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MANIFESTATION OF THE
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GEOPHYSICAL WAVES
MANIFESTATION DE LA FORMULE DE
L’INDICE TOPOLOGIQUE DANS LES
ONDES QUANTIQUES ET LES ONDES
GÉOPHYSIQUES

Abstract. — Using semi-classical analysis in Rn we present a quite general model for
which the topological index formula of Atiyah–Singer predicts a spectral flow with the transition
of a finite number of eigenvalues between clusters (energy bands). This model corresponds to
physical phenomena that are well observed for quantum energy levels of small molecules [FZ00,
FZ01], also in geophysics for the oceanic or atmospheric equatorial waves [DMV17, Mat66]
and expected to be observed in plasma physics [QF22].

Résumé. — En utilisant l’analyse semi-classique dans Rn nous présentons un modèle assez
général pour lequel la formule de l’indice topologique d’Atiyah–Singer prédit un flot spectral
avec la transition d’un nombre fini de valeurs propres entre des clusters (bandes) d’énergie.
Ce modèle correspond à des phénomènes physiques qui sont bien observés pour les niveaux
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d’énergie quantiques de petites molécules [FZ00, FZ01], également en géophysique pour les
ondes équatoriales océaniques ou atmosphériques [DMV17, Mat66] et que l’on s’attend à
observer en physique des plasmas [QF22].

Remark 0.1. — On this pdf file, you can click on the colored words, they contain
an hyper-link to wikipedia or other multimedia contents.

1. Introduction

The famous index theorem of Atiyah Singer obtained in the 60’ relates two dif-
ferent domains of mathematics: spectral theory of pseudo-differential operators and
differential topology [BB85, Fed96]. This theorem has a strong importance in math-
ematics with many applications (e.g. the Riemann–Roch–Hirzebruch index formula
that is used in geometric quantization [Haw00]) but also in physics: in quantum
field theory with anomalies [PS95, Chapter 19], in molecular physics with energy
spectrum [FZ00, FZ01, FZ02b]. Recently P. Delplace, J.B. Marston and A. Ve-
naille [DMV17] have discovered that a famous model of oceanic equatorial waves es-
tablished by Matsuno in 1966 [Mat66] has remarkable topological properties, namely
that the existence of N = +2 equatorial modes in the Matsuno’s model is related to
the fact that the dispersion equation of this model defines a vector bundle over(1) S2

whose topology is characterized by a Chern index with value C = +2. In the similar
context of waves but in plasma physics, Hong Qin, Yichen Fu [QF22] have recently
predicted a manifestation of the index formula.

In this paper we propose a general mathematical model that contains as particular
cases the normal form used for molecular physics in [FZ00, FZ01] and the model of
Matsuno [DMV17, Mat66] of equatorial waves. For this general model we have on
one side a spectral index N ∈ Z that counts the number of eigenvalues that move
upwards as a parameter µ increases and on the other side a topological Chern index
C ∈ Z associated to a vector bundle that characterizes the equivalence class of the
model. We establish the index formula N = C.

There are many studies about topological phenomena in condensed matter physics.
Closely related to this paper are the works related to bulk-interface correspondence
by Guillaume Bal [Bal19], Chris Bourne, Johannes Kellendonk, and Adam Ren-
nie [BKR17, BR18], Alexis Drouot [Dro21], A Elgart, GM Graf, and J.H. Schenker
[EGS05], Gian Michele Graf and Marcello Porta [GP13], Yosuke Kubota [Kub17],
Emil Prodan and Hermann Schulz-Baldes [PSB16], and Julio Cesar Avila, Hermann
Schulz-Baldes, and Carlos Villegas-Blas [ASBVB13]. In particular the work of Alexis
Drouot [Dro21] uses microlocal analysis as here. There are also the works by C
Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and
A. Richter [DGH+01], Jacob Shapiro and Clément Tauber [ST19], Alex Bols, Jeffrey
Schenker, and Jacob Shapiro [BSS21].

The paper is organized as follows. In Section 2 we present the general model and
the main result of this paper, Theorem 2.7. In Section 2.5 we give the proof of
(1) Here S2 is not related to the surface of the earth but is a surface in R3 that enclosed a singularity
at the origin.
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Theorem 2.7. The proof relies on the index theorem on Euclidean space of Fedosov–
Hörmander given in [Hör79, Theorem 7.3 p. 422],[BB85, Theorem 1, p. 252] and
explained in the appendix.

Sections 3 and 4 are applications of this general model in physics. In Section 3
we present a simple model used in [FZ00, FZ01] to show the manifestation of the
index formula in experimental molecular spectra of quantum waves. In Section 4
we present the model of equatorial geophysics waves of Matsuno [Mat66] and the
topological interpretation from [DMV17].

The reader may prefer to read first Section 3 and 4 that present the examples with
detailed computations before Section 2 that presents the general but more abstract
model.

Appendix A gives a short overview of symbols and pseudo-differential operators.
Appendix B gives a short overview of vector bundles over spheres.

This article is made from the lecture notes in French [Fau18].

2. A general model on Rn and index formula
In this Section we propose a general framework that will contains the particular

models of molecular physics of Section 3 and of geophysics of Section 4. For this
general model we define a spectral index N that corresponds to the number of
eigenvalues that move upwards with respect to an external parameter µ and we
define a topological index (Chern index) C of a vector bundle that characterizes the
(stable) isomorphism class of the model. We establish the index formula N = C.

2.1. Admissible family of symbols (Hµ)µ

Let µ ∈] − 2, 2[ be a parameter. Let n ∈ N\{0} and (x, ξ) ∈ T ∗Rn = Rn × Rn

a point on the cotangent space T ∗Rn called “slow phase space”. Let d ⩾ 2 be an
integer and Herm(Cd) denotes Hermitian operators on Cd. We consider a function
(µ, x, ξ) → Hµ(x, ξ) smooth with respect to µ, x, ξ and valued in Herm(Cd) :

(2.1) Hµ :

T
∗Rn → Herm

(
Cd
)

(x, ξ) 7→ Hµ (x, ξ)
called symbol (we suppose that Hµ ∈ Sm

ρ,δ(T ∗Rn) belongs to the class of Hörman-
der symbols. This corresponds to suitable hypothesis of regularity at infinity, see
Section A).

For fixed values of µ, x, ξ, the eigenvalues of the matrix Hµ(x, ξ) are real and are
denoted
(2.2) ω1 (µ, x, ξ) ⩽ . . . ⩽ ωd (µ, x, ξ) .

We will assume the following hypothesis(2) for the family of symbols (Hµ)µ. This
hypothesis is illustrated on Figure 2.1.
(2) Here ∥(µ, x, ξ)∥ :=

√
µ2 +

∑n
j=1(x2

j + ξ2
j ) is the Euclidean distance from (µ, x, ξ) to the origin

in R2n+1.
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Figure 2.1. Illustration of Assumption 2.1. On Figure (a), for parameters
(µ, x, ξ) ∈ R × Rn × Rn in the green domain, we assume that the spectrum
of the hermitian matrix Hµ(x, ξ), has r eigenvalues smaller than −C and that
the others are greater than C > 0. Equivalently, on Figure (b), the spectrum of
Hµ(x, ξ) for any (x, ξ) is contained in the red domain.

Assumption 2.1 (“Spectral gap assumption”). — For the family of symbols
(Hµ)µ, (2.1), we suppose that there exists an index r ∈ {1, . . . d − 1} and
C > 0 such that for every (µ, x, ξ) ∈ R3 such that ∥(µ, x, ξ)∥ ⩾ 1 and |µ| ⩽ 2,
we have

ωr (µ, x, ξ) < −C and ωr+1 (µ, x, ξ) > +C.

2.2. Spectral index N for the family of symbols (Hµ)µ

The reader may read first the Appendix A that gives an introduction with examples
to pseudo-differential operators (PDO) and pseudo-differential calculus.

Let us introduce a new parameter ϵ > 0 called adiabatic parameter or semi-classical
parameter. We define the pseudo-differential operator (3) (PDO)

(2.3) Ĥµ,ϵ := Opϵ (Hµ) ∈ Herm
(
L2 (Rn) ⊗ Cd

)
,

obtained by Weyl quantization of the symbol Hµ.

(3)The operator Ĥµ,ϵ belongs to Herm(L2(Rn) ⊗ Cd) ≡ Herm(L2(Rn;Cd)), i.e. is a self-adjoint
operator in the space of functions on Rn with d complex components.
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Figure 2.2. For ϵ > 0 fixed, this is a schematic picture of the spectrum of the
operator Ĥµ,ϵ. From Theorem 2.2, in the green domain, there is no spectrum. In
the red domain, the spectrum is discrete: discrete eigenvalues are shown in blue
and depend continuously on µ, ϵ. Consequently we can label the eigenvalues by
some increasing number n and label each spectral gap by the index n of the first
eigenvalue below it. We define then the spectral index of the family of symbols
(Hµ)µ by N = nin − nout. In this example, N = nin − nout = 0 − (−2) = +2
corresponding to the fact that N = +2 eigenvalues are moving upward as µ
increases.

Theorem 2.2. — We do the Assumption 2.1. Then for every α > 0 there
exists ϵ0 > 0 such that for every 0 < ϵ < ϵ0,

• for any µ such that 1 +α < |µ| < 2, the operator Ĥµ,ϵ has no spectrum
in the interval ] − C + α,+C − α[.

• for any µ such that |µ| ⩽ 1+α, the operator Ĥµ,ϵ has discrete spectrum
in the interval ] − C + α,C − α[ that depends continuously on µ, ϵ.

See Figure 2.2.
Proof. — We follow quite standard techniques from micro-local analysis. From

Assumption 2.1, if |µ| > 1 + α then the symbol has no spectrum in the interval
[−C,C]. Hence for any z ∈ I := [−C + α,C − α], the operator (zId − Ĥµ,ϵ) is
invertible with approximate inverse given by Opϵ((z−Hµ(x, ξ))−1). This means that
there is no spectrum for Ĥµ in this interval I.

If |µ| < 1 +α, the symbol Hµ(x, ξ) may have some spectrum in this spectral range
I. However, from Assumption 2.1, the points (µ, x, ξ) for which Ran(Hµ(x, ξ)) ∩ I
is non empty are included in the compact ball ∥(µ, x, ξ)∥ ⩽ 1 (here Ran(Hµ(x, ξ))
stands for the numerical range of the matrix Hµ(x, ξ)). Let us take χµ : (x, ξ) →
χµ(x, ξ) ⩾ 0 that is a smooth regularization of the characteristic function of the

TOME 6 (2023)
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set ∥(µ, x, ξ)∥ ⩽ 1. We take A > 0 large enough such that the perturbed symbol
H ′

µ(x, ξ) = Hµ(x, ξ) + Aχµ(x, ξ) has no spectrum in [−C,C] for every µ such that
|µ| < 1 + α. Since χµ has compact support, then Opϵ(χµ) is trace class hence
compact, see (A.4). Then as before, Opϵ(H ′

µ) has no spectrum in [−C + α,C − α]
for µ s.t. |µ| < 1 + α (i.e. the perturbation Aχµ has pushed the spectrum above).
For z ∈ [−C + α,C − α], we write

(z −Hµ)−1 =
(
z −H ′

µ + Aχµ

)−1
=
(
z −H ′

µ

)−1
(

1 +
(
z −H ′

µ

)−1
Aχµ

)−1

By quantization of this relation, we have that Opϵ((z − H ′
µ)−1) is bounded and

analytic in z, Opϵ(Aχµ) is compact, hence from analytic Fredholm theorem [RS72,
p. 201], Opϵ(1 + (z −H ′

µ)−1Aχµ)−1 and therefore (z − Ĥµ,ϵ)−1 are meromorphic in
z with residues that are operators of finite rank, i.e. the spectrum is discrete. □

As a consequence of Theorem 2.2 we can define the spectral index N as follows,
as shown on Figure 2.2.

