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Résumé. — Nous étudions les polynômes de Hermite généralisés dont la variable est une
matrice rectangulaire. Nous montrons que ceux-ci sont adaptés pour obtenir la décomposition
en chaos de Wiener–Itô de variables aléatoires qui dépendent de la mesure spectrale associée
avec une matrice de loi normale. Plus précisément, nous obtenons la décomposition en chaos
de déterminants gaussiens de la forme det(XXT )1/2 et montrons que, dans le cas où les
lignes de X sont des vecteurs gaussiens i.i.d, les coefficients de projection associés avec cette
décomposition admettent une interprétation géométrique en termes du volume intrinsèque
d’elliposoides, permettant ainsi de généraliser un résultat de Kabluchko et Zaporozhets (2012).
Notre démonstration repose sur une relation entre les polynômes de Hermite et les polynômes
de Laguerre. Dans une deuxième partie, nous introduisons l’analogue matriciel de la formule
de Mehler pour l’opérateur d’Ornstein–Uhlenbeck et déduisons que les polynômes de Hermite
généralisés sont des fonctions propres de ces opérateurs. Nous appliquons nos résultats à l’étude
asymptotique d’une notion de variation totale associée aux ondes aléatoires arithmétiques
définies sur le tore à trois dimensions.

Notation. For integers ℓ, n ⩾ 1, we write [n] := {1, . . . , n} and Rℓ×n to indicate
the ℓn-dimensional vector space of ℓ×n matrices with entries in R with Idn denoting
the identity matrix of dimension n. We write Pn(R) for the space of positive-definite
matrices of dimension n. For X ∈ Rℓ×n, we denote by Vec(X) its vectorisation, that
is the vector in Rℓn obtained from X by juxtaposing its columns and etr (X) := etr(X),
where tr(X) is the trace of X. We write ϕ(ℓ,n) for the probability density function of
X ∈ Rℓ×n with i.i.d. standard normal entries, given by

ϕ(ℓ,n)(X) = (2π)−nℓ/2etr
(
−2−1XXT

)
.

In this case, we write X ∼ Nℓ×n(0, Idℓ ⊗ Idn) and refer to it as the standard normal
matrix distribution. Here, ⊗ denotes the usual Kronecker product of matrices. When
ℓ = n = 1, we write ϕ(1,1) =: ϕ for the standard Gaussian density on R.

For numerical sequences {an}, {bn}, we write an = O(bn) or an ≪ bn to indicate
that there exists an absolute constant C > 0 such that |an| ⩽ C|bn| and an = o(bn)
to indicate that an/bn → 0 as n → ∞. Throughout this paper, we assume that every
random object is defined on a common probability space (Ω, F ,P) and write E [·] and
Var[·] for the mathematical expectation and variance with respect to P, respectively.
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1. Introduction

In applications to stochastic geometry dealing with the asymptotic analysis of
local geometric quantities associated with Gaussian random fields on manifolds, one
is often confronted with expressions involving quantities of the type F (X), where X
is a rectangular centred Gaussian matrix and F is a certain spectral function, that
is, F only depends on the spectral measure associated with the matrix XXT . For
instance, if Z = {Z(x) : x ∈ M} is a ℓ-dimensional stationary Gaussian field on a
manifold M of dimension n (with 1 ⩽ ℓ ⩽ n), the nodal volume of Z over a region
R ⊂ M has typically the form∫

R
δ0(Z(x))F (JZ(x))volM(dx),

where δ0 indicates the Dirac mass at zero, JZ(x) stands for the Jacobian matrix of
Z computed at x and F (X) =

√
det (XXT ), see for instance [MPRW16, MRW20,

NPR19, Not21, Wig10] for some distinguished examples. While objects of this type
are amenable to analysis by Wiener–Itô chaos expansions (which involves in par-
ticular the decomposition of F (JZ(x)) into Hermite polynomials having the entries
of JZ(x) as arguments, see the references above), it is to be expected that such a
technique will generate combinatorially untractable expressions for large values of
the dimensions ℓ and n (see for instance [DEL21] and [Not21]). The aim of this paper
is to tackle directly such a difficulty by initiating a systematic study of chaotic expan-
sions for spectral random variables F (X) as above by using matrix-variate Hermite
polynomials, that is, a collection of orthogonal polynomials with matrix entries which
are indexed by partitions of integers, obtained by orthogonalizing matrix monomials
of the type tr([XXT ]s) with respect to the law of a Gaussian matrix. We will see
that matrix-variate Hermite polynomials inherit the rich combinatorial structure
and actually can be defined in terms of zonal polynomials introduced in [Jam61],
thus allowing one to deduce explicit formulae in any dimension. We now describe
the principal achievements of the present work.

