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1. Introduction

1.1. Links

Let X ⊂ CN be a normal n-dimensional algebraic variety over C and let P ∈ X be
a point; we will write [P ∈ X] for the germ of X at P considered up to local analytic
equivalence. Recall that the link of P ∈ X, written Link(P ), is the intersection of
a small Euclidean sphere centred at P with X. If P is a smooth point or isolated
singularity then the link is a smooth, compact (2n − 1)-dimensional manifold; we
will focus on hypersurface singularities, whose link is (n − 2)-connected. How much
information do we retain about [P ∈ X] if we only remember the manifold Link(P )?

Mumford [Mum61] proves that if n = 2 then Link(P ) is a simply-connected
3-manifold if and only if P ∈ X is a smooth point. By contrast, in higher dimensions,
the topology of the link exerts less influence. For example, if Σ is any homotopy
7-sphere, Brieskorn [Bri66] constructs singular complex 4-folds Pk ∈ Xk, k ∈ N, with
[Pi ∈ Xi] ̸= [Pj ∈ Xj] for i ̸= j and Link(Pk) ∼= Σ. More generally, when n ⩾ 3,
surgery theory tells us there are not very many (n−2)-connected (2n−1)-manifolds(1) ,
but there are lots of singularities.

The field of complex tangencies ξ forms a contact distribution on Link(P ) [Var80].
McLean [McL16] demonstrates that the contact manifold (Link(P ), ξ) retains much
more information about [P ∈ X]. For example, he shows that (Link(P ), ξ) is contac-
tomorphic to the standard contact 5-sphere if and only if P ∈ X is a smooth point,
and that the minimal discrepancy of a canonical Q-Gorenstein singularity P ∈ X is
determined by (Link(P ), ξ).

An interesting corollary of McLean’s work relates the purely algebro-geometric
notion of terminal singularities to the purely contact geometric notion of dynamical
convexity.

• A singularity is called terminal if its minimal discrepancy is positive. Termi-
nal singularities emerged in the work of Reid [Rei83] as a natural class of
singularities that should appear on minimal models of smooth 3-folds. The
3-fold terminal singularities were classified by Mori [Mor85].

• A Reeb flow on a contact manifold is called dynamically convex if every closed
Reeb orbit γ satisfies µCZ(γ) + n − 3 > 0, where µCZ is the Conley–Zehnder
index. A contact manifold which admits a dynamically convex Reeb flow is
called index positive.

Theorem 1.1 ([McL16]). — Suppose that P ∈ X is an isolated Q-Gorenstein
singularity with H1(Link(P );Q) = 0 (e.g. a hypersurface singularity of dimension
n ⩾ 3). The singularity P ∈ X is terminal if and only if its link (Link(P ), ξ) is index
positive.

Proof. — If P ∈ X is terminal then the minimal discrepancy is positive, so
McLean’s theorem implies that the highest minimal SFT index of the link is positive,
which is precisely the statement that there is a dynamically convex Reeb flow on
(Link(P ), ξ). If there is no dynamically convex Reeb flow then the highest minimal
(1) For a classification, see Wall [Wal67].
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SFT index is nonpositive so, by McLean’s theorem, the minimal discrepancy is also
nonpositive; therefore P ∈ X is not terminal. □

Invariants of contact manifolds (like contact homology or symplectic field theory)
are notoriously difficult to define because of bubbling of pseudoholomorphic curves in
symplectisations. The condition of index positivity allows us to bypass many of these
problems to get useful contact invariants. For example, if Y is a contact manifold
and V is a simply-connected strong symplectic filling of Y with c1(V ) = 0, then we
can define symplectic cohomology

SH∗(V ;C)
as a Z-graded(2) C-vector space (with various additional algebraic structures on it)
which usually depends on V . However, if Y is simply-connected and index positive
then the dependence of SH∗(V ;C) on the filling is very mild. The positive symplectic
cohomology SH∗

+(V ;C), constructed as the cohomology of a quotient complex of the
cochain complex of SH∗(V ;C) by the cochains coming from the interior of the filling,
is known to be a contact invariant [CO18, Proposition 9.17]. This has been used
successfully by Uebele to distinguish some contact structures on S2 × S3 [Ueb16].

We explore a refinement of this in Corollary 4.5. In particular, for n = 3, we are
able prove by a standard neck-stretching technique that the Lie algebra structure
on SH1(V ;C) and its Lie algebra representation on ⊕

d < 0 SHd(V ;C) is a contact
invariant.

Our goal in this paper is to compute symplectic cohomology for some further
examples of links of terminal 3-fold hypersurface singularities, observe some patterns
which emerge, and use it to distinguish a variety of links.

1.2. Compound Du Val (cDV) singularities

It is a theorem of Reid [Rei83, Theorem 1.1] that the Gorenstein terminal 3-fold
singularities are precisely the isolated compound Du Val (cDV) singularities. These
are hypersurface singularities which (in suitable local analytic coordinates (w, x, y, z))
are cut out by an equation of the form

f(x, y, z) + wg(x, y, z, w) = 0
where f is one of the following polynomials:

Aℓ : x2 + y2 + zℓ+1,

Dℓ : x2 + y
(
z2 + yℓ−2

)
,

E6 : x2 + y3 + z4,

E7 : x2 + y
(
y2 + z3

)
,

E8 : x2 + y3 + z5.

(2) More generally, the possible Z-gradings on SH∗(V ;C) form a torsor over H1(V ;Z). Note that
with our grading conventions an orbit with Conley–Zehnder index µ lives in degree n − µ where
2n = dim V . In particular the unit lives in degree zero and a constant orbit corresponding to a
critical point of Morse index k lives in degree k.
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The w = 0 hyperplane section has an ADE singularity at 0. If Γ is the ADE type
of this hyperplane section, we refer to the 3-fold singularity as a compound Γ or cΓ
singularity.

As we have explained in Theorem 1.1, the links of these singularities are index
positive and so we can use SH∗ of the Milnor fibre for ∗ < 0 as a contact invariant.

Remark 1.2. — Observe that if we define B ⊂ Link(0) to be the intersection
{w = 0} ∩ Link(0) then we get a Milnor open book

w/|w| : Link(0) \ B → S1

with binding B. The page is a copy of the corresponding 4-dimensional ADE Milnor
fibre and the contact structure determined by the open book is contactomorphic
to ξ.

Example 1.3. — Consider the family of cA1 singularities

Aℓ :=
{
x2 + y2 + z2 + wℓ+1 = 0

}
, ℓ ⩾ 1.

In fact, any cA1 singularity is equivalent to one of these. The link is either S5 (if ℓ is
even) or S2 ×S3 (if ℓ is odd). The page of the Milnor open book is the A1-Milnor fibre
T ∗S2, and the monodromy is the (ℓ + 1)st power of a Dehn twist in the zero-section.
The symplectic cohomology of the Milnor fibre Vℓ behaves differently if ℓ is odd or
even. If ℓ is even then, by [LU21, Section 5.2], we have

SH∗(Vℓ;C) =


Cℓ if ∗ = 3
C if ∗ = −q(ℓ + 3) − r for r ∈ {0, . . . , ℓ − 1}, r = q(mod2)
C if ∗ = −q(ℓ + 3) − r + 1 for r ∈ {0, . . . , ℓ − 1}, r = q(mod2)
0 otherwise,

for q ∈ N. In particular, we see that SH∗ can be either 0 or C for ∗ < 0.
If ℓ is odd then we will see below that

SH∗(Vℓ;C) =


Cℓ if ∗ = 3
C if ∗ = 1 or ∗ < 0
0 otherwise.

Write ξℓ for the contact structure on the link of 0 ∈ Aℓ. Since the contact invariant
SH∗

+ coincides with SH∗ if ∗ < 0, this shows that
(a) the links {(S5, ξℓ) : ℓ = 2, 4, 6, . . .} are pairwise nonisomorphic as contact

manifolds,
(b) we cannot distinguish the links {(S2 × S3, ξℓ) : ℓ = 1, 3, 5, . . .} using SH∗

+
with coefficients in C.

A similar phenomenon was observed by Van Koert [Koe08, Example 3.1.1] for these
contact structures on S2 × S3: they are not distinguished by their cylindrical con-
tact homology. Interestingly, Uebele [Ueb16] does distinguish them using SH∗

+ with
coefficients in Z/2. We will give a second way to distinguish them below.
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From an algebro-geometric perspective, the singularities Aℓ have different be-
haviour when ℓ is even/odd. For example, these singularities admit small reso-
lutions(3) if and only if ℓ is odd; indeed, if ℓ is odd, there is a resolution whose
exceptional set is an irreducible rational curve. However, if ℓ is even then there
cannot be a small resolution because the link is not diffeomorphic to a nontrivial
connected sum of copies of S2 × S3.

Inspired by this example, we record an optimistic conjecture, which provides the
main motivation for the calculations in this paper. We will establish this conjecture
in a range of examples (Theorem 1.8).

Conjecture 1.4. — Suppose that P ∈ X is a cDV singularity and let V be the
Milnor fibre of the singularity. Then P ∈ X admits a small resolution such that the
exceptional set has ℓ irreducible components if and only if SH∗(V ;C) has rank ℓ in
every negative degree.

Remark 1.5. — In this paper, we have focused on providing evidence for one
direction of this conjecture: that the existence of a small resolution constrains the
symplectic cohomology. The converse is plausible: we have calculated many examples
and found no counterexample. This would give an a priori way of detecting whether
a cDV singularity admits a small resolution just by knowing its link.

Remark 1.6. — If P ∈ X admits a small resolution whose exceptional set has ℓ
irreducible components then the link is diffeomorphic to ♯ℓ(S2 × S3). Small resolu-
tions can be constructed by thinking of the 3-fold as a 1-parameter deformation of an
ADE singularity. This gives a classifying map from the disc to the versal deformation
space of the ADE singularity such that the 3-fold is the pullback along the classifying
map of the versal family. Brieskorn [Bri68], Tjurina [Tju70] and Pinkham [Pin83]
constructed branched coverings of the versal ADE deformation space (branched over
the discriminant locus) such that the pullback of the versal family to the branched
covering admits a simultaneous (partial) resolution. More precisely, the fundamental
group of the complement of the discriminant locus is the ADE Artin braid group;
Brieskorn and Tjurina constructed the branched covering corresponding to the kernel
of the homomorphism to the ADE Weyl group and found a full simultaneous resolu-
tion, while Pinkham constructed simultaneous partial resolutions for intermediate
covering spaces. For a specific 3-fold, if the classifying map from the disc lifts (in the
sense of algebraic topology) to one of these branched covers, then you get a small
resolution by pulling back the simultaneous partial resolution of the versal family. In
particular, the existence of a small resolution can be read off from the monodromy
of the Milnor open book mentioned in Remark 1.2 (which is the element of the
fundamental group of the ADE Artin braid group represented by the boundary of
the disc under the classifying map).

Remark 1.7. — Remark 1.6 provides a sanity check on Conjecture 1.4. Consider
what happens if we deform the germ of the singularity at P . Namely, suppose we have

(3) Recall that a small resolution is a resolution whose exceptional set has codimension at least 2.
Note that, by [Rei83, Theorem 1.14], a resolution of an isolated cDV singularity is small if and
only if it is crepant.
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a family hs(w, x, y, z) = f(x, y, z) + gs(w, x, y, z) of cDV singularities parametrised
by s ∈ C. Suppose that there are balls B ⊂ C and B′ ⊂ C4 such that for s ∈ B,
the origin is the only singularity of the hypersurface h−1

s (0) ∩ B′. Gray’s stability
theorem tells us that the contact geometry of the link of the singularity is independent
of s ∈ B. Moreover, if 0 ∈ h−1

0 (0) admits a small resolution then so do all the
singularities 0 ∈ h−1

s (0) because the monodromy of the Milnor open book is stable
under perturbations.

We now summarise our evidence for Conjecture 1.4. These calculations will be
explained in Section 3. Throughout, we work over C.

Theorem 1.8. — The table below summarises our calculations of symplectic
cohomology for Milnor fibres of some cDV singularities. The left-most column is a
polynomial w̌ and the singularity is defined by 0 ∈ w̌−1(0). The columns SH∗ give
the ranks of the various graded pieces of SH(w̌−1(1)). In all cases, SHd(w̌−1(1)) = 0
if d = 2 or d ⩾ 4. The final column gives a reference for the calculation. Case 4
is conditional on Conjecture 2.2 or Conjecture 2.3, so we have marked it with an
asterisk.

Singularity ADE type SH3 SHd⩽ 1 See
Theorem. . .

