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the limit n → ∞. Weak solutions are built by a compactness approach, special care being
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n contrôle la norme L∞
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dans la limite n → ∞. Les solutions faibles sont construites par une méthode de compacité, la
construction des approximations requérant une attention particulière afin d’être compatibles
avec les fonctionnelles de Liapunov mentionnées ci-dessus.

1. Introduction

Let Ω be a bounded domain of RN , N ⩾ 1, with smooth boundary ∂Ω and let R
and µ be two positive real numbers. In a recent paper [LM22], we noticed that there
is an infinite family (En)n⩾ 1 of Liapunov functionals associated with the thin film
Muskat system

∂tf = div (f∇ [(1 +R)f +Rg]) in (0,∞) × Ω ,

∂tg = µR div (g∇ [f + g]) in (0,∞) × Ω ,

supplemented with homogeneous Neumann boundary conditions and initial condi-
tions, with the following properties: for all n ⩾ 2, there are 0 < cn < Cn such
that

cn∥f + g∥n
n ⩽ En(f, g) ⩽ Cn∥f + g∥n

n , (f, g) ∈ Ln,+
(
Ω,R2

)
,

and there are 0 < c∞ < C∞ such that
c∞∥f + g∥∞ ⩽ lim inf

n → ∞
En(f, g)1/n ⩽ lim sup

n → ∞
En(f, g)1/n ⩽ C∞∥f + g∥∞

for (f, g) ∈ L∞,+(Ω,R2), where Lp,+(Ω,Rm) denotes the positive cone of Lp(Ω,Rm)
for m ⩾ 1 and p ∈ [1,∞].

On the one hand, the thin film Muskat system being of cross-diffusion type (i.e.,
featuring a diffusion matrix with no zero entry), the availability of such a family of
Liapunov functionals is rather seldom within this class of systems and paves the way
towards the construction of bounded weak solutions, a result that we were only able
to show in one space dimension N = 1 in [LM22]. On the other hand, it is tempting
to figure out whether this property is peculiar to the thin film Muskat system or
extends to the generalization thereof

∂tf = div (f∇ [af + bg]) in (0,∞) × Ω ,(1.1a)
∂tg = div (g∇ [cf + dg]) in (0,∞) × Ω ,(1.1b)

with (a, b, c, d) ∈ (0,∞)4, supplemented with homogeneous Neumann boundary
conditions
(1.1c) ∇f · n = ∇g · n = 0 on (0,∞) × ∂Ω ,

and non-negative initial conditions
(1.1d) (f, g)(0) =

(
f in, gin

)
in Ω ,

which is proposed in [BGHP85, Section 4] to describe the dispersal of two interacting
population species and is also a particular case of a model of interacting particles
derived in [GS14]. Obviously, the thin film Muskat system is a particular case
of (1.1a)-(1.1b), corresponding to the choice

(a, b, c, d) = (1 +R, R, µR, µR) .

ANNALES HENRI LEBESGUE



Bounded weak solutions to a class of degenerate cross-diffusion systems 849

It is worth mentioning at this point that the existence of global weak solutions to
several cross-diffusion systems relies on the availability of a Liapunov functional or
an entropy and we refer to [Jün16, Chapter 4] and the references therein for results
in that direction. In the most favourable cases, an a priori L∞-bound can even be
retrieved from the structure of the entropy functional, see [BDFPS10] for instance.
In contrast, the cornerstone of our approach is the construction of countably infin-
itely many Liapunov functionals, leading to L∞-bounds after performing a suitable
limiting process. Our contribution is somewhat closer in spirit to [JM06], where
an algorithmic method for the construction of Liapunov functionals is developed.
Let us also mention [Mie23], where a system of two coupled degenerate parabolic
equations (without cross-diffusion) is studied which also features an infinite family of
Liapunov functionals. This family of functionals provides Ln-estimates for all n ⩾ 1,
but no L∞-bound as in [LM22] and herein.

Coming back to (1.1), the main result of this paper is to show that, for any
quadruple (a, b, c, d) satisfying

(1.2) (a, b, c, d) ∈ (0,∞)4 and ad > bc ,

we can associate a countably infinite family of Liapunov functionals with (1.1) and
prove the global existence of bounded non-negative weak solutions to (1.1), whatever
the dimension N ⩾ 1. More precisely, given a quadruple (a, b, c, d) satisfying (1.2),
we define a sequence (Φn)n⩾ 1 of functions as follows. Setting L(r) := r ln r−r+1 ⩾ 0
for r ⩾ 0, we first define the function Φ1 by the relation

(1.3) Φ1(X) := L(X1) + b2

ad
L(X2) , X = (X1, X2) ∈ [0,∞)2 .

Next, for each integer n ⩾ 2, let Φn be the homogeneous polynomial of degree n
defined by

(1.4) Φn(X) :=
n∑

j=0
aj,nX

j
1X

n−j
2 , X = (X1, X2) ∈ R2 ,

with a0,n := 1 and

(1.5) aj,n :=
(
n

j

) j−1∏
k=0

ak + c(n− k − 1)
bk + d(n− k − 1) > 0 , 1 ⩽ j ⩽ n .

We then define, for n ⩾ 1, the functional

(1.6) En(u) :=
∫

Ω
Φn(u(x)) dx, u = (f, g) ∈ Lmax{2,n},+

(
Ω,R2

)
.

We finally observe that (1.2) guarantees that

(1.7) Θ1 := b(ad+ bc)
2ad > 0 and Θ2 := b2(ad− bc)(3ad+ bc)

4a2d2 > 0 .

With this notation, the main result of this paper is the following:

Theorem 1.1. — Assume (1.2) and let uin := (f in, gin) ∈ L∞,+(Ω,R2) be given.
Then, there is a bounded weak solution u = (f, g) to (1.1) such that:
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(i) for each T > 0,

(f, g) ∈ L∞,+
(
(0, T ) × Ω,R2

)
∩ L2

(
(0, T ), H1

(
Ω,R2

))
∩W 1

2

(
(0, T ), H1

(
Ω,R2

)′
)

;
(1.8)

(ii) for all φ ∈ H1(Ω) and t ⩾ 0,

(1.9a)
∫

Ω

(
f(t, x) − f in(x)

)
φ(x) dx

+
∫ t

0

∫
Ω
f(s, x)∇[af + bg](s, x) · ∇φ(x) dxds = 0

and

(1.9b)
∫

Ω

(
g(t, x) − gin(x)

)
φ(x) dx

+
∫ t

0

∫
Ω
g(s, x)∇[cf + dg](s, x) · ∇φ(x) dxds = 0 ;

(iii) for all t ⩾ 0,

(1.10) E1(u(t)) + 1
a

∫ t

0

∫
Ω

[
|∇(af + Θ1g)|2 + Θ2|∇g|2

]
(s, x) dxds ⩽ E1(uin) ,

where the positive constants Θ1 and Θ2 are defined in (1.7);
(iv) for all n ⩾ 2 and all t ⩾ 0,

(1.11) En(u(t)) ⩽ En(uin) ;
(v) for t ⩾ 0,

(1.12) ∥f(t) + g(t)∥∞ ⩽
d

b

max{a, b}
min{c, d}

∥∥∥f in + gin
∥∥∥

∞
.

Let us first mention that Theorem 1.1 improves [LM22] in two directions: on
the one hand, it shows that the structural properties (1.10), (1.11), and (1.12),
uncovered there for the thin film Muskat system, are also available for the whole
class (1.1). On the other hand, it provides the existence of non-negative bounded
weak solutions to (1.1) in all space dimensions, a result which was only established
in one space dimension in [LM22]. Theorem 1.1 may also be viewed as a partial
extension of [GS14], where global weak solutions to (1.1) are constructed in space
dimensions N ∈ {1, 2, 3} when the coefficients a, b, c, d are non-negative bounded
functions which satisfy a more restrictive condition than (1.2), namely the inequal-
ity 4ad− (b+ c)2 > λ for some positive constant λ. Whether the analysis performed
below could be adapted to non-constant coefficients is yet unclear. Let us also men-
tion that global weak solutions to the thin film Muskat system are also constructed
in [AIJM18, BGB19, ELM11, LM13, LM17, ACCL19], but their boundedness is an
open question, to which an affirmative answer is only provided in [BGB19]. The
latter however requires some smallness condition on the initial data, in contrast to
Theorem 1.1. Finally, the local well-posedness of the thin film Muskat system in the
classical sense is investigated in [EMM12].
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We next outline the main steps of the proof of Theorem 1.1. As in [LM22], the
starting point is to notice that, introducing the mobility matrix

(1.13) M(X) = (mjk(X))1⩽ j, k ⩽ 2 :=
(
aX1 bX1
cX2 dX2

)
, X = (X1, X2) ∈ R2 ,

and u := (f, g), an alternative formulation of the system (1.1a)-(1.1b) is

(1.14) ∂tu =
N∑

i=1
∂i(M(u)∂iu) in (0,∞) × Ω .

Then, given Φ ∈ C2(R2,R), it readily follows from (1.14), the homogeneous Neumann
boundary conditions (1.1c), and the symmetry of the Hessian matrix D2Φ that

(1.15) d
dt

∫
Ω

Φ(u) dx+
N∑

i=1

∫
Ω

〈
D2Φ(u)M(u)∂iu, ∂iu

〉
dx = 0 ,

where ⟨·, ·⟩ stands for the scalar product on R2. As a straightforward consequence
of (1.15) we note that

∫
Ω Φ(u) dx is a Liapunov functional for (1.14) when the

matrix D2Φ(u)M(u) is positive semidefinite. We shall then show in Appendix A that,
for all n ⩾ 2, it is possible to construct an homogeneous polynomial Φn ∈ R[X1, X2]
of degree n which is convex on [0,∞)2 and such that the matrix D2Φn(X)M(X) is
positive semidefinite for all X ∈ [0,∞)2. A closed form formula is actually available
for the polynomial Φn, see (1.4) and (1.5).