Definition 2.3 (“Spectral index N of the family of symbols (Hµ)µ”). —
With Assumption 2.1 and from Theorem 2.2, for fixed ϵ, each spectral gap
can be labeled as follows. Let (ωn(µ, ϵ))n ∈Z be the eigenvalues of the operator
Ĥµ,ϵ that belongs to the interval Iα :=] − C + α,+C − α[, labeled by n ∈ Z
and sorted by increasing values (this is well defined up to a constant). For
a given n, the eigenvalue ωn(µ, ϵ) ∈ R is continuous w.r.t. µ, ϵ. For a point
(µ, ω) ∈ (−1 − α, 1 + α) × Iα different from an eigenvalue, we associate the
index n(µ, ω) ∈ Z of the eigenvalue just below it, i.e. such that ωn(µ, ϵ) <
ω < ωn+1(µ, ϵ). We denote nin := n(−1, 0) the index of the first gap and
nout := n(1, 0) the index of the last gap. This defines an integer
(2.4) N := nin − nout ∈ Z
called the spectral index of the family of symbols (Hµ)µ. This integer N counts
the number of eigenvalues that go upwards as µ increases. N is independent on
ϵ and more generally invariant under any continuous variation of the symbol
(Hµ)µ family satisfying the assumption 2.1. Hence, N is a topological index.

Remark 2.4. — The last remark that N is invariant under continuous variation
of the symbol comes from the fact that the map Hµ → N ∈ Z is continuous hence
locally constant

Remark 2.5. — We have used Weyl quantization in (2.3) to define the operator
Ĥµ,ϵ. We could have choose any other quantization procedure. The index N does
not depend on the choice of quantization.

Question 2.6. — How to compute the spectral index N ∈ Z directly from the
symbol (Hµ)µ?

Answer: in the next section, with Theorem 2.7, we will see that N is simply related
to the degree of a certain map f : S2n−1 → S2n−1 that is obtained from the symbol
(Hµ)µ.
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2.3. Chern topological index C and index formula

The reader may read first the Appendix B.3 that gives an introduction and general
information about topology of vector bundles over spheres.

Let
S2n :=

{
(µ, x, ξ) ∈ R1+2n, ∥(µ, x, ξ)∥ = 1

}
,

be the unit sphere in the space of parameters. From assumption 2.1, for every
parameter (µ, x, ξ) ∈ S2n, we have a spectral gap between eigenvalues ωr(µ, x, ξ)
and ωr+1(µ, x, ξ). Then we can define the spectral projector associated to the first r
eigenvalues by Cauchy formula

Π1;r (µ, x, ξ) := i

2π

z

γ

(
z −Hµ (x, ξ)

)−1
dz

where the integration path γ ⊂ C enclosed the segment [ω1(µ, x, ξ), ωr(µ, x, ξ)] and
crosses the spectral gaps. The spectral space associated to the first r eigenvalues
ω1 . . . ωr is then the image of this projector

(2.5) F (µ, x, ξ) := RanΠ1;r (µ, x, ξ) .

The linear space F (µ, x, ξ) ⊂ Cd has complex dimension r and defines a smooth
complex vector bundle of rank r over the sphere S2n, that we denote F → S2n. From
Remark 2.8 below, we can suppose that r ⩾ n.

From Bott’s theorem B.20, the topology of F → S2n is characterized by an integer
C ∈ Z called Chern index defined in (B.18) from the degree deg(f) of a map
f : S2n−1 → S2n−1 in (B.17), by C = deg(f)

(n−1)! , and f is directly obtained from the
clutching function

(2.6) g : S2n−1 → U (r)

of the bundle F → S2n on the equator S2n−1 with respect to some local trivialization.
In dimension n = 1 this is more simple because C is just the winding number of the
clutching function g : S1 → U(1) ≡ S1 on the equator S1. The physical applications
considered later in this paper correspond to dimension n = 1.

Theorem 2.7 (“Index formula”). — Let (Hµ)µ be a family of symbols that
satisfies Assumption 2.1. Let N ∈ Z be the spectral index defined in (2.4)
and let C ∈ Z be the Chern topological index defined from the vector bundle
F → S2n by (B.18). We have
(2.7) N = C.

The proof of Theorem 2.7 is given in Section 2.5. It is based on the index theorem
on Euclidean space of Fedosov–Hörmander given in [Hör79, Theorem 7.3, p. 422],
[BB85, Theorem 1, page 252].

TOME 6 (2023)
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Remark 2.8. — If one replaces the symbol Hµ(x, ξ) ∈ Herm(Cd) in (2.1) by the
symbol H̃µ(x, ξ) ∈ Herm(Cd+m) obtained by adding a constant diagonal term

H̃µ (x, ξ) =
(
Hµ (x, ξ) 0

0 ω0IdCm

)
,

with ω0 < −C then one observes that
• H̃µ satisfies Assumption 2.1.
• The spectral index of H̃µ and Hµ are equal, i.e. Ñ = N . This is because

Opϵ(H̃µ) ≡ Opϵ(Hµ) ⊕ Opϵ(ω0IdCm) and the spectrum of Opϵ(ω0IdCm) =
ω0Opϵ(IdCm) is on the constant horizontal line ω = ω0 < −C, so does not
give moving eigenvalues.

• The associated vector bundle F̃ → S2n is F̃ = F ⊕ Tm where Tm = S2n ×Cm

is the trivial bundle and rank(F̃ ) = rank(F ) +m.
This remark shows that the spectral index does not change if one adds a trivial
bundle Tm to the bundle F . It means that N depends only on the equivalence class
of F (or H) in the K-theory group K̃(S2n), cf [Hat98].

2.4. Special case of matrix symbols that are linear in (µ, x, ξ)

In this section, we give a simple but important remark to understand why the
model of Matsuno presented in Section 4 does not depend on a small parameter ϵ
but nevertheless belongs to the general model presented here. This is the same for
the normal form model presented in Section 3.

Suppose that

H̃ :
(
µ̃, x̃, ξ̃

)
∈ R1+2n → H

(
µ̃, x̃, ξ̃

)
∈ Herm

(
Cd
)

is a linear map with respect to (µ̃, x̃, ξ̃) and consider the quantization rule Op1(ξ̃) =
−i∂x̃ (i.e. with ϵ = 1). For example, see the normal form symbol (3.1) or the
Matsuno’s symbol (4.3).

For any ϵ > 0, we do the change of variables

µ =
√
ϵµ̃, x =

√
ϵx̃,

that gives
Opϵ (ξ) = −iϵ∂x = −i

√
ϵ∂x̃ =

√
ϵOp1

(
ξ̃
)
.

Hence the symbol H(µ, x, ξ) =
√
ϵH̃(µ, x, ξ) satisfies

Opϵ (Hµ) =
√
ϵOp1

(
H̃ µ̃

)
.

In other words all these models with different ϵ are equivalent up to a scaling of the
parameters and the operator (and spectrum). The benefit to consider an additional
semi-classical (or adiabatic) parameter ϵ ≪ 1 is that one can perturb the linear symbol
to a non linear symbol and still get the index formula N = C from Theorem 2.7.

ANNALES HENRI LEBESGUE

https://en.wikipedia.org/wiki/K-theory


Manifestation of the topological index formula 457

2.5. Proof of the index formula (2.7)

In this section we give a proof of Formula (2.7). This proof relies on the index
Theorem on Euclidean space of Fedosov–Hörmander given in [Hör79, Theorem 7.3
p. 422], [BB85, Theorem 1, p. 252].

For a given family of symbols H = (Hµ)µ ∈ (−2,2) with Assumption 2.1, we have
defined two topological indices NH ∈ Z and CH ∈ Z. These indices are topological,
i.e. they depend only on the class of equivalence of the symbols and we want to show
that they are equal, i.e. NH = CH .

Let us denote F → S2n the smooth vector bundle of rank r defined from H
in (2.5). We will construct a new symbol in the same equivalence class, so having
the same indices NH , CH , but that will be easier to handle to show that NH = CH .
Let g : S2n−1 → U(r) be the clutching function on the equator of the bundle F , as
defined in (2.6) or Appendix B.3.2. We extend g outside of S2n−1 ⊂ R2n

x,ξ giving a
1-homogeneous function g̃ : R2n

x,ξ → Mat(Cr) by

(2.8) g̃ : (x, ξ) ∈ R2n → g̃ (x, ξ) := ∥(x, ξ)∥ g
(

(x, ξ)
∥(x, ξ)∥

)
∈ Matr (C) .

Then we define the (new) symbol Hµ as follows. For µ ∈ R, (x, ξ) ∈ R2n, let

(2.9) Hµ (x, ξ) :=
(

−µIdr −g̃ (x, ξ)
−g̃† (x, ξ) µIdr

)
∈ Herm

(
C2r

)
.

Lemma 2.9. — There are two eigenvalues of Hµ(x, ξ) defined in (2.9), given
by ω±(µ, x, ξ) = ±∥(µ, x, ξ)∥, each with multiplicity r. For (µ, x, ξ) ∈ S2n, the
eigenspace F−(µ, x, ξ) associated to ω−(µ, x, ξ) = −1 defines a vector bundle
F− → S2n of rank r isomorphic to the initial given vector bundle F → S2n.

Remark 2.10. — Eq. (2.9) car be related to a more general construction of a
projector from a given vector bundle, see [Fed96, p. 14].

Proof. — For (µ, x, ξ) ∈ R3, we denote R = ∥(µ, x, ξ)∥. Since g is unitary on S2n−1,
we get that g̃†g̃ = g̃g̃† = ∥(x, ξ)∥2 = R2 − µ2 and easily check that eigenvalues ω±

and eigenvectors U±
j defined by Hµ(x, ξ)U±

j = ω±U±
j are given for j = 1, . . . r by

ω± (µ, x, ξ) = ±R, U±
j (µ, x, ξ) =

(
(−µ±R) δj

−g̃†δj

)
,

where

δj :=
0, . . . , 1︸︷︷︸

j

, 0 . . .
 ∈ Cr

denotes the canonical basis vector of Cr. So there are two eigenvalues ω±(µ, x, ξ)
each with multiplicity r. We denote F±(µ, x, ξ) := Vect(U±

j , j ∈ {1 . . . r}) ⊂ C2 the
associated eigenspaces. We compute that∥∥∥U±

j

∥∥∥2
= (−µ±R)2 +

∑
j′

∣∣∣〈δj′

∣∣∣ g̃†δj

〉∣∣∣2 = (−µ±R)2 +R2 − µ2 = 2R (R ∓ µ) .