1. x2
1 + x2

2 + xℓ+1
3 + x

k(ℓ+1)
4 Aℓ ℓ(k(ℓ + 1) − 1) ℓ 3.7 (1), (2)

2. x2
1 + x2

2 + x3x4(xℓ−1
3 Aℓ (kℓ + 1)(ℓ − 1) ℓ 3.13

+x
k(ℓ−1)
4 )

3. x2
1 + x3

2 + x3
3 + x6k

4 D4 24k − 4 4 3.7 (3)
4*. x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4 D4 6k + 5 1 3.10
5. x2

1 + x3
2 + x4

3 + x12k
4 E6 72k − 6 6 3.7 (4)

6. x2
1 + x3

2 + x5
3 + x30k

4 E8 240k − 8 8 3.7 (5)

Remark 1.9. — In all cases, these singularities admit small resolutions and the
number of exceptional curves in the resolution equals the rank of SHd for d ⩽ 1; this
is explained case-by-case in Section 3. In particular, this establishes Conjecture 1.4
for these examples.

Remark 1.10. — The examples in Theorem 1.8 are all invertible polynomials
(see Section 2), and our strategy for calculating symplectic cohomology uses mirror
symmetry for invertible polynomials to relate SH with the Hochschild cohomology
of a mirror dg-category of equivariant matrix factorisations. In all cases except
case 4, the required mirror symmetry conjecture is proven. Case 4 is only proved
conditionally (see Section 2.2). This example is the base of the Laufer flop [Lau81].

Remark 1.11. — Theorem 1.8 seems to indicate that symplectic cohomology
(over C) of the Milnor fibre is not a useful invariant for distinguishing contact
structures on links. We are nonetheless able to distinguish all these examples by
studying a certain bigrading on symplectic cohomology, as we discuss in Section 1.3.
Note that Uebele’s work (discussed in Example 1.3 above) shows that Conjecture 1.4
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breaks down if we work over a field of characteristic ̸= 0, which gives an alternative
way to distinguish contact structures on links.

1.3. Families of inequivalent contact structures

We introduce the following notation for the contact structures on the links of our
singularities:

Table 1.1. Contact structures on links of our cDV singularities.

Singularity Link Contact structure

1. x2
1 + x2

2 + xℓ+1
3 + x

k(ℓ+1)
4 ♯ℓ(S2 × S3) αℓ,k

2. x2
1 + x2

2 + x3x4(xℓ−1
3 + x

k(ℓ−1)
4 ) (ℓ ⩾ 2) ♯ℓ(S2 × S3) βℓ,k

3. x2
1 + x3

2 + x3
3 + x6k

4 ♯4(S2 × S3) δ4,k

4. x3
1 + x1x

2k+1
2 + x2x

2
3 + x2

4 S2 × S3 λ1,k

5. x2
1 + x3

2 + x4
3 + x12k

4 ♯6(S2 × S3) ϵ6,k

6. x2
1 + x3

2 + x5
3 + x30k

4 ♯8(S2 × S3) ϵ8,k

Remark 1.12. — Note that αℓ,1 ∼= βℓ,1: the two singularities are related by a
change of variables.

Let Ξℓ denote the list of all contact structures on ♯ℓ(S2 × S3) from this table. For
example,

Ξ1 = (α1,1, α1,2, . . . , λ1,1, λ1,2, . . .)
Ξ4 = (α4,1, α4,2, . . . , β4,1, β4,2, . . . , δ4,1, δ4,2, . . .).

Theorem 1.13. — For each ℓ, the contact structures in the list Ξℓ are pairwise
nonisomorphic except for αℓ,1 ∼= βℓ,1.

Remark 1.14. — We remind the reader that all results about λ1,k are conditional
on a mirror symmetry statement.

Remark 1.15. — What makes this an interesting theorem is that all of these
links have the same positive symplectic cohomology over C. We equip SH∗ with a
contact-invariant bigrading to distinguish these contact manifolds. This bigrading
will be the weight decomposition of ⊕

d < 0 SHd under the action of the Lie algebra
SH1.

Remark 1.16. — As explained in Example 1.3, the fact that α1,i ̸∼= α1,j if i ̸= j
was proved by Uebele [Ueb16] using positive symplectic cohomology with coefficients
in Z/2 (rather than a bigrading).

Remark 1.17. — If one focuses on cDV singularities which do not admit a small
resolution, one finds very many more contact structures which can be distinguished
by SH∗

+ already without using the bigrading. This is not so surprising: it is much
easier for 5-manifolds to be diffeomorphic than contactomorphic.
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2. Symplectic cohomology for invertible polynomials

2.1. Symplectic cohomology

Let V be a Liouville manifold with c1(V ) = 0. Associated to V we can define an
invariant SH∗(V ) called the symplectic cohomology of V . Symplectic cohomology
was introduced by Cieliebak, Floer, Hofer [Hof90, FH94, CFH95] and Viterbo [Vit99].
An excellent exposition can be found in [Sei08]. More recent results can be learned
from [CO18]. See also [LP16, Sec 2.1] for a fast review of our sign and grading
conventions. In particular, our conventions are cohomological and the unit lives in
degree zero!

Briefly, SH∗(V ) is an algebra over the homology operad of framed little discs
over an arbitrary commutative ring k (in this paper k = C). In particular, it has
a (graded) commutative product, a Gerstenhaber bracket [ , ] (i.e a Lie bracket of
degree −1), and a Batalin–Vilkovisky operator ∆ (i.e. a degree −1 operator whose
Hochschild coboundary is the bracket).

In general, symplectic cohomology is rather difficult to compute explicitly. A fruitful
approach to do such computations goes via the open string A-model. Namely, we
have an isomorphism

SH∗(V ) ≃ HH∗(W(V ))
where W(V ) is the wrapped Fukaya category of V . An early version of this result
based on Legendrian surgery is due to Bourgeois–Ekholm–Eliashberg ([BEE12], elab-
orated in [EL17]) which concerned Hochschild homology; a definitive version based
on duality appeared in [Gan13, Theorem 1.1] (see also the more recent [CDGG17]).

On the other hand, even if one achieved a good understanding of W(V ), in general,
it is still a difficult algebraic problem to compute Hochschild cohomology of A∞
categories.

In [LU18, LU21], a method to compute symplectic cohomology for certain Milnor
fibres was given based on the homological mirror symmetry conjecture for invertible
polynomials.

2.2. Invertible polynomials and mirror symmetry

Definition 2.1. — To an (n+1)-by-(n+1) integer matrix A = (aij) with nonzero
determinant, we associate the polynomial

w(x1, . . . , xn+1) =
n+1∑
i=1

n+1∏
j=1

x
aij

j .
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We write w̌ for the polynomial associated to AT (the Berglund–Hübsch mirror to w,
see [BH92]).

An invertible polynomial is weighted homogeneous, that is there is a uniquely
determined weight system (d1, d2, . . . , dn+1; h) satisfying gcd(d1, d2, . . . , dn+1, h) = 1
for which

w
(
λd1x1, . . . , λdnxn+1

)
= λhw (x1, . . . , xn+1)

for all λ ∈ Gm. In this paper, we are primarily concerned with the log Fano case, i.e.
when

h −
n+1∑
i=1

di =: d0 < 0

In fact, there is a finite extension Γw of Gm acting on An+1 which preserves w,
namely

Γw :=

(t0, t1, . . . , tn+1) ∈ Gn+2
m :

n+1∏
j=1

t
aij

j = t0t1 · · · tn+1, i = 1, . . . , n + 1

 ,

acting on An+1 via (x1, . . . , xn+1) 7→ (t1x1, . . . , tn+1xn+1). This group also acts on
An+2 via (x0, x1, . . . , xn+1) 7→ (t0x0, t1x1, . . . , tn+1xn+1), and this Γw-action pre-
serves the polynomial

w(x1, . . . , xn+1) + x0 · · · xn+1.

With this setup, we can formulate the following mirror symmetry conjectures. A
version of Conjecture 2.2 appeared in [FU09] (see also [LU18, Conjecture 1.2] and
references therein), and Conjecture 2.3 appeared in [LU18].

Conjecture 2.2. — There is a quasi-equivalence of idempotent complete A∞-
categories

F(w̌) ≃ mf
(
An+1, Γw, w

)
between the Fukaya–Seidel category of a Morsification of w̌ and the dg-category of
Γw-equivariant matrix factorisations of w. Moreover, there exists a full exceptional
collection ∆1, . . . , ∆K of vanishing thimbles for the Morsification of w̌ such that
the A∞-algebra A := endF(w̌)(

⊕
i ∆i) has its cohomology A := H(A) supported in

degree zero. In particular, this entails that (a) A is quasi-isomorphic to A and (b)
both F(w̌) and mf(An+1, Γw, w) are quasi-equivalent to perf(A).

Conjecture 2.3 ([LU18, Conjecture 1.4]). — There is a quasi-equivalence of
idempotent complete A∞ categories

W
(
w̌−1(1)

)
≃ mf

(
An+2, Γw, w + x0x1 · · · xn+1

)
between the wrapped Fukaya category of the Milnor fibre w̌−1(1) and the dg-category
of Γw-equivariant matrix factorisations of w + x0 · · · xn+1.

These conjectures are established in the following situations:
• If the matrix A is diagonal (so w defines a Brieskorn–Pham singularity) then

Conjecture 2.2 was proved by Futaki and Ueda [FU11]. More generally, if the
matrix A is block diagonal and its blocks are either 1-by-1 or 2-by-2 equal
to ( 2 1

0 k ) (so that w is a Sebastiani–Thom sum of ADE polynomials of type
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A or D), Conjecture 2.2 was proved by Futaki and Ueda [FU13]. Polishchuk
and Varolgunes [PV21] make significant progress towards establishing Con-
jecture 2.2 in the chain case which includes the Laufer flop (Case 4 in the
Table of Theorem 1.8).

• If n = 1, Conjecture 2.2 was proved by Habermann and Smith [HS20]. In fact,
this means Conjecture 2.2 holds for any invertible polynomial w of the form
w(x1, . . . , xn+1) = x2

1 + · · · + x2
n−1 + f(xn, xn+1). This is because stabilising

w and w̌ by adding quadratic terms in extra variables changes neither the
Fukaya–Seidel nor the matrix factorisation category.

• In [LU18], various cases of Conjecture 2.3 were verified. The sequel pa-
per [LU21] focused on the log Fano case and established Conjecture 2.3 for
the Milnor fibres of simple singularities. The n = 1 case of Conjecture 2.3 was
proved by Habermann [Hab21]. Conjecture 2.3 was proved in full generality
by Gammage [Gam20] in the Z/2-graded case using a microlocal sheaf cat-
egory version of wrapped Fukaya categories. For our purposes, we will need
to work with Z-graded categories; a careful chase of Z-gradings in [Gam20]
might allow us to assume Conjecture 2.3 in all cases.

Remark 2.4. — The main theorem statements from Futaki–Ueda and Habermann–
Smith do not mention the formality of A, but in either case the authors construct
a full exceptional collection whose cohomology is supported in degree zero, hence
formality follows for degree reasons

Remark 2.5. — The examples w̌ from Theorem 1.8 all fall into one of these cases
except for w̌ = x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4. In this case, our results are conditional on
one of the two Conjecture 2.2 or 2.3 holding.

We now explain how knowing one or other of these conjectures can help one to
calculate symplectic cohomology.

2.3. Using mirror symmetry to compute symplectic cohomology

Pick a Morsification of w̌. Let F(w̌) denote the Fukaya–Seidel category of the
Morsification, let V := w̌−1(1) denote the Milnor fibre, and let W(V ) (respectively
F(V )) denote the wrapped (respectively compact) Fukaya category of V . Choose a
collection of vanishing paths for the Morsification and let ∆1, . . . , ∆K (respectively
S1, . . . , SK) be the corresponding vanishing thimbles (respectively vanishing cycles).
Let A = endF(w̌)(

⊕
i ∆i) and B = endF(V )(

⊕
i Si). Let A = H(A) and B = H(B)

denote the cohomology algebras of A and B (considered as A∞-algebras with zero
higher products).

Theorem 2.6. — Assume that HH2(mf(An+2, Γw, w)) = 0, that d0 ̸= 0, and
either Conjecture 2.2 or 2.3 holds. Then
(2.1) SH∗(V ) ∼= HH∗

(
mf

(
An+2, Γw, w

))
as Gerstenhaber algebras.

In the next section, we give a formula to compute HH∗(mf(An+2, Γw, w)).
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Proof that Conjecture 2.2 implies Equation (2.1). — If d0 ̸= 0 then [LU18, The-
orem 6.2] implies that the inclusion of categories B → W(V ) induces an isomor-
phism on Hochschild cohomology. Since this map comes from a functor, it is a
morphism of Gerstenhaber algebras. Ganatra [Gan13, Theorem 1.1] shows that
SH∗(V ) ∼= HH∗(W(V )) as Gerstenhaber algebras. Therefore, we need to show

(2.2) HH∗(B) ∼= HH∗
(
mf

(
An+2, Γw, w

))
.

