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1. Introduction

Let (X;);ez be a strictly stationary sequence of real-valued random variables (r.v.)
with mean zero and finite variance. Set S,, = X; + Xy + -+ + X,,. By P,-1/25, we
denote the law of n='/25,, and by G2 the normal distribution N (0, ¢?). In this paper,
we assume furthermore that the series 6% = 3, 5 Cov(Xj, X}) is convergent (under
this assumption lim, n='VarS, = ¢?) and we shall give quantitative estimates of
the approximation of P,-1/25 by G,2 in terms of the quadratic cost, which is the
square of the L2-minimal distance. With this aim, we first recall the definition of
the LP-minimal metrics.

Let L(u, ) be the set of probability laws on R? with marginals y and v. For p > 1,
let

W,(p, v) = inf { (/ |z — y]pP(dx,dy)>l/p : P e Lp, V)} .

W, is usually called the LP-minimal distance, and sometimes the Wasserstein distance
of order p. It is well known that for probability laws p and v on R with respective
distributions functions (d.f.) F' and G,

(1.1) Wp(p,v) = (/01 [F 7 (u) — G‘I(U)Ipdu> " :

where F~1 and G~! denote respectively the generalized inverse functions of F' and
G. We refer to [Vil09, Chapter 6] in Villani for the properties of this metric.

For (X;);cz a sequence of independent and identically distributed (iid) centered
real valued random variables in IL*, with variance ¢, in [Rio09, inequality (1.7)] Rio
states that there exists a universal constant ¢ such that for any positive integer n

(12) nW22 (PSH/\/E7G02) < CJ_2||X1”3'

In addition, it is also shown in the same paper that this upper bound is optimal.
More precisely, for any £ > 1, let M(4, k) be the class of the probability measures
@ on the real line such that [zdu(z) =0, [2%du(x) =1 and [2*du(z) = k. In case
where (X;);ez is a sequence of iid random variables with common law p in M (4, k),
Theorem 5.1 in [Rio09] asserts that

(1.3) sup liminf nW; (Psn/\/g, G1> > k/12.

pEM(4k) VT

We refer to Bobkov [Bob13] for another proof of (1.2) based on relative entropy
and Talagrand’s entropy-transport inequality. Actually, the following more general
result holds: for any p > 1, there exists a universal constant ¢, such that for any
positive integer n,

nP/2 e (Psn I/ GU2) <o 2| X |15

(see Rio [Rio09] for p € [1,2] and Bobkov [Bob18] for p > 2). Extensions to random
vectors in R? are given in Bonis [Bon20]. We also mention the extensions of the upper
bound (1.2) to the m-dependent case and to U-statistics obtained by Fang [Fan19].
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Quadratic transportation cost in the conditional CLT 689

In this paper, one of our motivations is to relax the independence assumption and
to find sufficient conditions in case of dependent sequences ensuring that

(1.4) Wa (Ps, i Go2) = O(n™1?).

In the dependent setting, a well known class is the class of irreducible aperiodic
and positively recurrent Markov chains (¢,) with an atom denoted by A (see the
definition [Bol82, p. 286]). Let 7 be the unique invariant distribution of the Markov
chain. From now on, (&,) will be the Markov chain starting from 7. Let us then
consider the strictly stationary sequence (Xj) defined by Xj = f(&) with f a
bounded function such that w(f) = 0. In view of the regeneration scheme and the
upper bound (1.2), one can conjecture that (1.4) holds for S, = >_; X provided
that E4(74) < oo where 74 is the first return time in A and E4 stands for the
expectation under P, for x € A. Next, from [Bol82, Lemma 3] and [Riol7b, p. 165],
it is known that E4(74) < oo is equivalent to

(1.5) > n*a, < 0o,

n>0

where a;, = isupnfuoog IE(f(&a)l€0) — E(f (&)1

In this paper we shall prove that (1.4) holds true for any stationary sequence
(Xk)r ez of bounded real-valued random variables satisfying (1.5) for the sequence
(an)nso of strong mixing coefficients in the sense of Rosenblatt (see for instance
[MPU19, Section 5.1.1.] for a definition of these coefficients in the general case),
which includes the case of Markov chains described above. This will be a consequence
of a more general result also valid for a class of weakly dependent sequences, which
may fail to be strongly mixing. In order to give more precise statements of our results,
let us now introduce the dependence coefficients that we will use in this paper.

DEFINITION 1.1. — Let (X;);cz be a stationary sequence of bounded real-valued
random variables and Fy = 0(X;,1 < 0). Let T'), = {(@i)1<i<p € N* : a1 > 1 and
SP 1 a; < q}, for p and q positive integers. For k > 0, set

e ([Txeis) -2 (1)

i=1 =1

Oxpq(k) = sup

kp>kp_1>..>ky >k >k
(ay,...;ap) €Tp.q

1

As a consequence of our Theorem 2.1, we will obtain that if
(16) Z k29X7474<]€) < 00,
k>1

then (1.4) holds, which immediately implies that (1.4) holds for additive bounded
functionals of a Markov chain satisfying (1.5). In fact we shall give a conditional
version of (1.4) and show that when (Xj)rcz is a stationary sequence of centered
and bounded real-valued random variables satisfying (1.6) then

(1.7) E (W3 (Ps,/yaz Ga2)) = O(n7").

Note that in case of bounded functions of a Markov chain (&), satisfying E4(74) <
oo, with invariant distribution 7, the Schwarz inequality together with (1.7) imply
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that
E,u (WQ (Psn/\/mﬁo? GJ2)) = O(’I’L_l/2)

for any positive measure p such that du = fdr with [ f?dr < oo. Above E,, stands
for the expectation of the chain under the initial law p.

It is noteworthy to indicate that (1.7) implies (1.4). Indeed the following fact is
valid.

FacT 1.2. — Let X and Y be two random variables defined on (2, A,P) and F
be a sub o-algebra of A. Then W3 (Px, Py) < E(W3(Px 7, Py|r)).

To see this, let U be a random variable with uniform distribution over [0, 1], inde-
pendent of F, and let Fix|z and Fy|r denote respectively the conditional distribution
functions of X and Y given F. Set X* = F)}‘lf(U) and Y* = FY_|1F(U). Then X* has
the law Py, Y* has the law Py and, by (1.1), W3 (Px |7, Pyir) = E(|X* — Y**|F).
Taking the expectation, it implies the above fact, since W3 is the minimal quadratic
cost.

To prove Theorem 2.1, we shall apply Lindeberg’s method, which was used by
Billingsley [Bil61] and Ibragimov [Ibr63] in the case of martingales with stationary
differences to prove the central limit theorem (we also consider this particular case
in our Theorem 2.7). Note that this method was adapted to a large class of depen-
dent sequences (non necessarily martingale differences) to evaluate the LL'-minimal
distance between Pg, , s and G52, by Pene [Pen05] in the bounded multidimensional
case, and next by Dedecker and Rio [DR08] in the unbounded case (under conditions
involving some coefficients similar to fx 43, or weak mixing coeflicients such as those
described in Definition 3.2 below). Recently, estimates of the L'-minimal distance
between Pg / m and G2 when the underlying process is a function of iid random
variables are given in [JWZ21, Theorem 3.1]. Their conditions are expressed in terms
of some coupling coefficients.

Our paper is organized as follows. Section 2 is devoted to the statements of upper
bounds concerning the quadratic transportation cost in the conditional central limit
theorem and their applications to pointwise estimates for the distribution function
of the normalized sums and its generalized inverse. Applications to a-dependent
sequences, T-mixing sequences and symmetric random walk in the circle are given in
Section 3. The proofs are postponed to Section 4. Links between |FS;1/UH(U) — o1 (u)|
and Wy(Ps, /o, G1), for any p > 1, are given in Proposition A.1, where 0, =
V/VarS,, ®~! is the inverse of the distribution function of the standard normal
distribution and Fg l/an is the generalized inverse of the distribution function of
Sn/on. In particular, rates of convergence for the quadratic cost provide rates of
convergence for \stnl/an (u) — @~ (u)| (see Corollary 2.5).

In the rest of the paper, we shall use the following notation: for two sequences
(@n)n>1 and (by)n>1 of positive reals, a, < b, means there exists a positive constant
C not depending on n such that a,, < Cb,, for any n > 1. Moreover, for a real-valued
random variable X in L', the notation X means X — E(X).
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2. Quadratic cost in the conditional CLT

The main result of this paper is Theorem 2.1 below.

THEOREM 2.1. — Assume that || Xo||cc < M and that Y ;- 0x22(k) < co. Then
0? =E(X7) + 21 E(XoX}) converges and

(a) E (W3 (Ps,/ymir Go2) ) < n7'/? (1 + 3 (kA V) 9X,2,2(/<:>) .

k>1

If furthermore Y~ kfx 44(k) < oo, then

B E(WE (e Gor)) < 1~ <1 Sk (kA vR) eXAA(k)) .

k>1

COMMENT 2.2. — Item (a) provides a rate in the CLT for the Wy-metric as soon
as Yop>10x22(k) < oco. In addition, if Y ;- kfx22(k) < oo, then the rate in the
Wy-metric is of order n=/4. Furthermore, by Item (b), if ¥~ 1 kfx.4.4(k) < oo, then
the rate in the CLT for the Wy-metric is o(n='/*). For example, if 0x 4 4(k) = O(k™)
with a €]1,3[ and a # 2, Theorem 2.1 implies that W(Ps, / jm, Gy2) < n=(@=D/4,
Moreover Wa(Ps, ; /m, Go2) < 0712 as soon as Yy -1 k*0x 44(k) < cc.