TOME 6 (2023)
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Since the vectors (U±
j )j are orthogonal, the spectral projector π− on F− is given by

(2.10) π− =
r∑

j=1

1∥∥∥U−
j

∥∥∥2U
−
j

〈
U−

j |.
〉

: C2r → F− (µ, x, ξ) .

Consider S2n = {(µ, x, ξ) ∈ R2n+1, R = 1} the unit sphere in the parameter space,
the northern hemisphere H1 := {(µ, x, ξ) ∈ S2n, µ ⩾ 0} and southern hemisphere
H2 := {(µ, x, ξ) ∈ S2n, µ ⩽ 0}. For a given j ∈ {1, . . . , r}, the orthogonal projection
of the fixed vector ( δj

0 ) ∈ C2r onto F−(µ, x, ξ) gives the global section:

(2.11) s
(j)
1 (µ, x, ξ) := π−

(
δj

0

)
=

(2.10)
−1

2U
−
j

We compute ∥s(j)
1 ∥2 = 1

2(1 + µ) hence ∥s(j)
1 ∥2 ̸= 0 does not vanish on H1. Hence

(s(j)
1 )j ∈ {1, ...r} is a trivialization of F− → H1. We consider also the following trivial-

ization of F− → H2:

(2.12) s
(j)
2 (µ, x, ξ) := π−

(
0
δj

)
= −1

2 (1 − µ)

r∑
j′=1

U−
j′

〈
g̃†δj′

∣∣∣ δj

〉
,

We have ∥s(j)
2 ∥2 = 1

2(1 − µ) hence ∥s(j)
2 ∥2 ̸= 0 on H2 and (s(j)

2 )j ∈ {1, ...r} is a trivializa-
tion of F− → H2. We observe that

s
(j)
2 = −1

2 (1 − µ)

r∑
j′=1

U−
j′ g̃j′,j =

2.11

1
(1 − µ)

r∑
j′=1

g̃j′,js
(j)
1

Hence on the equator S2n−1 = {µ = 0, (x, ξ) ∈ S2n−1} the clutching function
f21 : S2n−1 → U(r) of F− defined by s

(j)
2 (0, x, ξ) = ∑r

k=1 f
(j,k)
21 (x, ξ)s(k)

1 (0, x, ξ) is
given by f21(x, ξ) = g̃(x, ξ) = g(x, ξ), that is the clutching function of F . Hence F−
and F are isomorphic. □

From Lemma 2.9, we see that the symbol Hµ in (2.9) satisfies the Assumption 2.1.
As in (2.3) we define the operator

(2.13) Ĥµ,ϵ =
(2.3)

Opϵ (Hµ) =
(2.9)

(
−µId −Opϵ (g̃)

−Opϵ (g̃)† µId

)
∈ Herm

(
L2 (Rn) ⊗ C2r

)
.

and from Theorem 2.2 we can define the spectral index NH in (2.4).

Lemma 2.11. — The operator Opϵ(g̃) ∈ Herm(L2(Rn) ⊗ Cr) is Fredholm
with index
(2.14) Ind (Opϵ (g̃)) = NH .

Proof. — For simplicity of notation, we denote the operator A := Opϵ(g̃). Since
g̃†g̃ = g̃g̃† = ∥(x, ξ)∥2 we see that A is elliptic hence Fredholm [BB85, Theorem 3,
p. 185], with index [BB85, Theorem 2, p. 16]
(2.15) IndA = dim KerA− dim KerA†.

Since ⟨u|A†Au⟩ = ∥Au∥2 ⩾ 0, we have that A†A has discrete and positive spectrum
denoted A†A = ∑

k ∈N∗ λkπk, with positive eigenvalues 0 < λ1 ⩽ λ2 ⩽ . . . and πk

ANNALES HENRI LEBESGUE

https://en.wikipedia.org/wiki/Fredholm_operator


Manifestation of the topological index formula 459

being the spectral projector associated to λk. We denote π0 the projector on KerA.
Similarly we denote AA† = ∑

k ∈N∗ λ′
kπ

′
k and π′

0 the projector on KerA†. In fact
for a given k > 0, we have λ′

k = λk > 0 and π′
k = 1

λk
AπkA

†, πk = 1
λk
A†π′

kA,
because Tr(AπkA

†) = Tr(A†Aπk) = λk > 0. For k > 0, we have the isomorphism
A : Imπk → Imπ′

k and A† : Imπ′
k → Imπk. If (el)l=1... dim Imπk

is an orthonormal basis
of Imπk then 1√

λk
(Ael)l, (el)l is an orthonormal basis of Imπ′

k ⊕ Imπk. In this basis,
the operator Ĥµ,ϵ is represented by the matrix

Ĥµ,ϵ ≡
(

−µ −
√
λk

−
√
λk µ

)
The eigenvalues of this matrix are ω±

k = ±(µ2 + λk)1/2 and never vanish for any
µ ∈ R, since λk > 0. Additionally, for k = 0, we have λ0 = 0, hence Ĥµ,ϵ ≡ ( −µ 0

0 µ ) has
eigenvalue −µ with multiplicity rankπ′

0, and eigenvalue µ with multiplicity rankπ0.
As a function of µ ∈ R, these eigenvalues vanish transversely for µ = 0, as on
Figure 3.2 and we get the index NH = rankπ0 − rankπ′

0. Consequently
NH = rankπ0 − rankπ′

0 = dim KerA− dim KerA† =
(2.15)

IndA. □

The index Theorem on Euclidean space of Fedosov–Hörmander given in [Hör79,
Theorem 7.3, p. 422], [BB85, Theorem 1, p. 252] or Eq. (B.27), gives
(2.16) Ind (Opϵ (g̃)) = CH .

So we conclude that NH =
(2.14),(2.16)

CH .

2.6. Some models with topological contact without exchange of states

In Section 2, we have seen a model constructed from a symbol Hµ(x, ξ) on a phase
space (x, ξ) ∈ R2n (i.e. n degrees of freedom) and parameter µ ∈ (−2, 2), with a
spectral gap for µ < −1 and µ > 1 and with a spectral index N ∈ Z that counts
the exchange of discrete energy eigenvalues (or states) between two energy bands, as
the parameter µ increases (energy bands are the spectrum below the gap and the
spectrum above the gap). We have seen that N is equal to the Chern index C of a
vector bundle F → S2n of rank r that is defined from the symbol.

• If the vector bundle F is trivial, it means that the two bands are not “topo-
logically coupled” and we can perturb continuously the symbol (Hµ)µ so that
the gap may exist for every values of µ ∈ (−2, 2), i.e. we can “open the gap”.

• If the vector bundle F is non trivial, it means that the two bands are “topo-
logically coupled” with a “topological contact” and we can not “open the gap”,
or remove the contact between the two bands.

If N = C ≠ 0 then the bundle F is not trivial and we can not open the gap,
since some energy levels pass through it, and this situation cannot be changed by
continuous perturbations. From Bott’s theorem B.20, if r = rank (F ) ⩾ n then C ∈ Z
characterizes the topology of F . In other words, if r ⩾ n then C = N = 0 ⇔ F is
trivial.
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However for vector bundles F of smaller ranks, r < n this is not always true
(we only have the obvious fact F is trivial ⇒ C = N = 0 but not the converse).
There exist some non trivial bundles F → S2n with Chern index C(F ) = 0. From
Table B.2, the simplest example is for F → S6, i.e. n = 3 degrees of freedom, with
rank r = 2, because Vect2(S6) = Z2 = {0, 1}. Suppose for example that F → S6

is non trivial and with topological class [F ] = 1 ∈ Vect2(S6) = Z2. It means that
the two bands have a “topological contact”, i.e. that we can not open the gap.
Nevertheless N = C = 0, i.e. there is no exchange of states between the two bands
at the contact (since the spectrum is discrete, there is some small gap that goes to
zero as ϵ → 0). See figure below.

If one adds a second similar contact (at some other value of µ), then since 1+1 = 0
in Z2, the result is that the two contact annihilate themselves and one can finally
“open the gap”. See figure below.

These kind of phenomena may occur with vector bundles F → S2n that are in
the “non stable range”, where the homotopy groups are very complicated, see the
Appendix B.3.

For a different example of the role of topology in spectral phenomena, in the
paper [FZ02b] there is a simple model used molecular physics, for which the energy
bands are topological coupled and associated to a rank 2 vector bundle that can not
be split into two rank 1 vector bundles. This involves Chern numbers C1, C2 and
shows the manifestation of algebraic topology in quantum mechanics of molecules
or more generally quantum interacting systems.
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3. Spectral flow and index formula for quantum waves in
molecules

References for this Section are [Fau06, FZ00, FZ01, FZ02a].

3.1. Introduction

A small molecule is a set of atoms (electrons and nuclei) and can be considered
as an isolated but complex quantum system since many degrees of freedom interact
strongly on different time scales: the electrons that are light evolve on very short
scales of time τe ∈ [10−16s, 10−15s], which are small compared to the time scales of
the vibration motion of the atoms τvib ∈ [10−15s, 10−14s], themselves small compared
to the slower rotation of the molecule τrot. ∈ [10−12s, 10−10s]. In quantum mechanics
the state of the molecule is described by a multivariate “quantum wave function” and
a stationary state of the molecule corresponds to an eigenfunction of the Hamiltonian
operator. The corresponding eigenvalue is the energy of this state. If the molecule
is sufficiently isolated from its environment, one can experimentally measure its
quantum energy levels (discrete spectrum) by spectroscopy. These quantum energy
levels correspond to stationary collective states of all the internal interactions between
all these different degrees of freedom. It seems to be (and it is) a very complicated
problem, but these different time scales allows to approximate the dynamics by some
“fiber bundle description”. This is called the adiabatic theory. In simple words the fast
motion phase space is a fiber bundle over the slow motion phase space. In quantum
mechanics (or more generally in wave mechanics, like optics, acoustics. . . ) one has
to quantize this fiber bundle description. Although this adiabatic approach does not
solve completely the problem it gives a geometric description and some rough (and
robust under perturbations) first description of the spectrum can be obtained from
topological properties of these fiber bundles. This is the subject of this Section. See
Figure 3.1.

3.2. Simple model (normal form)

References for this section: [FZ00, FZ01]. The following model not only is relevant
in molecular physics to illustrate the spectral behavior of rotational / vibrational
(slow / fast) energy levels of nuclei, but also plays an important role in the general
theory because it is an “elementary topological normal form”.

Let µ ∈ R be a parameter that is fixed. Let (x, ξ) ∈ T ∗R ≡ R×R “slow variables”
on phase space R2. We introduce the “symbol”

(3.1) Hµ (x, ξ) :=
(

−µ x+ iξ
x− iξ +µ

)
∈ Herm

(
C2
)
.