We next construct weak solutions to (1.14) by a compactness method. It is here
of utmost importance to construct approximations which do not alter the inequali-
ties (1.15) for Φ = Φn and n ⩾ 1. As a first step, it is well-known that implicit time
discrete schemes are well-suited in that direction. Thus, given τ > 0, we shall first
prove the existence of a sequence (uτ

l )l⩾ 0 which satisfies uτ
0 = uin := (f in, gin) and,

for l ⩾ 0,

(1.16) uτ
l+1 − τ

N∑
i=1

∂i

(
M(uτ

l+1)∂iu
τ
l+1

)
= uτ

l in Ω ,

supplemented with homogeneous Neumann boundary conditions. Furthermore, the
sequence (uτ

l )l⩾ 0 has the property that, for n ⩾ 1 and l ⩾ 0,

(1.17) En

(
uτ

l+1

)
+ τ

N∑
i=1

∫
Ω

〈
D2Φn

(
uτ

l+1

)
M
(
uτ

l+1

)
∂iu

τ
l+1, ∂iu

τ
l+1

〉
dx ⩽ En(uτ

l ) ,

so that the structural property (1.15) is indeed preserved by the time discrete scheme.
The existence of a solution to (1.16) is achieved by a compactness method relying on
an approximation of the matrix M(·) by bounded ones. This step is actually the more
delicate one, as we have to construct matrices approximating M(·) which do not
alter (1.17). To this end, a two-parameter approximation procedure is required and it
is detailed in Section 2.2. The existence of a weak solution to (1.16) satisfying (1.17) is
shown in Section 2.4, building upon preliminary and intermediate results established
in Section 2.1 and Section 2.3.

Remark 1.2. — A common feature of system (1.1) is that it has, at least formally,
a gradient flow structure for the functional E2 with respect to the 2-Wasserstein
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distance in the space P2(Ω,R2) of probability measures with finite second moments,
as pointed out in [LM13, ACCL19] for the thin film Muskat system. In particular,
there is a natural variational structure associated with (1.1) which is suitable to
construct weak solutions. However, the connection between this variational structure
and the whole family (En)n⩾ 2 of Liapunov functionals is yet unclear.

Notation 1.3. — For p ∈ [1,∞], we denote the Lp-norm in Lp(Ω) by ∥ · ∥p and set

Lp

(
Ω,R2

)
:= Lp(Ω) × Lp(Ω) , H1

(
Ω,R2

)
:= H1(Ω) ×H1(Ω) .

The positive cone of a Banach lattice E is denoted by E+. The space of 2 × 2
real-valued matrices is denoted by M2(R), while Sym2(R) is the subset of M2(R)
consisting of symmetric matrices and SPD2(R) is the set of symmetric and positive
definite matrices in M2(R). The positive part of a real number r ∈ R is given
by r+ := max{r, 0} and, for X = (X1, X2) ∈ R2, we define the positive part of X
componentwise; that is, X+ := (X1,+, X2,+). Finally, ⟨·, ·⟩ is the scalar product on R2.

2. A time discrete scheme

In order to construct bounded non-negative global weak solutions to the evolution
problem (1.1), we employ a compactness approach, paying special attention to pre-
serve as much as possible the structural properties (1.10), (1.11), and (1.12) in the
design of the approximation. It turns out that implicit time discrete schemes are
well-suited for that purpose and we thus establish in this section the existence of
solutions to the implicit time discrete scheme associated with (1.1), see (2.1a)-(2.1b).

Proposition 2.1. — Given τ > 0 and U = (F,G) ∈ L∞,+(Ω,R2), there is a
solution

u = (f, g) ∈ H1
(
Ω,R2

)
∩ L∞,+

(
Ω,R2

)
to ∫

Ω

(
fφ+ τf∇ [af + bg] · ∇φ

)
dx =

∫
Ω
Fφ dx , φ ∈ H1(Ω) ,(2.1a) ∫

Ω

(
gψ + τg∇ [cf + dg] · ∇ψ

)
dx =

∫
Ω
Gψ dx , ψ ∈ H1(Ω) ,(2.1b)

which also satisfies

(2.2) En(u) ⩽ En(U) for n ⩾ 2

and

(2.3) E1(u) + τ

a

∫
Ω

[
|∇(af + Θ1g)|2 + Θ2|∇g|2

]
dx ⩽ E1(U) ,

recalling that, see (1.7),

Θ1 = b(ad+ bc)
2ad > 0 and Θ2 = b2(ad− bc)(3ad+ bc)

4a2d2 > 0 .
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As already mentioned, several steps are involved in the proof of Proposition 2.1.
We begin with the existence of bounded weak solutions to an auxiliary elliptic
system which shares the same structure with (2.1), but has bounded coefficients
instead of linearly growing ones, see Section 2.1. As a next step, we introduce in
Section 2.2 the approximation to (2.1) which is derived from (2.1) by replacing the
matrix M(·) defined in (1.13) by a suitable invertible and bounded matrix Mρ

ε (·)
with (ε, ρ) ∈ (0, 1) × (1,∞). We emphasize here once more that the matrix Mρ

ε (·)
is designed in such a way that the inequalities (2.2) and (2.3) are not significantly
altered. Passing to the limit, first as ρ → ∞, and then as ε → 0, is performed
in Section 2.3 and Section 2.4, respectively, this last step completing the proof of
Proposition 2.1.

Throughout this section, C and (Cl)l⩾ 0 denote various positive constants depend-
ing only on N , Ω, and (a, b, c, d). Dependence upon additional parameters will be
indicated explicitly.

2.1. An auxiliary elliptic system

Let A = (ajk)1⩽ j, k ⩽ 2 and B = (bjk)1⩽ j, k ⩽ 2 be chosen such that A ∈ SPD2(R)
and B ∈ BC(R2,M2(R)), with AB(X) ∈ SPD2(R) for all X ∈ R2. Moreover, we
assume that there is δ1 > 0 such that
(2.4) ⟨AB(X)ξ, ξ⟩ ⩾ δ1|ξ|2 , (X, ξ) ∈ R2 × R2 .

Since A ∈ SPD2(R), there is also δ2 > 0 such that
(2.5) ⟨Aξ, ξ⟩ ⩾ δ2|ξ|2 , ξ ∈ R2 .

Lemma 2.2. — Given τ > 0 and U = (U1, U2) ∈ L2(Ω,R2), there exists a
solution u = (u1, u2) ∈ H1(Ω,R2) to the nonlinear equation

(2.6)
∫

Ω

[
⟨u, v⟩ + τ

N∑
i=1

⟨B(u)∂iu, ∂iv⟩
]

dx =
∫

Ω
⟨U, v⟩ dx , v ∈ H1

(
Ω,R2

)
.

Additionally:
(i) If

b11(X) ⩾ b12(X) = 0 , X ∈ (−∞, 0) × R ,
b22(X) ⩾ b21(X) = 0 , X ∈ R × (−∞, 0) ,(2.7)

and if U(x) ∈ [0,∞)2 for a.a. x ∈ Ω, then u(x) ∈ [0,∞)2 for a.a. x ∈ Ω.
(ii) If there exists ρ > 0 such that

b11(X) ⩾ b12(X) = 0 , X ∈ (ρ,∞) × R ,
b22(X) ⩾ b21(X) = 0 , X ∈ R × (ρ,∞) ,(2.8)

and if max{U1, U2} ⩽ ρ a.e. in Ω, then max{u1, u2} ⩽ ρ a.e. in Ω.

Proof. — The proof of Lemma 2.2 is rather classical and it is actually similar
to that of [LM22, Lemma B.1]. We nevertheless sketch it below for the sake of
completeness.
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Step 1. — To set up a fixed point scheme, we consider u ∈ L2(Ω,R2) and define
a bilinear form bu on H1(Ω,R2) by

bu(v, w) :=
∫

Ω

[
⟨Av,w⟩ + τ

N∑
i=1

⟨AB(u)∂iv, ∂iw⟩
]

dx

for (v, w) ∈ H1(Ω,R2) ×H1(Ω,R2). Owing to (2.4) and (2.5),

(2.9) bu(v, v) ⩾ δ0∥v∥2
H1 , v ∈ H1

(
Ω,R2

)
,

where δ0 := min{τδ1, δ2}, while the boundedness of B guarantees that

|bu(v, w)| ⩽ b∗∥v∥H1∥w∥H1 , (v, w) ∈ H1
(
Ω,R2

)
×H1

(
Ω,R2

)
,

with
b∗ := 2 max

1⩽ j, k ⩽ 2
{|ajk|}

(
1 + 2τ max

1⩽ j, k ⩽ 2

{
∥bjk∥∞

})
.

We then infer from Lax–Milgram’s theorem that there is a unique V [u] ∈ H1(Ω,R2)
such that

(2.10) bu(V [u], w) =
∫

Ω
⟨AU,w⟩ dx , w ∈ H1

(
Ω,R2

)
.

An immediate consequence of (2.9), (2.10) (with w = V [u]), and Hölder’s inequality
is the following estimate:

δ0∥V [u]∥2
H1 ⩽ bu (V [u],V [u]) ⩽ ∥AU∥2∥V [u]∥2 ⩽ ∥AU∥2∥V [u]∥H1 .