COMMENT 2.3. — Assume o > 0. Set 0, = v/VarS,,. If c > 0, then o,, > 0 for
any positive n. Set ko = E(W3(Ps,, /o m7y» Psu/onlFo)):

Ko = ( On_ _ 1)2 < (072‘ - 1)2 = (n02>_1 U—i - 1’ 2 Y (k An)Cov(Xo, Xy)| .
o\/n no? no? = ’

Now, from the definition of the coefficients 0x 1 1(k),

(2.1) > (k An)|Cov(Xo, Xi)| < | Xolloo Y (kAn)Ox11(k).

k>1 k>1

Therefore, if in addition || Xollee < M, ko < n'M Y51 (k An)fx11(k), which is
always of a smaller order than the upper bounds (a) and (b). Hence Theorem 2.1
also holds for E(W3(Ps, /517, G1))-

We now give applications of Theorem 2.1 to pointwise estimates. We start by Berry—
Esseen type estimates. Arguing for instance as in [DMR09, Remark 2.4], Theorem 2.1
together with Comment 2.2 imply the following upper bound.

COROLLARY 2.4. — Assume that 0 > 0, || Xo|loo < M and Yj, 51 k*0x.44(k) < 00.
Then
An = sup [P(S,/0, < 7) — D()| < n2,
zeR
We now give applications of our main result to estimates of the quantiles and the
superquantiles of S,, /0, in the nondegenerate case. Define the 1-risk Q1 x of X, as
in Pinelis [Pinl4], by

(2.2) Qux(u) = i/ﬂ F'(1— t)dt.

TOME 6 (2023)



692 J. DEDECKER, F. MERLEVEDE & E. RIO

Then @1 x(u) is the value of the superquantile of X at point (1 — u). The corollary
below, which is a consequence of Theorem 2.1 and Proposition A.1 provides estimates
of the accuracy in the central limit theorem for Fyg 1/Un and @1, /o, - Its proof is given
in Section A.

COROLLARY 2.5. — Assume that || Xo|looc < M, Yp>1 k?0x44(k) < 0o and o2 >
0. Let Y be a standard normal. Then there exists some constant C' > 0 such that,
for any n > 1 and any u in (0,1),

‘ sn/gn _l(u)’
< Cmax((nu(l —u))"Y2 (nu(1 — u)) V3] log(u(1 — u))|_1/6)
and

(b) ‘Ql,sn/%( ) — Qry(u )‘ C(nu) Y21 —u.

COMMENT 2.6. — From Corollary 2.5(a), for any sequence (&,,),, of reals in (0,1/2)
such that lim,, €, = 0 and lim,, ne,, = oo,
lim sup O~ (u)| =0,
nﬁooue[sn,l—sn] ‘ Sn/gn ( )‘
which can not be deduced from a Berry-Esseen type bound with the rate n='/2.
Indeed, if A, is defined as in Corollary 2.4, one can only get that

5L (w) = @7Hu)| < &7 (min(1L,u + A,)) — &7 (u)

for uw > 1/2, which is of interest only if u < 1 — A,,.

If furthermore the sequence (X;);cz is a sequence of martingale differences, then
the conditions on the dependence coefficients can be weakened as follows (the proof
being less intricate is left to the reader).

THEOREM 2.7. — Assume that (X;);cz Is a sequence of martingale differences
such that || Xo|lee < M and E(XZ) = o2. Then

[/
(a) E (W3 (Ps, iz Go2) ) < n7 '/ (1 +y QX,LQ(k)) .

k=1
If furthermore Y ;1 0x 3.4(k) < 0o, then

B E(WE(PeummGor)) < n” (1 £ 3 (kn i) eX,?,A(k)) .

k>1

COMMENT 2.8. — Item (a) provides a rate in the CLT as soon as 0x 12(k) = o(1).
If Ox12(k) = O(k™) with a in (0,1), (a) ensures that Wa(Ps, ; m, Go2) < n= %4,
If Y1 0x12(k) < oo, then the rate is of order n~'/*. Ttem (b) provides faster
rates under the condition Y ;- 60x34(k) < oo. Indeed the rate of convergence
under this condition is o(n~4). If Ox34(k) = O(k™*) with a in (1,2), (b) en-
sures that Wa(Ps, ; m, Go2) < n~*. Moreover Wa(Ps, ; /i, Go2) < n~'/? as soon as
Zk;l ]{30)(7374(]{?) < 0Q.
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3. Examples
3.1. a-mixing sequences

Let (©2,.A4,P) be a probability space and let & and V be two o-algebras of A. The
strong mixing coefficient «(U, V) between these o-algebras is defined as follows:

aU, V) =sup{| PUNV)=PUP(V)|: U €U,V €V} .

Next, for a stationary sequence (Y;);ez of random variables with values in a Polish
space S, define its strong mixing (or a-mixing) coefficients of order 4 as follows: Let
CY<>o,4<n) = sup O‘(]:070-(K17Y;2’Yi37}/;4>> .

ia>iz3>ia>i=n
where Fo = o(Y;,1 < 0). As, [MPU19, p. 146], these coefficients can be rewritten in
the following form: Let B; be the class of measurable functions from S* to R and
bounded by one. Then

1
awa(n) =7 sup  sup [E(F(Y,Y;

129
fE€B1ia>13>12>11 20

Y;37}/;4)|f0>_E(f<}/;17}/;27}/;37n4))“1 :

Hence, an application of Theorem 2.1 (b) provides the following result.

COROLLARY 3.1. — Let (Yy)rez be a stationary sequence of random variables
with values in a Polish space and such that 3"y - | k*ie 4(k) < 00. Let f be a bounded
measurable numerical function and Xy, = f(Y) —E(f(Ys)). Set S,, = >p_; Xi. Then
Wa(Ps, ) s Go2) < n712,

As mentioned in the introduction, this results applies to the class of irreducible
aperiodic and positively recurrent Markov chains (&,) with an atom denoted by A,
under the condition E4(74) < co. Here 74 is the first return time in A and E 4 stands
for the expectation under P, for x € A.

3.2. a-dependent sequences and 7-mixing sequences

We start by recalling the definition of the a-dependence coefficients as considered
in [DGM10].

DEFINITION 3.2. — For any random variable Y = (Yy,- - ,Y}) with values in RF
and any o-algebra F, let
(0)
7
For the sequence Y = (Y;);cz, let
apy(0) =1 and oy y(n) = max sup  a(Fo, (Yi,,...,Y;)) forn >0,

ISISE pgin <. <y

k
alFY) = sup E (H (]ij ng>(0)
€Rk

(%1, .0, TR) j=1

1

where Fy = o(Y;,1 < 0).

Theorem 2.1 (b) together with [DROS8, equality (A.4)] (with E(-|F) instead of E)
provide the following result.

TOME 6 (2023)



694 J. DEDECKER, F. MERLEVEDE & E. RIO

COROLLARY 3.3. — Let f be a bounded variation (BV) function and X; =
f(Ye) — E(f(Yy)) where (Yy)rez Is a stationary sequence of real-valued random
variables. Let S, = Y p_) Xp. If Y501 Koy y(k) < oo, then Wa(Ps, / /m, Go2) <
n=1/2,

From this result, we can derive rates in the CLT for the partial sums associated
with BV observables of the LSV map. More precisely, for v €]0, 1], let T, defined
from [0, 1] to [0, 1] by

T

K 21 — 1 if v € [1/2,1].

This is the so-called LSV [LSV99] map with parameter . Recall, that there exists a

unique 7’,-invariant measure v, on [0, 1], which is absolutely continuous with respect

to the Lebesgue measure with positive density denoted by h,. From Corollary 3.3

above and [DGM10, Prop. 1.17], we derive that W(Ps, / m, Go2) < n™'/? for any

v < 1/4, where f is a bounded variation function and S, = S5, (f(T%) — v4(f)).
We now apply Theorem 2.1 to functions of 7-dependent sequences. Before stating

the result, some definitions are needed.

@) — {x(l +2727)  ifz e [0,1/2]

DEFINITION 3.4. — Let 7 €]0,1], £ be a positive integer and let A,(R%) be the
set of functions f from R’ to R such that for x = (x1, ..., xy) and y = (y1, ..., Ye),

Define the dependence coefficients (7, ¢ v (k))r>1 of the sequence (Y;);cz by

ey (k) =

max sup
ISTSE 45> >0 2k

E(f()/lua}/z]) fO)_E(}C(}/’LN?K]))

sup
f €Ay (RY)

Examples of 7,-dependent sequences are given in [DP05].

Let (Yx)rez be a stationary sequence of real-valued random variables and f be a
bounded and n-Hélder function, with n €]0, 1]. Define Xy, = f(Yi) —E(f(Y%)). Then,
for any positive integers p,q and k, 0x,,(k) < C7,,v(k) where C is a positive
constant depending only on p, ¢ and || f||«. Hence the following result holds.

COROLLARY 3.5. — Let f be a bounded and n-Hélder function with n €]0, 1] and
Xi = f(Yr) —E(f(Yx)) where (Yy)rez is a stationary sequence of real-valued random
variables. Let S, = Y3 Xp. If 3501 k74 y(k) < oo, then Wy(Ps,  /m, Go2) <
n~12.

From this result, we can derive rates in the CLT for the partial sums associated
with Holder functions of the LSV map above. Starting from Corollary 3.5 and taking
into account [DM15, Prop. 5.3 and Inequality (4.2)], we derive that if v < 1/4, then
Wa(Ps, ) m, Go2) < n~12, where S, = Sp_ (f(TF) — v,(f)) and f is an n-Holder
observable with n €]0, 1].

We now define another class of functions which are well adapted to 7-dependence.
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DEFINITION 3.6. — Let ¢ be any concave function from R* to R™, with ¢(0) = 0.
Let L. be the set of functions g from R to R such that

lg(x) — g(y)| < Kc(|lz —y|), for some positive K.

