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494 C. FOUCART & X. ZHOU

simple exchangeable fragmentation-coagulation processes (EFC processes). One-to-one corre-
spondences are established between the nature of the boundaries 1 and ∞ of the processes
involved. They provide new information on these two classes of processes. Sufficient conditions
are provided for boundary 1 to be an exit boundary or an entrance boundary. When the
coalescence measure Λ and the selection mechanism verify some regular variation properties,
conditions are found in order that the extended Λ-WF process with selection makes excursions
out from the boundary 1 before getting absorbed at 0. In this case, 1 is a transient regular
reflecting boundary. This corresponds to a new phenomenon for the deleterious allele, which
can be carried by the whole population for a set of times of zero Lebesgue measure, before
vanishing in finite time almost surely.

Résumé. — Nous construisons des extensions des processus de Λ-Wright–Fisher de saut
pur avec sélection dépendante de la fréquence (Λ-WF avec sélection) présentant différents
comportement en leur point frontière 1. Ces processus satisfont des relations de dualité avec
le processus du nombre de blocs des processus de fragmentation-coagulation échangeables
simples. Des correspondances biunivoques entre les natures des frontières 1 et ∞ des processus
en question sont établies. Elles fournissent de nouvelles informations sur ces deux classes de
processus. Des conditions suffisantes sont données pour que la frontière 1 soit un point de sortie
ou un point d’entrée. Lorsque la mesure Λ et la fonction de sélection vérifient des propriétés
de variations régulières, des conditions sont trouvées de sorte que le processus de Λ-WF avec
sélection étendu fasse des excursions en dehors de la frontière 1 avant d’être absorbée en 0.
Dans ce cas, 1 est un point régulier réfléchissant et transient. Cela correspond à un nouveau
phénomène pour l’allèle délétère, qui peut être porté par toute la population pendant un
ensemble de temps de mesure de Lebesgue nulle, avant de disparaître en temps fini presque
sûrement.

1. Introduction

Wright–Fisher processes are fundamental mathematical models in population ge-
netics. They are Markov processes, taking their values in the interval [0, 1] and
representing the frequency over time of an allele (or type) in a population of fixed
size which evolves by resampling. We refer the reader to Etheridge’s book [Eth12].
An important feature of these processes is that they model the phenomenon of ran-
dom genetic drift, which is the fact that even in the absence of a selective advantage
among the alleles (i.e. the model is neutral), allelic diversity will be reduced by the
law of chance, so that the population will ultimately carry a single allele.

In this article, we consider Wright–Fisher processes with jumps in continuous time
and space and generalise them by taking into account an extra force of selection.
Selection dynamics are typically modelled deterministically, so that the frequency of a
type evolves both due to the resampling and due to a frequency-dependent term mod-
eling how deleterious the allele considered is. Recently González and Spanò [CS18]
have established that discrete Wright–Fisher models with frequency-dependent selec-
tion can be rescaled to converge towards certain Markov processes called Ξ-Wright–
Fisher process with frequency-dependent selection. In the latter work the approach
of Neuhauser and Krone [KN97] for modeling logistic selection is generalized by
relating selection events with multiple (and not only binary) branching events in the
ancestral genealogy. We shall focus on the simpler setting of Λ-Wright–Fisher process
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Λ-Wright–Fisher processes with selection & simple EFC processes 495

with frequency-dependent selection (Λ-WF processes with selection). In those pro-
cesses, resampling events are simple in the sense that they only involve one fraction
of the population.

Let Λ be a finite measure over [0, 1]. Let µ be a finite measure on N := {1, 2, . . .}.
Denote by f the generating function of the probability measure ξ(·) = µ(·)/µ(N) over
N, for all x ∈ [0, 1], f(x) := ∑∞

k=1 xkξ(k) and set σ = µ(N). Consider the stochastic
equation

(1.1) Xt(x) = x +
∫ t

0

∫ 1

0

∫ 1

0
z
(
1{v ⩽Xs−(x)} − Xs−(x)

)
M̄(ds, dv, dz)

− σ
∫ t

0
Xs(x)

(
1 − f(Xs(x))

)
ds,

where M is a Poisson point process on R+×[0, 1]×[0, 1] with intensity m(dt, dv, dz) =
dt ⊗ dv ⊗ z−2Λ(dz) and M̄ stands for the compensated measure M̄ = M − m.
Notice that the integrand in the stochastic integral with respect to M̄ vanishes
when the process reaches 0 or 1. Moreover, f(0) = 0, f(1) = 1 and for all x ∈ [0, 1],
1−f(x) ⩾ 0 so that the drift term in (1.1) is negative. In the general case, Λ-Wright–
Fisher processes may have a diffusion part. We focus in this work on the case of a
measure Λ on [0, 1] with no mass at 0 or at 1.

Any process (Xt(x), t ⩾ 0) solution to the equation (1.1) is valued in [0, 1]. Imagine
a population of constant size 1, whose individuals carry at any time one allele among
a set of two alleles {a, A}. Suppose that the process (Xt(x), t ⩾ 0) follows the
frequency of allele a when initially the proportion of individuals carrying allele a is
of size x. Before reaching boundaries, the time-dynamics of (Xt(x), t ⩾ 0) consists
of two parts:

• the resampling which is governed by the Poisson random measure M: for any
(t, v, z) atom of M,

– if v ⩽ Xt−(x), then allele a is sampled and a fraction z ∈ (0, 1) of the
alleles A at time t− is replaced by the allele a at time t. The frequency
of allele a increases:

Xt(x) = z
(
1 − Xt−(x)

)
+ Xt−(x),

– if v > Xt−(x), then allele A is sampled and a fraction z ∈ (0, 1) of the
alleles a at time t− is replaced by the allele A at time t. The frequency
of allele a decreases:

Xt(x) = (1 − z)Xt−(x),
• the selection which is modeled by function f characterizing the disadvantage

of allele a: the frequency of allele a decreases continuously in time along the
negative deterministic drift:

−σXt(x)
(
1 − f(Xt(x))

)
dt.

When σ = 0, the drift term in (1.1) governing the selection disappears and the
solution of (1.1) becomes the classical Λ-Wright–Fisher process, see Bertoin and
Le Gall [BLG05] and Dawson and Li [DL12], which represents the evolution of the
frequency of a neutral allele (or type) in a two-allele model evolving by resampling.
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496 C. FOUCART & X. ZHOU

In particular, when there is no selection term, the SDE (1.1) has a pathwise unique
strong solution and the boundaries 0 and 1 are both absorbing whenever they are
reached. The event of absorption at 1 (respectively at 0) is called fixation of the
allele a (respectively A) in the genetics terminology. It corresponds to the fact that
all individuals have a common allele from a finite time almost surely. Bertoin and
Le Gall [BLG05] have established that in the setting with no selection, fixation at
one of the boundaries occurs almost surely if and only if the measure Λ satisfies the
following condition

(1.2)
∞∑

n=2

1
Φ(n) < ∞,

where for any n ⩾ 2,

(1.3) Φ(n) :=
∫

(0,1)

(
(1 − x)n + nx − 1

)
x−2Λ(dx).

Condition (1.2) is perhaps better known in the coalescent framework, as a necessary
and sufficient condition for the Λ-coalescent to come down from infinity. A well-known
cornerstone result in the coalescent theory states that any Λ-Wright-Fisher process
satisfies a certain duality relationship with a Λ-coalescent process, see Donnelly and
Kurtz [DK99] and Bertoin and Le Gall [BLG03]. Backgrounds on those results are
given in Section 3. We call (N (n)

t , t ⩾ 0, n ∈ N) the block counting process of a
Λ-coalescent started from n blocks. For all x ∈ [0, 1] and n ∈ N,

(1.4) E [Xt(x)n] = E
[
xN

(n)
t

]
.

By letting n go to ∞ in the identity (1.4), we see that fixation at 1 occurs if and only
if the Λ-coalescent comes down from infinity, in the sense that although it starts
from infinitely many blocks, the number of blocks is finite at any strictly positive
time.

One of the first models generalizing the Λ-Wright–Fisher process by incorporating
selection is perhaps the logistic case for which f(x) = x and the drift term in the
SDE (1.1) takes the form −σx(1−x). In this setting the measure µ reduces to a Dirac
mass at 1 with weight σ. Such processes have been studied by Baake et al. [BLW16],
Bah and Pardoux [BP15], Etheridge and Griffiths [EG09], Griffiths [Gri14] and
Foucart [Fou13]. Bah and Pardoux [BP15, Theorem 4.3] have established that in the
logistic case, fixation at 0 or 1 occurs almost surely if and only if (1.2) is satisfied.
In particular, when (1.2) holds, despite that allele a is deleterious when σ > 0, the
population still has a positive probability to get fixed on allele a in a finite time
almost surely.

The behavior of the positive function x 7→ 1 − f(x) near 1 actually reflects the
strength of the selective advantage of allele A over a. The question addressed in the
present article is to see whether a selection term can overcome the Λ-resampling
mechanism and prevent fixation of the deleterious allele a.

When f is Lipschitz on [0, 1], i.e. f ′(1−) < ∞, fundamental results on SDEs with
jumps, see e.g. [DL12], entail that there exists a unique strong solution to (1.1).
Moreover pathwise uniqueness holds and since 1 is always a solution, it entails that
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the process is absorbed at 1 if it reaches it. We shall actually see that in this case,
fixation at boundary 1 is always possible when (1.2) holds.

When the drift term in (1.1) is non-Lipschitz at 1, namely f ′(1−) = ∞, pathwise
uniqueness of the solution to the SDE (1.1) might not hold. In this case the only
solution to (1.1) whose existence and uniqueness is guaranteed is the minimal one,
(Xmin

t , t ⩾ 0), which is stopped upon reaching boundary 1. Several weak solutions
to (1.1) with different behaviors at boundary 1 may exist. Let (Xr

t (x), t ⩾ 0, x ∈ [0, 1])
be a process valued in [0, 1]. For any x ∈ [0, 1], let τ1 be the first hitting time of
boundary 1, i.e. τ1 := inf{t > 0 : Xr

t (x) = 1} ∈ [0, ∞]. The process (Xr
t , t ⩾ 0) is

said to be an extension of the minimal process (Xmin
t , t ⩾ 0), if (Xr

t ∧ τ1 , t ⩾ 0) has
the same law as (Xmin

t , t ⩾ 0).
Following Feller’s terminology for diffusions, see e.g. Karlin and Taylor’s book [KT81,

Chapter 15, Section 6], a boundary is said to be natural if the process can not reach
the boundary and can not leave it. The boundary is an exit if the process can reach
the boundary but can not leave it. Symmetrically, it is said to be an entrance if
the process can not access the boundary but leaves it; and finally the boundary is
regular if the process enters into it and is able to get out from it.

In the sequel, we say that a boundary is absorbing if when started from the
boundary, the process stays at the boundary at any future time almost surely.
So that an exit boundary is always absorbing and a regular boundary is absorbing
if it is subject to the prescription that the process fixes at the boundary once it is
attained. In other words, the process with a regular absorbing boundary is stopped
at the boundary. By definition, an entrance boundary is non-absorbing as well as a
regular boundary when the process is not stopped at it.

We will find new phenomena occurring in the presence of certain strong selection.
In particular, despite the strength of the resampling rule under the condition (1.2),
we shall find regimes for which even though the population starts entirely with the
deleterious allele, its frequency will vanish in finite time almost surely. Namely, we
will construct an extension of the minimal process with boundary 1 as an entrance.
Similarly, we will find sufficient condition under which the selection advantage for
allele A is not strong enough and for which boundary 1 is an exit. Last but not least,
we shall find regimes in which all individuals carry the deleterious allele for a set of
times of negligible Lebesgue measure, before the selection starts to act effectively
and that the deleterious allele vanishes.

Our method relies on the study of an extension constructed in the following way.
We first look at processes, solution to the Equation (1.1) with an additional drift
term −λXtdt with λ > 0. This drift can be seen as modeling mutation from the
deleterious allele a to the advantaged one A. We shall see that under the assumption
that there is no Kingman component, i.e. Λ({0}) = 0, those processes, called Xλ’s,
can all be started from boundary 1. Our core object of study is the limit process
that arises when the parameter λ tends to 0 (i.e. the mutation rate becomes very
low). Hence define formally the limit process Xr as

Xr
t := lim

λ → 0+
Xλ

t for all t ⩾ 0.
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The convergence will be made precise later and we shall see that the process Xr

is extending the minimal solution to (1.1). The possible behaviors at boundary 1
of the extended process (Xr

t , t ⩾ 0) are defined rigorously as follows. Recall τ1 the
first hitting time of boundary 1. The Λ-WF process with selection has boundary 1
accessible if for any x ∈ (0, 1), Px(τ1 < ∞) > 0. Furthermore, the boundary 1 is

- exit when 1 is accessible and a.s. Xr
t (1) = 1 for all t ⩾ 0;

- entrance when 1 is not accessible and a.s. Xr
t (1) < 1 for some t > 0;

- regular non-absorbing when 1 is accessible and a.s. Xr
t (1) < 1 for some t > 0;

- natural when 1 is not accessible and a.s. Xr
t (1) = 1 for all t ⩾ 0.

In the same fashion as in the case without selection, in which fixation at 1 is linked
to the coming down from infinity of the Λ-coalescent (i.e. ∞ is an entrance boundary),
we will relate each boundary behavior of Xr to the boundary behavior of another
dual process (N (n)

t , t ⩾ 0, n ∈ N) with values in N̄ := N ∪ {∞}. Loosely speaking,
the process (N (n)

t , t ⩾ 0, n ∈ N) can be seen as the functional of the block counting
process of a simple exchangeable fragmentation-coalescence (EFC) process with
coalescence measure Λ and splitting measure µ. A simple EFC process (Π(t), t ⩾ 0)
is a partition-valued process in which coalescence occurs as in a Λ-coalescent and
fragmentation dislocates a block chosen uniformly among all present blocks into k

sub-blocks at rate µ(k). The process (N (n)
t , t ⩾ 0, n ∈ N) is thus generalizing the

block counting process of a Λ-coalescent by allowing positive jumps from n to n + k
at linear rate nµ(k) for any k ∈ N. More backgrounds on EFC processes are provided
in Section 3.2.

Let ζ∞ := inf{t > 0 : N
(n)
t− or N

(n)
t = ∞} be the first explosion time of the block

counting process. We define the stopped process(
N

min,(n)
t , t ⩾ 0

)
:=
(
N

(n)
t ∧ ζ∞ , t ⩾ 0

)
and refer to it as the minimal block counting process. We will establish the following
two duality relationships. For any t ⩾ 0, x ∈ (0, 1) and n ∈ N,

(1.5) E
[(

Xmin
t (x)

)n]
= E

[
xN

(n)
t

]
and E [(Xr

t (x))n] = E
[
xN

min,(n)
t

]
.

The identities in (1.5) can be seen as generalisations of the duality (1.4) to any
generating function f (including thus those with f ′(1−) = ∞). They are stated in
forthcoming Theorem 2.1 and Theorem 2.7 and have numerous consequences.

We will see for instance that if the boundary ∞ of the block-counting process
(N (n)

t , t ⩾ 0) is an entrance, an exit or is regular then the boundary 1 for the
extended process (Xr

t , t ⩾ 0) is respectively an exit, an entrance or a regular boundary.
We summarize the classification in Table 2.1 in Section 2. We mention that such
correspondences between entrance and exit boundaries for processes satisfying a
duality relationship have been observed in other contexts, see the seminal work of
Cox and Rösler [CR84]. Reminiscent classifications between boundaries have been
established in Foucart [Fou19] for logistic continuous-state branching processes, see
also Hermann and Pfaffelhuber [HP20] and Berzunza Ojeda and Pardo [BOP20].

The behaviors of the block counting process of simple EFCs at boundary ∞
have been investigated in Foucart [Fou22] and Foucart and Zhou [FZ22]. Sufficient
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conditions for the boundary ∞ to be entrance, exit or regular have been identified.
By making use of the correspondences, we will be able to transfer the results on
EFC processes to results for Λ-WF processes with selection and vice versa. Explicit
conditions on the resampling measure Λ and selection function f are given for each
possible behavior at boundary 1. Those results are given in Theorems 2.11, 2.13
and 2.16.

In a somehow parallel way of our study of the behaviors at the boundaries of the
process (Xr

t , t ⩾ 0), we will see that fundamental properties of the block counting
process of simple EFCs derive from these two duality relations. The first duality
relation in (1.5) allows one to establish the Markov and Feller properties of the
process (N (n)

t , t ⩾ 0) and to study its positive recurrence. These questions were not
addressed in the previous works on EFCs, [Ber04, Fou22] and [FZ22], we refer the
reader to [Fou22, Remark 2.14]. Those results are stated in Theorem 2.3, Theorem 2.4
and Corollary 2.20.