We will call H = C2 the fast Hilbert space. The space of “slow Hilbert” is L2(R) and
corresponds to the quantification of the phase space T ∗R of “slow variables” x, ξ and
replace them by quantum operators. Let ϵ > 0, the “adiabatic parameter” and set
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Figure 3.1. Energy levels (in cm−1) of the molecule CD4 (carbon with 4 deu-
terium atoms) as a function of the total angular momentum J ∈ N (rotation
energy and which is a preserved quantity). The fine structure of the spectrum
corresponds to the slow rotation motion and the broad structure to the faster
vibration motion. There are groups of levels and levels that pass between these
groups. The index formula gives the exact values of number of levels Nj in each
group [Fau06, FZ00, FZ01, FZ02a].

(3.2) Ĥµ := Opϵ (Hµ) :=
(

−µ Id x̂+ iξ̂

x̂− iξ̂ µ Id

)
∈ Herm

(
L2 (Rx) ⊗ C2

)
where Id : L2(R) → L2(R), ξ̂ := Opϵ(ξ) := −iϵ d.

dx
∈ Herm(L2(R)), and x̂ is the

multiplication operator x in L2(Rx), see Section A for more details.
Remark 3.1. — In [FZ00, FZ01] it is shown how this normal form gives a micro-

local description of the interaction between the fast vibration motion and the slow
rotational motion of the molecule of Figure 3.1. In few words, (x, ξ) are local co-
ordinates on the sphere S2 of rotation in a vicinity of a point where two spectral
bands have a contact, and the C2 space describes the quantum dynamics of the fast
vibrations by restricting to an effective two level problem.

3.2.1. Spectral index N

In the following Theorem, (φn)n ∈N is the orthonormal basis of Hermite functions
of L2(R) defined by the Gaussian function

φ0 (x) = 1
(πϵ)1/4 e

− 1
2

x2
ϵ ,(3.3)

and

φn+1 = 1√
n+ 1

a†φn, aφn =
√
nφn−1,(3.4)

with the operators (so called annihilation and creation operators from quantum
optics)
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(3.5) a := 1√
2ϵ
(
x̂+ iξ̂

)
, a† := 1√

2ϵ
(
x̂− iξ̂

)
.

Proposition 3.2 (“Spectrum of Ĥµ”.). — For each parameter µ ∈ R, the
operator Ĥµ, (3.2), has discrete spectrum in L2(Rx) ⊗ C2 given by
(3.6) Ĥµϕ

±
n = ω±

n ϕ
±
n , n ⩾ 1,

with for any n ∈ N\{0},

ω±
n√
ϵ

= ±

√√√√( µ√
ϵ

)2

+ 2n

ϕ±
n =


√

2nϵ
µ+ω±

n
φn−1

φn

(3.7)

and for n = 0,
Ĥµϕ0 = ω0ϕ0,

with
ω0 = µ

ϕ0 =
(

0
φ0

)
Observe that there is
(3.8) N = +1
eigenvalue transiting upwards, for µ increasing. See Figure 3.2.

Remark 3.3. — It appears in (3.7) that
√
ϵ is a natural parameter of “scaling”.

See Section 2.4 for a discussion.
For the moment we can not say that (3.8) is a result of topology. For N to be

recognized as a “topological index”, it would be necessary for this model to belong
to a set of models and to show that this number N = +1 is model independent
(robust by continuous perturbation within this set). This is done in Section 2.

A detailed proof of Proposition 3.2 with different methods, can be found in the
arxiv version [Fau19].

3.2.2. Topological Chern Index C

We can first consult the Section B which introduces in simple terms the notion of
topology of a complex vector bundle of rank 1 on the sphere S2.
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Figure 3.2. Spectrum of (3.6).

Proposition 3.4 (“Topological aspects of the symbol”). — The eigenvalues
of the matrix Hµ(x, ξ) ∈ Herm(C2), Eq. (3.1), are

(3.9) ω± (µ, x, ξ) = ±
√
µ2 + x2 + ξ2

There is therefore a degeneracy ω+ = ω− for (µ, x, ξ) = (0, 0, 0). For (µ, x, ξ) ∈
S2 = {(µ, x, ξ) ∈ R3, |(µ, x, ξ)| = 1}, i.e. on the unit sphere in the parameter
space, the eigenspace F−(µ, x, ξ) ⊂ C2 associated with the eigenvalue ω−
defines a complex vector bundle of rank 1, denoted F−. Its isomorphism class
is characterized by the topological Chern index

C (F−) = +1.
Similarly for eigenvalue ω+,

C (F+) = −1.

Figure 3.3. We have ω−(µ, x, ξ) ⩽ −|µ|, ω+(µ, x, ξ) ⩾ |µ|. The red domain
represents the possible values of ω−(µ, x, ξ) with µ fixed and (x, ξ) ∈ R2. Similarly,
the blue domain represent ω−(µ, x, ξ). The degeneracy is at (µ, x, ξ) = (0, 0, 0).
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A detailed proof of Proposition 3.2.2 with different methods, can be found in the
arxiv version [Fau19].

3.2.3. Conclusion on the model (3.2)

In the model defined by (3.2), we observe from the symbol, a vector bundle
F− whose index of Chern is C(F−) = +1 and we observe that there is N = +1
level transiting (upwards) in the spectrum of the operator. We see in Section 2,
Theorem 2.7, that this equality

N = C
is a special case of a more general result, called the index formula, valid for a
continuous family of symbols and for spaces and bundles of larger dimensions.

Another equivalent formulation given in [FZ00, FZ02a, FZ01] in a more general
context: for |µ| ≫ 1, there are two groups of levels j = −,+ in the spectrum of Ĥµ.
When changing µ = −∞ → +∞ each group has a variation ∆Nj ∈ Z of the number
of levels. We have the formula

∆Nj = −Cj

where Cj is the Chern index of the bundle Fj → S2.

4. Spectral flow and index formula for oceanic equatorial
waves

In this Section we present the model of Matsuno (1966) [Mat66] for equatorial
waves and the topological interpretation given by P. Delplace, J. B. Marston, and
A. Venaille in [DMV17].

4.1. Matsuno’s model

We first present the physical meaning of the Matsuno’s model [Mat66]. See also
this document, [Val17].

The shallow water model

See also Shallow_water_equations on wikipedia. Let x = (x1, x2) ∈ R2 be local
coordinates on the horizontal plane near the equator. x1 is the longitude and x2
the latitude. The function (h(x, t) + H) ∈ R with H > 0 represents the depth
of water (or of a layer of hot water) at position x and time t ∈ R. The vector
u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 represents the (horizontal) velocity of this water.
Water is submitted to gravity (g = 9.81m/s2 is the g-force) and since the earth is
rotating with frequency Ω, there is also an effective Coriolis force. The Navier–Stokes
equations with shallow water assumptions give

∂th+ div ((h+H)u) = 0
∂tu+ u · grad (u) = −ggrad (h) − fn ∧ u

with f(x) = 2Ω · n(x) ∈ R and (x) being the unit normal vector at position x. See
Figure 4.2.
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Figure 4.1. Marine currents May 27, 2018, according to the website nullschool.
We observe the equatorial waves and the accumulation of energy on the east
coasts of continents.

Figure 4.2. Illustration of quantities for the shallow water model (4.1).

Linearization

The idea of Matsuno is to linearize the equations (4.1) in the vicinity of x2 = 0
(the equator), u = 0 (small velocities), h = 0 (small fluctuations). We assume

f (x) = βx2, β > 0.

Then (4.1) at first order give the following linear equations

∂th = −Hdiv (u)

∂tu = −ggrad (h) − βx2

(
−u2
u1

)
(4.1)

With c =
√
gH and the change of variables

t′ =
√
cβt, x′ =

√
β

c
x, h′ =

√
β

c
h, u′ = 1

c
u,
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we obtain the dimensionless equations, written without ′ (equivalently we put H = 1,
g = 1, β = 1):

∂th = −∂x1u1 − ∂x2u2

∂tu1 = −∂x1h+ x2u2

∂tu2 = −∂x2h− x2u1

We will write

Ψ =

 hu1
u2

 ∈ L2
(
R3

x1,x2,t

)
⊗ C3.

Then

i∂tΨ =

 0 −i∂x1 −i∂x2

−i∂x1 0 ix2
−i∂x2 −ix2 0

Ψ.

Since the coefficients do not depend on x1 one can assume the Fourier mode in x1:

Ψ (x1, x2, t) = eiµx1ψ (x2, t)

with Fourier variable µ ∈ R and ψ ∈ L2(R2
x2,t) ⊗ C3. In other words, µ is the spatial

frequency in x1 (and λ1 = 2π
µ

is the wave length).
For simplicity we replace (x2, ξ2) by (x, ξ). This gives the Matsuno model:

Definition 4.1. — The “Matsuno model” is the system of equations for
ψ : (t, x) ∈ R2 → ψ(t, x) ∈ C3 given by

i∂tψ = Ĥµψ

with the operator

(4.2) Ĥµ =

0 µ ξ̂
µ 0 ix̂

ξ̂ −ix̂ 0

 = Op (Hµ) , ∈ Herm
(
L2 (Rx) ⊗ C3

)
and its symbol

(4.3) Hµ (x, ξ2) =

0 µ ξ
µ 0 ix
ξ −ix 0

 ∈ Herm
(
C3
)

and ξ̂ = Op1(ξ) := −i∂x, x̂ = Op1(x) := x.

4.2. Spectral index N

The following proposition describes the spectrum of the operator Ĥµ with respect
to the µ parameter.
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Figure 4.3. Representations of eigenvalues ω(j)
n (µ), Eq. (4.4). We observe a spec-

tral index of N = +2 levels, the Kelvin and Yanaï modes.

Proposition 4.2 (“Spectrum of Ĥµ” [Mat66]). — For each µ ∈ R, the
operator Ĥµ, (4.2), has a discrete spectrum in L2(Rx) ⊗ C3 given by
(4.4) Ĥµϕ

(j)
n = ω(j)

n ϕ(j)
n , j = 1, 2, 3, n ⩾ 1,

with ω(j)
n , j = 1, 2, 3 solutions of the equation of degree 3 in ω:

(4.5) ω3 −
(
µ2 + 2n+ 1

)
ω − µ = 0,

called gravity waves for j = 1, 3 and Rossby planetary waves for j = 2.
In addition there are the solutions

ĤµϕK = µϕK : Kelvin mode
Ĥµϕ

±
Y = ω±ϕ

±
Y : Yanaï mode

with ω± = 1
2(µ ±

√
µ2 + 4) solutions of (ω2 − µω − 1) = 0. We observe in

Figure 4.3 that when µ increases, there is
N = +2

eigenvalues that are going upward.

See the arxiv version [Fau19] for more physical remarks about this model and a
proof of Proposition 4.2.

4.3. Topological Chern index C

We can first consult the section B which introduces the notion of topology of a
complex vector bundle of rank 1 on the sphere S2.
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Figure 4.4. Domains that represent the eigenvalues ω(j)(µ, x, ξ) for µ fixed and
all possible values of (x, ξ) ∈ R2, j = 1, 2, 3. We have ω(1) ⩽ −|µ|, ω(2) = 0,
ω(3) ⩾ |µ|.