(a) In [Tha93] (see also the related work [Koc96]), the author studies Hermite
expansions of functions of the form F (x) = f0(∥x∥)P (x) on Rn, where f0
is a function depending only on the norm ∥x∥ and P is a harmonic polyno-
mial. In particular, in such a work, the author provides explicit formulae for
the projection coefficients associated with the Wiener–Itô chaos expansion of
functionals F as above in terms of Laguerre polynomials on the real line. In
Theorem 3.2, we extend this framework by studying matrix-Hermite expan-
sions of radial functionals of the type F (X) = f0(XXT ) on matrix spaces.
Our results involve generalized Laguerre polynomials with matrix argument,
thus yielding a natural counterpart to the work by Thangavelu [Tha93] in
higher dimensions.
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(b) In [ZK12] (see Theorem 1.1 therein), Kabluchko and Zaporozhets estab-
lish a formula for the expected value of Gaussian determinants of the form
F (X) =

√
det(XXT ) in terms of mixed volumes and intrinsic volumes of

ellipsoids associated with the covariance matrices of the underlying Gaussian
vectors, yielding in particular an expression for the projection of F onto the
Gaussian Wiener chaos of order zero associated with X (which corresponds
to the expectation). In Theorem 3.5 and Theorem 3.6 of the present paper,
we substantially extend their framework by considering arbitrary projection
coefficients of the form E[F (X)H(ℓ,n)

κ (X)] (where X is a centred Gaussian
matrix of dimension ℓ × n) associated with such random determinants. Our
results can be formulated using integrations on the so-called Stiefel manifold
(see Theorem 3.5), which can subsequently be interpreted in terms of mixed
and intrinsic volumes (see Theorem 3.6).

(c) In Section 3.3, we introduce a collection of operators on matrix spaces via
a Mehler-type formula, whose definition is amenable to that of the classical
Ornstein–Uhlenbeck semigroup on the Euclidean space Rn. In Theorem 3.10
we provide a characterization of matrix-Hermite polynomials as the eigen-
functions of these operators, thus yielding a direct analog of the action of
the Ornstein–Uhlenbeck semigroup on classical Hermite polynomials on the
real line. We subsequently use Theorem 3.10 in order to deduce an intrinsic
orthogonality relation between two matrix-Hermite polynomials evaluated in
correlated Gaussian matrices. Such a result extends the classical orthogonal-
ity relation for matrix-Hermite polynomials as well as the case of Hermite
polynomials on the real line. Conjecturally, the objects and techniques in-
troduced in Section 3.3 generate a basis for a special Malliavin Calculus on
matrix spaces via the introduction of further operators, such as Malliavin
derivatives, adjoints and generators of the Ornstein–Uhlenbeck semigroup (see
e.g. [NP12, Nua95]). Such a program of study however largely falls outside
the scope of the present paper and is left open for further research.

(d) In Section 3.4, we apply our results to the study of the generalized total
variation of multi-dimensional Gaussian random fields, defined as the integral
of the square root of the Gramian determinant of its normalized Jacobian
matrix. More specifically, we study the high-energy behaviour of the gen-
eralized total variation of multiple independent Arithmetic Random Waves
on the three-torus. In particular, in Theorem 3.17 we establish its expected
mean, an asymptotic law for its variance and a Central Limit Theorem for the
suitably normalized total variation. Our arguments rely on the expansion in
matrix-Hermite polynomials of the total variation, allowing us to prove that
its probabilistic fluctuations are entirely characterized by its projection on
the second Wiener chaos. Throughout this application, we also make use of
variance expansions of radial functionals by means of its projection coefficients
(see Proposition 3.3). Our findings are to be compared with [PR18, Theo-
rem 1], where the authors prove a CLT for the Leray measure of Arithmetic
Random Waves on the two-torus.
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The organization of the paper is as follows: In Section 2, we present preliminary
notions that will be used in our proofs, notably on zonal polynomials and generalized
Laguerre polynomials (Section 2.1), polar matrix factorizations (Section 2.2) and
tools from integral geometry such as mixed volumes, intrinsic volumes of convex
bodies and general facts about ellipsoids (Section 2.3). Our main contributions are
presented in Section 3. Finally, the entire Section 4 is devoted to the proofs of our
results.

Acknowledgment

The author thanks Prof. Giovanni Peccati for his guidance throughout this work
as well as anonymous reviewers for their insightful comments.

2. Preliminaries

2.1. Zonal polynomials and generalized Laguerre polynomials

Zonal polynomials

Zonal polynomials with matrix argument were introduced in [Jam61], using group
representation theory, as certain homogeneous symmetric functions of the eigenvalues
(also called the latent roots) of the matrix. We give a brief overview of zonal polyno-
mials and their properties; the reader is referred for instance to the books [MPH95]
and [Chi03] for a thorough introduction to zonal polynomials. Let us now fix integers
ℓ ⩾ 1 and k ⩾ 0. We write κ ⊢ k to denote a partition κ of k into no more than ℓ
integer parts (note that such a notation does not involve the integer ℓ, whose role
should be understood from the context), that is

κ = (k1, . . . , kℓ), k1 ⩾ k2 ⩾ . . . ⩾ kℓ > 0, k1 + . . . + kℓ = k.