The paper is organized as follows. The main results are stated in Section 2. Back-
grounds on Λ-Wright–Fisher processes with and without selection are provided in
Section 3.1. We verify in particular that the SDE (1.1) admits a unique solution up to
the first hitting time of the boundaries, this is the so-called minimal Λ-WF processes
with selection. The moment-duality between the Λ-Wright–Fisher process without
selection and the process counting the number of blocks in a Λ-coalescent is recalled
in this section. Consequences of this duality relationships for the boundaries of the
Λ-Wright–Fisher process without selection and the Λ-coalescent are reviewed. This
will serve us as a guide for establishing the corresponding duality when fragmentation
is taken into account. In Section 3.2, we briefly recall the notion of exchangeable
fragmentation-coalescence processes and describe the process of its number of blocks.
Results from [Fou22] are gathered. In Section 4, we establish the first duality identity
in (1.5) and deduce from it some new results for the EFC processes. In Section 5, we
proceed to the construction of the extension (Xr

t , t ⩾ 0) of the minimal process. We
then provide a theoretical classification of its boundary behaviors. In Section 6, we
go further into the classification by finding new correspondences between a regular
reflecting boundary and a boundary which is regular for itself. Lastly, it is shown in
this section, that when boundary 1 is non-absorbing for the extended process, then
under the assumption (1.2) the latter gets absorbed at 0 (i.e. fixation of the advan-
tageous allele occurs). In Section 7, we apply the results on simple EFCs, recalled
in Section 3.2, to the Λ-Wright–Fisher processes with selection and provide explicit
sufficient conditions for each boundary behavior.

Notation

We denote by C([0, 1]) the space of continuous functions on [0, 1], C2((0, 1)) and
C2

c ([0, 1]) are respectively the space of twice continuously differentiable functions on
(0, 1) and the space of twice continuously differentiable functions whose derivatives
have compact support included in (0, 1). The integrability of a function g in a
left-neighbourhood of a ∈ (0, ∞] is denoted by

∫ a− g(x)dx < ∞. We set N̄ :=
{1, 2, . . . , ∞}, the one-point compactification of N, the latter is a compact set for
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the metric d(n, m) := |n−m| for n, m ∈ N and d(∞, n) := 1/n for any n ∈ N̄, where
by convention 1/∞ = 0. The space of continuous functions on N̄ is denoted by C(N̄).
A function f belongs to C(N̄) if and only if f(n) −→

n → ∞
f(∞). We denote by Pz the

law of the process under consideration started from z, the corresponding expectation
is Ez.

2. Main results

Recall that (Xmin
t , t ⩾ 0) stands for the minimal Λ-Wright–Fisher process with

frequency-dependent selection, that is to say the unique solution to (1.1) which is
absorbed at its boundaries after it reaches them. Existence and uniqueness of this
process will be verified in Section 3.1, see Lemma 3.1. Recall that we denote by
(N (n)

t , t ⩾ 0) the block-counting process of a simple EFC started from n blocks with
coalescence measure Λ and splitting measure µ. We refer to Section 3.2 for more
details.

We first state a duality relationship which holds for any minimal Λ-Wright–Fisher
process with frequency-dependent selection, subject to the condition Λ({1}) = 0. No
assumption on the generating function f is made.

Theorem 2.1. — The Markov process (Xmin
t (x), t ⩾ 0, x ∈ [0, 1]) satisfies the

following property. For any t ⩾ 0, x ∈ [0, 1] and any n ∈ N

(2.1) E
[
Xmin

t (x)n
]

= E
[
xN

(n)
t

]
.

In particular,

P
(
Xmin

t (x) = 1
)

= lim
n → ∞

E
[
xN

(n)
t

]
= E

[
xN

(∞)
t

]
∈ [0, 1]

and the process (Xmin
t (x), t ⩾ 0, x ∈ [0, 1]) gets absorbed at 1 with positive probabil-

ity if and only if the process (N (∞)
t , t ⩾ 0) comes down from infinity (i.e. ∞ is either

an entrance or a regular non-absorbing boundary).

Remark 2.2. — We shall see along the proof of Theorem 2.1, that (2.1) can be
generalized to cases where Λ has a mass at 0, see the forthcoming Remark 4.2. We
shall however focus in the sequel on pure-jump Λ-Wright–Fisher processes, namely
those with Λ({0}) = 0, see Remark 5.5.

As explained in the introduction, we deduce from Theorem 2.1 two important
results for the block counting process of a simple EFC process. Those results were
left unaddressed in [Fou22] and [FZ22].

Theorem 2.3 (Markov property of (#Π(t), t ⩾ 0)). — Let (Π(t), t ⩾ 0) be a
simple EFC process whose coalescence measure is Λ and splitting measure is µ. The
block counting process (Nt, t ⩾ 0) := (#Π(t), t ⩾ 0) with state-space N̄ is a Markov
process satisfying the Feller property.

Recall the first hitting times of the boundary τi := inf{t ⩾ 0; Xmin
t = i} for

i ∈ {0, 1}.
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Theorem 2.4 (Recurrence of (#Π(t), t ⩾ 0)). — If the process (#Π(t),
t ⩾ 0) comes down from infinity, then it is positive recurrent and has a station-
ary distribution whose generating function is φ : x ∈ [0, 1] 7→ Px(τ1 < τ0).

Remark 2.5. — A sufficient condition for coming down from infinity of simple
EFC processes is given in [Fou22, Theorem 1.1]. In the notation of [Fou22], if θ⋆ < 1,
then the block counting process comes down from infinity and by Theorem 2.4,
(Nt, t ⩾ 0) is positive recurrent.

Remark 2.6. — The stationary distribution of (Nt, t ⩾ 0) is carried over N if and
only if the generating function φ is non-defective i.e. φ(x) = Px(τ1 < τ0) −→

x→1−
1.

The next theorem introduces the extended process (Xr
t , t ⩾ 0). As explained in the

introduction, it will be built from simpler processes (Xλ
t , t ⩾ 0) whose boundary 1 is

always an entrance. This limiting procedure is explained in the proof, see Lemma 5.4,
which is deferred to Section 5. As mentioned before, by regular absorbing boundary
we mean that the process considered has its boundary regular but is stopped at it.

Theorem 2.7. — There exists a Feller process (Xr
t (x), t ⩾ 0, x ∈ [0, 1]) extending

the minimal process such that for any t ⩾ 0 and any n ∈ N,

E [Xr
t (x)n] = E

[
xN

min,(n)
t

]
for any x ∈ [0, 1)

and E [Xr
t (1)n] = P

(
N

min,(n)
t < ∞

)
,

(2.2)

where (Nmin,(n)
t , t ⩾ 0) := (N (n)

t ∧ ζ∞ , t ⩾ 0) for ζ∞ := inf{t > 0 : N
(n)
t = ∞} ∈ [0, ∞].

Moreover,
(i) the boundary 1 is an entrance for (Xr

t (x), t ⩾ 0) if and only if ∞ is an exit
for (N (n)

t , t ⩾ 0);
(ii) the boundary 1 is regular non-absorbing for (Xr

t (x), t ⩾ 0) if and only if ∞
is regular absorbing for (Nmin,(n)

t , t ⩾ 0), i.e. ∞ is regular non-absorbing for
the process (N (n)

t , t ⩾ 0);
(iii) the boundary 1 is an exit for (Xr

t (x), t ⩾ 0) if and only if ∞ is an entrance
of (N (n)

t , t ⩾ 0);
(iv) the boundary 1 is natural for (Xr

t (x), t ⩾ 0) if and only if ∞ is natural for
(N (n)

t , t ⩾ 0).
The equivalences stated above will be established by making use of the two duality

relationships (2.1) and (2.2). The one-to-one correspondences between behaviors at
the boundaries are summarized in the following table.

We stress that in the regular case, see the second line of Table 2.1 above, if one
process has its boundary regular non-absorbing then according to Theorem 2.7-(ii),
its dual process has necessarily its boundary regular absorbing.

Since there are several possible ways to leave a regular boundary, see e.g. [KT81,
Chapter 15, Section 8] in the case of diffusions processes, Table 2.1 does not specify
completely the behavior of the process at the boundary when it is regular non-
absorbing. Recall that a regular boundary is said to be reflecting when the set
of times at which the process lies at the boundary, has a zero Lebesgue measure.

TOME 6 (2023)



502 C. FOUCART & X. ZHOU

Table 2.1. Classification of boundaries.

Boundary 1 of Xr Boundary ∞ of N
entrance exit
regular regular

exit entrance
natural natural

A regular boundary is also said to be regular for itself if the process started from the
boundary returns immediately to it almost surely. In the same fashion, we classify the
exit and entrance boundaries by saying that boundary 1 is an instantaneous entrance
if it is an entrance and the first entrance time in [0, 1), τ 1 := inf{t > 0 : Xr

t (x) < 1}
satisfies P1(τ 1 = 0) = 1. The boundary ∞ is an instantaneous exit if it is an exit
and the first explosion time ζ∞ := inf{t > 0 : N

(n)
t− or N

(n)
t = ∞} satisfies for any

t > 0, Pn(ζ∞ ⩽ t) −→ 1, as n goes to ∞. Similar definitions hold for instantaneous
exit boundary 1 and instantaneous entrance boundary ∞.

The next theorem explains the possible behaviors of the dual processes at their
boundaries when they are regular non-absorbing.

Theorem 2.8 (regular reflecting/regular for itself). — The boundary 1 of the
extended process (Xr

t , t ⩾ 0) is regular for itself (respectively, regular reflecting) if and
only if the boundary ∞ of the process (Nt, t ⩾ 0) is regular reflecting (respectively,
regular for itself).

Proposition 2.9 (Instantaneous entrance/exit). — Assume that the boundary
1 is an entrance for (Xr

t , t ⩾ 0). The boundary 1 is an instantaneous entrance if and
only if ∞ is an instantaneous exit. Similarly, the boundary 1 is an instantaneous exit
if and only if ∞ is an instantaneous entrance.

The next table summarizes Theorem 2.8 and Proposition 2.9.

Table 2.2. regular for itself/regular reflecting

Boundary 1 of Xr Boundary ∞ of N
regular reflecting regular for itself
regular for itself regular reflecting

instantaneous entrance instantaneous exit
instantaneous exit instantaneous entrance

We address now the long-term behavior of the extended Λ-Wright–Fisher process
with selection (Xr

t , t ⩾ 0). Recall that by fixation, we mean that all individuals
get one of the two alleles and keep it forever. When 1 is an exit, fixation of the
deleterious allele has a positive probability to occur. When the boundary 1 is regular
non-absorbing or entrance, fixation at 1 can not occur, and we shall actually see
that there is almost sure fixation of the advantageous allele.
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Theorem 2.10. — Assume that Λ satisfies (1.2). If (Xr
t , t ⩾ 0) has boundary 1

either regular non-absorbing or an entrance, then for all x ∈ [0, 1],
∃ t0 > 0; Xr

t (x) = 0 for all t ⩾ t0, a.s.

Table 2.1 and Table 2.2 provide a theoretical classification of the boundaries. When
there is selection, no necessary and sufficient conditions entailing that boundary 1
of X or boundary ∞ of N is of a given type are known. We now identify explicit
sufficient conditions on the resampling measure Λ and the selection function f for
each possible boundary behavior. Proofs of those theorems are in Section 7. They are
obtained via the correspondences stated in Table 2.1 and Table 2.2, by transferring
previous results on the boundary ∞ of the block counting process N , obtained
in [FZ22] and summarized in Section 3.2, to results on the boundary 1 of Xr.

Recall the map Φ defined in (1.3). Set Φ(z) := Φ(⌊z⌋) for any z ⩾ 2. We refer
the reader to [Fou22, Section 2.2] and [LT15] for fundamental properties of Φ. In
particular, we recall that Φ(z) ∼

z→∞
Ψ(z) with Ψ(z) =

∫
(0,1)(e−xz − 1 + xz)x−2Λ(dx).

Moreover if for some β ∈ (0, 1)

(2.3) Λ(dx) = h(x)dx, for x ∈ [0, x0] with h(x)xβ −→
x → 0+

ρ,

then Φ(z) ∼
z→∞

dz1+β with d = ρΓ(1−β)
β(β+1) , where Γ is the Euler-Gamma function.

The next theorem provides conditions over the selection function f and the resam-
pling measure Λ for 1 to be an absorbing boundary for the (non-stopped) process
(Xr

t , t ⩾ 0), so that 1 is either an exit or a natural boundary.

Theorem 2.11. — If f is Lipschitz on [0, 1], or if x 7→ 1 − f(x) is regularly
varying at 1 with index α ∈ [0, 1) and satisfies

(2.4)
∫ 1− 1 − f(x)

(1 − x)3Φ
(
1/(1 − x)

)dx < ∞,

then the boundary 1 of (Xr
t , t ⩾ 0) is absorbing. Assume (2.4) holds true, then

(i) if
∫∞ dz

Φ(z) < ∞, 1 is an instantaneous exit boundary;
(ii) if

∫∞ dz
Φ(z) = ∞, 1 is a natural boundary.

We now provide a sufficient condition on the resampling measure Λ and the
selection function f entailing that the process (Xr

t , t ⩾ 0), has boundary 1 as an
entrance. Introduce the following condition over the function x 7→ 1 − f(x):

Condition. — H: there exists a positive function L defined on (0, 1) such that∫ 1− 1
L(x)dx < ∞, the map h : x 7→ L(x)

(1−x) log(1/(1−x)) is eventually non-decreasing in the
neighbourhood of 1 and

1 − f(x) ⩾ L(x) for x close enough to 1.

Remark 2.12. — Condition H encompasses a regularity assumption on the differ-
ence quotient of the function f near 1. Indeed the condition on the map h holds if the
function x 7→ (1−f(x))/(1−x) log(1/(1−x)) stays above a non-decreasing function
in some neighbourhood of 1. In this case, Condition H reduces to

∫ 1− dx
1−f(x) < ∞.
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Theorem 2.13. — Assume Condition H holds. If

(2.5)
(1 − x)2Φ

(
1/ log(1/x)

)
1 − f(x) −→

x → 1−
0,

then the boundary 1 is an instantaneous entrance boundary.

Remark 2.14. — Since Φ is non-decreasing, Φ(1/ log(1/x)) ⩽ Φ(1/(1 − x)) for
any x ∈ [1/2, 1).

Example 2.15. — If there exist c > 0 and α ∈ (0, 1) such that 1 − f(x) ⩾
c(1 − x)α for x close enough to 1 then Condition H is satisfied. If furthermore
Φ
(
1/(1 − x)

)
(1 − x)2−α −→

x → 1−
0, then (2.5) holds. This is the case for instance

when (2.3) is fulfilled with 0 < β < 1 − α and d > 0.

Theorem 2.16. — Let α, β ∈ (0, 1) and σ, ρ > 0. Assume

(2.6) Λ(dx) = h(x)dx with h(x) ∼
x → 0+

ρx−β and σ
(
1 − f(x)

)
∼

x → 1−
σ(1 − x)α.

The boundary 1 of (Xr
t , t ⩾ 0) is classified as follows :

(i) if α + β < 1, then 1 is an instantaneous entrance;
(ii) if α + β > 1, then 1 is an instantaneous exit;
(iii) if α + β = 1 and further,

• if σ/ρ > π
(2−α) sin(πα) , then 1 is an instantaneous entrance;

• if 1
(1−α)(2−α) < σ/ρ < π

(2−α) sin(πα) , then 1 is regular reflecting;

• if σ/ρ < 1
(1−α)(2−α) , then 1 is an instantaneous exit.

Remark 2.17. — Cases (i) and (ii) are consequences of Theorem 2.13 and The-
orem 2.11. Important examples for which the condition (2.6) hold are coalescence
measures Λ of the Beta form, Λ(dx) = ρx−β(1 − x)a−1dx for β ∈ (0, 1) and a > 0,
and generating functions f associated to Sibuya distribution, f(x) = 1 − (1 − x)α

for α ∈ (0, 1).

Theorem 2.18. — Let σ, ρ > 0 and α ∈ (0, 1). Assume

Λ(dx) = h(x)dx with h(x) ∼
x→0+

ρx−(1−α) and σ
(
1 − f(x)

)
∼

x → 1−
σ(1 − x)α.

If 1
(1−α)(2−α) < σ/ρ < π

(2−α) sin(πα) , then the extended process (Xr
t , t ⩾ 0) has its

boundary 1 regular for itself.

Remark 2.19. — Since the process (Xr
t , t ⩾ 0) is Feller, when boundary 1 is

regular reflecting and regular for itself, standard theory, see e.g. [Ber96, Chapter IV]
ensures the existence of a local time of the process (Xr

t , t ⩾ 0) at 1 whose inverse
subordinator has no drift.

By combining Theorem 2.18 and Theorem 2.8, we will obtain the following corollary
for the block counting process (Nt, t ⩾ 0) of a simple EFC process (Π(t), t ⩾ 0) whose
splitting measure µ and coalescence measure Λ are regularly varying. Recall that by
Theorem 2.3, (Nt, t ⩾ 0) := (#Π(t), t ⩾ 0) is a Markov process with state-space N̄.
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The first assertion (i) below specifies the behavior of (Nt, t ⩾ 0) when its boundary
∞ is regular and answers a question raised but left unaddressed in [FZ22].

Corollary 2.20. — Let α ∈ (0, 1). Assume Φ(n) ∼
n → ∞

dn2−α with d > 0 and
µ(n) ∼

n → ∞
b

n1+α with b > 0.

(i) If α sin(πα)
π

< b/d < α(1 − α), then the boundary ∞ of the process (#Π(t), t ⩾
0) is regular reflecting.

(ii) If b/d < α(1 − α), then the process (#Π(t), t ⩾ 0) is positive recurrent and
admits a stationary distribution carried over N.