Hence

(2.11) ∥V [u]∥H1 ⩽
∥AU∥2

δ0
.

We next argue as in the proof of [LM22, Lemma B.1] to show that the map V is
continuous and compact from L2(Ω,R2) to itself, the proof relying on (2.11), the
compactness of the embedding of H1(Ω,R2) in L2(Ω,R2), and the continuity and
boundedness of B.

Consider now θ ∈ [0, 1] and a function u ∈ L2(Ω,R2) satisfying u = θV[u]. Then
we have u ∈ H1(Ω,R2) and, in view of (2.11),

∥u∥2 = θ∥V [u]∥2 ⩽ ∥V [u]∥2 ⩽ ∥V [u]∥H1 ⩽
∥AU∥2

δ0
.

Thanks to the above bound and the continuity and compactness properties of the
map V in L2(Ω,R2), we are in a position to apply Leray–Schauder’s fixed point
theorem, see [GT01, Theorem 11.3] for instance, and conclude that the map V has
a fixed point u ∈ L2(Ω,R2). Since V ranges in H1(Ω,R2), the function u actually
belongs to H1(Ω,R2) and satisfies

bu(u,w) =
∫

Ω
⟨AU,w⟩ dx , w ∈ H1

(
Ω,R2

)
.
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Finally, given v ∈ H1(Ω,R2), the function w = A−1v also belongs to H1(Ω,R2) and
we infer from the above identity and the symmetry of A that∫

Ω
⟨U, v⟩ dx =

∫
Ω
⟨AU,w⟩ dx = bu(u,w) = bu

(
u,A−1v

)
=
∫

Ω

[
⟨u, v⟩ + τ

N∑
i=1

⟨B(u)∂iu, ∂iv⟩
]

dx .

We have thus constructed a weak solution u ∈ H1(Ω,R2) to (2.6).
Step 2. — We now turn to the sign-preserving property (i) and assume U(x) ∈

[0,∞)2 for a.a. x ∈ Ω. Let u ∈ H1(Ω,R2) be a weak solution to (2.6) and set φ := −u.
The function (φ1,+, φ2,+) then belongs to H1(Ω,R2) and it follows from (2.6) that

(2.12)
∫

Ω

φ1φ1,+ + φ2φ2,+ + τ
N∑

i=1

2∑
j,k=1

bjk(u)∂iφk∂i(φj,+)
 dx

= −
∫

Ω
(U1φ1,+ + U2φ2,+) dx ⩽ 0 .

We now infer from (2.7) that, for 1 ⩽ i ⩽ N ,

b11(u)∂iφ1∂iφ1,+ = b11(u)1(−∞,0)(u1)|∂iu1|2 ⩾ 0 ,
b12(u)∂iφ2∂iφ1,+ = b12(u)1(−∞,0)(u1)∂iu1∂iu2 = 0 ,
b21(u)∂iφ1∂iφ2,+ = b21(u)1(−∞,0)(u2)∂iu1∂iu2 = 0 ,
b22(u)∂iφ2∂iφ2,+ = b22(u)1(−∞,0)(u2)|∂iu2|2 ⩾ 0 ,

so that the second term on the left-hand side of (2.12) is non-negative. Conse-
quently, (2.12) gives ∫

Ω

[
|φ1,+|2 + |φ2,+|2

]
dx ⩽ 0 ,

which implies that φ1,+ = φ2,+ = 0 a.e. in Ω. Hence, u(x) ∈ [0,∞)2 for a.a. x ∈ Ω
as claimed.

Step 3. — It remains to prove (ii). We thus assume that max{U1, U2} ⩽ ρ a.e. in
Ω and consider a weak solution u ∈ H1(Ω,R2) to (2.6). As v = ((u1 − ρ)+, (u2 − ρ)+)
belongs to H1(Ω,R2), we deduce from (2.6) that

∫
Ω

 2∑
j=1

(uj − Uj)(uj − ρ)+ + τ
N∑

i=1

2∑
j,k=1

bjk(u)∂iuk∂i(uj − ρ)+

 dx = 0 .

On the one hand,

uj − Uj ⩾ uj − ρ a.e. in Ω , j = 1, 2 ,

so that

(uj − Uj) (uj − ρ)+ ⩾ (uj − ρ) (uj − ρ)+ = (uj − ρ)2
+ a.e. in Ω , j = 1, 2 .

TOME 6 (2023)



856 Ph. LAURENÇOT & B.-V. MATIOC

On the other hand, we infer from (2.8) that, for 1 ⩽ i ⩽ N ,
b11(u)∂iu1∂i(u1 − ρ)+ = b11(u)1(ρ,∞)(u1)|∂iu1|2 ⩾ 0 ,
b12(u)∂iu2∂i(u1 − ρ)+ = b12(u)1(ρ,∞)(u1)∂iu1∂iu2 = 0 ,
b21(u)∂iu1∂i(u2 − ρ)+ = b21(u)1(ρ,∞)(u2)∂iu1∂iu2 = 0 ,
b22(u)∂iu2∂i(u2 − ρ)+ = b22(u)1(ρ,∞)(u2)|∂iu2|2 ⩾ 0 .

Therefore,
2∑

j=1

∫
Ω
(uj − ρ)2

+ dx ⩽ 0 ,

from which we deduce that max{u1, u2} ⩽ ρ a.e. in Ω. □

2.2. A regularised system

We now introduce the two-parameter approximation of (2.1) on which the subse-
quent analysis relies. Specifically, given ρ > 1, we define

αρ(z) :=


0, z ⩽ 0,
z, 0 ⩽ z ⩽ ρ− 1,

(ρ− 1)(ρ− z), ρ− 1 ⩽ z ⩽ ρ,
0, z ⩾ ρ,

and observe that αρ ∈ BC(R) with
0 ⩽ αρ(z) ⩽ min{ρ, z+} , z ∈ R .

Next, for ε ∈ (0, 1) and X ∈ R2, we set
Mρ

ε (X) =
(
mρ

ε,jk(X)
)

1⩽ j, k ⩽ 2
:= εI2 + λε(X+)Mρ(X),

where

(2.13) Mρ(X) =
(
mρ

jk(X)
)

1⩽ j, k ⩽ 2
:=
(
aαρ(X1) bαρ(X1)
cαρ(X2) dαρ(X2)

)
, X ∈ R2 ,

and
λε(X) := 2

1 + exp [ε(X1 +X2)]
, X ∈ R2 .

Note that (Mρ)ρ > 1 converges to M , defined in (1.13), locally uniformly in [0,∞)2

as ρ → ∞, while (λε)ε ∈ (0,1) converges to 1 locally uniformly in R2 as ε → 0. In fact,
for R > 0,
(2.14) |λε(X) − 1| ⩽ 2Rε , X ∈ [−R,R]2 .

The outcome of this section is that, given τ > 0, ε ∈ (0, 1), ϱ > 1, and a func-
tion U ∈ L∞,+(Ω,R2), there is a weak solution uρ

ε ∈ H1(Ω,R2) ∩ L∞,+(Ω,R2) to

uρ
ε − τ

N∑
i=1

∂i

(
Mρ

ε (uρ
ε)∂iu

ρ
ε

)
= U in Ω ,

which satisfies an appropriate weak version of (2.2), as stated below. The next lemma
is actually the building block of the proof of Proposition 2.1.
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Lemma 2.3. — Given τ > 0, U = (F,G) ∈ L∞,+(Ω,R2), ε ∈ (0, 1), and a
real number ρ ⩾ max{1, ∥F∥∞, ∥G∥∞}, there exists a weak solution uρ

ε = (uρ
ε,1, u

ρ
ε,2)

in H1(Ω,R2) ∩ L∞,+(Ω,R2) to

(2.15)
∫

Ω

[
⟨uρ

ε, v⟩ + τ
N∑

i=1

〈
Mρ

ε (uρ
ε)∂iu

ρ
ε, ∂iv

〉]
dx

=
∫

Ω
⟨U, v⟩ dx , v ∈ H1

(
Ω,R2

)
,

which additionally satisfies

max
{
∥uρ

ε,1∥∞, ∥uρ
ε,2∥∞

}
⩽ ρ,(2.16)

∥uρ
ε∥2 ⩽ C0∥U∥2,(2.17)

∥∇uρ
ε∥2 ⩽

C1√
τε

∥U∥2 .(2.18)

Moreover, given n ⩾ 2, there exists a constant C(n) such that

(2.19) En(uρ
ε) ⩽ τC(n)ρ

n−1

eερ
∥∇uρ

ε∥2
2 + En(U) .

