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768 D. CHIRON

RESUME. — Nous nous intéressons & la construction d’une branche réguli¢re d’ondes pro-
gressives pour ’équation de Schrédinger non linéaire et le systéme d’Euler—Korteweg pour les
fluides capillaires avec condition non nulle & 'infini. Cette branche est définie pour des vitesses
proches de la vitesse du son et ressemblent qualitativement & des ondes de raréfaction décrites,
apres remise a ’échelle, par ’équation de Kadomtsev—Petviashvili. La démonstration repose
sur un théoréme de point fixe et sur la non-dégénérescence de ’onde solitaire de I’équation de
Kadomtsev—Petviashvili appelée lump.

1. Introduction

The nonlinear Schrodinger equation (NLS)

oA
(NLS) iy AV = wf (v

in R? with nonzero condition at infinity appears in a variety of physical problems:
condensed matter physics (see [Pis99]), Bose-Einstein condensates and superfluidity
(cf. [AHMT03, RBO01]), as well as nonlinear Optics (see [KLD98]). Depending on the
physical problem, several nonlinearities may be of interest (see the examples and
references quoted in [Chil2, CS16]). The most popular one is of cubic type and leads
to the equation sometimes called the Gross—Pitaevskii equation:

¢2’+A\1/:\p(|\1/|2—1).

At spatial infinity, we impose || — pg, where py > 0 is a constant such that
f(po) = 0. Without loss of generality, we may scale so that py = 1. At least formally,
NLS is a hamiltonian flow, associated with the energy

£(v) ;/RJV”'Q + F (o) de,
where F(p) < [{ f(0) do.
If W is a solution of NLS which does not vanish, we may use the Madelung transform
U = Aexp(ig)
and rewrite NLS as an hydrodynamical system with an additional quantum pressure
OA+2Vep-VA+AA¢ =0

(1.1) A4
0+ VoI + f(A%) = —= =0,

or

atU+2U.VU+v<f(p))—v<A\/—p> — 0
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Smooth branch of rarefaction pulses 769

with (p, U) o (A% V¢). When neglecting the quantum pressure and linearizing this

Euler type system around the particular trivial solution ¥ =1 (or (A,U) = (1,0)),
we obtain the free wave equation

8tz‘_1+V'(7=0

oU +2f(1)VA=0

with associated speed of sound
¢ 21(1) >0

provided f’(1) > 0, which we will assume throughout the paper. This means that
the Euler system is hyperbolic in the region p ~ 1, or that NLS is defocusing at least
near p ~ 1.

In this paper, we work only in space dimension two. We shall be interested in the
construction of travelling waves for NLS, that is particular solutions of the form

U(t,z) = u(r) — ct,z2)

that should play some important role in the dynamics of NLS. The profile u then
solves the elliptic PDE

ou
(TW,) —ica—wl +Au=uf (|u|2) ,
with the condition |u| — 1 for |z| — 4o00. In the papers [JR82, JPR86], a study
of the travelling waves for NLS (with cubic nonlinearity) is carried on, through
numerical and formal computations.

Since then, several mathematical results have been established through variational
methods: [BS99, (2d)], [BOS04, (3d and higher)], [Chi04, (3d and higher)], [BGS09,
(2d and 3d)], [Mar13], [CM17, (2d and higher)], [BR23, (2d and 3d)]. On the other
hand, the paper [CS16] provides some numerical study of travelling waves (in 2d)
for general nonlinearities, exhibiting some cusps, self-intersections of curves in the
energy-momentum diagram, etc., and in [CS18|, some excited states have been put
forward (in 2d, cubic nonlinearity).

1.1. The KP-I limit for the travelling waves

The formal convergence to the (KP-I) solitary wave in dimensions d =2 or d = 3
is given in [JR82] (see also [IS78], and [KPO0O0] in the context of nonlinear optics)
for the Gross—Pitaevskii equation (i.e. NLS with f(9) = 0 — 1), where the speed of
sound is ¢ = v/2. This limit arises for speeds ¢ close to the speed of sound ¢. The
argument is as follows. For some small parameter ¢, we define the speed ¢ = ¢(¢) by

the relation
c(e) O/ e2e (0,¢)

and then insert the ansatz
(1.2) u(z) = (1 + 82145(2)) exp (z’agzﬁs(z)) 0 Yery, 2 Yl
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770 D. CHIRON

n (TWe(), cancel the phase factor and separate real and imaginary parts to obtain
the system

—c(s)alAE + 262(91¢581A5 + 28482¢582A5

+(1+%A) (970e +%03¢:) = 0

1.3 1
13) —c(e)0rge + % (016.)" + £4(06.)" + ((1 + 52A5)2>
_RA A EPBA
1+e24,

On the formal level, if A, — A and ¢. — ¢ as € — 0 in some reasonable sense, then,
to leading order, we obtain —cd,, A + 831¢ = 0 for the first equation of (1.3), and,
using the Taylor expansion

£((1re)") = 1) + 24, + O

with f(1) = 0, the second one implies —cd1¢ + ¢2A = 0. In both cases, we obtain
the constraint

(1.4) cA=0,0¢.

We now add c(g)/¢? times the first equation of (1.3) and 9;/¢? times the second one.
Using the Taylor expansion

(1.5) F(A+e)?) =ca+ (c; + 2f”(1)> o’ + fa(a),

with f3(a) = O(a?) as a — 0, this gives

02 A, + €202 A,
14 e2A,

2 —?(e 1
(1.6) 52@“321,45 - 50, ( ) + (1+52A )AL

+{“)Q@%A+<>Ay@+§@4u@g][ f”]ZIﬁ}
C C

( )g v 1
2 2 22¢5822A 21 |:( 22¢€) i| 264 21 |:f3( 2A€)i| .
It then follows that if A, — A and ¢. — ¢ as € — 0 in a suitable sense, we can infer
from (1.4) that 9'A = ¢/c, and since ¢ — ¢*(¢) = €%, (1.6) gives the solitary waves
equation for the KP-I equation

1
(SW) — 0, A — —5’3 A+TAO0, A—l—(??z@leA =0.
c
Here, the coefficient I’ depends on f through the formula
6+ ),

For mathematical results (variational characterization, decay at infinity) on the
solitary waves of KP-I, see [S97] and [S96], as well as [WW96]. Complete justifications
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of the KP-I solitary wave limit for the travelling waves of GP have been given
in [BGSO08] for the two-dimensional cubic NLS equation and in [CM14] (for a general
nonlinearity and in dimensions two and three). A weak version of the convergence
results in space dimension two is the following. It relies on the existence of travelling
waves shown in [BGS09] and [CM17] respectively by means of variational methods.
By definition, a ground state for KP-I is a nontrivial solution W, of SW which
minimizes the action among all such nontrivial solution of SW. It has been shown
in [S96, Lemma 2.1] that the KP-I equation possesses at least one ground state.

THEOREM 1.1 ([BGS08, CM14]). — Assume that the nonlinearity f is of class C?
near 9 = 1 and that I' # 0. Then, there exists a sequence (g;) tending to zero, a

sequence (U;) of travelling waves for NLS with speed ¢(e;) = \/@, and a ground
state W, for KP-I such that

Uj(z) = (1 + &?Aj(z)) exp (igjqu(z)), where 21 = g;my, 2 = €5,
and, as j — +oo and for any 1 < p < 00,

Ay — W, 0., Aj — 0., Wi, D05 — W, and  02.¢; — O, W,
in WH2(R?).

1.2. A smooth branch of travelling waves associated with the Lump

The KP-I equation is integrable in space dimension 2, and explicit solitary waves
solutions are then known. Due to their algebraic decay at infinity, they are called
Lumps, and [MZB*77] gives the first explicit Lump, expected to be the ground state:

def 3— 22+ 25 21
Wi(z) = 24— = -240,, | ———— | = 0., ¢1,
) (34 27+ 23)° 1<3+z%+z%> 1
which solves the adimensionnalized version of SW

8Z1W1 - 82’1)/\/1 + W1821W1 + 8520;11)/\/1 - 0

Using the scaling properties of the KP-I equation, we then see that

d Z9

SC € 1
(17) Wl (Z) :f c2—FW1 (21, C)

solves SW.

Up to our knowledge, the conjecture that W, is the unique ground state of KP-I is
not proved yet. The article [LW19] has made a substantial progress in this direction,
by showing that W is a non-degenerate solution of Morse index 1.

THEOREM 1.2 ([LW19]). — Suppose w is a smooth solution to the equation
92w — 05w+ 02 (W) + 92w =0
satisfying w — 0 at infinity. Then, there exists v, vy € R such that
w = 1/1821)/\/1 + 1/2822)/\)1.

TOME 6 (2023)



772 D. CHIRON

Furthermore, the linearized operator

Lrw e w— 02w+ wW + 020w

22721

as an operator on the energy space H has exactly one negative eigenvalue. The
energy space H is defined as the completion (in L?) of 9,,C3°(R?) for the norm

il = [, w?+ @) + (0.,05w)” dz.

In the numerical computations in [JR82] (and also [CS16]), when we approach
the speed of sound ¢, the KP-I solitary wave we observe is always the YW, Lump, in
agreement with the fact that W, is presumably the unique ground state for KP-I
(up to space translations). In [CS18], it has been numerically computed that the only
negative eigenvalue of £ is ~ —2.3539.

In the opposite limit ¢ — 0, where we expect travelling waves with vortices, several
results of existence have been established via a Liapounov-Schmidt type reduction.
This approach has originated in [PMKO6] for the construction of stationary solutions
to the Ginzburg-Landau model in a bounded domain, and relies on the nondegener-
acy of the vortex of degree one shown in [dPFKO04]. This has been extended in [CP23]
and [CP21], where a smooth branch of travelling waves is constructed, in [LW20],
where the existence of travelling waves of small speed with several vortices is shown,
in [DPMMR21], where travelling waves with several vortex helices are constructed,
and finally by J. Wei et al. to other Schrodinger type models.

Let us now state our main result. For 1 < p < oo, the Sobolev space

def

W fy € D(R?) st Vu e L(RY))

is naturally endowed with the norm

def
[ullwrr = llulle@e) + [Vl poee)-

THEOREM 1.3. — We assume that f is of class C* near 1, with T # 0, and let W5°
be defined by (1.7). Let 1 < p < oo be given. There exist ¢,(p) > 0 small and a C*
mapping

10,2.(p)] 2 e+ (Ae, ¢.) € WHP x WP
such that:
(i) for every 0 < & < e.(p),

Uee)(2) o (1 + €2A€(2)) exp (iggzﬁg(z)), where 2, = 11, 2y = €@y,

is a travelling wave for NLS of speed c¢(e) = /¢ — €2 tending to 1 at infinity;
(ii) when € — 0, there holds

1Ac = Wil + || 6 — cOL W5 < C(p)e?|ne|* = 0;

Wwlp+1 =

(iii) for ¢ €]c(e«(p)), ¢[, we have the Hamilton group relation
d d

%E(Uc) = C%P(Uc)

ANNALES HENRI LEBESGUE



Smooth branch of rarefaction pulses 773

with

w1 [ U1, 1y,
P 3 [ g (Uel0nUe) do = §/RQ (i(U, = )]0, U da

where (-|-) denotes the real scalar product in C;
(iv) when ¢ — 0, there holds

E (Uc<a>) ~ P (Uc<e>> ~ c;ﬁ/Rg Wi dz = E916;7;’

3
E (Uao) = P (Uo) ~ g fpu Wiz = 332;2

and

E (Uyo) = ¢P (Uss) ~ - 6c3r2/ Widz =~

Let us make a few remarks on this result.

Remark 1.4. — Actually, we shall not work with LP estimates but with weighted
L> estimates. In particular, we have the stronger statements, for any o €]0, 1],

[T+ 12D (A =)

ey T 1207 (02— 0 W)

Lo (R2)
< C(o)e 2|ln »3|2

and

|1+ 127V (A = W)

|+ D79 (62 = W)
< Oo)e*lnel?.

Lo°(R2)

Remark 1.5. — If 1 < p < p' < oo are arbitrary exponents, it will follow form our
arguments that, as expected, the mappings |0, e.(p)] 3 € — (A, ¢.) € WP x Whptl
and |0, e, (p!)] 3 e = (AL, ¢.) € WHe' x W'+ coincide on |0, min(e, (p), £, (p'))].

Remark 1.6. — The quantity P(U.) is the momentum of the travelling wave U..
This is also, formally, a conserved quantity by the NLS flow. Its precise definition
requires however some care when we deal with general functions on the energy
space and not only travelling waves: see [Marl3] in dimension three and higher,
[CM17] in dimension two. The first integral defining P(U,) is well defined since
|U.(z)| =1+ 2A.(2) is uniformly close to 1 as € — 0.

Remark 1.7. — The proof of Theorem 1.3 works as well for any solitary wave W
of KP-I, that is any nontrivial smooth solution of SW such that, on the one hand,
W(z) = O(1/]2]*) and VW(z) = O(1/|z|?) at infinity and on the other hand that

the only smooth solution w € H of

w — 82w—|—wW+823 w =10

22721

which is even in z; and in 25 is trivial. The decay at infinity is immediate if W
belongs to the energy space H, thanks to the results in [Gra08, Theorem 1.11] (with
N=2=p+1).
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774 D. CHIRON

1.3. Extension to the Euler—-Korteweg model

The Euler—Korteweg model

(EK) )
O+ (u- V)u+ V(g(p)) = V(Fé(ﬂ)Ap + 2%’(p)|Vp\2) ,

is a dispersive perturbation of the Euler equations which includes capillary effects
through the capillarity coefficient x, which depends smoothly on the density and
is positive. When writing the Madelung transform ¥ = 4e’?, the NLS equation
becomes EK with

p=A%  u=2Vp,  g(p)=2f(p), klp)=-.

The EK system then includes NLS as this particular case. We shall consider the
condition p — pg at infinity, and we may rescale so that py = 1. The speed of sound
reads now
def /[
cex = 1/9'(1),

under the hypothesis that ¢’(1) > 0. The energy and the momentum are defined by
1
Eex(p1) = 5 /Rd plul® + w(p)[Vp|* +2G(p) da,
where G(p) = J{ g(0) do, and

Paxc(p,u) = /Rd(p ~ 1, da.

The travelling waves for EK are less studied than for NLS. We may quote [BG13]
in 1D and [Aud17] in 2d (and in Appendix B there, a result for nonlinear instability
in 1d). In [Aud17], the existence of nontrivial travelling waves of small energy to EK
has been shown in 2d, in the case where the flow is potential. The approach relies on
the minimization of a modified energy under constraint of fixed, small, momentum,
hence yielding nontrivial travelling waves of small energy to EK. Indeed, since then p
is uniformly close to 1, the modified energy is the EK energy. The stability properties
(analogous to [CM17]) are then more difficult to recover. The KP-I limit of these
travelling waves (that is the analog of [BGS08] for the EK system) has been recently
investigated in [Vas22].

In order to keep the same notations as for NLS, we insert in EK the ansatz

p(t,x) = (1 + 52146(2)) u<t7:p) = 26(81¢€(Z)’ 682¢€(Z>)a

2
9

where

2 = g(xl — c(e)t), 29 = €21,,
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and with, as before ¢(¢)? + €% = ¢, which implies

—c(e)01As + 26701001 Ac + 2% 0005 A,
4 (1 + EZAE) (al%g + 52822@) —0

(L8) ()6 + D10 + (@00 + 5 g0( (1+24)”)
=2 (1+2A) w((1+24.) ) (92A. + 2534,
+e'i( (14 242)7 ) ((0142) + €%(324.)°),

with p
#(0) = hlo) + on'(0) = 7 (0n(0)).

and we see that this quantity vanishes in the NLS case x(g) = 1/0. Then, computa-
tions similar to those above yield

1 1
(SWek) - 0, A — Kg ) 0::’1A + Tk A0, A + 82228;1114 =0,
CEK CEK

where the coefficient I'gx depends on g through the formula

o 2
PEK d:f 6 + Tg"(l).
CEK

The scaling corresponding to (1.7) is then

sc, def 1 Z9
(1.9) WioPE () < =W (zl, ) .
EK! EK CEK
THEOREM 1.8. — We assume that g is of class C3 near 1, with I'gx # 0, and let

Wi“PE be defined by (1.9). Let 1 < p < 0o be given. There exist ,(p) > 0 small
and a C' mapping
10,6.(p)] 2 e+ (A., @) € WHP x T HPH!
such that:
(i) for every 0 < e < €.(p), (pe(e), Ue(e)), Where

€ 2 €
peon(@) L (1+82A4:2)) s ey (2) © 25(010(2),2026(2)),
with
21 = &Tq, Z9 — 821'2,

is a travelling wave for EK of speed c(¢) = \/cix —e? with density pe)

tending to 1 at infinity;
(ii) when € — 0, there holds

sc,EK -1 sc, EK
|4 — WK | ¢e — cuxc 0, WP

(iii) for ¢ €]c(e«(p)), crx[, we have the Hamilton group relation

d d
—F =c—P :
de EK(UC) Cdc EK(Uc)7

< O(p)e?nel® — 0;

Wlp+l

+

wlp
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(iv) when € — 0, there holds

4e 384w
Erk (pc(€)7 uc(s>) ~ cek Pk (pc(s), uc(s)) ~ m R2 Wi dz = chKFEK
5 128
Erk (pc(a),uc(a)> — c(e) Pex (Pc(a)auc(E)) 3CEKP]2EIK / Widz=e 3 L2
and
64
Erk (pc(a)7 uc(a)) — ek Prk (pC(a)7 uC(E)) ~ 3CEKF]2EZK / W1 - Gk

Concerning the approximation of NLS by the KP-I equation (for the time depen-
dent problem), we refer to [CR10, Chil4] (with error bounds when comparing to
some weakly transverse Boussinesq system), and [BGC18] for the Euler-Korteweg
system.

During the completion of our work, we have learned that [LWWY21] had the same
kind of result. Their result also relies on suitable estimates on the kernel K¢ appearing
in the linearization at infinity of the equation (see (2.7) below). Our estimates,
given in Proposition 2.3 below, are much sharper than those given in [LWWY21,
Lemmas 3.1 and 3.2], and are, as we show, optimal up to some logarithmic factors.
This has the advantage of giving simpler spaces and norms, which are much more in
the spirit of the works [BGS08, CM17|. Furthermore, our approach allows to derive
O(£?|ln€|?) bounds on the error ¢. — ¢W;C and its gradient (resp. A, — Wi° and its
gradient) in weighted L> spaces corresponding to a decay like 710 and 2% for
the gradient (resp. 72T and 7370 for the gradient). The result in [LWWY21] gives,
for the phase ¢. — ¢W5°, the decay r~'*° but they have the weaker decay r~3/2*0 for
the gradient (and an additional loss in € for the dy-derivative); and for the amplitude,
the decay seems to be 7=+ and r=%/2+0 for the gradient (and an additional loss in
e for the dy-derivative). Our methods include more complicated model, such as the
Euler—Korteweg system.