3. Background on Λ-WFs with selection and simple EFCs

3.1. Λ-Wright–Fisher processes with selection and Λ-coalescent

3.1.1. A stochastic differential equation with jumps

We introduce the class of Λ-Wright–Fisher processes with frequency-dependent
selection. As we shall use it later, we slightly generalize SDE (1.1) by allowing the
generating function driving selection to be defective, namely such that f(1) < 1. Let
µ be a finite measure over N̄ := {1, 2, ; . . . , ∞} and Λ be a finite measure over [0, 1]
with Λ({0}) = Λ({1}) = 0. Let f be the generating function of the probability law
µ(·)/µ(N̄) over N̄: for all x ∈ [0, 1], f(x) = ∑

k ∈N xkµ(k)/µ(N̄). When the function
f is defective, 1 − f(1) > 0 and this term corresponds to the mass at infinity for the
probability distribution associated to f . Consider the stochastic equation

(3.1) Xt(x) = x +
∫ t

0

∫ 1

0

∫ 1

0
z
(
1{v ⩽Xs−(x)} − Xs−(x)

)
M̄(ds, dv, dz)

− µ(N̄)
∫ t

0
Xs(x)

(
1 − f(Xs(x))

)
ds.

When there is no selection, i.e. f(x) = 1 for all x ∈ [0, 1] and the drift term in
Equation (3.1) vanishes, the process (Xt(x), t ⩾ 0) valued in [0, 1], is a martingale
(this property in terms of the population model can be thought as the neutrality
assumption between the two alleles) and has both boundaries 0 and 1 absorbing.
Existence and weak uniqueness of the solution to the SDE (3.1), when f ≡ 1, has
been established by Bertoin and Le Gall [BLG05] through a martingale problem.
Set q(v, x) := 1{v ⩽x} − x for any x ∈ [0, 1]. The generator of the Λ-Wright–Fisher
process without selection is the operator A defined as follows

Ag(x) :=
∫

[0,1]×[0,1]

(
g(x + zq(v, x)) − g(x) − zq(v, x)g′(x)

)
z−2Λ(dz)dv.(3.2)

Dawson and Li [DL12] have studied the SDE (3.1) through techniques different
from Bertoin and Le Gall. Among other results, it is established that under some
assumptions on the drift term, (3.1) admits a flow of strong solutions (Xt(x), t ⩾
0, x ⩾ 0) for which x 7→ Xt(x) is càdlàg.
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Consider now the setting with selection. Any process solution to (3.1) has a gener-
ator As acting on C2((0, 1)) given by

(3.3) Asg(x) := Ag(x) + µ(N̄)x(f(x) − 1)g′(x) for any x ∈ (0, 1).

Lemma 3.1. — Let f be any generating function (possibly defective). There exists
a unique strong solution to (3.1) up to the first hitting time of the boundaries.

Proof. — For any n ⩾ 1, one can find a Lipschitz function bn on [0, 1] such that
bn(x) := µ(N̄)x(f(x)−1) if 0 ⩽ x ⩽ 1−1/n and bn(x) := 0 if x ⩾ 1−1/2n. Consider
the stochastic equation

(3.4) Xt(x) = x +
∫ t

0

∫ 1

0

∫ 1

0
z
(
1{v ⩽Xs−(x)} − Xs−(x)

)
M̄(ds, dv, dz) +

∫ t

0
bn(Xs)ds.

We verify now that the latter equation has a pathwise unique strong solution by
applying [LP12, Theorem 5.1]. We follow the notation of [LP12] and check Con-
ditions (3.a), (3.b) and (5.a). Set U0 = [0, 1] × [0, 1], for any u ∈ U0, denote the
coordinates of u by u = (v, z) and let µ0(du) = µ0(dv, dz) := dv ⊗ z−2Λ(dz). Define
g0(x, u) = z(1{v⩽x} − x) and note that the stochastic equation above corresponds to
the stochastic equation (2.1) in [LP12] with σ ≡ 0, g1 ≡ 0 and b(x) := bn(x) ⩽ 0.
Since bn is Lipschitz on [0, 1], condition (3.a) is satisfied (with rm(z) = r1(z) := Lnz
for any z and any m, and where Ln is the Lipschitz constant of bn). Condition (3.b)
is verified in [LP12, Corollary 6.2]. It remains only to check Condition (5.a). For any
x ∈ R, g0(x, (u, z))2 ⩽ z2 and bn(x)2 ⩽ 1, hence∫ 1

0
g0(x, (u, z))2µ0(du) + bn(x)2 ⩽

∫ 1

0
z2z−2Λ(dz) + 1 = Λ((0, 1)) + 1 ⩽ K

(
1 + x2

)
.

Denote by (Xn
t , t ⩾ 0) the solution of (3.4). Let τ1−1/n := inf{t > 0 : Xn

t > 1 − 1/n}.
By pathwise uniqueness if m < n then Xm

t = Xn
t for t ⩽ τ1−1/m ∧ τ0. Note that

τ1−1/m −→
m → ∞

τ1; thus we can define a process (Xt, t < τ) such that Xt = Xn
t for all

t ⩽ τ1−1/n and all n ⩾ 1. The process is solution to (3.1) and the uniqueness of this
minimal solution plainly holds. □

Remark 3.2. — When the selection term satisfies the condition f ′(1−) < ∞ (i.e.
µ has a finite mean), the function x 7→ x(f(x)−1) is Lipschitz over [0, 1], and [DL12,
Theorem 2.1] ensures that there is a unique pathwise strong solution to (3.1). It is
worth noticing that in this case, since the constant process 1 is solution to (3.1),
pathwise uniqueness entails in particular that if the boundary 1 is reached then the
process is absorbed at 1.

We are interested in cases where f is not globally Lipschitz on [0, 1], i.e. f ′(1−) = ∞
and in possible extensions of the minimal process after time τ . The minimal Λ-Wright–
Fisher process with selection governed by f , denoted by (Xmin

t , t ⩾ 0), is the process
solution to (3.1) that is stopped at the boundary after time τ := inf{t > 0 : Xmin

t /∈
(0, 1)}. A consequence of Lemma 3.1 is that the minimal process, or minimal solution,
is the unique solution to the following (stopped) martingale problem:

(MP) :∀ g ∈ C2
c ([0, 1]),

(
g
(
Xmin

t ∧ τ

)
−
∫ t

0
Asg

(
Xmin

s ∧ τ

)
ds, t ⩾ 0

)
is a martingale,
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where Xmin
t = 1 if t ⩾ τ1 = τ1 ∧ τ0 and Xmin

t = 0 if t ⩾ τ0 = τ1 ∧ τ0. By extension
of the minimal process solution of (3.1), we mean here a process (Xt, t ⩾ 0) with
infinite life-time such that the process (Xt, t < τ) has the same law as (Xmin

t , t < τ).
An important tool used repeatedly in the proofs is a comparison theorem due to

Dawson and Li for solutions of (3.1). Here, in their notation, σ = g′
1 = g′′

1 = 0 and
the conditions (2-a)-(2-d) of [DL12, Theorem 2.2] are fulfilled.

Theorem 3.3 (Theorem 2.2 in [DL12]). — Given two Lipschitz generating func-
tions f1 and f2 such that f1 ⩽ f2 (thus, by the Lipschitz assumption f ′

i(1−) < ∞
for i = 1, 2) and two initial values x1 ⩽ x2 in [0, 1], if (X i

t(xi), t ⩾ 0) is the solution
of (3.1) with f = fi for i = 1, 2 and initial value xi, then almost surely for all t ⩾ 0,
X1

t (x1) ⩽ X2
t (x2).

3.1.2. Λ-Wright–Fisher processes without selection

A fundamental property of Λ-Wright–Fisher processes without selection is their
link with the processes called Λ-coalescents. Those processes are valued in the space
of partitions of N and are evolving by multiple (not simultaneous) mergings of
equivalence classes (called blocks). The Λ-coalescents can be thought as representing
the genealogy backwards in time of the ancestral lineages in the population evolving
by resampling, see [BLG03]. More backgrounds about Λ-coalescents are provided
in Section 3.2. Let (Π(t), t ⩾ 0) be a Λ-coalescent and (#Π(t), t ⩾ 0) be its block
counting process. This is a Feller process valued in N̄ whose generator is Lc with for
any g : N 7→ R

Lcg(n):=
n∑

k=2

(
n

k

)
λn,k(g(n − k + 1) − g(n)),(3.5)

where

λn,k:=
∫ 1

0
zk(1 − z)n−kz−2Λ(dz) for 2 ⩽ k ⩽ n.(3.6)

Recall Condition (1.2). Schweinsberg [Sch00] has established that (1.2) is necessary
and sufficient for ∞ to be an entrance boundary of the block counting process, in
this case although #Π(0) = ∞, #Π(t) < ∞, for any t > 0 almost surely.

The following identity, established for instance in [BLG05, Theorem 1, Equa-
tion (8)], links the block counting process of a pure Λ-coalescent with the Λ-Wright–
Fisher process without selection through a moment-duality relationship. For any
x ∈ [0, 1] and n ∈ N̄, if #Π(0) = n then

(3.7) E [Xt(x)n] = En

[
x#Π(t)

]
,

where we denote by En the expectation conditionally given that #Π(0) = n.
The identity (3.7) has many important consequences. Firstly, since Xt(x) is a

bounded random variable, its law is entirely characterized by its moments and
therefore the one-dimensional laws of (#Π(t), t ⩾ 0) are in one-to-one correspondence
with those of the process (Xt(x), t ⩾ 0). From a theoretical point of view one can
see (3.7) as a representation of the semigroup of the process (Xt(x), t ⩾ 0). Moreover,
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for any n ∈ N, #Π(t) ⩽ #Π(0) = n for all t ⩾ 0, Pn-a.s. and letting x approach 1
provides the identity

lim
x → 1−

E [Xt(x)n] = lim
x→1−

En

[
x#Π(t)

]
= Pn(#Π(t) < ∞) = 1.

Since x 7→ Xt(x) admits left-limits, we see from the above convergence and Lebesgue’s
theorem that Xt(1−) = 1 almost surely for all t ⩾ 0, so that the boundary 1 is not
an entrance of the Λ-Wright–Fisher process, but is absorbing whenever it is reached.
Letting n go to infinity in (3.7) entails the identity

(3.8) Px(τ1 ⩽ t) = E∞
[
x#Π(t)

]
,

where τ1 := inf{t > 0 : Xt(x) = 1} and (#Π(t), t ⩾ 0) starts from ∞ under
P∞. When Schweinsberg’s condition (1.2) holds, #Π(t) < ∞ a.s. for any t > 0
and (3.8) ensures that τ1 < ∞ with positive probability. The identity (3.8) provides
a representation of the cumulative distribution function of τ1 and in a dual way a
representation of the entrance law at ∞ of the process (#Π(t), t ⩾ 0). Since 1 is
absorbing, the event {τ1 < ∞} coincides with the event of fixation at 1: {∃ t1 ⩾
0; ∀ t ⩾ t1; Xt(x) = 1}.

3.1.3. Pure selection process

When there is no resampling in the population, the frequency of the deleterious
allele (Xt(x), t ⩾ 0) solves the ODE

(3.9) Xt(x) = x − µ(N̄)
∫ t

0
Xs(x)

(
1 − f(Xs(x))

)
ds.

Equivalently, the map (Xt(x), t ⩾ 0) satisfies for all x ∈ (0, 1) and t ⩾ 0,

(3.10)
∫ x

Xt(x)

du

u(1 − f(u)) = µ(N̄)t.

A study of (3.10) when x tends to 1, yields the following dichotomy. Either
∫ 1− du

1−f(u)
= ∞, and in order for the integral in (3.10) to retain the value µ(N̄)t, we must have
Xt(1) := lim

x → 1−
Xt(x) = 1, or else

∫ 1− du
1−f(u) < ∞ and we must have

Xt(1) := lim
x → 1−

Xt(x) ∈ (0, 1).

In the latter case, the function (Xt(1), t ⩾ 0) solves (3.9) and starts from 1. Hence,
if f(1) = 1 then (3.9) has two distinct solutions started from 1, Xt := 1 for all t ⩾ 0
and Xt := lim

x → 1−
Xt(x) for all t ⩾ 0, if and only if

(3.11)
∫ 1− dx

1 − f(x) < ∞.

The integral in (3.11) converges for example when
1 − f(x) ∼

x → 1−
σ(1 − x)α

with α ∈ (0, 1) and σ > 0. Note that if f(1) < 1, i.e. µ(∞) > 0, then (3.11) clearly
holds.
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Solutions to (3.9) are well-known in the theory of branching processes. Con-
sider a continuous-time discrete-state branching process (N (n)

t , t ⩾ 0) started from
n ∈ N with offspring measure µ. Namely, the process jumps from any integer state
n to n + k at rate nµ(k) for all k ∈ N. We refer for instance to Harris’ book
[Har63, Chapter V]. Note that µ gives no mass at −1, so that there is no death
in the process (N (n)

t , t ⩾ 0) and its sample paths are almost surely non decreasing.
The branching property of the process (N (n)

t , t ⩾ 0) ensures that the boundary ∞
is absorbing whenever it is reached. One can identify the function (Xt(x), x ∈ [0, 1])
with the generating functions of N

(1)
t at any time t, more precisely for any x ∈ [0, 1],

any n ∈ N and any t ⩾ 0

(3.12) Xt(x)n = E
[
xN

(n)
t

]
.

Letting x go towards 1 in the identity above yields:

Pn(ζ∞ ⩽ t) = lim
x → 1−

Xt(x) for any t ⩾ 0,

where

ζ∞:= inf
{
t > 0 : N

(n)
t− or N

(n)
t = ∞

}
.

This is the standard method for studying the explosion of process (N (n)
t , t ⩾ 0),

see [Har63, Chapter V, Theorem 9.1]. In particular, the boundary ∞ is an exit for
the branching process (N (n)

t , t ⩾ 0) if and only Dynkin’s condition (3.11) holds.
When resampling and selection are both taken into account, the process solution

to (3.1) may have more involved boundary conditions than what has just been seen
for processes without selection or without resampling. In a similar fashion as for
the pure selection process and for the pure resampling one, we will see that the
moments of a Λ-WF process with selection (Xt, t ⩾ 0) can be represented via certain
continuous-time Markov chains, with values in N̄, whose jumps are mixture of those
of the block counting process of a Λ-coalescent and those of an increasing branching
processes. These processes appear when counting the number of blocks in certain
exchangeable partition-valued processes.

3.2. Backgrounds on exchangeable fragmentation coalescence (EFC)
processes

EFC processes, introduced by Berestycki in [Ber04], are Markov processes with
state-space P∞, the space of partitions of N. The number of non-empty blocks (i.e.
equivalence classes) of a partition π ∈ P∞ is denoted by #π. By definition an EFC
process (Π(t), t ⩾ 0) satisfies the following conditions :

(i) for any time t ⩾ 0, the random partition Π(t) is exchangeable, i.e. its law is
invariant by the action of permutations with finite support;

(ii) it evolves in time by merging of blocks or fragmentation of an individual block
into sub-blocks.
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We consider here only the subclass of simple EFC processes in which as in a
Λ-coalescent, there is no simultaneous multiple mergings, fragmentations occur at
finite rate and fragmentate any blocks into sub-blocks of infinite size (no forma-
tion of singletons). We shall not introduce the whole framework of partition-valued
processes here, for which we refer to Berestycki [Ber04], but focus on the block
counting process.

We briefly explain below the dynamics of the block counting process with the help
of two Poisson point processes. We focus on EFC processes whose initial partitions
have all blocks of infinite size. In particular at all time in the system, there is no
singleton blocks. We refer to [Fou22, Sections 2.1 and 2.2] for details.

Let Λ be a finite measure on (0, 1) and µFrag be a finite (exchangeable) measure
on P∞. We call Λ and µFrag respectively the coalescence measure and the fragmenta-
tion measure. Consider two independent Poisson point processes PPPC and PPPF

respectively on R+ × [0, 1]N and R+ × P∞ × N.
The intensity of PPPC is dt ⊗ BerΛ where BerΛ stands for the law of an infinite

exchangeable sequence (Xi, i ⩾ 1) mixture of i.i.d Bernoulli random variables whose
parameter lim

n → ∞
1
n

∑n
i=1 Xi has for “intensity” the measure x−2Λ(dx).

The intensity of PPPF is dt⊗µFrag(dπ)⊗# where # denotes the counting measure
on N and µFrag is a finite measure on P∞, the so-called fragmentation measure. Let
µ be the image of µFrag by the map π 7→ #π − 1. We call µ the splitting measure.

Coalescence. Upon the arrival of an atom (t, (Xi)i⩾ 1) of PPPC , given #Π(t−)
= n, all blocks whose index j ∈ [n] satisfies Xj = 1 are merged. Given the parameter
x of the Xi’s, the number of blocks that merge at time t has a binomial law with
parameters (n, x). Therefore, for any k ∈ [|2, n|] the jump #Π(t) = #Π(t−)− (k −1)
has rate

(
n
k

)
λn,k where we recall λn,k :=

∫
[0,1] xk(1 − x)n−kx−2Λ(dx).

Fragmentation. Upon the arrival of an atom (t, πf , j) of PPPF , given #Π(t−) =
n, and j ⩽ n, then the jth-block of Π(t−) is fragmented into #πf ∈ N̄ sub-blocks.
Therefore, at time t, #Π(t) = #Π(t−) − 1 + #πf = #Π(t−) + k with k = #πf − 1.
Since there are n blocks at time t−, the total rate at which such a jump occurs is
nµ(k) for any k ∈ N̄.

Lemma 3.4 (Proposition 2.11 in [Fou22]). — If Π(0) has blocks of infinite size,
then the process (#Π(t), t ⩾ 0) is a right-continuous process valued in N̄ and has
the Markov property when lying on N: i.e. setting ζ∞ := inf{t > 0 : #Π(t−) =
∞ or #Π(t) = ∞}, (#Π(t), t < ζ∞) is a continuous-time Markov chain whose
generator is L = Lc + Lf with Lc is given in (3.5) and Lf is acting on any bounded
function g, with a limit at ∞ when µ(∞) > 0, by

(3.13) Lfg(n) :=
∞∑

k=1
nµ(k)(g(n + k) − g(n)) + nµ(∞)(g(∞) − g(n)).