As a first step, we calculate HH∗(B), where B = H(B) is the cohomology algebra
of B.

Lemma 2.7. — We have HH∗(B) ∼= HH∗(mf(An+2, Γw, w)) as Gerstenhaber al-
gebras.

Proof. — We continue to write A for the endomorphism A∞-algebra of the van-
ishing thimbles and A for its cohomology. Recall that the trivial extension algebra
Tn(A) is defined to be A⊕A∨[−n] with the product (a, b)(a′, b′) = (aa′, ab′ +a′b). For
any Lefschetz fibration with (n + 1)-(complex-)dimensional total space with n > 0,
the Floer cohomology algebra B = H(B) of the vanishing cycles is an extension of
A∨[−n] by A, where A is the directed Fukaya–Seidel Floer cohomology algebra for
the vanishing thimbles [Sei10, Equation 4.1 and Proposition 5.1]. If A is supported
in degree zero (as asserted by Conjecture 2.2) then this is the trivial extension Tn(A):
the products in B which are not determined by the A-module structure of A∨[−n]
vanish for degree reasons. To prove the lemma, it therefore suffices to show that
HH∗(Tn(A)) ≃ HH∗(mf(An+2, Γw, w)).

Let k be the semisimple ring ⊕K
i=1 Cei where ei ∈ A is the identity element

of HF (∆i, ∆i). The projection Tn(A) → A → k makes k into an Tn(A)-module
(augmentation). Keller [Kel11, Section 4.1] defines a Koszul-dual algebra called
the n-Calabi–Yau completion Πn(A) ∼= RHomTn(A)(k, k). This is Koszul-dual in
the sense that k is a (Tn(A), Πn(A))-bimodule and Tn(A) ∼= RHomΠn(A)(k, k).
Koszul duality ensures that we can apply [Kel03, Theorem in Section 3.2] to de-
duce that the Hochschild cohomologies HH∗(Tn(A)) and HH∗(Πn(A)) are isomor-
phic as Gerstenhaber algebras. For any algebra C (more generally A∞-algebra),
HH∗(C) ∼= HH∗(perf(C)), so

HH∗(B) ∼= HH∗(Tn(A)) ∼= HH∗(Πn(A)) ∼= HH∗
(

perf(Πn(A))
)
,

and it suffices to prove that HH∗(perf(Πn(A))) = HH∗(mf(An+2, Γw, w)). In fact, we
will show a stronger result: that

perf(Πn(A)) ≃ mf
(
An+2, Γw, w

)
.

To see this stronger result, recall that Keller’s construction of Πn(·) works more
generally when the input is a dg-algebra or category, and satisfies [LU21, Eq. (2.2)]

perf(Πn(A)) ≃ Πn(perf(A)).
It was shown in [LU21] (Eq. (1.7) for the statement and Section 4 for the proof) that

(2.3) mf
(
An+2, Γw, w

)
≃ Πn

(
mf

(
An+1, Γw, w

))
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and Conjecture 2.2 is the assumption that

perf(A) ≃ mf
(
An+1, Γw, w

)
so

perf(Πn(A)) ≃ Πn(perf(A)) ≃ Πn

(
mf

(
An+1, Γw, w

))
≃ mf

(
An+2, Γw, w

)
,

as required. □

Lemma 2.8. — The A∞-algebra B is quasi-isomorphic to its cohomology alge-
bra B.

Proof. — By Lemma 2.7, HH2(B) ∼= HH2(mf(An+2, Γw, w)), which vanishes by
assumption, so B is intrinsically formal, and hence quasi-isomorphic to B = H(B).

□

Together, these two lemmas show that HH∗(B) ∼= HH∗(mf(An+2, Γw, w)) as Ger-
stenhaber algebras, establishing Equation (2.2), so Equation (2.1) follows. □

Proof that Conjecture 2.3 implies Equation (2.1). — We will show in Theorem 2.15
below that if HH2(mf(An+2, Γw, w)) = 0 then we can make a Γw-equivariant formal
change of coordinates along the critical locus of w+x0 · · · xn+1 such that the pullback
of w + x0 · · · xn+1 in these new coordinates equals w. If we can make such a formal
change of coordinates, it follows from [Orl11, Theorem 2.10] that mf(An+2, Γw, w +
x0 · · · xn+1) is quasi-equivalent to mf(An+2, Γw, w), so Conjecture 2.3 implies

HH∗(W(V )) ∼= HH∗
(
mf

(
An+2, Γw, w

))
as Gerstenhaber algebras. By [Gan13, Theorem 1.1], HH∗(W(V )) ∼= SH∗(V ) as
Gerstenhaber algebras, so Equation (2.1) follows. □

2.4. Calculating HH∗(mf(An+2, Γw, w))

There is a formula for HH∗(mf(An+2, Γw, w)) which expresses it as a sum of Γw-
invariant pieces of twisted Koszul cohomologies; this formula appeared in [BFK14,
Theorem 1.2], where its context and history are discussed. It is also explained and
used in [LU18, Theorem 3.1] and [LU21, Section 5.1]. We now briefly describe how to
perform calculations in practice with this formula; Theorem 2.14 below summarises
the answer and its proof explains how our notation fits with the notation from [LU21].
We will use the notation from this section in our calculations in Section 3.

Definition 2.9. — Define the character

χ : Γw → Gm, χ (t0, . . . , tn+1) = t0 · · · tn+1.

Its kernel ker χ is the finite group

ker χ =

(t0, . . . , tn+1) ∈ Gn+2
m :

n+1∏
j=1

t
aij

j = 1, t0 = t−1
1 · · · t−1

n+1

 .
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Definition 2.10. — Given an element γ ∈ ker χ, let
{1, . . . , n + 1} = {i1, . . . , ik} ∪ {j1, . . . , jn+1−k}

be the partition for which each xim is fixed under the action of γ and each xjm is
not fixed under the action of γ. Let Jγ be a monomial basis for the Jacobian ring of
w|xj1 =···=xjn+1−k

=0.
Definition 2.11. — The set Mγ of γ-monomials is the union Mγ = Aγ ∪Bγ ∪Cγ

where

Aγ =


{
xβ

0 px∨
j1 · · · x∨

jn+1−k
: p ∈ Jγ, β = 0, 1, 2, . . .

}
if x0 is fixed by γ

∅ otherwise.

Bγ =


{
xβ

0 px∨
0 x∨

j1 · · · x∨
jn+1−k

: p ∈ Jγ, β = 0, 1, 2, . . .
}

if x0 is fixed by γ

∅ otherwise.

Cγ =

∅ if x0 is fixed by γ{
px∨

0 x∨
j1 · · · x∨

jn+1−k
: p ∈ Jγ

}
otherwise.

Definition 2.12. — Let ζ : Γw → Gm be a character of Γw. We say that a
polynomial or formal power series p(x0, . . . , xn+1) is ζ-isotypical if p(gx) = ζ(g)p(x)
for all g ∈ Γw. Note that every monomial m determines a character ξ(m) such that
m is ξ(m)-isotypical. The space of formal power series K := C[[x0, . . . , xn+1]] is
therefore the completed direct sum of its ζ-isotypical summands

K =
⊕̂

ζ ∈ Γ̂w
Kζ , Kζ =

{
p ∈ K : p(gx) = ζ(g)p(x) ∀ g ∈ Γw

}
.

Definition 2.13. — Given a γ-monomial m, we write bk for the total exponent
of xk in m, where x∨

k contributes −1 to bk. The character ξ(m) is determined by
these exponents:

ξ(m)(t0, . . . , tn+1) = tb0
0 · · · t

bn+1
n+1 .

We now assume the following. For each γ ∈ Γw let wγ (respectively w′
γ) denote

the restriction of the polynomial w to the subspace where the unfixed variables
xj1 , · · · , xjn−k+1 (respectively x0, xj1 , · · · , xjn−k+1) vanish. We assume that w′

γ has
an isolated singularity at the origin for all γ ∈ Γ, which is the case for all our
examples.

Theorem 2.14. — Under this assumption, the Hochschild cohomology
HH∗

(
mf

(
An+2, Γw, w

))
is a direct sum of 1-dimensional contributions, one from each pair (γ, m) with m ∈ Mγ

such that ξ(m) = χ⊗u for some u ∈ Z. In this case, (γ, m) contributes to
HH2u+n−k+1 if m ∈ Aγ,

HH2u+n−k+2 if m ∈ Bγ,

HH2u+n−k+2 if m ∈ Cγ,

where k is the number of variables amongst {x1, . . . , xn+1} fixed by γ.
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Proof. — This is just a repackaging of [BFK14, Theorem 1.2], based on the ex-
position in [LU21, Section 5.1]. We briefly explain how to translate between our
notation and the notation of [LU21]. For each γ there are three kinds of contribution
to Hochschild cohomology, enumerated by [LU21, Equations 5.5-5.7]:

• If x0 is not fixed by γ then the Hochschild cohomology picks up a contribution
given by [LU21, Equation 5.5]:(

Jacwγ ⊗Λdim Nγ N∨
γ

)
χ⊗u

where Nγ is the vector space spanned by the non-fixed variables x0, xj1 , . . . ,
xjn−k+1 , Jac denotes the Jacobian ring, and χ⊗u means taking the isotypical
part. Our γ-monomials from Cγ form an explicit basis of this space: Jγ is a
basis for the Jacobian Jacwγ and x∨

0 ⊗ x∨
j1 ⊗ · · · ⊗ x∨

jn−k+1
is a generator of

Λdim Nγ N∨
γ ; the χ⊗u subscript is precisely telling us to restrict attention to γ-

monomials with ξ(m) = χ⊗u. This contributes to HH2u+dim Nγ = HH2u+n−k+2.
• If x0 is fixed by γ then there are contributions [LU21, Equations 5.6 and 5.7]:(
Jacw′

γ
⊗C[x0] ⊗ Λdim Nγ N∨

γ

)
χ⊗u

,
(
Cx∨

0 ⊗ Jacw′
γ

⊗C[x0] ⊗ Λdim Nγ N∨
γ

)
χ⊗u

to HH2u+dim Nγ = HH2u+n−k+1 and HH2u+dim Nγ+1 = HH2u+n−k+2 respectively.
Our γ-monomials of type Aγ and Bγ give bases for these vector spaces. □

2.5. Formal change of coordinates

In this section we prove the last remaining ingredient (Theorem 2.15 below) that
was used in Section 2.3 above (in the proof that Conjecture 2.3 implies Equa-
tion (2.1)).

Recall that there exist weights d0, d1, . . . , dn+1 such that if we give xi weight di then
both w(x1, . . . , xn+1) and x0 · · · xn+1 are quasihomogeneous of degree h = ∑n+1

i=0 di

and χ-isotypical. Let | · |0 be the x0-valuation on the space K = C[[x0, . . . , xn+1]] of
formal power series, i.e. |p|0 = k if xk

0 divides p but xk+1
0 does not.

Theorem 2.15. — Suppose that p0(x0, . . . , xn+1) is a χ-isotypical formal power
series which is quasihomogeneous of degree h and |p0|0 > 0. If HH2(mf(An+2, Γw, w))
= 0 then there is a formal change of variables z = (x0, z1(x), . . . , zn+1(x)) such that
w(z) = w(x) + p0(x).

Remark 2.16. — In particular, the theorem applies when p0(x) = x0 · · · xn+1. To
prove Theorem 2.15, we first establish a sequence of lemmas.

Lemma 2.17. — Suppose that HH2(mf(An+2, Γw, w)) = 0. Then the image of
Kχ in the Jacobian ring is trivial.

Proof. — If m is a χ-isotypical monomial which is nontrivial in the Jacobian ring
then we can use it as part of our monomial basis Jγ for γ = id. It will then contribute
as a type A id-monomial to HH2(mf(An+2, Γw, w)). Thus if HH2(mf(An+2, Γw, w))
= 0, we deduce that any monomial m ∈ Kχ is trivial in the Jacobian ring, and hence
the image of Kχ in the Jacobian ring is zero. □
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Lemma 2.18. — If p ∈ Kχ is trivial in the Jacobian ring then p = ∑n+1
i=1 vi

∂w
∂xi

for
some v1, . . . , vn+1 ∈ K where vi ∈ Kti

. Here, ti denotes the character of Γw which
projects to ti.