Proposition 4.3 (“Topological aspects of the Hµ(x, ξ) (3.1)” [DMV17]). —
The eigenvalues of the matrix Hµ(x, ξ) ∈ Herm(C3) are

ω(1) (µ, x, ξ) = −
√
µ2 + x2 + ξ2

ω(2) (µ, x, ξ) = 0

ω(3) (µ, x, ξ) = +
√
µ2 + x2 + ξ2

(4.6)

There is therefore a degeneracy at (µ, x, ξ) = (0, 0, 0). For (µ, x, ξ) ∈ S2 ⊂
R3, and j = 1, 2, 3, the eigenspace F (j)(µ, x, ξ) ⊂ C2 associated with the
eigenvalue ω(j)(µ, x, ξ) defines a complex vector bundle of rank 1 above S2,
whose topological indices of Chern Cj are respectively

C1 = +2, C2 = 0, C3 = −2.

See the arxiv version [Fau19] for a detailed proof of Proposition 4.3.

4.4. Conclusion on the model (3.2)

Formulation given in [FZ00, FZ02a, FZ01] in a more general context: for |µ| ≫ 1,
there are three groups of levels j = 1, 2, 3 in the spectrum of Ĥµ. When changing
µ = −∞ → +∞ each group has a variation ∆Nj ∈ Z of the number of levels. We
have the formula

∆Nj = −Cj

where Cj is the Chern index of the bundle Fj → S2.
Another possible formulation: In the model defined by (3.2), one observes from

the symbol, a vector bundle F1 (or F1 ⊕ F2) whose index of Chern is C = +2 and
we observe that there is N = +2 levels that transits (upwards) in the spectrum of
the operator. We see in Section 2, Theorem 2.7, that this equality

N = C

is a special case of a more general result, called the index formula, valid for a
continuous family of symbols and for spaces and bundles of larger dimensions.
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Appendix A. Quantization, pseudo-differential-operators,
semi-classical analysis on R2d

A.1. Quantization and pseudo-differential-operators (PDO)

References for this Section are [Mar02, NR11, Zwo12].
We denote x ∈ Rn the “position” and ξ ∈ Rn its dual variable, called “momentum”.

Let ϵ > 0 be a small parameter called semi-classical parameter.

Definition A.1. — If a(x, ξ) ∈ S(Rn × Rn;C) is a function on phase space
T ∗Rn = R2n called symbol, we associate a pseudo-differential operator (PDO)
denoted â = Opϵ(a) defined on a function ψ ∈ S(Rn) by

(âψ) (x) = (Opϵ (a)ψ) (x)

= 1
(2πϵ)n

∫
a
(
x+ y

2 , ξ
)
eiξ·(x−y)/ϵψ (y) dydξ(A.1)

The operation
Opϵ : a → â = Opϵ (a)

that gives an operator â from a symbol a is called Weyl quantization.

Remark A.2. — For example,

• For a function V (x) (function of x only) we get that Opϵ(V (x)) = V (x), is
the multiplication operator by V . For example x̂j = Opϵ(xj) is called the
position operator.

• We have ξ̂j = Opϵ(ξj) = −iϵ ∂.
∂xj called the momentum operator and for

a function W : Rn → R we have Opϵ(W (ξ)) = W ((Opϵ(ξj))j), hence
Opϵ(|ξ|2) = ∑

j(Opϵ(ξj))2 = −ϵ2∆. The Schrödinger or Hamiltonian oper-
ator Ĥ in quantum mechanics is obtained from the Hamilton function H(x, ξ)
by Weyl quantization:

H (x, ξ) = |ξ2|
2m + V (x) → Ĥ = Op (H) = − ϵ2

2m∆ + V (x)

• We have Opϵ(a) = (Opϵ(a))† (the L2-adjoint).

A.2. Algebra of operators PDO

The following proposition shows that the product of two PDO is a PDO
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Proposition A.3. —
• [Zwo12, Section 4.3] “Composition of PDO and star product of sym-

bols”: For any a, b ∈ S(R2n) we have for ϵ ≪ 1
(A.2) Opϵ (a) ◦ Opϵ (b) = Opϵ (a ⋆ b)

with a ⋆ b ∈ S(R2n) given by

a ⋆ b =
(
ei ϵ Â (a (x, ξ) b (y, η))

)
y=x,η=ξ

= ab+ ϵ
1
2i {a, b} + ϵ2 . . .

and Â = 1
2(∂x∂η − ∂ξ∂y).

• “Commutator of PDO and Poisson brackets of symbols”:

(A.3)
[(

− i

ϵ

)
Opϵ (a) ,

(
− i

ϵ

)
Opϵ (b)

]
=
(

− i

ϵ

)
Opϵ ({a, b}) (1 +O (ϵ))

i.e.:
[a, b]⋆ := a ⋆ b− b ⋆ a = iϵ {a, b} +O

(
ϵ3
)

• Trace of PDO:

(A.4) Tr (Opϵ (a)) = 1
(2πϵ)n

∫
R2n

a (x, ξ) dxdξ

• Theorem of boundedness: see [NR11, Section 1.4].

Example A.4. — In dimension n = 1, we compute directly that x(−iϵ d
dx

)ψ −
(−iϵ d

dx
)(xψ) = iϵψ and {x, ξ} = 1. This gives [x̂, ξ̂] = iϵId or[(

− i

ϵ

)
Opϵ (x) ,

(
− i

ϵ

)
Opϵ (ξ)

]
=
(

− i

ϵ

)
Opϵ ({x, ξ})

in accordance with (A.3).

A.3. Classes of symbols

The relations of Proposition A.3 are a little bit formal. In order to make them
useful, one has to control the remainders in terms of operator norm. For this we
need to make some assumption on the symbols that express their “slow variation at
the Plank scale dxdξ ∼ ϵ” (i.e. uncertainty principle). We call class of symbol the
set of symbols that forms an algebra for the operator of composition ⋆. For example,
the following classes of symbols have been introduced by Hörmander [Hör83]. Let
M be a smooth compact manifold. For x ∈ Rn, we denote ⟨x⟩ := (1 + |x|2)1/2 ∈ R+,
called the Japanese bracket.

Definition A.5. — Let m ∈ R called the order. Let 0 ⩽ δ < 1
2 < ρ ⩽ 1.

The class of symbols Sm
ρ,δ contains smooth functions a ∈ C∞(T ∗M) such that

on any charts of U ⊂ M with coordinates x = (x1, . . . xn) and associated
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dual coordinates ξ = (ξ1, . . . ξn) on T ∗
xU , any multi-index α, β ∈ Nn, there is

a constant Cα,β such that

(A.5)
∣∣∣∂α

ξ ∂
β
xa (x, ξ)

∣∣∣ ⩽ Cα,β ⟨ξ⟩m−ρ|α|+δ|β|

The case ρ = 1,δ = 0 is very common. We denote Sm := Sm
1,0.

For example on a chart, p(x, ξ) = ⟨ξ⟩m is a symbol p ∈ Sm. If m ⩽ m′ then
Sm ⊂ Sm′ . We have S−∞ := ⋂

m ∈R S
m = S(T ∗M).

Remark A.6. — The geometric meaning of Definition A.5 may be not very clear
a priori. Hörmander improved the geometrical meaning in [Hör79, Hör83] by intro-
ducing an associated metric on phase space T ∗M . See also [FT17, NR11].

Appendix B. Vector bundles and topology

Some references for this appendix are Fedosov [Fed96, p. 11], Hatcher [Hat98,
p. 14].

We will give precise definitions in Section B.3. We begin in Section B.1 and B.2
by a description of vector bundles based on examples and sufficient to understand
the case of dimension n = 1 used in this paper.

A complex (or real) vector bundle F → B of rank r is a collection of complex (or
real) vector spaces Fx of dimension r, called fiber, and continuously parametrized by
points x on a manifold B, called “base space”. Locally over U ⊂ B, F is isomorphic
to a direct product U × Cr.

B.1. Topology of a real vector bundle of rank 1 on S1

B.1.1. Construction of a real vector bundle of rank 1 on S1

The simplest example is the case where the base space is the circle B = S1 and
the rank is r = 1, i.e. each fiber is isomorphic (as a vector space) to the real line R.

One can easily imagine two examples of real fiber space of rank 1 on S1:
• The trivial bundle S1 × R that we obtain from the trivial bundle [0, 1] × R

on the segment x ∈ [0, 1] (i.e. direct product) and identifying the points
(0, t) ∼ (1, t), for all t ∈ R.

• The Moebius bundle, which is obtained from the bundle [0, 1] × R on the
segment x ∈ [0, 1], identifying (0, t) ∼ (1,−t), t ∈ R.

The Moebius bundle is not isomorphic to the trivial bundle. One way to justify
this is that in the case of the trivial bundle, the complement of the null section
(s(x) = 0,∀ x) has two connected components, whereas for the bundle of Moebius,
the complement has only one component. (Make a paper construction that is cut
with scissors according to s(x) = 0 to observe this).
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Theorem B.1. — Any real vector bundle F → S1 of rank 1 is isomorphic to
the trivial bundle or to the Möebius’s bundle. In other words, there are only
two classes of equivalences:

Vect1
R

(
S1
)

= {0, 1}
associated with the Stiefel-Whitney index SW = 0: trivial bundle, SW = 1:
bundle of Moebius.

Proof. — Starting from any bundle F → S1 of rank 1, we cut the base space S1

at a point, and we are left with the bundle [0, 1] × R over x ∈ [0, 1]. To reconstruct
the initial bundle F , there are two possibilities: for all t ∈ R, identify (0, t) ∼ (1, t),
or (0, t) ∼ (1,−t), which gives the trivial or Moebius bundle respectively. □

Remark B.2. —
• the Stiefel–Whitney index SW = 0, 1 gives the number of half turns that

the fibers make above the base space S1. The case SW = 2 (one full turn)
is isomorphic to the trivial bundle. We therefore agree that the index SW ∈
Z/(2Z), i.e. SW is an integer modulo 2. It is interesting to have the additive
structure on the SW indices (1 + 1 = 0 for example).

• Note that in the space R3, a ribbon making a turn, i.e. SW = 2, can not be
deformed continuously towards the trivial bundle. (4) . This restriction is due
to the embedding in the space R3 (in R4, this would be possible), and is not
an intrinsic property of the bundle that is nevertheless trivial.

(4) Because if we cut this ribbon on the section s = 0, we obtain two ribbons interlaced, whereas
the same cut for a trivial ribbon gives two separate ribbons.

TOME 6 (2023)



474 F. FAURE

B.1.2. Topology of a real vector bundle of rank 1 over S1 from the zeros of a section

Definition B.3. — If F → B is a vector space, a global section of the
bundle is an application (continuous or C∞) s : B → F such that each base
point x ∈ B is mapped to a point in the fiber s(x) ∈ Fx. We note
(B.1) C∞(B,F )
the space of the smooth sections of the bundle F .