Any EFC process (Π(t), t ⩾ 0) is defined on the whole half-line of time, so that the
block-counting process is well-defined past explosion (if explosion occurs). Sufficient
conditions for the process (Nt, t ⩾ 0) := (#Π(t), t ⩾ 0) to have boundary ∞
absorbing or not have been found in [Fou22]. More precisely, the process can have
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the boundary ∞ exit, entrance or even regular for certain heavy-tailed splitting
measures. We mention that when the block counting process (Nt, t ⩾ 0) comes
down from infinity (i.e. when ∞ is an entrance or a regular boundary), then since
by assumption Λ({1}) = 0, the process leaves the boundary ∞ instantaneously,
see [Fou22, Lemma 2.5].

Lemma 3.5 ([Fou22, Corollary 1.2-(2)]). — Let λ > 0. If the coalescence measure
has no Kingman part, i.e. Λ({0}) = 0, and µ(∞) = λ, then the process (Nt, t ⩾ 0) :=
(#Π(t), t ⩾ 0) has boundary ∞ as an exit, that is to say, for any t ⩾ ζ∞, Nt = ∞
a.s. where ζ∞ := inf{t > 0 : Nt = ∞}.

Remark 3.6. — When Λ({0}) = ck > 0, the process (Nt, t ⩾ 0) comes down
from infinity (i.e leaves ∞) if and only if 2λ

ck
< 1, see Kyprianou et al. [KPRS17,

Theorem 1.1] and [Fou22, Corollary 1.2-(1)]. Lemma 3.5 is a key lemma in our
construction of an extension getting out from 1 of the minimal Λ-WF process with
selection.

The next lemmas provide sufficient condition for ∞ to be an entrance, an exit or
a regular boundary. They will be used in Section 7 in a “dual” way for the Λ-WF
processes with selection. Recall that µ̄ denotes the tail of the splitting measure µ,
for any n ∈ N, µ̄(n) = µ({n, n + 1, · · · }).

Lemma 3.7 ([FZ22, Theorem 3.4]). — Assume µ(∞) = 0. If
∞∑

n=2

n

Φ(n) µ̄(n) < ∞,

then ∞ is inaccessible for the process (Nt, t ⩾ 0). Moreover, in this case,
(i) if ∑∞

n=2
1

Φ(n) < ∞ then ∞ is an entrance boundary,
(ii) if ∑∞

n=2
1

Φ(n) = ∞ then ∞ is a natural boundary.

The next lemma provides a sufficient condition for ∞ to be an exit boundary when
µ(∞) = 0. We define ℓ : n 7→ ∑n

k=1 µ̄(k) and set the following condition on ℓ.

Condition H. — There exists an eventually non-decreasing positive function g
on R+ such that

∫∞ 1
xg(x)dx < ∞ and

ℓ(n) ⩾ g(log n) log n for large n.

When Condition H is in force, [FZ22, Theorem 3.1] provides a sufficient condition
for boundary ∞ to be an exit. For the sake of simplicity, we shall work with the
following direct corollary of this theorem:

Lemma 3.8 ([FZ22, Theorem 3.1, case ρ = 0]). — Assume Condition H holds
and µ(∞) = 0. If

lim
n → ∞

Φ(n)
nℓ(n) = 0,

then the process (Nt, t ⩾ 0) has ∞ as an exit boundary.

We now give the classification of the boundary ∞ in some regularly varying cases
found in [FZ22].
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Lemma 3.9 ([FZ22, Theorem 3.7]). — Assume that Φ(n) ∼
n → ∞

dn1+β with d > 0
and β ∈ (0, 1) and µ(n) ∼

n → ∞
b

nα+1 with b > 0 and α ∈ (0, ∞). Then
(i) if α + β < 1, then ∞ is an exit boundary,
(ii) if α + β > 1, then ∞ is an entrance boundary,
(iii) if α + β = 1 and further,

• if b/d > α(1 − α), then ∞ is an exit boundary,

• if α sin(πα)
π

< b/d < α(1 − α), then ∞ is a regular boundary,

• if b/d < α sin(πα)
π

, then ∞ is an entrance boundary.

Several coupling procedures have been designed in [Fou22] in order to study the
process (Nt, t ⩾ 0) := (#Π(t), t ⩾ 0) started from ∞. At several places later, we will
use a monotone coupling of the block counting process (#Π(t), t ⩾ 0) in the initial
values.

Let n ∈ N̄ and consider the process (Π(n)(t), t ⩾ 0) which starts from the n first
blocks of Π(0), i.e. Π(n)(0) = {Π1(0), . . . , Πn(0)}, and evolves along the same Poisson
Point Processes PPPC and PPPF as (Π(t), t ⩾ 0). We refer to [Fou22, Lemma 3.3 and
Lemma 3.4] for details on the construction. The process (Π(n)(t), t ⩾ 0) follows the
fragmentations and coagulations in the system restricted to the integers belonging to
∪n

i=1Πi(0). In the sequel, we write (N (n)
t , t ⩾ 0) := (#Π(n)(t), t ⩾ 0) for the process

counting the blocks of (Π(n)(t), t ⩾ 0). Notice that by definition, (Π(∞)(t), t ⩾ 0)
coincides with (Π(t), t ⩾ 0) and thus (N (∞)

t , t ⩾ 0) = (Nt, t ⩾ 0).
The process (N (n)

t , t ⩾ 0) is at the core of our study, and from now on we simply
call it “block counting process”.

Lemma 3.10 (Monotonicity in the initial values,[Fou22, Lemma 3.4]). — For any
n ⩾ 1,

N
(n)
t ⩽ N

(n+1)
t and N

(n)
t −→

n → ∞
N

(∞)
t for all t ⩾ 0 a.s.

Moreover, the process (N (n)
t , tζ∞) is Markovian and has the same law as (Nt, t < ζ∞)

when N0 = n < ∞.

The next lemma ensures that one can approach from below the process (N (n)
t , t ⩾

0) by a non-decreasing sequence of non-explosive processes. For any m ∈ N, set
µ̄(m) := µ({m, . . . , ∞}).

Lemma 3.11 ([Fou22, Lemma 3.8]). — For any n ∈ N̄, there exists a non-
decreasing sequence of processes (N (n)

m (t), t ⩾ 0)m⩾ 1 started from n ∈ N̄ such
that

(i) for any m ⩾ 1, (N (n)
m (t), t ⩾ 0) has generator, the operator Lm acting on any

function g : N → R+ as follows

(3.14) Lmg(ℓ) := Lcg(ℓ) + ℓ
m∑

k=1
µm(k)(g(ℓ + k) − g(ℓ)), for all ℓ ∈ N,

where µm(k) := µ(k) if k ⩽ m − 1 and µm(m) := µ̄(m);
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(ii) for any m ∈ N, the process (N (n)
m (t), t ⩾ 0) does not explode;

(iii) almost surely for any n ∈ N̄, m ∈ N and all t ⩾ 0, N (n)
m (t) ⩽ N (n+1)

m (t), and

lim
m → ∞

N (n)
m (t) = N

(n)
t a.s.

4. Proofs of Theorems 2.1, 2.3, 2.4

In this section we focus on the study of the minimal Λ-WF process with selection,
(Xmin

t , t ⩾ 0). Lemma 3.1 ensures its existence and uniqueness without assumption
on the splitting measure µ. We establish Theorem 2.1 where a first duality rela-
tionship (2.1) between (Xmin

t , t ⩾ 0) and the block counting process (Nt, t ⩾ 0) is
displayed. This will generalize the duality relationships (3.7) and (3.12) known for
Λ-coalescents and branching processes. To prove Theorem 2.1, we shall need the
monotone coupling (N (n)

t , t ⩾ 0, n ∈ N̄) and (N (n)
m (t), t ⩾ 0, n ∈ N̄) described in

Lemmas 3.10 and 3.11. Once Theorem 2.1 established, consequences (Theorems 2.3
and 2.4) for the block counting process (Nt, t ⩾ 0) are deduced.

Recall gn(x) = gx(n) = xn for all x ∈ [0, 1] and n ∈ N. We work with the convention

(4.1) lim
n → ∞

xn = 1{x=1}, and lim
x → 1−

xn = 1{n < ∞}.

4.1. Proof of Theorem 2.1

Proof. — Let Λ be a coalescence measure such that Λ({1}) = 0 and µ be a splitting
measure with possibly a mass at ∞. For any x ∈ [0, 1], recall that (Xmin

t (x), t ⩾ 0)
is the minimal process which is absorbed at its boundary once it has reached it.

The following is the scheme of the proof of Theorem 2.1.
(1) We first establish the duality (2.1) in the simpler case where µ has a second

moment.
(2) We then construct a sequence of processes (X(m)

t , t ⩾ 0) solution to (3.1) with
f replaced by a certain smooth generating functions fm, that are approximat-
ing f . We then show that (X(m)

t , t ⩾ 0, m ⩾ 1) converges pointwise almost
surely towards a certain process (X(∞)

t , t ⩾ 0) which satisfies the targeted
duality relationship (2.1). See Lemma 4.3.

(3) We finally identify the process (X(∞)
t , t ⩾ 0) with the process (Xmin

t , t ⩾ 0)
which is absorbed at the boundaries after reaching it. See Lemma 4.4.

Our starting point is the following duality lemma which holds for Λ-WF processes
with selection whose function f is smooth.

Lemma 4.1. — Assume µ(∞) = 0 and f ′′(1) = ∑∞
n=2 n(n − 1)µ(n) < ∞. Denote

by (Xt(x), t ⩾ 0) the solution to (3.1). Then for any n ∈ N, and x ∈ [0, 1],

(4.2) E [Xt(x)n] = E
[
xN

(n)
t

]
.
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Remark 4.2. — This result has been observed by González et al. [GCPP21,
Lemma 2] in their study of branching processes with interaction. The moment
duality (4.2) also holds true when Λ gives mass at 0. We check here that conditions
for Ethier–Kurtz’s theorem to hold are satisfied.

Proof. — Recall A in (3.2) and Lc in (3.5) the generators respectively of the Λ-WF
process with no selection and the block counting process of the Λ-coalescent. For
any x ∈ [0, 1] and n ∈ N, set g(x, n) = gx(n) = gn(x) := xn. The following identity
is well-known, see e.g. [GCPP21, Lemma 2],

Agn(x) = Lcgx(n).(4.3)

Recall As in (3.3). By assumption since µ(∞) = 0, one has for all x ∈ [0, 1], Asg(x) =
Ag(x) + µ(N)x(f(x) − 1)g′

n(x) and for all x ∈ [0, 1] and all n ∈ N

µ(N)x(f(x) − 1)g′
n(x) = n

∞∑
k=1

(
gx(n + k) − gx(n)

)
µ(k).

This provides the duality at the level of the generators

(4.4) h(x, n) := Asgn(x) = Lgx(n)

=
n∑

k=2

(
xn−k+1 − xn

)(n

k

)
λn,k +

∞∑
k=1

(
xn+k − xn

)
nµ(k).

We now establish that the duality holds at the level of the semigroups. The process
(N (n)

t , t ⩾ 0) stays below a pure branching process (Zt, t ⩾ 0) with offspring measure
µ. By assumption µ admits a second moment, this entails in particular that for
any time T > 0, E(Z2

T ) < ∞, see e.g. [AN04, Chapter 3, Corollary 1 p. 111].
In particular, (Zt, t ⩾ 0) does not explode which ensures that (N (n)

t , t ⩾ 0) does not
explode either. By Dynkin’s formula for continuous-time Markov chains, since gx is
bounded and the process does not explode, we see that(

g
(
x, N

(n)
t

)
−
∫ t

0
h
(
x, N (n)

s

)
ds, t ⩾ 0

)
is a martingale. Since µ admits in particular a finite first moment, then the drift
term x 7→ x(f(x) − 1) is Lipschitz on [0, 1] and as noticed in Remark 3.2, it ensures
that there is only one solution to the equation (3.1) and that 1 is absorbing for X
whenever it is reached. By applying Itô’s formula to the process (Xt(x), t ⩾ 0), we
get that (

g(Xt(x), n) −
∫ t

0
h(Xs(x), n)ds, t ⩾ 0

)
is a local martingale. Since gn is bounded and s 7→ h(Xs(x), n) is bounded over finite
time interval, the latter is a true martingale.

We now apply results of Ethier and Kurtz [EK86, Theorem 4.4.11, p. 192]. Assume
that (Xt(x), t ⩾ 0) and (N (n)

t , t ⩾ 0) are independent. Provided that the integrability
assumption (4.50) of [EK86, Theorem 4.4.11] is verified, Ethier and Kurtz’s theorem
(with in their notation α = β = 0) states that for all x ∈ [0, 1], n ∈ N,E[xN

(n)
t ]

= E[Xt(x)n]. We check now assumption (4.50). Let T > 0, clearly sups,t⩽T |g(Xs, Nt)|
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⩽ 1 and it remains to see that the random variable sups,t⩽T |h(Xs, Nt)| is integrable.
Recall the expression of h(x, n) in (4.4), one has for any x ∈ [0, 1] and n ∈ N

|h(x, n)| ⩽
n∑

k=2

(
n

k

)
λn,k + nµ(N).

Recall the form of the λn,k’s in (3.6). Simple binomial calculations provide that
n∑

k=2

(
n

k

)
λn,k =

∫ 1

0

(
1 − (1 − z)n − nz(1 − z)n−1

)
z−2Λ(dz).

Setting h(z) = 1 − (1 − z)n − nz(1 − z)n−1, one checks h′(u) = n(n − 1)u(1 − u)n−2

for all u ∈ [0, 1] and thus
n∑

k=2

(
n

k

)
λn,k =

∫ 1

0
z−2Λ(dz)

∫ z

0
n(n − 1)u(1 − u)n−2du

⩽ n(n − 1)
∫ 1

0
z−2Λ(dz)

∫ z

0
udu

= Λ([0, 1])
2 n(n − 1).

Therefore, for all x ∈ [0, 1] and all n ∈ N, |h(x, n)| ⩽ Λ([0,1])
2 n(n − 1) + µ(N)n and

since Nt ⩽ Zt ⩽ ZT for any t ⩽ T , one has almost surely

sup
s,t⩽T

|h(Xs, Nt)| ⩽
Λ([0, 1])

2 Z2
T + µ(N)ZT := ΓT .

The random variable ΓT is integrable since µ admits a second moment. □

We now go to step (2). Let µ be a finite measure on N̄ and f be its generating
function (possibly defective). For any m ∈ N, recall µ̄(m) = µ({m, . . . , ∞}) and µm

defined in Lemma 3.11. For any m ∈ N, set for any x ∈ [0, 1],

(4.5) fm(x) := 1
µm(N)

∞∑
k=1

xkµm(k) = 1
µ(N̄)

(
m−1∑
k=1

xkµ(k) + xmµ̄(m)
)

.

Lemma 4.3. — Let (X(m)
t (x), t ⩾ 0) be the unique strong solution to the SDE

(4.6) X
(m)
t (x) = x +

∫ t

0

∫ 1

0

∫ 1

0
z

1{
v ⩽X

(m)
s− (x)

} − X
(m)
s− (x)

M̄(ds, dv, dz)

− µm(N)
∫ t

0
X

(m)
s− (x)

(
1 − fm

(
X

(m)
s− (x)

) )
ds.

Then, for any m ⩾ 1,

(4.7) X
(m+1)
t ⩽ X

(m)
t for all t ⩾ 0 almost surely

and the limiting process (X(∞)
t , t ⩾ 0) defined by

X
(∞)
t := lim

m → ∞
↓ X

(m)
t for all t ⩾ 0,
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satisfies the duality relationship: for all x ∈ [0, 1), n ∈ N̄,

(4.8) E
[
X

(∞)
t (x)n

]
= E

[
xN

(n)
t

]
.

Proof. — Note that for any m ⩾ 1, f ′
m(1−) < ∞, therefore the SDE (4.6) admits

a unique strong solution. Moreover, fm(x) − fm+1(x) = µ̄(m + 1)(xm − xm+1) ⩾ 0 for
any x ∈ [0, 1]. By Theorem 3.3, we see that (4.7) holds true and thus (X(∞)

t , t ⩾ 0)
is well defined.

Recall Lemma 3.11 and consider a monotone sequence of processes (N (n)
m (t), t ⩾ 0)

with generator Lm defined in (3.14), with splitting measure µm such that µm(k) =
µ(k) if k ⩽ m−1 and µm(m) = µ̄(m). Since µm admits a second moment, the duality
relationship (4.2) holds and we have

(4.9) E
[
xN

(n)
m (t)

]
= E

[(
X

(m)
t (x)

)n]
.

By Lemma 3.11, N (n)
m (t) converges almost surely towards N

(n)
t as m goes to ∞.

Hence, the identity (4.8) follows readily by taking limit on m. □

Lemma 4.4. — The limit process (X(∞)
t , t ⩾ 0) has the same law as (Xmin

t , t ⩾ 0)
the minimal solution of (3.1).