2. The scheme of the proof
2.1. A fix point problem

We look for (¢, A.) under the form
b = 3O 1 o0 A= AO | AW
where

z
(2.1) AO(;) & cTrwl (21:> 6O = 1A,
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Then, we shall recast (1.3), written under the form
C(E)&lAE — 26281¢581A5 — 28482¢582A5
1+ e2A.

— (8? + 52822> p-.=0

(1+%4.) x ( — (e)D10x + £2(D16:)? + £ (0200:)* + ;f( (1+e4.) ))

—? (07 +£%03) A. = 0.
First, we define the consistency type errors for the phase
—Errpy = () A© — e2c(e) AV AV — 2620,V 0, A — (8} + 203 ) ¢
and the amplitude
2
()01 + &2 (81¢(0)> —2¢(e) A9, + 2AO®

2
+ 52%@ ~3)[A0]" — 20240,

def
— Erry, = —c¢

Then, we consider, for the phase, the quantity
(A© + A)2
(0)
Ry TR (A© + 4)
01 (69 + ) B (A® + A)
14e2A0) +¢24
T LY
14240 +£24

gathering the nonlinear terms and the terms that are O(g*) formally™ | and similarly
for the amplitude:

Nun(A,0) = £2¢(e)Ad16 — * (A© + A) (8,60 + 010" — 2(019)’
e (142240 4 24) (0,60 + 0,0)

(2.2) Nou(A, 9) L ()2 A0 A — c(e)et

+ 220,00, A — 2&* (A<0> + A)

+ 28482¢82A(0)

(2.3) , o ,
2 (F—3)A —€ §(F—5)(A + A)

1
-5 (1 +2A0) 4+ £24) f5(2 A + £24)

where (see (1.5))

f((l + a)Q) =ca+ cE(F —5)a? + fi(a), with f3(a) = O(a®) as a — 0.
Finally, we set

th(Aa P) = «© Errp, + Nph( L), Yam (A, ¢) o Erra, + Nam(Aa ).

(D The term 261058, A© could be in the right-hand side: we have left it in the left-hand side only
to preserve some self-adjointness structure, see Subsection 4.4.3.
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With these notations, (1.3) becomes

c(e)h AW — e2c(e)0) (ADAW) — (32 + £203) ¢V
—25281¢(0)81A(1) — 25281¢(1)81A(0) — 25482¢(1)82A(0)
= Yon (A(l)’ ¢(1))

—c(€)010M) — e2¢(£) A 916N — £2¢(2) AN, + 220,009, M)
+c2AM 1 222(I — 3) AV AWM — 22 (92 4 £292) AW

— Eam(A(l)a ¢(1)).

When using the hydrodynamical form of the equation, we obviously assume that

1 + £2A, never vanishes. Since, clearly, e2A(®) > —1/4 for ¢ small enough, we shall
then require

(2.5) e2AW > _1/4.

We now define the Banach spaces we shall use. For © € R, we set

X, = {veC(RAR) stz (1+]2))"v(2) € L(R?)}

equipped with the norm

def
[vllx, = 11+ [2])*0(2)]| Lo ey -

We also set
X! {v ec! (RQ,R) s.t.v e X, and Vo € X”H(R2)} ,
equipped with the norm

def
lollxg = N+ 1D 0(2) ey + [+ 12D V0@ oy = N0lx, + V0] 5,

Lo (R2
We shall impose some symmetries on the functions, namely that they are always
even in z; and odd/even in z;. We therefore define

X0 et {v €X,st. Vze R?,  —v(—21,2) =v(z1, %) = v(z, —22)},
X5 def {v € X,st. Vze R?,  v(—21,20) = v(21, 22) = v(z1, _ZQ)}
and
X E X, X X! X, NX])
and finally

Xp, = {0 CP(R?) st. Vo € X,
and V z € R?, —P(—21,22) = P(21, 22) = ¢(21, —22)}‘
We define, for o > 1, the operator Z on X,, , by

(2.6) Tw(z) ¥ /Z;w(g,@)dg = —/m w(C, z) dC,

21

the equality coming from the fact that w € X, ,, hence [ w((, 22) d( = 0 for any
z5 € R.
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PROPOSITION 2.1. — Let pn > 1. Then, T maps continuously X, , into X, ;:
there exists C'(u) such that, for any w € X, 4,

IZwllx, ., < Cw)lwlx,.

Proof. — It suffices to write, for z; > 0,

oo too o u|x,
/21 w(C’ZZ)dC‘g/ZI AT C+ | %

_ |w]|x,
(= D@+ 2 )
w||x,
(= D+ [t
For z; < 0, we use the first formula in (2.6) and argue similarly. O

As a first step, we provide a consistency estimate.

PROPOSITION 2.2. — There exists C' > 0, depending on the lump W, such that,
for 0 < e < 1, we have

HErram||X21 < C¢? and HErrthXé < Oe”.

Moreover,
|¢<ZErr,, — Erram||X21 < Oe.

In order to solve the fix point problem, one natural approach would be to use a
standard implicit function theorem near ¢ = 0. However, this shall not work. Indeed,
the KP-I limit for the solitary wave (as well as for the time dependent problem) is
formally shown in [JR82] (see also [BR04]) and in [KP00] by expansion in powers of &
(Ac = Ag+eAi+..., ¢c = Ppo+ep1+...), whereas it has been put forward in [Chil4,
Section 1.3] that this is not formally correct since some terms (such as 02 9.%A,
or 97,0;%Ap) become meaningless. Actually, in [Chil4], the issue was the derivation
of the time dependent KP-I, but the argument remains valid for the SW equation.
Similar issues for the consistency estimate (for the time-dependent problem) of KP-I
with some fluid systems have been studied in [Lan03]. This is related to logarithmic
divergences estimates for the kernel K¢ (see Proposition 2.3 below). Therefore, we
need to use the well-preparedness assumption (1.4), and this forces us to employ

e-dependent norms.

2.2. Properties of the kernel

In our analysis, the kernel associated with the linearized problem at infinity will
play a crucial role. The linearization of the system (1.3) at infinity is

— (0} +2203) 6 + ()1 A = 0

—c(e)ho + *A — e (0} + %05) A= 0.

TOME 6 (2023)



780 D. CHIRON

The determinant of the underlying operator matrix is, since ¢* = c(g)? + &2,
2
()20 — (2 +2°3) (& — & (9 +2°03)) = & (-af — 20+ (3 + £233) ) ,

which yields us to define in the sense of tempered distributions the kernel (FP stands
for the Finite Part)

1
2.7 Ko g (FP > € .7 (R?).
=0 gregrareg) T
Here, .# stands for the Fourier transform with the following normalizations: for
u € L'(R?), then Z(u)(§) = [peu(x)e™™@¢dr (€ € R?). When ¢ = 0, K¢ is the
kernel K, studied in [Gra08§].

PROPOSITION 2.3. — The kernel K¢ is a real valued function, even in z; and
in 29.
(i) There exists C' > 0 such that, for ¢ €]0, min(c,¢1)/2] and z € R? with
|z| > 1, we have
€ 2 2q€ 3 3ye "CE<2)’
2] X [VEE(2)] 4+ |2 [ V22 (2)] + [ [ V3K (2) | + T3] S
(ii) There exists C' > 0 such that, for ¢ €]0,1/2[, we have

/ VKE ()] + 317 (2)| + 0102 (2)
D(0,1)

BK(2)| dz < C
and
/D(0,1) ‘8§K8(z)’ + “nlgp ‘8%621@(2/)’ + “jgl ]010%5(2)\ + “fg’ ’83/03(2’)’ dz < C.

Remark 2.4. — Since, for any a € N? with a; + ay = 4, the function

§'&%°
& + 26 + (& +263)°
does not tend to 0 at infinity, we can not have 9¢K° € L'(R?) (by Riemann-
Lebesgue’s lemma). In the same way, since

TR = 6 TR =

0 __ 62 a0 6152
I = aregra Y9N Sgregig
ye 68 U
W = gregya YN T@veged

do not tend to 0 at infinity (take, respectively, (£, = 1 and & — 00), & = £ — +o0,
& =8 — +ooand (§; =1 and & — +00)) we must have, as e — 0,

H82’C6

— 400, H8282IC€

— +00,

L1(R2) L1(R2)

— +0Q.
L1(R2) t

H8182IC5

— 400, H83ICE

L1(R2)
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As a matter of fact,

Hala§/C6 LY(R?) = H‘? (8@3/@) ‘LOO(RQ)
> 313 N e
~ &+ 28 + (61 + 8253)2 le=(e—1,e~2) ¢ +4
and
85 1y > 1 (026 e 2 S i
L (B2) Lo®) ™ & 4+ 23 + (F +23)" | pery  © 1

It then follows from (i) that the estimates for 0;03K° and 93K° in L*(D(0,1)) in (ii)
are optimal up to logarithmic factors.

Remark 2.5. — The above estimates are of course in agreement with the asymp-
totic behaviors obtained in [Gra08] for the kernel 97K° (denoted K, there).

2.3. Mapping properties of the convolution kernel K°¢

The next Proposition gives some estimates between X, spaces for the convolution
with the kernels 0%K¢. Some of them depend whether the second factor of the
convolution has vanishing integral over R? or not (note that X, C L' when u > 2).

PROPOSITION 2.6. — The following estimates hold.
(i) V1< pu<2 Ve X, such that [povdz =0,

100 % vl + 110K % vll, < Cl)llell s
i) vO<p <p<2,VveX,,
o2k xo] - 10102K7 xll, + el = O3 % 0| < Ol ol

() V2<py <p<3,Vve X, such that [p-vdz =0,
|02k x|+ 11010K 0], + el 33K % 0]| < Ol i)lIoll,

(i) VO<pu <3, Vve X,
03K + ]

X, + |Ing| 2 H81282IC5 *v‘ .

“w

+ elne| ! ||oy02Kk *UHX# + el o5k *UHX# < C(wlvx,-

Remark 2.7. — The estimate in (i) is not expected to hold if [z v(2)dz # 0.
Indeed, in this case, we should have VK© x v(z) ~ @ Jg2 v at infinity, which does
not belong to X,, when p > 1.

Let us now consider the linear system with source term
c(e)hA — (0} +05) & = S
(2.8)
—c(e)ip + (¢ — & (0 +%03) ) A = Sum
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which is associated with (2.4) at spatial infinity. When we impose the symmetries,
its solution is given, as we shall see, by
1 € €
A= —g( (0% + £203) K= % Sam — ()01 * Sy
(2.9)
1
o= (c(€)01K + Sum — (2 — €7 (0 +£203) ) K * Sy ).
Assuming Spn € Xoi50 and Sam € X144 s for some 0 < ¢’ < 1, the crude estimate
coming from Proposition 2.6 on (A, V¢) is, for 0 < o < ¢/,

[ Allxisn + €IVl x1.r < Co.0") (ISomllxars + 1Samllx, ) -

Notice that Proposition 2.6 (i) does not apply to 01K° x Sam, since Sy, is not odd,
thus there is no decay estimate claimed on ¢. The estimate below shall then rely on
suitable cancellation properties imposed on the source terms Sum and Spp.

PROPOSITION 2.8. — Let 0 < 0 < ¢’ < 1 be given. Then, there exists a positive
constant C(o,0") > 0 such that, if (Sph, Sam) € Xy g0 X Xiyor, and 0 < e < 1/2,
then (2.8) has a unique weak solution (¢,A) in X11+07a X Xi,4s and it is given
by (2.9). In addition, A € X2 and

lAlLxy,, + 198l +[34], +elodAlx.,, +|a34],

1
< Clo,0)MmeP (ISwllxs, + ISumllx,, + = 1T = Sunllxa ).
Moreover, if S,,, = 0, then we have

lAlLx,, + 198l + 4], +elddAlx.,, +a34],

1 1
< C(O" 0'/)|]_H€|2 <||Sph||X21+a/ + ? ||Sph||X2+0/ + 672 ||818ph||X2+J/> .

Remark 2.9. — The second estimate is adapted to source terms with 0y-derivatives,
since we do not want to loose too much through a bound involving 05S,,. This will
be the case of the term 9,09, AW,

2.4. Invertibility for the linear problem

Proposition 2.8 allows to solve the linear problem at infinity. We shall now state our
invertibility result for the linear problem on the plane, with non constant coefficient.

PROPOSITION 2.10. — Let 0 < 0 < ¢’ < 1 be given. Then, there exists positive
constants €(o,0’) €]0,1] and C(o,0’) > 0 such that, if 0 < ¢ < €(o,0’), for any
(Sphs Sam) € X3, 14 X X{, ., then the linear system

C(E)@lA — (8% + 82822) ¢ — 28281¢81A(0) — 28482¢82A(0)
—e%c(2)0h (A0 A)) - 220,000 A = Sy,
(2.10)
—c(e)01¢ — 2c(e) A0 ¢ — e%c(e) AD1 V) + 220,00, ¢
+2A+ 2 - 3)A0VA — 2 (0?A + 202A) = Sam,
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has a unique weak solution (¢, A) € X11+U’a X (X{,5sNX2), and

lAlLxy,, + 198l +[034], +elddAlx.,, +]a34],

1
2
< Cloo el (ISl +ISumllxs,, + 5 128~ Sl )
Moreover, if S, = 0, then we have

lAlLxy,, + 198l +[034], +ellddAlx,, +a54],

1+o

1 1
<ol (ISmlxs_, + =5 ISmllx,,., + 5 10wl , )

O'/

This result contains an a priori estimate as well as an existence result. The a
priori estimate shall follow from the nondegeneracy of the lump W; (see [LW19,
Theorem 1.2]), and assuming the symmetries will guarantee that there is no kernel.
The existence part shall rely on solving the same problem on a large disk in a
standard H} Hilbert space and showing that the adjoint problem is injective.

2.5. Solving the fix point problem

We now fix 0 < o < ¢’ < 1 arbitrarily and define the spaces

e def -1 1 e def -1 1 2
Vo, = X2+J,7a X Xl—f—a/,s and X = XHM X X1+U,s N Xms

endowed with the norms

def 1
H(SphaSam)‘ Ve, = ”SPhHX21+a/ + |’SamHX11+U, + ? HCI‘gph - Sam”)(ll+

Cr/
and

I(@, A)lls = [ Allxy,, + 1Vellxz, + [ (034, 2010,4, £2034),|

140

Xoto
respectively. The parameter € does not appear in the definition of the vector spaces,
but only in the norms. The result of Proposition 2.10 then allows us to define the
operator

M:Y:, — X;

Sph | def (A
v (Sam> - <¢ ’
where (¢, A) € X¢ is the solution to (2.10); in addition,
”Ml|y§,—>xg < C(o,0")|In¢el?

by

with C(o,0") independent of .
Then, the system (2.4) may be recast into

(2.11) <¢(1)> =M (E”ph> +M (Nph (A d)(l))) .

AW Erram Nam (AD 60
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We then fix o €]0, 1[, pick some o’ €], 1] such that o’ < 20, and define the mapping
T: B:(0,1) = X5
Err Non(A,
o (gt +m (3 5)
It is well-defined for e sufficiently small so that €24 > —&?||A| @) = —1/4
(see (2.5)).
PROPOSITION 2.11. — Let 0 < 0 < 1 be given. Then, there exists €(o) €]0, 1]
and Cs(o) > 1 such that, if 0 < & < €(0), then
(i) Y(Bx:(0,Cs(0)e?|Inel?)) C Ba:(0,C3(0)e?|Inel?);
(ii) the mapping Y is 1/2-Lipschitz continuous.
As a consequence, T has a unique fix point (¢, AY) in Ba:(0,Cs(0)e?Inel?). It
follows that we have ||(AM, AM)||x: < C3(0)e?|Inel?.
Remark 2.12. — As already seen in [Chil4], we do not expect the estimate
(AL, ¢ 2= < C3(0)e? to hold.

£

3. Estimates on the kernel
3.1. Properties and partial integration of the kernels

The kernel K¢ is the tempered distribution defined by
1
€ 7' (R?).
rarar @) 7
It is easily checked that for ¢ > 0 and j = 1 or 2, then &;#K° € L'(R?).

At fixed & € R, we shall use the Cauchy residue theorem in order to compute the
integrals in &. We set

=+ def 1\/ 2¢2 2¢2\2 _ g4 (262 4 ¢4

=H@) ¥ 5 51+ V1 +22267)° — et (263 + €)).
Notice that

2 2
(1 + 252§f) > (1 + 2»3253) — 4¢? <c2§f + 5;1) =1+ 4e¢; (1 - 52c2> >1
since ec < 1, hence all the roots are roots of nonnegative real numbers. Moreover,
we have ZF (&) > E-(&) = 0, and Z2(&1) = 0 if and only if £, = 0. Then, we may
factorize the polynomial in & on the denominator:
2
G +8+ (¢ +8)
=& (& —iZH(&) x (& —E2(8)) x (& +iE (&) x (& +i27(&)).

Except if {; = 0, these roots are simple and nonzero. Notice that ZF is everywhere
positive and smooth, whereas =~ vanishes at the origin and is smooth except at

£ =0.

K=" (FP
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PROPOSITION 3.1. — The function K¢ is of class C* in R%. Moreover, we have

S£1e7|z2‘52(£1)ei2151

dg,

AT KE(2) =1
e /Rse{i} Z2(G)y/1+ 42263 (1 — 22

and

se—|22[E2(81) gizi&n
47T82’CE(Z) = / Z 5 dfl
N =T

. |22l B2 (61) iz16 .
When z, # 0, each function & — :3?511;\/‘1145222(61;;62), s = =, is integrable over R.
—e 1

For z, = 0, none of these functions is integrable over R, but they have an improper
convergent integral; moreover, the sum in s € {£} is integrable over R.

Proof. — For fixed € > 0, we have

€]
EF + &5+ (6 +763)7
thus 0, K¢ and 0,K° are (distributions associated with) continuous functions tending

to zero at infinity (by Riemann-Lebesgue lemma). This implies that K¢ € C!(R?).
Furthermore, by Fubini’s theorem, we then have, for z € R?,

e L'(R?),

251 ezzlfl +iz9&2

(27)20, K7 (2 / /R T T dé,de,.