For instance, if ℓ = 1, then κ = (k) is the only partition of an integer k; if ℓ ⩾ 2,
then κ = (2) and κ = (1, 1) are the only partitions of k = 2. Sometimes it is useful
to represent the partition κ ⊢ k as κ = (1ν12ν2 . . . kνk) to indicate that the integer j
occurs with multiplicity νj; in particular ν1 +2ν2 + . . .+kνk = k. With this notation,
we have for instance (1, 1) = (12) ⊢ 2 and (1, 2, 3, 3) = (112132) ⊢ 9.

Let S ∈ Rℓ×ℓ be a symmetric matrix with eigenvalues s1, . . . , sℓ. For an integer
k ⩾ 1, we denote by Polk(S) the space of homogeneous polynomials of degree k in
the ℓ(ℓ + 1)/2 variables of S. For an invertible matrix L ∈ Rℓ×ℓ, the transformation
S → LSLT induces a representation π of GLℓ(R) into the vector space GL(Polk(S))
of isomorphisms from Polk(S) to itself ([Chi03, Eq. (A.2.1)]):

π : GLℓ(R) → GL(Polk(S)) ; L → π(L) ,

given by

π(L)(P ) := P
(

L−1S
(
L−1

)T
)

.
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It can be shown that Polk(S) can be decomposed as direct sum ([Chi03, p. 297])

Polk(S) =
⊕
κ⊢k

Vκ(S),(2.1)

where {Vκ(S) : κ ⊢ k} are irreducible and π-invariant subspaces. Since tr(S)k is
a homogeneous symmetric polynomial of degree k in the eigenvalues of S, it can
accordingly be decomposed in the spaces Vκ(S) as follows ([MPH95, Eq. (4.3.38)]),

tr(S)k = (s1 + . . . + sℓ)k =
∑
κ⊢k

Cκ(S),(2.2)

where Cκ(S) denotes the zonal polynomial associated with the partition κ of k, that
is, Cκ(S) is the projection of tr(S)k onto the space Vκ(S). Applying (2.2) with ℓ = 1
gives C(k)(s) = sk, so that zonal polynomials can be interpreted as a generalization
of classical monomials. In particular, evaluating at s = 1 yields C(k)(1) = 1. Zonal
polynomials satisfy a generalized binomial formula ([MPH95, Eq. (4.5.1)]),

Cκ(S + Idℓ)
Cκ(Idℓ)

=
k∑

s=0

∑
σ⊢s

(
κ

σ

)
Cσ(S)

Cσ(Idℓ)
, κ ⊢ k.(2.3)

This relation in particular defines the generalized binomial coefficients
(

κ
σ

)
. Taking

S = a Idℓ for a ∈ R in (2.3) yields

Cκ((a + 1) Idℓ)
Cκ(Idℓ)

=
k∑

s=0

∑
σ⊢s

(
κ

σ

)
Cσ(a Idℓ)
Cσ(Idℓ)

,

so that, using the homogeneity property of zonal polynomials gives

(a + 1)k =
k∑

s=0

∑
σ⊢s

as

(
κ

σ

)
.

In particular, using the usual binomial formula for real numbers on the left-hand
side, one deduces a relation linking classical and generalized binomial coefficients
([MPH95, Eq. (4.5.2)]): (

k

s

)
=
∑
σ⊢s

(
κ

σ

)
.

A table with generalized binomial coefficients up to order 5 can be found in [MPH95,
Table 4.4.1]. For X ∈ Rℓ×n, zonal polynomials associated with partition κ ⊢ k and
matrix argument XXT can be decomposed as ([MPH95, Theorem 4.3.6])

Cκ(XXT ) =
∑

(1ν1 2ν2 ... kνk )⊢k

z(k)
κν t1(X)ν1 . . . tk(X)νk ,(2.4)

where
ts(X) := tr

([
XXT

]s)
, s ⩾ 1(2.5)

and z(k)
κν are numerical constants. Writing tj := tj(X), the zonal polynomials associ-

ated with partitions up to order 3 are given by (see e.g. [MPH95, Table 4.3.1])

C(1)
(
XXT

)
= t1
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C(2)
(
XXT

)
= 1

3
(
t2
1 + 2t2

)
, C(1,1)

(
XXT

)
= 2

3
(
t2
1 − t2

)
C(3)

(
XXT

)
= 1

15
(
t3
1 + 6t1t2 + 8t3

)
, C(2,1)

(
XXT

)
= 3

5
(
t3
1 + t1t2 − 2t3

)
C(1,1,1)

(
XXT

)
= 1

3
(
t3
1 − 3t1t2 + 2t3

)
.

