1β−2(c + ξ−2δ2)1/2 by a vector that takes at most five distinct values
(the fifth value being zero). But x(θ) ∈ Y , so it is an ϵ-good point, which im-
plies by Lemma 4.1 that d(x(θ), PX) ⩽ 3δ + 2η or d(x(θ), QX) ⩽ 3δ + 2η. Provided
we have chosen our parameters in such a way that

(5.12) α + 4δ + 2η + 512η−1β−2σ + 1024η−1β−2
(
c + ξ−2δ2

)1/2
⩽ γ,

this contradicts the fact that P was chosen to ensure that neither PXγ nor QXγ

contains a vector with at most five distinct coordinates (see the end of Section 4
where the choice of P was described).

5.3. Case 3: k ⩾ 5.

We begin with a simple lemma to estimate how well we can simultaneously ap-
proximate k orthonormal vectors by a (k − 1)-dimensional subspace.

Lemma 5.7. — Let W be a (k−1)-dimensional subspace of Rn and let u1, . . . , uk

be an orthonormal sequence. Then there exists i such that d(ui, W ) ⩾ k−1/2.
Proof. — Without loss of generality n = k. Now let v be a unit vector orthogonal

to W . Then the orthogonal projection PW to W is given by the formula PW (x) =
x − ⟨x, v⟩v, from which it follows that d(x, W ) = |⟨x, v⟩|. But ∑k

i=1⟨ui, v⟩2 = 1, so
there must exist i such that |⟨ui, v⟩| ⩾ k−1/2, which proves the lemma. □

Now, with the help of the assumption that k ⩾ 5, we prove that we cannot find
a 4-dimensional subspace that approximately contains all the vectors in Σ. For
convenience, let us reorder the coordinates in such a way that E = {1, 2, . . . , m} and
0 ⩽ ϕ1 ⩽ ϕ2 ⩽ · · · ⩽ ϕm < 2π. Then for every typical vector x(θ), the set of i such
that x(θ)i > 0 is an interval mod m.

Lemma 5.8. — Let W be a 4-dimensional subspace of X. Then Σ contains a
vector u such that d(u, W ) ⩾ β/2

√
5.

Proof. — Let 0 ⩽ θ1 < · · · < θ5 < π be such that the points uj = n−1/2PE

sign(x(θj)) ∈ Σ and that together with the points −uj form a β-separated subset
of Σ. For each j ∈ {1, 2, . . . , 5} let [aj, bj] be the interval mod m of i such that
(uj)i = n−1/2.

Note that a1 ⩾ · · · ⩾ a5 and b1 ⩾ · · · ⩾ b5, where here we refer to the cyclic
ordering on the integers mod m. It follows that for each j, (uj+1 − uj)i = 2n−1/2 on
the interval [aj+1, aj), −2n−1/2 on the interval (bj+1, bj], and zero everywhere else.
In particular, the vectors of the form uj+1 − uj for j = 1, 2, 3, 4, together with the
vector u1 + u5, are orthogonal.

Since we have that |ui ± uj| ⩾ β for every i ̸= j, setting vj = uj+1−uj

|uj+1−uj | for j =
1, . . . , 4 and v5 = u1+u5

|u1+u5| , we may deduce from Lemma 5.7 that d(vj, W ) ⩾ 1/
√

5 for
some j. If j = 1, . . . , 4 then this implies that d(uj+1 −uj, W ) ⩾ β/

√
5, which implies
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that either d(uj+1, W ) ⩾ β/2
√

5 or d(uj, W ) ⩾ β/2
√

5. Similarly, if j = 5 we get that
either d(u1, W ) ⩾ β/2

√
5 or d(u5, W ) ⩾ β/2

√
5. This proves the Lemma 5.8. □

Let u = PE sign(x(θ)) be given by Lemma 5.8. Recall that (with parameters that
satisfy condition (5.12)) we have

n−1/2
∣∣∣PE sign(x(θ)) − PE sign(y(θ))

∣∣∣ ⩽ β2/8.

Recall also equation (5.1), which reads
n−1/2 sign(y(θ)) ≈δ/η α(θ)Py(θ) + β(θ)Qy(θ)

for some coefficients α(θ), β(θ) that have absolute values at most 2η−1. We also know
that |y(θ) − x(θ)| ⩽ δ. It follows that

n−1/2PE sign(x(θ)) ≈β2/8+δ/η+4δ/η α(θ)PEPx(θ) + β(θ)PEQx(θ).
It follows that the distance from n−1/2PE sign(x(θ)) to the subspace PE(PY +QY ),

which has dimension at most 4, is at most β2/8 + 5δ/η. If we pick parameters in
such a way that

β2

8 + 5δ

η
<

β

2
√

5
,(5.13)

then this contradicts Lemma 5.8.

5.4. Choosing parameters

We conclude by showing that there exists a choice of parameters which fulfils all
the conditions. We are not optimizing this choice.

First, recall that we have already chosen γ in the Corollary 4.5 to be 2−37. Further
we see that β = 2−6 satisfies (5.5) and (5.9). We can further choose η = 2−40,
α = 2−40, ρ = 2−40 and then c = 2−205, ξ = 2−403 and finally δ = 2−506. It is easy to
check that these parameters meet all the conditions.