Let g € L. and Xi, = g(Yix) — E(g(Y%)) where (Yi)rez be a stationary sequence
of bounded real-valued random variables. Then, for any positive integers ¢ and k,

Tex (k) < Ke(my(k)). As a consequence of Corollary 3.5, the following result
holds:

COROLLARY 3.7. — Let g € L. and Xy, = g(Yi) — E(g9(Yx)) where (Yy)rez is a
stationary sequence of bounded real-valued random variables such that 1y 4y (k)) =
O(p") for some p in ]0,1[. Let S, = >0, X;. If

1 (logt)?
/ “’i Y ctydt < oo,
0

then WQ(PSn/\/ﬁ, Gg2) < n*1/2.

Corollary 3.7 applies in particular to X, = g(T*) — v(g) where T is a map from
[0, 1] to [0, 1] that can be modelled by a Young tower with exponential tails of the
return times and v is the usual invariant measure (see [DM15, Section 4] adapted
to the case of exponential tails of the return times).

3.3. Symmetric random walk on the circle

Let K be the Markov kernel defined by K f(x) = (f(z +a) + f(z — a))/2 on the
torus R/Z, with a irrational in [0, 1]. The Lebesgue-Haar measure m is the unique
probability which is invariant by K. Let (&;);ez be the stationary Markov chain with
transition kernel K and invariant distribution m. For f € L%(m), let

(3.1) Xy = [(&) —m(f).
This example has been considered by Derriennic and Lin [DL01] who showed that
the central limit theorem holds with the normalization /n as soon as

o~

k 2
(3.2) ké* CM < 0,

o~

where f(k) are the Fourier coefficients of f and d(ka,Z) = min; ¢z |ka — i|. The aim
in this section is to give additional conditions on f and on the properties of the
irrational number a ensuring rates of convergence in the CLT. Let us then introduce
the following definition: a is said to be badly approrimable in the weak sense by
rationals if for any positive e,

(3.3) the inequality d(ka,Z) < |k|~'°¢
has only finitely many solutions for k € Z*.

From Roth’s theorem the algebraic numbers are badly approximable in the weak
sense (cf. Schmidt [Sch80]). Note also that the set of badly approximable numbers
in [0, 1] has Lebesgue measure 1.
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An application of Theorem 2.1 together with [DR08, Lemma 5.2] and their in-
equality (5.18) give the following corollary.

COROLLARY 3.8. — Let X be defined by (3.1). Suppose that the irrational
number a satisfies (3.3). Assume that for some positive ¢,

|7 k)] < oo

sup |k
k£0

Then W (Ps, / jm, Gp2) < 02,

4. Proofs
4.1. Proof of Theorem 2.1

It is based on the Lindeberg method, which naturally extends to the dependent
case. Let us start by giving an overview of the proof in a simplified framework.

4.1.1. Outline of the proof in a simplified framework

Assume in this subsection that (Xj)rez is a strictly stationary sequence of ran-
dom variables such that E(Xy|Fr—1) = 0, E(X?|Fr_1) = 0%, E(X}|Fe1) = O,
E(X}|Fr_1) = B4 and E(|X}|?) < M. In this context let us show that Wa(Ps, , Gpe2)
= O(1).

Let (Y3)rez be a sequence of iid random variables with N(0,0?) distribution,
independent of (X;)zcz. Let also Z be a random variable with A/(0, 02) distribution,
independent of (X, Yy )kez. Let T,, = Y1+ - -+Y,,. We first note that, by the triangle
inequality,

W2 (Pgn, Gna2) < W2 (P5n+z, PT,ﬁ-Z) + 20 .
It remains to prove that Wy(Ps, 1z, Pr,+z) = O(1).
By [Rio09, Theorem 3.1], if u and v are two probability laws on the real line,

Wi (p,v) < AGa(1u,v) where Gl ) =sup{ [ fu— [ fdv: f € €)1 < 1}

To control (»(Ps,+z, Pr,+z) we apply the Lindeberg method. Let T}, = >, ., Y,
and let f in C? such that || f"||. < 1. We have

A=E(f(X1++ Xy +2)) —E(f(Yi+ -+ + Yo + 2))
= <]E(f(Sk_1 + X+ Toi+ 2)) — E( (St + Ve + T + Z))) .
k=1
Hence, by independence between sequences,

A= é <E<fn—k(5k—1 + Xk)) - E(fn—k(skz—l + Yk)))

An,k
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where f,,_x(z) = E(f(2+T,x+72)). The functions f,_, are C*> and satisfy Hf,(i)kHoo <
ce(n —k+1)"2/2 for £ > 2 (see Item (1) of the next Lemma 4.4). By Taylor’s
expansion at order 5,

where the remainder term R, ;. satisfies |R,, | < Hfff_)k“oo(M + E(]Y%]))/5!. Since
||f7§‘:’_)k,||OO < cs(n — k+1)7%2 we get that Y7_, |[R,x| = O(1). On another hand,
for any positive integer ¢ < 3, we deduce from the assumptions on the conditional
moments that E(f\?, (S,_1) (X! — V) = 0. Recall that E(X?|F_1) = B4 and that
E(Y}) = 30*. Hence

1Y = B (50,(50) (50— V) = (51— 30" B (£ (51)

Clearly if we use the bound \E(fﬁ)k(sk,l)ﬂ < Hfﬁ)kﬂoo <cn—k+1)71 we will get
a bound of order O(logn) for (5(Ps, +z, Pr,+z). To get the bound O(1), an additional
trick is needed. Actually this additional trick is the content of Item (2) of the next
Lemma 4.4. Indeed by the assumptions on the conditional moments, we get that
Ox34(k) =0 for k > 1. Therefore Item (2) of Lemma 4.4 entails that there exists a
constant ¢ > 0 such that

B (£ (Skn)| <en—k+1)"2 +en !

So, overall, >7_; |In7k| = O(1). This ends the proof of the theorem in this simplified
framework of constant conditional moments up to order 4, with E(X?|F,_1) = 0.
Clearly in the more general framework of Theorem 2.1 much work remains to be
done. Indeed (X})g ez does not necessarily form a sequence of martingale differences
and we do not assume that E(X}) = 0. To solve the latter problem, we will introduce
another sequence of random variables which, in the context of independent random
variables, have the same first three moments as the initial random variables.

4.1.2. Detailed proof in the general setting of Theorem 2.1

Assume first that o2 = 0. In this case G2 = §y and
E (W22 (Psn/ﬁm, 50)) =n'E (SZ) —o?=-2n"">" (k An)Cov(Xo, Xy),

k>1
which, combined with (2.1), shows that the upper bounds (a) and (b) hold.

We turn now to the case o > 0. Let § be a random variable with uniform
distribution over [0, 1] independent of (Xy)xez. Define G, = o((X;)i<¢, ) and G, =
0((X;)iez,0). Define also the conditional expectation operator Eq by Eo(-) = E(:|Gp).

In what follows (Y%)r>1 will be a sequence of iid random variables independent of
Goo- In case of Ttem (a), their common law will be the normal law A(0, 0%) whereas in
case of Item (b), we will have to prescribe also their third moment as it is described
below.
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Let 33 be a fixed real number. Let Z be a r.v. with distribution A(0,0%/2). There
exists a random variable B independent of Z, taking only 2 values and such that
Y = Z + B satisfies

(4.1) E(Y) =0, E(Y?) =0® and E(Y?) =p3;.

We refer to [DR08, Lemma 4.1] for more details. For the proof of Item (b),

(42) B3 =E(X3)+3 Y {E(X3X:) +E(XoX?)} +6> > E(XoXuX,),
i>1

uzlv>utl
which is the limit of n~'E(S3), as n — oo, under the conditions of Theorem 2.1 (b).
Let (Zy)r>1 be a sequence of independent r.v.s distributed as Z and let (Bg)r>1
be a sequence of independent r.v.s distributed as B and independent of (Zy)x>1.
Suppose furthermore that the sequence (Zy, By)r>1 is independent of G,. For any
k} 17 set Yk:Zk+Bk
Next, in case of both items, we define T,, = Y; + Y5 + --- +Y,,. Note that

Wa (Ps, ) iz Go2) < Wa (Ps,jyiizo: Propva) + W (Pr,jyi Go2) -

According to [Rio09, Theorem 4.1], since Y € L*, Wa(Pr, ) /m, Go2) < n~'/2. Since
Ps. ) mire = Ps,/ymg,, the theorem will follow if one can prove that the upper
bounds (a) and (b) still hold with Pg / mg, replacing Pg / mz- With this aim,
we shall apply [MR12, Lemma A.1]. We start by introducing some notations. Let
W = ((X))icz-,0) and E = RZ x [0,1]. Let Ay be the class of real functions f
which are continuously differentiable and such that |f'(z) — f'(y)| < |* — y| for any
(r,y) € R xR. Let also Ay(E) be the set of measurable functions f : R x £ — R wrt
the o-fields L(R x E) and B(R), such that f(-,w) € Ay and f(0,w) = f(0,w) =0
for any w € E. According to [MR12, Lemma A.1], and denoting by N a N(0, c?)-
distributed random variable, independent of all the above sequences (so independent
of (X, Yx)k), the upper bound (a) will follow if one can prove that

(4.3)  sup E(f(S.+ N, W)= f(T,+N,W))
fEeA(E)

< n (1 +3 (k: A \/ﬁ> 9X,2,2(k5)> )

k>1
whereas the upper bound (b) will follow if
(44)  sup E(f(Sn+ N, W)= f(To+ NW)) <1+ >k (kAvVR)Oxaa(k).
f€A2(E) k>1

In what follows, to shorten the notations, we omit the subscripts for the coefficients
0(k).

Proof of Theorem 2.1(a). — We shall apply the Lindeberg method. Let us first
introduce some notations.