Proof. — Let ε ∈ (0, 1) and ρ ⩾ max{1, ∥F∥∞, ∥G∥∞}. To deduce the existence
result stated in Lemma 2.3 from the already established Lemma 2.2, we first re-
cast (2.15) in the form (2.6). First, owing to the definition of the function αρ, the
matrix Mρ

ε lies in BC(R2,M2(R)) and satisfies
(2.20a) 0 ⩽ mρ

ε,jk(X) ⩽ ε+ 2ρmax{a, b, c, d} , 1 ⩽ j, k ⩽ 2 , X ∈ R2 ,

as well as
mρ

ε,11(X) ⩾ mρ
ε,12(X) = 0 , X ∈ (−∞, 0) × R ,

mρ
ε,22(X) ⩾ mρ

ε,21(X) = 0 , X ∈ R × (−∞, 0) .(2.20b)

and
mρ

ε,11(X) ⩾ mρ
ε,12(X) = 0 , X ∈ (ρ,∞) × R ,

mρ
ε,22(X) ⩾ mρ

ε,21(X) = 0 , X ∈ R × (ρ,∞) .(2.20c)

Next, according to [DGJ97], it is natural to use the Hessian matrix of the convex
function Φ2 to symmetrize (2.15). We thus set

S := bd

2 D
2Φ2 =

(
ac bc

bc bd

)

and observe that S is symmetric and positive definite by (1.2). In addition, for
all X ∈ R2,

SMρ
ε (X) = εS + λε(X+)SMρ(X)

with

SMρ(X) =

a
2cαρ(X1) + bc2αρ(X2) abcαρ(X1) + bcdαρ(X2)

abcαρ(X1) + bcdαρ(X2) b2cαρ(X1) + bd2αρ(X2)

 ∈ Sym2(R) .
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Since tr(SMρ(X)) ⩾ 0 and

det (SMρ(X)) = det(S) det (Mρ(X)) = bc(ad− bc)2αρ(X1)αρ(X2) ⩾ 0

by (1.2), the matrix SMρ(X) is positive semidefinite, so that the matrix SMρ
ε (X)

belongs to SPD2(R) for all X ∈ R2 with

(2.20d) ⟨SMρ
ε (X)ξ, ξ⟩ ⩾ ε⟨Sξ, ξ⟩ ⩾ ε

det(S)
tr(S) |ξ|2 = ε

bc(ad− bc)
ac+ bd

|ξ|2 , ξ ∈ R2 .

According to the properties (2.20), we are now in a position to apply Lemma 2.2
(with A = S and B = Mρ

ε ) and deduce that there is uρ
ε ∈ H1(Ω,R2) ∩ L∞,+(Ω,R2)

which solves (2.15) and satisfies (2.16). Moreover, it follows from the integral iden-
tity (2.15) (with v = Suρ

ε ∈ H1(Ω,R2)), (2.20d), and the positive definiteness of S,

⟨Sξ, ξ⟩ ⩾ bc(ad− bc)
ac+ bd

|ξ|2 , ξ ∈ R2 ,

that

∥SU∥2∥uρ
ε∥2 ⩾

∫
Ω
⟨SU, uρ

ε⟩ dx =
∫

Ω

[
⟨uρ

ε, Su
ρ
ε⟩ + τ

N∑
i=1

〈
Mρ

ε (uρ
ε) ∂iu

ρ
ε, ∂iSu

ρ
ε

〉]
dx

=
∫

Ω

[
⟨Suρ

ε, u
ρ
ε⟩ + τ

N∑
i=1

〈
SMρ

ε (uρ
ε) ∂iu

ρ
ε, ∂iu

ρ
ε

〉]
dx

⩾
bc(ad− bc)
ac+ bd

(
∥uρ

ε∥2
2 + τε ∥∇uρ

ε∥2
2

)
.

Owing to (1.2), we conclude that the estimates (2.17) and (2.18) are satisfied.
It remains to establish the estimate (2.19). Let therefore n ⩾ 2. Since uρ

ε belongs
to H1(Ω,R2) ∩ L∞(Ω,R2), the vector field DΦn(uρ

ε) lies in H1(Ω,R2) and we infer
from (2.15) (with v = DΦn(uρ

ε)) that

(2.21)
∫

Ω

[〈
uρ

ε − U,DΦn(uρ
ε)
〉

+ τ
N∑

i=1

〈
Mρ

ε (uρ
ε)∂iu

ρ
ε, ∂iDΦn(uρ

ε)
〉]

dx = 0 .

On the one hand, the convexity of Φn implies that

(2.22)
∫

Ω

〈
uρ

ε − U,DΦn(uρ
ε)
〉

dx ⩾
∫

Ω
[Φn(uρ

ε) − Φn(U)] dx = En(uρ
ε) − En(U) .
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On the other hand, using the symmetry and the positive semidefiniteness of the
matrix D2Φn(uρ

ε), see Lemma A.2, we have

τ
N∑

i=1

∫
Ω

〈
Mρ

ε (uρ
ε)∂iu

ρ
ε, ∂iDΦn(uρ

ε)
〉

dx

= τ
N∑

i=1

∫
Ω

〈
Mρ

ε (uρ
ε)∂iu

ρ
ε, D

2Φn(uρ
ε)∂iu

ρ
ε

〉
dx

= τ
N∑

i=1

∫
Ω

〈
D2Φn(uρ

ε)Mρ
ε (uρ

ε)∂iu
ρ
ε, ∂iu

ρ
ε

〉
dx

= τε
N∑

i=1

∫
Ω

〈
D2Φn(uρ

ε)∂iu
ρ
ε, ∂iu

ρ
ε

〉
dx

+ τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)Mρ(uρ
ε)∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx

⩾ τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)Mρ(uρ
ε)∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx .

(2.23)

Since Sn(uρ
ε) := D2Φn(uρ

ε)M(uρ
ε) is positive semidefinite by Lemma A.3, we further

have

τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)Mρ(uρ
ε)∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx

= τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)M(uρ
ε)∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx

+ τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)
[
Mρ(uρ

ε) −M(uρ
ε)
]
∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx

⩾ τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)
[
Mρ(uρ

ε) −M(uρ
ε)
]
∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx .

(2.24)

Taking now advantage of the fact that 0 ⩽ uρ
ε,j ⩽ ρ a.e. in Ω for j = 1, 2 by (2.16),

we further have∣∣∣∣∣τ
N∑

i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)
[
Mρ(uρ

ε) −M(uρ
ε)
]
∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx
∣∣∣∣∣

⩽ 2τ max{a, b, c, d}
∥∥∥D2Φn

∥∥∥
L∞((0,ρ)2)

2∑
j=1

∫
Ω
λε(uρ

ε)
∣∣∣αρ

(
uρ

ε,j

)
− uρ

ε,j

∣∣∣ |∇uρ
ε|2 dx

⩽ 8τ max{a, b, c, d}κnρ
n−2

2∑
j=1

∫
{ρ−1⩽uρ

ε,j ⩽ ρ}

∣∣∣αρ

(
uρ

ε,j

)
− uρ

ε,j

∣∣∣
1 + exp

(
εuρ

ε,j

) |∇uρ
ε|2 dx ,
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where κn ∈ R is a positive constant such that∣∣∣D2Φn(X)
∣∣∣ ⩽ κn

(
Xn−2

1 +Xn−2
2

)
for all X ∈ [0,∞)2.

Owing to the definition of αρ, we further obtain

(2.25)
∣∣∣∣∣τ

N∑
i=1

∫
Ω
λε(uρ

ε)
〈
D2Φn(uρ

ε)
[
Mρ(uρ

ε) −M(uρ
ε)
]
∂iu

ρ
ε, ∂iu

ρ
ε

〉
dx
∣∣∣∣∣

⩽ 8τ max{a, b, c, d}κnρ
n−2

2∑
j=1

∫
{ρ−1⩽uρ

ε,j ⩽ ρ}
ρ

1 + eε(ρ−1) |∇uρ
ε|2 dx

⩽ 16eτ max{a, b, c, d}κnρ
n−1e−ερ ∥∇uρ

ε∥2
2 .

The desired estimate (2.19) is now a straightforward consequence of (2.21)-(2.25). □

2.3. A regularised system: ρ → ∞

We next study the cluster points of the family {uρ
ε : ρ ⩾ max{1, ∥F∥∞, ∥G∥∞}}

provided in Lemma 2.3, as ρ → ∞, the parameter ε ∈ (0, 1) being held fixed.

Lemma 2.4. — Given τ > 0, U = (F,G) ∈ L∞,+(Ω,R2), and ε ∈ (0, 1), there
exist a sequence (ρl)l⩾ 1 and a function uε = (uε,1, uε,2) ∈ H1(Ω,R2) ∩ L∞,+(Ω,R2)
such that ρl → ∞ and

uρl
ε → uε in Lp

(
Ω,R2

)
for all p ∈ [1,∞) and pointwise a.e. in Ω ,(2.26)

∇uρl
ε ⇀ ∇uε in L2

(
Ω,R2N

)
.(2.27)

Moreover, uε solves the equation∫
Ω

[
⟨uε, v⟩ + τ

N∑
i=1

〈
Mε(uε)∂iuε,∂iv

〉]
dx(2.28)

=
∫

Ω
⟨U, v⟩ dx , v ∈ H1

(
Ω,R2

)
,

where
Mε(X) = (mε,jk(X))1⩽ j, k ⩽ 2 := εI2 + λε(X+)M(X),

with M(X) defined in (1.13), and, for each n ⩾ 2, we have
(2.29) En(uε) ⩽ En(U) .
Furthermore,

(2.30) min
{

1, c
d

}
∥uε,1 + uε,2∥∞ ⩽ max

{
1, a
b

}
∥F +G∥∞ .

Proof. — Recalling (2.17)-(2.18), we deduce that (uρ
ε)ρ is bounded in H1(Ω,R2).

Moreover, since

(2.31) εnzn

n! ⩽ eεz , z ∈ [0,∞) , n ⩾ 1 ,
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the estimates (2.18) and (2.19), along with Lemma A.4, ensure that (uρ
ε)ρ is bounded

in Ln(Ω,R2) for any integer n ⩾ 2 (with an ε-dependent bound). We may then
use a Cantor diagonal process, together with Rellich–Kondrachov’ theorem and
an interpolation argument, to deduce the convergences (2.26) and (2.27) along a
sequence ρl → ∞, as well as the componentwise non-negativity of uε.