In particular, since for every j ∈ [k], tj(X)νj is a homogeneous polynomial of de-
gree 2jνj in the entries of X, it follows from (2.4) that Cκ(XXT ) is a homogeneous
polynomial of degree 2k in the entries of X,

Cκ

(
XXT

)
=

∑
|α|=2k

zκ
α

ℓ∏
i=1

n∏
j=1

X
αij

ij ,(2.6)

where α = (αij) ∈ Nℓ×n is a multi-index such that |α| = ∑ℓ
i=1

∑n
j=1 αij = 2k and zκ

α

is a numerical constant depending on α and κ. Zonal polynomials evaluated at the
identity matrix Idℓ can be computed to be ([Chi03, Eq.(A.2.7)])

Cκ(Idℓ) = 22kk!
(

ℓ

2

)
κ

∏p
i < j(2ki − 2kj − i + j)∏p

j=1(2kj + p − j)! ,

where p = p(κ) is the number of non-zero parts in κ, and for a ∈ C, (a)κ stands for
the generalized Pochammer symbol ([Chi03, Eq. (A.2.4)])

(a)κ :=
ℓ∏

j=1

(
a − j − 1

2

)
kj

, (a)n = a(a + 1) · · · (a + n − 1)(2.7)

defined in terms of classical Pochammer symbols (a)n. The product of two zonal
polynomials associated with partitions τ ⊢ t and σ ⊢ s respectively, is given by
([MPH95, Eq. (4.3.65)])

Cτ (S)Cσ(S) =
∑

κ⊢t+s

aκ
τ,σCκ(S),(2.8)

for some uniquely determined coefficients aκ
τ,σ. A table for these coefficients is found

in [MPH95, Table 4.3.2(a)]. Moreover, for positive-definite matrices S and T , zonal
polynomials have the property ([MPH95, Eq. (4.3.18)])

Cκ

(
S1/2TS1/2

)
= Cκ(ST ) = Cκ(TS) = Cκ

(
T 1/2ST 1/2

)
.(2.9)

Generalized Laguerre polynomials

For a symmetric matrix S ∈ Rℓ×ℓ, the generalized Laguerre polynomial of order
γ > −1 associated with a partition κ of k and matrix variable S is defined as
([MPH95, Eq. (4.6.5)])

(2.10) L(γ)
κ (S) =

(
γ + ℓ + 1

2

)
κ

Cκ(Idℓ)
k∑

s=0

∑
σ⊢s

(
κ

σ

)
(−1)s(

γ + ℓ+1
2

)
σ

Cσ(S)
Cσ(Idℓ)

.

The first Laguerre polynomials associated with partitions up to order three are listed
in [MPH95, Eq. (4.6.8)]. The generalized Laguerre polynomials define a class of or-
thogonal polynomials on Pℓ(R) with respect to the weight function etr (−R) det(R)γ ,
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that is, for every integers k, l ⩾ 0 and every partitions κ ⊢ k, σ ⊢ l, one has ([MPH95,
Theorem 4.6.4])

(2.11)
∫

Pℓ(R)
L(γ)

κ (R)L(γ)
σ (R)etr (−R) det(R)γν(dR)

= I {κ = σ} × k!Cκ(Idℓ)Γℓ

(
γ + ℓ + 1

2

)(
γ + ℓ + 1

2

)
κ

,

where ν(dR) denotes the Lebesgue measure on Pℓ(R). Here, for a ∈ R, Γℓ(a) denotes
the multivariate Gamma function defined by

Γℓ(a) := πℓ(ℓ−1)/4
ℓ∏

i=1
Γ
(
a − 2−1(i − 1)

)
, ℓ ⩾ 1,

where Γ(·) is the usual Gamma function. A useful formula that we will use at several
occasions is the following (see e.g. [MPH95, Theorem 4.4.1])∫

Pℓ(R)
etr (−AR) det(R)t− ℓ+1

2 Cκ(RB)ν(dR) = (t)κΓℓ(t) det(A)−tCκ

(
BA−1

)
,(2.12)

where A ∈ Cℓ×ℓ is a complex symmetric matrix with positive real part, B ∈ Cℓ×ℓ is
a complex symmetric matrix and t is such that ℜ(t) > (ℓ − 1)/2.

2.2. Polar decomposition for matrices

Let 1 ⩽ ℓ ⩽ n be integers. For X = (Xij) ∈ Rℓ×n, we denote by dX := (dXij)
its associated differential matrix. We endow the spaces Rℓ×n and Pℓ(R) with the
measures

(dX) :=
ℓ∏

i=1

n∏
j=1

dXij , ν(dX) :=
∏

1⩽ i⩽ j ⩽ ℓ

dXij

respectively. Assuming that the rows of X are linearly independent, the polar de-
composition of X is uniquely given by (see for instance [Dow72])

X = R1/2 · U , R = XXT ∈ Pℓ(R) , U =
(
XXT

)−1/2
X ∈ O(n, ℓ),(2.13)

where R1/2 denotes the positive square root of R, that is the unique matrix B such
that B2 = R. We also define R−1/2 := (R1/2)−1. The space O(n, ℓ) in (2.13) denotes
the so-called Stiefel manifold of matrices Y ∈ Rℓ×n such that Y Y T = Idℓ, that is,
Y has orthonormal rows. An element of O(n, ℓ) is called an ℓ-frame in Rn, see for
instance [Chi03, p. 8].The matrices R and U in (2.13) are seen to be the radial part
and orientation of X, respectively and hence the decomposition X = R1/2U is a
generalization of the standard polar factorization for vectors (obtained for ℓ = 1).