At fixed &, we may use the Cauchy residue theorem (see [Lan99, Chap. VI, § 2,
Theorem 2.2 p. 194] or [How03, Chap. 9, Theorem 9.1 p. 154]) for rational functions
(in &) and get

Sé_le_‘z2|52(§l)eizlfl

d&:

(2m)?01K°(2) = im
/Rse{i} Z3(€0)y/1 + 4¢267 (1 — c2e?)
and

Se7|22|52(£l)ei21£1

(2m)° 0K (=) = 7T/ 2 G+22 @ - 2=@)) -

e{i}

In a similar way, we may wish to integrate at fixed & € R. Therefore, we let, for
s ==+,

1
3 (—c2 — 26762 — s\/c4 —4£3 (1 — 52c2)> if 462 (1 — %) < ¢t

Ts

1
3 (—c2 — 2265 — z's\/4£22 (1 —e2e?) — c4) if 4€2 (1 —&%¢®) > ¢
be the two roots of the polynomial

2
CT+G+ (T+e%3) =T +T(*+2°) + & + ',
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For 4€2(1—¢%?) < ¢*, the roots are real and we have TT < T~ < 0 (and T~ = 0 only

for & = 0). For 4£2(1 — £%¢?) > ¢*, the roots are complex conjugate with negative
real part. We further define

X&) ¥ V=T € {Re > 0},

where /- is the principal square root of complex numbers. Clearly, denoting

we see that é; is not smooth at & = £&5, but is continuous and piecewise smooth.
Then, we have the factorization

2+ &+ (G +8)
= (4 —iE8(&)) x (& =50 (&) x (& +iEH (&) x (& +iE2(&)),
where Im(iZ£(&)) > 0

PROPOSITION 3.2. — The function K¢ is of class C* in R?. Moreover, we have
— 21|22 (&2)+iz262
47('81’CE / e
{121 <5} se{i} Vet — 48 (1 - 2e?)
e~ 171[22(62) +izato
ise
-/ 2
{12l > €5} Se{i} V463 (1 — e2e2) — ¢!
and
~|21|22(€2) +iza
e
47T82’CE / 552 d€2
{lel<&} Z3(6) /ot — 463 (1 — e2e2)
— 21|22 (é2) +iz262
s&qe
/ &2 dé,.
{lel>e5} se{i} Z2(6)y/ 463 (1 — e2¢%) — !

. S&'le*|22‘—‘5<§1>e7’zl§1 . ..
When zy # 0, each function & ETRW e s = = is integrable over R.
For z, = 0, none of these functions is integrable over R, but they have an improper

convergent integral; moreover, the sum in s € {£} is integrable over R.

Proof. — The proof is very similar to the one of Proposition 3.1 and therefore is
omitted. 0

In order to prove our estimates on the kernel, we shall need the following Proposi-
tions on the behaviors of Z£ and of =,

PROPOSITION 3.3. — There exist C' and Cy such that we have the following
inequalities.
(1) If€|§1| = Co, then
&l _ - 151\ . c
e S (&) < and  0<EI(&) —E2(6) < o
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(11) If0 < €|§1| < C(), then
1 — C 1 ) —_—— 2
oz <E@I<s glal+&)<E@l<c(lal+€).
Proof. —
(i) We write, for & # 0,

=2(&) = 2\/_\/1 + 26282 + s\/l + 42282 (1 — £2¢2)

) [l 1 1
1 S
=021 1 — £2¢2
J gy g

and the result follows by choosing a suitably large constant C,.
We also have

{(51)2 144223 (1 - 222) _C

=+ _ == = - e?
0<EN&) —E5(&) &) SEHE)FE(&) e

(ii) Recalling

=H(&) = 1+22260 + /1442263 (1 — e2e2),

the inequalities for =1 and €|£1| < Cy are immediate.
Then, the expression

7
= = —— 1+ 2626 — \/1 4+ 422 (1 — £2¢2
€ (51) 52\/5 51 \/ 51 ( )
- [€1ly/2¢% + 267
\/1 + 26263 + \/1 + 4282 (1 — £2¢2)

yields easily the conclusion for 0 < &; < Cy. OJ
PROPOSITION 3.4. — There exist C' and C such that we have the following
inequalities.

(i) If €*|&a| = Ci, then

Bl cre(Bre) < Br@)| < celel  and )| <1/
% < Re ((%éf(&)) < ‘@éi &) ‘ < Ck,
1 = =
oiep < R (350 < 8240 < g
and
2,E2(6) — !\%
@@E%@Kgéy @@5&M—fkééy
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(11) If ? < |§2|2 < 01/52, then

1/2 N
*5 <Re(2(&) < [EH(@)| < 08",
C
Cgl 7 <Re(0:5@) < 0@ <
and

1 2= 25+

ce? < Re (821(%)) < |9851(&)| < 7
(iil) If |&|* < <2, then
¢S =; (52)‘ <

Proof. — We work for & > 0.
(i) There holds

—T% = & 4 26%€2 + sy /463 (1 — e2¢2) — !
2

c 18
= 25255 (1 + @ + 282&\/4 (1 - €2C2> - C4/§22> )

thus

Re (22(&)) = Re (V=T7)

5 .
- 5§2Re\/1 252 n i¢4(1 2y — /el > 5527

and o
Im (22(&) < —

provided £2|&| > Oy, with C; sufficiently large (but absolute). Moreover, from its
definition, we have

Se)| = yIrl < o1+ + 1)) < cet

We now differentiate:

HE(E) — ey [14 -S4 5 VAL —e22) — /g
: 2263 262, 2
_ 4(1 — 22 4/¢2 4 st g (] _ 2262) _ 4/e2) /2
283 25252 e%c?) — c/§2+525§( ( e??) — ¢ /&3)

2\/1 + 2;2753 + 25’%52\/4(1 —e2¢?) — ¢4 /&3

+ 652

and deduce
=&)< 0 [0RH8) — o < o
and, for e small enough (depending on C}),

Re (3252(52» >

A~ M
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Differentiating once again and noticing the cancellation of the terms
—/10 - e¢) — /8
\/1 + 5252 + 525 \/4 (1 —e2¢?) — /&3

we obtain

‘82”5 ‘ < 60 and Re (8252(&)) > 41

In addition,

2 is 12
o (cor22(@) = on (14 4 + e O — 60— /3

2e28,

(ii) The estimates in the region ¢ < & < (/g% are analogous.

(iii) For 0 < & < ¢? and s = —, we use the expression, when 4£3(1 — e%¢?) < ¢4,
463 (1 +£°63)

2+ 2626 + /et — 463(1 — e2¢2)

—2T™ = + 228 — \/c4 — 483 (1 —£2¢?) =

which yields, for |&] < ¢2,

1l
¢ = (52)‘
and a similar inequality holds if 463(1 — £%¢?) > ¢*. O

3.2. Proof of Proposition 2.3 (i) (behaviors at infinity)
3.2.1. Estimates in the region {|z3| > max(1, |z|)}

In this region, 1 < |25] < |z] < 2|23]|. By parity, we may assume zp > 0. Thanks to
the exponential decay at infinity in & coming from =2, we may use rough estimates.
We shall use that, for & > 0, |25] > 1 > €% and a € R, we have

(3.2) / e —l221€1/(Ce) dé;, =
Co/e

<C€>a+ /+ toc —t dt C(Oé) e—C()‘22|/(CE2) < Ckgk

|2’2’ 00\22\ ‘22|€a71 = 25 )

(3.3) / Ere =8/ dg, < / a6/ gy < kL
22

and

+oo
(3.4) /1 gre /0 4y =

1 /+Oot(a D/2-t/C gy < Cla) o l=l/C < Ch

22| (@+D/2 iz 2] S%
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Let us fix 3 € N2 Then, using the formula in Proposition 3.1 and applying
Proposition 3.3, we obtain, by separating the contributions (§; > Cp/e and s = +),
then (§; < Cp/e and s = +), then (§; < 1 and s = —) and finally (1 < & < Cy/e
and s = —),

too 511-1-51Eg(gl)ﬂze*|z2|52(5l)

A&y

Q0K ()| < C Y
| | st Ee&)y 14223 (1 - )

+o0 5?1-&-52—1

< C e722§1/(C5) dfl + 08272B2 /CO/E £%+,31e722/(052) dfl
Co/e 562 0
Y Bi+Bs — e /C Cole apytpr—1_—ze2/C
+C/ 511 262281 d€1+c/ 51 2+61-1 — 2 dfl
0 1
C

< |z|51+/32+1’
by (3.3), (3.2) and (3.4). The estimates for 9,07 are similar:

dé

B ye
‘8282’6 (Z)‘ < CSGX{;E}/O \/1 +4€2§% (1 _ C252)

oo B1tB
< C/+ é‘ll 2e_z2§1/(c’a) dfl +C€_2/82 /CO/E glﬁle_Z2/(C€2) dfl
Cole €P2 0

N C/l 51,31+526722§1/C dfl 4 C/CO/E 51/81+252e722§%/0 dfl
0 1
C

S | z|BrtB2+1 ’

3.2.2. Estimates in the region {|z;| > max(1, |zs|)}

This time, we shall take the expressions given in Proposition 3.2. As in the previous
case, where |z5| > max(1,]|z;]), we see that the contributions associated with the
intervals [C} /g%, +00[ are exponentially small. This comes from the inequalities, for
a € R and k € N,

+o0o gk
- c
/C - ége |21|e€2/ dé; < C’mk?7
1 1
Cy/e? 1/2 C +oo ok
ce~1211&7/C ge, < 7/ 2ot et dt < O
/c? “ @S 21|22 Jjz)es0 I
and
¢ c ¢ _ Cok
| gre10 dgy < Coee < Z5E,
0 1
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Therefore,

=3 B —lz e&s
S| e
0 se{x) \/’453 1 —e2¢2) — ¢4

< 0651 /C / 2551+52 1 —\zl|e£2/c d£2 +C/ 5251/2+ﬁ2—1e—|21\5;/2/0 dé‘z
1 /e

—+00

2102K7(2)| < © dé,

561+/B2e7|21 |£2/C

fﬁzeﬂzl\/c
O/ \/|4§ —e2¢?) — / \/|4§2 1 —e2c2) —c4|d§2

| z | 51 +82+1
and, similarly,

AL Patl ol ReB2 (62)

=2(&)
sE{i} \/’452 —e%¢?) — ¢

< 0651—1/ ghr+Ba—lglaileta/C e,
C1 /g2

C
+C/ . o212 116 C g,

£ﬂ2+1 —|z1]/C

+C/ \/’452 1—e22) — / \/|4§2 1—e2¢2) — ¢f|

dgs

0.0%K7(2)| < C / o

551+5ze—\z1|§2/0

d&s

|Z|51+52+1

3.3. Proof of Proposition 2.3(ii) (behaviors at the origin)

In this region, the estimates are more delicate and we shall use either compensations
between the signs s = 4, either integration by parts, either both.

3.3.1. Estimates in the region {|z;]| < |2] < 1}

We have to replace (3.2) by the following inequality, for |z5] < 1 and o > —1,
/+ fflle—|z2|§1/(08) dé) = <C€> /+ %t dt < C(CY) e—Co|Z2\/(Cg2)
C()/E <

£ Do |zg|eat

as before, when |25 > €, and if |23| < €2, then the integral in ¢ is < C(«a) since
a > —1. Therefore,

(3.5) /CO . £ —|221€1/(Ce) dé,
C(a)

_ 2
X |Z ‘ga_le Colz2|/(Ce )112|22‘252 + 0(8/‘22’)a+11|z2|<52.
2
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For @ > —1, we have

Co/e 1 Coy/l22l/e?
a —|z|e2/C - - a,—t?/C
[ e e = o [T e
C / 1
(36) < |22|(1ﬁ)/21|@|>52 + 1+a /2 22 /8 a+ 1|Z2|<s2

C(a)
< .
(’22’ + 52)(1+a)/2

Furthermore, we shall use the exponential integral function £ : R} — R given by

+oo =%

El(y):/y —dz.

It is known (see for instance [AS64]) that

e_y
(37) El(y) ~y——+o0 77 El(y) ~y—0 _hly'

e [stimate for 0.K¢. From proposition 3.1, we have

sgle_‘22|53 (E1)ei21§1

—4imdhKE(2) = d
/Rse{i} 52(51)\/1 + 4267 (1 — ¢2¢?)

We first estimate the contributions for |;| > Cp/e and s = +

—|22|E2(€1) giz1&n too @~ l22161/(Ce)
/ séie e 6| < / e R ds,
{le1l>Co/el Z3(€1)1/1 + 4¢263 (1 — c2e2) Cofe &
+o0 e_t
<C —dt
22|/ (Ce?) T
= CE (|l/(Ce?)).
We now consider the case s = —. By using Proposition 3.3, we obtain
/ Sfle—|22\55_(§1)ei21§1 p
el <Co/e} Z2(€1)1/1 + 4e2€3 (1 — c26?)
e o l22/€2/C
< C/ |22‘£1/C dé _|_ C/CO/ e 2‘ 1 dgl
|22|/(C'e?) gt
<C+ O/ —dt
|22]/C t

C (1 + ‘ln (\22| + 52)‘) ,
2 et 1

since, for |zp| < €%, &= < 1, and for |zp] > &%, the integral is < Fi(]zs|/C)
< C(1 —1In|z).
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Smooth branch of rarefaction pulses 793

For the case s = 4, we have similarly

/ Sfle_"z?'Eg—(El)eizlEl dg
1
{lel<Co/e} Z4(€1)1/1 + 4e2€3 (1 — c26?)

< 0/00/6 226,610 g, < Ca-lal/(C)
0
As a consequence,
01K%(2)| < CEx (|22l/(C2?)) + C (14 [In (|2] + 2)[) + Ce =€)
C(1+ |In z|).

e Estimate for 9?K¢. The differentiation under the integral sign is here again easily
justified and yields

+00 Co/e
() < O [ el ag 0t [ gem O gy

Co/e
1 Co/e
(3:8) +0 [[gemalCag v o [ el g
0
< @6*22/(052) + = c *22/ (Ce?) _'_ C + L
Z9 13 (ZQ —|— €2>1/2

< 08122<€2 X 01@252
29 NE
by (3.6) with o =0 > —1.
e Estimate for 0;0,K°. Similarly, by (3.6) with o =1 > —1,

400 @ —2261/(Ce) Co/e
k) <0 [ g v [ ge O ag,
Co/e e

+0 [(ee /0 v 0 / Cge e g
0

2 2
<<
22

e Estimate for 0oK¢. We use the formula in Proposition 3.1. By Proposition 3.3, we
have

+o0 e—22§1/ (Ce)

K < C [ T de + O / e/ dgy

+ C/ e‘zQ&/C d& + C/ e—ngf/o d&,
0 1

C 2 C 7Z2/(082) C
g;El(Zg/(CE ))+ge +C+ﬁ

< P S (1 (/).
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with (3.7) and a = 0 > —1 for (3.6).
e Estimate for 03K¢. By similar computations, we obtain, by (3.6) with a = 2 > —1,

o 1
|82,CE<Z)’ C —2251/ (Ce) d€1+ —z2/(052) dfl
2 Co/e 62

+c/ £re241/C g, +c/ e 28 gg,

< Cenren  Conoy o O
29 g3 (20 4 €2)3/2
Cl€2<22 + 01Z2<€2

SR T,

25 2

From all these estimates, we infer

0K (2)| dz
A|Zl|<22|<1}| 1 ( )|
C’// 1+ |In 23]) dz1dzy = C/ 29(1+ [Inzy|) dzg < C,

/ 10uKC% ()] dz
{lza] < 22| <1}
c e 5 1 1
< —/0 29 X (1—|—‘ln(zg/5 )D d22+0/6222 X ﬁdzg <C

€

and

/{|zl|<z2|<1}\52’cs )| + 9357 ()| + 1910uk (2)]

1 1 1
C/ 22( +—+ )d22+0/ ZQ<1/2+3/2+>0Z22<C-
Zo  EZo 29 2 %)

We now turn to third order derivatives. Then, we have to be a little more careful
for the contributions with €|&| > Cj, since applying (3.5) with o > 1 yields an
upper bound which shall not be integrable (for the measure z5dz5).

e Estimate for 0,05K¢. The estimates for €|¢;| < Cj shall be similar to those previ-
ously used. We then consider, by parity, the case £ > Cy/e only. First, we have

5155(51) " f et#1é1
Z 5\/1 1262 (1 22Y) exp (12161 — [22|Z2(61)) = \/1 128 (1 o)
% ((55 (&) — = (51)) e 12EEE) 4 =) (e 2228 (61) _ g—l22l2c (51))) ‘

From Proposition 3.3, we have

C
(3.9) 0<ES(6) —E0(&) < ot
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Smooth branch of rarefaction pulses 795

thus

(3.10) \e—l@lzi(sl)_e—|zz|sg<sl> _

e~ 122122 (&1) e—|22|(3?(§1)—52(€1)) _ 1‘ < Ce~1#2161/(Ce) (1 _ e—C|Z2\/€2) )

As a consequence, from (3.5) with « =1 > —1,

o GE:(&) | .
/CO/E szi \/1 + 4£2£2 (1 —e2¢?) exp (iz16 — 2=2(6)) d&

<o [ Lenascn | 8 aaco (1—e0=/) ag,
Co/e €3 g2
C 2 e—72/(C'e?) g2
Y2 /(Ce?) —C|z2\/5 s s
S €2z2e '+C ( ) (122 >e |22] T loce 23
< Y ane | Clace
5222 Z9
by the basic inequality 1 — e=C121/=* < C|z|/e2. We then infer
+oo § — § : =S —|z
/ Z 122(&) exp (iz1&1 — |22|=22(&1)) d&| < TP |e |221/(Ce?)

Co/e s=% \/1 +4e2€3 (1 — £2¢2)

We then obtain, by (3.6) with a =3 > —1,

C C Co/e
2:03K7(2)| < 76—\zQ|/<ca2>+7/0 €620 g,

2|2 g2

1 Co/e
+ 0/0 g%e—@fl/c dé + 0/ 0 g?e—mff/c dé,
B I G N
€|z et (J22] + €2)
«c_ ¢
NENCERE)

N

e Estimate for O3K°. Here again, we have to pay attention to the contributions with
el&1] = Co. We have

Lxp(—2[22(&)) _ =0 (&) — EX(&)
s:zj:: =5(61) T ED(6)EF(6) ( =H(&))

hence, by (3.9) and (3.10),

Z Sexp(_ZQE:(Sl)) < ge—22£1/(06) 4 ge—zzﬁl/(CE) (1 . e—CZQ/EQ) )
s==+ Eg(gl) g% 51
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Arguing as for 9,02K¢, we then infer

exp (12161 — 2222(&1)) d&y

/+°° T 3
Cofe TE Z3(€1)y/1 + 4e2€} (1 — e22)

< C “+00 le—ngl/(Cg) + Sle_Z2£l/(CE)(1 _ e—ZQ/(C’g2)) dg]_
Co/e €
C e /() (¢
< 7efz2/(C€2) + 1z2>€27 + 71Z2<82
29 z2 )
< Censo)
Z9 ’

by (3.5) with a =1 > —1.
By computations similar to those for 9;02K¢ and by (3.6) with a = 1, we then
obtain

C Co/e
laflcs(z)‘ < ;efZQ/(CEQ) + 052/0 0 é-i’)efZQ/(CEQ) dfl
2

1 Co/e 5
e / e 24/C ge, 1 ¢ / £re2E/C gg,
0 1

< Germnea | Cmanien 1oy 9
29 € Zo + €
<<
22

e Estimate for O3K¢. First, we write

EEO o) ey — mim6) = ——
s=k \/1+452§%(1 —e2¢?) \/1+452§%(1 —e2¢?)