Proof. — Consider the map ∂ : Kn+1 → K defined by ∂(v1, . . . , vn+1) = ∑n+1
i=1

vi
∂w
∂xi

. The cokernel of ∂ is the Jacobian ring. Because w ∈ Kχ, we have ∂w/∂xi ∈
Kχ⊗t−1

i
for all i, so ∂(v1, . . . , vn+1) ∈ Kχ if and only if vi ∈ Kti

for all i = 1, . . . ,

n + 1. □
If v ∈ Kt1 ⊕ · · · ⊕ Ktn+1 then we call v a Γw-equivariant vector field because the

components vi of v transform under Γw like the coordinates xi. We have now seen
that, under the hypotheses of Theorem 2.15, p0 = ∂v for a Γw-equivariant vector
field v.

Lemma 2.19. — In the setting of Theorem 2.15, there exists a formal change of
variables y such that

p1(y) := w(x) + p0(x) − w(y)
is χ-isotypical and satisfies |p1|0 > |p0|0.

Proof. — This is a small modification of [AGV12, Section 12.6]. We know that
p0 = ∂v for a Γw-equivariant vector field v. We define y implicitly by y0 = x0,
xi = yi − vi(y). Since v is Γw-equivariant, this formal change of coordinates is
Γw-equivariant. As in the proof(4) of cite[Section 12.6]Arnold, we find that p1(y) :=
w(x) + p0(x) − w(y) has |p1|0 > |p0|0. Moreover, since v is Γw-equivariant, p1 is
χ-isotypical. □

Proof of Theorem 2.15. — We can apply Lemma 2.19 iteratively and compose
the formal diffeomorphisms we get at each stage. Composition makes sense because
|v|0 > 0, so the xk

0-term in the composition of formal diffeomorphisms only involves
summing finitely many terms. In this way, we construct a sequence of perturbation
terms p1, p2, . . . with |p1|0 < |p2|0 < · · · . In the limit, we obtain a formal change
of coordinates z with perturbation term p∞(z) := w(x) + p0(x) − w(z) satisfying
|p∞|0 = ∞. Therefore p∞ = 0 and we have proved the theorem. □

3. Compendium of examples
In this section, we calculate HH∗ := HH∗(mf(An+2, Γw, w)) for the invertible

polynomials w which are mirror-dual to the polynomials in Theorem 1.8. We now
summarise how this leads to a proof of that theorem.

Proof of Theorem 1.8. — These examples are log Fano, so d0 < 0, and, in all
cases, we will see that HH2(mf(An+2, Γw, w)) = 0. In Cases 1–3 and 5–6 of Theo-
rem 1.8, Conjecture 2.2 holds, so that Theorem 2.6 applies. As a consequence, we
can conclude Theorem 1.8 unconditionally in these cases. Case 4 holds conditionally
on Conjecture 2.2 or 2.3. □
(4) In [AGV12], they have no variable x0 and filter by the weighted degree of the perturbation
rather than the x0-valuation. Since the perturbation terms are quasihomogeneous of degree h,
the weighted degree of the perturbation term with respect to x1, . . . , xn+1 is proportional to the
x0-valuation, so our strategy is equivalent.
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3.1. Brieskorn–Pham

A Brieskorn–Pham singularity is an isolated hypersurface singularity given by the
vanishing of the polynomial

w(x1, . . . , xn+1) = xa1
1 + · · · + x

an+1
n+1

for a collection of integers ai ⩾ 2. This is an invertible polynomial with w̌ = w.
Let µk denote the cyclic group of kth roots of unity, and let

l = lcm(a1, . . . , an+1), ν = 1 −
n+1∑
i=1

1
ai

.

We have a surjective l-to-1 homomorphism
T : µa1 × · · · × µan+1 × Gm → Γw,

T (µ1, . . . , µn+1, τ) =
(
τ lνµ−1

1 · · · µ−1
n+1, τ l/a1µ1, . . . , τ l/an+1µn+1

)
Remark 3.1. — Under T , the subgroup µa1 × · · · × µan+1 maps isomorphically

onto ker χ; we will use this identification to write elements of ker χ as (n + 1)-tuples
of roots of unity.

Fix an element γ ∈ ker χ. Restricting w to the fixed variables xi1 , . . . , xik
we get∑k

m=1 x
aim
im

, and we pick the monomial basis

Jγ =
{

x
bi1
i1 · · · x

bik
ik

: 0 ⩽ bim ⩽ aim − 2 for m = 1, 2, . . . k
}

for its Jacobian ring.

Lemma 3.2. — Let m be a γ-monomial with total exponents b0, . . . , bn+1 and
suppose that (γ, m) contributes to Hochschild cohomology. Then bi = b0 mod ai for
i = 1, . . . , n + 1 and ξ(m) = χ⊗(b0−

∑n+1
i=1 mi), where the integers mi are determined

by b0 = bi + miai.

Proof. — The γ-monomial m with total exponents b0, . . . , bn+1 has character(5)

ξ(m)(µ1, . . . , µn+1, τ) = τ
b0lν+

n+1∑
i=1

bil/ai

µb1−b0
1 · · · µ

bn+1−b0
n+1

This coincides with a power of χ if and only if b0 = bi mod ai for i = 1, . . . , n+1. More
precisely, if b0 = bi + miai for integers m1, . . . , mn then ξ(m) = χ⊗(b0−

∑n+1
i=1 mi). □

Remark 3.3. — In fact, if b0 ⩾ 0, then b0 uniquely determines monomials mA(b0)
and mB(b0) of types A and B respectively which have total exponents bi = b0 mod ai.
Namely, we multiply together factors of xbi

i , i = 1, . . . , n + 1, where x−1
i means x∨

i .
To obtain mA(b0) we include a factor of xb0

0 ; to obtain mB(b0) we include a factor of
xb0+1

0 x∨
0 . Similarly, b0 = −1 determines unique monomials mB(−1) = x∨

0 · · · x∨
n+1 of

type B and mC(−1) = x∨
0 · · · x∨

n+1 of type C.
(5)The characters of Γw induce characters of µa1 × · · · × µan+1 × Gm by precomposing with T
and we will often write characters of Γw by giving a character of the bigger group which factors
through T .
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Remark 3.4. — By the Sun Zi remainder theorem, given any collection of to-
tal exponents 0 ⩽ b1 < a1, . . . , 0 ⩽ bn+1 < an+1, we can solve this system of
congruences for b0 uniquely modulo l if and only if bi = bj mod gcd(ai, aj) for all
i, j ∈ {1, . . . , n + 1}.

Our approach to calculating HH∗ will therefore be to consider each possible value
b0 and find the number of elements γ ∈ ker χ such that (γ, mA(b0)), (γ, mB(b0)) or
(γ, mC(b0)) is a contributing γ-monomial.

The contributions from b0 = −1 are easy to calculate.

Lemma 3.5. — The contributions from monomials with total exponent b0 = −1
come from (

γ, x∨
0 · · · x∨

n+1

)
∈ HHn

for all γ ∈ (µa1 \ {1}) × · · · × (µan+1 \ {1}).

Proof. — We have mB(−1) = mC(−1) = x∨
0 · · · x∨

n+1. This contributes as a γ-
monomial if and only if either:

• γ leaves all variables x0, . . . , xn+1 unfixed. In this case we get a type C
contribution from (γ, mC(−1)).

• γ fixes x0 and does not fix any other variable. In this case we get a type B
contribution from (γ, mB(−1)). □

Remark 3.6. — In fact, in our examples (but not in general), these will be the
only contributions to HHn, which gives dim HHn = (a1 − 1) · · · (an+1 − 1). Note that
this equals the Milnor number of the singularity.

We now proceed to the specific examples of interest to compute the contributions
explicitly. These examples are:

cAℓ : x2
1 + x2

2 + xℓ+1
3 + x

k(ℓ+1)
4 , k, ℓ ⩾ 1

cD4 : x2
1 + x3

2 + x3
3 + x6k

4 , k ⩾ 1
cE6 : x2

1 + x3
2 + x4

3 + x12k
4 , k ⩾ 1

cE8 : x2
1 + x3

2 + x5
3 + x30k

4 , k ⩾ 1
In all cases, the x4 = 0 slice has an ADE singularity at the origin, having the type
indicated. The 3-folds admit small resolutions which fully resolve the singularity of
the slice; this follows from [Bri68, Satz 0.2] because the exponent of x4 is a multiple
of the Coxeter number of the ADE singularity.

Theorem 3.7. — For each w below, we will compute HH∗ = HH∗(mf(A5, Γw, w)).
In all cases, HHd vanishes when d = 2 or d ⩾ 4.

(1) Type cAℓ: Let w = x2
1 + x2

2 + xℓ+1
3 + x

k(ℓ+1)
4 . Then

dim HH3 = ℓ(k(ℓ + 1) − 1), dim HHd = ℓ for d ⩽ 1.

(2) Type cD4: Let w = x2
1 + x3

2 + x3
3 + x6k

4 . Then

dim HH3 = 24k − 4, dim HHd = 4 for d ⩽ 1.
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(3) Type cE6: Let w = x2
1 + x3

2 + x4
3 + x12k

4 . Then

dim HH3 = 72k − 6, dim HHd = 6 for d ⩽ 1.

(4) Type cE8: Let w = x2
1 + x3

2 + x5
3 + x30k

4 . Then

dim HH3 = 240k − 8, dim HHd = 8 for d ⩽ 1.

Proof. — In each case, the HH3 contributions come from Lemma 3.5. We will
consider the contributions from mA(b0) with b0 ⩾ 0.

In the various cases we will use Euclid’s algorithm to write:

Type b0 = q ∈ r ∈
cAℓ k(ℓ + 1)p + (ℓ + 1)q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , ℓ}
cD4 6kp + 6q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 5}
cE6 12kp + 12q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 11}
cE8 30kp + 30q + r {0, 1, . . . , k − 1} r ∈ {0, 1, . . . , 29}

In the following tables, we indicate: the type A monomials mA(b0); the γ for which
(γ, mA(b0)) contribute to HH∗; the number of such γ; and the degree of HH∗ to which
they contribute. We omit monomials m for which there are no γ such that (γ, m)
contributes.

In every case, we will see that HH∗ has the rank stated in the theorem in every even
degree d ⩽ 0. The type B contributions, other than those appearing in Lemma 3.5,
will differ only in replacing mA(b0) with x0x

∨
0 mA(b0) and yield the same ranks in

every odd degree d ⩽ 1.

Table 3.1. Table for cAℓ. Note that b0 = k(ℓ + 1)p + (ℓ + 1)q + r with p ⩾ 0,
0 ⩽ q ⩽ k − 1, 0 ⩽ r ⩽ ℓ. The top two row give us rank ℓ in every degree d ̸=
−2k mod 2(k + 1). The bottom row gives us rank ℓ in degrees d = −2k mod 2(k +
1)(ω is a chosen primitive (ℓ + 1)th root of unity and a ∈ {1, 2, . . . , ℓ}).

q r mA(b0) γ # γ HH∗ degree

any < ℓ xb0
0 xr

3x
(ℓ+1)q+r
4

{
1 if b0 even
x∨

1 x∨
2 if b0 odd

{
(1, 1, 1, 1)
(−1, −1, 1, 1)

1 −2(k + 1)p − 2q

k − 1 ℓ xb0
0 x∨

3 x∨
4

{
1 if b0 even
x∨

1 x∨
2 if b0 odd

{
(−1, −1, ωa, ω−a)
(1, 1, ωa, ω−a)

ℓ −2(k + 1)p − 2k
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Table 3.2. Table for cD4. The top three rows give us rank 4 in every degree d ̸=
−2k mod 2(k+1). The bottom row gives us rank 4 in degrees d = −2k mod 2(k+1)
(on the second and fourth rows, ω is a chosen primitive 3rd root of unity and
a, b ∈ {1, 2}).

q r mA(b0) γ # γ HH∗ degree

any 0 x6kp+6q
0 x6q

4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 2 x6kp+6q+2
0 x6q+2

4 x∨
2 x∨

3 (1, ωa, ω−a, 1), 2 −2(k + 1)p − 2q

any 4 x6kp+6q+4
0 x2x3x

6q+4
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

k − 1 5 x6kp+6k−1
0 x∨

1 x∨
2 x∨

3 x∨
4 (−1, ωa, ωb, −ω−a−b) 4 −2(k + 1)p − 2k

Table 3.3. Table for cE6. The top six rows give us rank 6 in every degree d ̸=
−2k mod 2(k+1). The bottom row gives us rank 6 in degrees d = −2k mod 2(k+1)
(ω and i are chosen primitive 3rd and 4th roots of unity; and a ∈ {1, 2} and
b ∈ {1, 2, 3}).

q r mA(b0) γ # γ HH∗ degree

any 0 x12kp+12q
0 x12q

4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 3 x12kp+12q+3
0 x12q+3

4 x∨
1 x∨

3 (−1, 1, −1, 1) 1 −2(k + 1)p − 2q

any 4 x12kp+12q+4
0 x2x

12q+4
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 6 x12kp+12q+6
0 x2

3x
12q+6
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 7 x12kp+12q+7
0 x2x