Haar measure on the Stiefel manifold

The family of Stiefel manifolds O(n, ℓ) contains as special cases the n-sphere
O(n, 1) = Sn−1 and the orthogonal group O(n, n) = O(n). The space O(n, ℓ) is the
compact manifold of dimension nℓ−ℓ−ℓ(ℓ−1)/2 realized as the homogeneous space
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O(n)/O(n − ℓ). The Stiefel manifold is endowed with a left and right-invariant Haar
measure µ, that is, for every P ∈ O(n) and every Q ∈ O(ℓ),

µ(UP ) = µ(U) = µ(QU),
for every U ∈ O(n, ℓ). Remark that our notation of µ is independent of ℓ and n, and
should be understood from the context. We refer the reader for instance to [Chi03]
or [Mui82] for details on the construction of such a measure. The total volume of
O(n, ℓ) is given by ([Chi03, Eq. (1.4.8)])

v(n, ℓ) := µ(O(n, ℓ)) =
∫

O(n,ℓ)
µ(dU) = 2ℓπnℓ/2

Γℓ(n/2) .

The normalised measure

(2.14) µ̃(dU) := 1
v(n, ℓ)µ(dU)

hence defines a left and right invariant probability measure on O(n, ℓ). We call it
the Haar probability measure on O(n, ℓ).

2.3. Intrinsic volumes, mixed volumes and ellipsoids

Intrinsic volumes and mixed volumes

We present two important notions from integral geometry: intrinsic and mixed
volumes. We mainly follow [SW08] for this part (see in particular Section 14.2
therein). For an integer n ⩾ 1, we denote by Kn the set of convex bodies in Rn. We
write Bn for the unit ball in Rn and voln for the n-dimensional volume measure in
Rn. For K ∈ Kn and ε > 0, we write

Kε := K + εBn = {x ∈ Rn : dist(x, K) ⩽ ε}
for the parallel body of K at distance ε. Steiner’s formula ([SW08, Eq. (14.5)])
asserts that its volume is a polynomial of degree n in ε,

voln(Kε) =
n∑

j=0
εn−jκn−jVj(K),(2.15)

where the coefficients {Vj(K), j = 0, . . . , n} denote the intrinsic volumes of K. We
set Vj(∅) := 0. For instance, when n = 2, V2(K) is the area, V1(K) is half the
boundary length and V0(K) is the Euler characteristic of K. Moreover, for every
n ⩾ 1, we have Vn(K) = voln(K), that is, the nth intrinsic volume coincides with
the n-dimensional volume measure. The intrinsic volumes of the unit ball Bn can be
computed to be ([SW08, Eq. (14.8)])

Vj(Bn) =
(

n

j

)
κn

κn−j

, κn = πn/2

Γ(1 + n/2) .

For an integer 1 ⩽ j ⩽ n, we denote by G(n, j) the Grassmannian of j-dimensional
linear subspaces of Rn. It carries a unique invariant Haar probability measure νn,j.
One possible way to realize Grassmannians is as the quotient space G(n, j) =
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O(n, j)/O(j), where two elements U1, U2 ∈ O(n, j) are equivalent if and only if there
exists an orthogonal matrix Q ∈ O(j) such that U1 = QU2, see for instance [Chi03,
p. 8-9]. Intrinsic volumes admit a useful integral representation, known as Kubota’s
formula ([SW08, Eq. (6.11)]),

Vj(K) =
(

n

j

)
κn

κjκn−j

∫
G(n,j)

volj(K|L )νn,j(dL ),(2.16)

where K|L stands for the image of the orthogonal projection of K onto L ∈ G(n, j),
and integration is with respect to the Haar probability measure on G(n, j).