Notation 4.1. — Set fn_x(x) =Eo(f(x + N + T, — Ty, W)).

Notice that
foet(@) = [ fl@ =t W)poru s (B)dt
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where (2 is the density of a N'(0,t?). Hence, according to [DMR09, Lemma 6.1],
(4.5) £ =t < (= B4 )02

Since the sequence (N, (Y;);>1) is independent of the sequence ((X;)icz, W),
(4.6) E(f(SutN, W)= f(To+N, W) = 3 E(far(Skor+Xk) = fai(Sko1+Y5)) -
k=1

By the Taylor formula at order 3 and using (4.5), we get

0.2

(4.7) ’E ( Fa (St +Yi) = Fuk(Sir) — Qf,;’_k(skn) <Cm—k+1)7"2.

Similarly

S5 )X?)

(@8) [B (far(S0) = fa-sl(Skt) = ficp(Su0)Xa = 5
<Cn—k+1)712,

Now we control the second order term. Let

(4.9) Pek, i) = fin(Sk—i) = frp(Skica) -
Clearly
Vk]-1
Froe(Se-0)XE = 37 Talks ) X7 + Sl (Seoivm) X0 -
i=1

Since |Tx(k, )| < bs| Xi_;|, by stationarity we get that for any i < k — 1,
[cov (T, i), X7)| < bs | Xo (Bo(X2) — B(XD))|, < (n—k+1)7120().
Since ||f7 4]l < b a.s., we also get by stationarity that
jcov (i (Siopvm) - X2)| < BellBo (X7 ) —E (XPp) Ih < 0 (V) -
Starting from (4.8), it follows that

1

(4.10) \E(fmsk) = Fark(Sim1) = frx(Se) Xe) = SE(S(Sko) JE(XT)

V]
<40 ([\/E]) +(n—k+1)71? (1 + Z G(i)) :

Starting from (4.6) and taking into account (4.7) and (4.10) we derive that

[vn]
(4.11) |E(f(Su+Y, W) = f(T, + Y, W)| < v (1 + > 9(@))

i {E (fror(Se-1)Xi) =B (fi_1(Sk1)) - E(XOXJ‘)H :

k=1 §>1
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To give now an estimate of E(f] _, (Sk—1)Xk), we write

For(Sk—1) = )+ Z( e (Ski) = Froi(Skeinn))
Hence

(4.12) E(f;_4(Sk-1)X3) =
Zl COV(f/%k(Sk—z‘) — ook (Sk—ic1), Xk) +E (fé,k(O)Xk) .

Now f! ,(0) is a Go-measurable random variable. Since f € Ay(F) then f/(0,w) =0
and f'(-,w) is 1-Lipschitz. Therefore

O)‘ < /R |f'(u, W) = (0, W)| @o2(n—is1y(—u)du < ovVn —k+1 as.

It follows that

(413 S[B (%) < VAR TR < Vi S o0k

We give now an estimate of Y%7} Cov(f’ ,(Sk—i) — f_1(Sk—i_1), Xi). Using the
stationarity and noting that |f) _, (Sk—i) — fn,k(Sk i—1)| < ba| Xy—;|, we have

jcov (£ (ki) = Fra(Skmim), X )| < b M Eo(Xy)[l1 < 6(3) .
Hence

n

(4.14) > 37 Jeov (Frn(Ski) = Fri(Skion), Xi))|

h=1 i=[VF]
n 2
<D (iAvn) () < VY (i Ayn) 0G).
i=1 i>1
From now on, we assume that i < [v/k]. We first write
Soi(Sk—i) = frop(Sk—ic1) = fo o (Sk—im1) Xomi + R
where Ry, ; is Fj_;-measurable and | Ry ;| < b3X?_,/2. Hence, by stationarity,

oV (R, Xe)| < by | XTE (X)), (n—k+1)"20(:),

implying that
n [VE]

(4.15) Z Z ’COV Rk 1,Xk | < \/_Z 9

k=1 i=1

In order to estimate the term E(f/_, (Sk—i—1)Xk—iXk), we introduce the decomposi-
tion below:
i—1

P (Seion) = 20 (Fon(Skmime) = Sroa(Shmice1)) + Froi(Ska)

(=1
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where by convention we set S, = 0 if p < 0. For any ¢ € {1,--- ,7 — 1}, by using the
notation (4.9) and the stationarity, we get that

[cov (T, € 4 1) X s, Xi ) | < bsl| X o XoEo(Xi) 1 < (n =k +1)7/20() .

Hence
n [VEi-1 [vn]
(4.16) S5 cov (Tulk, 0+ i) Ximi, Xi )| < v D i6(i)
k=1 i=1 (=1 i=1

As a second step, we bound up |cov(f . (Sk—2:), Xx—iXx)|. Clearly,

k—i—1
fo_i(Sk—2:) = Z Li(k, 0 +1) + f_(0).
Now for any ¢ € {i,--- ,(k —i— 1)}, by stationarity,
jcov (Tu(k, € +4), Xpi X ) | < by | X o(E_o(XoXs) — B(Xo X)),
< (n—k+1)"%().

Hence
n [\/E]k—z—l

(4.17) > Z lcov (Ti(k, €+ i), X ,Xk)’<<f25/\f 0).
k=11i=1 (=i

Next, note that
implying that

(4.18) Enj

Taking into account the inequalities (4.13)-(4.18), and using that >, ., 0(k) < oo,
we get

‘COV( £(0), X ZXk)’<<iZ 0([k/2]) <<\/_29

k=1 =1

Mz

n VA
(419) S |E (£ (Se-0)Xk) = DB (£ (Sk-2i)) E(Xp—iXi)
k=1 i=1
< \/ﬁ(1+ 3 (é/\\/ﬁ)e(f)) .
=1

We handle now the quantity

Ay = ZE( " (Shean) ) B(Xi X) — Z]E( ok (Sko1)) B(Xi X)

We first note that by stationarity,

’E (f;z/—k(sk—l)) E(Xk—iXk>’ <by > EXEo( X))l < > 0(i).
i [VE]+1 iz [VE]+1 i> [VE+1
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Hence

n

(420) 3 S [E (2 a(Sko)) E(XimiX)

k=1;> [Vk]+1

<Y (in \/5)2 0(i) < vn > (i A/n)O(i) .

1>1 i>1

On another hand, we write

E (£ 4(Si1) = £ 4(Sk2)) E(XioiX0) = 3 B(Tu(k, OE(XoEo(X.)
/=1

Therefore

] [VE]
S (A r(Se1) = £y (Sko20) ) E(Xpi X0)| < (n =k + 1)72 3 i6(i),
i=1

=1

implying that

n [VE] (V]
(4.21) ZgunwmtmmmmmAM<ﬂ;w>
Hence (4.20) and (4.21) entail that
(4.22) Xij ENESDS (i A V) 0G) .
The estimates (4.19) and (4.22) yield to
(4.23) zn: E (f_x(Sk-1)Xx) — ZE( #(Sk-1) ) E(XoX5)
< \/ﬁ(1+ 3 (é/\\/ﬁ)e(ﬁ)) .
=1

Taking into account the estimates (4.11) and (4.23), Theorem 2.1 (a) follows. O
Proof of Theorem 2.1(b). — Recall that in this case the iid random variables
(Yk)k>1 have their first three moments defined by (4.1) and (4.2).

Notation 4.2. — For any integer k > 0, let X;, = X, — Eo(X%) and Sy =S —
Eo(Sk), with the convention Sy = 0.

Note that, since we assume that ;-4 jé(j) < oo,

IEo(S, QZZ B (Eo(X:)Eo(X;)) | < 2M§njj9(j) <1.

=1 j=1

Therefore, using that f'(0, W) = 0 and that | f'(z, W) — f'(y, W)| < |z —y|, we infer
that to prove (4.4), it is enough to show that for any f € Ay(FE) and any positive n,

(4.24) o )]E(f (Sn+ NW) = f(T + N,W)) < 1+ 3k (kAvn)0(k).
€N (F k>1
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This will be done by using again the Lindeberg method. Let us introduce some
additional notations.

Notation 4.3. — For any positive integer k, let A, = fn_k(gk_l + /)Zk) —
fa—k(Sk—1 + Yx) where f,_j is defined in Notation 4.1.

All along the proof, the following lemma will be used (the proof is postponed to the
Appendix A and is based on the fact that the common distribution of the random
variables (Y)r>1 is smooth).

LEMMA 4.4. — Let f € Ay(E).

(1) For any i > 2, there exists a positive constant r; depending on o? and i and

such that || f% |l < k1(n — k 4+ 1)@=9/2,
(2) Assume that Y ;.- kfx34(k) < oo. Then, for any i > 2, there exists a
constant ks > 0 depending on o2 and i such that, for any integer { > 0,

(10 ()] < ol D09 1t 8

Remark 4.5. — If (Xi)rez is a stationary sequence of martingale differences,
Item (2) is valid under the condition Y5 0x23(k) < oo.

Since the sequence (N, (Y;);>1) is independent of ((X;)ien, W),
(4.25) E(f (Sn+NW) = f(Ty+ N,W)) =S E(Any).

Next the functions f,,_; are C'°. Consequently, from the Taylor integral formula at
order 5,

I P . .
(4.26) Do =35 120 (Simr) (K= ¥ ) + R
j=1J"
with
1 —~5 ~ _
Rug = 5;Xi / (1= 5)* 17, (Sicr + sX2) ds
|

24Yk, / (1-— s)4f7§5_)k <§k_1 + sYk) ds.