X (([Ej(&)r — [5; (51)]2) e 2B (&) [E; (51)]2 (ewai(sl) _ ez@(&))) .

By using (3.9), we have

[[Exe)] - [Er@)]| =

and we deduce, by (3.10),

=5 (&) + 20 (&) x

> s (60T exp (iz1§1 — 22=2(61))
s=t \/1 + 42267 (1 — 2¢2)

—22€1/(Ce) 1 1 22/ (Ce?)
< €f1e B (ES g2 <1 e )

1 19 2
_ —2261/(Ce) | = 4 S (1 ,—2/(Ce?)
Cemmi™ <g4 e3 (1 e >>
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Smooth branch of rarefaction pulses 797

As a consequence, by (3.5) with o =1 > —1,

exp (izlfl - 2’252(51)) d&,

[Ty )
Cofe ZL 1+ 46263 (1 — e2c?)

+oo ]
<cf S0y 3 e261/(09) (1 — e=22/(0) g,
0/e
C ey C o C
< 6372:2e 2/(C%) + 637226 2/(Ce )122 >e2 T 83722122 <e?
< C esz/(CEQ).
6322

By similar computations, we then obtain
C —22/(Ce? C Cofe —z2/(Ce?
’aQSICa(Z)Igﬁe 2/( a)Jr;l/O e—22/( E)dfl

1 Co/e 5
+C [ ge=alfag w0 [ gl dg
0 1

C C
< ; e—ZQ/(C€2) + 75e—22/(082) +C+ ——=7
€329 € (€2 + 22)
C

<— -
29(2 + 29)3/2

e Estimate for 020,K¢. In a similar way, we obtain, by (3.9) and (3.10),

oo £ exp (—iz1& — 225(&1))
/Co/f s:z:l: ’ \/1 + 42282 (1 — 2¢2)

‘ dg,

< / 7008 na/co) (1— e/ gg,
Co/e €&

< 6\1122 252 e—ZZ/(Ca2) _|_ 0122<52

~X

EZo €22
< Yemioe
EZ9
Therefore,
C Co/e
Prota) < e e b g

1 Co/e
+C [ gemlCdg 0 [ gre /g,
0 1

C oy C 2 C
< 767@/(05 ) + *6722/(05 ) +C+ —mF—
(2 +€2) g3 (29 +€2)3/2
<« ¢
A (22 _,_52)3/2'
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From all these estimates, we infer

103K c/ <C
/{|21<|22<1} ) 15 K5(2)] (22 _|_52 (2 & £2)3/2 )
d
/{ i<l }’@f’@(z) dz<0/ & Zka
z1| < 22| <1
/ 03K= ()| d= < C / ade O
{lz1] <22 <1} 2(e2 + 25) 3/2 -

and finally

—29/(Ce?)
C/ Z29€ dZQ < Ce.

/ 920,K°(2)
{lz1] < |z2| <1}

3.3.2. Estimates in the region {|z3| < |z1] < 1}

This time, we shall take the expressions given in Proposition 3.2.
First, we may use rough estimates for the low frequency part: for 3 € N? with
p1+ P2 <2and z € D(0,1), we have

se—|71IE (&) +izng2
o | 6,
{leal<g5} se{i} \/c4 483 (1 — 2¢2)

ise~ 17 |22 (&2)+iz22

W/
{Gelel<e} 50y 48 (1 - 22) —

dé| < C

Similarly, for the 2z, derivative of K¢, using the inequality (see Proposition 3.4)

_ ’52’ < C
=2 (&)

we have, for 3 € N? with 3, + 8, < 2 and z € D(0,1),

séye” |21 |28 (€2)+iz2€2

/{|§2|<§2 se{i} Hs (&) \/c4 462 (1 — £2¢2)

d£2|

Z'5£2e—|21 |22 (&) +iza€2

07 =
[{£S<£2I<c2} sez:{i} 226468 (1 - e2) — ¢t

dé| < C.

e Estimate for 0,K°. We first easily estimate the contributions for & > 2. For
s = £, we have

C ' 7e_€Z1§2/C d CE C
< = z €)).
C1/€2 ) 2 1( 1/( ))

d&s

/ Se_|zllég(€2)+i22§2
{leal >C1/e2) | /4¢3 (1 — e2¢2) — f
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Moreover,
se— 7182 (62) +izabo

d&s
/{c2<§2|<01/82} \/4522 (1 —e2%c2) —ct

Cy/e? e #A \/5_2/0

<¢ /CQ 3 &
VT /(Ce) gt
c)

Z1/C t
<C(l+|ne))l,, <coe + C(1+ Inz])1,, > ce-

e [Fstimate for 0oK¢. Similarly, for s = £, we have

—|21|22(62)+iz260 +oo a—€z1€2/C
/ .~ 58 dé| < C eid&
{leal <72} Z3(6,)1/4€3 (1 — e2¢2) — aje ek
C
= ;El(zl/(C@)
and
3§2e—\21|§§(€2)+i22§2 C1/e? g=51 Ve /C
/ . dg|<C [ g
(@ <l6l <= Sx(6) /463 (1 — 2¢2) — of e VG
—c21/C __ o—21/(Ce) —cz1/C
< C’e e < Ce
21 21

This yields

Ei(21/(Ce¢))

/ IVKCE(2)| dz < c+c/ te/C gy
D(0

+C’/ 1+|1n5|)d21+0/ 21(1+ [Inz|)dz < C,

since y — yFE,(y) € L*(]0, +o0|) (by (3.7)).
e Estimate for 92K°. We have, for s = =,

E5(&2)+iz2€ 0o
/ (,52) — 21|22 (b2)+iz262 46, < C/-i- ce—c16/C dey — ge—zl/(CE)’
{ C1/e?

|€2] > C1/e?} \/453 1—e2¢2) — ¢4 2
and
ES *|Zl‘é2(§2)+i22§2 01/62 —2z1 \/5_2/0 *CZl/C
/ S 5(62)e d£2 < C/ ei d§2 < Cei
{e2<|€2| < C1/e2} \/4§% (1 — e2¢2) — ¢t 2 NG P

This yields
1
/ 2K (2)| d= < C + 0/ e=1/(C2) 4 e=a1/C g <
D(0,1 0
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e Fstimate for 0,0.K°. We have, for s = +,

C o0 e*5Z1§2/C d£2 — 26721/(05).
C1/e? EZ1

dés| <

/ ool E(E) izt
fleal>C1/e2) | /463 (1 — e2¢2) — f

For the contribution ¢ < |&| < C)/e?, we first integrate by parts. For s = +, we
have

Cr/e*  gye~lal=E(E) izt
d&s
¢? \/452 1—e2¢2) — ¢t
2
= e —=21E2(&2)+iz2é2 §2 d
e &2 ~ - 52
¢ (2’1825;(52) — ZZQ) \/45% (1 — €2C2) —ct

(3.11)

c2e—21§§(c2)+i22c2
(218252(C2) — iZQ) \/4C4 (1 — €2C2> —ct
C e—z1é2(01/62)+izgcl/€2

_ g2 <Z182 5(Cy/e?) — 222) \/40 i (1- ) - m

_|_

In addition, by Proposition 3.4,

c2efz1_ (¢2)+izac?

(zlﬁgig(@) - z’zQ) \/4c4 (1 —e2¢?) — 4

C ele_ (01/5 )+iZQC1/€2 C C
- < < —
g2 (2’182 (01/52) - ZZQ) \/40126_4 (1 — €2C2) — ¢t 21 + 29 <1
and
&2
(3.12) a5,
(Zlagu (fg) — 222) \/452 1— €2C2)
_ 2182249(52)
(210:52(6) —iz) (41— e2¢2) — ¢4/€3

2¢4

+ = )
& (10:22(6) —iz) [4(1 - 2¢2) — /3]

from which we deduce

&
(2182§§(§2> — iZQ) \/45% (]. — 52C2) — C4

852

Cz n C
P (afVGrz)  GlalVata)

~
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by using Proposition 3.4 and the fact that
=s |2 =s = 2 1
’2182\:,5(52) — 222‘ 2 Z%Re ((92:5(52)) —+ (lem (8256(52)) — ZQ) 2 — (23/52 + Zg)
both when zy < C21/v/& and when 2y > Cz;/1/&, by Proposition 3.4. This yields
e—zl/(Ce)
/ |010:K5(2)| dz < C + C/ 21 (
D(0,1) 0

where ()12 contains the terms coming from (3.12):

, def e Ve e Ve
0/ / / zl/\/_—l—zQ) t5 G+ déydzadz.

£21

1
z ) dz + Q12 < C + Qq2,
1

Since, by explicit integration,
G VG VG
/ 2 ng C
0 (zl/\/g—l—Zg) (1/\/€+ 1) 2

and

21 1
S S (1 ><01 ,
/0 VG + 2 Zzg =1In{1+1/& n &

we infer

O, < C / / ve déydz + C / / Cenvané 52 ;* desd

“né
cof el s
Therefore, as wished,
/ 10,05KC% ()] dz < C.
D(0,1

e Estimate for 03K¢. For s = +, we integrate by parts

+o0 £2e B (@) izt
(3.13) / & dé
@ E3(6)\/463 (1 — e2e?) — ¢t

+o0 =g . 2
= /2 e~ 1EL (52)4—122623& -~ — .52 : dé,
c 2:(&) (210:22(&) — i22) /463 (1 — £262) — !

c2e—z1é§(c2)+i22c2

+ = _— .
Z5(c?) (21(9252(@) - z',22c2) \/4c4 (1 — 2¢2) — ¢4

In addition,

c2e— 7 E5(c?)+izac?

EE(CZ) (z182§§<c2) - iZ2C2) \/4C4 (1 —e2¢2) — ¢t S
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We have

) g
T\ E2&) (210:22(&) —im) 1B (1 — 22¢2) — !

_ 216£0223(6)
Zi(&) (10:52(6) —iz) \JA(1— e2¢?) — 4/é3
c4

3Z2(%) (zlagéz@ —iz) (4(1 - 2e2) — ct/e3)"?
D (&/22(6))
+ = 1/2
(210:22(&) —iza) (4(1 — £22) — ¢/&3)"

thus, in the interval [C} /g%, +o0],

; &
52 = = .
Z2(6) (210:22(6) — i20) JAE3 (1 — %) — ¢!
o Cz n C - C
Sl (e +23) e (elal + [z2]) T €63 (elzl + [z2)

and in the interval [¢?, C} /e?],

3
O, | = —
5 (52(52) (210:Z2(&) — %32252) VAG (1 —e2¢) - C4>
< -1 ¢ < ¢ .
S & im) | @l ) & (e + 1))

As a consequence,

/D(O,l)

/ e nE2 (@) +int:
162> 2} Zs 52)\/453 1 — e2¢2) — ¢t

e—cx162/C
<C / —d c / / dzydzrd
21 z1 + O e 5352 e —|—z2) 2odz1d&y

e eV oy dé
+ / // 22021082
1/2 21/\/_2+22)

e—c2162/C
< C+Clne] 01/62/ g dz1d£2+0/ /mgz i dads

dés| dz

_C’+C|1n5|/ g §2+0/ £ < Cllnel?
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and it follows that
/ 93K°(2)| dz < Cllef
D(0,1)

e Estimate for 9?K°. There holds, for & > ¢? (hence = = =)

= 2 —|z1|EF —— 2 —|z1|E2D
[::(52)} e~ |21l (&) _ [:E (52)} e~ |15 (€2)
= je AREI @)y {e‘izllmé;(f?) (—c2 —2e%¢2 — i\/4§§(1 — £2¢2) — c4>} .

It then follows that, for & > C) /g2,

[éj(@)} o2 (&) - & (52)]2 o |25 (&)
Im [e—izllmég—(ﬁz) <—C2 - 28253 . Z\/4£% (1 _ 62C2) _ c4>:H

Ce=1562/C {8253 ‘sin (zﬂméj(&))‘ + 52}
< Cem1e8/C {5253 min(1,Cz /e) + 52} :

_ =t
<e 21Re=7 (£2)

/N

Consequently,

A€y

/+oo SE25(&y ) 2e 1 EE () Hizl
Cr/e? i3 \/453 (1 —¢e%¢2) — ¢4

+oo
<C | - e /0 (28 min(1, Ca fe) + 1] d&
1/e
o—21/(Ce) o—21/(Ce) a—21/(Ce)

1
C]-Cz1 <e + C]-Cz1 >e— + C
EZ EZq EXq EZq

/
Q

For the contributions for ¢? < & < C4/e?, we integrate by parts:

C1/e? ~5(§ ) —|21|Z2 (&2)+iz2é2

(3.14) /c2 \/452 —e2e?) — ¢ dc

2 =s 2
— /Cl/s eleé2(§2)+i,22£28£2 — '_'6(52) d£2
¢ (2182Eg(§2> - iZQ) \/45% (]. - €2C2) — ¢t
N Ez(c2)2efz1§§(c2)+iz2c2
(218253(@) — i22> \/4c4 (1 —e2¢?) — 4
Es (01/82)2 —z1§f_(01/52)+iz201/52

- (21(92 s (Cy/e?) — ZZQ) \/40125 (1 —e2e2) — ¢t
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In addition,

ég(c2>2e—z1§§(c2)+izzc2
(zlagég(@) - iZQ) \/4c4 (1 —¢e2¢?) — ¢t
=5 (Cyfe2)? e B (O pime?

N (Zlagég (Cl/€2) — iZQ) \/40125_4 (1 — €2C2) —ct

~
21

and

=2(6)
3.15) Ok, _
( ) Ok ((magEg(fg) — 2'22) \/455 (1—e2e?) — c4)

20825(&) x (23(&)?/&)
(210:Z2(6) — iz0)” \JA(1 - 22¢2) — ¢1/&]
0 (22(£)*/%)
+ = : 172
(218222(52) — ZZQ) [4 (1 — €2C2> — C4/€22]
. B L= (LS
& (210:Z2(&) — i) [4(1 - £262) — ot /F]"

from which we deduce, by Proposition 3.4,

9 = (&)
&2 (218252(52) — i22> \/455 (1 _ 52@) _ A

Cz n C N C
3/2 (Zl/\/g + Zz>2 &(n/Va + ) 3 (2’1/\/5 + 22)
C

s 3 (21/\/€+z2)'

Then, arguing as for 0,0,K¢, we obtain

5 C1/e% 1 cIné
/ 3K (2)| d= < C + C/ / e1V&/c 182 g e
D(0,1) 2 0 &

8*21
<C+C/ D& <o
2 9
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e Estimate for 070,K°. For s = £, we integrate by parts

(3.16) /+°O E255(&,)e 11 EE (@) Hizlo o
. 2 \/453 (1 — €2c2) _ c4
+o00 = N ég
= [Ty, | OB g
¢ (Z132:§(52) — 222) \/452 (1—e2e2) —¢

it =S (2 . 2
c2:§(c2)e 212 (c?)+izoc

(zlﬁgfg(@) — izzc2) \/4c2 (1 —e2¢2) — ¢t

In addition,

CZEg(CQ)e—zlég(cz)—i-izch C
= < —.
(218253(@) — izzc2> \/4c2 (1—¢e2¢?)—c¢t| &

As for 92K¢, we obtain, on the one hand, in the interval [C}/e?, +o0],

Oe 6HE(&) 3 0,53 (%)
’ (zlﬁgég(&) — ZZQ) \/45%(1 — 62C2) — C4 2\/ 1-— €2C2 (218252(52) — iZQ)
21 Ce Ce

< + < ,
285 (ze + 22)?  L(zie+22)  L(ze+ 2)

which yields, using Proposition 3.4,

£Z5(6)
(218253(52) — ZZQ) \/46% (1 — €2C2) —ct

(3.17) |0k,

€ C
_ _ < ,
2\/ 1-— 82C2 (218252(52) - 7;22> 6€Q(Z15 + ZQ)

and on the other hand, in the interval [¢?, C}/&?|,

., ~ £E&)
(Z16253(52) - i2252> \/453 (1 —e?e?) — ¢t
< Cz n C n C
& (262 +2) (06" +2) &7 (26" +2)
C

gé”@gm+@)
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The estimate for the integral over [¢?,C}/e7?] is as for 95K°. We have to use a
compensation in the remaining terms for the integral over [C}/e?, +ool:

se7|zl‘é§(£2)+iz2g2 8e7‘Z1|Reég(£2)+i22£2
(0B ) (20ErE) - i) (205 €
s==+ | R102=2(G2 129 (Zﬂ?gﬂj(ég) — 222) (2182\2.5 (fg) — ZZQ)

X (e_i‘zlumé:(&)(zls —izg) — €IS (10 i) 4 T) :

where
= =t
Tdéf —z|zl\ImuE (€2) (82 = (52) _ 8) 2z ezlz1|Im;2’(§2) (3255 (52) — 5) )

so that, by using Proposition 3.4,

eT o Cez o C
= : =t : T 383 (ze + 2)? T e&(z1E + 22)
(2182::(§2> - 222) (75182:5 (fg) — ZZQ) 2

which is as the right-hand side of (3.17). Observing that, from Proposition 3.4,

—ilz1|[Im25 (&2) ei\zlllméi(&)

‘e =2 ’sin (]zﬂlméf:(&))‘ < 2min(1,Cz /e),

we deduce

Z18§2/C
/ / dzydzy s

2 € 1 2
A( |(9 82/C ( )‘dZ C’ n€| +C/ 552 E2Z1 +22)

C1 /g2
c 21 e_zlfo/C C
—{—5// / minl,zsdzd dz
o Gy min(1. O e) dzadad

|ln6|
/€2 6252
+C’5|1n5]/ // e 1=2/C min(1, Oz Je) déydz

C1/e?