Let m ⩾ 1 and consider m convex bodies K1, . . . , Km ∈ Kn. Then, for real
numbers λ1, . . . , λm ⩾ 0, the n-dimensional volume of the Minkowski sum λ1K1 +
. . . λmKm is a homogeneous polynomial of degree n in the variables λ1, . . . , λm

([SW08, Eq. (14.7)]),

voln(λ1K1 + . . . λmKm) =
m∑

i1,...,in=1
V (Ki1 , . . . , Kin)λi1 · · · λin ,

for uniquely determined symmetric coefficients V (Ki1 , . . . , Kin). These coefficients
are called the mixed volumes of the convex bodies Ki1 , . . . , Kin . This formula is
a generalization of Steiner’s formula in (2.15). Whenever we have mixed volumes
involving only two distinct convex bodies K1 and K2, we use the short-hand notation

V (K1, . . . , K1︸ ︷︷ ︸
ℓ times

, K2, . . . , K2︸ ︷︷ ︸
n−ℓ times

) =: V
(
K1[ℓ], K2[n − ℓ]

)
, ℓ ⩾ 1.(2.17)

Intrinsic volumes of a convex body K ∈ Kn are related to mixed volume by the
relation ([SW08, Eq. (14.18)])

Vj(K) =

(
n
j

)
κn−j

V (K[j],Bn[n − j]), j = 1, . . . , n(2.18)

General facts about ellipsoids

We will need some preliminaries about a particular type of convex bodies, namely
ellipsoids, see e.g. [ZK12]. Let Σ ∈ Rn×n be a non-singular symmetric matrix. We
define the ellipsoid EΣ of Rn represented by the matrix Σ,

EΣ =
{
x ∈ Rn : xT Σ−1x ⩽ 1

}
,

obtained as an affinity of the unit n-dimensional ball Bn, that is EΣ = {Σ1/2y : y ∈
Bn}. In particular, its n-dimensional volume is given by

voln(EΣ) = κn det(Σ)1/2.(2.19)
For any non-degenerate linear transformation represented by a matrix A ∈ Rn×n,
the ellipsoid AEΣ = {Ax : x ∈ EΣ} is represented by the matrix AΣAT , that is

AEΣ =
{
x ∈ Rn : xT (AΣAT )−1x ⩽ 1

}
= EAΣAT .

Let L ∈ G(n, ℓ) be a ℓ-dimensional linear subspace in Rn and denote by L ∈ O(n, ℓ)
any matrix whose rows form an orthonormal basis of L . Then, the image of the
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orthogonal projection of EΣ onto L , written EΣ|L , is an ellipsoid in Rℓ that is
represented by the matrix LΣLT ∈ Rℓ×ℓ. In particular, it follows from (2.19) that
its ℓ-dimensional volume is volℓ(EΣ|L ) = κℓ det(LΣLT )1/2.

3. Main results

3.1. Wiener-chaos expansion of matrix-variate functions

3.1.1. Hermite polynomials on the real line

Let m ⩾ 1 be an integer and X = (X1, . . . , Xm) be a standard m-dimensional
Gaussian vector. For α = (α1, . . . , αm) ∈ Nm, we write α! := α1! · · · αm! and
|α| := α1 + . . .+αm and define the multivariate Hermite polynomials associated with
the vector (X1, . . . , Xm) as the tensor product of univariate Hermite polynomials,
that is

H⊗m
α (X1, . . . , Xm) :=

m∏
l=1

Hαl
(Xl),

where Hαl
denotes the Hermite polynomial of order αl on the real line. It is well-known

that the normalised Hermite polynomials {(k!)−1/2Hk : k ⩾ 0} form a complete
orthonormal system of L2(ϕ) := L2(R, ϕ(z)dz) (see e.g. [NP12]). This implies that
the collection of normalised multivariate Hermite polynomials

H[m] =
{
(α!)−1/2H⊗m

α : α ∈ Nm
}

(3.1)

form a complete orthonormal system of L2(ϕ⊗m), where ϕ⊗m stands for the standard
m-dimensional Gaussian measure. In particular, every random variable F ∈ L2(ϕ⊗m)
admits a unique decomposition

F =
∑
k ⩾ 0

∑
|α|=k

F̂ (α)H⊗m
α ,(3.2)

where
F̂ (α) := (α!)−1

∫
Rm

F (x1, . . . , xm)H⊗m
α (x1, . . . , xm)ϕ⊗m(dx1, . . . , dxm)(3.3)

denotes the Fourier–Hermite coefficients of F associated with the multi-index α. For
k ⩾ 0, we write

CX
k = spanR{H⊗m

α (X1, . . . , Xm) : |α| = k}(3.4)
for the closed linear subspace of L2(P) generated by multivariate Hermite polynomials
of cumulative degree k. The space CX

k is the so-called kth Wiener chaos associated
with the vector X = (X1, . . . , Xm). We have that CX

0 = R. For F ∈ L2(ϕ⊗m), we
denote by proj(F |CX

k ) the projection of F onto CX
k , that is, (3.2) can be rewritten

as the L2(P)-converging series
F =

∑
k ⩾ 0

proj
(
F
∣∣∣CX

k

)
.