Taking into account the fact that || X||.c < M and Ttem 1 of Lemma 4.4, we derive
that

|Buill < (M° +E (V) [ £ < (n =k +1)7%2.
Therefore,

(4.27) > Rkl < 1.

ke [1,n]
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Let 3y = 02 = E(Y}?) and 34 = E(Y}}). Since the sequence (Y;);~; is independent of
the sequence (X;);>1,
=

g

1 _
::E(A(1)+ SAC)+ LAG) 4 MA;%;)Jan,k.

(4.28) E (A — Rog)

Free (8uea) X+ 32 0% (1) (% - 1))
=2 "

Frk (gkfl) Xy + 24: gl,f,?)k (gkq) (X;ﬁ - 5@)) + én,k
=

Using Lemma 4.4 (1), we first notice that

(4.29) > Bl < Y IE(X0)Ih < 1.
ke(l,n] ke[l,n]

Next we develop the first four terms in the right-hand side of the decomposition (4.28)
with the help of the Lindeberg method. From now on, to soothe the notation, we
shall omit most of the time the index n in all the A(lk and the related quantities,

and then rather write Ak). Let us start with the term Ak . Using Lemma 4.4 (2),
note first that

@30 SC[E (A% (Ser)) (BOXGD + 82)] < 3 (_zfm/ i 1) e
k=1 k=1

Next, we write

£ (Seea) (X = E(Xii))

k-1

= 12000 (X5 = EXD) + 30 (A% (Siei) = £2 (Shmic)) (X - E(XD)) -
By Lemma 4.4 (1) we get -
(4.31) znj\cov( ,Xﬁ)(«in—m <<Ze
and - -
132) 3 3 o (782 (81-) — £2% (Burrm0) 1)
< M° ?‘1(” — k4 1)7%? ie(i) < i@(z’) .

Taking into account (4.30), (4.31), (4.32) and the fact that >, -, 0(k) < oo, it follows
that

(4.33) Z(E( )< 1.
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Now, concerning the first term in the right-hand side of (4.28), letting ¢, = [k/2],
we write

(4.34) (A“))
=E (oo (Sk-01) X) +ZE ({Fe (Sxi) = Foi (Siin) } Xo)
_E (A;Q) + ;IE (A,‘j;) + 6E (AL) +B%
where, for j = 2,3,4,

Ay an o (Sicint) XX,

and

By =

. 1 b _ _ U
E (f1-i(Si-a-1)Xe) + 52 /0 (1= B (£, (Sucicr +sX4mi) X, X1 ) ds.
i=1
We start by noticing that, by Lemma 4.4 (1), for any m > 2 and any s in [0, 1],
n L _ ~ N ~
(4.35) 33| A (Skoion + sX) (X! Xe — X7 X0 )|
k=1 i=1

< MY = e DEE S (B (X + B (X)) <€ 3 RO(R)

k=1 i=1 k=1

On another hand, since f/_,(0) is Fo-measurable, E(f’_, (0)X}) = 0. Therefore

E (oot (Si-timt) Xo) [ = [E({£1k (Sitimn) = £14(0)} X

< [ R (A (11 a) Bonn Xt < A 12| (6~ 06000
Since ||f,§)k||oo < land Yo, kO(k) < oo,
(4.36) > ‘E (f'r/z—k (gk—zk—l) /Xk)’ < 1.
ke [l,n]

Next, Lemma 4.4 (1) implies that
B (£ (Skoir + sX) Xi Xe)| < MA[ 2] _06) < (n =k + 1)7/20(3).

Hence

(4.37) ZZ\E(M(SM L s X) X ZXk)‘<<ZG )< 1.
k=11=1
The upper bounds (4.35), (4.36) and (4.37) imply that
(4.38) S B <1
ke [1,n]
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Next, taking into account Lemma 4.4(2) and the fact that |[E(X}_, X})| < M?30(i),
we derive that

B { £ (Seia) PE (X X0) | < ((n = k4 1752 4+ (n—i)71) 003).
Therefore
n A _
(4.39) SO E{AD (S JE (X X0) | < Yo 6() < 1.
k=1 i=1 i>1
So, overall, starting from (4.34) and taking into account (4.35), (4.38) and (4.39) we
get
1 1 1
(440)  E(AY) =E (A1) + 5B (AL3) + GE (ML) + A0 + 5405+ Bl
where Bfll,)c is such that
(4.41) > B«
ke [1,n]

and the following notations have been used: for j = 2, 3,4,

A = 3 {0 (S ) ()
(4.42) =

0 s -
Al(clj) =) E {f?g,]—)k‘ (Sk—i—1> } E (X,]c_ile) .
i=1
Introduce now the following additional notations.

Notation 4.6. — Let v; = E(XyX;) and %(2) = E(X§X;). Define §,, = 255 %,
By =2 Yist1 i and P = 3y, 72'(2)-
Next note that, since E(X;_;X}) = i,

J4% 7
(4.43) ;E {ff{_k (§k_1)} Bog — Ay =% E {ff{_k (§k_j) — fok (§k_j_1)}
=1 j=1

1

Ly le A 0 - —
= Z%’ ZE {fﬁ)k (gkfjfl) j(kaj} + Z % ZE {fqgi)k (Skfj—l) X%—j} + rle,l)m )

=1 j=1 i=1 < j=1
where
1 1 ke i . N
=5 [ =0 5 S E{ A (Sigmr + tX0y) i dt
=1 j=1
By Lemma 4.4(1), it follows that

Ly,
ks < MY (n =k +1)732 3 i)

i=1
Since Y, 1 16(7) < oo, this implies that

(4.44) > s < 1.

ke [1,n]
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Next, taking into account Lemma 4.4 (1), we get

fj Z < (n—k+1)"Y20(k — )603) .

i=1j=1

E {f,(i)k (gkfj—l) EO(kaj>} Yi

Hence, since ¢, = [k/2] and Y-, ,46(7) < oo,

i

n Ly Ui
(4.45) ZEZEM%@]mme%<Zem§;o<l

With similar arguments, we have

< 1.

(4.46) Sy

k=11:=1j5=1

B{fo (Shsm) (X = X2 b

In addition, by taking into account Lemma 4.4 (2), we get

E {70 (S ) E(XE) b < M (0= k4 D72 (0= 1)) 000).

Hence,

n 7

(4.47) ZZZ

k=11i=1 j=1

{2 (Simgmr) B (XE)

i(”"”l 3/2+(n—€k)_1)2z'0(z') < Yifi) < 1.

i=1 =1

So overall, starting from (4.43) and taking into account the upper bounds (4.44)-
(4.47), we derive that

(4.48) ;E {4 (Sk1) } Bow, — ALY =

Z%Xi:E{ (Sk —j- 1>Xk’ J}"’Z%ZE{ n— k(Sk —j— 1) (Xk g) }+Rnk27

i=1 j=1

where R( k.2 1s such that

(4.49) > R <1

k€ [1,n]
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Now, let é,)c = 1]E{fn ) (Si 1)} 63,10, — ;(c; Then, recalling the notation 7% =

Z% { (Sk 1)} _Al(cl,:)’,
ﬁﬁ@zﬂﬁ R e

j=1

Cy. 7 —~
_ Z%@) > (E{1% (Siemr) Xums}

(4.50)

+/<1 E{ A% (Skgr +1%0,) X2}t
=ria(1) +riks(2).

Taking into account Lemma 4.4 (1) and the fact that |”yl(2)| < M20(i) and || X |00 <
2M, it follows that

i 0(i) ity i 0()
‘ ’<<lz;; n—/7<:—i-1)3/2 (n—k—l—l)?’/?'
Therefore, since ;- i0(i) < oo,
(4.51) > @] <1
ke[1l,n]

On another hand, by Lemma 4.4 (1),
PE{ £k (Skso1) Bo(Xip) | < (0 = b 1) 700k = )6(3)

Hence, since Z¢>1 z@(z) < 00,

(4.52)

YOR{ £, (Siejor) Bo(Xi—j) }\<<Ze [k/2)) Zz@ )< 1.

k=11i=1 j=1

Starting from (4.26) and taking into account (4.27), (4.28), (4.29), (4.33), (4.40),
(4.41), (4.48)-(4.52) and the fact that 8y = 0% = E(X2) + fay, + B we get

(4.53) E(A,x) =

E (A1) + 3B (51 (3ua) (32)") = 3B (1 (3a1)) 657 + 3 (a)

L % Lk . ~
DRDLCACEREMES 3F > 3 TN CERIEHE
=1 =1 7j=1

(2z

_EZ’YQ > (B {0 (Brs) Xass} + 5B (12 (51) (X2 - (5 = Ban)
)
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where F( L satisfies

(4.54) > <1,
k€ [1,n]

Note first that

(4.55) S [E (£ (Ska)) B8
k=1

To handle the first two terms in the right hand side of (4.53), define

my = {\/n — k} , My = min(my, k —i—1)
and D)y = B{ £ (Sk-ict) (Ximi X)),

<<Z >0 < Y ib(i) < 1.

k=102 0,+1 i>1

< Z ’B(fk)

(4.56)

Then, for any integer ¢ in [0, ¢;], with the convention that S, =0 for any u < 0, we
write

D)y
. { (57 (Scromr)) + i (77 (5s) ~ s (5usr)) <X,”Xk)<o>} |
5
Let then, for £ = 3,4,5 and ¢ in [0, 1],
(4.57) At = % 10 (Simgor +tX0y) XX X0) ©.
j=it1

By the Taylor integral formula,

1~-@a4
(@58) Dy = B{ £ 4 (Sucimmr) (miX) + A5(0) + 32175 0))

+§/0 (1—t)2E{Akll52)( )}dt

But, since || f/ 1|l < 1,

E{fn k(Sk i— mszl) (Xk*iXk)«DH

~

k

< (O(my) + 0(k — 1)) A 0(i)