7z1/ Ce)
< Ollnel* + Clln&?\/ ————min(1,Cz /e)dz < Cllngl*.

< Ollnel? —i—/ d&s

e Estimate for 0,05K¢. For s = 4, we integrate by parts

+o0 £2e—|z1|§5(§2)+i22§2

(3.18) dé,
2 \/452 €2C2 C4
00 2
e /+ e_zl‘—‘s(£2 +122E28 — 52 d52
¢ (216252(52) — iZQ) \/4522 (1 — €2C2) — C4
c4e—zlég(t2)+i22t2
+

(z182~5(c2) i22c2> \/4c2 (1 —¢e%¢?) — ¢t
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Smooth branch of rarefaction pulses 807

In addition,

c4e—Z1éS(C2)+iZ2t2 O
= < —.
(218253(@) — izzc2> \/4c2 (1—¢e2¢?)—c¢t| &
We have
, &
&2 ~
(218252(52) - i22) \/453 (1—e?e?) — ¢t
L 2160223(E)
= . \2 5
(2182\2?(52) — ’LZQ) \/4 (1 — €2C2) — C4/£2
o
& (210:32(&) —izm) (4(1 — £2e) — ¢4 /¢3)*?
1

* (Zlazég(gg) — iZQ) (4 (1 — €2C2) — C4/£%)1/2

thus, in the interval [C}/e?, +o0],

O _ £
T\ (210:E2(&) —izm) /163 (1 — e2?) — ¢t
1
(zlazég(@) — i22> (4 (1 — e2¢2))?
< Cz + C C
T SG(ne+m)? Glnetm)  l&E(ne + 2)

and in the interval [¢?, C}/e?],

(3.19)

2, ~ &

<218252(62> — i22£2> \/45% (1 — 52C2) — ¢t
< Cz n C . C o C ‘
h 32 (2162_1/2 + 22>2 & (2152_1/2 + z2> <Z1§2_1/2 + 22> h <Z1§2_1/2 + 22>
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Therefore,
s Ze—lzlléi(fz)-i-izz&z
/ 3 / & dés| dz
DO | ZE el >} [4g8 (1 — e2¢2) — o

—52152/0
dzodzid
i /e / / R 2

c C1/e> 21 ele\/—Q/C dondend
+ /c2 /0/0 21/\/_+22) Zodz1dEs + Q122

e—c21&2/C C1/e?
e /|1ns| d21d§2+0/ Y /111526 AVE/C 42 d6y + Quan

Ine £ ln Ine
< C/ | 5 | d&s + O/ 1/622 dfs + Q122 < C' | + Q122
01/82 g 52 £

We then estimate the terms in ()122 containing the contribution of >~ _

—t S5 it
in (3.19) in the following way. First, as for 070,K¢,
seimImEz (&) min(1, Cz; /¢) C
1 (210:52(&) —iz) | (218 + 22) elé3(zie + 29)’
hence
—62152/0
dzedzy1d
Q122 < /1/5 / / T pp——" 2odz1d&s
o[ o e C—mm(l e
C4 /2 216 + Zg)
d in(1,C
C’|ln5|/ 5523 n CllneI/ —ajcomin(, Ca/e) ,
3 €21
Cllne
< .
5
This gives

1
/ 0,:03K° (2)| d= < clnel
D(0,1) €
e Estimate for O3K¢. For s = £, we integrate by parts

400 3a—|21|22(&2)+izao
(3.20) / _ &
¢ E3(6)\/463 (1 — e2e?) — ¢t

_ oo —21Z2 (€2)Fiza gg’

=/ O, | = = : = — - dé,
‘ Z:(&) (210:52(6) — izm) (/463 (1 —e2¢?) — ¢
C6e_zlé§(CQ)+i22

Zs(c?) (21(92”5(@) iz2c2) \/4c4 (1—e2e2) — A

A&y

(0]

+
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In addition,

c6e—zlég(c2)+izgtz C
= = < —.
=5(c?) (zlégEg(CQ) — z'22c2) \/4c4 (1 —¢e%¢?)—c¢t| &
We have
" s
Z2(&) (210222(8&) — i) (/A3 (1 — £2%) — !
_ 2830352 (%)
- ~ ~ 2
2:(&) (210:52(6) —iz2) (/4 (1 —£2e2) — ¢1/83
c4

653(6) (adE2(6) —in) (41— e22) — /)
0, (8/2:(%))

T i0E6) — i) (4 (1 e26) — /)

thus, in the interval [C}/e?, +o0],

&
(3.21) |0, | = _
6 (52(52) (210:52(€) — iz2) /463 (1 — £2¢2) — C4)
B 0 (8/2:(%))
2\/ 1 — g2¢2 (Zlagég(fz) — iZQ)
21 C < C

S +
e4€3(ze 4+ 2)?  e€3(me+ 7)) €83 (zeE + 29)

and in the interval [¢?, C/e?],

0 (~ _ & )
2 25 (&) (215252(52) - izzgz) \/4§§ (1 — e2¢2) — ¢4

Z1 n C N 055/2 _ 055/2 |
(262 +2) @ (a6 ) (267 +2) (26" +2)

<
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As a consequernce,

/D(O,l) Z

s=+

/ Sgge_lzl|ég(§2)+i22£2
lleal> 2} Z(85),/4€3 (1 — e2e?) — o

e—c21&2/C Do
29dz1dEo +
/ /1/52/ e€3 Z1€—|—Z2) 2021082 + Qo2

1 Cl/E 21 52/ e_zl\/_Q
e / / / dzadydzy
0 Je 0 2’1/\/5_2 + 22)

f€z1£2/C
C/ / |111 €| d§2d2’1 + QQQQ
01/82
Cy/e?
* C/ /2 T 5255/%_21\/5_2/0 d&2dz
0 Jc

+ |In¢| Cr/e?
:C/C 3d52+0/2 In&s d&s + Q2 < C

1/ €285

and (a9 contains the terms put aside in (3.21) for which there is a cancellation: by
Proposition 3.4,

50y (£/22(6)) e 1B @)+t
b 5 o 2= (a0 )

e—c2162/C
dzodzid
01/52/ / 5552 (z16 + 22) Z2dadt

O (1, O o) desdrdy < O
, € < 7
C1/e? / / (216 + 23) mm( 21/€) dzodzrdéy =

déy| dz

|h1<€\

+ Q222,

dZQle

by the same kind of computations. This concludes the proof for the estimates on the
kernel KCc.

4. Proofs
4.1. Proof of Proposition 2.2

We recall that
Erryn, = —c(£)01 A9 + 2c(e) AV 9, AD) 1 2220,V 0, Al
+ 260,000, A0 + (97 + £203) ¢
Since A € X2, Vo € X2, we infer
|83 (0200 0,40

—l— HA O

at 01600, A0 o

<G,
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thus, by the choice (2.1),
[Errpnl g1 < 076 — e(£)01A©)

2
X§+C€

= (¢ —c(e)) || A

2 2
X1 + Ce” < Ce”.
Analogously,

< C,

1
X4

[@00)’]  +[a0,60)

w1

. |07 40

hence

[ExTam] y; < [|c(2)D16@ — 2A©)]

= c(c - c(e)) HA(O)‘

Furthermore, we may put forward some cancellation:

L+ Ce
X2

2 2
X21+C'€ < Ce”.

|¢<ZErr,, — Erram||X21 < Oe.

In order to justify this estimate, we use (2.1), i.e. cA® = 9,0, and the relation
¢? = c(e)? + &2 (hence c(g) = ¢ + O(e?)), and write

|c(e)ZErrp, — ErramHXQI

c(s)Z(c(s)@lA(o) — e2(e) AR A — 220,600, A0 — (9 + £263) <b<°>)
B < — ()29 + & (51¢(0))2 —&%c(e) A0,

2
+¢2A0 ¢ 62%(F —3) [A(O)]Q - 628fA(0)>‘

X3

2
<e€

cz< — CA©P, 4O _ 240, A©) _ agqs@))

+ Ce*,
X3

2
- ( — A0+ S0 - 3)[40]" - 812A(0)> ’

since Z02¢®) = 0,0, T0,A©) = A (the right-hand sides go to zero at infinity).
Using that 2Z(A©9;, A®) = 7(9,[A©]2) = [AY]? and that 02¢® = 07 '02A©) we
infer that the last norm is actually that of

1 1
o7 (—8118§A(0) + 0 A0 —TA0P A0 + czafA@)) 0,

since A© solves SW. This is the required result.

4.2. Proof of Proposition 2.6

We start with some easy estimates of convolution in Xz spaces in R
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LEMMA 4.1. —

(i) Let be given p and v such that 0 < u < v and v > 2 and let us fix u' such
that (v > 2 and ' = p) or (v = 2 and p/ < p). Assume that u € X, and
v & X,. Then, uxv € X,/ and

luxvllx, < CW,pp)llullx, [[v]x,-

(ii) Let be given p and v such that 1 < p < 2 and 0 < v < 2. Assume that
uw€ X! and v € X, is such that [psvdz = 0. Then, uxv € X, 4,1 and
v 12 R o

[urvllx, s < CWs o p)lullxz [0l x40

(iii) Assume that u € L' is compactly supported in D(0,2). Let > 0 be given
and v € X,. Then, uxv € X, and

Juxvlx, < C(p)lullc v,

Proof. — We easily check that, in all the above cases, u x v is well-defined and
continuous on R? (since u(z—y)v(y) = O(1/|y[*") at infinity for some o = o(u,v) >
0 for (i) and (ii)). Therefore, only the decay at infinity has to be shown.

(i) For z € R? with |z| > 2, we have

fuxo(2)] < [ Ju(z = y)l o) dy
< [ Jule = 9)| x [0(y) L2 dy
+ [z =) % )Ly <1z dy

# [z = )X )Ly <1 oy 51272

(notice that if |z — y| < |z|/2, then |y| < 3|z|/2 < 2|z]) and estimate all the
contributions separately.
For the first integral, we have |z — y| > |y| — |z| = |y|/2, thus, since v + p > 2,

dy
— X 1 z d <O ) /
/RQMZ DX )Ly 2215 dy < Cv, pllullx, [[v]x, flyz2l2ly [y[+#
C(v, 1)

S WHUHXVHUHX“-

For the second integral, we have |y| > |z| — |y — z| > |z|/2, and this implies

Lol =)l X @) Ly <12y

< Sl el 1 dy

~ .
[ {l==vl<lzl/2) (L + [y = 2[)”

The integral in the right hand side is < C'ln |z| if v = 2 (and then y/ < ) and < C
if v > 2 (and then p/ = p). In both cases, we then have

Clv, p, ')
/RQ!u(z —y) X [o(y)[Lamy < pz1/2 dy < HUHXVHUHXNW
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Finally, for the third integral, |z — y| > |z|/2 and thus

e = )¢ 1) Ly <1 oy > 2

C v, p) Liy <2z
< ’ U v / ST dy.
~ |Z|V || ||XU|| ||XH R2 (1 + |y|)u y
If 41 < 2, the integral in the right-hand side is < C(u)|2|>™* and we are done since
W< p+v—2 If u> 2 (resp. p = 2), then the integral in the right-hand side is
< C(u)|z** (resp. < C'ln|z|), and we are done since ¢/ < p < v.
(ii) Since v has zero integral, for z € R? with |z| > 2, we have

us ()] = | [ uz =) dy
= | [, (uz = 9~ ul2))ow) dy]

< [z =) = ()| x [o(y)|dy

< [ JuCz = 9) = u(@)] X [o@)ILy>20 dy
[tz = ) = () < o) Ly < e dy
[ ulz =) = ()] < 1) Ly <ors and oot > 172 Ay

and estimate all the contributions separately.
For the first integral, we have |z — y| > |y| — |z| = |z|, thus,

Cllullx,
|21

[u(z —y) —u(2)] < |u(z —y)| + [u(2)] < :
and this implies, since u > 1,

Cllul| x dy
) — x 1o dy < 2 /
/RQW(Z‘ y) —u(z)| X [v(y)| 1y > 202 dy vl x,. ol 2y o

|2
Clp,v)
< WHUHXVHUHXW-
For the second integral, we have (v > 0)
[l x, lullx, 2||ullx,

u(z = y) —u(z)] < Ju(z —y)| +[u(z)] < :
h O e e N (N e &
and, combining this with |y| > |z| — |y — z| > |2|/2, this implies, since v < 2,

L Jul =) = ()] X o) L < o< a2 dy

Clp dy
< U ol [

E fe—vl<l/2y (L + |y — 2])”
C ()
< WHUHXVHUHXW-
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L Yo
2=y with g < —z]/4
[ e el B e 1
i
N
i
i
i
i
i
a
i
ql
i
|
i
i
. ' ;
y
2 —y with |yl < |z[/4 1
and 2} —y; < —|z]/4
[
1#1/4
I —
! /2

Figure 4.1. The path v, .

For the third integral, we shall use the Mean Value Theorem along an appropriate
path 7, . defined in the following way. Let us denote (yi,y}) the coordinates of
y in the orthonormal basis (z/|z|,2%/|z|) of R?, so that z has now coordinates
(2] = |z], 25 = 0). Keep in mind that |z —y| = |2/ — ¢/| = |2]/2 = |¢/|/2, thus
lyh| = |2|/4 or |21 — yi| = |2|/4. Then, if v, < —|z|/4, the path 7, . (in rotated
coordinates) goes from 2" — 4 to (21, 25 — y5) along [0,y1] 2 t — (2] — ¥} + 1,25 — vh)
and then from (2], 2, — v4) to (2], 25) along [0,y5] > t — (21,25 — yh +t) (see the
dashdot line in Figure 4.1). The length of this path is < |y} | + |v5| < 2]y| and, along
this path, we have

Alullx
|VU| S |Z|l/+1
(for the first part, |v,.| = [(.2)5 = | — v4] = |2|/4, and, on the second part,
V.2l 2 [(9,2)1] = |2]), hence
Cllul|xz ly]
(4.1) lu(z —y) —u(z)] < W
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If y4 > |z|/4, we use the symmetric path with respect to the 2] axis and also
get (4.1). If |y5] < |2]/4 and 2} — y; > |z|/4, the estimate (4.1) remains true with
the first path, simply noticing that, for the first part of the path, we also have
el > | (el = 124 — o + 1] > [2]/4. Finally, if || < |21/ and 2 — g < —|2]/4,
we follow (see the dotted line in Figure 4.1) the path (2] — 1, 25 —v5) — (2] —v1, |2])
parallel to the zj-axis, then (2] —y1, |z]) — (2] = ||, |2|) parallel to the zj-axis, and
finally (2] = |z|,|2]) — (2} = |z[,0) parallel to the zj-axis. The length of this path
is < C|z|, and, by hypothesis, 2] — ¢} < —|z|/4 < 0, thus |y| > y| > 2| = |z|, and
then |Vu| < Cllul|x1/|z[**!. Therefore,

Cllullxglzl _ Cllullxzlyl
|U(Z—y) —U(2)| < |Z|V+li =X |Z|,,+V1 )

which proves (4.1) in this last case. We then infer, for the third integral,
[tz = ) = w2 < [0(0) L <1 a1 2

Clull; o )
X WHUHXWA RZW ly| < 2|z| and |z—y| >|z|/2 @Y

C 2 r2dr
< WH“HX}HUHXW/O ETGE
C(p)

= WHUHX;HUHX;HA’

since u < 2. Gathering all these estimates, we have shown (i).
(iii) For z € R? with |z| > 4, we have

furv() < [ Julz = y)l x ()] dy.

D(z,2)
Moreover, using that |y| > |z| — |z —y| = |z| — 2 > |z|/2, we deduce

[v]]x,
ks

[v]]x,
ks

b

Ltz =0 o)l dy < COTEEE [ Julz =)l dy = Ol

as wished. 0

We now turn to the proof of Proposition 2.6. We fix xo € C(R?) such that xo =1
in D(0,1) and xo = 0 outside D(0,2). We shall then split the convolution kernel
0°K* as

0K = x00“K* + (1 — x0)0“K*.