Proof. — We first clarify the behavior of the process (X(∞)
t (x), t ⩾ 0) when it

reaches one of its boundaries 1 or 0. For the boundary 1, since µm has a finite
mean, [Fou22, Corollary 1.4 and Remark 1.5] apply and entail that the non-explosive
processes (N (∞)

m (t), t ⩾ 0) comes down from infinity. As observed in Section 3.1, this
is equivalent to the fact that the dual process (X(m)

t , t ⩾ 0) is getting absorbed at 1 in
finite time with positive probability. Note that by (4.7), τ

(m)
1 := inf{t ⩾ 0 : X

(m)
t = 1}

verifies τ
(m+1)
1 ⩾ τ

(m)
1 and therefore

τ
(∞)
1 := inf

{
t ⩾ 0 : X

(∞)
t = 1

}
⩾ lim

m → ∞
↑ τ

(m)
1 .

Hence, since 1 is absorbing for (X(m)
t , t ⩾ 0) and τ

(∞)
1 ⩾ τ

(m)
1 a.s. If τ

(∞)
1 < ∞ then

X
(∞)
t+τ

(∞)
1

= lim
m → ∞

X
(m)
t+τ

(∞)
1

= 1 for any t ⩾ 0

a.s. On the event {τ∞
1 < ∞}, (X(∞)

t , t ⩾ 0) is absorbed at its boundary 1 in finite
time, hence for any t ⩾ 0, P(X(∞)

t = 1) = P(τ (∞)
1 ⩽ t) and

P
(
τ

(m)
1 ⩽ t

)
= P

(
X

(m)
t = 1

)
−→

m → ∞
P(X(∞)

t = 1) = P(τ (∞)
1 ⩽ t),

and thus τ
(∞)
1 = lim

m → ∞
↑ τ

(m)
1 a.s.

For the boundary 0, by taking x = 0 in the duality relationship (4.8), we see that
X

(∞)
t (0) = 0 a.s. Hence, 0 is necessarily absorbing.
We establish now that the process (X(∞)

t , t > 0) stopped at its first hitting time of
the boundaries has the same law as the minimal process. This follows from uniform
convergence of the generators. Recall As the generator of the minimal solution
(Xmin

t , t ⩾ 0) to (3.1). For any g ∈ C2
c ([0, 1]), Asg(x) = Ag(x)+µ(N̄)x(f(x)−1)g′(x).
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Let As,(m) be the generator of (X(m)
t , t ⩾ 0). Since the jump parts of As and As,(m)

are the same, and µ(N̄) = µm(N̄) for any m, we have that∥∥∥As,(m)g − Asg
∥∥∥

∞
= µ(N̄) sup

x ∈ (0,1)
|(fm(x) − f(x))xg′(x)| .(4.10)

For any x ∈ [0, 1],

0 ⩽ fm(x) − f(x) = 1
µ(N̄)

∑
k ⩾m

(
xm − xk

)
µ(k)

⩽
1

µ(N̄)
xm

∑
j ⩾ 0

(1 − xj)µ(j + m) ⩽ µ̄(m)
µ(N̄)

xm ⩽ xm.

Hence we see from (4.10) that ∥As,(m)g − Asg∥∞ ⩽ supx∈(0,1) |xm+1g′(x)|. Since by
assumption g′ has a compact support on (0, 1) and for any x ∈ (0, 1), xm+1 −→

m → ∞
0,

one has
(4.11) ∥As,(m)g − Asg∥∞ −→

m → ∞
0.

Moreover for large enough m ⩾ 1, ||As,(m)g∥∞ ⩽ 1 + ∥Asg∥∞ and since X(m)
s −→

k → ∞
X(∞)

s a.s. for any s ⩾ 0, As,(m)g(X(m)
s ) −→

m → ∞
Asg(X(∞)

s ) a.s. for any s ⩾ 0. Let
0 ⩽ t1 ⩽ t2 ⩽ . . . ⩽ tn ⩽ s < t and h1, . . . , hn be some continuous functions defined
on [0, 1]. By Lemma 3.1 applied to the process (X(m)

t , t ⩾ 0), for any g ∈ C2
c ([0, 1]),

the process (
g
(
X

(m)
t∧τ (m)

)
−
∫ t

0
As,(m)g

(
X

(m)
s ∧ τ (m)

)
ds, t ⩾ 0

)
is a martingale. By applying Lebesgue’s theorem, we have that

Ex

[(
g
(
X

(∞)
t ∧ τ (∞)

)
− g

(
X

(∞)
s∧τ (∞)

)
−
∫ t

s
Asg

(
X

(∞)
r∧τ (∞)

)
dr
) n∏

i=1
hi

(
X

(∞)
ti ∧ τ (∞)

)]

= lim
m → ∞

Ex

[(
g
(
X

(m)
t∧τ (m)

)
− g

(
X

(m)
s∧τ (m)

)
−
∫ t

s
As,(m)g

(
X

(m)
r∧τ (m)

)
dr
) n∏

i=1
hi

(
X

(m)
ti∧τ (m)

)]
= 0.

This shows that the limiting process (X(∞)
t , t ⩾ 0) stopped at time τ (∞) solves the

martingale problem (MP). Lemma 3.1 ensures that there is a unique solution to
(MP), therefore (X(∞)

t , t < τ (∞)) has the same law as the minimal process. □

Theorem 2.1 is finally obtained by the combination of Lemma 4.3 and Lemma 4.4.
Indeed, the duality relationship (2.1)

E
[(

Xmin
t (x)

)n]
= E

[
xN

(n)
t

]
for any x ∈ (0, 1) and n ∈ N,

is a direct consequence of (4.8), By Lemma 3.10, N
(n)
t converges almost surely

towards N
(∞)
t , thus by dominated convergence theorem

(4.12) P
(
Xmin

t (x) = 1
)

= lim
n → ∞

E
[(

Xmin
t (x)

)n]
= lim

n → ∞
E
(

xN
(n)
t

)
= E

[
xN

(∞)
t

]
.

Proof of Theorem 2.1 is achieved. □
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4.2. Proofs of Theorems 2.3 and 2.4

These theorems state fundamental properties of the block counting process (Nt,
t ⩾ 0) := (#Π(t), t ⩾ 0) of any simple EFC process (Π(t), t ⩾ 0). We highlight
that apart in the proof of Corollary 2.20, we will not make use of them in the next
sections. We are going to show that (Nt, t ⩾ 0) is a Feller Markov process with state
space N̄ and that if it comes down from infinity then it is positive recurrent. The
main tool will be the duality relationship (2.1).

4.2.1. Proof of Theorem 2.3

Proof. — Let (Π(n)(t), t ⩾ 0) be the process following the coalescences and frag-
mentations involving only the first n initial blocks of (Π(t), t ⩾ 0), see Section 3.2
and [Fou22, Lemma 3.3 and Lemma 3.4]. In particular, Π(n)(0) := (Π1(0), . . . , Πn(0)).
When n = #Π(0), both processes (N (n)

t , t ⩾ 0) := (#Π(n)(t), t ⩾ 0) and (#Π(t), t ⩾
0) coincide. Without loss of generality, we enlarge the probability space on which
(Π(t), t ⩾ 0) is defined by assuming that the unique solution to (3.1), (Xmin

t (x), t ⩾ 0),
absorbed at the boundaries, is also defined on it and is independent of (Π(t), t ⩾ 0).
The Markov property of (Xmin

t (x), t ⩾ 0) ensures that for any s, t ⩾ 0, conditionally
given Xmin

s (x), the random variable Xmin
s+t (x) has the same law as X̃min

t (Xmin
s (x)),

where the process (X̃min
t , t ⩾ 0) is an independent copy of (Xmin

t , t ⩾ 0) and is inde-
pendent of Xmin

s (x). Setting n = #Π(0) and applying Theorem 2.1 and the duality
relationship (2.1), we get for any x ∈ [0, 1] and any s, t ⩾ 0,

E
[
x#Π(n)(s+t)

]
= E

[
Xmin

s+t (x)n
]

= E
[
E
[
X̃min

t

(
Xmin

s (x)
)n∣∣∣Xmin

s (x)
]]

= E
[
Xmin

s (x)#Π(n)(t)
]

= E
[
E
[
Xmin

s (x)#Π(n)(t)
∣∣∣#Π(n)(t)

]]
= E

[
E
[
x#Π̃(#Π(n)(t))(s)

∣∣∣∣∣#Π(n)(t)
]]

= E
[
x#Π̃(#Π(n)(t))(s)

]

where in the two last equalities, for any m ∈ N, the random variable #Π̃(m)(t) stands
for an independent copy of #Π(m)(t). We see finally that #Π(t + s) has the same
distribution as #Π̃(#Π(t))(s). The process (#Π(t), t ⩾ 0) is therefore Markovian.

We now establish the Feller property. Recall N̄ the one-point compactification of N
and C(N̄) the space of continuous functions defined on N̄. Rewriting the limit (4.12)
in terms of the processes (#Π(n)(t), t ⩾ 0) and (#Π(t), t ⩾ 0), we see that if
#Π(0) = ∞ a.s. then

(4.13) lim
n → ∞

En

(
x#Π(t)

)
= lim

n → ∞
E
(
x#Π(n)(t)

)
= P(Xmin

t (x) = 1) = E
[
x#Π(t)

]
.
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Recall
gx(n) = xn and set x∞ := lim

n → ∞
xn = 1{x=1}.

We have just established in (4.13) that n 7→ En(gx(#Π(t))) is continuous at ∞.
The subalgebra A of C(N̄) generated by the linear combinations of the maps {n 7→
gx(n), x ∈ [0, 1]}, is separating C(N̄). Moreover, for any n ∈ N̄, there is a function g
in A such that g(n) ̸= 0. By the Stone–Weierstrass theorem, A is dense in C(N̄) for
the uniform norm, since n 7→ En(g(#Π(t))) is continuous for any g ∈ A, this holds
true for any g ∈ C(N̄) and the semigroup of (#Π(t), t ⩾ 0) maps C(N̄) to C(N̄). It
remains to verify the continuity of the semigroup at 0. This is a direct application
of the duality relationship (4.1), since Xmin is right-continuous. Finally, the process
(#Π(t), t ⩾ 0) is Feller. □

4.2.2. Proof of Theorem 2.4

Proof. — Our objective is to show that when the block counting process comes
down from infinity, it is positive recurrent. We shall use the duality relationship (2.1).
Denote by (Yt(x), t ⩾ 0) the neutral Λ-Wright–Fisher process, that is to say, the
unique solution to (1.1) with f(x) = 1 for all x ∈ [0, 1]. As recalled in the introduc-
tion, when the Λ-coalescent process comes down, the process (Yt(x), t ⩾ 0) has a
positive probability to be absorbed at 0. Moreover, for any m ⩾ 1, x(fm(x) − 1) ⩽ 0,
and by applying the comparison theorem between (X(m)

t (x), t ⩾ 0) and (Yt(x), t ⩾ 0),
we get X

(m)
t (x) ⩽ Yt(x) for all t ⩾ 0 almost surely. Hence, letting m converge to

∞, we see that Xmin
t (x) ⩽ Yt(x) for all t ⩾ 0 almost surely, which ensures that the

process (Xmin
t (x), t ⩾ 0) hits 0 with positive probability. Moreover, according to The-

orem 2.1-i), since (N (∞)
t , t ⩾ 0) comes down from infinity, the process (Xmin

t (x), t ⩾ 0)
hits 1 with positive probability. Finally, since process (Xmin

t , t ⩾ 0) is a positive su-
permartingale, it converges almost surely as t goes to ∞ towards one of its absorbing
boundaries 0 or 1. On the event {τ1 < τ0}, lim

t → ∞
Xmin

t = 1 a.s and similarly on the
event {τ0 < τ1}, lim

t → ∞
Xmin

t = 0 a.s. Thus, by the duality relationship (2.1),

lim
t → ∞

E
[
xN

(n)
t

]
= Px(τ1 < τ0). □

5. Proof of Theorem 2.7: construction of the extended
process (Xr

t , t ⩾ 0)

The assumption Λ({0}) = 0 will play an important role in this section. We consider
from now on such a coalescence measure Λ (also with no mass at 1) and a splitting
measure µ without mass at ∞. The only process solution to (3.1) whose existence is
clear is the minimal process. It will be therefore necessary to construct the process
Xr whose boundary 1 is not necessarily absorbing. We stress that our study focuses
on extensions of the minimal process at the barrier 1. The boundary 0 will be always
absorbing. We will construct (Xr

t , t ⩾ 0) as limit of certain processes (Xλ
t , t ⩾ 0, λ
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> 0) whose boundary 1 is an entrance. Recall that we wish to establish the second
duality relationship (2.2): for any x ∈ (0, 1) and n ∈ N,

E [Xr
t (x)n] = E

[
xN

min,(n)
t

]
.

Once this identity obtained, the correspondences given in Table 2.1 and 2.2 will
follow. The proof of Theorem 2.7 is deferred. We explain first the strategy and
establish several lemmas.

- Step 1: Let µ be a splitting measure with no mass at ∞ and f its associated
probability generating function. We consider a family of Λ-Wright–Fisher
processes with selection, (Xλ

t , t ⩾ 0) indexed by λ > 0. Each has its selection
mechanism driven by the defective function fλ associated to µλ = µ + λδ∞.
We then establish a duality relationship between this process (Xλ

t , t ⩾ 0)
and the block counting process (Nλ

t , t ⩾ 0) of a simple EFC process whose
splitting measure is µλ. We show that under the assumption Λ({0}) = 0,
(Xλ

t , t ⩾ 0) has boundary 1 entrance. This is the aim of Lemma 5.1.
- Step 2: We study the dual processes (Nλ

t , t ⩾ 0) as λ goes to 0 and establish
that they converge as λ goes to 0 towards (Nmin

t , t ⩾ 0), the block counting
process with splitting measure µ and coalescence measure Λ that is stopped
after it has reached the boundary ∞. This is the aim of Lemma 5.3.

- Step 3: The convergence of the processes (Nλ
t , t ⩾ 0) as λ goes to 0 shown

in Step 2 entails the convergence of processes (Xλ
t , t ⩾ 0) considered in

Step 1. We study the limit process called (Xr
t , t ⩾ 0), establish the duality

relationship (2.2) and verify that this is an extension of the minimal Λ-WF
process with selection driven by f . This is the aim of Lemma 5.4.

- Step 4: We study the possible behaviors at the boundary 1 of the extended
process (Xr

t , t ⩾ 0) from the duality (2.2). We first establish from the duality
a correspondence between boundaries that are non-absorbing and those acces-
sible in Lemma 5.7. The correspondences (i) to (iv) stated in Theorem 2.7 are
then established. Recall that when the process started from 1 is degenerate
at 1, and further 1 is inaccessible, we say that the boundary 1 is natural.
In the case that 1 is accessible, the boundary is an exit. When the process
started from 1 leaves 1 and never returns to it again almost surely, 1 is an
entrance. Finally, when the process started from 1, leaves it almost surely
and returns to it with positive probability (i.e. 1 is accessible), the boundary
is regular non-absorbing.

Step 1. — Let Λ be a coalescence measure with no atom at 0 nor 1. Let µ be a
finite measure on N and denote by f its probability generating function. Fix λ > 0.
We denote by (Nλ,(n)

t , t ⩾ 0) the block counting process started from n ∈ N̄ with
coalescence measure Λ and splitting measure µλ defined such that µλ(k) = µ(k) for
any k ∈ N and µλ(∞) = λ. Let fλ be the defective probability generating function
associated to µλ. For any x ∈ [0, 1],

fλ(x) =
∞∑

k=1
xk µ(k)

λ + µ(N) = µ(N)
λ + µ(N)f(x) and fλ(1) − 1 = − λ

µ(N) + λ
< 0.
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Recall the SDE (3.1). Let (Xλ
t , t ⩾ 0) be the minimal process solution to the

equation

(5.1) Xλ
t (x) = x +

∫ t

0

∫ 1

0

∫ 1

0
z
(
1{v⩽Xλ

s−(x)} − Xλ
s−(x)

)
M̄(ds, dv, dz)

− µλ(N̄)
∫ t

0
Xλ

s (x)
(
1 − fλ

(
Xλ

s (x)
))

ds.

Lemma 5.1. — The process (Xλ
t (x), t ⩾ 0) verifies the duality relationship

(5.2) E
[
Xλ

t (x)n
]

= E
[
xN

λ,(n)
t

]
,

for any n ∈ N̄, any x ∈ [0, 1) and t ⩾ 0. Moreover, (Xλ
t , t ⩾ 0) has 1 as an entrance

boundary, and the entrance law at 1 is characterized via its moments by

(5.3) E
[
Xλ

t (1)n
]

:= lim
x → 1−

E
[
xN

λ,(n)
t

]
= P

(
N

λ,(n)
t < ∞

)
, for any t ⩾ 0 and any n ∈ N.

The semigroup of (Xλ
t (x), t ⩾ 0, x ∈ [0, 1]) satisfying (5.2) and (5.3) is Feller.

Remark 5.2. — When the measure µ is a Dirac mass at ∞, µ = λδ∞, the drift term
in the stochastic equation (5.1) reduces to −λ

∫ t
0 Xλ

s (x)ds. The process (Xλ
t (x), t ⩾ 0)

corresponds to a Λ-Wright–Fisher process with no selection but unilateral mutation
from type a to A at rate λ. A side consequence of Lemma 5.1 is that the boundary
1 is an entrance (thus inaccessible) for the Λ-Wright–Fisher process with unilateral
mutation when Λ({0}) = Λ({1}) = 0.

Proof. — Let (Xλ,min
t , t ⩾ 0) be the process solution to (5.1) that is stopped when

reaching boundary 1. Namely(
Xλ,min

t , t ⩾ 0
)

:=
(
Xλ

t ∧ τ1 , t ⩾ 0
)

.