We call zeros of the section s the points x ∈ B such that s(x) = 0. Let us first
consider the very simple and instructive case of a real bundle of rank 1 on S1. A
section is locally like a real value numerical function, so generically, it vanishes
transversely at isolated points. Note that “generic” means “except for exceptional
case”. The following figure shows that we have the following result:

Theorem B.4. — If F → S1 is a real bundle of rank 1 on S1, and s is a
“generic” section, then the topological index SW (F ) is given by

SW (F ) =
∑

x t.q. s(x)=0
σs(x)

where σs(x) = 1 for a generic zero of section s. The sum is obtained modulo 2,
and so SW (F ) ∈ Z2 = {0, 1}. The result is independent of the chosen section
s.

B.2. Topology of a complex rank 1 vector bundle over S2

We proceed similarly to the previous Section B.1.
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B.2.1. Construction of a complex vector bundle of rank 1 on S2

Let’s first see how to build a complex fiber space of rank 1 over S2. We cut the
sphere S2 along the equator S1, obtaining two hemispheres H1 and H2. We get two
trivial bundles F1 = H1 × C and F2 = H2 × C on each hemisphere. To construct
a bundle on S2, it is enough to decide how to “connect” or “identify” the fibers
of F1 above the equator with those of F2. Note θ ∈ S1 the angle(5) (longitude)
that characterizes a point on the equator. Note φ(θ) ∈ S1 the angle which means
that the fiber F2(θ) is identified to the fiber F1(θ) after a rotation of angle φ(θ):
a v ∈ F1(θ) ≡ C is identified with the eiφ(θ)v ∈ F2(θ). After gluing that way the two
hemispheres and the fibers above the equator, we obtain a complex vector bundle
F → S2 of rank 1. Thus the bundle F that we have just built is defined by its
clutching function on the equator

φ : θ ∈ S1 → φ (θ) ∈ S1

It is a continuous and periodic function so: φ(2π) ≡ φ(0)[2π], or
(B.2) φ (2π) = φ (0) + 2πC, C ∈ Z,
with the integer C ∈ Z that represents the number of revolutions that φ makes when
θ goes around. We call C the degree of the application φ : S1 → S1. It is clear that
two functions φ, φ′ are homotopic if and only if they have the same degree C = C ′,
and therefore the bundles F and F ′ are isomorphic if and only if C = C ′.

Theorem B.5. — Any complex fiber bundle F → S2 of rank 1 is isomorphic
to a bundle constructed as above with a clutching function φ on the equator.
Its topology is characterized by an integer C ∈ Z called (1st) Chern index
given by C = deg(φ). In other words the equivalence class of rank 1 complex
vector bundle on S2 is

Vect1
C

(
S2
)

= Z

Proof. — We must show that every bundle F is isomorphic to a bundle constructed
as above. Starting from a given bundle F , we cut the base space S2 along the equator
denoted S1 to obtain two bundles F1 → H1 and F2 → H2. Each of these bundles is
(5) Here, we note S1 the circle. θ ∈ S1 is therefore marked with an angle θ ∈ [0, 2π].
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trivial because[Hat98, Corrollaire 1.8, p. 21] the base spaces are disks (contractile
spaces). The bundle F is thus defined by its clutching function above the equator
S1, φ : S1 → S1. □

Consider the example of the tangent bundle TS2 of the sphere. TS2 can be identi-
fied with a complex bundle of rank 1 because S2 is orientable.

Theorem B.6. — The tangent bundle TS2 has Chern index
(B.3) C(TS2) = +2
and is therefore non trivial.

Proof. — We will calculate the degree C of its recollection function defined by
Eq. (B.15). We proceed as in the proof above. We trivialize the bundle above H1, and
H2, and we deduce the degree C of the gluing function. See figure that represents
the two hemispheres seen from above and below with a vector field on each. We find
C = +2. □

Remark B.7. — The trivial bundle S2 × C has the Chern index C = 0.
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Figure B.1. Index σ ∈ Z of a zero of a vector field computed from the degree of
the map θ ∈ S1 → φ(θ) ∈ S1.

B.2.2. Topology of the rank 1 vector bundle on S2 from the zeros of a section

There is a result analogous to Theorem B.4 for a complex bundle F → S2 of rank
1 on S2. Before establishing it, let us notice that a section s of such a bundle is
locally like a function with two variables and with values in C, so generically, it
vanishes transversely at isolated points. If θ ∈ S1 parameterizes a small circle of
points xθ around a zero x ∈ S2 of s, then by hypothesis, the value of the section
s(xθ) ∈ Fxθ

≡ C is non-zero for all xθ, and we write φ ∈ S1 his argument. For
each zero x of the section s is therefore associated an application φ : θ → φ(θ)
whose degree, also called index of the zero (defined by Eq. (B.15)), will be noted
σs(x) ∈ Z. Generically, σs(x) = ±1. (Note that the sign of σs(x) depends on the
chosen orientation of the base space and the fiber. In the case of the tangent bundle
on S2, these two orientations are not independent, and the result σs(x) becomes
independent of the choice of orientation). See Figure B.1.

Theorem B.8. — If F → S2 is a complex bundle of rank 1 on S2, and s is
a “generic” section, then the topological index of Chern C(F ) is given by
(B.4) C (F ) =

∑
x t.q. s(x)=0

σs (x) ∈ Z

where σs(x) = ±1 characterizes the degree of zero. The result is independent
of the chosen section s.

Proof. — In the proof of the Theorem B.5, we have constructed sections v1, v2 for
the respectively bundles F → H1, F → H2, that never vanish. If we modify these
sections v1, v2 to make them coincide on the equator for the purpose of constructing
a global section s of the bundle F → S2, we can get do this except in points isolated,
which will be the zeros of s, and one realizes that the sum of the indices will be
equal to the degree of the clutching function φ therefore equal to C(F ). □

Example of the bundle TS2. The following figure shows a vector field on the S2

sphere. It is a global section of the tangent bundle. This vector field has two zeros
with indices +1 each. Thus we find C(TS2) = +2, i.e. Eq. (B.3).
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Remark B.9. — If we want to give an explicit computation we need an explicit
global section (or vector field on TS2). We can take the fixed vector in R3: V = (0, 0, 1)
oriented along the z axis. Then for a given point x ∈ S2 we choose:
(B.5) s (x) = PxV ∈ TxS

2

where Px : R3 → TxS
2 is the orthogonal projector given by Px = Id − |x⟩⟨x|.⟩. We

get
(B.6) s (x) = V − x⟨x|V ⟩ =

(
−x3x1,−x3x2, 1 − x2

3

)
.

The vector field s(x) vanishes at the north and south pole. At distance ϵ of
north pole (0, 0, 1), we use local oriented coordinates (x1, x2) ≡ ϵeiθ and get s(x) =
(−x1,−x2, 0) + O(ϵ2) = −eiθ + O(ϵ2). The map eiθ ∈ S1 → −eiθ ∈ S1 has degree 1
hence the zero has index σ = +1. At distance ϵ of south pole (0, 0,−1), we use local
oriented coordinates (x2, x1) ≡ ϵeiθ and get s(x) = (x1, x2, 0) +O(ϵ2) = eiθ +O(ϵ2).
The map eiθ ∈ S1 → eiθ ∈ S1 has degree 1 hence the zero has again index σ = +1.
Formula (B.4) gives

C
(
TS2

)
= +1 + 1 = +2.

B.2.3. Topology of the rank 1 vector bundle on S2 from a curvature integral in
differential geometry

Let F → S2 be a complex vector bundle of rank 1 over S2. Let us assume(6) that
there exists a fixed vector space Cd such that for every x ∈ S2, the fiber Fx ⊂ Cd

is a linear subspace of Cd for some d ⩾ 1. For every point x ∈ S2, let us denote
Px : Cd → Cd the orthogonal projector onto Fx. Then if s ∈ C∞(S2;F ) is a smooth
section we can consider s ∈ C∞(S2;Cd) as a d multi-components function on S2.
(6)This is the case in the model of Section 2 and every vector bundle can be realized like this,
see [Fed96].
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If V ∈ TxS
2 is a tangent vector at point x ∈ S2, the derivative V (s) ∈ Cd can be

projected onto Fx. We get

(DV s) (x) := PxV (s) ∈ Fx

called the covariant derivative of s along V at point x. It measures the variations
of s within the fibers F . Since V (s) = ds(V ) where ds means the differential(7) , we
usually write

Ds := Pds

for the covariant derivative or Levi–Civita connection (in differential geometry, Pds ∈
C∞(S2; Λ1 ⊗ F ) is a one form valued in F ).

Suppose that U ⊂ S2 and for every point x ∈ U one has v(x) ∈ Fx a unitary
vector that depends smoothly on x ∈ U . This is called a local unitary trivialization
of F → U (as in the proof of Theorem B.6). Since the fiber Fx is dimension 1,
the vector v(x) is a unitary basis of Fx and if V ∈ TxS

2, the covariant derivative
(DV v)(x) = PxV (v) ∈ Fx can expressed in this basis with one complex component:

(DV v) (x) = (A (x)) (V )︸ ︷︷ ︸
∈R

v (x)

where A(x) = iA(x) is iR valued(8) linear form on TxS
2 (a cotangent vector) called(9)

connection one form. In short,

(B.7) Dv = Av.

Let

(B.8) Ω := dA

(7) In local coordinates x = (x1, x2) ∈ R2 on S2, if f(x1, x2) is a function, then its differential is
written

df =
∑

k

(
∂f

∂xk

)
dxk

and a tangent vector is written V =
∑

k Vk
∂

∂xk
. Then since df(V ) = V (f) gives in particular for

the function xk that dxk( ∂
∂xl

) = ∂xk

∂xl
= δk=l, we get that df(V ) =

∑
k( ∂f

∂xk
)Vk.

(8) A is imaginary valued from the fact that ⟨v|v⟩ = 1 hence

0 = d⟨v|v⟩ = ⟨Dv|v⟩ + ⟨v|Dv⟩ = 2Re (⟨v|Av⟩) = 2Re (A) .

(9) If s ∈ C(S2; F ) is an arbitrary section, then locally one can write s(x) = ϕ(x)v(x) with some
complex component ϕ(x) ∈ C. Then

Ds = D (ϕv) = (dϕ) v + ϕDv = (dϕ) v + ϕAv

= (dϕ + ϕA) v =
∑

k

(
∂ϕ

∂xk
+ Akϕ

)
(dxk) v,

with A =
∑

k Akdxk. Writing A = iA, it shows that the components of the covariant derivative Ds

with respect to the unitary trivialization v(x) and local coordinates (xk)k on U are ( ∂ϕ
∂xk

+ iAkϕ)k.
In quantum physics books it is common to see the expression ( ∂ϕ

∂xk
+ iAkϕ)k for a definition of the

“covariant derivative” or “minimal coupling”, e.g. [BIZ80, p. 31].
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be the two form(10) called the curvature of the connection.