Since Φn is convex on [0,∞)2 for all n ⩾ 2, see Lemma A.2, it follows from the
relations (2.18), (2.19), (2.26), and (2.31) that (2.29) holds true. Using once more
Lemma A.4, we infer from (2.29) that

∥cuε,1 + duε,2∥n ⩽
d

b
∥aF + bG∥n

for all n ⩾ 2. Passing to the limit n → ∞ in the above inequality, we deduce that
the function uε ∈ L∞(Ω,R2) satisfies (2.30).

Let us now consider v ∈ H1(Ω,R2). Since (2.26) and (2.27) imply that

lim
l → ∞

∫
Ω

⟨uρl
ε , v⟩ dx =

∫
Ω

⟨uε, v⟩ dx and lim
l → ∞

∫
Ω

⟨∂iu
ρl
ε , ∂iv⟩ dx =

∫
Ω

⟨∂iuε, ∂iv⟩ dx

for 1 ⩽ i ⩽ N , the identity (2.28) is satisfied provided that

(2.32) lim
l → ∞

∫
Ω
λε(uρl

ε )
〈
Mρl(uρl

ε )∂iu
ρl
ε , ∂iv

〉
dx =

∫
Ω
λε(uε) ⟨M(uε)∂iuε, ∂iv⟩ dx

for each 1 ⩽ i ⩽ N . To prove (2.32), we observe that, for 1 ⩽ i ⩽ N and j ∈ {1, 2},

(2.33)
∫

Ω
λε(uρl

ε )
〈
Mρl(uρl

ε )∂iu
ρl
ε , ∂iv

〉
dx =

∫
Ω
λε(uρl

ε )
〈
Mρl(uρl

ε )t∂iv, ∂iu
ρl
ε

〉
dx

with ∣∣∣∣∣λε(uρl
ε )

2∑
k=1

mρl
kj(uρl

ε )∂ivk

∣∣∣∣∣ ⩽ 2 max{a, b, c, d}
uρl

ε,1 + uρl
ε,2

1 + exp
[
ε
(
uρl

ε,1 + uρl
ε,2

)] |∂iv|

⩽
2 max{a, b, c, d}

ε
|∂iv| a.e. in Ω ,

by the definition of λε and (2.31) (with n = 1), and

lim
l → ∞

λε(uρl
ε )

2∑
k=1

mρl
kj(uρl

ε )∂ivk = λε(uε)
2∑

k=1
mkj(uε)∂ivk a.e. in Ω ,

by (2.13), the pointwise almost everywhere convergence in Ω established in (2.26),
and the properties of αρl

. Lebesgue’s dominated convergence theorem then guarantees
that

lim
l → ∞

∥∥∥∥∥λε(uρl
ε )

2∑
k=1

mρl
kj(uρl

ε )∂ivk − λε(uε)
2∑

k=1
mkj(uε)∂ivk

∥∥∥∥∥
2

= 0 .

Combining the above convergence with (2.27) allows us to pass to the limit l → ∞
in (2.33) and find

lim
l → ∞

∫
Ω
λε(uρl

ε ) ⟨Mρl(uρl
ε )∂iu

ρl
ε , ∂iv⟩ dx =

∫
Ω
λε(uε)

〈
M(uε)t∂iv, ∂iuε

〉
dx

=
∫

Ω
λε(uε) ⟨M(uε)∂iuε, ∂iv⟩ dx
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for 1 ⩽ i ⩽ N , which proves (2.32). We have thus shown that uε solves (2.28) and
thereby completed the proof of Lemma 2.4. □

We next show that the entropy functional E1 evaluated at the function uε iden-
tified in Lemma 2.4 is dominated by E1(U) and that the associated dissipation
term E1(U) − E1(uε) provides a control on the gradient of uε which is essential when
considering the limit ε → 0.

Lemma 2.5. — Let τ > 0, U = (F,G) ∈ L∞,+(Ω,R2), and ε ∈ (0, 1). The
function

uε = (uε,1, uε,2) ∈ H1
(
Ω,R2

)
∩ L∞,+

(
Ω,R2

)
identified in Lemma 2.4 satisfies

E1(uε) + τ

a

∫
Ω
λε(uε)

[
|∇(auε,1 + Θ1uε,2)|2 + Θ2 |∇uε,2|2

]
dx ⩽ E1(U) .

Proof. — Let η ∈ (0, 1). Then (ln (uε,1 + η), (b2/ad) ln (uε,2 + η)) ∈ H1(Ω,R2) and
we infer from (2.28) that

(2.34) 0 =
∫

Ω

[
(uε,1 − U1) ln (uε,1 + η) + b2

ad
(uε,2 − U2) ln (uε,2 + η)

]
dx+D(η) ,

where

D(η) := τ
∫

Ω

N∑
i=1

(
mε,11(uε)∂iuε,1 +mε,12(uε)∂iuε,2

) ∂iuε,1

uε,1 + η
dx

+ τb2

ad

∫
Ω

N∑
i=1

(
mε,21(uε)∂iuε,1 +mε,22(uε)∂iuε,2

) ∂iuε,2

uε,2 + η
dx .

Since L(r) = r ln r − r + 1 is convex on [0,∞) with L′(r) = ln r, the first term on
the right-hand side of (2.34) can be estimated as follows:

∫
Ω

[
(uε,1 − U1) ln (uε,1 + η) + b2

ad
(uε,2 − U2) ln (uε,2 + η)

]
dx

⩾
∫

Ω

[(
L(uε,1 + η) − L(U1 + η)

)
+ b2

ad

(
L(uε,2 + η) − L(U2 + η)

)]
dx

= E1((uε,1 + η, uε,2 + η)) − E1((U1 + η, U2 + η)) .

Using the continuity of Φ1 and the boundedness of uε, see (2.30), we deduce that

(2.35) lim inf
η → 0

∫
Ω

[
(uε,1 − U1) ln (uε,1 + η) + b2

ad
(uε,2 − U2) ln (uε,2 + η)

]
dx

⩾ E1(uε) − E1(U) .
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Next, recalling the definition of the matrix Mε, see Lemma 2.4, we have

D(η) = τε
∫

Ω

(
|∇uε,1|2

uε,1 + η
+ b2

ad

|∇uε,2|2

uε,2 + η

)
dx

+ τ
∫

Ω
λε(uε)

(
uε,1

uε,1 + η
− 1 + 1

)
∇uε,1 · ∇(auε,1 + buε,2) dx

+ τb2

ad

∫
Ω
λε(uε)

(
uε,2

uε,2 + η
− 1 + 1

)
∇uε,2 · ∇(cuε,1 + duε,2) dx

= τε
∫

Ω

(
|∇uε,1|2

uε,1 + η
+ b2

ad

|∇uε,2|2

uε,2 + η

)
dx

+ τ

a

∫
Ω
λε(uε)

[
|∇(auε,1 + Θ1uε,2)|2 + Θ2|∇uε,2|2

]
dx

− J1(η) − J2(η) ,
where

J1(η) := τ
∫

Ω

ηλε(uε)
uε,1 + η

∇uε,1 · ∇(auε,1 + buε,2) dx ,

J2(η) := τb2

ad

∫
Ω

ηλε(uε)
uε,2 + η

∇uε,2 · ∇(cuε,1 + duε,2) dx .

Since uε ∈ H1(Ω,R2) satisfies ∇uε,j = 0 a.e. on the level set {x ∈ Ω : uε,j = 0}
for j ∈ {1, 2}, we have

lim
η → 0

ηλε(uε)
uε,j + η

∇uε,j = 0 a.e. in Ω ,∣∣∣∣∣ηλε(uε)
uε,j + η

∇uε,j

∣∣∣∣∣ ⩽ |∇uε,j| a.e. in Ω .

Lebesgue’s dominated convergence theorem ensures now that
lim
η → 0

(J1(η) + J2(η)) = 0 .

This shows that

(2.36) lim inf
η → 0

D(η) ⩾ τ

a

∫
Ω
λε(uε)

[
|∇ (auε,1 + Θ1uε,2)|2 + Θ2 |∇uε,2|2

]
dx .

Passing to the limit η → 0 in (2.34), we get the desired estimate in view of (2.35)
and (2.36). □

2.4. A regularised system: ε → 0

We complete this section with the proof of Proposition 2.1.
Proof of Proposition 2.1. — Consider τ > 0 and U = (F,G) ∈ L∞,+(Ω,R2).

Given ε ∈ (0, 1), let

uε = (uε,1, uε,2) ∈ H1
(
Ω,R2

)
∩ L∞,+

(
Ω,R2

)
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denote the weak solution to (2.28) provided by Lemma 2.4. According to (2.30),

(2.37) max{∥uε,1∥∞, ∥uε,2∥∞} ⩽ ∥uε,1 + uε,2∥∞ ⩽ R0 := d

b

max{a, b}
min{c, d}

∥F +G∥∞ .

Hence,

λε(uε) ⩾
2

1 + eR0
,

a lower bound which, together with Lemma 2.5 and the non-negativity of E1, ensures
that

(2.38) (∇uε)ε ∈ (0,1) is bounded in L2
(
Ω,R2N

)
.

We now infer from (2.37), (2.38), Rellich–Kondrachov’ theorem, an interpolation
argument, and a Cantor diagonal process that there exist a function

u = (f, g) ∈ H1
(
Ω,R2

)
∩ L∞,+

(
Ω,R2

)
and a sequence (εl)l⩾ 1, with εl → 0, such that

uεl
→ u in Lp

(
Ω,R2

)
for all p ∈ [1,∞) ,(2.39)

uεl

∗
⇀ u in L∞

(
Ω,R2

)
,(2.40)

∇uεl
⇀ ∇u in L2

(
Ω,R2N

)
.(2.41)

An immediate consequence of (2.29) and (2.39) is the estimate (2.2). As
√
λεl

(uεl
) →1

in L∞(Ω) by (2.14) and (2.37), we conclude together with (2.41) that√
λεl

(uεl
)∇
(
auεl,1 + Θ1uεl,2

)
⇀ ∇

(
au1 + Θ1u2

)
in L2

(
Ω,RN

)
,√

Θ2λεl
(uεl

)∇uεl,2 ⇀
√

Θ2∇u2 in L2
(
Ω,RN

)
.