By Theorem 2.1, the process satisfies the identity E[Xλ,min
t (x)n] = E[xN

λ,(n)
t ] for any

x ∈ [0, 1) and n ∈ N. Recall that the key Lemma 3.5 ensures that for any λ > 0, the
process (Nλ

t , t ⩾ 0) with splitting measure µλ has ∞ as an exit boundary (i.e. ∞ is
accessible absorbing). Moreover, by Lemma 3.10, N

λ,(∞)
t = lim

n → ∞
N

(n)
t a.s. Therefore

E
[
xN

λ,(∞)
t

]
= P

(
Xλ,min

t (x) = 1
)

= 0

and 1 is inaccessible for(
Xλ,min

t , t ⩾ 0
)

and for
(
Xλ

t , t ⩾ 0
)

.

Thus, one has E[Xλ
t (x)n] = E[xN

λ,(n)
t ] and letting x go towards 1, we see that

lim
x → 1−

E
[
Xλ

t (x)n
]

= P
(
N

λ,(n)
t < ∞

)
∈ (0, 1).

This characterizes an entrance law at boundary 1 for the process (Xλ
t , t ⩾ 0). We

establish the Feller property of the extended semigroup of (Xλ
t , t ⩾ 0) on [0, 1]. Recall
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gn(x) = gx(n) = xn. Plainly by the duality relationship (5.2), if one denotes by (P λ
t )

the semigroup of (Xλ
t , t ⩾ 0), we see that

P λ
t gn : x 7→ E

[
Xλ

t (x)n
]

= E
[
xN

λ,(n)
t

]
is continuous on [0, 1). Thus, for any polynomial function h on [0, 1], x 7→ E[h(Xλ

t (x))]
is continuous on [0, 1]. By the Weierstrass theorem, if g ∈ C([0, 1]), one can find a
sequence of polynomial functions (hn) such that hn −→

n → ∞
g uniformly. The following

routine calculation establishes the continuity of P λ
t g: for any x, y ∈ [0, 1],∣∣∣P λ

t g(x) − P λ
t g(y)

∣∣∣
=
∣∣∣P λ

t g(x) − Pthn(x) + P λ
t hn(x) − P λ

t hn(y) + P λ
t hn(y) − P λ

t g(y)
∣∣∣

⩽ 2∥g − hn∥∞ +
∣∣∣P λ

t hn(x) − P λ
t hn(y)

∣∣∣ .
Since P λ

t hn is continuous on [0, 1], if one let x tend to y ∈ [0, 1] and then n to ∞,
we get

lim sup
x → y

∣∣∣P λ
t g(x) − P λ

t g(y)
∣∣∣ ⩽ ∥g − hn∥∞ −→

n → ∞
0,

which allows us to conclude that P λ
t maps C([0, 1]) into C([0, 1]). We now check

the strong continuity at 0 of the semigroup P λ
t . Since it is Feller, it is sufficient to

check the pointwise continuity, and by the Weierstrass theorem, we can focus on
the functions gn : x 7→ xn, namely we need to show E[Xr

t (x)n] −→
t → 0+

xn. The latter
follows readily from the duality (5.2) and the right-continuity of (Nλ

t , t ⩾ 0). □

Step 2. — We now study the dual process (Nλ
t , t ⩾ 0). Recall that by assumption

Λ({0}) = 0. The key Lemma 3.5 plays again a central role in the proof of the following
lemma. Recall that (Nmin,(n)

t , t ⩾ 0) denotes the block counting process started from
n ∈ N and absorbed at ∞ whenever it reaches it.

Lemma 5.3. — Let (N (n)
t , t ⩾ 0) be a block counting process with coalescence

measure Λ (with no mass at 0) and splitting measure µ (with no mass at ∞). There
exists on the same probability space, block counting processes (Nλ,(n)

t , t ⩾ 0, λ > 0)
started from n ∈ N with splitting measure µλ := µ + λδ∞ and the same coalescence
measure Λ, such that if λ′ ⩽ λ then

(5.4) N
λ′,(n)
t ⩽ N

λ,(n)
t for all t ⩾ 0 a.s.

Almost surely for any n ∈ N, lim
λ → 0+

↓ N
λ,(n)
t = N

min,(n)
t for all t ⩾ 0 and

ζλ
∞ −→

λ → 0+
ζ∞ a.s. where ζλ

∞ := inf
{
t > 0 : N

λ,(n)
t = ∞

}
and ζ∞ := inf

{
t > 0 : N

(n)
t− = ∞

}
.

Proof. — We work at the level of the partition-valued processes. We are going
to construct a collection of EFC processes (Πλ(t), t ⩾ 0, λ > 0) with coalescence
measure Λ and splitting measures µλ = µ + λδ∞. Let µFrag be an exchangeable
measure on P∞ such that µFrag(π; #πf − 1 = k) = µ(k) for all k ∈ N. Recall the
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dynamics of the process (#Π(t), t ⩾ 0) explained in Section 3.2. Let PPPF and
PPPC be the Poisson point processes governing respectively fragmentations and
coalescences. To incorporate a mass λ at ∞ in the splitting measures, we consider
an additional term of fragmentation along a partition with infinitely many blocks. In
order to do so, let m := (m1, m2, . . .) be a positive sequence such that ∑∞

i=1 mi = 1
and mi > mi+1 > 0 for all i ⩾ 1. Denote by ρm the law of the paint-box partition
whose ranked asymptotic frequencies are given by m and note that #π = ∞, for
ρm-almost every partition π. Consider now PPP1 := ∑

i⩾ 1 δ(t1
i ,πi,j) an independent

Poisson point process, with intensity dt ⊗ ρm ⊗ #, where we recall that # is the
counting measure. Let (PPPλ, λ > 0) be the images of PPP1 by the map t 7→ λt.
They are Poisson point processes with intensity λdt ⊗ ρm ⊗ #, such that if λ ⩾ λ′,
then tλ

1 ⩽ tλ′
1 almost surely where tλ

1 denotes the first atom of time of PPPλ. Let
(Πλ(t), t ⩾ 0) for λ > 0 be the simple EFC processes built from the Poisson point
process PPPλ

F = PPPF + PPPλ and PPPC . For any λ > 0, the fragmentation
measure is µλ

Frag := µFrag + λρm, and thus the splitting measure is µλ such that
µλ(k) = µ(k) for all k ∈ N and µλ(∞) = λρm(π; #π = ∞) = λ. Recall the process
(Πλ,(n)(t), t ⩾ 0) defined in Section 3.2. We set (Nλ,(n)

t , t ⩾ 0) := (#Πλ,(n)(t), t ⩾ 0)
and ζλ

∞ := inf{t > 0 : N
λ,(n)
t− or N

λ,(n)
t = ∞}. By Lemma 3.5, all processes Nλ have

boundary ∞ exit. We see by construction that almost surely for any λ > λ′ > 0 and
any t ⩾ 0,

(5.5) N
λ,(n)
t ⩾ N

λ′,(n)
t ⩾ N

(n)
t and ζλ

∞ ⩽ ζλ′

∞ ⩽ ζ∞.

For any t ⩾ 0, set

N
0,(n)
t := lim

λ → 0+
↓ Nλ

t a.s and ζ0
∞ := inf

{
t > 0 : N

0,(n)
t− = ∞

}
.

By (5.5), almost surely for any λ > 0, ζ0
∞ ⩾ ζλ

∞ a.s. Hence, on the event {ζ0
∞ < ∞},

for any t > 0, t + ζ0
∞ ⩾ t + ζλ

∞ and Lemma 3.5 yields that N
λ,(n)
t+ζ0

∞
= ∞ for all t ⩾ 0

a.s. Therefore

N
0,(n)
t+ζ0

∞
= lim

λ → 0+
N

λ,(n)
t+ζ0

∞
= ∞ a.s.

The process (N0,(n)
t , t ⩾ 0) is thus absorbed at ∞ after its first explosion time ζ0

∞.
By construction, (N0,(n)

t , t < ζ0
∞) has the same dynamics as the block counting

process (N (n)
t , t < ζ∞) whose splitting measure is µ and coalescence measure is Λ.

By the uniqueness of the minimal continuous-time Markov chain with generator L,
(N0,(n)

t , t ⩾ 0) and the stopped process (Nmin,(n)
t , t ⩾ 0) := (N (n)

t∧ζ∞ , t ⩾ 0) have the
same law. On the other hand, (5.5) entails that almost surely for any t ⩾ 0,

(5.6) N
0,(n)
t ⩾ N

(n)
t and ζ0

∞ ⩽ ζ∞.
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Since ζ0
∞ and ζ∞ have the same law, they coincide almost-surely. A similar reasoning

using (5.6) entails that (N0,(n)
t , t ⩾ 0) and (N (n)

t ∧ ζ∞ , t ⩾ 0) are equal almost-surely. □

Step 3. — We study now some extensions of the minimal process, solution to
the SDE (3.1), whose drift term satisfies f(1) = 1. We define our extension Xr by
looking at the limit arising in the processes (Xλ, λ > 0) when the mutation rate λ
gets very low. The duality relationship (2.2) will be shown at the same time as the
convergence. The convergence of the sequence of processes with mutation (Xλ, λ > 0)
towards Xr holds in Skorokhod sense. We will see that the convergence holds also
pointwise almost surely in Lemma 5.6.

Lemma 5.4 (Extension of (Xmin
t , t ⩾ 0) after reaching 1). — The Markov pro-

cesses (Xλ
t (x), t ⩾ 0, x ∈ [0, 1]) converge as λ goes to 0, in the Skorokhod sense

towards a Feller process (Xr
t (x), t ⩾ 0, x ∈ [0, 1]) valued in [0, 1], which extends the

minimal solution of (3.1), and whose semigroup satisfies : for any n ∈ N

E [Xr
t (x)n] = E

[
xN

min,(n)
t

]
for any x ∈ [0, 1),(5.7)

and

E [Xr
t (1)n] := lim

x → 1−
E
[
xN

min,(n)
t

]
= Pn(ζ∞ > t).(5.8)

Remark 5.5. — In order to establish Lemma 5.4, we require the assumption that
the measure Λ gives no mass to 0. We shall indeed use the fact that when there is
no Kingman component, the processes Nλ have all their boundary ∞ as exit. This
is not the case when Λ({0}) = ck > 0 for which processes Nλ may have boundary
∞ regular, see Remark 3.6.

Proof. — In order to ease the reading we outline the scheme of the proof. The
strategy is similar to that in the proof of Lemma 5.1:

(1) We first show that for any fixed t ⩾ 0, the random variables (Xλ
t (x),

x ∈ [0, 1]) converge in law as λ goes to 0 through convergence of their moments.
The limiting random variables (Xr

t (x), x ∈ [0, 1]) satisfy the identities (5.7)
and (5.8).

(2) We establish that the semigroup of (Xλ
t (x), t ⩾ 0, x ∈ [0, 1]) converges as

λ goes to 0 uniformly. We denote by P r
t the limiting operator and verifies

that it is a Feller semigroup. The associated process is denoted by (Xr
t (x),

t ⩾ 0, x ∈ [0, 1]).
(3) We then show that (Xr

t (x), t ⩾ 0, x ∈ [0, 1]) extends the minimal solution
to (3.1) after reaching 1.

(1) By letting λ go towards 0 in the duality relationship (5.2), and recalling the
almost sure convergence of N

λ,(n)
t towards N

min,(n)
t , see Lemma 5.3, we see by the

dominated convergence theorem, that

lim
λ → 0

E
[
Xλ

t (x)n
]

= E
[
xN

min,(n)
t

]
.

Recall that the convergence in law of random variables valued in [0, 1] is characterized
by the convergence of the entire moments. Therefore, the Xλ

t (x)’s are converging in
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law as λ goes to 0 towards some random variable Xr
t (x) whose law is characterized

by its entire moments defined by E[(Xr
t (x))n] := E[xN

min,(n)
t ]. In particular, Xr

t (x)
satisfies the targeted duality relationship (5.7). Similarly by letting λ go to 0 in the
identity (5.3), recalling Lemma 5.3 and the fact that ζλ

∞ goes to ζ∞ a.s., we also get
that the identity (5.8) hold.
(2) Recall that by Lemma 5.1, (Xλ

t (x), t ⩾ 0) is a Feller process and that we denote
its semigroup by (P λ

t , t ⩾ 0). Let gn(x) = xn for any x ∈ [0, 1] and n ∈ N. By the
duality relationship (5.2), P λ

t gn(x) = E[xN
(n),λ
t ]. We check that

(5.9)
∥∥∥P λ

t gn − P r
t gn

∥∥∥
∞

= sup
x ∈ [0,1]

E
[
xN

min,(n)
t − xN

(n),λ
t

]
−→
λ → 0

0.

Arguments are adapted from those in [Fou19, Section 7]. For any x ∈ [0, 1],

E
[
xN

min,(n)
t − xN

(n),λ
t

]

= E

(xN
min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t ⩽N

λ,(n)
t < ∞

}
+ E

(xN
min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t < ∞,N

λ,(n)
t =∞

}
⩽ E

(xN
min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t ⩽N

λ,(n)
t < ∞

}+ 2Pn

(
ζ∞ > t ⩾ ζλ

∞

)
.

Recall that by Lemma 5.3, ζλ
∞ −→

λ → 0+
ζ∞ a.s, thus Pn(ζ∞ > t ⩾ ζλ

∞) −→
λ → 0

0. It remains

to study the uniform convergence on the event {N
min,(n)
t ⩽ N

λ,(n)
t < ∞}. Plainly,

(5.10) sup
x ∈ [0,1]

E

(xN
min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t ⩽N

λ,(n)
t <∞

}
⩽ E

 sup
x ∈ [0,1]

(
xN

min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t ⩽N

λ,(n)
t <∞

} .

By Lemma 5.3, N
λ,(n)
t −→

λ → 0
N

min,(n)
t a.s. On the event {N

min,(n)
t ⩽ N

λ,(n)
t < ∞}, since

both random variables N
min,(n)
t and N

λ,(n)
t are integer-valued, there exists almost

surely a small enough λ0 > 0 such that for all λ < λ0, N
λ,(n)
t = N

min,(n)
t . Thus by

the dominated convergence theorem, the upper bound (5.10) tends to 0 as λ goes
to 0. Finally

lim sup
λ → 0

sup
x ∈ [0,1]

E

(xN
min,(n)
t − xN

λ,(n)
t

)
1{

N
min,(n)
t ⩽N

λ,(n)
t < ∞

} = 0,

and the convergence in (5.9) is established. To see that the uniform convergence
holds for any function f ∈ C([0, 1]), one argues by the Stone–Weierstrass theorem
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as follows. Let f ∈ C([0, 1]) and (fn) be a sequence of polynomial functions such
that ∥fn − f∥∞ −→

n → ∞
0. Then,∥∥∥P λ

t f − P r
t f
∥∥∥

∞
⩽
∥∥∥P λ

t f − P λ
t fn

∥∥∥
∞

+
∥∥∥P λ

t fn − P r
t fn

∥∥∥
∞

+ ∥P r
t fn − P r

t fn∥∞

⩽ 2∥f − fn∥∞ +
∥∥∥P λ

t fn − P r
t fn

∥∥∥
∞

.

By letting λ go towards 0, we see that

lim sup
λ → 0+

∥∥∥P λ
t f − P r

t f
∥∥∥

∞
⩽ 2∥f − fn∥∞

and one concludes by letting n go to ∞. We now deduce that (P r
t ) is a Feller

semigroup. As previously, the Stone–Weierstrass theorem asserts that it suffices to
establish the semigroup property for the functions gn. Let f := P r

s gn. For any n ⩾ 0,

(5.11)
∥∥∥P r

t+sgn − P r
t P r

s gn

∥∥∥
∞

⩽
∥∥∥P r

t+sgn − P λ
t+sgn

∥∥∥
∞

+
∥∥∥P λ

t P λ
s gn − P λ

t P r
s gn

∥∥∥
∞

+
∥∥∥P λ

t P r
s f − P r

t P r
s f
∥∥∥

∞

⩽
∥∥∥P r

t+sgn − P λ
t+sgn

∥∥∥
∞

+
∥∥∥P λ

s gn − P r
s gn

∥∥∥
∞

+
∥∥∥P λ

t f − P r
t f
∥∥∥

∞
,

where we have used the fact that P λ
t is a contraction. The upper bound in (5.11)

goes towards 0 as λ goes to 0, and the semigroup property is established. The Feller
property follows from the same argument as in the proof of Lemma 5.1. The fact
that the convergence of the sequence (Xλ

t , t ⩾ 0, λ > 0) as λ goes to 0, holds in the
Skorokhod sense is a direct application of [EK86, Theorem 2.5 page 167].
(3) Recall the expression of As, the generator of the minimal solution to (3.1), given
in (3.3). Denote by Aλ,s the generator of (Xλ

t , 0 ⩽ t ⩽ τ). By Lemma 5.1, for any
g ∈ Cc([0, 1]), the process (Mλ

t , t ⩾ 0) defined by

Mλ
t = g(Xλ

t ) −
∫ t

0
Aλ,sg(Xλ

s )ds

is a martingale. We establish now that Aλ,s converges uniformly towards As on
functions with a compact support [a, b] contained in (0, 1). Recall the drift term of
Asg(x) in (3.3): µ(N)x(f(x) − 1)g′(x). Since Aλ,s and As have the same jump parts,
for any g ∈ Cc([0, 1]);

(5.12)
∥∥∥Aλ,sg − Asg

∥∥∥
∞

= sup
x ∈ (0,1)

∣∣∣(µ(N) + λ)x
(
fλ(x) − 1

)
g′(x) − µ(N)x(f(x) − 1)g′(x)

∣∣∣
= sup

x ∈ (0,1)
x|g′(x)|

(
µ(N)

∣∣∣fλ(x) − f(x)
∣∣∣+ λfλ(x)

)
⩽ µ(N)∥g′∥∞ sup

x ∈ [a,b]

∣∣∣f(x) − fλ(x)
∣∣∣+ λ∥g′∥∞.