Proof of Proposition 2.6(iii). — For the term xod0*K® € L'(R?) compactly sup-
ported in D(0,2), we apply Lemma 4.1 (iii) and Proposition 2.3 (ii) to infer, for g > 0
and v € X,

H (Xo(?i’lCE) *UHXM + |Ing|™? H(X081202/C5) *v‘ N
+ ellne|™ H(Xoéh@SICS) *v‘

w

i, el | (xod3K) *“HX# < C(vllx,-
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For any o € N? with a3 + as = 3, the term (1 — x0)9°K® belongs to X3 by
Proposition 2.3(i). It then follows from Lemma 4.1(i) (with v = 3 > 2) that, for
0<p<3,
(1 = Xx0) KT x vl < Cpl[v]lx, - m
Proof of Proposition 2.6(ii). — The estimates for the local term x,0*K® (with
ag + g = 2) and for the term (1 — x)0*K® € X, (with v = 2) follow as for (iv). O
Proof of Proposition 2.6(i). — The estimate for the local term y,VK* follows as
for (iv). For the term (1 — xo)VK® € X{, we apply Lemma 4.1 (ii) (with v =1 < 2)
and deduce from Proposition 2.3 (ii) that, for 1 < p <2 and v € X114,

I = x0) VT x vl < C) [[(1 = x0) VK[ 1 0]l x, 0 < Cl)lI0llxsn- B

Proof of Proposition 2.6(ii’). — The estimate for the local terms xoV2K* follows
as for (iv). For the terms (1 — xo)V2K® € XJ, we apply Proposition 2.3 (i) and
Lemma 4.1(ii) (with "u” = p—1 €]1,2] and "v” = 2+ ' — p € [0,2[, so that
w4+ 7" —1=y') and deduce, for v € X, ,,

[0 =0V xe], <Ol (1= xo) VK7

o]l x, < €, 1)l|v]]x,.-
U

Xl
24p/ —p

4.3. Proof of Proposition 2.8

Let us first prove the claimed estimates on (A, ¢) given by (2.9). It is easy to check
that all the terms are well-defined thanks to the decays imposed on S,,, and Spy.
FEstimate for A. By Proposition 2.6 (ii), we have

03K % Surm < Clo, o) | e]?||Sam | x

1+o’

‘X1+a

and, by Proposition 2.6 (i), since Spp, is odd in 2, thus has vanishing integral,
101K° % Sl x,,, < Clo,0)|Spullx, .-
Therefore, using c(¢) = ¢ + O(g?),
Al x40 < T lx0se + Clo, o) mel?(|Sanllx, ., + Clo,0)|Spullx, ., -
with
T =¢2 (8?/@ * Sy — €O % Sph> = 207K * (Sam — ¢ZSn),
hence, by Proposition 2.6 (i),
1T x40 < Clo,0)1Sam — <ZSpnllx,,., -

If Sy = 0, then we may write, by Proposition 2.6 (i) (Spn is odd in 2, thus has
vanishing integral),

e Tllx10 = ¢ 101K° xS, < C(0,0) 1Sl x, -
Estimate for V¢. By Proposition 2.6 (ii) and (iii), we have
IVOLKE + Samllx,,, < Clo,0)|Samllx,

hHX1+0
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and

|V 5 Sy < C(o,0') el S,

2 24€
X +e HVf)QIC *SthXHU hHXua/ :
Therefore, using c(e) = ¢ + O(g?),
IVollxie, < T lxip, + Clo,0)|Sanllx,,,, + Clo.0) el Spnllx, .
with
T = 812 (VOIKE % Sam — VK % Spp) = ggvalnf ke (Sam — ISyp) .
hence, by Proposition 2.6 (ii),
T lxr.y < Cl0,0") || Sam — cISthXHU/ .
If Sy = 0, then we may write, by Proposition 2.6 (i) (Spn is odd in z),
T lx1r0 = clIVE" % Sl i, < Cl0,0)ISpnllx,., .-
Combining these two estimates, we infer
1Al 0 + IVElx1,, < Clo, o) el (I1Spullx,,,, + [Semllx,....)
C(o, 0o
. Clo.)

e2

[Sum — Syl x

140/

and, when S,,, = 0, we have

[Alx110 + 1V Olx1,

C(o,0)
CATEN

< C(0,0)[Saml x,,,, + Clo.0")lnel?|Spnllx, ., +
FEstimate for VA. By Proposition 2.6 (ii’), we have, since [ VS, dz =0,
|03K % VSam

‘X2+a < Ofo, 0',)|111€|2 ||vSam||X2+a'

and, since Sy € Xo44, has also vanishing integral,

IVOLK® x Spnlly,, . < Clo, o) ||Sph||X2+0/ .
Therefore, using c(¢) = ¢ + O(e?),

IVAlxar, < [ Tllx1s + Clo,0)[Inel|VSanllx,, . + Clo,0)|Smllx, ..
with
T = &2V (01K % Sum — cOIK7 % Spi) = & 207K % V(Sam — <LSpn),
hence, by Proposition 2.6 (ii’) (since [ V(Sam — ¢ZSpn) dz = 0),
T Ixerr < Cl0,0") IV (Sarm = ZSpm)ll,, -
If Sy = 0, then, by Proposition 2.6 (ii’), (Sph is odd in z1), we may write
ENT Ixer, = clIVOKT % Spill,,, < Clo,0)[Spnllx, -
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Estimate for V2¢. Let j, k € {1,2}. By Proposition 2.6 (ii’) ([ 0xSam dz = 0) and (iii),
we have
100k (01K * Sam)|x,.,, = 10;01K° % OpSamlly,,, < C(o, ") ||VSam||X2+0,
and
0503k % D1Spn

o +&? HajaglCE * aksth < 0o, U,)|ln€’2 HvSthX2+a’ '

+ Xoto

Therefore, using c(g) = ¢ + O(g?),
18,060 x,,, < 1T llx200 + Cl0,0)[VSanllx,,,, + Clo,0") e[ VSullx,,, .
with
T:éamwmwam—mu&m:é@@m*@@m—agw
hence, by Proposition 2.6 (i) (Ok(Sam — ¢ZSpn) has zero integral),
T Ixerr < C(0,0") IV (Sarm — ZSp)ll, -

If S = 0, then we may write, by Proposition 2.3 (ii")(Sp, is odd in z;, thus has
vanishing integral),

T xarr = € 10;06K" % Spll ., < Clo,0)|Inel*l|Spnllx, .-

Combining these two estimates, we infer

2 / 2
VA, + 926, < Cloro)nel(ISumllxs, + ISllsy )

N C’(a;a’)
€

”Sa,m - CISph||X11+o’ )

and when S,,, = 0, then we have

C(o, o’
IV Al + [0, < Clo. o mPiSullx,, + 57 IneliSullx,,

Estimate for V2A. We start with estimating 9? A. By Proposition 2.6 (iii), we have,
10703 (K2 % Sam) |, = ||0302K" % 0aSam|| . < Cl0,0)[Ine]? || VSamllx
X2+o' 2+0’

X2+o‘
and

|00 % Spn| . < Clo,0)||Splx, .

X2+o’

Therefore, using c(e) = ¢ + O(g?),
|84 <IT o, + Clo.o) el [VSially,,, +Clo.0") Sy, .,

.
with

T =& 207 (@flC6 * Sam — COL KT 8ph> = 203K° % 0 (Sam — ¢ZSpn)
hence, by Proposition 2.6 (iii),
T Ixa1a < Cl0,0) IV (Sam — ZSpn) | x, .-
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If S, = 0, then we may write

T sy = ¢ [R5 S|, < Clo,0)[Smlx, 00

X2+a

This gives, as wished, the estimate for 974 in Xo,.
We then consider 0,0, A. By Proposition 2.6 (iii), we have, since VS, € Xo,, has
zero integral,

Iln |

[0008 (K % Suw)| = [0185K7 % 0oSun | < Cl0,0) = IV Suml,, .,
and, since 0sSpn € Xa400,
H(?gaflCa *Sph‘ Xoio = H8121C6 *aQSthX2+U < 0(0-7 OJ) ||VSPh||X2+U/ :

Therefore, using c(g) = ¢ + O(g?),

In

1010, Allx,.. < I Tlxs., +C(o,0") d IVSunllx,,, + C(0,0) [[VSlly,,
with
T = £ 20105 (01K % Sum — €K % Spp) = £ 203K % 0y (Sam — <LSp)
hence, by Proposition 2.6 (iii),
TN ar0 < C0.0) IV (Sa — TS, -
If Sum = 0, then we may write ([ 0,Spp dz = 0)
T Ixer < Cl0,07) 010K % 1Sl ., < Clo,0") 1018l , -

€

This gives the desired estimate for 010, A in Xy ,.
We finally consider 95 A. By Proposition 2.6 (iii), we have

IIne|

108 (K2 % Sam)|| = | 03K7 5 02Sum \XW
and, by Proposition 2.6 (ii’) ([ 02Spn dz = 0),
19300 Sy = [010:K° % 028l < Cloy o) VS,

X2+ hHX2+o'/ ‘

< C(O’, Ul) ||V$amHX2+g/

Xoto g2

Therefore, using c(g) = ¢ + O(g?),

In el
||VSam||X2+g/ +C(0,0) HvSthXera' ’

e2

|34]  <UITllx,., + Clo, ")
240
with
T =¢202 (af;ca * Sy — €O KCE % Sph) = £ 20,07K° % 05 (Sam — ¢ZSpn)
hence, by Proposition 2.6 (iii),
ENT I xor, < Clo, o) el |V (Sam — ¢ZSpn)
If Sy = 0, then we may write, by Proposition 2.6 (ii’)( [ 02Spn dz = 0),
T Ixerr = cl|0102K° % a8l y,,, < Clo,0") 10:Spll,, -

HX2+0" ’

This gives the required estimate for 934 in Xo,,.
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Remark 4.2. — It may be noticed that the proof does not require VS, € X34/,
but only V&, € Xoi. We shall not need this information during the proof.

Let us now turn to the uniqueness part. By using Fourier transform in the sense
of tempered distributions, we see that (2.9) is indeed a solution of the system (2.8).
We now consider (A, ¢) solution of the homogeneous problem

c(e)hA — (0} +03) 6 =0

—c(e)D1 + (¢ — & (9] +%03)) A= 0.

By taking Fourier transform and combining the two equations, we infer
2 2
(G+eg+(@+28) )7 = (G+ag+(G+24) ) 70 =0

Since the symbol £ + ¢?£2 + (&7 + €2£5)? vanishes only at the origin, a classical result
due to L. Schwartz asserts that .7 (A) and .#(¢) are linear combination of Dirac
masses at the origin and their derivatives, which means that A and ¢ are polynomial
functions. Since A € X;.,, the only possibility is A = 0. Concerning ¢, we only have
V¢ € X ,,, which imposes that ¢ is constant in R?, and since it is assumed odd in
z1, we deduce ¢ = 0, as wished.

4.4. Proof of Proposition 2.10
4.4.1. A priori estimate in the plane

We first establish an a priori estimate on the solutions to (2.10) (assuming exis-
tence).

LEMMA 4.3. — Let 0 < 0 < ¢’ < 1 be given. Then, there exists ¢(o, 0’) €]0, 1] and
C(o,0') > 0 such that, for any 0 < e < €(0,0"), any (Spn, Sam) € X3 514 X X| 4o
and any (A, V¢) € X1, x X1, satisfying the linear system (2.10), namely

C(€)81A — (8% + 82(922> qb — 26281¢81A(0) — 254829258214(0)
—e2c(e)01 (AQ A) + 2620,000, A = S,

—c(e)hd — 2c(e) AV D¢ — e%c(e) Adip) + 220190016 + A
—e2(I — 3) A0 A — 22 (A + e2024) = Sum,

then we have
[Allx,, + IVollx:,

1
< o.Ml (ISmllyy,, + [Sullyg,, + = TS = Sumlls ) -
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Proof. — We argue by contradiction and assume that there exist sequences (En)nen
tending to 0, (Sphns Samn) € X4y X Xii, and (¢, 4,) € X, x X{ ., satisfy-
ing (2.10), that is

c(en)O1Ap — (0} +€203) ¢, — 22010, 00 A — 222 0,0, A0)
—&2c(e,)01 (A(O)An) + 220,090, A, = Spum

(4.2)
—c(en) 0100 — €ic(€n>A(O)81¢n - 520(511)147181(?(0) =+ 25i31¢(0)5’1¢n
+c2A, + 23 - 3)AD A, — &2 (%A, + €202 A,.) = Samm,
such that
43)  [Aullxr, + 1Veulxr,, +[|(07An, cadi024,, 2034,) | =1
240
and

1
44)  Moel (1Smallx |+ [Samallxs | + = 1 ZSpnn = Samallyr | = 0.
240’ ,a 140/ Sn 1+o/
Step 1 (Local convergence). — First, we notice that since ¢,, is odd in z;, we have
#(0, z9) = 0 for any z € R, and this implies, for z; € Ry, 29 € R,

" 21 d
|pn(21, 20)| < /0 |01 (€, 29)] dC < |’V¢nHX1+a/O (1+](¢ CZQ)DH'U

< CO)Vonllx,.,-

By Ascoli’s Theorem, we may assume, up to a subsequence, that there exists
(As; 0s0) € X1, such that

A, — A On = boo Vo, = Voo strongly in C (R?).
In view of the bounds || A4, x,,, + ||Vén| x,,, <1, we actually have
A, = Ay Vo, = Voo strongly in Cy(R?).

Furthermore, we may assume that (VA,), ey is weakly convergent in L?. The weak
limit can only be VA, since A4, — A in C).(R?). Arguing in a similar way, we
may then assume

VA, = VA, OiA, — 0iA. V3¢, = V?¢s  weakly in L*(R?).

In view of the bounds (4.3) and (4.4), we may easily pass to the (weak, or distri-
butional) limit in (4.2) and get

— 01 Ase + PP =0
€010 — 2 A = 0,
that is the preparedness relation

cAAoo = 81¢oo
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As for the derivation of the KP-I solitary wave equation, we now subtract c(g,)/c?

times the first equation of (2.10) and d;/¢? times the second one. This gives

c2

— 2 (e, 1 c(ey,
(4.5) W”alAn L0 (A 2034,) + <c2 ) 626,

c(en)
2

2
+ {20(8”)81¢(“)81An +2 0101 A 4 C(i;)al(A(O)An)

c2

- C(f;)al (A90¢,) - C(f;)al (4,0169)
+c2231 (0160010 + (I = 3)0 (AnA(O))}

1 ¢ —cley
= _52 C2 a1 (CISph,n - Sam,n) + 8252)81)}17” — 25%62¢n8214(0) .

n

Since ¢? — ¢?*(g,) = €2, it then follows that A, = 91¢ /¢ solves, in the distributional
sense, the linearized KP-I solitary waves equation

1 1 3 0 2q9—1
(4.6) 501Ax — 501 A + T, (AA®) + 0307 Ao = 0.
By the result in [LW19, Theorem 1.2], we deduce that
A € Span (61/1(0), 82A(°)) .

Furthermore, we have imposed the symmetries A, even in z; and in zy, whereas
0, A is odd in z; and even in 2, and 9, A is even in z; and odd in z,. It then
follows that

since ¢ is odd in z;.
Step 2 (Smallness in L?). — We multiply the first equation of (4.2) by ¢, and
integrate over R? by parts:

(A7) [IV6u = e(z) A d
= / (Sph,n¢n + 25281¢(0)81An¢n + 2572181¢n8114(0)¢n
264 0y6,0, A0, — sic<en>A<°>Anal¢n) dz.

Here, we have set V& = (9;,05)". We notice that

9alllOrAnllxay, . Clonl
X (L[l 7 L+ ]zt

01601 Ap| < 016

and that, similarly,

C|énl C|A,|
0) < YPnl (0) <———
’al¢n8114 (bn‘ ~ (1 + ‘Z|)3’ ‘C<EH)A Analﬁbn‘ ~ <1+ ’Z|)3+U
and o

_9 4 A(O) < #

’ £,020,09 ¢n‘ 1+ |2])?
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Thus, as n — +oo and by Dominated Convergence (||¢,|| L= is bounded and ¢,, — 0
pointwise and similarly for A,,),

/ 2010001 A, + 2016,00 A0 ¢, — 267 020,02 AV b, — c(2,) AV 4016, dz — 0.
Inserting this into (4.7) then yields

/ Vo — c(en) Andrn dz = / Sonntn dz + 0(22).

Multiplying the second equation of (4.2) by A,, integrating by parts over R? and
arguing similarly, we obtain

/ 2V A2+ A% — o(2,)D16n A, dz = / SumnAn dz + o(<2).

Adding the two equations and using ¢* = ¢(g,)? + €2 and the fact that Sy, =
O1ZSpn ,, yields

/ (O160)2 + €2 (Bathn)? — 2¢(6n) AnDrn + c(en)2A% + 2 A2 1 £2(9,A,)2 d2
1 1
= / (—¢ZSpun + Sumn) D10 dz = = / Sumn(O1m — ¢Ay) dz + o(22).

Observing the expanded square (916, —c(g,) A,,)?, and using (4.3), (4.4) and Young’s
inequality, we obtain

1
/ = (0100 — c(en)An)” + (0260)” + A} + (014,)” d2
1

< —— —¢A,)? .

<oz /(81¢n A2 dz + o(1)
This shows that
1

/ 5 (0160 = c(en)An)” + (9a60)* + A2 + (01A,)" dz = o(1),

n

and hence that
1
(4.8) / 5 (0160 = c(2) A0)’ + [Vl + A2+ (D14,)* dz = o(1).

n

Step 3 (Smallness in H'). — Let j € {1,2}. We multiply the first equation of (4.2)
by 9?¢, and integrate over R* by parts:

/ Vo8, 60]” — c(£0); And18;6y dz
_ / (08 + 2620600, 4,026,
+262 010,01 AV}, — 261,020, 02A0 0 b, + E2e(20) 01 (AVA) D20,) dz.
We notice that, by (4.8),

[ 01004026, d2| < 010

aqunHLw 101 Ap |2 = o(1)

L2
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and that, similarly,
[ 016,04V, dz| < 01041

[ o] < ot (J4°

9 A

afganLoo = 0(1)7

01 Anll 2 + || 01 A©

L2

|

and

/ ~22206,00 AV P, d2| < 27 || Oabn | o 024

(9]2-¢nHLoo — 0.

Ll

Thus, as n — +o0,

[Adllz2) = 0

[1950,6," = c(20)0;40010;60 dz = [ 0, Syn 60 d= + 0(=2).

Analogously, we obtain

/ 2 (Ve 9, A, |+ 2(0,4,)2 — c(60)010;6n0; An dz = / 0;SumndyAn + 0 (2)

and this allows to derive as before

1
(4.9) /?W (016 — clea) A + V20| + VAP + [0V AL dz = o(1).

We then write (4.2) under the form
C(En)alAn - (a% + 52822) On
— Oph,n + 26%81@25”8114(0) + 28;1L82¢n8214(0)
t+e2e(en)0r (AVA,) — 2620160, A,

— 2/
- Ph,n+€n ph,n

—c(£,)010p + 2 A, — 2 (03 A, +€202A,)
= Oam,n + gic(gn)A(O)al(bn + S%C(En)Anal(ﬁ(o)
—2e20,000,¢,, — (I — 3) A0 A,
= Oam,n + 62 S)

n“~am,n

(with obvious notations) which is the linear problem studied in Proposition 2.8 with

modified source terms. This yields the expression
1 & &

A, = = (07 +2208) K % Sy + c(en) LK % Spi )
— (B +2B) K= % S}y, + clen) DK * Sy

= Al + A

1 En 2 2 2 202 En
bn = = (clen)OK % Sy + (¢ = €2 (07 + £203) ) K7 % San)

—(c(sn)(‘?llCE” *Sp, + (2 =2 (0F +,05)) K % ngn)

=g+ 4.

Applying Proposition 2.8, we deduce
T T
(4.10) HA”‘ X1, + ”V¢“’ X1, — 0 as n — +00.
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We shall then need some L? — L9 convolution estimates involving the kernel ¢ and
its derivatives, as used in [BGS08, Lemma 5.2]. These estimates rely on Fourier
multiplier properties (see [Liz67, MPTT]).

PROPOSITION 4.4. — Let 1 < g < oo be given. Then, there exists C(q), depending
only on q, such that, for any h € LY(R?) and any ¢ €)0, 1, we have

(021w n|| (03K % b+ 1000oKF 5 Bl + |05 % B[+ ||070aK" % B
|0t wn||  +eloioaKe wn|| | +elodsewn|| | +e|otosKe xh|
+&2 |OBK h|| |+ ||0n0BK b+t |03k xh|| < Cla)lIRll e

Step 4 (Smallness in W), — TLet 1 < q < oo be given. We infer from (4.9),
Sobolev imbedding H' < L@ (in 2d) and Rogers-Holder inequality (L%? x L?? C L%)
that

S, < C([AY .y + 0169 ) X (Aullzze + [916n]l220) = 001 oo (1)
and, in a similar way,
Shunl|,, < Cllorgalliz 049,
+ Ol Aulliaa [ A, + €A, 10 Aul| 2o
+C 0100 ,, 101 Anll 20 + Ce202nll e 0240 = 00t o0(1).