[M]=

e
I
—
o
I
=

A
Mz

mif(my) + Z 0(i +k9([k/2])>

[v7]
K14+ > KOk)+n > 0(k)
k=1 k> [val
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710 J. DEDECKER, F. MERLEVEDE & E. RIO

Hence

(4.59) zij é

On another hand, by using Lemma 4.4 (1),

{1k (Skcimmp 1) (XaeaX) DY < 14 30 b (kA VR) 0(k).

k>1

n n g H‘mkze /\0()
won) S 3E IHONES IS —1)3/2<<Zae /2) < 1.
k=11i=0 k=11i=0 j=i+1
For ¢ = 3,4, set
1,6) e
(4.61) ARy = > £ (Sky) X2 (X X))
Jj=i+1

Applying Lemma 4.4 (1) and using that my,; < vn —k + 1, we get

n Zk
(1,3) 7
@62 Y3 E{AL0 - A}
k=11=0

n Zk Z+mk i

<> > HEO (Xe ) o2 (Sk —j— 1) <Xk_iXk)(0)H1

k=11i=0 j=i+1
n Lk kg /\9( i) A O(0)

<3y y M ANUCL,

k=11i=0 j=i+1

< f: kO([k/3]) < 1.
k=1

Similarly, since || £} [loo < (n =k + 1)1, we derive

n A
(463 >3 [B{ALZ0) - A< 1.
k=11=0

Starting from (4.53) and taking into account (4.54), (4.55), (4.58), (4.59), (4.60),
(4.62) and (4.63), we then derive that

(4.64) E(A,,) =
1& 1.3 1, a4 1 1
- Z (1 + 1{#0}) E {Agmg) + QAI(c,é,Q)} + §E (A;%)

_Z%iE{ P (Skmjmr) Xamy ) —i?il@{fﬁ?k (Skj1) (X,ij)m)}

S S (B (A (o) s} R (o) (30 - (0= 1)

+6E(A )+

where FSL satisfies > ), |F;23€| L1+ Y451 k(kAy/n)f(k). Introduce now the follo-
wing notations.
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Quadratic transportation cost in the conditional CLT 711

Notation 4.7. — Let

Mo by, Mg

Bsom, =3 > E (XOXZ'Q) v B3y, = 6> > E(XoX;_iX;);
i=1 i=1 j=it1
Next, let 55,8’“ e _ = B3 — B30, — {B(XG) + Bs2.m, + B30, .m, }» Where we recall that

my, and my; have been defined in (4.56).

Since

B ™= 3V E(XEX)+3 Y E(XoX?)

P>l 7;>mk,0

Ly,
+6) D> E(XoX;X;0)+6 > > E(XoX;Xj4),

i=17>my,; i>0,5>1

by Lemma 4.4 (1),

Z ang)kH ’ (fk my,)

<<§n:(n—k:+1)‘1/2 S 03)

=l Amy
n J4%
Y (n—k+ D723 ST ) A0 + DS 0G) A0G) |
k=1 i=1j>my+1 12521
By simple algebra, and since Y, ; i6(i) < oo, we then derive that

<<1+Zz‘(7;m/ﬁ)0(z').

(Ekvmk)

(4.65) z £ |BS

Next we shall first center the random variables Xj,_; (Xk,iXk)(O) appearing in the
quantity A,E}Zz;) Using that E{X}._;(X}_;Xx)®} = E{X}_; X} ;X}.}, an application
of Lemma 4.4(2) gives

(4.66) Jig =
0y, My
{f —k (g’“ 1)}557&,% -2 > E{ i (Sk —j- 1)}E{Xk:—j (Xk—iXk:)(O)}
i=1 j=i+1
Oy, M
<3 3 E{FD (Simr) = £ (Sayma ) H (0G — i) 1 0(3)) -

i=1 j=i+1

Let us handle the quantity E{ f'¥), (S,_1)— f¥ (S k—j—1)}. By Taylor integral formula,
. ~ j
E {fqgg—)k; (Sk—l) — 1% (Sk—j—1>} ZE{ Nk (Sk - 1) Xp— z}

+ [ (1S B (Sers 1K) X2Vt
/=1
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712 J. DEDECKER, F. MERLEVEDE & E. RIO

By using Lemma 4.4 (1) and noticing that 0(j — i) A 0(i) < 0([7/2]), we get

n L ttmii j _ . .
467) S5 S SR (Sicer +tX0e) X3} (0G — i) A 6()|
k=1i=1 j=it1 (=1
n Oy, M
<k + )Y S 6(l/2)
k=1 i= lj i+1
n Vil
<> (n—k+1) —3/2 Zj )+ Y, GO
v
< Y i(inn) o).
i>1
Next, by Lemma 4.4 (1) again,
n Yl i“"mk,i J 4 "
(4.68) S5 > S E{ A (Skoeo1) Bo(Xi—e) } (0 — i) A 0(3))|
k=1i=1 j=it1 (=1
n O, Mg g
< -k 413 S S0k — 08(1j/2)
k=1 1=1 j=i+1 ¢=1
[n/2] b M
<Y (n—k+D)7'> > jo(4/2)
k=1 i=1 j=it1

(k/2] i+my, [k/2]+my

FY kY S S 60— 06(/2)).

k=[n/2]+1 i=1 j=i+1 (=1

With the computations as given in (4.67) and the fact that

n [k/2] itmy [k/2]4mp
(4.69) [Z/:] (n—k+1)7" 3 > Z 0k —0)0([5/2])
k=[n/2 =1 j=i+1 =
n (k/2] it+my,
< [Z] (n—k+1)7kO(k/A]) > > 0(15/2) < > ko(k) 3 00),
k=[n/2]+1 1=1 j=i+1 k>1 1>1

we derive, overall, that

Oy i+ Ji

i=1 j=1+1 ¢=1
where FS’L satisfies >4 |1“7(133€| L 14 Y;511(i A y/n)0(i). Next, for my, defined
n (4.56), write
E {fr(i)k (gk—ﬁ—l) Xk—e}

€+mk ¢

=E{ S (Sicvcm) Xece + 3 LU (8ima) = £0% (Skmumt) Xie )

u=~+1
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implying, by using Lemma 4.4 (1), that

‘E {ff(i)k (gk—é—1> Xk—é}‘
L+ ¢

L (n—k+1)"O0my) +0(k—0)+n—k+1)72 3 0u—1).

u=~+1
Hence

n £ ttmgg;

S5 S S R {9, () X} 001/2)

k=11i=1 j=i+1 ¢=1

n L ttmi;

<> D> (n—k+1)7'0([5/2]) {J’@(mk) + XJIQ(k‘ - f)}
/=1

k=11i=1 j=i+1

n L z+mk

+2.>. > (n—k+1) 3/219([1/2])2 0(u) .

k=11i=1 j=i+1

With the computations as given in (4.67)-(4.69) together with the fact that

n

[Vl
S (0 — k+ 1) mg8(my) Zk 126 (V) < Y (k)
k=1

k=1
it follows that

n Ly ttmig;

@) Y3 Z‘E{f7§4k(8k 1) Xie | 0(5/2) < 14+ X (i A V) 0().

k=1i=1 j=i+1 (=1 i>1

Therefore (4.70) together with (4.71) imply

@72) B {7 (5e)} B
k=1
- Zli E{ £ (Skoyo) JE{ Xy (XemiXn) O} < 1+Zz(m\/ﬁ) 0(i) .

With similar arguments, we infer that

(4.73) zn: { o k(Sk 1)}3372,% ZE{ n— k(s"f —J- 1>}E{Xk_j (Xg)m)}

k=1
<140 (i Av/n)6(i).
i>1
Now, for any integer i € [0, n], let
(1,3,0) A B (& 0))©
Apis) =) {fn—k (Sk—j—l) (Xk—j(Xk:—iXk) ) } :
Jj=i+1
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Starting from (4.64) and taking into account (4.65), (4.72) and (4.73), we then
obtain

(4.74) E(A,x) =

1%(1“{#0})1@@;12 b e () + B (19 (50) (X0 - E (X))

i _ APV ~
S Belah e ) £ R ) ()]
(2)

V4
_ Z; Ji Z;E{ff)k (Ek,j,l) XH} + i io (1 + 1{#0}) E {A,(jfz)}
1= J= =

where FS{L satisfies > 7_; |F£L4L] L1+ A Vn)o(i).
In what follows we continue the estimation of each term in the right-hand side

of (4.74) and show that the sum over k from 1 to n of their absolute values is

bounded by a constant times {1+ >~ (i A /n)0(i)}. Let us start by dealing with

the quantities A;ZBQO) With this aim, note first that for my, ; defined in (4.56),

1 5 ) (s %))
fn_kHoo (00ma) AOG — i) A 6(i))
< || £2] L (8mi) A OG — i) A 6G) + 6k — 5) A6 — i) AB()) -

<|

Hence, by Lemma 4.4 (1) and the fact that my, < vn —k +1,

n £ ttmig;

@m Y Y

k=11i=0 j=i+1

~ 0
E {fég—)k (Sk—j—mk,j—l) (X (Xk’_iXk)(O))( )}‘
< 9 —+ 6’ +£ (9 k 3
Zm(m )+ X 000+ /])

<<Zf9( k) + Z z’)+zn:k:9(k)<<1+2z'(iA\/ﬁ)9(i).

i> [\f ] k=1 i>1
On another hand, by the Taylor integral formula,
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E { (fT(Lg_)k (gk—j—l) - fflg—)k (gk_j—mk,j_1>> (Xk‘—j (Xk—iXk)(O))(O)}
= S E{ (10 (Sucsma) 12 (Bucsac) (i (30 )
= ZE{ n— k(Sk —j—u— 1) X Jj— u(Xk J(Xk sz)(O))(O)}

ka

+Z/ (1-1)E { O (St + X0y X (X (X ZXk)())(O)}dt.