12q+7
4 x∨

1 x∨
3 (−1, 1, −1, 1) 1 −2(k + 1)p − 2q

any 10 x12kp+12q+10
0 x2x

2
3x

12q+10
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

k − 1 11 x12kp+12k−1
0 x∨

1 x∨
2 x∨

3 x∨
4 (−1, ωa, ib, −ω−ai−b) 6 −2(k + 1)p − 2k

Table 3.4. Table for cE8. The top eight rows give us rank 8 in every degree d ̸=
−2k mod 2(k+1). The bottom row gives us rank 8 in degrees d = −2k mod 2(k+1)
(ω and ζ are chosen primitive 3rd and 5th roots of unity, a ∈ {1, 2}, and b ∈
{1, 2, 3, 4}).
q r mA(b0) γ # γ HH∗ degree

any 0 x30kp+30q
0 x30q

4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 6 x30kp+30q+6
0 x3x

30q+6
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 10 x30kp+30q+10
0 x2x

30q+10
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 12 x30kp+30q+12
0 x2

3x
30q+12
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 16 x30kp+30q+16
0 x2x3x

30q+16
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 18 x30kp+30q+18
0 x3

3x
30q+18
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 22 x30kp+30q+22
0 x2x

2
3x

30q+22
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

any 28 x30kp+30q+28
0 x2x

3
3x

30q+28
4 (1, 1, 1, 1) 1 −2(k + 1)p − 2q

k − 1 29 x30kp+30k−1
0 x∨

1 x∨
2 x∨

3 x∨
4 (−1, ωa, ξb, −ω−aξ−b) 8 −2(k + 1)p − 2k

□
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3.2. Laufer’s examples

Let
w̌ = x3

1 + x1x
2k+1
2 + x2x

2
3 + x2

4

This polynomial defines a cD4 singularity: the x1 = x2 slice has an isolated D4
singularity at the origin. Laufer [Lau81] showed that this admits a small resolution
with a single exceptional curve; the small resolution yields a partial resolution of the
D4 slice (the map from the minimal resolution to the partial resolution collapses the
three peripheral curves in the D4 configuration).

The Berglund–Hübsch transpose is

w = x3
1x2 + x2k+1

2 x3 + x2
3 + x2

4

which has

Γw =
{
(t0, t1, t2, t3, t4) : t3

1t2 = t2k+1
2 t3 = t2

3 = t2
4 = t0t1t2t3t4

}
.

Lemma 3.8. — There is a 3-to-1 surjective homomorphism

T : µ2 × µ3 × C× → Γw,

T (s, µ, τ) =
(
sµ−1τ−(4k+4), µτ 4k+1, τ 3, τ 6k+3, sτ 6k+3

)
.

The composition χ ◦ T is given by (s, µ, τ) 7→ τ 12k+6.

Proof. — We first show that the stated homomorphism is surjective. Since t2k+1
2 t3 =

t2
3 we get t3 = t2k+1

2 . Since t2
4 = t2

3, we have t4 = ±t2k+1
2 . Since t3

1t2 = t2
3 = t4k+2

2 , we
get t3

1 = t4k+1
2 . If t2 = τ 3 for some τ ∈ C× then t1 = µτ 4k+1 for some cube root µ of

unity. Finally, t0 is determined by t0 · · · t4 = t2
3, which gives t0 = ±µ−1τ−4k−4.

To see that the homomorphism is 3-to-1, observe that its kernel consists of triples
(s, µ, τ) such that

µτ 4k+1 = τ 3 = τ 6k+3 = sτ 6k+3 = 1.

In particular, this means s = 1 and τ 3 = 1. The condition 1 = µτ 4k+1 = µτ k+1 means
that µ = τ−k−1, so the kernel is {(1, τ−k−1, τ) : τ 3 = 1}, which has size 3. □

The kernel ker(χ ◦ T ) is then µ2 × µ3 × µ12k+6; recall that T is 3-to-1, so this
is three times the size of ker χ. We now identify which combinations of fixed and
unfixed variables are possible for γ ∈ ker χ.

Fixed variables Number of γ = T (s, µ, τ) ∈ ker χ s µ τ

{0, 1, 2, 3, 4} 1 1 τ−4(k+1) τ 3 = 1
{0} 1 1 τ−4(k+1) τ 3 = −1
{2, 3} 2 −1 µ ̸= τ−k−1 τ 3 = 1
∅ 6k + 2 See below
Five further cases which do not contribute to HH∗: {3}, {4}, {3, 4}, {1, 2, 3}
and {2, 3, 4}
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Lemma 3.9. — Let γ = T (s, µ, τ) ∈ ker χ. The possible combinations of fixed
and unfixed variables for γ are given by the table before. We state the conditions
on (s, µ, τ) ∈ µ2 × µ3 × µ12k+6 such that γ = T (s, µ, τ) fixes this combination of
variables, and also the number of suchγ (remembering that T is 3-to-1).

Proof. — Let γ = T (s, µ, τ) with s ∈ {±1}, µ ∈ µ3, τ ∈ µ12k+6.
If x0 is fixed then τ−4(k+1) = sµ. This means that τ 24(k+1) = 1, but τ 12k+6 = 1, so

τ 6 = 1. Therefore τ−4(k+1) is a cube root of unity, which means that s = 1. This
means that the other variables transform as µτ 4k+1 = τ−3, τ 3, τ 6k+3 and τ 6k+3. There
are two possibilities: τ 3 = 1 (which fixes all variables) or τ 3 = −1 (which fixes none).

If x1 is fixed then µ = τ−4k−1, so τ−12k−3 = 1, but τ 12k+6 = 1, so τ 3 = 1. This means
that x2 and x3 are also fixed. The variable x0 transforms as sµ−1τ−4k−4 = sτ−3 = s,
so either x0 is fixed (as in the previous case) or s = −1, in which case both x0 and
x4 are unfixed.

If x2 is fixed then τ 3 = 1 so τ 6k+3 = 1 and x3 is also fixed. If x0 or x1 is fixed
then we are in a previous case; assume they are not. Then µ ̸= τ−k−1 and s can take
on either value because both µ and τ−k−1 are in µ3, so µ = −τ−k−1 is impossible.
If s = 1 then x4 is fixed (yielding fixed variables {2, 3, 4}); otherwise we get fixed
variables {2, 3}.

Finally, if none of x0, x1, x2 are fixed then the remaining variables can be fixed in
any combination. We will see in Theorem 3.10 that the only such γ which contribute
γ-monomials to HH∗ are those which fix no variables. There are 6k + 2 of these. To
see this, we argue as follows. If x3 is not fixed then τ 6k+3 ≠ 1, so τ 6k+3 = −1. If x4
is not fixed then sτ 6k+3 = −1 means that s = 1. The remaining conditions become

µ ̸= τ−4(k+1), µ ̸= τ−4k−1.

The second condition always holds because τ 6k+3 = −1, so τ−4k−1 is not a cube
root of unity ((τ−4k−1)3 = τ−12k−3 = τ 3 ≠ 1). The first condition implies 1 =
(τ−4(k+1))3 = τ 12k+12 = τ 6, which can hold only if τ 3 = −1. Therefore there are 6k
roots of τ 6k+3 = −1 for which µ can take on any value and 3 roots of τ 3 = −1 for
which µ can be two out of the three roots of unity. This gives a total of 3(6k + 2)
combinations (1, µ, τ), and this triple-counts the available γs because T is 3-to-1. □

We now pick the following monomial bases Jγ for the relevant Jacobian rings:

Jac
(
w|x1,x2,x3,x4

)
= Jac

(
w|x1,x2,x3

)
= C [x1, x2, x3] /

(
3x2

1x2, x3
1 + (2k + 1)x2k

2 x3, x2k+1
2 + 2x3

)
= C

{
1, x2, x2

2, . . . , x4k+1
2 , x1, x1x2, x1x

2
2, . . . , x1x

4k+1
2 , x2

1

}
Jac

(
w|x2,x3,x4

)
= Jac

(
w|x2,x3

)
= C [x2, x3] /

(
(2k + 1)x2k

2 x3, x2k+1
2 + 2x3

)
= C ·

{
1, x2, x2

2, . . . , x4k
2

}
Jac

(
w|x3,x4

)
= C [x3, x4] /(2x3, 2x4) = C · 1

Jac(w|x3) = Jac(w|x4) = C · 1
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Theorem 3.10. — If w = x3
1x2 + x2k+1

2 x3 + x2
3 + x2

4 then HH∗(A5, Γw, w) satisfies
dim HH3 = 6k + 5, dim HHd = 1 for d ⩽ 1

and dim HHd = 0 for d = 2 and d ⩾ 4.
The HH∗ contributions for these singularities are as follows:

Monomial Type Degree in HH∗ Number of contributions
x∨

0 x∨
1 x∨

2 x∨
3 x∨

4 C 3 6k + 2
x∨

0 x∨
1 x∨

2 x∨
3 x∨

4 B 3 1
x∨

0 x∨
1 x2k

2 x∨
4 C 3 2

x
(6k+3)p−1
0 x∨

1 x∨
2 x∨

3 x∨
4 A −4(k + 1)p + 2 p ⩾ 1 even

x
(6k+3)p+3q
0 x2q

2 A −4(k + 1)p − 2q p ⩾ 0, 0 ⩽ q ⩽ 2k, p = q mod 2
x

(6k+3)p+3q+4
0 x1x

2q+3
2 A −4(k + 1)p − 2q − 2 p ⩾ 0, 0 ⩽ q ⩽ 2k − 1,

p = q mod 2
x

(6k+3)p+6k+4
0 x1x2 A −4(k + 1)(p + 1) p ⩾ 0 even

x
(6k+3)p+6k+2
0 x2

1 A −4(k + 1)p − 4k − 2 p ⩾ 0 even

Type B contributions in HHd+1 for each type A monomial contributing to HHd.

Proof. — Assuming the stated monomials are correct, the patient reader can check
that every degree less than or equal to 1 picks up precisely one contribution as p
and q vary (it suffices to check this over the degree range from 0 to −8(k + 1)). We
will therefore focus on establishing the list of contributing γ-monomials.

We work one set of fixed variables at a time and figure out which γ-monomials can
contribute.

{0, 1, 2, 3, 4}: The possible A-type monomials are as follows.
xb0

0 xb2
2 with 0 ⩽ b2 ⩽ 4k + 1. For this to contribute, we need the existence of a

u ∈ Z such that sb0µ−b0τ 3b2−4(k+1)b0 = τ (12k+6)u for all (s, µ, τ) ∈ µ2 ×µ3 ×µ12k+6. By
taking (s, µ, τ) = (−1, e2πi/3, 1) we see that b0 = 0 mod 6, which leaves τ 3b2−4(k+1)b0 =
τ (12k+6)u, so 3b2 −4(k+1)b0 = (12k+6)u. If we write b0 = 6β0 and 2β0 = (2k+1)p+q
with p ⩾ 0, q ∈ {0, 1 . . . , 2k}, p = q mod 2, then we get

b2 = (4k + 2)(2(k + 1)p + u) + 4(k + 1)q,

so if we reduce modulo 4k + 2 we get b2 = 2q mod 4k + 2. Since 0 ⩽ b2 ⩽ 4k + 1 and
q ⩽ 2k, this determines b2. The result is a contribution x

(6k+3)p+3q
0 x2q

2 ∈ HH−4(k+1)p−2q

for all p ⩾ 0, q ∈ {0, 1, . . . , 2k} with p = q mod 2.
xb0

0 x1x
b2
2 with 0 ⩽ b2 ⩽ 4k + 1. For this to contribute, we need b0 = 1 mod 3,

b0 = 0 mod 2 (so b0 = 4 mod 6) and 3b2 + 4k + 1 − 4(k + 1)b0 = (12k + 6)u for some
u ∈ Z. As in the previous case, we write b0 = 6β0 + 4 and 2β0 = (2k + 1)p + q
with p ⩾ 0, q ∈ {0, 1, . . . , 2k}, p = q mod 2. Arguing as before, we deduce that
b2 = 2q + 3 mod 4k + 2. This means b2 = 2q + 3 except in the case q = 2k, when
b2 = 1. We get contributions x

(6k+3)p+3q+4
0 x1x

2q+3
2 ∈ HH−4p(k+1)−2q−2 for p ⩾ 0,

q ∈ {0, 1, . . . , 2k − 1} with p = q mod 2 and a contribution x
(6k+3)p+6k+4
0 x1x2 ∈

HH−4(p+1)(k+1).
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xb0
0 x2

1. For this to contribute, we need b0 = 0 mod 2, b0 = 2 mod 3 (so b0 = 2 mod 6)
and 8k + 2 − 4(k + 1)b0 = (12k + 6)u for some u ∈ Z. If we write b0 = 6β0 + 2
and 2β0 = (2k + 1)p + q with p ⩾ 0, q ∈ {0, 1, . . . , 2k}, p = q mod 2 then we get
q = 2k mod 2k + 1 and so x

(6k+3)p+6k+2
0 x2

1 ∈ HH−4(k+1)p−4k−2 (with p even).
We also get corresponding B-type monomials by replacing xb0

0 with xb0+1
0 x∨

0 .
{0}: Any type A contribution is xb0

0 x∨
1 · · · x∨

4 . This transforms as

ξ
(
xb0

0 x∨
1 · · · x∨

4

)
(s, µ, τ) =

(
sµ−1τ−4(k+1)

)b0 (
µτ 4k+1

)−1
τ−3τ−(6k+3)s−1τ−(6k+3)

= sb0−1µ−b0−1τ−2(6k+3)−3−(4k+1)−4(k+1)b0 .