One has

sup
x ∈ [a,b]

∣∣∣f(x) − fλ(x)
∣∣∣ = sup

x ∈ [a,b]

∞∑
k=1

xkµ(k) λ

µ(N) + λ
⩽ λ

∞∑
k=1

µ(k)
µ(N) + λ

⩽ λ.
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Therefore the right-hand side of (5.12) goes to 0 when λ goes to 0 and the generators
Aλ,s uniformly converge to As. The same arguments as in the proof of Lemma 4.4
show that (

g (Xr
t ∧ τ r) −

∫ t

0
Asg (Xr

s∧τ r) ds, t ⩾ 0
)

is a martingale where τ r := inf{t > 0 : Xr
t /∈ (0, 1)}. Finally, the process (Xr

t , t ⩾ 0),
stopped at time τ r solves the martingale problem (MP). Since the latter has a unique
solution, we see that (Xr

t , t ⩾ 0) extends the minimal process. □

The next lemma completes the convergence result in Lemma 5.4 for the sequence
of processes (Xλ

t (x), t ⩾ 0) as λ goes to 0.

Lemma 5.6 (Almost sure pointwise convergence and monotonicity). — For any
x ∈ [0, 1] and t ⩾ 0, the limit Xr

t (x) := lim
λ→0+

↑ Xλ
t (x) exists almost surely. Moreover,

if x ⩽ y then Xr
t (x) ⩽ Xr

t (y) a.s. In particular, the limit

Xr
t (1) := lim

x → 1−
↑ Xr

t (x) ∈ [0, 1]

exists almost surely.

Proof. — For any m ⩾ 2. Let fλ
m be the generating function associated to the

measure µλ
m defined by µλ

m(k) := µ(k) for k ⩽ m − 1 and µλ
m(m) := µ̄(m) + λ for

k ⩾ m. Denote by (Xλ,(m)
t , t ⩾ 0) the Λ-WF process with selection driven by fλ

m.
By Lemma 4.4, for any x ∈ [0, 1), Xλ

t (x) := lim
m → ∞

X
λ,(m)
t (x) and since xm − x ⩽ 0,

we easily check that if λ′ > λ,

(µ(N) + λ)
(
fλ

m(x) − 1
)

=
m−1∑
k=1

(xk − 1)µ(k) + (µ̄(m) + λ)(xm − 1)

⩾
m−1∑
k=1

(xk − 1)µ(k) + (µ̄(m) + λ′)(xm − 1)

= (µ(N) + λ′)
(
fλ′

m (x) − 1
)

.

For any m ⩾ 2 and any λ > 0, the function fλ
m is Lipschitz over [0, 1], the comparison

theorem therefore applies and for any x ∈ [0, 1), X
λ,(m)
t (x) ⩽ X

λ′,(m)
t (x) a.s. By

letting m go to ∞, we get Xλ
t (x) ⩽ Xλ′

t (x) a.s. Recall that (Xλ
t , t ⩾ 0) can be

started from 1. By letting x go to 1, we also get Xλ
t (1) ⩽ Xλ′

t (1) a.s. Finally, the
limit lim

λ → 0+
Xλ

t (x) =: Xr
t (x) exists almost surely for all x ∈ [0, 1]. The monotonicity

in the initial values can be checked similarly. □

Step 4. — We can now use both duality relationships (2.1) and (2.2) in order to
classify the boundaries as in Table 2.1 and establish Theorem 2.7.

Lemma 5.7. — The boundary 1 is non-absorbing (respectively, inaccessible) for
(Xr

t , t ⩾ 0) if and only if the boundary ∞ is accessible (respectively, absorbing) for
(Nt, t ⩾ 0).
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Proof. — Recall that by Lemma 5.4, (Xr
t , t < τ1) has the same law as (Xmin

t , t < τ1).
As we shall use it repeatedly, we recall the duality relationships (2.1) and (2.2): for
any n ∈ N, x ∈ [0, 1] and t ⩾ 0

E
[
xN

(n)
t

]
(2.1)= E

[
Xmin

t (x)n
]

and E
[
xN

min,(n)
t

]
(2.2)= E [Xr

t (x)n] .

By Lemma 5.6, the limit Xr
t (1) := lim

x → 1−
Xr

t (x) exists almost surely. By letting x go
towards 1 in the identity (2.2) above with n = 1, we have E[Xr

t (1)] = Pn(ζ∞ > t).
For the first implication, we look at the contraposition and verify that if ∞ is

inaccessible for (N (n)
t , t ⩾ 0), then the boundary 1 is absorbing for (Xr

t , t ⩾ 0). If
∞ is inaccessible for (N (n)

t , t ⩾ 0) then it is inaccessible for (Nmin,(n)
t , t ⩾ 0) and

P1(ζ∞ > t) = E(Xr
t (1)) = 1. Therefore, E(1 − Xr

t (1)) = 0 and since Xr
t (1) ⩽ 1 a.s,

we get Xr
t (1) = 1 a.s. Thus, the boundary 1 is absorbing for (Xr

t , t ⩾ 0).
We then show the second implication. If ∞ is accessible for (N (n)

t , t ⩾ 0), then
it is accessible and absorbing for (Nmin,(n)

t , t ⩾ 0) and there exists t > 0 such that
P1(ζ∞ > t) = E[Xr

t (1)] < 1. Therefore, P(Xr
t (1) < 1) > 0 and the boundary 1 is non-

absorbing for (Xr
t , t ⩾ 0). We thus have established that (Xr

t , t ⩾ 0) has boundary 1
non-absorbing if and only if ∞ is accessible for (N (n)

t , t ⩾ 0).
The second equivalence is shown along similar arguments. Letting n go to ∞ in

the identity (2.1), we get for any x ∈ [0, 1), E[xN
(∞)
t ] = P(Xmin

t (x) = 1). We see that
the boundary 1 is inaccessible for the process (Xmin

t , t ⩾ 0), which is equivalent to
be inaccessible for (Xr

t , t ⩾ 0), if and only if E[xN
(∞)
t ] = 0 for any x ∈ [0, 1), which is

equivalent to N
(∞)
t = ∞ almost surely, that is to say, the boundary ∞ is absorbing

for the process (N (n)
t , t ⩾ 0). □

Proof of Theorem 2.7. — The moment duality relationship (2.2) is provided by
Lemma 5.4. Statements (i) to (iv) will be obtained by applying Lemma 5.7 and
combining the necessary and sufficient conditions for boundaries to be respectively
absorbing, non-absorbing and inaccessible or accessible. We provide details for state-
ments (i), (ii) and (iv). Statement (iii) is obtained by symmetric arguments to (i).

For statement (i), if (Nt, t ⩾ 0) has ∞ as an exit boundary, then ∞ is absorbing
and accessible. By Lemma 5.7, (Xr

t , t ⩾ 0) has boundary 1 inaccessible and non-
absorbing. In particular, there is t > 0 such that E[Xr

t (1)n] = P(ζ(n)
∞ > t) < 1. Hence,

P(Xr
t (1) < 1) > 0. If τ 1 denotes the first entrance time in [0, 1), then P1(τ 1 > t) < 1.

It remains to establish that almost surely Xr
t (1) < 1 for some t > 0, or equivalently

P1(τ 1 = ∞) = 0. By using the Markov property at time t, for any n ⩾ 1,

P1
(
τ 1 > nt

)
= E1

(
1{τ1 > t}PXr

t (1)
(
τ 1 > (n − 1)t

))
= P1

(
τ 1 > t

)
P1
(
τ 1 > (n − 1)t

)
.

Thus, for any n ⩾ 1, P1(τ 1 > nt) ⩽ P1(τ 1 > t)n. Since P1(τ 1 > t) < 1, the upper
bound goes to 0 when n goes to ∞ and we get P1(τ 1 = ∞) = 0.
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For statement (ii), if (Nmin
t , t ⩾ 0) has ∞ as a regular absorbing boundary, then

the boundary ∞ is non-absorbing and accessible for the non-stopped process (N (n)
t ,

t ⩾ 0). Therefore, by Lemma 5.7, 1 is accessible and non-absorbing for the process
(Xr

t , t ⩾ 0), hence there is t such that P(Xr
t (1) < 1) > 0. One can show as previously

that almost surely Xr
t (1) < 1 for some t > 0 so that 1 is regular non-absorbing.

For statement (iv), if (Nt, t ⩾ 0) has ∞ as a natural boundary, then (Nt, t ⩾ 0)
and (Nmin

t , t ⩾ 0) have the same law and ∞ is inaccessible. The boundary 1 of
(Xr

t , t ⩾ 0) is thus absorbing. With the boundary ∞ being absorbing, the boundary
1 is also inaccessible. Hence, 1 is a natural boundary. □

In the next section, we establish the correspondences given in Table 2.2 and show
that when boundary 1 is regular non-absorbing, the extended Λ-WF process with
selection (Xr

t , t ⩾ 0) gets absorbed at 0 in finite time almost-surely.

6. Proofs of Theorems 2.8, 2.10 and Proposition 2.9

6.1. Proofs of Theorem 2.8 and Proposition 2.9

We show here how different boundary behaviors such as regular reflecting or regular
for itself are linked by the duality relationships (2.1) and (2.2).

6.1.1. Proof of Theorem 2.8

Proof. — Recall τ1 the first return time to 1, and that by definition, 1 is regular
for itself if for any t > 0, P1(τ1 > t) = 0. We first observe that this is equivalent
to the condition lim

x → 1−
Px(τ1 > t) = 0. By applying the Markov property at a time

s > 0, we obtain that for any time t > 0,

P1(τ1 > t + s) = E1
[
PXr

s(1)(τ1 > t)1{τ1>s}
]

.

By the right-continuity at 0 of the sample paths, Xr
s(1) −→

s → 0+
1 almost surely. Thus, 1

is regular for itself if and only if lim
x → 1−

Px(τ1 > t) = 0 for all t > 0. Note that for any
x ∈ [0, 1) under Px, (Xr

t∧τ1(x), t ⩾ 0) has the same law as (Xmin
t (x), t ⩾ 0). By the

duality relationship (2.1), for any t > 0, Px(τ1 ⩽ t) = P(Xmin
t (x) = 1) = E[xN

(∞)
t ].

Hence,
lim

x → 1−
Px(τ1 ⩽ t) = P

(
N

(∞)
t < ∞

)
.

If the boundary 1 of the process (Xr
t , t ⩾ 0) is regular for itself then

lim
x → 1−

Px(τ1 ⩽ t) = 1 and P
(
N

(∞)
t < ∞

)
= 1.

By Fubini’s theorem, this implies that the set {t ⩾ 0 : N
(∞)
t = ∞} has zero Lebesgue

measure almost surely, namely, ∞ is regular reflecting. If now ∞ is regular reflecting,
then P(N (∞)

t < ∞) = 1 for all t > 0, therefore lim
x → 1−

Px(τ1 ⩽ t) = 1, and as noticed
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before this entails that P1(τ1 ⩽ t) = 1 for all t > 0. Hence, τ1 = 0, P1-almost surely
and 1 is regular for itself.

We now show that 1 is regular reflecting if and only if ∞ is regular for itself.
Set ζ(n)

∞ := inf{t > 0 : N
(n)
t− = ∞}. For any t > 0 and n ∈ N, by the duality

relationship (5.7),

P
(
ζ(n)

∞ > t
)

= lim
x → 1−

E
[
xN

min,(n)
t

]
= E [Xr

t (1)n] .

Letting n go to ∞ yields
lim

n → ∞
P(ζ(n)

∞ > t) = P(Xr
t (1) = 1).

Provided that 1 is regular reflecting for the process (Xr
t , t ⩾ 0), we get lim

n → ∞
P(ζ∞

> t) = 0 for all t > 0, hence, ζ∞ = 0, P∞-a.s. Therefore, ∞ is regular for itself for
(N (∞)

t , t ⩾ 0). Similarly, if ∞ is regular for itself, we see that 1 is regular reflecting. □

Notice that when boundary 1 is regular reflecting, then 1 is necessarily an instan-
taneous point, in the sense that τ 1 := inf{t > 0 : Xr

t (1) < 1} = 0 a.s.

6.1.2. Proof of Proposition 2.9

Proof. — Recall the notation ζ(n)
∞ := inf{t > 0 : N

(n)
t = ∞} for all n ⩾ 1 and

that ∞ is an instantaneous exit if for all t > 0, lim
n → ∞

P(ζ(n)
∞ > t) = 0. We show how

the property for boundary 1 to be an instantaneous entrance is associated to the
condition on the boundary ∞ of the dual process (Nt, t ⩾ 0) to be an instantaneous
exit. Recall τ 1 the first entrance time in [0, 1) of process (Xr

t , t ⩾ 0). The argument
is similar to that in the proof of Theorem 2.8. By Theorem 2.7, for any t ⩾ 0,
E[Xr

t (1)n] = P(Nmin,(n)
t < ∞) = P(ζ(n)

∞ > t). Since 1 is not accessible, for any t > 0,

P1
(
τ 1 > t

)
= P (Xr

t (1) = 1) = lim
n → ∞

E [Xr
t (1)n] = lim

n → ∞
P
(
ζ(n)

∞ > t
)

= 0

which allows us to conclude the first equivalence. The second is established similarly
from the first duality relationship (2.1). □

Remark 6.1. — The condition lim
n → ∞

P(ζ(n)
∞ > t) = 0 is sometimes called t-regularity

of the boundary ∞, see Kolokoltsov’s book [Kol11, Section 6.1, page 273].

We study now the long term behavior of the process (Xr
t , t ⩾ 0) when the boundary

1 is not an exit and prove Theorem 2.10

6.1.3. Proof of Theorem 2.10

Proof. — By the comparison theorem, see Theorem 3.3, for all x ∈ [0, 1] and t ⩾ 0,
Xmin

t (x) ⩽ Yt(x) a.s. where (Yt(x), t ⩾ 0) is a Λ-Wright–Fisher process with no
selection. Under the condition (1.2), the latter reaches 0 with positive probability,
and so does the process (Xmin

t , t ⩾ 0).
Assume 1 is regular non-absorbing for (Xr

t , t ⩾ 0). Consider the successive excur-
sions out from 1 of the process (Xr

t , t ⩾ 0) which crosses a given level x < 1. Namely,
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set τ
(0)
1 := 0 and τ (n)

x := inf{t > τ
(n−1)
1 : Xr

t ⩽ x} and τ
(n)
1 := inf{t > τ (n)

x : Xr
t = 1}.

Then the processes Xr(
t+τ

(n)
x

)
∧τ

(n)
1

, t ⩾ 0


are independent and with the same law as (Xmin
t , t ⩾ 0) started from Xr

τ
(n)
x

⩽ x a.s.
By the comparison property, each processXr(

t+τ
(n)
x

)
∧τ

(n)
1

, t ⩾ 0


is stochastically below a process (Xmin
t (x), t ⩾ 0) and since Px(τ0 < τ1) > 0, each

excursion has a positive probability to hit 0. Therefore, there exists almost surely
an excursion among the latters which attains the boundary 0.

Assume 1 is an entrance for (Xr
t , t ⩾ 0). The boundary ∞ is therefore an exit

for the process (Nmin
t , t ⩾ 0) and by the duality relationship (5.7), we get for all

x ∈ [0, 1],
lim

t → ∞
E [Xr

t (x)] = lim
t → ∞

E
[
xNmin

t

]
= 0.

Hence lim inf
t → ∞

Xr
t (x) = 0 a.s. Set τ1/n := inf{t > 0 : Xr

t ⩽ 1/n}. For all n ⩾ 2,
τ1/n < ∞ a.s. Since 1 is an entrance boundary, for any x ∈ [0, 1), (Xr

t (x), t ⩾ 0)
has the same law as (Xmin

t (x), t ⩾ 0). By the strong Markov property at time τ1/n,
(Xr

t+τ1/n
(x), t ⩾ 0) has the same law as (Xmin

t (Xr
τ1/n

(x)), t ⩾ 0), where (Xmin
t , t ⩾ 0)

is independent from Xr
τ1/n

(x). Since Xr
τ1/n

(x) ⩽ 1/n a.s, by the comparison theorem,
(Xr

t+τ1/n
(x), t ⩾ 0) is stochastically smaller than (Yt(1/n), t ⩾ 0) where (Yt(1/n),

t ⩾ 0) is a Λ-Wright–Fisher process with no selection.
Set En := {Xmin

t+τ1/n
> 0, ∀ t ⩾ 0} for any n ⩾ 2. One has

P(En) ⩽ P(Yt(1/n) > 0 for all t ⩾ 0) = P1/n

(
τY

0 > τY
1

)
,

where τY
i := inf{t ⩾ 0; Yt = i} for i = 0, 1. By the duality relationship for the pure

Λ-coalescent: Px(τY
1 < τY

0 ) = E∞[xNY
t ] −→

x → 0
0 where we have denoted by (NY

t , t ⩾ 0)
the moment dual of (Yt, t ⩾ 0). Thus P(En) −→

n → ∞
0. Since 0 is an absorbing boundary,

En+1 ⊂ En for all n ⩾ 2. Hence P (∩∞
n=2En) = lim

n → ∞
P(En) = 0. This allows us to

conclude since ∪∞
n=2E

c
n has probability 1 and

∪∞
n=2E

c
n ⊂ {∃ t0 ⩾ 0; Xr

t (x) = 0, ∀ t ⩾ t0} . □

Until now we have only shown theoretical results on possible extensions of the
minimal process and their duality relationships with the process (Nt, t ⩾ 0) and the
stopped process (Nmin

t , t ⩾ 0). One may wonder whether there exist mechanisms of
resampling Λ and selection f that result in the regular boundary, see the last line
in Table 2.1. It is not clear whether the easiest route to study a given process is to
look at its dual or not. The aim of the next section is to translate all results known
about block counting processes for simple EFCs recalled in Section 3.2 into results
for the Λ-Wright–Fisher process with selection.
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7. Proofs of Theorems 2.13, 2.11, 2.18 and Corollary 2.20

We transfer the results known for the block counting process (Nt, t ⩾ 0), see
Section 3.2, to the Λ-Wright–Fisher process with frequency-dependent selection by
applying our two duality relationships (2.1) and (2.2). Recall the correspondences
stated in Table 2.1 and Table 2.2. In the sequel, we work with the extension (Xr

t , t ⩾ 0)
of the minimal solution to (3.1), (Xmin

t , t < τ), which is constructed in Lemma 5.4.