Therefore, applying Proposition 4.4, we deduce, on the one hand,
1Vl 0 < C (| VO % S|, + VO %S
(4.11) +e2 [Vou (97 +€203) K=« S| L)
<9 ( L)) = onsreo(1)
and on the other hand,
|24, < o (|or S
< Cl(q) (||

The inequalities (4.10), (4.11) and (4. 12) allow to improve the estimate on S, , and
S

(4.13) Hal phnH +H81 amnH = Op 4 oo(1

Applying Proposition 4.4 and using (4.13), we then infer, on the one hand,

phn

amn’

am,n

+ Ha2 (0% +¢ 32) Ken % S

)

(4.12) L

Snlle) = ono sl

am,n

|36, < € (|3K=" % 08t + 03K % S|,
a9 A ) )
@ ([0Sl [Spnal1) = 000400
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and on the other hand,
101024, 0 < C (|5 % 18|,

< €@ ([l + [0S
The above estimates combined with (4.10) then yield

(4.16) ||82Sph,7L||Lq + ||628am,NHLq = On o4 oo(1).

Another application of Proposition 4.4 then gives

S0 (08 +e208) K x ars,

am,n

L‘1>

LQ> - O"_H'oo(l)'

|54,

<C (Haﬁlm * OnS!

ol + 10 (04 208) v

am,n

Lq>

(4.17) L

/

< Clq) (Ha?S;mmHLq + H(92 ph,n

LQ> = On s too(1)-

We have then shown (in view of (4.10)) that, for any 1 < ¢ < oo, we have, as
n — +090,

HVAnHWLq + |’V¢nHW1,q — 0.
In particular, by Sobolev imbedding (picking some g > 2),

(4.18) VAl + IVnllLe =0
and
|V St e + IV Shnllira = 00 4oo(1).
Step 5 (Contradiction). — Repeating the argument once again, we obtain
2 2
[V2 4y + (950 = 0

hence, by Sobolev imbedding (picking some ¢ > 2) and (4.10),

(4.19) V24| + [V . —0.
Since ¢cA®) = 9,6") € X1, it follows that
iy 5],

By Proposition 2.8 once again, we finally obtain

|Aullxr,, + IV6ullxz,, + (07 Ans 2010240, 2205 A, )|

140

— 0,

Xoto
in contradiction with our hypothesis (4.3). This concludes the proof of Lemma 4.3,
and shows in particular that (2.10) has at most one solution (satisfying the symme-
tries).

The case where S,,, = 0 is similar.

We now turn to the existence part (at fixed € €]0, ¢(o, 0”)[). The next lemma shows
that it is sufficient to look for a solution (¢, A) such that A € H'(R?), ¢ € H. (R?)
and V¢ € L*(R?).
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LEMMA 4.5. — Let 0 < 0 < ¢’ <1 be given and 0 < € < €(o0,0’) (the latter is
given in Lemma 4.3). Let (Syn, Sam) € X3, 514 X X1y o, and (¢, A) € Hy,, x H' with
V¢ € L2, satisfying the linear system (2.10), namely

c(e)LA — (07 4+ £202) ¢ — 220,00, A0 — 26400, A
—e%c(e)0) (AVA) + 262000, A = Sy

—c(e)01¢ — e2c(e) A0y p — e%c(e) AD1p) + 2220100010 + 2 A
—e2 (T = 3)ADA — 2 (92 A + 202 A) = Sun,

then we have (A, V¢) € Xi, . x X|.,, and
lAllxy,, +1V6lx,,
1
< C(0,0") (ISl + ISemllx,, + 5 1T = Sumllr )

Proof. — From the facts that, on the one hand, (A, V¢) € H' x L? and on the
other hand, (A©® ¢©®) € X1 x X}, we deduce

(Bt +2%)Ael?  and (9 +e%03) o€ L2

It then follows from standard L? elliptic regularity that A € H? and V¢ € H'. By
two dimensional Sobolev imbedding, we deduce VA, V¢ € L? for any 2 < q < o0,
then
(F+e’3)AeL?  and (07 +£%03) 6 €L,
hence A € W29 and V¢ € Wh? by L9 elliptic regularity (see, for instance, [GTO1,
Theorem 9.9]). By Sobolev imbedding (W' « C%!'=2/9) and Schauder estimates
(since Sph, Sam € Xi,, C CO17%9) we obtain VA, V¢ € CH1=%4. Therefore, we
have A € C2N W2 and V¢ € Ct N Whee,
We finally write the system under the form

c(e)01A — (07 + €202) ¢
= Spn + 2520100 A + 220,90, A©) + 220,00, A© + 2¢(2)0; (AVA)

—c(e)01d + (¢2 — 2 (0% +£203)) A
= Sam + 2¢(e) A 016 + £2c(e) A0, 0O — 222010V 01 — 2 A + 23T — 3)AO A,

Since VA, V¢ € C' N W, the source terms, denoted S}, and S, belong to

X, N X} (but not to X5, at this stage due to the terms ¢(9'9; A and e%c(e) A09, A)
and X3 4o Tespectively. We then can not apply directly Proposition 2.8, but we may
follow the proof of this result. Indeed, we know that the A part of the solution to
this system is given by

1 € €
A= —g( (97 + €203) K= % Sy — c(£)OLKT % Sy ).
By using Proposition 2.6 (ii), we have (with e-dependent constants)

(9% +£203) K7 = S, ]XW <CE) |8,

am”XlJrG/
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and, similarly,

V (02 +£202) K+ S
v ( )

wlly, SCEIVSily,,,,-

Since the S7,, € X3+ contribution has already been estimated, we infer A € X, N
X_. This is sufficient to get S}, € X3, ., and thus we can apply the a priori estimate
of Proposition 2.8 to conclude. 0

4.4.2. A priori e-dependent estimate in a large disk

For R > 1, we denote
X21+U/’Q(D(O R)) & {Sph € C'(D(0, R)) s.t. Sy, is even in 2z, and odd in 21}
and
1 def . . .
Xiior S(D(O, R)) {Sam € CH(D(0, R)) s.t. Sam is even in z and even in zl} :
that are endowed with the norms

[Spnllxt, , .8
def

(4 D S0 (2] iy + [ 1D VS
and
HSarnH)(l o, (D(O,R))
= ‘(1+|Z|)1+G/Sam Z)Hmow(o,m) +H(H|Z|>2+U/V53m<z>HLOO(D(O,R»‘

We further set
HY(D(0,R)) & {u € Hy(D(0, R)) s.t. u is even in z, and odd in zl}
and

H(D(0, R)) dof {u € Hy(D(0, R)) s.t. u is even in 2, and even in zl} :

LEMMA 4.6. — Let 0 < 0 < ¢’ < 1 be given and 0 < ¢ < €(0,0’) (the latter
is given in Lemma 4.3). Then, there exists R, = R.(¢,0,0") > 1 such that for any

R > R., any (Spn, Sam) € X514,(D(0, R)) X Xiy,(D(0, R)) and any (¢, A) €
HX(D(0,R)) x HX(D(0, R)) satisfying (2.10), namely

0(8)81A — (8% + 82622) qb — 25281¢81A(0) — 26482¢82A( )
—826(5)81 (A(O)A) — 25201¢(0)81A — 25482¢(0)82A = Sph
—c(e)01¢ — €2¢(e) A0 ¢ — e2c(e) AP + 222010V D19 + A
+e2(I = 3) AV A — 2 (PPA 4 202A) = Sum,
then we have

Al 21 (po,r) + IVl L2(po,r)) < Cle, 0, U’)(||Sph||xl o (D(O0.R)) )l Sam |1 o OR)))

where the constant C(e, 0,0’) does not depend on R > R..
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Proof. — We emphasize that we look for estimates independent of the radius R
but (strongly) depending on €. The proof follows the ideas used for the proof of
Lemma 4.3, Step 2, at the difference that we do not have a priori L> estimates for
¢. Instead, since ¢ vanishes when z; = 0 (and on 0D(0, R)), we have by Wirtinger’s
inequality, for any r > 0,

(4.20) / 62 dH! < Cr2/ Vo2 dH! < Cﬁ/ Ve[ dH.
oD(0,r) oD(0,r) oD(0,r)

The proof is then here again by contradiction. We then assume that (for 0 < o <
o' <1 fixed and 0 < € < €(o,0")) there exist sequences (R,),en tending to +oo,
(Sphns Samn) € X21+a’,a(D(Ov R,)) XX11+0’,5(D(0a Ry)) and (¢n, Ay) € Hg(D(0, Ry)) X
H!(D(0, R,)), satisfying (2.10) in D(0, R,,), that is

C(€)81An — (8% + 5283) qbn — 28261¢n8114(0) — 28482¢n8214(0)
—e%c(e)0) (AVA,) — 2201600, A, = Spun
(4.21)
—c(€)01¢, — €2c(e) AL, ¢, — e%c() A 010 + 2220100016, + 2 A,
+e2 (T — 3) AV A, — 2 (0?A,, + 202 A,) = Samm

in D(0, R,,) with homogeneous Dirichlet boundary condition, and such that

(4.22) [ Anll 51 (D0,R0)) T IV Onllz2(D0,R,)) = 1
and
(4.23) HSph,nHX21+U,7a(D(O,Rn)) F [ Samnllxt, , (008 =0

From the Wirtinger inequality (4.20), for any ry > 0, we have

| Pnll L2(D(0,r0)) < Ce,70).

Step 1 (local convergence). — In view of the H' bound on A,, and of the local L?
bound on ¢,, we may assume, up to a subsequence, that there exists (As, Poo) €
H' x HL_such that

Ay = As bn— b weakly in Hp (R?),
with, by lower semicontinuity;,
[Asollzr + IVoo|lr2 < 1.
Passing to the limit then yields

c(e)O1 A — (02 + £202) ¢ — 2620100001 A — 262 0p oy On AV
—e2c(e)0) (A Ay ) — 262016001 A = 0
(4.24)
—c(€) 01000 — €2¢(e) A0 Py — £2¢(€) Ane 010V + 220,000, po
+2Ag + 2T - 3)AV A — 2 (02 Ay +£202A,) =0
in R?. By Lemma 4.5, we infer (¢ is odd in z1)

AoongooEO
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By compact Sobolev imbedding (locally in space) and L? elliptic regularity, we
actually have

(4.25) A, —0 ¢On — 0 strongly in H (R?).
Step 2 (Smallness in H'(D(0, R,,))). — Following Step 2 in the proof of Lemma 4.3,

we multiply the first equation of (4.21) by ¢,, and integrate over D(0, R,) by parts
(¢, vanishes on dD(0, R,,)):

(4.26) / IVEGn |2 — () Andrn dz
D(O,Rn)
-/ (Sph,mn + 2620100, Anry + 2520,6,0, A0,
D(O,Rn)
42590, 0, A0, — 520(5)A(0)An81¢n> dz.
We claim that, as n — +o0,

/ 00O, A, b, dz — 0.
D(0,Rn)

Indeed, for p > 0, by the Wirtinger’s inequality and the fact that 9,0(¥ € X,, we
have

) 0000, A, ¢, dz

/D(O,Rn)\D(O,P
R 1
< C/p ﬁ”ﬁlAnHLZ(SD(O,r))||¢n||L2(8D(O,T)) dr
R 1
< Os/p - (“alAnH%?(aD(O,r)) + ||v¢n||%2(8D(0,r))) dr
< f (HalAnH%Q(D(O,Rn)) + HV(an%Q(D(O,Rn))) < (;E

In view of this uniform decay and the local convergences (4.25), the claim follows.
Similar arguments give

/ b AD%. dz — 0, / O AD%. dz — 0,
D(0,Rn) D(0,Rn)

/ Dy A0, dz — 0, / AOA 06 dz — 0
D(0,Ry) D

(OﬂR'fl)

and

/ Sonntndz = 0,
D(0,Rn)
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since Sp,, is bounded in X3, ,, thus, by Cauchy-Schwarz inequality,
/ [Sohntnl d2
D(0,R,)\D(0,1)

B || @n | 2(0D(0,m))
< Spnanllxs /1 gyt

B ||V || L2 (D (0.r))
< Ce ||Sph,n||x21+a, /1 rl/2+0’ dr

R 2 7 oo gr \M?
2
<Culismaly,, ([ 190 om0 ar) ([ )

< CE,U"|Sph,nHX21+U/ — 0.
As a consequence,

(4.27) / V60 l? — c(£) Apdybn dz = 0ps oo (1)
D(0,Rn)

Then, we multiply the second equation of (4.21) by A,, integrate by parts over
D(0,R,) (A, =0o0n 0D(0, R,)) and obtain

/ 2| VA2 + A% — c(e)D19n A, dz
D(0,Rn)
= / (Sam,nAn + 820<€)A(0)An81¢n + 820(5)14%6@(0)
D(0,Rn)
224,010, ¢, — 23T — 3)A<O>A§) dz.

We control the right-hand side in the following way. Since A© and 9,6 tend to 0
at infinity, there exists R. > 1 such that,

/ (eQC(a)A(O)Analcbn + e2¢(e) A20,0V
D(0,Rn)\D(0,Re)

22 4,0,600, 6, — 23T — 3)A<O>A;i> dz

62

=100 VEAL + A2 + (01¢n)d
10C D(o,Rn)\D(o,Rg)| | n T (010n)" dz

2
<= / VAP + AL + 72 (0160 — cle)An)* dz.
10 /D(0,Rn)\D(0,R.)

Furthermore,
Sam nAn dz < Samn An — 07
/D(O,Rn) ’ H ) HLQ(D(O,Rn))H HLQ(D(O,RH))
thus

(4.28) /D oy VAL AL = @) Dr00A dz

2
Copim+ 5 | VAR A2 4 (00— c(e)An)? d
10 JD(0,R.)\D(0,R.)
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Adding (4.28) and (4.27), we infer

/D(OR )&?2’V5An|2 + 5214721 + 52(82(;5”)2 + (81¢ — C(&)An)Q d

2

< On%Jroo(l) + i |VEATL|2 + A?l + (aQ(Z)n)Q + 872<81¢n - C(g)An)Q dz?
10 JD(o,R,)
which implies
(4.29) / A2 4 (VAL + Vol dz = 0y 1oo(1).
D(0,Ry)
This is in contradiction with (4.22). O

Remark 4.7. — It is natural to think that the constant C(e, o, 0’) could actually
be chosen independent of . We have not tried to show this (this could slightly
simplify the proof of the existence below).

4.4.3. Injectivity for the adjoint problem in the plane
The linear system (2.10) may be written under the form
€ Qb _ Sph
A (A ~ )
where (A® stands for V¢ - V¢ = 07 + £203)

AS déf <Ail Ai,2>

ASy A5y
with
AS T AT - 22V A0) L e
e def _ 92 09, — 2 (0)
(430) AS 5, = e(e)0h — 2220,0100) — e2c(2)0, (A©)

A5y —e(e)d) — e%¢(e) AV, + 228,00,

A5, ©F_e2(92 +£202) + ¢ + 222(I" — 3)A© — £2¢(£)9;¢©)

is an unbounded operator on L?*(R?) x L*(R?) with domain H?(R?) x H?*(R?). We
wish to apply Fredholm alternative, thus we investigate the injectivity of the adjoint
of A®. In order to keep track of the variational structure of the initial problem TW,,

we shall not use the L? standard inner product for the computation of the adjoint
of A® but instead we choose the weighted one

(I e s ane
A0)

which induces an equivalent norm (with constants independent of €). This has to be
related to the fact that the operator —A® — 2e2VeA©) . V¢ may be written under
the div — V form

—Af — 2€2VEA(O) LVE = _e—2€2A(O) \VA |:e2€214(0) ve} ]
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For this scalar product, we have

- (58 1)

with, by using (2.1),
(A5 = A§) = —A° = 2°VEAQ) . Ve,

A0 = —c(@)r (€°470) + 2220, [V 016 00] + e(c) AV, [#747 )
= —c(e)d¢ +%c(e) AVD¢ + Ox; (eMono + Ox: ("o,

[A]7, A = 2524 (c(e)@lA — 20, (20109 - c(e)A) A))
= c()0hA — %0y (AVA) — 25%(e) AV A + Oy (€)1 A + Oxa (1) A
and
A3y = [Nz = —€2 (0} + €%03) + & + £2*(I = 3) A — £2¢(e) 010",

LEMMA 4.8. — Let 0 < 0 < ¢’ < 1 be given. Then, there exists 0 < ¢(c,0’) <
€(0,0’) such that, if 0 < e < (0,0"), (A, ¢) € X|, 5, X X] |, and

()-)

A=0 and ¢ =0.

then

Proof. — From the expression of [A°]* above, we see that A® is self-adjoint up to
O(e*) terms, which is the interest for choosing the weighted inner product (-|-) s
More precisely, for (A, ¢) € X, x X{,,, we have

e € ¢ _ OX21 (54)81A + OX% (54)A
(4.31) (a7 - ) (A) - (oxg (216 + Ox1 <e4>¢> '
Therefore, if [A%]*(¢, A)T = 0, then
Ac (@) Z (Oxi(E)A+ Oxa (e A
A Ox;(e")016+ Ox1(e%)¢ )’

and, applying Lemma 4.3, we obtain

1Al

140

+Vllxr,, + (Vo)A

X2+o'

< C(o, 0’)|1n€]2< |0x; (014 + Oy (1) 4]

+]|0x3 (M98 + Oxa (M,
o’ 1+o’

1 .
X1+a" )

1
X1,

1
+ ? HCI(OX% (64)6114 + OX% (54)A) — OX% (54)81¢ + OX% (54)¢‘
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Elementary estimates, including |[|¢]p~ < C’(U)HVQSHX%H and ¢||010.4]x,,,
< C(o)|(V¥)? Al then yield

1Al + 1V6llxg,, + (V) Allx,.,
< C(o,0elnel (Al + 1961z, + (V) Alxa,, )
hence A =0 and ¢ =0 for € < ¢(0,0’) sufficiently small. O

4.4.4. Existence in a large disk

We now prove an existence result by using Fredholm alternative and the injectivity
for the adjoint problem on the plane.

LEMMA 4.9. — Let 0 < 0 < ¢’ <1 be given and €(o,0’) €]0,1[ as in Lemma 4.8.
Let 0 < € < ¢(0,0’) be given. Then, there exists Ry(e,0,0") > R.(¢,0,0’) such that,
for any R > Ry(e,0,0") and any (Sph, Sam) € X3, 4,(D(0, R)) x X{, ., (D(0, R)),
there exists (¢, A) € HY(D(0, R)) x HX(D(0, R)), satisfying the linear system (2.10),
namely

c(a)&lA — (8% + 62(922) ¢ — 26281¢81A(0) — 28482¢82A(0)
—e%c(e)0) (AVA) — 2620, A = Sy

—c(e)01¢ — e2c(e) A0y ¢ — e%c(e) AD1p) + 220,001 ¢ + ¢2A
+e22(I' — 3) A0 A — 2 (02 A + 202 A) = Sam.