For this to coincide with τ (12k+6)u for all (s, µ, τ) ∈ µ2 × µ3 × µ12k+6 we need
b0 = 1 mod 2, b0 = −1 mod 3 ⇒ b0 = 5 mod 6

and −2(6k + 3) − 3 − (4k + 1) − 4(k + 1)b0 = (12k + 6)u for some u ∈ Z. Write
b0 = 6β0−1. Then we get −4(k+1)β0 = (2k+1)(u+1). Since gcd(4(k+1), 2k+1) = 1,
we deduce that β0 = (2k + 1)p and u + 1 = −4(k + 1)p for some p. In other words,
we get x

(12k+6)p−1
0 x∨

1 · · · x∨
4 ∈ HH2−4(k+1)p (p ⩾ 1). There is a corresponding B-type

monomial x
(12k+6)p
0 x∨

0 x∨
1 · · · x∨

4 ∈ HH3−4(k+1)p (p ⩾ 0).
{1, 2, 3}: The possible γ-monomials are of type C. They have the form x∨

0 xb1
1 xb2

2 x∨
4

with b1 = 0, 1, b2 = 0, 1, . . . , 4k+1 or b1 = 2, b2 = 0. If this contributes then we have
b1 = b0 = −1 mod 3, which leaves the only possibility as x∨

0 x2
1x

∨
4 . This transforms

under the action of T (1, 1, τ) as τ 6k+3, which is not an integer power of τ 12k+6, so
this monomial does not contribute.

{2, 3, 4}: The possible γ-monomials are x∨
0 x∨

1 xb2
2 ∈ Cγ , which transform nontrivially

under the action of T (−1, 1, 1) and hence do not contribute to HH∗.
{2, 3}: There are two γ fixing precisely x2, x3. The only γ-monomials are x∨

0 x∨
1 xb2

2 x∨
4

with b2 = 0, 1, . . . , 4k. These transform according to the character τ 3b2−6k, which
is an integer power of τ 12k+6 if and only if b2 = 2k. This yield two contributions
(γ, x∨

0 x∨
1 x2k

2 x∨
4 ) ∈ HH3.

{3, 4}: The only γ-monomial is x∨
0 x∨

1 x∨
2 ∈ Cγ , which transforms nontrivially under

the action of T (−1, 1, 1) and hence does not contribute to HH∗.
{3}: The only γ-monomial x∨

0 x∨
1 x∨

2 x∨
4 ∈ Cγ which transforms as τ 6k+3 under the

action of T (1, 1, τ) and hence does not contribute to HH∗.
{4}: The only γ-monomial x∨

0 x∨
1 x∨

2 x∨
3 ∈ Cγ which transforms as τ 6k+3 under the

action of T (1, 1, τ) and hence does not contribute to HH∗.
∅: The C-type monomial x∨

0 · · · x∨
4 ∈ HH3 contributes whenever γ has no fixed

variables; there are precisely 6k + 2 such elements γ. □

3.3. More cAℓ examples

By [Kat91, Theorem 1.1], any cAℓ singularity with a small resolution is given by
an equation x2

1 +x2
2 +f(x3, x4) = 0 where germ of the plane curve f = 0 at the origin

has ℓ + 1 distinct smooth branches, and conversely, any such singularity admits a
small resolution (the converse was also proved in [Fri86, p. 676]).

TOME 6 (2023)



750 J. EVANS & Y. LEKILI

Let
w = w̌ = x2

1 + x2
2 + x3x4

(
xℓ−1

3 + x
k(ℓ−1)
4

)
.

The singularity w̌ = 0 is of type cAℓ: the x3 = x4 slice has an Aℓ singularity at the
origin. The curve x3x4(xℓ−1

3 + x
k(ℓ−1)
4 ) = 0 has multiplicity ℓ + 1 and ℓ + 1 distinct

branches at the origin:
x3 = 0, x4 = 0, and x3 + µxk

4 = 0 for µℓ−1 = −1.

Therefore, this singularity admits a small resolution.
Lemma 3.11. — There exists a surjective 2-to-1 homomorphism T : µ2×µ2(ℓ−1)×

C× → Γw which we will construct in the proof. The composition χ ◦ T is given by
(±1, σ, τ) 7→ σ2τ 2kℓ+2.

Proof. — The group Γw is defined by the equations
t0t1t2t3t4 = t2

1 = t2
2 = tℓ

3t4 = t3t
k(ℓ−1)+1
4 ,

which imply tℓ−1
3 = t

k(ℓ−1)
4 , so t3 = ξtk

4 for some ξ with ξℓ−1 = 1. Substituting back,
we get

t2
1 = t2

2 = ξtkℓ+1
4 .

Pick a square root σ for ξ and a square root τ for t4 such that t1 = στ kℓ+1; then t2 =
±στ kℓ+1, t3 = σ2τ 2k, t4 = τ 2, t0 = ±σ−2τ−2(k+1). This shows that the homomorphism

T (±1, σ, τ) =
(
±σ−2τ−2(k+1), στ kℓ+1, ±στ kℓ+1, σ2τ 2k, τ 2

)
is surjective. To see that it is 2-to-1, note that its kernel consists of triples (1, σ, τ)
for which τ 2 = 1 (so τ = ±1) and σ = τ−kℓ−1. This has size 2. □

The kernel ker(χ ◦ T ) is the subgroup{
(±1, σ, τ) ∈ µ2 × µ2(ℓ−1) × µ2(kℓ+1)(ℓ−1) : τ 2(kℓ+1) = σ−2

}
.

The projection to τ ∈ µ2(kℓ+1)(ℓ−1) is surjective and split by the map τ 7→ (1, τ−kℓ−1, τ);
its kernel consists of triples (±1, ±1, 1), so there is an isomorphism

µ2 × µ2 × µ2(kℓ+1)(ℓ−1) → ker(χ ◦ T )

(s1, s2, τ) 7→
(
s1, s2τ

−(kℓ+1), τ
)

.

We will work with elements of this group; since T is 2-to-1, this will mean that we
overcount contributions to HH∗ by a factor of 2. We now identify which combinations
of fixed and unfixed variables are possible for γ ∈ ker χ.

Lemma 3.12. — The possible combinations of fixed variables are given in the
table below, along with the number of elements γ ∈ ker χ which give rise to these
fixed variables.

Proof. — Let γ = T (s1, s2τ
−(kℓ+1), τ) with s1, s2 ∈ {1, −1} and τ ∈ µ2(kℓ+1)(ℓ−1).

If x0 is fixed then s1τ
2(kℓ+1)−2k−2 = 1, so τ 2(ℓ−1)k = s1. Since τ 2(ℓ−1)(kℓ+1) = 1 this

implies τ 2(ℓ−1) = sℓ
1, and therefore s

ℓ(kℓ+1)
1 = 1. If s1 = 1 then this always holds. If

s1 = −1 then this holds if and only if ℓ(kℓ + 1) is even. Therefore the element which
fix x0 are those of the form T (1, s2τ

−(kℓ+1), τ) with τ 2(ℓ−1) = 1 and (if ℓ(kℓ + 1) is
even) T (−1, s2τ

−(kℓ+1), τ) with τ 2(ℓ−1) = (−1)ℓ.
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Fixed variables #γ

∅ kℓ(ℓ − 1)
{0} ℓ − 2
{0, 3, 4} 1
{0, 1, 2} ℓ − 2
{0, 1, 2, 3, 4} 1
The following cases occur, but do not contribute to HH∗:
{1}, {2}, {1, 2}, {0, 1}, {0, 2}, {0, 1, 3, 4}, {0, 2, 3, 4}

• x1 is fixed if and only if στ kℓ+1 = s2 = 1.
• x2 is fixed if and only if s1στ kℓ+1 = s1s2 = 1, that is s1 = s2.
• x4 is fixed if and only if τ 2 = 1. That is τ = ±1.
• x3 is fixed if and only if σ2τ 2k = τ−2kℓ−2+2k = τ−2(k(ℓ−1)+1) = 1. Note that

gcd(kℓ + 1, k(ℓ − 1) + 1) = 1 and gcd(ℓ − 1, k(ℓ − 1) + 1) = 1,

so the only way we can simultaneously solve τ 2(kℓ+1)(ℓ−1) = 1 and τ−2(k(ℓ−1)+1) =
1 is if τ 2 = 1. This means that x3 is fixed if and only if τ = ±1 (if and only
if x4 is also fixed).

s1 s2 τ 2 τ 2(ℓ−1) fixed variables #γ

1 1 1 1 0 1 2 3 4 1
̸= 1 1 0 1 2 ℓ − 2

̸= 1 1 2
1 −1 1 1 0 3 4 1

̸= 1 1 0 ℓ − 2
̸= 1 kℓ(ℓ − 1)

−1 1 1 1 0 1 3 4
̸= 1 1 0 1

(−1)ℓ 0 1
else 1

−1 −1 1 1 0 2 3 4
̸= 1 1 0 2

(−1)ℓ 0 2
else 2

The table before enumerates the possibilities for combinations of fixed variables
and the counts(6) of γ ∈ ker χ which fix this combination of variables (we omit the
#γ data for any combinations which turn out not to contribute to HH∗; in particular
this allows us to ignore the distinction between ℓ(kℓ + 1) even/odd). □

(6) Recall that if we count elements of ker(χ ◦ T ) then we overcount by a factor of 2. We have
removed this factor of 2 in the table.
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We pick the monomial basis xa
3xb

4, 0 ⩽ a ⩽ ℓ − 1, 0 ⩽ b ⩽ k(ℓ − 1) − 1 for the
Jacobian ring of w|xj1

= · · · = xjℓ−k
= 0 when x3 and x4 are fixed and the monomial

basis 1 when they are not.

Theorem 3.13. — If w = x2
1 + x2

2 + x3x4(xℓ−1
3 + x

k(ℓ−1)
4 ) then HH∗(A5, Γw, w)

satisfies

dim HH3 = (kℓ + 1)(ℓ − 1), dim HHd = ℓ for d ⩽ 1

and dim HHd = 0 for d = 2 and d ⩾ 4.
The HH∗ contributions for these singularities are given by the following table.

Monomial Type Degree in HH∗ Number of contributions
x∨

0 x∨
1 x∨

2 x∨
3 x∨

4 C 3 kℓ(ℓ − 1)
x∨

0 x∨
1 x∨

2 x∨
3 x∨

4 B 3 ℓ − 1

x
(kℓ+1)p+qℓ+r
0 vxr

3x
q(ℓ−1)+r
4 A −2(k + 1)p − 2q


0 ⩽ q ⩽ k − 1
0 ⩽ r ⩽ ℓ − 1
p ⩾ 0

x
(kℓ+1)p+kℓ
0 vxℓ−1

3 A −2(k + 1)p − 2k p ⩾ 0
x

(kℓ+1)p+kℓ
0 vx

k(ℓ−1)
4 A −2(k + 1)p − 2k p ⩾ 0

x
(kℓ+1)p+kℓ
0 vx∨

3 x∨
4 A −2(k + 1)p − 2k ℓ − 2, p ⩾ 0

Type B contributions in HHd+1 for each type A monomial contributing to HHd

In this table, we have written

v =

1 if b0 = 0 mod 2,

x∨
1 x∨

2 if b0 = 1 mod 2.