According to Lemma 4.4 (1),

n Ay ttmpgmg;

(4.76) >.> > >

k=11i=0 j=i+1 u=1

E {fs)_)k (ﬂgk—j—U—l + tj\(/k—j_u) Xi s (X’“‘j (Xk_iXk)(O))(O)H

S IEATS 35 3 NCRVORYE)

1=0 j=1u=1

n (vn]
<<Z(n—k+1>‘3/2{§u29<u)+mi > 0(2’)}

k=1 izmp+1
v

< Do wP(u) + 3 i06) < 1+ > (i Avn) 0().
u=1 i>1 i>1

Next, let Zp i = Xpu(Xpej (XposXp) @) and z,gO;m = Znui — B(Zpjui)-
Since

B(Z ji)| < (0(u—5) + 0k = §)) AOG — i) AO(),
by Lemma 4.4(2),

n £ ttmg jtmg;

SUIPHIPIEDS

k=11=0 j=t+1 u=j+1

{fr(;i)k (gkfufl) } E (Zk,j,u,i)

n G PRI 0y — §) 4+ 0(k — §)) A O — i) A 0(i))
<Yy > oyl (n—u)A(n—k+ 1)

k=11=0 j=i4+1 u=j+1

< Z (n—k+1)"24+n") (mi ZZ 0(i) + mz u?0(u) + mzke([k/:s])
<1+ Zu(u/\ﬁ)G(u)
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On another hand, for my,,, defined in (4.56),
E{2% (Se-vmet) 2%}
112 {( (mi) AO(u—7)AB(j —i)/\Q(i))+(H(k—u)/\Q(u—j)AQ(j—i)/\Q(i))}.

Hence, using Lemma 4.4 (1) and the fact that mi <n —k + 1,

{ (Sk — u—l) Zlgoj)ul}

<

n Zk 7‘+mk J+mk]

(4.78) > > > 2

k=11=0 j=t+1 u=j+1

P Z=>my

<<§:(\/E9 + > 0(i) + ko(k ><<1+Zu(u/\\/ﬁ)0(u).

k=1 i> [VE uzl

Next
E{ (£ (Sionea) = £ (Sicamt)) 2%
UFM o
= S E{( (Sim) - 10 (Simm)) 20,

v=u+1

UFM o

= / b (Skovt) +tX5my) XiooZi) i bt

v=u+1

Therefore, by Lemma 4.4 (1),

n A ttmgJtmg;

(4.79) ZZ S [EL (Seumt) = A% (Skcumm1)) 2800}

k=11=0 j=t+1 u=j+1

n £ ttmg; jtmg; utm

<Yy Yy ZWMH(%UMWﬁMWﬂMWD

k=11=0 j=i+1 u=j+1 v=u+l

<Y o L0 Y e Z 0

n (V]

<<Zk3/2263 +Z": > 9(2)<<Zu(u/\\/ﬁ)9(u)

k=1, > [\/E} uz>1
Taking into account (4 75), (4.76), (4.77), (4.78) and (4.79), it follows that
(4.80) Z Z ‘E (A](:lszo))‘ <14+ > u (u A \/ﬁ) O(u).
k=11:=0 u>1

With similar (but even simpler) arguments, we infer that the sum over k from 1 to
n of the second and third terms in the right-hand side of (4.74) are also bounded by
a constant times {1+ 3,51 u(u A \/n)f(u)}. More precisely,
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sy S (k) + B (12 (o) (522 (x3) )
<<1+Zu(uA\/ﬁ)9(U)-

u>1

We deal now with the fourth term of the right hand side of (4.74). With this aim,
recalling the definition (4.56) of my j, note that

B { £ (Skjomi, 1) Xk—j}’ < Hfﬁ)kuoo 0(mi,;) < ‘fr(i)kHoo (0(mi) + 0k — 5))
Hence, by Lemma 4.4 (1) and recalling the notation 7; = E(XyX;), we get

(4.82) szz

k=11i=1 j=1

WE{ Ao (Sicimmemn) X}

<<Zn—k+1 WZie (O(my) + 0(k — §))

i=1j=1
< SO K (VE) S i00) + 3 0([k/2) Y i6() < 1.
—1 i>1 k=1 i>1
Next, by the Taylor integral formula,
]E{(f,(i)k (gk—jfl) - fT(Lg)k (gk —j—my,; 1)) Xk*j}
Jtmy,; ~
Zl E{( n—k (Sk u) f?g—)k (Sk;—u—l)> Xk_j}
u=j+
+m,; —
_’ > (E{£Y (Sk_u_l) X k—uXk—j}
u= ]+1

But, by Lemma 4.4 (1),

n Ly i Jtmg;

(4.83) > > >, >

k=11i=1 j=1 u=j+1

Vi { n— k(Sk u— 1"’th U)Xk u Xk JH

< znj(n —k+1)723 " 0(w) Y i) < 1.

k=1 u>1 i1

On another hand, by Lemma 4.4 (1) again,

Vil {fy(f_)k (gk—u—l) (Yk—u — Xk—u) Xk:—j}‘

= |vE {fff_)k (gk—u—1> EO(Xk—u)Xk—j}‘
< (n—k+1)7"Y0(k —u) AbO(u—5))0(i)
< (n—k+1)710([(k - j)/21)0(i)
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Hence,

n Ly i Jtmg;

(484) > > > >

k=11i=1 j=1 u=j+1

Vil& { e k<Sk: u— 1) (Yk—u_Xk—u> Xk:—j}’

<<Ze [k/4]) Z 0(i) < 1.

1=1
Moreover, by Lemma 4.4(2),

n L, i Jtmg,

(185) 233 >

k=11i=1 j=1 u= ]+1

’}/7, { n— k(Sk u— 1>}E(Xk7uxkfj>‘

<3y Z Zkl (n ue)(i anzelfl iz < 1;0([”/2]) ;i@(i) < 0.

k=11i=1 j=1 u=j+

Hence, taking into account (4.82), (4.83), (4.84) and (4.85), we derive that

n L

(4.86) Zzi

k=11=1j=1

HWE{ 2% (Simyr) Xy |

n Ly i Jtmp;
<1+>0)° >
k=

1i=1j=1 u=j+1

vE { e k(Skz u— 1) (Xk—uXk—j)(o)H -

Next, recalling the definition (4.56) of my,, by Lemma 4.4 (1), note that

n Ly i Jtmg;

(487) > > >, >

k=11i=1 j=1 u=j+1

<<i§:ijz |0 400me ) A 0w — )} 00)

k=11i=1 =1 u=j+1

WE{ £ (Skcucmp-1) (XieuaXie) @]

n L 7

<<im’“6m’“ 29 JESST ST (60— u) A B )} 600

k=11i=1 j=1u=j+1
n 2
< (Zi&(i)) < 1.
=1

On another hand,
‘E{( n_k (Sk— 71) — ffi)k (gk,u,mkyfl» (Xk*"Xk*j)(O)H

< yE{( e (Bi) = 19 (Bant)) (KX )|

U+mk ,u

< ) / ‘E n— k<Sk o1+ X U)Xk o (X Xi—j) )Hdt.

v=u+1
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Hence,

(4.88)

WE{(F2% (Skmur) = £ 0% (Skcsmmen1) ) (X Xis) O}

<[], (000 =) Ao =)o,

Taking into account (4.87) and (4.88) together with Lemma 4.4 (1), it follows that

(3 J""mk]

(4.89) izz >

k=11:=1j=1 u=j5+1

1E { e k;(Sk: u— 1) (Xk—uXk—j)(O)}'

<1+Y (n—k+1)7323 00(v) Y ib(i) < 1.
k=1 v=1 =1

Starting from (4.86) and taking into account the upper bound (4.89), we get that
the sum over k from 1 to n of the fourth term in the right-hand side of (4.74) is
uniformly bounded as a function of n. More precisely,

(4.90) Y

k=11i=1 j=1

”YiE {fT(LBL)k (gkfjfl) Xk,j}‘ < 1.

Similar computations (even simpler since we deal with the fourth derivative rather
than the third one) give the following upper bound concerning the quantities involved
in the fifth and sixth terms in the right-hand side of (4.74):

(4.91) iZZ( { k(gk—j*)(Xg—j)(O)H

k=11i=1 j=1

{f(4)k <§k7j71> Xk—j}‘ ) < 1.