Moreover, the L∞-bound (2.37) and the convergence (2.39) imply that

lim inf
l → ∞

E1(uεl
) ⩾ E1(u) ,

and the estimate (2.3) is now obtained by passing to lim inf in the inequality reported
in Lemma 2.5 (with ε replaced by εl).

Finally, (2.39), along with (2.37) and the convergence property

lim
ε → 0

|mε,jk(X) −mjk(X)| = 0 ,

which is uniform with respect to X ∈ [0, R0]2 and 1 ⩽ j, k ⩽ 2, enables us to use
Lebesgue’s dominated convergence theorem to show that, for v = (φ, ψ) ∈ H1(Ω,R2),

lim
l → ∞

∥∥∥Mεl
(uεl

)t∂iv −M(u)t∂iv
∥∥∥

2
= 0 , 1 ⩽ i ⩽ N .

Together with (2.39) and (2.41), the above convergence allows us to let εl → 0
in (2.28) and conclude that u = (f, g) satisfies (2.1). This completes the proof of
Proposition 2.1. □
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3. Existence of bounded weak solutions

This section is devoted to the proof of Theorem 1.1, which relies on rather classical
arguments, besides the estimates derived in Proposition 2.1, and proceeds along the
lines of the proof of [LM22, Theorem 1.2]. As a first step, we use Proposition 2.1 to
construct a family of piecewise constant functions (uτ )τ ∈ (0,1) starting from the initial
condition (f in, gin) ∈ L∞,+(Ω,R2). More precisely, for τ ∈ (0, 1), we set uτ (0) := uτ

0
and
(3.1) uτ (t) = uτ

l , t ∈ ((l − 1)τ, lτ ] , l ∈ N \ {0} ,

where the sequence (uτ
l )l⩾ 0 is defined as follows:

uτ
0 = uin := (f in, gin) ∈ L∞,+

(
Ω,R2

)
,

uτ
l+1 = (f τ

l+1, g
τ
l+1) ∈ H1

(
Ω,R2

)
∩ L∞,+

(
Ω,R2

)
is the solution to (2.1)

with U = uτ
l = (f τ

l , g
τ
l ) constructed in Proposition 2.1 for l ⩾ 0 .

(3.2)

In order to establish Theorem 1.1, we show that the family (uτ )τ ∈ (0,1) defined in (3.2)
converges along a subsequence τj → 0 towards a pair u = (f, g) which fulfills all the
requirements of Theorem 1.1.

Below, C and (Cl)l⩾ 0 denote various positive constants depending only on (a, b, c, d)
and uin. Dependence upon additional parameters will be indicated explicitly.

Proof of Theorem 1.1. — Let τ ∈ (0, 1) and let uτ be defined in (3.1)-(3.2).
Given l ⩾ 0, we infer from Proposition 2.1 that

(3.3a)
∫

Ω

(
f τ

l+1φ+ τf τ
l+1∇

[
af τ

l+1 + bgτ
l+1

]
· ∇φ

)
dx

=
∫

Ω
f τ

l φ dx , φ ∈ H1(Ω) ,

(3.3b)
∫

Ω

(
gτ

l+1ψ + τgτ
l+1∇

[
cf τ

l+1 + dgτ
l+1

]
· ∇ψ

)
dx

=
∫

Ω
gτ

l ψ dx , ψ ∈ H1(Ω) .

Moreover,
(3.4) En(uτ

l+1) ⩽ En(uτ
l ) for n ⩾ 2,

and we also have

(3.5) E1(uτ
l+1) + τ

a

∫
Ω

[∣∣∣∇ (
af τ

l+1 + Θ1g
τ
l+1

)∣∣∣2 + Θ2

∣∣∣∇gτ
l+1

∣∣∣2] dx ⩽ E1(uτ
l ) .

It readily follows from (3.1), (3.2), (3.4), and (3.5) that, for t > 0,

(3.6) En(uτ (t)) ⩽ En(uin) , n ⩾ 2 ,
and

(3.7) E1(uτ (t)) + 1
a

∫ t

0

∫
Ω

[
|∇ (af τ + Θ1g

τ )|2 + Θ2 |∇gτ |2
]

dxds ⩽ E1(uin) .
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An immediate consequence of (3.6) and Lemma A.4 is the estimate

∥f τ (t) + gτ (t)∥n ⩽
d

b

max{a, b}
min{c, d}

∥∥∥f in + gin
∥∥∥

n
, n ⩾ 2 , t > 0 .

Letting n → ∞ in the above inequality gives

(3.8) ∥f τ (t) + gτ (t)∥∞ ⩽ C2 := d

b

max{a, b}
min{c, d}

∥∥∥f in + gin
∥∥∥

∞
, t > 0 .

Also, taking advantage of the non-negativity of E1, we deduce from (3.7) that

(3.9)
∫ t

0

[
∥∇f τ (s)∥2

2 + ∥∇gτ (s)∥2
2

]
ds ⩽ C3 := a2 + 2 (Θ2 + Θ2

1)
aΘ2

E1(uin)

for t > 0.
Next, for l ⩾ 1 and t ∈ ((l − 1)τ, lτ ], we deduce from (3.3a), (3.8), and Hölder’s

inequality that, for φ ∈ H1(Ω),
∣∣∣∣∫

Ω

(
f τ (t+ τ) − f τ (t)

)
φ dx

∣∣∣∣ =
∣∣∣∣∣
∫ (l+1)τ

lτ

∫
Ω
f τ

l+1∇
[
af τ

l+1 + bgτ
l+1

]
· ∇φ dxds

∣∣∣∣∣
⩽
∫ (l+1)τ

lτ
∥f τ (s)∥∞ ∥∇ [af τ (s) + bgτ (s)]∥2 ∥∇φ∥2 ds

⩽ C2∥∇φ∥2

∫ (l+1)τ

lτ
∥∇ [af τ (s) + bgτ (s)]∥2 ds .

A duality argument then gives

∥f τ (t+ τ) − f τ (t)∥(H1)′ ⩽ C2

∫ (l+1)τ

lτ
∥∇ [af τ (s) + bgτ (s)]∥2 ds

for t ∈ ((l − 1)τ, lτ ] and l ⩾ 1. Now, for l0 ⩾ 2 and T ∈ ((l0 − 1)τ, l0τ ], the above
inequality, along with Hölder’s inequality, entails that
∫ T −τ

0
∥f τ (t+ τ) − f τ (t)∥2

(H1)′ dt ⩽
∫ (l0−1)τ

0
∥f τ (t+ τ) − f τ (t)∥2

(H1)′ dt

=
l0−1∑
l=1

∫ lτ

(l−1)τ
∥f τ (t+ τ) − f τ (t)∥2

(H1)′ dt

⩽ C2
2τ

l0−1∑
l=1

(∫ (l+1)τ

lτ
∥∇ [af τ (s) + bgτ (s)]∥2 ds

)2

⩽ C2
2τ

2
l0−1∑
l=1

∫ (l+1)τ

lτ
∥∇ [af τ (s) + bgτ (s)]∥2

2 ds

⩽ C2
2τ

2
∫ l0τ

0
∥∇ [af τ (s) + bgτ (s)]∥2

2 ds .
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We then use (3.9) (with t = l0τ) and Young’s inequality to obtain

(3.10)
∫ T −τ

0
∥f τ (t+ τ) − f τ (t)∥2

(H1)′ dt

⩽ C2
2τ

2
∫ l0τ

0

(
2a2 ∥∇f τ (s)∥2

2 + 2b2 ∥∇gτ (s)∥2
2

)
ds

⩽ C4τ
2 ,

with C4 := 2(a2 + b2)2C2
2C3. Similarly,

(3.11)
∫ T −τ

0
∥gτ (t+ τ) − gτ (t)∥2

(H1)′ dt ⩽ C5τ
2 ,

with C5 := 2(c2 + d2)C2
2C3.

According to Rellich–Kondrachov’ theorem, H1(Ω,R2) is compactly embedded
in L2(Ω,R2), while L2(Ω,R2) is continuously and compactly embedded in H1(Ω,R2)′.
Gathering (3.8)-(3.11), we infer from [DJ12, Theorem 1] that, for any T > 0,

(3.12) (uτ )τ ∈ (0,1) is relatively compact in L2
(
(0, T ) × Ω,R2

)
.

Owing to (3.8), (3.9), and (3.12), we may use a Cantor diagonal argument to find a
function

u = (f, g) ∈ L∞,+
(
(0,∞) × Ω,R2

)
and a sequence (τm)m⩾ 1, τm → 0, such that, for any T > 0 and p ∈ [1,∞),

uτm → u in Lp

(
(0, T ) × Ω,R2

)
,

uτm ∗
⇀ u in L∞

(
(0, T ) × Ω,R2

)
,

uτm ⇀ u in L2
(
(0, T ), H1

(
Ω,R2

))
.

(3.13)

In addition, the compact embedding of L2(Ω,R2) in H1(Ω,R2)′, along with (3.6)
for n = 2, (3.10), and (3.11), allows us to apply once more [DJ12, Theorem 1] to
conclude that

(3.14) u ∈ C
(

[0,∞), H1
(
Ω,R2

)′
)
.