Proof. — For each γ-monomial m, let b0, . . . , b4 be the total exponents of x0, . . . ,
x4 in m. This monomial transforms under T (s, σ, τ) as

sb0+b2σ−2b0+b1+b2+2b3τ−2b0(k+1)+(kℓ+1)(b1+b2)+2kb3+2b4 ,

which agrees with (χ ◦ T )⊗u(s, σ, τ) for all (s, σ, τ) if and only if
b0 = b2 mod 2,(3.1)

b1 + b2 + 2b3 = 2b0 + 2u mod 2(ℓ − 1),(3.2)
(kℓ + 1)(b1 + b2) + 2kb3 + 2b4 = 2(kℓ + 1)u + 2b0(k + 1).(3.3)

Reducing Equation (3.2) modulo 2 tells us that b1 = b2 mod 2. For i = 1, 2, the
only possibilities for bi are 0 (if xi is fixed) or −1 (if xi is not fixed). Thus, if (γ, m)
contributes to HH∗ then either x1 and x2 are both fixed or neither is fixed. This
immediately rules out the contributions from γ with fixed variables {1}, {2}, {0, 1},
{0, 2} {0, 1, 3, 4}, {0, 2, 3, 4}. Moreover, if x2 is fixed then b2 = 0 so b0 = 0 so x0
must also be fixed (or else we would have b0 = −1). This rules out contributions
with fixed variables {1, 2}.
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We now dispose of the type C contributions. These come from (γ, x∨
0 x∨

1 x∨
2 x∨

3 x∨
4 ) ∈

HH3 where γ fixes no variables; there are kℓ(ℓ − 1) of these.
Since b1 = b2 mod 2 and b1, b2 ∈ {0, −1}, Equations (3.2) and (3.3) become

b3 = b0 + u − b1 mod ℓ − 1(3.4)
kb3 + b4 = k(ℓ − 1)(u − b1) + (k + 1)(b0 + u − b1).(3.5)

Reducing (3.5) modulo ℓ − 1 yields

b4 = u − b1 + b0 = b3 mod ℓ − 1.

We distinguish the following cases:
(Case 1) b3 = r, b4 = q(ℓ − 1) + r with q = 0, 1, . . . , k − 1 and r = 0, 1, . . . , ℓ − 1.
(Case 2) b3 = ℓ − 1, b4 = 0
(Case 3) b3 = 0, b4 = k(ℓ − 1)
(Case 4) b3 = b4 = −1.

We illustrate Cases 1–3 in the diagram below for ℓ = 2, k = 3:

0

...

ℓ − 1

0 · · · ℓ − 1 · · · 2(ℓ − 1) · · · k(ℓ − 1)

•r = 0

•

•

•

•r = ℓ − 1

•

•

•

•

•

•

Case 2

Case 3

Case 1, q = 0 · · · Case 1, q = k − 1

In what follows, we let d = gcd(ℓ−1, k +1) = gcd(k +1, kℓ+1) = gcd(ℓ−1, kℓ+1)
and define x, y, z by

k + 1 = dx, kℓ + 1 = dy, ℓ − 1 = dz.

We will focus on type A contributions (there will be corresponding type B contribu-
tions obtained by multiplying with x0x

∨
0 ).

In Case 1, Equation (3.5) becomes

(ℓ − 1)q + (k + 1)r = k(ℓ − 1)(u − b1) + (k + 1)(b0 + u − b1),

so k(u − b1) = q − sx, b0 + u − b1 = r + sz for some integer s. Equation (3.4) tells
us that r + sz = r mod ℓ − 1, so s = dP for some integer P . If we write P = kp + q
for some p, we get

k(u − b1) = q − sx = q − dPx = q − dxkp − dxq = −k(q + (k + 1)p),
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giving u − b1 = −(q + (k + 1)p), and
b0 = r + sz − (u − b1)

= r + dz(kp + q) + q + (k + 1)p
= r + kp(ℓ − 1) + q(ℓ − 1) + q + (k + 1)p.

= qℓ + r + (kℓ + 1)p.

This yields a contribution of

x
(kℓ+1)p+qℓ+r
0 vxr

3x
q(ℓ−1)+r
4 ∈ HH−2((k+1)p+q) where v =

1 if b0 = 0 mod 2,

x∨
1 x∨

2 if b0 = 1 mod 2.

In each case, there is precisely one γ contributing this monomial (according to
whether the fixed variables are {0, 1, 2, 3, 4} or {0, 3, 4}). There are ℓ contributions
in each degree (as r varies) and we get every degree congruent to −2q mod 2(k + 1)
for q = 0, 1, . . . , k − 1, that is, HHd has rank ℓ for every even d ̸= −2k mod 2(k + 1),
d ⩽ 0. The corresponding type B contributions give dim HHd = ℓ for every odd
d ̸= 1 − 2k mod 2(k + 1), d ⩽ 1.

In Case 2 and Case 3, kb3 + b4 = k(ℓ − 1), so
k(ℓ − 1) = k(ℓ − 1)(u − b1) + (k + 1)(b0 + u − b1),

which implies
k(u − b1) = k − sx, b0 + u − b1 = sz

for some s. As before, Equation (3.4) implies s = dP , so k(u − b1) = k − P (k + 1).
This means P = kp for some p, so u − b1 = 1 − (k + 1)p and b0 = (kℓ + 1)p − 1. Thus
we get contributions

x
(kℓ+1)p−1
0 vw ∈ HH−2(k+1)p+2 where w ∈

{
xℓ−1

3 , x
k(ℓ−1)
4

}
and v =

1 if b0 = 0 mod 2,

x∨
1 x∨

2 if b0 = 1 mod 2.

In both cases there is precisely one γ contributing this monomial (according to
whether the fixed variables are {0, 1, 2, 3, 4} or {0, 3, 4}). This gives two contributions
in every even degree d = 2 mod 2(k + 1), d ⩽ −2k.

Finally, in Case 4 we have kb3 + b4 = −(k + 1), which yields
u − b1 = −(k + 1)p, b0 = (kℓ + 1)p − 1,

and we get a contribution

x
(kℓ+1)p−1
0 vx∨

3 x∨
4 ∈ HH−2(k+1)p+2 where v =

1 if b0 = 0 mod 2,

x∨
1 x∨

2 if b0 = 1 mod 2.

In both cases, there are ℓ − 2 elements γ contributing these monomials (according
to whether the fixed variables are {0, 1, 2} or {0}). Together with the contributions
from Cases 2 and 3, this yields dim HHd = ℓ for every even d = 2 mod 2(k + 1),
d ⩽ −2k. The corresponding type B contributions give dim HHd = ℓ in every odd
degree d = 3 mod 2(k + 1), d ⩽ 3.
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Altogether, we get dim HHd = ℓ if d ⩽ 0 and dim HH3 = (kℓ + 1)(ℓ − 1). □

4. Bigrading

4.1. Scale-equivalence of bigradings

In this section, we need to work over C (or at least an algebraically closed field of
characteristic zero).

Definition 4.1. — A Z×C-grading on a vector space V (or bigrading for short)
is a decomposition

V =
⊕

(p,q) ∈Z×C
V p,q.

Two Z × C-graded vector spaces V = ⊕
V p,q and W = ⊕

W p,q are scale-equivalent
if there is a nonzero c ∈ C such that dim(V p,q) = dim(W p,cq) for all p, q.

Our contact invariant will be a scale-equivalence class of Z × C-graded vector
spaces (in fact, we will be able to find a representative which takes values in Z × Z).
We now explain how to construct a Z×C-graded vector spaces out of a certain class
of Gerstenhaber algebras.

4.2. Bigradings from Gerstenhaber algebras

Let g∗ be a Gerstenhaber algebra over C; in particular, there is a Gerstenhaber
bracket [·, ·] on g∗ satisfying:
[x, y] = (−1)|x||y|[y, x], (−1)|x||z|[[x, y], z]+(−1)|y||x|[[y, z], x]+(−1)|z||y|[[z, x], y] = 0
The subset g1 ⊂ g∗ is a complex Lie algebra and the bracket gives a representation
ρd : g1 → gl(gd) for each d. We will assume that each graded piece of g∗ is finite-
dimensional.

Let h ⊂ g1 be a Cartan subalgebra, that is a nilpotent, self-normalising subalgebra.
A Cartan subalgebra exists and is unique up to automorphisms of g1; for example,
you can construct one by taking the generalised 0-eigenspace of a regular element
(an element ζ ∈ g1 is regular if the generalised 0-eigenspace of adζ has the least
possible dimension). If ρ : g1 → gl(V ) is a finite-dimensional complex representation
then we get a weight-space decomposition V = ⊕

α ∈ h∗ Vα where

V α :=
{
v ∈ V : (ρ(H) − α(H))Nv = 0 for some N

}
.

In other words, V α is a simultaneous generalised eigenspace for {ρ(H) : H ∈ h},
with eigenvalues α(H). The weight-space decomposition g1 = ⊕

α g
1,α of the adjoint

representation has h = g1,0.
If h has rank 1 then we have h∗ ∼= C. If we pick such an identification then the

weight-space decomposition gives us a Z × C-bigrading g∗ = ⊕
p,q g

p,q. Changing our
identification h∗ ∼= C yields a scale-equivalent Z × C-grading.
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Example 4.2. — Let A∗ be a Z-graded associative algebra and suppose that
its Hochschild cohomology HH∗(A, A) has finite dimension in each degree. The
Hochschild cochains can be given an additional Z-grading so that a graded multilinear
map A⊗p → A[−q] contributes to HHp,q(A, A) ⊂ HHp+q(A, A). This Z×Z-bigrading
fits into our setting above. We write HH∗(A, A) ∼=

⊕
p,q HHp,q(A, A). There is an

element eu ∈ CC1,0(A, A) defined on the graded piece Aq by eu(a) = qa. This is a
Hochschild cocycle and defines a class (which we also write as eu) in HH1,0(A, A). This
satisfies [eu, c] = qc for c ∈ CC∗,q(A, A). In particular, the generalised(7) 0-eigenspace
of adeu is HH1,0(A, A). If eu is a regular element of the Lie algebra HH1(A, A) then
HH1,0(A, A) is a Cartan subalgebra. In particular, if dim(HH1,0(A, A)) = 1 then eu
is necessarily regular and we can take h = HH1,0(A, A). In this case, if we identify
h∗ with C by sending eu∗ to 1 then the weight decomposition gives us the usual
bigrading HH∗(A, A) ∼=

⊕
p,q HHp,q(A, A).

4.3. Bigradings on symplectic cohomology

If V is a Liouville domain with c1(V ) = 0, the symplectic cohomology SH∗(V ) is
a Gerstenhaber algebra. We will sketch how the bracket is defined; for more detail,
see [Sei14, Section 4] or [Abo15, Section 2.5.1]. The bracket [x, y] is defined by

[x, y] =
⊕

z

(♯M(z; x, y, H, J)) z,

where M(z; x, y, J) is the moduli space of solutions u : Σ → V̂ to Floer’s equation
(du + XH ⊗ β)0,1 = 0

where:
• V̂ is the symplectic completion of V ;
• Σ is a pair-of-pants CP1 \ {0, 1, ∞}, where we consider 0, 1 to be positive

punctures and ∞ as a negative puncture;
• we equip Σ with a 1-parameter family of positive/negative cylindrical ends,

specified by asymptotic markers which rotate once for each puncture. As
the parameter varies from 0 to 2π, the markers at the positive punctures
rotate once clockwise and the marker at the negative puncture rotates once
anticlockwise;

• β is a subclosed 1-form on Σ compatible with the cylindrical ends;
• u has asymptotes x, y, z respectively at the punctures 0, 1, ∞.

The bracket has degree −1, that is
|x| + |y| = |z| + 1,

where the degree is related to the Conley–Zehnder index by |x| = n − µCZ(x).
Equivalently,

n = µCZ(x) + µCZ(y) − µCZ(z) + 1.

(7) Since adeu is semisimple on the level of cochains, it remains semisimple in its action on cohomology,
so generalised eigenspaces are actual eigenspaces.
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Lemma 4.3. — Let V be a 2n-dimensional Liouville domain with simply-connected
boundary and suppose that there is a contact form on Y = ∂V such that every Reeb
orbit γ on Y satisfies the inequality

µCZ(γ) ⩾ max(5 − n, n − 1).
If x, y, z are Reeb orbits then there exists a J such that any u ∈ M(z; x, y, H, J)
avoids the interior of V , that is, every u stays in the cylindrical end V̂ \ V .

Proof. — Suppose this is not true. Pick a neck-stretching sequence of almost
complex structures Jk around Y and assume our Hamiltonian is constant on the
neck as in [CO18, Figure 8] so that our solutions to Floer’s equation are genuinely
holomorphic in that region and the standard SFT analysis of neck-stretching applies.
Suppose we have a sequence of curves uk ∈ M(z; x, y, H, Jk) which enter the interior
of V . By the SFT compactness theorem, we can find a convergent subsequence which
breaks into levels. There are several cases we need to consider.

Case 1. — A break occurs along a separating curve parallel to z (and possibly
other curves).

x y

possibly disconnected

z · · ·

C

Case 2. — Not case 1, but a break occurs along separating curves parallel to x
and to y.

z · · ·
C

x

· · ·

y

· · ·

Case 3. — Not cases 1–2, but a break occurs along a separating curve parallel to
x (Case 3y similar).