This finishes the proof that the 2-Euclidean norm defined in (3.1), for n ⩾ 35
(which comes from our choice of γ and the condition in Lemma 4.2 and the fact that
we use a 2γ-expansion), contains no 2-dimensional subspace which is both strongly
(1 + ϵ)-complemented and strongly (1 + ϵ)-Euclidean with ϵ = δ2/8C2 = 2−1017. (the
dependence of ϵ on δ was established in the proof of Lemma 2.4).

BIBLIOGRAPHY

[AAGM15] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic
Geometric Analysis, Part I, Mathematical Surveys and Monographs, vol. 202, American
Mathematical Society, 2015. ↑428

[BL89] Jean Bourgain and Joram Lindenstrauss, Almost Euclidean sections in spaces with
a symmetric basis, Geometric aspects of functional analysis, Isr. Semin., GAFA, Isr.
1987-88, Lecture Notes in Mathematics, vol. 1376, Springer, 1989, pp. 278–288. ↑428

[Dvo61] Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat.
Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Perg-
amon Press, 1961, pp. 123–160. ↑428

ANNALES HENRI LEBESGUE



A counterexample to a strengthening of a question of V. D. Milman 447

[FLM77] Tadeusz Figiel, Joram Lindenstrauss, and Vitali D. Milman, The dimension of almost
spherical sections of convex bodies, Acta Math. 139 (1977), 53–94. ↑428

[GM01] Apostolos Giannopoulos and Vitali D. Milman, Euclidean structure in finite dimen-
sional normed spaces, Handbook of the geometry of Banach spaces, vol. 1, Elsevier,
2001, pp. 707–779. ↑428

[Gro56] Alexander Grothendieck, Sur certaines classes de suites dans les espaces de Banach et
le théorème de Dvoretzky–Rogers, Bol. Soc. Mat. São Paulo 8 (1956), 83–110. ↑428

[GW22] William T. Gowers and Katarzyna Wyczesany, High-dimensional tennis balls, Comb.
Theory 2 (2022), no. 2, article no. 15. ↑429

[Lin92] Joram Lindenstrauss, Almost spherical sections, their existence and their applications,
Jahresbericht der Deutschen Mathematiker-Vereinigung. Jubiläumstagung: 100 Jahre
DMV, Bremen, Deutschland, 17.-22. September 1990. Hauptvorträge, Teubner, 1992,
pp. 39–61. ↑428

[LS08] Shachar Lovett and Sasha Sodin, Almost Euclidean sections of the N-dimensional cross-
polytope using O(N) random bits, Commun. Contemp. Math. 10 (2008), no. 4, 477–489.
↑428

[Mil71] Vitali D. Milman, New proof of the theorem of Dvoretzky on intersections of convex
bodies, Funct. Anal. Appl. 5 (1971), 28–37. ↑428

[Mil92] , Dvoretzky’s theorem-Thirty years later, Geom. Funct. Anal. 2 (1992), no. 4,
455–479. ↑428

[Sch13] Gideon Schechtman, Euclidean sections of convex bodies, Asymptotic geometric analysis.
Proceedings of the fall 2010 Fields Institute thematic program, Fields Institute Com-
munications, vol. 68, Springer; The Fields Institute for Research in the Mathematical
Sciences, 2013, pp. 271–288. ↑428

[STJ80] Stanislaw J. Szarek and Nicole Tomczak-Jaegermann, On nearly Euclidean decompo-
sition for some classes of Banach spaces, Compos. Math. 40 (1980), no. 3, 367–385.
↑428

[STJ09] , On the nontrivial projection problem, Adv. Math. 221 (2009), no. 2, 331–342.
↑429

Manuscript received on 12th August 2021,
revised on 24th November 2022,
accepted on 2nd February 2023.

Recommended by Editor S. Vu Ngoc and S. Gouëzel.
Published under license CC BY 4.0.

eISSN: 2644–9463
This journal is a member of Centre Mersenne.

Timothy GOWERS
Collège de France,
11 Pl. Marcelin Berthelot,
75231 Paris (France)
and the University of Cambridge,

TOME 6 (2023)

https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/


448 W. T. GOWERS & K. WYCZESANY

Department of Pure Mathematics
and Mathematical Statistics,
Wilberforce Road, Cambridge
CB3 0WB (United Kingdom)
wtg10@dpmms.cam.ac.uk
Katarzyna WYCZESANY
Carnegie Mellon University,
Department of Mathematical Sciences,
5000 Forbes Ave, Pittsburgh,
PA 15213 (United States)
kwycz@cmu.edu

ANNALES HENRI LEBESGUE

mailto:wtg10@dpmms.cam.ac.uk
mailto:kwycz@cmu.edu

	1. Introduction
	2. Good vectors
	3. Definition of the norm and an important observation
	4. Outline of the proof and some technical lemmas
	5. The set of signs cannot be squeezed into a 4-dimensional subspace
	5.1. Case 1: k=1.
	5.2. Case 2: 2=< k=< 4
	5.3. Case 3: k>= 5.
	5.4. Choosing parameters

	References