Let us now identify the equations solved by the components f and g of u. To this
end, let χ ∈ W 1

∞([0,∞)) be a compactly supported function and φ ∈ C1(Ω). In view
of (3.3a), classical computations give

∫ ∞

0

∫
Ω

χ(t+ τ) − χ(t)
τ

f τ (t)φ dxdt+
(1
τ

∫ τ

0
χ(t) dt

) ∫
Ω
f inφ dx

=
∫ ∞

0

∫
Ω
χ(t)f τ (t)∇ [af τ (t) + bgτ (t)] · ∇φ dxdt .

TOME 6 (2023)



868 Ph. LAURENÇOT & B.-V. MATIOC

Taking τ = τm in the above identity, it readily follows from (3.13) and the regularity
of χ and φ that we may pass to the limit as m → ∞ and conclude that

(3.15)
∫ ∞

0

∫
Ω

dχ

dt
(t)f(t, x)φ(x) dxdt+ χ(0)

∫
Ω
f in(x)φ(x) dx

=
∫ ∞

0

∫
Ω
χ(t)f(t, x)∇ [af + bg] (t, x) · ∇φ(x) dxdt .

Since f∇f and f∇g belong to L2((0, T ) × Ω) for all T > 0 by (3.13), a density
argument ensures that the identity (3.15) is valid for any φ ∈ H1(Ω). We next use
the time continuity (3.14) of f and a classical approximation argument to show
that f solves (1.9a). A similar argument allows us to derive (1.9b) from (3.3b).

Finally, combining (3.13), (3.14), and a weak lower semicontinuity argument, we
may let m → ∞ in (3.6), (3.7), and (3.8) with τ = τm to show that u = (f, g)
satisfies (1.10), (1.11), and (1.12), thereby completing the proof of Theorem 1.1. □

Appendix A. The polynomials Φn, n ⩾ 2

Let n ⩾ 2. According to the discussion in the introduction, we look for an homo-
geneous polynomial Φn of degree n such that:

(P1) Φn is convex on [0,∞)2;
(P2) the matrix Sn(X) := D2Φn(X)M(X) is symmetric and positive semidefinite

for X ∈ [0,∞)2.
We recall that the mobility matrix M(X) is given by

M(X) = (mjk(X))1⩽ j , k ⩽ 2 :=
(
aX1 bX1
cX2 dX2

)
, X ∈ R2 ,

see (1.13). Specifically, we set

(A.1) Φn(X) :=
n∑

j=0
aj,nX

j
1X

n−j
2 , X = (X1, X2) ∈ R2 ,

with aj,n, 0 ⩽ j ⩽ n, to be determined in order for properties (P1)-(P2) to be
satisfied. We recall that the parameters (a, b, c, d) are assumed to satisfy (1.2).

Lemma A.1. — Set a0,n := 1 and

(A.2) aj,n :=
j−1∏
k=0

(n− k)[ak + c(n− k − 1)]
(k + 1)[bk + d(n− k − 1)] =

(
n

j

) j−1∏
k=0

ak + c(n− k − 1)
bk + d(n− k − 1)

for 1 ⩽ j ⩽ n. Then aj,n > 0 for 0 ⩽ j ⩽ n and Sn(X) = D2Φn(X)M(X) ∈ Sym2(R)
for X ∈ R2.
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Proof. — Given X ∈ R2, we compute

∂2
1Φn(X) =

n−1∑
j=1

j(j + 1)aj+1,nX
j−1
1 Xn−j−1

2 =
n−2∑
j=0

(j + 1)(j + 2)aj+2,nX
j
1X

n−j−2
2 ,

∂1∂2Φn(X) =
n−1∑
j=1

j(n− j)aj,nX
j−1
1 Xn−j−1

2 =
n−2∑
j=0

(j + 1)(n− j − 1)aj+1,nX
j
1X

n−j−2
2 ,

∂2
2Φn(X) =

n−2∑
j=0

(n− j)(n− j − 1)aj,nX
j
1X

n−j−2
2 .

It then follows that

[Sn(X)]11 = aX1∂
2
1Φn(X) + cX2∂1∂2Φn(X)

= a
n−1∑
j=1

j(j + 1)aj+1,nX
j
1X

n−j−1
2 + c

n−2∑
j=0

(j + 1)(n− j − 1)aj+1,nX
j
1X

n−j−1
2 ,

[Sn(X)]12 = bX1∂
2
1Φn(X) + dX2∂1∂2Φn(X)

= b
n−1∑
j=1

j(j + 1)aj+1,nX
j
1X

n−j−1
2 + d

n−2∑
j=0

(j + 1)(n− j − 1)aj+1,nX
j
1X

n−j−1
2

= bn(n− 1)an,nX
n−1
1 +

n−2∑
j=1

(j + 1)[bj + d(n− j − 1)]aj+1,nX
j
1X

n−j−1
2

+ d(n− 1)a1,nX
n−1
2 ,

[Sn(X)]21 = aX1∂1∂2Φn(X) + cX2∂
2
2Φn(X)

= a
n−1∑
j=1

j(n− j)aj,nX
j
1X

n−j−1
2 + c

n−2∑
j=0

(n− j)(n− j − 1)aj,nX
j
1X

n−j−1
2

= a(n− 1)an−1,nX
n−1
1 +

n−2∑
j=1

(n− j)[aj + c(n− j − 1)]aj,nX
j
1X

n−j−1
2

+ cn(n− 1)a0,nX
n−1
2 ,

[Sn(X)]22 = bX1∂1∂2Φn(X) + dX2∂
2
2Φn(X)

= b
n−1∑
j=1

j(n− j)aj,nX
j
1X

n−j−1
2 + d

n−2∑
j=0

(n− j)(n− j − 1)aj,nX
j
1X

n−j−1
2 .

Hence, Sn(X) is symmetric provided that

(j + 1)[bj + d(n− j − 1)]aj+1,n = (n− j)[aj + c(n− j − 1)]aj,n, 0 ⩽ j ⩽ n− 1 ,

or, equivalently,

(A.3) aj+1,n = (n− j)[aj + c(n− j − 1)]
(j + 1)[bj + d(n− j − 1)] aj,n , 0 ⩽ j ⩽ n− 1 .

Since a0,n = 1, the closed form formula (A.2) readily follows from (A.3) and we deduce
from (A.2) and the positivity of (a, b, c, d) that aj,n > 0 for all 0 ⩽ j ⩽ n. □
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We next show that D2Φn(X) is positive definite for X ∈ [0,∞)2 \ {(0, 0)}. This
property implies in particular that D2Φn(X) is positive semidefinite for X ∈ [0,∞)2.

Lemma A.2. — Let Φn be the polynomial defined by (A.1) and (A.2). Then we
have D2Φn(X) ∈ SPD2(R) for X ∈ [0,∞)2 \ {(0, 0)}.

Proof. — Given X ∈ [0,∞)2, the positivity of the coefficients aj,n, 0 ⩽ j ⩽ n,
of Φn ensures that

tr(D2Φn(X)) := ∂2
1Φn(X) + ∂2

2Φn(X) ⩾ 0 , X ∈ [0,∞)2 .

It remains to show that the determinant det(D2Φn(X)) is also non-negative. To this
end we compute

det(D2Φn(X)) = ∂2
1Φn(X)∂2

2Φn(X) − [∂1∂2Φn(X)]2

=
n−2∑
j=0

n−2∑
k=0

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2 ,
(A.4)

where
Aj,k := (j+2)(n−k)aj+2,nak,n − (n− j−1)(k+1)aj+1,nak+1,n , 0 ⩽ j, k ⩽ n−2 .
Using (A.3), we express aj+2,n and ak+1,n in terms of aj+1,n and ak,n, respectively, to
arrive at the following formula

(A.5) Aj,k

= (n− k)(n− j − 1)
[
a(j + 1) + c(n− j − 2)
b(j + 1) + d(n− j − 2) − ak + c(n− k − 1)

bk + d(n− k − 1)

]
aj+1,nak,n

= (ad− bc)(n− k)(n− j − 1)

× (j + 1)(n− k − 1) − k(n− j − 2)
[b(j + 1) + d(n− j − 2)] [bk + d(n− k − 1)]aj+1,nak,n

= (ad− bc)(n− 1)(n− k)(n− j − 1)(j + 1 − k)
αj+1,nαk,n

aj+1,nak,n ,

where αk,n denotes the positive number
αk,n := bk + d(n− k − 1) , 0 ⩽ k ⩽ n− 1 .

In particular,
(A.6) Ak−1,j+1 = −Aj,k , 0 ⩽ j ⩽ n− 3 , 1 ⩽ k ⩽ n− 2 .
It then follows from (A.4) that

2 det(D2Φn(X)) =
n−2∑
j=0

n−2∑
k=0

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2

+
n−1∑
l=1

n−3∑
i=−1

l(n− i− 2)Al−1,i+1X
i+l
1 X2n−i−l−4

2

=
n−2∑
j=0

n−2∑
k=0

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2
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+
n−3∑

j=−1

n−1∑
k=1

k(n− j − 2)Ak−1,j+1X
j+k
1 X2n−j−k−4

2

=
n−3∑
j=0

n−2∑
k=1

(j + 1)(n− k − 1)Aj,kX
j+k
1 X2n−j−k−4

2

+
n−2∑
k=0

(n− 1)(n− k − 1)An−2,kX
n−2+k
1 Xn−k−2

2

+
n−3∑
j=0

(j + 1)(n− 1)Aj,0X
j
1X

2n−j−4
2

+
n−3∑
j=0

n−2∑
k=1

k(n− j − 2)Ak−1,j+1X
j+k
1 X2n−j−k−4

2

+
n−1∑
k=1

k(n− 1)Ak−1,0X
k−1
1 X2n−k−3

2

+
n−3∑
j=0

(n− 1)(n− j − 2)An−2,j+1X
j+n−1
1 Xn−j−3

2 .