C1 C2

x

· · ·

y

δ0 z δ1 δm· · ·
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Case 4. — Not cases 1–3, but a break occurs along a contractible loop.
x y

z δ1 δm· · ·

In Cases 1–2, we are left with a component C which violates the maximum principle
(see also the argument from Bourgeois–Oancea [BO09, Proof of Proposition 5, Step 1]
or an alternative argument based on action from Cieliebak–Oancea [CO18, Proof of
Proposition 9.17]).

The argument for Case 3x is inspired by [CO18, Appendix A] and [Ueb19, Lem-
ma 3.13]. In this case, there are at least two components C1 and C2 in the SFT
limit, where C1 has x as a positive asymptote and C2 has y as a positive asymptote.
The component C2 has a negative asymptote at z, a negative asymptote δ0 which
connects through lower levels to the component C1, and possibly further negative
asymptotes δ1, . . . , δm, which are capped off by planes in other levels. The index of
C2 is (we justify this in Remark 4.4 below):

(4.1) µCZ(y) − µCZ(z) + 1 −
m∑

i=0
(µCZ(δi) + n − 3).

We have
µCZ(y) − µCZ(z) + 1 = n − µCZ(x) ⩽ 1

because µCZ(x) ⩾ n−1 by assumption. Moreover µCZ(δi)+n−3 ⩾ 2 by assumption,
so µCZ(y)−µCZ(z)+1−∑m

i=0 µCZ(δi) ⩽ 1−2 = −1, which contradicts the regularity
of C2.

The argument for Case 3y is the same as for Case 3x with the roles of x and y
interchanged.

Case 4 yields a regular component C in the SFT limit which has punctures as-
ymptotic to x, y and z as well as further negative punctures with asymptotes
δ1, . . . , δm. The index of C is equal to the index of the original moduli space minus∑m

i=1(µCZ(δi) + n − 3) ⩾ 2, so becomes negative. This is a contradiction. □

Remark 4.4. — We now explain the index formula (4.1) from the proof. If we fix
the positions of the punctures and all the asymptotic markers, the virtual dimension
of this moduli space is (see Schwarz’s thesis [Sch95, Theorem 3.3.11]):

µCZ(y) − µCZ(z) −
m∑

i=0
µCZ(δi) − n(m + 1)

since −m−1 is the Euler characteristic of the domain. However, the bubbling/breaking
which gives rise to the punctures at δi can happen anywhere, with any asymptotic
marker, and the asymptotic markers on y and z can move in a 1-parameter family,
so we get an additional 3(m + 1) + 1, which gives Equation (4.1). Note that this
is intermediate between the formula in Schwarz’s thesis and the formula [Bou02,
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Corollary 5.4] from Bourgeois’s thesis, where all punctures and markers are allowed
to move.

Corollary 4.5. — Suppose that (Y, ξ) is a (2n−1)-dimensional contact manifold
which admits a contact form α for which every closed Reeb orbit γ satisfies

µCZ(γ) ⩾ max(5 − n, n − 1).
Let V1, V2 be Liouville domains with c1(Vi) = 0 and ∂Vi = Y . Suppose that Vi

admits a Morse function with no critical points of index 1. Then (a) there is an
isomorphism of Lie algebras f 1 : SH1(V1) → SH1(V2), and (b) for each d < 0 there
is an isomorphism fd : SHd(V1) → SHd(V2) which intertwines the representations

ad: SH1(Vi) → gl(SHd(Vi)).
That is, for each d < 0, we have a commutative diagram:

SH1(V1)

SH1(V2)

gl
(
SHd(V1)

)

gl
(
SHd(V2)

)
ad

ad

f 1 fd

Proof. — Under the assumptions of the corollary, every element of SH1(Vi) or of
SHd(Vi) with d < 0 can be represented using Reeb orbits for the contact form α
(rather than critical points of a Morse function on the filling). These Reeb orbits lie
in the cylindrical end of the symplectic completion V̂ i (rather than in the filling), and
these cylindrical ends are both symplectomorphic to the half-symplectisation [0, ∞)
× Y , so in a suitable cochain model of symplectic cohomology, we get identifications
fd : SCd(V1) → SCd(V2) when d = 1 or d < 0. Since the contact boundary is index-
positive, we know that the differential on these cochain groups is independent of
the filling [CO18, Prop. 9.17], which tells us that f 1 and fd induce isomorphisms on
cohomology.

By Lemma 4.3, we know there exist almost complex structures for which the
Gerstenhaber bracket between these orbits does not involve any contributions from
curves entering the filling. This implies that f 1 is an isomorphism of Lie algebras
and that fd intertwines the adjoint action of SH1. □

4.4. Bigrading on HH∗(mf)

In all our examples, we calculated HH∗(mf(An+1, Γw, w)) and saw that HH2 = 0.
Moreover, we saw in Lemma 2.8 that there is an intrinsically formal algebra B such
that

HH∗
(
mf(An+1, Γw, w)

)
= HH∗(B).

We now compute the usual algebra bigrading on HH∗(B) in terms of the γ-monomial
contributions from Theorem 2.14.

Lemma 4.6. — A γ-monomial m contributing to HHd(B) contributes to the
bigraded piece HHd−nb0,nb0(B), where b0 is the total exponent of x0 in m.
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Remark 4.7. — Recall that HHd = ⊕
q HHd−q,q, so this is really just saying that

the bigrading of m is nb0.

Proof. — Consider the Gm-action t · (x0, . . . , xn+1) = (tx0, . . . , xn+1). Since this
action leaves w invariant, its weights give a second grading on HH∗(mf(An+2, Γw, w)).
Theorem 2.14 comes from an isomorphism between HH∗(mf(An+2, Γw, w)) and a suit-
able twisted Koszul cohomology group (whose generators are γ-monomials) [BFK14].
This isomorphism respects the Gm-action, hence this additional grading is given by
the total exponent of x0 in the γ-monomials contributing to HH.

As in Section 2.3, let S = ⊕
i Si be the generator of F(V ) given by a direct sum

of vanishing cycles. In [LU18, Theorem 4.2] it is shown that, we have a generator
S of mf(An+2, Γww) mirror to S, where S is the pushforward of a generator E of
mf(An+1, Γw, w) under the inclusion (x1, . . . , xn+1) 7→ (0, x1, . . . , xn+1). In particu-
lar, S is Gm-invariant. Using this, [LU18, Theorem 4.2] shows that the endomorphism
A∞-algebra B = end(S) is a formal algebra and the grading on B = H(B) is n times
the weight of the Gm-action. Therefore, the Gm-weight on B can be understood in
terms of the grading of the algebra B. Indeed, we see it as the weight decomposition
for adb associated to the derivation b = n ·eu, where eu ∈ HH1 is the Euler derivation
from Example 4.2. □

In fact, in all of our examples we have dim HH1,0 = 1, which means, as in Exam-
ple 4.2, that the weight decomposition for the representation ad: HH1 → ⊕

d gl(HHd)
gives a Z×C-bigrading which is scale-equivalent to the algebra bigrading, and hence
to the bigrading by the total exponent of x0 by Lemma 4.6.

4.5. Proof of Theorem 1.13

Let X be a cDV singularity and let V be its Milnor fibre. Let µ be the Milnor
number of X. By [Mil68, Theorem 6.6], the Milnor fibre admits a Morse function with
precisely one minimum and µ critical points of index 3; in particular, none of index 1.
Since X is terminal, McLean’s theorem [McL16, Theorem 1.1] tells us that there exists
a contact form for which every closed Reeb orbit γ satisfies µCZ(γ) ⩾ 2 md(X) = 2,
where md(X) is the minimal discrepancy of X, which equals 1 by a theorem of
Markushevich [Mar96]. Since n = 3, we have max(5 − n, n − 1) = 2, so that all the
assumptions of Corollary 4.5 are satisfied.

Consider the Lie algebra SH1(V ) and its representation ⊕
d<0 SHd(V ) (where

SH1(V ) acts by the Gerstenhaber bracket). By Corollary 4.5, this Lie algebra repre-
sentation is a contact invariant of the link of X.

We know that Conjecture 2.2 holds for all our Brieskorn–Pham and cAn examples,
and we are going to assume that it holds for the Laufer examples too. By Theorem 2.6,
this tells us that, if V is the Milnor fibre of w̌, then

SH∗(V ) ∼= HH∗ ‘
(
mf

(
An+2, Γw, w

))
as Gerstenhaber algebras. Therefore, the contact invariant Lie algebra representation
is equivalent to the representation ad: HH1(B) → ⊕

d < 0 gl(HHd(B)) discussed in
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Section 4.4. In particular, this gives a Z×C-grading on ⊕
d < x0 SHd(V ) which we can

compute in terms of the x0-powers of the contributing γ-monomials by Lemma 4.6.
We now show that, for all of our examples, these scale-equivalence classes of

Z × C-gradings distinguish the contact structures.

4.5.1. ℓ = 1

In this case we need to distinguish the contact structures {α1,k : k = 1, 2, 3, . . .}
and {λ1,k : k = 1, 2, 3, . . .} on S2 × S3.

The unique contribution to HH−2 is:x0x
∨
1 x∨

2 x∨
3 x∨

4 for α1,1,

x2
0x

2
4 for α1,k, (k ⩾ 2),

x4
0x1x

3
2 for λ1,k.

To compare the Z × C-gradings, we rescale to ensure SH−2,4 ̸= 0 in all cases. The
C-bigrading of a monomial xb0

0 · · · xb4
4 ∈ HHd is therefore given by:4b0 for α1,1,

2b0 for α1,k, (k ⩾ 2),
b0 for λ1,k.

The unique contribution to HH−4 is:
x4

0 ∈ SH−4,16 for α1,1,

x3
0x

∨
1 x∨

2 x∨
3 x∨

4 ∈ SH−4,6 for α1,2,

x4
0x

4
4 ∈ SH−4,8 for α1,k, (k ⩾ 3),

x6
0x

4
2 ∈ SH−4,6 for λ1,k.

This already distinguishes α1,1 from everything, α1,2 from the other αs, and the λs
from the α1,k, k ̸= 2.

To distinguish λ1,k from λ1,K with k < K, observe that the unique contribution to
SH−4k−2 is x6k+2

0 x2
1 ∈ SH−4k−2,6k+2 respectively x6k+4

0 x1x
4k+3
2 ∈ SH−4k−2,6k+4.

To distinguish α1,k from α1,K with 2 ⩽ k < K, observe that the unique contribution
to SH−2k is x2k−1

0 x∨
1 x∨

2 x∨
3 x∨

4 ∈ SH−2k,4k−2 respectively x2k
0 x2k

4 ∈ SH−2k,4k.
To distinguish α1,2 from λ1,k, k ⩾ 2, observe that the unique contribution to SH−6

is x4
0 ∈ SH−6,8 respectively x10

0 x1x
2
2 ∈ SH−6,10.

To distinguish α1,2 from λ1,1, observe that the unique contribution to SH−8 is
x6

0x
2
2 ∈ SH−8,12 respectively x10

0 ∈ SH−8,10.

4.6. ℓ ⩾ 2

The contact structures ξℓ,k in Theorem 1.13 live on the manifold ♯ℓ(S2 × S3). We
can see from the tables in Theorems 3.7, 3.10 and 3.13 that for any of αℓ,k, βℓ,k,
δ4,k, λℓ,k, ϵ6,k, ϵ8,k, the symplectic cohomology SHd, d < 0, is supported in a single
C-bigrading if and only if d = −2k or 1 − 2k mod 2(k + 1). Therefore, the only
possibility for two contact structures ξℓ,k, ℓ ⩾ 2, to agree is for the indices ℓ and k
to agree.
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We also see that, if we bigrade by the total exponent of x0, SH1 is supported in
bidegrees 0, 1, 2, . . . , ℓ − 1. This is enough to fix our Z×C-grading completely up to
scale so that, in all cases, the C-bigrading coincides with the total exponent of x0.

To distinguish αℓ,k from βℓ,k when k ̸= 1 (the singularities are locally analytically
equivalent when ℓ = 1), observe that the contributions to SH−2k have total x0
exponent kℓ respectively k(ℓ + 1) − 1. These are different if k ̸= 1.

To distinguish α4,k and β4,k from δ4,k, note that the contributions to SH−2k have
total x0 exponents respectively equal to 5k − 1, 4k and 6k − 1.

To distinguish α6,k and β6,k from ϵ6,k, note that the contributions to SH−2k have
total x0 exponents respectively equal to 7k − 1, 6k and 12k − 1.

To distinguish α8,k and β8,k from ϵ8,k, note that the contributions to SH−2k have
total x0 exponents respectively equal to 9k − 1, 8k and 30k − 1.
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