We deal now with the last terms in the decomposition (4.74) and show that

(4.92) Xn:

k=11=0

E(ALY)| <1 and D |E(AL)| <1,
k=1
where we recall that A,(if?) and A,(iz)l have been respectively defined in (4.61) and (4.42).
With this aim, note first that, by Lemma 4.4 (2),
n Al ttmg;

(493) Y3 3 [B{AY (Siymr) B (X7, (Xm0 @)

k=11i=0 j=i+1

<Yy Y ((n=k+1)"24 (n—5)") (0 — i) AO() )

k=1i=0 j=i+1

< Z ( n—k+4+1)732 4 n_l) (mk > 03) + gjlué’(u)) < > ub(u)

i =>my u>1
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Next, let Wy, ;5 = (X7 (Xi- X)) (O We start by noticing that

n fk 'l+mk i

>3 S E{(A% (Sesoms 1) Wis)}]

k=11=0 j=t+1

n Zk 'L+mk i

<Y > AR (00mag) A 6G =) A6 )

k=11=0 j=i+1
But, 8(my ;) = 6(my) V 0(k — j). Hence, using Lemma 4.4 (1),

n Ek l+mk i

(4.94) > > ’E{( £ (gk—j—mk,j—l) Wk”)H

k=11i=0 j=i+1

<Y(n-k+1)! (mze<mk>+mk S 00) +m ké([k/i%]))

k=1 L >=>my

< Xn: O(mg) + zn:(n —k+1)72 3 06) + Zn: kO(k) < Y ub(u)

k=1 i Z=>my k=1 u>1
Next, by Lemma 4.4 (1), we derive

n £ ttmg,

195) 3% % [E{(A0% (Sicsa) = 2% (Sisme 1)) W)

k=11i=0 j=i+1

n L i+my ]+mk]

=535 3 SD SN Al 2 (FF N SRS ) B AN [

k=11i=0 j=i+1 u=j+1
n Ly itmy Jtm,;

<2 S L (b - n oG- Ao )

k=11i=0 j=i+1 u=j+1

<Y n—kt1) (mz P0(u) + 2 Y 0@)) < 3 ublu)
k=1 u=1

1=my u>1

Putting together (4.93), (4.94) and (4.95), the first part of (4.92) follows. Similar (but
simpler) arguments lead to the second part of (4.92). Finally, starting from (4.74)
and taking into account the upper bounds (4.80), (4.81), (4.90), (4.91) and (4.92), it
follows that Y7 _; |E(A, %) < 1+ Y i1 k(K A /n)0(k), which combined with (4.25)
implies (4.24) and then proves Theorem 2.1 (b). O

4.2. Proof of Lemma 4.4

Lemma 4.4 (1) comes from the smoothing [DMR09, Lemma 6.1]. To prove Lemma 4.4 (2),
we write

E (4% (5e1)) = B (2% (Se0) | < [£57] | IEo(Sell
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Hence, since |Eq(S;—1)[1 < Sgq0x11 < 1, using Item 1, we derive that for any
positive integer /¢,

B (£ (Seer)) =B (£ (Semn)| < (n =k +1)~07072,

Next, let (G;);>1 be a sequence of iid centered Gaussian random variables with
variance o and independent of (X, By, Z;);>1 (recall that the random variables (B;)
and (Z;) have been defined at the beginning of Section 4.1). Let N, = SF | G;. Write
that

E(£24(Se1)) =B (£2(Se1)) = E (£2(Neer)) + B (£2,(Ner)) -

Next, let ¢, = oy/(n — k)/2 4+ 1 and let ;2 be the density of the law N (0, t3). Denote
also Hy, = >_i" ;1 B; and note that, by definition, H}, is independent of S,_; and
of Ny,_;. Note that

E(12uNe0)) =B (5 0 (Neea + Hin) ) = (1 %6 oy (Hea) )
Using Item (1), it follows that
[E (£24(Neen))| < (0 — b+ 076272,
On another hand
E(f3”4(Se-1)) = E (£ 4(No-1))
=E([f=* 90%)(5(—1 + Hk,n)) —-E (f * @E%)(Nﬂ—l + Hk,n))

= [ E{f/(Seet + Hyp = u) = /Ny + Hypo — ) o™ (u)du.

Since f € Ao(E), g := f'is in A;(F) meaning that g : R x £ — R is measurable
wrt the o-fields L(R x E) and B(R), g(-,w) is 1-Lipschitz and ¢g(0,w) = 0 for any
w € E. Therefore, since it is assumed that Y7, 51 kfx 34(k) < 0o, one can use [DROS,
Theorem 3.1 (a)] (see also [Pén05, Theorem 1.1]) which entails that

Slel% ‘E(f’(Sg,l +v)) —E(f (Ne_1 + v))‘ < 1.

Note that [DR08, Theorem 3.1 (a)] is stated for g a Lipschitz function but following

its proof one can show that it holds also if g belongs to A;(£). On another hand,
wié_l)(u) = t,;igogz_l)(u/tk). Therefore
k

B (£24(Se1)) = E (f20(Nen)) | < 37
Putting together all the above upper bounds gives Lemma 4.4 (2).

A0, < it

Appendix A. Convergence of quantiles in the CLT

In this section, we give an inequality involving the difference between the quantile
of a normalized random variable and the quantile of a standard normal, and the
Wasserstein distance of order p between the corresponding laws. The main result of
this section is Proposition A.1 below which is a key result to prove Corollary 2.5.
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PROPOSITION A.1. — Let Z be a centered real-valued random variable satisfying
E(Z?) < 2. Let F denote the distribution function of Z and ® denote the distribution
function of a standard normal Y. For any p > 1, let

1
K, :/ |7 (1) — o7 (1) dt.
0
Then, for any u in (0,1/2],
. . +1)ek,\ YT (o4 ek,
F;H(1—u) — &1 —u)| < max ((p;,) |2 ,
Fr (1= u) = @7 (1~ )| ( O ) -
where )1y is defined in (2.2).

Remark A.2. — Note that Q1 y(u) ~yu—0 /2In(1/u).

Proof of Proposition A.1. — Throughout the proof, Hy = 1 — ® and Qy is the
inverse function of Hy. With these notations,

exp (—QF (u)/2)
V2mu '

We also set Hy = 1 — Fz and we denote by ()7 the generalized inverse function of
Hyz. From (A.1), Proposition A.1 is equivalent to

(A2) |Qz(u)— Qy(u)] < max<((p+1)e\/% ) (e, /u>1/p)

for u < 1/2. We start by proving (A.2) in the case Qz(u) > Qy (u).

Proof of (A.2) in the case Qz(u) > Qy(u). — Let 6 = Qz(u) — Qy(u) and let n
be the unique real in (0,u) such that Qy(u —n) = Qy(u) +d = Qz(u). From the
convexity of Qy on (0,1/2],

(A.3) Qy(u—1tn) < Qy(u) +td for any t € [0, 1].

Moreover Qz(u —tn) = Qz(u) = Qy(u) + ¢ for ¢ in [0, 1], whence, using the change
of variables s = u — tn,

A0 K> [ 1Qa0) ~ Quls)ds >0 [ (6~ dtpdt =/ (p+ 1)

-n

(A1) Quy(u) =u! /Ou Qu(t)dt = u ' E(YTy s gy ) =

In view of the above inequality, we have to bound 7 from below. In order to get a
lower bound on 7, we will bound up —@Qj . From the definition of Qy,

~Qy(s) = —1/Hy,(Qy(s)) = V2rexp (@3 (5)/2) < V2mexp ((Qy(u) +0)*/2)

for any s in [u — 7, ul,
We now separate two cases. If 6 < /2 4+ Q% (u) — Qy (u),
—Qy(s) < V2mexp ((Qy(u) +0)*/2) < V2rexp (1+ Q3 (u)/2)
for any s in [u — n,u]. Then

(A.5) Qv (u—n) = Qy (u) < nev2mexp(QF () /2).
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In that case, putting the above lower bound on 7 in (A.4), we obtain that
(A.6) < (p+1)eV2m e WK

If§ > /24 Q% (u) — Qy(u), let 69 = /2 4+ Q% (u) — Qy (u) and let 1y be the real in
(0, u) such that Qy(u M) = Qy( )+ 0. Then 1 = ng and (g, 1o) still satisfies (A.5),
from which

AT azm > (ev2r) (V24 Q) - Qrlw)) exp (~Q3 ()2).
Putting this lower bound in (A.4), we obtain that

\/27rexp (Q%(u)/2) u
m QY U
Now, setting u = Hy (),

V27 exp (@ (u >/2> _ qup V2T R (#/2) Hy(a)
01/Q]W Qy(u) ==0 V24— b

by an inequality on the Mills ratio of Komatu [Komb55]. The two above inequalities
imply that

(A.8) & < (p+ 1)e

(A.9) < (p+ e (K, u),
if 6 > 1/2+ Q% (u) — Qy(u). Combining (A.6) and (A.9), we get (A.2) in the case
Qz(u) > Qy(u). It remains to prove (A.2) in the case Qz(u) < Qy (u). O

Proof of (A.2) in the case Qz(u) < Qy(u). — Let then 6 = Qy(u) —Qz(u). From
the assumptions E(Z) = 0, E(Z?) < 2 and the Tchebichef-Cantelli inequality, for
any r < 0, Hz(z) > 2*/(2 + 2?). This implies that

(A.10) Qz(u) = —y/2u/(1 —u) for any u € (0,1).

In particular, for u < 1/2, Qz(u) = —v2 = —/2 + Q% (u). Let then 3 be the positive
real such that Qy (u + ) = Qz(u). From (A.10), —Q%(s) < v2mexp(1 + Q% (u)/2)
for any s in [u,u + f]. It follows that

Qy(u+5) = Qy(u) — sv2rexp (1 + QZY(U)/Q)

for any s in [0, 8]. For s = (3, the above inequality yields

B> (e 27r)_lexp< Q3 (u )/2)6:: n.
With the above definition of 7, for any ¢ in [0, 1],
Qy(u+1n) = Qyv(u) =16 = Qy(u) — 6 = Qz(u+tn).

Hence

Qy(u+in) — Qz(u+tn) =2 (1 —1t)d
for any ¢ in [0, 1]. It follows that

77/ )Qyu+tn) Qz(U—i—tn) 77/ (1 — tPordt — noP

p+1
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The above inequality together with the definition of 7 then imply (A.6), which
completes the proof of (A.2). O

O

Proof of Corollary 2.5. — Recall that from Theorem 2.1 (b) (see also Comment 2.3),
under the assumptions of Corollary 2.5, Wa(Ps, /., G1) = O(n~1/?). Hence, Item (a)
comes from an application of Proposition A.1 by taking into account the fact that,
if Y is a standard normal r.v., there exists a positive constant 1 such that

Q1y(u)

inf —~=>

we (0,1/2) /ln(l/u) =

Indeed, @1y (u) ~y—0 /21In(1/u), @1y is continuous and decreasing and ()1 y(1/2) =
\/ 2/

Item (b) follows again from Theorem 2.1(b) together with [Riol7a, Inequality
(2.7)]. O
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