According to (1.2) and (A.5),

Al,0 = (ad− bc)n(n− 1)(n− 1 − l)(l + 1)
α0,nαl+1,n

> 0 , 0 ⩽ l ⩽ n− 2 ,

An−2,l = (ad− bc)(n− 1)(n− l)(n− 1 − l)
αn−1,nαl,n

> 0 , 0 ⩽ l ⩽ n− 2 .

In particular, all the terms in the above identity involving a single sum are non-
negative. Therefore, using the symmetry property (A.6) and retaining in the last
two sums only the terms corresponding to k = 1 and j = n− 3, respectively, we get

2 det
(
D2Φn(X)

)
⩾

n−3∑
j=0

n−2∑
k=1

[(j + 1)(n− k − 1) − k(n− j − 2)]Aj,kX
j+k
1 X2n−j−k−4

2

+ (n− 1)An−2,n−2X
2n−4
1 + (n− 1)A0,0X

2n−4
2

=
n−3∑
j=0

n−2∑
k=1

(n− 1)(j + 1 − k)Aj,kX
j+k
1 X2n−j−k−4

2

+ (n− 1)An−2,n−2X
2n−4
1 + (n− 1)A0,0X

2n−4
2 .

Observing that

(n−1)(j+1−k)Aj,k = (ad−bc)(n− 1)2(n− k)(n− j − 1)(j + 1 − k)2

αj+1,nαk,n

aj+1,nak,n ⩾ 0

for 0 ⩽ j, k ⩽ n− 2, we conclude that

(A.7) 2 det
(
D2Φn(X)

)
⩾ (n− 1)An−2,n−2X

2n−4
1 + (n− 1)A0,0X

2n−4
2
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for X ∈ [0,∞)2. Since A0,0 > 0 and An−2,n−2 > 0, we have thus established that
the symmetric matrix D2Φn(X) has non-negative trace and positive determinant, so
that it is positive definite for each X ∈ [0,∞)2 \ {(0, 0)}. □

We next turn to the positive definiteness of Sn = D2ΦnM .

Lemma A.3. — Let Φn be defined by (A.1) and (A.2). Then

Sn(X) = D2Φn(X)M(X) ∈ SPD2(R) for X ∈ (0,∞)2 .

Proof. — Let X ∈ (0,∞)2. On the one hand, by (1.2), (A.7), and the positivity
of A0,0 and An−2,n−2,

2 det(Sn(X)) = 2(ad− bc)X1X2 det
(
D2Φn(X)

)
⩾ (ad− bc)X1X2(n− 1)

[
An−2,n−2X

2n−4
1 + A0,0X

2n−4
2

]
> 0 .

On the other hand, the positivity of aj,n for 0 ⩽ j ⩽ n and (1.2) imply that

tr(Sn(X)) = [Sn(X)]11 + [Sn(X)]22 > 0 .

Consequently, Sn(X) has positive trace and positive determinant, and is thus positive
definite as claimed. □

We end up this section with useful upper and lower bounds for Φn.

Lemma A.4. — Let Φn be defined by (A.1) and (A.2). Then

(A.8) (cX1 + dX2)n

dn
⩽ Φn(X) ⩽ (aX1 + bX2)n

bn
, X ∈ [0,∞)2 .

Proof. — Since the function

χ(z) := (a− c)z + c

(b− d)z + d
, z ∈ [0, 1] ,

is increasing and positive, we deduce from (A.2) that, for 1 ⩽ j ⩽ n,

aj,n =
(
n

j

) j−1∏
k=0

χ

(
k

n− 1

)
⩽

(
n

j

)
[χ(1)]j =

(
n

j

)(
a

b

)j

and

aj,n =
(
n

j

) j−1∏
k=0

χ

(
k

n− 1

)
⩾

(
n

j

)
[χ(0)]j =

(
n

j

)(
c

d

)j

.

The upper and lower bounds in (A.8) are direct consequences of the above inequalities.
□

Acknowledgments

We would like to express our thanks to the anonymous referee for the careful
reading of the manuscript and valuable comments.

ANNALES HENRI LEBESGUE



Bounded weak solutions to a class of degenerate cross-diffusion systems 873

BIBLIOGRAPHY

[ACCL19] Ahmed Aït Hammou Oulhaj, Clément Cancès, Claire Chainais-Hillairet, and Philippe
Laurençot, Large time behavior of a two phase extension of the porous medium equation,
Interfaces Free Bound. 21 (2019), no. 2, 199–229. ↑850, 852

[AIJM18] Jana Alkhayal, Samar Issa, Mustapha Jazar, and Régis Monneau, Existence result
for degenerate cross-diffusion system with application to seawater intrusion, ESAIM,
Control Optim. Calc. Var. 24 (2018), no. 4, 1735–1758. ↑850

[BDFPS10] Martin Burger, Marco Di Francesco, Jan-Frederik Pietschmann, and Bärbel Schlake,
Nonlinear cross-diffusion with size exclusion, SIAM J. Math. Anal. 42 (2010), no. 6,
2842–2871. ↑849

[BGB19] Gabriele Bruell and Rafael Granero-Belinchón, On the thin film Muskat and the thin
film Stokes equations, J. Math. Fluid Mech. 21 (2019), no. 2, article no. 33. ↑850

[BGHP85] Michiel Bertsch, Morton E. Gurtin, Danielle Hilhorst, and Lambertus A. Peletier, On
interacting populations that disperse to avoid crowding: preservation of segregation,
J. Math. Biol. 23 (1985), no. 1, 1–13. ↑848

[DGJ97] Pierre Degond, Stéphane Génieys, and Ansgar Jüngel, Symmetrization and entropy
inequality for general diffusion equations, C. R. Math. Acad. Sci. Paris 325 (1997),
no. 9, 963–968. ↑857

[DJ12] Michael Dreher and Ansgar Jüngel, Compact families of piecewise constant functions
in Lp(0, T ; B), Nonlinear Anal., Theory Methods Appl. 75 (2012), no. 6, 3072–3077.
↑867

[ELM11] Joachim Escher, Philippe Laurençot, and Bogdan-Vasile Matioc, Existence and stability
of weak solutions for a degenerate parabolic system modelling two-phase flows in porous
media, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), no. 4, 583–598. ↑850

[EMM12] Joachim Escher, Anca-Voichita Matioc, and Bogdan-Vasile Matioc, Modelling and
analysis of the Muskat problem for thin fluid layers, J. Math. Fluid Mech. 14 (2012),
no. 2, 267–277. ↑850

[GS14] Gonzalo Galiano and Virginia Selgas, On a cross-diffusion segregation problem arising
from a model of interacting particles, Nonlinear Anal., Real World Appl. 18 (2014),
34–49. ↑848, 850

[GT01] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second
order, Classics in Mathematics, Springer, 2001. ↑854

[JM06] Ansgar Jüngel and Daniel Matthes, An algorithmic construction of entropies in higher-
order nonlinear PDEs, Nonlinearity 19 (2006), no. 3, 633–659. ↑849

[Jün16] Ansgar Jüngel, Entropy methods for diffusive partial differential equations, Springer-
Briefs in Mathematics, Springer, 2016. ↑849

[LM13] Philippe Laurençot and Bogdan-Vasile Matioc, A gradient flow approach to a thin film
approximation of the Muskat problem, Calc. Var. Partial Differ. Equ. 47 (2013), no. 1-2,
319–341. ↑850, 852

[LM17] , Finite speed of propagation and waiting time for a thin-film Muskat problem,
Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), no. 4, 813–830. ↑850

[LM22] , Bounded weak solutions to the thin film Muskat problem via an infinite family
of Liapunov functionals, Trans. Am. Math. Soc. 375 (2022), no. 8, 5963–5986. ↑848,
849, 850, 851, 853, 854, 865

[Mie23] Alexander Mielke, On two coupled degenerate parabolic equations motivated by ther-
modynamics, J. Nonlinear Sci. 33 (2023), no. 3, article no. 42. ↑849

TOME 6 (2023)



874 Ph. LAURENÇOT & B.-V. MATIOC

Manuscript received on 17th January 2022,
revised on 6th June 2023,
accepted on 9th June 2023.

Recommended by Editors F. Hubert and N. Séguin.
Published under license CC BY 4.0.

eISSN: 2644–9463
This journal is a member of Centre Mersenne.

Philippe LAURENÇOT
Institut de Mathématiques de Toulouse,
UMR 5219, Université de Toulouse, CNRS
F–31062 Toulouse Cedex 9, France
laurenco@math.univ-toulouse.fr
Bogdan-Vasile MATIOC
Fakultät für Mathematik,
Universität Regensburg
D–93040 Regensburg, Deutschland
bogdan.matioc@ur.de

ANNALES HENRI LEBESGUE

https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://ahl.centre-mersenne.org/
mailto:laurenco@math.univ-toulouse.fr
mailto:bogdan.matioc@ur.de

	1. Introduction
	2. A time discrete scheme
	2.1. An auxiliary elliptic system
	2.2. A regularised system
	2.3. A regularised system: rho to infty
	2.4. A regularised system: varepsilon to 0

	3. Existence of bounded weak solutions
	Appendix A. The polynomials Phin, n>= 2
	Acknowledgments

	References