This decomposition is known as the Wiener–Itô chaos expansion of F .
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3.1.2. Matrix-variate Hermite polynomials

Matrix-variate Hermite polynomials on the matrix space Rℓ×n are introduced
in [Chi92] and admit an expansion in zonal polynomials. More specifically, the matrix-
variate Hermite polynomials associated with the partition κ ⊢ k of an integer k ⩾ 0,
written H(ℓ,n)

κ , is given by ([Chi92, Eq. (4.11)]):

H(ℓ,n)
κ (X) = k!Cκ(Idℓ)

k∑
s=0

∑
σ⊢s

∑
τ⊢k−s

aκ
τ,σ

(−2)k+s(k − s)!
Cσ

(
XXT

)
s!
(

n
2

)
σ

Cσ(Idℓ)
,(3.5)

where the coefficients aκ
τ,σ are defined by the relation (2.8) and (ℓ/2)σ denotes the

generalized Pochammer symbol, formally defined in (2.7). Zonal polynomials being
generalizations of monomials, the expansion in (3.5) is to be compared to the clas-
sical expansion of univariate Hermite polynomials in the basis of monomials (see
e.g. [NP12, p. 19])

Hk(x) =
⌊k/2⌋∑
n=0

k!(−1)n

n!(k − 2n)!2n
xk−2n.

Alternatively, H(ℓ,n)
κ are defined by Rodrigues formula ([Chi92, Eq. (4.9)])

H(ℓ,n)
κ (X)ϕ(ℓ,n)(X) = 4−k

(
n

2

)−1

κ
Cκ

(
∂X∂XT

)
ϕ(ℓ,n)(X),(3.6)

where, for X = (Xij) ∈ Rℓ×n, the differential matrix ∂X is given by ∂X = ( ∂
∂Xij

).
We note that (3.6) is a generalization of the classical well-known Rodrigues formula
for univariate Hermite polynomials (see for instance [NP12, Proposition 1.4.2])

Hk(x)ϕ(x) = (−1)k dk

dxk
ϕ(x), k ⩾ 0.(3.7)

Matrix-variate Hermite polynomials are linked to the generalized matrix-variate
Laguerre polynomials by the relation ([Chi92, Eq. (5.16)] and [Hay69, Eq. (10)])

γκ · L
(n−ℓ−1

2 )
κ

(
XXT

)
= H(ℓ,n)

κ

(√
2X

)
, γκ := (−2)−k

(
n

2

)−1

κ
, κ ⊢ k.(3.8)

Moreover, matrix-variate Hermite polynomials are orthonormal on Rℓ×n with respect
to the matrix-normal density function ϕ(ℓ,n), that is (see e.g. [Hay69, Corollary 3])
for every integers k, l ⩾ 0 and every partitions κ ⊢ k, σ ⊢ l,

(3.9)
∫
Rℓ×n

H(ℓ,n)
κ (X)H(ℓ,n)

σ (X)ϕ(ℓ,n)(X)(dX) = I {κ = σ} × 4−k
(

n

2

)−1

κ
k!Cκ(Idℓ).

Let now X ∼ Nℓ×n(0, Idℓ ⊗ Idn) and write s1, . . . , sℓ for the eigenvalues of
XXT . The spectral measure of XXT associated with the matrix X is the measure

µX(ds) :=
ℓ∑

i=1
δsi

(ds),

supported on the spectrum of XXT , where δy is the Dirac mass at y. We write
L2(µX) := L2(Ω, σ(µX),P) to indicate the subspace of L2(ϕ(ℓ,n)) := L2(Rℓ×n, ϕ(ℓ,n)

(X)(dX)) consisting of those random variables that are measurable with respect to
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the sigma algebra generated by µX . By this, we mean the subspace of L2(ϕ(ℓ,n)) of
random variables that are generated by elements of the type∫

R
f(t)µX(dt) =: µX(f).(3.10)

Since matrix-variate Hermite polynomials in (3.5) admit an expansion into zonal
polynomials, they are themselves symmetric functionals of the eigenvalues s1, . . . , sℓ.
This fact together with the orthogonality relation (3.9), implies that the family of
normalised matrix-variate Hermite polynomials

H[ℓ×n] :=
{
c(κ)−1/2H(ℓ,n)

κ : κ ⊢ k, k ⩾ 0
}

, c(κ) := 4−k

(
n

2

)−1

κ

k!Cκ(Idℓ)(3.11)

forms an orthonormal system in L2(µX). In Appendix A, we prove the following
Proposition, stating that this system is also complete in L2(µX).

Proposition 3.1. — The system H[ℓ×n] is complete in L2(µX).