)
Moreover, there exists C(e, s, 0’), independent of R > Ry(e,0,0") and (Sph, Sam) such
that

Al z(p0,r) + VAl z2(p0,m))
1
< C.0,0) (ISmllsy,, + ISmllxt,, + 5 1S = Snlly )

Proof. — The linear system (2.10) may be written under the form

(- (2)

where A% is the differential operator A° on H!(D(0, R)) x H}(D(0, R)). It is classical
to see that A% has compact resolvent (by applying Lax-Milgram theorem to A% + k
for some large constant x depending actually only on £). Therefore, we may apply
Fredholm alternative: in order to show that A% is onto (from (H! N H?) x (H! N H?)
to L? x L?), it suffices to prove that its adjoint is injective. We proceed with a
last proof by contradiction. We then assume that (for 0 < ¢ < ¢’ < 1 fixed and
0 < € < ¢(0,0")) there exist sequences (R,)nen tending to +oo and (¢,, A4,) €
HX(D(0,R,)) x HX(D(0, R,)), satisfying (2.10) in D(0, R,,), that is
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C(c‘?)alAn — (8% + 6263) (bn — 28281¢n8114(0) — 28482¢n8214(0)
—520(6)@1 (A(O)An) — 262@1¢(0)81An = Sph,n
(4.32)
—c(€)01¢, — €2¢(e) A, ¢, — e%c() A 010 + 220,00 016, + 2 A,
+e23(T — 3) A A, — 2 (0?A,, + 202 A,) = Samm

in D(0, R,,) with homogeneous Dirichlet boundary condition, and such that

(4.33) [Anllar (D0, + IV Enll20,R0) = 1.
Arguing as for the proof of Lemma 4.6, we may assume that
A, — A =0 On — Poo =0 weakly in H,. (R?),

since [A®]* is injective (see Lemma 4.8). The remaining of the proof is quite similar
to that of Lemma 4.6. We multiply the first equation of (4.32) by ¢, and integrate
by parts over D(0, R,,) (¢, = 0 on 0D(0, R,,)), respectively the second equation
of (4.32) by A, and integrate by parts over D(0, R,,) (¢, = 0 on 0D(0, R,,)). We
claim that (4.27) and (4.28) remain true, which shall imply as before a contradiction.
To see this, is suffices to check that the additional terms in (4.31) lead to small
contributions for n — +o00, which can be done as we before: for instance, by using,
for p < R,

Ox1 (1) A dz

Rn. 1
g C/ Y An T n r dr
/D(O,Rn)\D(O,p) p r3H le2@p@rlionllz2en0r)

Ry 1
<Ce [ 5 (I4alon00) + IV0ulEaonion) dr

< C
< ?26 (||AnH%2(D(0,Rn)) + ||V¢n|!%2(D(Oan))) < pig

As a consequence, we have existence of solutions (¢, A) € (H},NH?) x (H!,NH?)
for source terms in L?x L?. The a priori estimate for source terms in X3, ,(D(0, R))x
X!, ,(D(0, R)) then follows from Lemma 4.6. O

4.4.5. Existence in the plane

Let us fix (Sph, Sam) € X3 010 X X510, 0 <0 <0’ <1land 0 < & < g(0,0)
(given in Lemma 4.9). For R > Ry(e,0,0"), we know by Lemma 4.6 that (2.10) has a
solution (Ag, ¢r) € HY(D(0,R)) x HY(D(0, R)), and that, by Lemma 4.9, it enjoys
the estimate

||AR||H1(D(0,R)) + ||V¢R||L2(D(0,R))

< C(e,0,0") (I\Sthx;H,a(D(o,R)) + HSam”XMD(Oﬁ)))
< C(e,o0, o/)<||sph||xg+g,a + HSam||Xg+g)-
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Thanks to this bound uniform in R > Ry(e,0,0’) and the fact that ¢ = 0 on
{0} x [-R,+R], we may extract a sequence R, — -+o0o such that there exists
A € H'(R?), ¢ € H..(R?) satisfying
Ar, — A in H'(R?) and ¢, —¢  in H. (R?),
with
[ Alln gy + 98l < Ce,0) (ISl +Sumlx,, )-

Passing to the limit in (2.10) in D(0, R,,), we see that (A, ¢) solves (2.10) in R?. We
finally apply Lemma 4.5 to deduce A € X{, ., Vo € X|,  as well as the estimate

lAllxs,, + 1V6lx,

1
< C(0,0") (ISl + [Semllx, + 5 1ZS = Sanlls )
This concludes the proof of Proposition 2.10. ([l

4.5. Proof of Proposition 2.11

In this section, we fix 0 < o < 1 and pick some ¢’ such that
0<o<o' <1 and o' < 20.

The second assumption ensures that the quadratic terms shall have a sufficiently
strong decay. For instance, o/ = /2 will work.

Step 1 (Estimate for the source term). — We have, by Proposition 2.8,
Errpn Errpn
HM (Erram> Xe < Clolne || (Erram
1
= C(0)|lnel? <||Errph||X21+J, + ||Erram||X11+U, + = |¢<ZErr, — Erram||xll+g,>
< C(o)e?|Inel?,
by using Proposition 2.2.

Step 2 (Estimate for the terms N ). — We claim that Ny : Ba:(0,1) = Y5 is
of class C* and that, for any (¢, A,) € Bx:(0,1), we have

HdNam<(z)*7 A*)ng Hy;/ g C(Ua OJ) (82 + ”(¢*7 A*)”X§>
We recall that
2
Nam(A, ) = () AD16 — &' (A0 + A) (010" + 019)” — £%(019)°

et ( + 240 4 52A) (82¢(0) + 82¢)2
c2

Ve,

(I — 3)A? 54°22(r—5)(A<0>+A)3

2
% (1 +e240 ¢ 52A) fs (52A(0) + 52A> :

ANNALES HENRI LEBESGUE



Smooth branch of rarefaction pulses 837

where (see (1.5))

CZ

fa(a) = f((l + CY)Q) — o — §(F —5)a* = 0(c?) as a — 0.

Let us consider, for instance, the term A0;¢: there holds

22, 0|
ne,
=00, + o (Ao + o (Aaned)]
<Ol Al | (6. 4)] .
hence
(o amndonion a) | < ClE-A
ye
For the term *(A© 4 A)(0:6* + 0,¢)?, we write
)
) [(A(O) +A>a(j1¢(0) +010) } (6, A [3, 4] _ Hg (016 + al¢*)2HX11+ |
XL
< (C+ 116 A)N%:) | (8. 4)]

<c|6.4)

xe '

The other terms are estimated in the same way (using Taylor formula with integral
remainder for the term involving f3).

For the source term Ny, we shall need to single out the term 260,00 9, A because
we need to treat it carefully: the rough bound, in X{, ,, < Ce?|lnel?| (¢, A)||x: is
indeed not sufficient since it would yield a bound < C|lnel?||(¢, A)||x:. We therefore
set

Ngh(qba A) déf Nph(¢, A) + 25482¢(0)82A.

Step 3 (Estimate for the terms N7;,). — We claim that N7, : Bx:(0,1) — V5, is
of class C' and that, for any (¢., A,) € Bxg(o, 1), we have

[N (6, A)

< 0(0.0') (& + 7 (60, A 12z)

~X
X5y,
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Let us recall that

b 2 . (A0 Ay
Non(@, A) = —c(e)e” A0 A — c(e)e 1+ 240) £ 224

(0) (0)
+%ﬁwﬂ_%%4WH0&@Hiﬂgf;:A)
5 (49 + ) & (A© 1 4)

14 e2A0) +£24 7

01(AQ + A)

+ 2605009, A — 2

thus we have to treat carefully the terms with VA. For the term A0; A, there holds

(¢, A.) [0, A]

9[Ad, A]
DA

1
X2+o"

= |daA, + 404

240/

< | 4a,A.

+ H81 (A A,)

o (3o

X3+U/

+ H(% (A.0nA)

X3+0/

o (1.03)

X2+c,/

+ HA*&/T

X2+U/

i o
< CN6e Al (3. 4)

X3+U’ X3+<7/

€
g

since, for instance, HZlajalA*HXSw, < N Allx,,, 10501 Asl x,,, , in view of the assump-
tion o’ < 20, and when j = 2, we loose ¢.

For the term 0(5)54%81(14(0) + A), we have

(A© + A)2
1+ e2A0) +£24

N 24 (A<0> + A)

0 (A.)(A)

A

o (A© + 4) 01 (A0 + 4,)

T 14240 y 2t

(A(O) + A*>2 - g2 (A(O) + A*>2 A
A— AO 4 A,
M=y O 24, (14240 + 52A*)281 ( i )

thus

4 0

© 4 4)°
cle)e 94 (A o A) 0 (A(O) + A)

1 +52A(0) + €2A 1 (A*)<A>

1
X2+0"

<C (" + (e Al ) -
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Finally, for the term
0y (69 + ¢) 0a(A© + A)
1+e2A0 424
2610y (%) + ¢) 0, A©) 2640y h0y A
1+e240 4224 142240 4224
0200, A
1+e2A0) 24’
we have similarly (we loose £2 for 9;(92005A))
14T (60 Al sz, < O (€ 4 1100, Al ) -

Step 4 (Estimate for the solution associated with the source term (2620,0V9, A, 0) ).

We have
HM <25482¢(0)82A>
0

T def 25462¢82A(0) + 26482¢(0)62A —2¢*

= 249,00, A0 —

+ 2¢5 (A(O) + A)

< C(o)e|lnel’(|(A, ¢)|

Xz

XE.

o

We use the second estimate of Proposition 2.8 (the case where S,,, = 0) and get

M 26482¢(0) 8214
0
<C

£
o

X,
g

( )|1ng|2(Hg4ag¢<0>azA]

g2 Hs‘l(?ggb(o)@?/l‘

X! +
240/

+ 8_2 H6481 (62¢(0)82A) ‘

X2+a/

X2+o'/ )

< C(o)ellnel*||(A4, ¢)| e,

as claimed.
Step 5 (The closed ball Bx:(0,C3e2|lne|?) is stable by T). — From Steps 1-4,
we infer
Nn(A ¢>> (Nb (A cb)) <Nb (0 0))
M (PR < C(o,0")|Inel? phiss — | PR
( 0|, SO U e) T Wao.0)],.

< C(o,0")nel(e + e HI(A, )z ) (A, 0)lls
by the mean-value theorem, hence
Ngh(Av ¢))

A Err,
HT <¢> v (EHM};> X i HM (Nam(A’ ¢) Xe i HM ( 0
< C(o)mel? (2 + 2l (A d)llas + =M I(A, )[3e) -

In particular, choosing Cs > C(0), if (A, ¢) € Bx:(0,C3e?|Ine|?), then the above
inequality yields

(4.34) || T(A @)lly: < Clo)|me| (2 + Cse’[Inef® + C3=¥Ine!) < Cse?[Inel?,

2s4a2¢<0>02,4>

<
X Xz

o

provided € < ¢(o, C3) is small enough.
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Step 6 (Lipschitz estimate for the terms N'). — We claim that Y is 1/2-Lipschitz
continuous on By: (0, C3e2|Ine|?), provided ¢ is small enough (depending on o).

We use the mean value theorem (using Step 2 and Step 3) for the terms Ny, and
Ny, as well as Step 4 for the linear term £89,¢(*)0, A, which yields, for (¢, A,) €

B){g(o, 0352|1n5|),

1A (Pus A s, e
< C(0)mel? (e + &7 [[(¢, Allx: ) < Clo)Inel? (2 + Cae|lnel?),

and the conclusion follows for ¢ < €(o) sufficiently small (depending on Cj).

4.6. Proof of Theorem 1.3 completed

At this stage, fixing 0 < o < 1 (and C3), we have constructed, for ¢ < €(c,C3) a
solution (¢, AM) € Bx:(0,05¢2|ne2) to (2.11), which means that

(9o A) = (610 + 91V, 4O 4 AD)

solves, as desired, the PDE (1.3). If 0 < 0 < of < 1, using the uniqueness for o
yields that the functions (gb (1 AM) obtained with o or with o' are the same, at least
on ]0, min(e(a, Cs), €(of, 03))].

We easily check that U, has finite energy. It then follow from [Gra04] that there
exists w € C with |w| = 1 such that U.(x) — w when |z| — 400. Since ¢. is odd in z
by construction, we may take x = (0, x5) with x5 — 400 to infer R, 3 U.(0, z5) — w,
which imposes w = 1, that is ¢(x) — 0 for |z| — +o0. Since VoV € X, we deduce
from Proposition 2.1 that ¢ € X, and [|¢™M||x, < C(0)e?|Inegl> — 0.

4.6.1. C! regularity of the branch

Let us fix 0 €]0, 1] and some constant C} ] (0) Cs[, where C5 > C(0). Going
back to (4.34), we see that we actually have ||(¢V), AD)||x: < Cle?|lnel? for € small
enough, say 0 < ¢ < e,(o, C4). Let us then fix g9 €]0 ,5*(0 [

Once we have constructed an exact solution (¢™, AM) to the fix point problem,
from the computations in subsection 4.5, we know that the mapping Y is of class
C! and has small differential, therefore, by the classical implicit function theorem,
we may construct a C* branch [g,2] 3 ¢ — (@], Al) € X? of fix points to (2.11) near
e = g9. We may further assume (since C%, < Cj3), changing ¢ and £ if necessary, that
(¢f, Al) € Bx:(0, C3e?|Ine?) for € € [g,]. It then follows from the uniqueness of the
fix point in Bux: (0, Cse?|lnel?) that (¢f, Al) = (¢, AD) in [g,2]. This shows the
smoothness of the branch ]0, e, (o, C%)[— X-.

In view of the X decays on ¢{!) and AW), the WP smoothness and the WW'?
convergences in Theorem 1.3 (ii) are immediate once we have fixed 1 < p < oo and
chosen 2/p —1 < o < 1 so that Xy, C L*.
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4.6.2. Another expression of the momentum

From [CM17, Definition 2.2 and (2.7)] and [Mar13], the momentum is well-defined
in the energy space by the formula

|U|2—1
2 U2

when U does not vanish. Let us prove that this equals the second expression, namely
(4.35) -3 / ~ )| de
We may write U = Ae® since U does not vanish. Then, we have, on the one hand,

U -1
U2

PU) = ———@U|04U) dx

(iU0U) = (A% = 1) 0ro,

and on the other hand
(i(U = 1)[0s,U) = A%01¢ — 1 ImU = (A> = 1) 01 + 01 (¢ — ImU).
Furthermore,
¢ —ImU = ¢ — Im(Ae) = ¢ — Im((A — 1)) + ¢ — sin ¢.

For the cubic nonlinearity (Gross—Pitaevskii), by the decay results in [Gra04, Theo-
rem 11], we have A—1 = O(|z|72), VA = O(|z|?), ¢ = O(|z|™') and V¢ = O(|z|7?),
hence the integrable function 9;(¢ — ImU) has vanishing integral over R2. This con-
cludes the proof of (4.35) in the case of arbitrary finite energy traveling wave (with
cubic nonlinearity).

For the travelling wave coming from our construction, we shall first see that ¢.
has a limit at infinity by showing that it satisfies the Bolzano—-Cauchy criterion. Let
z, ¥ € R? with |2/| > |z| > 1. Then, using the path going from x to |x|z’/|z'| along
an arc of circle, and then from |:13|x' /|2'| to ' along the joining segment, we have

IVéellxiee , [ IVéellxin, , _ C

| |1+cr 2| 741+G' |£L'|U

This shows that lim|g|_, 1o @-(7) exists, and taking as before x = (0, x2) with z,
tending to +oo, we infer

lim ¢.(x) =0.

|z| = +o0

It is then sufficient to use the X{,  decays to get the result (4.35).

4.6.3. Hamilton group relation

As in [JR82], the Hamilton group relation (iii) is formally shown by multiplying
the travelling wave equation TW, by < dUc and then integrating by parts and differ-

entiating under the integral sign. We need then some decay estimates on ddUCc,

equivalently, on 9.AM and 9.¢M). The standard implicit function theorem yields that
e (¢, AW € €1(]0,e,], X2), hence %= € €°(]0,e,], X,) (the worst term is the

or,
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phase). It is then easily checked that we have strong enough decays to justify integra-
tion by parts. For instance, we may justify that [AU.0.U.dx = — [ VU, - VO.U.dx
by the fact that VU.0.U, = O(|z|7*77) for |z| large.

4.6.4. Asymptotics for the energy and the momentum

First, elementary integration through polar coordinates gives
T
/ W2 dz = 242 x © = 96
R?2 6
Let us then consider the momentum. We have, by (ii),

¢ [ |UJ?P-1

P(Ue0) =3 [, A

(4.36) 2 c 2 ]
_ - 2 42 ~ sc _ = 2

=3 [, @A+ 242 b6 dz s/RZ Wi dz = /]R W2 dz

by (1.7). We obtain similarly

g
B(Uuo)) ~ = /R W2 dz.

(1U.|0:,U.) dx

We now consider

(4.37) d

de

by the Hamilton group relation (iii). The asymptotic (4.36) reads, for ¢ close to ¢,
£ \/ QC(C — C)

P(U:) ~ W72 ~ W[

2?2 ¢2I?
Integrating (4.37) then yields

(EW.) - cP(U.)) = —P(U.),

[2¢(c — ¢)]?/? e’
372 HW1||%2 ~ 3772
3¢3T 3¢3T

Finally, using c(¢) = v/¢2 — €2 = ¢ — €?/(2¢) + O(e*) and (4.36), we infer

E(Ue) = cP(Ue) ~ a2

63

E(Uc(g)) — CP(UC(E)) ~ _W

A

5. Modifications for the Euler—Korteweg model

When considering the Euler-Korteweg model, we only have to include the extra
term e*R((1 4+ €2A.)%)((014:)* + €2(02A:)?) in the source term Ny, This term is
easily estimated: for (¢, A) € Bx:(0,1),

54%( (1 +e2A0) 4 8214)2 ) ( (31A(0) + (9114)2 + &? (8214(0) + 82A)2)
(14 £240) 4 £24)? m( (14 £240) 4 £24)? )

1
X2+a/

< Ofo,0')e? (62 + ¢l[(¢, A) HX(?)

and then this does not change the computations of Subsections 4.5 and 4.6.
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