7.1. Proof of Theorem 2.11

Proof. — Recall Lemma 3.7. If ∑∞
n=2

n
Φ(n) µ̄(n) < ∞, then the block counting pro-

cess (Nt, t ⩾ 0) does not explode, i.e. ∞ is inaccessible. In this case, by Lemma 5.7,
the extended process (Xr

t , t ⩾ 0) has its boundary 1 absorbing. If moreover, ∑∞
n=2

1
Φ(n)

< ∞ (which is equivalent to
∫∞ dx

Φ(x) < ∞), then the process (Nt, t ⩾ 0) has boundary
∞ as an entrance. Recall that [Fou22, Lemma 2.5] guarantees that ∞ is instanta-
neous. Theorem 2.7 and Proposition 2.9 ensure then that 1 is an instantaneous exit
for (Xr

t , t ⩾ 0). Last, if ∑∞
n=2

1
Φ(n) = ∞, then ∞ is a natural boundary and by Theo-

rem 2.7, 1 is also natural. Therefore it only remains to show that the assumptions
of Theorem 2.11 entail the convergence of the series ∑∞

n=2
n

Φ(n) µ̄(n).
Assume first that f is Lipschitz on [0, 1], namely f ′(1−) < ∞. The splitting

measure µ admits then a first moment. Recall that the sequence (Φ(n)/n, n ⩾ 2) is
nondecreasing, see e.g. [LT15, Lemma 2.1-(iv)]. Hence the sequence ( n

Φ(n) , n ⩾ 2) is
bounded and ∑∞

n=2
n

Φ(n) µ̄(n) ⩽ 2
Φ(2)

∑∞
n=2 µ̄(n) < ∞. This establishes the first case.

Assume now that the selection function f satisfies some properties of regular
variation. In this setting, we can use Tauberian theorems to relate the asymptotics
of the selection function f at boundary 1, with asymptotics of the splitting measure
µ at ∞. We gather here these results.

Set u(x) := µ(N)(1 − f(x)) for all x ∈ [0, 1] and recall ℓ(n) = ∑n
k=1 µ̄(k). For all

λ ⩾ 0, set κ(λ) :=
∫∞

0 (1 − e−λx)µ(dx) with µ(dx) = ∑∞
k=1 µ(k)δk. Thus,

(7.1) u(e−λ) = µ(N)
(
1 − f(e−λ)

)
=

∞∑
k=1

(
1 − e−λk

)
µ(k) = κ(λ).

Let s be a slowly varying function at ∞. By the Tauberian theorem, see e.g. [Ber96,
Chapter 0.7 page 10], the following are equivalent:

(i) µ(n) ∼
n → ∞

b
nα+1 s(n) for some α ∈ (0, 1),

(ii) κ(λ) ∼
λ → 0+

λα bΓ(2−α)
α(1−α) s(1/λ),

(iii) µ(N)(1 − f(x)) = κ(log 1/x) ∼
x → 1−

bΓ(1−α)
α

(1 − x)αs( 1
1−x

).

Similarly, if s is slowly varying at ∞, then we have the equivalence:
(1) µ(N)(1 − f(x)) ∼

x → 1−
κ(log 1/x) ∼

x → 1−
s(1/(1 − x)),

(2) µ̄(n) ∼
n → ∞

s(n).
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Recall the Tauberian equivalence (iii) ⇐⇒(i). When x 7→ 1−f(x) is regularly varying
at 1 with index α ∈ [0, 1), 1 − f(x) ∼

x → 1−
c(1 − x)αs(1/(1 − x)) for some slowly

varying function s at ∞ and µ̄(n) ∼
n → ∞

c′

nα s(n) for some constant c′ > 0. Hence,
µ̄( 1

1−x
) ∼

x → 1−
c′(1−x)αs(1/(1−x)) ∼

x → 1−
c′′(1−f(x)) where c′′ is a positive constant.

Simple integral comparisons and a change of variable give the equivalences:
∞∑

n=2

n

Φ(n) µ̄(n) < ∞ ⇐⇒
∫ 1− 1/(1 − x)

Φ
(
1/(1 − x)

)(1 − x)αs
(
1/(1 − x)

) dx

(1 − x)2 < ∞

⇐⇒
∫ 1− 1 − f(x)

(1 − x)3Φ
(
1/(1 − x)

)dx < ∞.

The integral condition above matches with our condition (2.4). □

7.2. Proof of Theorem 2.13

Proof. — Recall the assumptions Λ({0}) = Λ({1}) = 0. According to Lemma 5.1,
when the function f is defective, namely f(1) < 1, the Λ-WF process with selection
(Xt, t ⩾ 0), minimal solution to (3.1), has boundary 1 entrance. We are interested
here on the non-defective selection functions for which f(1) = 1.

If the boundary ∞ of the process (Nt, t ⩾ 0) is an exit, then Theorem 2.7 implies
that the process (Xr

t , t ⩾ 0) has boundary 1 entrance. The fact that 1 is an entrance
boundary will therefore be a simple consequence of Lemma 3.8. We first establish
that condition H for the function x 7→ 1 − f(x) entails the condition H for the
function ℓ : n 7→ ∑n

k=1 µ̄(k).
Recall u(x) := µ(N)(1 − f(x)) for any x ∈ (0, 1) and the identity (7.1). By [Ber96,

Proposition 1, Chapter III], there is a universal constant c > 1, such that
1
c

∫ 1/λ

1
µ̄(x)dx ⩽

κ(λ)
λ

⩽ c
∫ 1/λ

1
µ̄(x)dx,

where µ̄(x) = µ̄(k) for any x ∈ [k, k+1[. One can check
∫ 1/λ

1 µ̄(x)dx ∼
λ → 0

ℓ(⌊1/λ⌋). By
change of variable λ = log 1/x, the equivalence just mentioned and the identity (7.1),
we see that for x close enough to 1, then

(7.2) cℓ (⌊1/ log 1/x⌋) ⩽ u(x)
log 1/x

⩽ c̄ℓ (⌊1/ log 1/x⌋)

for some constants c̄ > c > c. We now show that condition H entails condition H.
By condition H, if x is close enough to 1, then u(x) ⩾ µ(N)L(x) for some function

L such that the map h satisfying µ(N)L(x) = (1 − x) log (1/(1 − x)) h(x), is non-
decreasing. Moreover, since 1 − x ∼

x→1−
log 1/x, if x is close enough to 1, then

u(x) ⩾ µ(N)L(x) = (1 − x) log (1/(1 − x)) h(x) ⩾ C(log 1/x)(log 1/ log 1/x)h(x)
for some constant C > 0. By applying the upper bound in (7.2) in the inequality
above, we see that

ℓ (⌊1/ log 1/x⌋) ⩾ C log(1/ log 1/x)h(x),

TOME 6 (2023)



534 C. FOUCART & X. ZHOU

for some other constant C > 0. Thus, for large enough n, ℓ(n) ⩾ C(log n)g(log n)
with g the map such that g(log 1/ log 1/x) := h(x). By assumption, the map h is non-
decreasing in a neighbourhood of 1, the map g is therefore eventually non-decreasing.
One also easily checks that

∫ 1 1
L(x)dx < ∞ entails

∫∞ 1
xg(x)dx < ∞. Finally, Condition

H holds.
Under the condition (2.5), we see from the upper bound in (7.2), that lim

n → ∞
Φ(n)
nℓ(n) = 0,

hence Lemma 3.8 applies and 1 is an entrance. It remains to show that the entrance
at boundary 1 is instantaneous. It has been established in [FZ22, Proposition 5.2],
that under condition H, when lim

n → ∞
Φ(n)
nℓ(n) = 0, the boundary ∞ of process (N (n)

t , t ⩾ 0)
is an instantaneous exit. We can therefore apply Proposition 2.9 which ensures that
boundary 1 of the dual process (Xr

t , t ⩾ 0) is an instantaneous entrance. □

Remark 7.1. — Note that the inequalities (7.2) entail that
∫ 1− dx

1−f(x) < ∞ if
and only if ∑n⩾ 1

1
nℓ(n) < ∞. We recover analytically here the equivalence between

Dynkin’s condition and Doney’s condition for explosion of a pure discrete branching
process in continuous time whose offspring law is µ and generating function of µ is
f , see Doney [Don84] and e.g. [FZ22, Section 2.4].

7.3. Proofs of Theorem 2.16, Theorem 2.18 and Corollary 2.20

7.3.1. Proof of Theorem 2.16

Proof. — Tauberian theorems ensure that the conditions over Λ and f are equiva-
lent to

Φ(n) ∼
n → ∞

dnβ+1 and µ(n) ∼
n → ∞

b

n1+α
with d := Γ(1 − β)

β(1 + β)ρ and b := α

Γ(1 − α)σ,

see e.g. [Fou22, Section 2.2, p. 12] for the first equivalence. Cases (i) and (ii) are
obtained by applying respectively Theorem 2.13 and Theorem 2.11 previously estab-
lished. Lemma 3.9 classifies the boundary ∞ when α = 1 − β according to the ratio
b/d. The cases: entrance, exit and regular in iii) are obtained by noticing that

σ/ρ >
π

(2 − α) sin(πα) is equivalent to b

d
> α(1 − α) and σ/ρ >

1
(1 − α)(2 − α)

is equivalent to b/d > α sin(πα)
π

. In particular, when 1
(1−α)(2−α) < σ/ρ < π

(2−α) sin(πα) ,
the process (Nt, t ⩾ 0) has ∞ as a regular non-absorbing boundary. Therefore, the
process (Nmin

t , t ⩾ 0) := (Nt ∧ ζ∞ , t ⩾ 0) has ∞ as a regular absorbing boundary,
and Theorem 2.7 ensures that the process (Xr

t , t ⩾ 0) has boundary 1 regular non-
absorbing. We now need to check that the boundary 1 is instantaneous when it is an
exit or an entrance and is reflecting when it is regular. In the case of 1 being an exit
for (Xr

t , t ⩾ 0), the boundary ∞ is an entrance for (Nt, t ⩾ 0). According to [Fou22,
Lemma 2.5], ∞ is an instantaneous entrance boundary and Proposition 2.9 entails
then that 1 is an instantaneous exit. To deal with the case of 1 regular non-absorbing,
one applies [FZ22, Proposition 3.7], which ensures that the dual process (Nt, t ⩾ 0)
has boundary ∞ regular for itself. The fact that 1 is reflecting is a consequence
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of Theorem 2.8. Only remains to show that 1 is an instantaneous entrance when
σ/ρ > π

(2−α) sin(πα) , i.e. b
d

> α(1 − α). The argument given in the proof of [FZ22,
Proposition 3.7] actually covers this case since b

d
> α(1 − α) entails b

d
> α sin(πα)/π.

This ensures that ∞ is an instantaneous exit. By applying again Proposition 2.9,
one gets that 1 is an instantaneous entrance. □

7.3.2. Proof of Theorem 2.18

Proof. — We now specify the behavior of the process (Xr
t , t ⩾ 0) at its boundary

1 when it is regular reflecting by showing that the boundary is regular for itself,
namely τ1 = 0, P1-a.s. Similarly as in the proof of Theorem 2.8, the boundary 1 is
regular for itself if and only if
(7.3) Px(τ1 > t) −→

x → 1−
0 for any t > 0.

We now establish (7.3). Recall A in (3.2) and As in (3.3). Let ϵ ∈ (0, 1). By [Kol11,
Proposition 6.3.2, p. 281], the existence a positive function g on [0, 1] such that g ∈
C2([0, 1]), g(1) = 0 and there is c > 0, such that Asg(x) ⩽ −c for any x ∈ (1 − ϵ, 1),
entails (7.3). We now look for such a function g. Observe that

Ag(x) = x
∫ 1

0

(
g(x + z(1 − x)) − g(x) − z(1 − x)g′(x)

)
z−2Λ(dz)

+ (1 − x)
∫ 1

0

(
g(x(1 − z)) − g(x) + zxg′(x)

)
z−2Λ(dz)

:= A+g(x) + A−g(x).
Recall Asg(x) = Ag(x) + µ(N)x(f(x) − 1)g′(x) for al x ∈ [0, 1], see (3.3). Note that
for any function g ∈ C2((0, 1)), one has for any y, u,

g(y + u) − g(y) − ug′(y) = u2
∫ 1

0
g′′(y + vu)(1 − v)dv.

Let g(x) = (1 − x)δ for 0 < x < 1 and 0 < δ < 1. Plainly,
g(1) = 0, g′(x) = −δ(1 − x)δ−1 < 0, g′′(x) = δ(δ − 1)(1 − x)δ−2 < 0.

Since by assumption µ(n) ∼
n → ∞

b
n1+α , then by Item (ii) below Equation (7.1), we see

that and
1 − f(x) ∼

x → 1−
C log(1/x)α.

Hence, the generating function f satisfies lim supx → 1−
x−f(x)
(1−x)α < ∞. Choosing δ =

1 − α, we have x(f(x) − 1)g′(x) = −δx(f(x) − 1)(1 − x)δ−1 < c for some c > 0 and
all x close to 1. In addition, for all x ∈ [0, 1],

A+g(x) = x
∫ 1

0
(g(x + z(1 − x)) − g(x) − z(1 − x)g′(x))z−2Λ(dz)

= δ(δ − 1)x(1 − x)2
∫ 1

0
Λ(dz)

∫ 1

0
(1 − x − vz(1 − x))δ−2(1 − v)dv

= δ(δ − 1)x(1 − x)δ
∫ 1

0
Λ(dz)

∫ 1

0
(1 − vz)δ−2(1 − v)dv < 0,

(7.4)
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and for all x close to 1,

A−g(x) = (1 − x)
∫ 1

0
(g(x(1 − z)) − g(x) + zxg′(x))z−2Λ(dz)

= δ(δ − 1)(1 − x)x2
∫ 1

0
Λ(dz)

∫ 1

0
(1 − x + vxz)δ−2(1 − v)dv

⩽ c1(δ − 1)(1 − x)
∫ 1

0
(1 − x + z)δ−2Λ(dz)

∫ 1

0
(1 − v)dv

⩽ c2(δ − 1)(1 − x)
∫ 1−x

0
(1 − x + z)δ−2Λ(dz)

⩽ −c3(1 − x)(1 − x)δ−2
∫ 1−x

0
Λ(dz) ⩽ −c3(1 − x)δ−1

∫ 1−x

0
Λ(dz),

(7.5)

where ci, i ∈ {1, 2, 3} are positive constants. By assumption Λ(dz) = h(z)dz with
h(z) ∼

z → 0
ρzα−1. Thus,

∫ 1−x
0 Λ(dz) ∼

x → 1−
C(1 − x)α for some constant C > 0. Com-

bining (7.4) and (7.5), and recalling that δ = 1 − α, we see that
lim sup

x → 1−
Asg(x) ⩽ −c

for some positive constant c. □

7.3.3. Proof of Corollary 2.20

Proof. — The proof is straightforward. By Theorem 2.18, the boundary 1 of
(Xr

t , t ⩾ 0) is regular for itself. Then statement (i) follows by applying Theorem 2.8.
Statement (ii) is a consequence of Theorem 2.4. □

Other explicit cases have been found in [FZ22] and have their counterparts for
the dual Λ-Wright–Fisher processes with frequency-dependent selection. We refer for
instance to [FZ22, Theorem 3.11] for the case Φ(n) ∼

n → ∞
dn(log n)β and µ(n) ∼

n → ∞
b (log n)α

n2 . We finally mention a question that has not been addressed in the present
article. The equivalence stated in Theorem 2.8 entails that if one of the processes has
its boundary irregular for itself then the other process has its boundary sticky, in
the sense that the process stays at the boundary a set of times of positive Lebesgue
measure. More precisely, for the process (Xr

t (x), t ⩾ 0), the duality relation (5.7)
implies that for any time

t ⩾ 0, lim
n → ∞

E
[
xN

min,(n)
t

]
= P (Xr

t (x) = 1) ,

which might be positive if the process (N (∞)
t , t ⩾ 0) does not return to ∞ instanta-

neously i.e. lim
n → ∞

Pn(ζ∞ > t) > 0 for some t > 0. Whether there are some resampling
measure Λ and selection function f for which boundaries 1 or ∞ are indeed sticky
or irregular for themselves remains an unsolved question.
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