Lemma B.10. — Let F → S2 be a rank 1 complex vector bundle with
Fx ⊂ Cd. Let v (x) ∈ Fx a given local unitary trivialization and Dv = Av with
A the connection one form and Ω the curvature two form. Then

A = ⟨v | dv⟩Cd =
∑

k

〈
v

∣∣∣∣∣ ∂v∂xk

〉
dxk

Ω = ⟨dv | ∧dv⟩ =
∑
k,l

〈
∂v

∂xk

∣∣∣∣∣ ∂v∂xl

〉
dxk ∧ dxl.(B.9)

and Ω does not depend on the trivialization, hence is globally defined on S2.
Finally the topological Chern index C defined in (B.2) is given by the curvature
integral

(B.10) C = 1
2π

x

S2

iΩ.

Proof. — The orthogonal projector is given by
Px = |vx⟩⟨vx|.⟩

hence the covariant derivative is given by Ds = Pds = Px = |vx⟩⟨vx|ds⟩ and since
by definition Dv = Av we get A = ⟨v|dv⟩ and

Ω = dA = d

(∑
k

〈
v

∣∣∣∣∣ ∂v∂xk

〉
dxk

)

=
∑
k,l

〈
∂v

∂xl

∣∣∣∣∣ ∂v∂xk

〉
dxl ∧ dxk +

∑
k,l

〈
v

∣∣∣∣∣ ∂2v

∂xl∂xk

〉
dxl ∧ dxk︸ ︷︷ ︸

=0

.

The second term vanishes since ( ∂2v
∂xl∂xk

)k,l is a symmetric array and (dxl ∧ dxk)k,l is
antisymmetric. If we replace v by another trivialization v′(x) = eiα(x)v(x) (this is
called a Gauge transformation) then

A′ = ⟨v′ | dv′⟩ = e−iα
∑

k

〈
v

∣∣∣∣∣ ∂eiαv

∂xk

〉
dxk =

∑
k

(
i
∂α

∂xk

)
dxk +

〈
v

∣∣∣∣∣ ∂v∂xk

〉
dxk

= idα + A

is changed but
Ω′ = dA′ = iddα + dA = Ω

is unchanged because ddα = ∑
k,l( ∂2α

∂xl∂xk
)dxl ∧ dxk = 0.

As in Section B.2.1, let H1, H2 be the north and south hemispheres of S2 and
suppose that for every point x ∈ H1, v1(x) ∈ Fx is a unitary vector that depends
smoothly on x, i.e. v1 is a trivialization of F → H1. Suppose that v2 is a trivialization
(10) In local coordinates if A =

∑
k Akdxk is a one form with components Ak(x) then dA =∑

k,l
∂Ak

∂xl
dxl ∧ dxk.
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of F → H2 (as in the proof of Theorem B.6). Let x ≡ (θ, φ) denotes the spherical
coordinates on S2. For a given 0 ⩽ θ ⩽ π

2 on Hemisphere H1, let γθ : φ ∈ [0, 2π] →
γθ(φ) ∈ S2 be the closed path. Let ψ(1)

θ (0) ∈ Fθ,0 and

ψ
(1)
θ (φ) = eiα

(1)
θ

(φ)v1 (θ, φ) ∈ Fθ,φ

obtained for 0 ⩽ φ ⩽ 2π by parallel transport, i.e. under the condition of zero
covariant derivative

Dψ
(1)
θ

dφ
= 0 ⇔

D
(
eiα

(1)
θ v1

)
dφ

= 0 ⇔
(B.7)

i
dα

(1)
θ

dφ
v1 + Av1 = 0

giving that

(B.11) α
(1)
θ (2π) − α

(1)
θ (0) =

∫
γθ

iA =
(B.8), Stokes

x

Hθ

iΩ

where Hθ = {(θ′, φ′), θ′ ⩾ θ, φ′ ∈ [0, 2π]} ⊂ S2 is a surface with boundary γθ. The
angle α(1)

θ (2π) is called the holonomy of the connection on the closed path γθ and
also called Berry’s phase after the paper of M. Berry [Ber84] that shows its natural
manifestation in quantum mechanics, see also [Fau18]. We can do the same on the
south hemisphere H2 with v2 and angles α(2)

θ , giving at θ = 0,

(B.12) α
(2)
0 (2π) − α

(2)
0 (0) = −

x

H2

iΩ

with opposite sign because the orientation of γ0 is reversed. In particular, on the
equator θ = 0 that belongs to both Hemisphere, we have for every φ that

v2 (0, φ) = eiβ(φ)v1 (0, φ)

and by definition of Chern index C,

β (2π) =
(B.2)

β (0) + 2πC

Also
ψ

(1)
0 (φ) = eiα

(1)
0 (φ)v1 (0, φ) , ψ

(2)
0 (φ) = eiα

(2)
0 (φ)v2 (0, φ) ,

and since the parallel transport preserves the angles, ψ(2)
0 (φ) = eicψ

(1)
0 (φ) with a

constant c (independent on φ). Finally we get

v2 (0, φ) = eiβ(φ)v1 (0, φ) = e
i

(
β(φ)−α

(1)
0 (φ)

)
ψ

(1)
0 (φ) = e

i

(
β(φ)−α

(1)
0 (φ)−c

)
ψ

(2)
0 (φ)

= e
i

(
β(φ)−α

(1)
0 (φ)−c+α

(2)
0 (φ)

)
v2 (0, φ)

hence
β (φ) = α

(1)
0 (φ) + c− α

(2)
0 (φ)
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and

C = 1
2π (β (2π) − β (0)) = 1

2π
((
α

(1)
0 (2π) − α

(1)
0 (0)

)
−
(
α

(2)
0 (2π) − α

(2)
0 (0)

))
=

(B.11), (B.12)

1
2π

x
H1

iΩ +
x

H2

iΩ
 = 1

2π

x

S2

iΩ □

Remark B.11. — Formula (B.10) is a special case of a more general Chern–Weil
formula, Formula (B.19) given below for a general vector bundle F → S2n of rank r.

Example B.12. — For the special case of the tangent bundle TS2, with fiber
TxS

2 ⊂ R3, if iΩ is the (2 form) Gauss curvature of the sphere (that is, the curvature
of the tangent bundle TS2, which is the solid angle), the Gauss–Bonnet formula
gives:

(B.13) C = 1
2π

∫
S2
iΩ = 4π

2π = 2

as in (B.3).

B.3. General vector bundles over sphere Sk

B.3.1. Definitions

Definition B.13. — We say that (F, π,B) is a complex vector bundle of
rank r if F,B are manifolds, π : F → B a map such that there exists a covering
(Ui)i of B and diffeomorphisms φi : π−1(Ui) → Ui × Cr such that

(1) π : π−1(Ui) → Ui is the composition of φi with projection onto Ui

(2) if Ui ∩Uj ̸= ∅ then φiφ
−1
j : (Ui ∩Uj) ×Cr → (Ui ∩Uj) ×Cr is given by

(x, u) → (x, fij(x)u) with fij(x) ∈ GL(r,C).

We say that φi are trivialization functions, and fij are transition functions.

Proposition B.14. — The transition functions satisfy the cocycle condi-
tions:

fji = f−1
ij ,∀ x ∈ Ui ∩ Uj fijfjkfki = 1, ∀ x ∈ Ui ∩ Uj ∩ Uk

Conversely functions fij with cocycle conditions, define a unique vector bundle.

Proof. — f−1
ji = (φjφ

−1
i )−1 = φiφ

−1
j = fij. And fijfjkfki = (φiφ

−1
j )(φjφ

−1
k )(φkφ

−1
i )

= 1. □

Definition B.15. — Two vector bundles (F, π,B) and (F ′, π′, B) (with same
base B) are isomorphic if there exists h : F → F ′ which preserves the fibers and
such that h : Fx → F ′

x is an isomorphism of linear spaces.
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We write Vectr
C(B) for the isomorphism class of complex vector bundles of rank r

over B.

Proposition B.16. — Two vector bundles F and F ′ are isomorphic if and
only if there exists functions hi : Ui → GL(n,C) such that

f ′
ij = hifijh

−1
j

where fij, f ′
ij are the transition functions.

Proof. — If h is an isomorphism, define hi = φ′
ihφ

−1
j . Conversely, define h =

(φ′
i)−1hiφi on Ui which does not depend on i. □

B.3.2. Complex Vector bundles over spheres Sk

Reference: Hatcher [Hat98, p. 22]. We treat the case where the base space is a
sphere

B = Sk :=

(x1, . . . xk+1) ∈ Rk+1,
∑

j

x2
j = 1

 .
The sphere Sk = Dk

1
⋃
Dk

2 can be decomposed in two disks (or hemispheres), the
north hemisphere Dk

1 where xk+1 ⩾ 0 and the south hemisphere Dk
2 where xk+1 ⩽ 0.

The common set is the equator Sk−1 = Dk
1 ∩ Dk

2 = {x ∈ Rk+1, xk+1 = 0} which
is also a sphere Sk−1. So a vector bundle is described by the transition function
at the equator: f21 : Sk−1 → GL(r,C), which is called the clutching function. Let
us denote [f21] the homotopy class of the map f21. The set of homotopy classes is
[Sk−1, GL(r,C)] ≡ [Sk−1, U(r)] =: πk−1(U(r)) is called homotopy group of U(r).

Proposition B.17. — Two vector bundles F → Sk, F ′ → Sk are isomorphic
if and only if their clutching functions are homotopic [f21] = [f ′

21]. In other
words the group of equivalence classes of vector bundles coincide with the
homotopy groups:

Vectr
C

(
Sk
)

≡ πk−1 (U (r)) .

Homotopy groups of spheres. The groups Vectr(Sk) = πk−1(U(r)) can be
obtained from homotopy groups of the spheres πm(Sn) from the fact that

(B.14) U (r) /U (r − 1) ≡ S2r−1.

This is obtained by observing that the unit sphere in Cr is S2r−1 and thus, for
f ∈ U(r) and er = (0, . . . , 0, 1) ∈ Cr we have f(er) ∈ S2r−1 ⊂ Cr that characterizes
f up to U(r − 1), i.e. its action on Cr−1. See Table B.1. See Hatcher’s book.

We have
πn(Sn) = Z

which is the degree and is computed as follows.
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Table B.1. Homotopy groups of the spheres πm(Sn).

πn (Sm) π1 π2 π3 π4 π5 π6 π7

S1 Z 0 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2

S3 0 0 Z Z2 Z2 Z12 Z6

S4 0 0 0 Z Z2 Z2 Z × Z12

S5 0 0 0 0 Z Z2 Z2

S6 0 0 0 0 0 Z Z2

S7 0 0 0 0 0 0 Z

Definition B.18. — The degree of a map f : Sm → Sm is
(B.15) deg (f) :=

∑
x ∈ f−1(y)

sign (det (Dxf)) ∈ Z,

which is independent of the choice of the generic point y ∈ Sm. In the case
f : S1 → S1, the degree deg(f) is also called “winding number of f”.

For m < n we have
πm (Sn) = 0,

because the image of f : Sm → Sn is not onto and therefore gives f : Rm → Sn which
can be retracted to a point because Rm is contractible. For m > n, the homotopy
groups of the spheres πn(Sm) are quite complicated and are not all known.

Homotopy groups of U(r). From the fibration (B.14) and Table B.1 we deduce
Table B.2. See [Hat98, Hat02].

Table B.2. Equivalence groups of complex vector bundles of rank r over sphere
Sk. Vectr(Sk) = πk−1(U(r)).

πk (U (r)) π1 π2 π3 π4 π5 π6

U (1) Z 0 0 0 0 0
U (2) Z 0 Z Z2 Z2 Z12

U (3) Z 0 Z 0 Z Z6

U (4) Z 0 Z 0 Z 0
U (5) Z 0 Z 0 Z 0

... ... ... ... ... ...
K̃
(
Sk
)

Z 0 Z 0 Z 0

Vectr
(
Sk
)

S2 S3 S4 S5 S6 S7

Vect1 Z 0 0 0 0 0
Vect2 Z 0 Z Z2 Z2 Z12

Vect3 Z 0 Z 0 Z Z6

Vect4 Z 0 Z 0 Z 0
Vect5 Z 0 Z 0 Z 0

... ... ... ... ... ...
K̃
(
Sk
)

Z 0 Z 0 Z 0

Observations on Table B.2.
• Vect2(S5) ≡ Z2 = {0, 1}: means that there is only one class of non trivial

bundles of rank 2 over S5.
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• Vectr(S3) ≡ 0,∀ r ⩾ 1, means that complex vector bundles over S3 are all
trivial.

• Vect1(Sk ⩾ 2) ≡ 0 means that all vector bundles of rank 1 over Sk ⩾ 2 are all
trivial.

A remarkable observation is the following theorem: (K-theory(11))

Theorem B.19 (“Bott periodicity Theorem 1959”.). — If 2r ⩾ k then
V ectr(Sk) is independent on r. We denote K̃(Sk) := Vectr(Sk) called group
of K-theory. Moreover there is the periodicity property:

K̃
(
Sk+2

)
= K̃

(
Sk
)

= Z if k is even
= 0 if k is odd

For the proof, see [Hat98].

B.3.3. Topological Chern index C of a complex vector bundle F → S2n of rank
r ⩾ n

From the Table B.2, if F → S2n is a complex vector bundle of rank r, with r ⩾ n,
then its isomorphism class is characterized by an integer C ∈ Z called topological
Chern index.

Here is an explicit expression for C. The equivalence class of the bundle F is
characterized by the homotopy class of the clutching function at the equator g = f21,

(B.16) g : S2n−1 → U (r) .

which is the transition function from north hemisphere to south hemisphere.

(11)The symbol K(X) comes from “Klassen” in german, by A. Grothendieck 1957, see Lectures of
Karoubi. The symbol C(X) was already used.
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If r > n, we can continuously deform g so that ∀ x ∈ S2n−1, gx(er) = er, where
(e1, . . . er) is the canonical basis of Cr. Cf. [BB85, Section III.1.B, p. 271]. Then g
restricted to Cr−1 ⊂ Cr gives a function g : S2n−1 → U(r − 1). By iteration we get
the case r = n with a clutching function g : S2n−1 → U(n). Then using g we define
the function

(B.17) f :

S2n−1 → S2n−1 ⊂ Cn

x → gx (e1)

The degree deg(f) has been defined in Definition B.18.

Theorem B.20 ((Bott 1958) [BB85, Section III.1.B., p. 271]). — Let F →
S2n be a complex vector bundle of rank r ⩾ n. The topological index

(B.18) C := deg (f)
(n− 1)! .

is an integer C ∈ Z (not only a rational number!) and characterizes the topology
of F . Namely, if F → S2n and F ′ → S2n are fiber bundles of same rank r ⩾ n
with the same index C then F and F ′ are isomorphic.

Remark B.21. — If the vector bundle F → S2n has a (arbitrary) connection, the
Chern-Weil theory permits to express the topological index C from the curvature Ω
of the connection, considered as a imaginary valued 2-form on S2n as follows. We
first define Ch(F ) called the Chern Character which is a differential form on S2n:

Ch (F ) := Tr
(

exp
(
iΩ
2π

))

= Tr
(

1 + iΩ
2π + 1

2!

(
iΩ
2π

)
∧
(
iΩ
2π

)
+ . . .

)
= Ch0 (F ) + Ch2 (F ) + . . .

We denote Ch2n(F ) its component of exterior degree 2n which is a volume form
on S2n:

Ch2n (F ) = 1
n!

(
iΩ
2π

)∧n

Then
C =

∫
S2n

Ch2n (F ) .(B.19)

Formula (B.19) is a generalization of Gauss-Bonnet formula (B.13). For example, for
a rank 1 complex vector bundle F → S2, i.e. n = 1, we have Ch2(F ) = iΩ

2π
and (B.19)

gives (B.10).

B.3.4. A normal form bundle Fn → S2n−1 in each K-isomorphism class

We have seen in Theorem B.19 that for r ⩾ n then the isomorphism class of
complex vector bundles of rank r over S2n−1 is Vectr(Sk) ≡ Z. In this section we

ANNALES HENRI LEBESGUE

https://en.wikipedia.org/wiki/Chern%E2%80%93Weil_homomorphism


Manifestation of the topological index formula 487

provide and explicit model for the generator in this class, i.e. giving the topological
index C = +1 ∈ Vectr(Sk) ≡ Z.

These models can be considered as canonical forms (or normal forms). We will
consider S2n−1 := {(z1, z2, . . . zn) ∈ Cn s.t. ∑n

j=1 |zj| = 1} as the unit sphere.

Definition B.22 (“Normal form bundles” [PR03, Section 1.2]). — For n ∈
N∗, we define a normal (canonical) vector bundle Fn → S2n of rank r = 2n−1

from the normal (canonical) form clutching function

gn : S2n−1 → U
(
2n−1

)
by

g1 :

S1 ⊂ C → U (1) ⊂ C
z → z

(B.20)

and iteration

(B.21) gn+1

z1, z2, . . . zn+1︸ ︷︷ ︸
z

 =
(
z1Id2n−1 − (gn (z))†

gn (z) z1Id2n−1

)

where Id2n−1 denotes the 2n−1 × 2n−1 identity matrix.

Remark B.23. — The map B : gn → gn+1 in (B.21) is called the Bott map,
see [PR03, Section 1.1] and references therein. Here are the first few expressions
of gn:

g1 (z1) = z1, g2 (z1, z2) =
(
z1 −z2
z2 z1

)
, g3 (z1, z2, z3)

=


z1 0 −z2 −z3
0 z1 z3 −z2
z2 −z3 z1 0
z3 z2 0 z1

 , . . .
(B.22)

Remark B.24. — These normal forms gn correspond to Hurwitz–Radon matri-
ces [Eck94] and are related to gamma matrices, of generalized gamma matrices.

Proposition B.25. — The normal form bundle Fn → S2n of rank r = 2n−1

in Definition B.22 is a generator of the K-theory group K̃(S2n) ≡ Vectr(S2n) ≡
Z, hence has topological index
(B.23) C = +1.

For the proof, see [PR03, Section 1.1] and references therein. Here let us observe
that taking the first column in (B.22) and removing zero elements we get the vector

z1
...
zn

 ∈ S2n−1 ⊂ Cn.
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Equivalently, with δ1 = (1, 0, . . . 0) ∈ Cn, the map gnδ1 : S2n−1 → C22n−1 retracts to
the identity map Id : Cn → Cn.

B.3.5. Quantization of the normal form bundle

In the next Proposition, we consider the normal clutching function given in (B.21)
as a function

gn : (z1, z2, . . . zn) ∈ Cn → U
(
2n−1

)
see examples (B.22). By writing zj = xj + iξj, with j = 1 . . . n, we get a function
gn(x1, ξ1, x2, ξ2, . . . xn, ξn) ∈ U(2n−1) considered as a symbol on R2n valued in unitary
matrices. Following definition (A.1) we quantize this symbol, giving an operator

ĝn := Op1 (gn) : S
(
R2n;C2n−1) → S

(
R2n;C2n−1)

.

In fact this operation is quite simple since the symbol is linear: to get the operator ĝn

from the symbol gn, we only have to replace each complex variable zj = xj + iξj by
Op1(zj) = Op1(xj) + iOp1(ξj) =:

√
2aj where aj is called the annihilation operator.

For example from (B.22), we get

ĝ1 =
√

2a1, ĝ2 = 2
(
a1 −a†

2
a2 a†

1

)
, ĝ3 = 23/2


a1 0 −a†

2 −a†
3

0 a1 a3 −a2
a2 −a†

3 a†
1 0

a3 a†
2 0 a†

1

 , . . . . . .

Proposition B.26 (“Normal form quantum operator”). — The operator
ĝn := Op1(gn) is Fredholm with index
(B.24) Ind (ĝn) = +1.

Proof. — For the symbols we compute (g†
1g1)(z) =

(B.20)
|z|2 and

g†
n+1gn+1 =

(B.21)

(
|z1|2 + g†

ngn 0
0 |z1|2 + gng

†
n

)
.

Recursively we deduce that for any n ∈ N∗, g†
n+1gn+1 vanishes only at z = 0,

the operators ĝ†
nĝn and ĝn are elliptic hence Fredholm [BB85, Theorem 3, p. 185].

From (B.21) we compute recursively that

Ker (ĝn) = Span



φ0
0
...


 , Ker

(
ĝ†

n

)
= {0} ,

where φ0 is the Gaussian function (3.3) spanning the kernel of a1 := 1√
2(Op1(xj) +

iOp1(ξj)). We deduce that the index is [BB85, Theorem 2, p. 16]

□(B.25) Ind (ĝn) = dim Ker (ĝn) − dim Ker
(
ĝ†

n

)
= 1 − 0 = 1.
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B.3.6. The index formula on Euclidean space of Fedosov–Hörmander

For the previous canonical vector bundle Fn → S2n with topological index C and
clutching function gn we have observed that
(B.26) Ind (Op1 (gn)) =

(B.24), (B.23)
C,

and that C = +1, meaning that this vector bundle Fn is the generator of its equiva-
lence class in K-theory. Since both indices Ind(Op1(gn)) and C are additive under
direct sum of vector bundles in K-theory, we deduce the next Theorem showing
that (B.26) is generally true.

We consider F → S2n, a general complex vector bundle of rank r with topological
index C ∈ Z as defined in (B.18) and clutching function g : S2n−1 → U(r) on
the equator S2n−1 as defined in (B.16). We extend g from S2n−1 to 1-homogeneous
function on R2n\{0} by g(z) := |z|g( z

|z|) and consider this extension as a symbol
g : R2n\{0} → GL(r). Quantization (A.1) gives an operator Op1(g).

Theorem B.27 ([Hör79, Theorem 7.3, p. 422], [BB85, Theorem 1, p. 252]“The
index formula on Euclidean space of Fedosov-Hörmander”.). — Let F → S2n

be a complex vector bundle of rank r with topological index C ∈ Z and
clutching function g : S2n−1 → U(r) on the equator S2n−1. We have
(B.27) Ind (Op1 (g)) = C.
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