Therefore, every F ∈ L2(µX) admits a unique decomposition in the basis (3.11),
F =

∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)H(ℓ,n)
κ ,(3.12)

where
F̂ (κ) := c(κ)−1

∫
Rℓ×n

F (X)H(ℓ,n)
κ (X)ϕ(ℓ,n)(X)(dX)(3.13)

is the Fourier–Hermite coefficient of F associated with the partition κ and c(κ) is
as in (3.11). To state our result, we introduce some further notation. For an integer
s ⩾ 0 and X ∼ Nℓ×n(0, Idℓ ⊗ Idn), we recall the notation ts(X) := tr ([XXT ]s)
introduced in (2.5) and define the spaces

UX
0 := R, UX

k := spanR


m∏

j=1
tsj

(X) : s1 + . . . + sm ⩽ k, m ⩾ 1

 , k ⩾ 1,

where the closure is with respect to L2(µX). By construction, we have that UX
k ⊂ UX

k+1.
We let

UX
k := UX

k ⊖ UX
k−1 := UX

k ∩
(
UX

k−1

)⊥
,

that is, UX
k is the space of those random variables in UX

k that are orthogonal in L2(P)
to elements of UX

k−1. Expanding matrix-Hermite polynomials into zonal polynomials
by (3.5) and subsequently zonal polynomials into monomials of the type ts(X)
by (2.4) shows that Hermite polynomials admit an expansion into monomials ts(X).
In particular, since Hermite polynomials are orthogonal in view of (3.9), it follows
that

UX
k = spanR

{
H(ℓ,n)

κ (X) : κ ⊢ k
}

.

The following result links matrix-variate Hermite polynomials with the classical
Wiener–Itô decomposition in (3.2). In particular, we establish an explicit formula
for projection coefficients associated with radial functionals of the form F (X) =
f0(XXT ) ∈ L2(µX) where X ∼ Nℓ×n(0, Idℓ ⊗ Idn) in terms of generalized Laguerre
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polynomials (see Section 2.1 for definitions). Such a formula is to be compared
to [Koc96, Tha93], where the authors study Hermite expansions of functions of the
form F (x) = f0(∥X∥)P (x) on Rn, where P is a harmonic polynomial.

Theorem 3.2. — For integers 1 ⩽ ℓ ⩽ n, let X ∼ Nℓ×n(0, Idℓ ⊗ Idn) and write
X = Vec(X). Then, for every integer k ⩾ 0 and every partition κ ⊢ k, we have that
H(ℓ,n)

κ (X) is an element of CX
2k and for every F ∈ L2(µX),

proj
(
F |CX

2k

)
= proj

(
F |UX

k

)
=
∑
κ⊢k

F̂ (κ)H(ℓ,n)
κ (X),(3.14)

where F̂ (κ) is as in (3.13). In particular, we have that proj(F |CX
2k+1) = 0. Moreover,

if F (X) = f0(XXT ), then

(3.15) F̂ (κ) = 1
2nℓ/2Γℓ

(
n
2

) (−2)k

k!Cκ(Idℓ)

×
∫

Pℓ(R)
f0(R)L(n−ℓ−1

2 )
κ (2−1R)etr

(
−2−1R

)
det(R)

n−ℓ−1
2 ν(dR),

where L(γ)
κ denotes the generalized Laguerre polynomial of order γ > −1 associated

with the partition κ, defined in (2.10) and ν(dR) is the Lebesgue measure on Pℓ(R).

Our proof of Theorem 3.2 suggests that, combining the generalized Rodrigues
formula (3.6) with the univariate Rodrigues formula (3.7), matrix-variate Hermite
polynomials can be expressed in terms of multivariate Hermite polynomials. For
instance, combining (3.6) with (3.7) in the case ℓ = n = 1 (so that for every integer
k ⩾ 0, κ = (k) is the only partition of k) and writing ϕ = ϕ(1,1) for the standard
Gaussian density function yields for every k ⩾ 0

H
(1,1)
(k) (X)ϕ(X) = 4−k

(
n

2

)−1

(k)
C(k)

(
[∂X]2

)
ϕ(X)

= 4−k
(

n

2

)−1

k

(
∂

∂X

)2k

ϕ(X) = 4−k
(

n

2

)−1

k
H2k(X)ϕ(X),

where we used that (n
2 )(k) = (n

2 )k, C(k)(a) = ak for a ∈ R and the Rodrigues formula
for classical Hermite polynomials in (3.7). This shows in particular that

H
(1,1)
(k) (X) = 4−k

(
n

2

)−1

k
H2k(X).

Proceeding similarly for arbitrary dimensions ℓ and n, we compute the first matrix-
variate Hermite polynomials associated with partitions of order up to 2 to be

(3.16) H
(ℓ,n)
(1) (X) = 1

2n

ℓ∑
i=1

n∑
j=1

H2(Xij) ,
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H
(ℓ,n)
(2) (X) = 1

12n(n + 2)

(
3
∑

i ∈ [ℓ]

∑
j ∈ [n]

H4 (Xij) + 3
∑

i1 ̸= i2 ∈ [ℓ]

∑
j ∈ [n]

H2 (Xi1j) H2 (Xi2j)

+ 3
∑

i ∈ [ℓ]

∑
j1 ̸= j2 ∈ [n]

H2 (Xij1) H2 (Xij2) +
∑

i1 ̸= i2 ∈ [ℓ]

∑
j1 ̸= j2 ∈ [n]

H2 (Xi1j1) H2 (Xi2j2)

+ 2
∑

i1 ̸= i2 ∈ [ℓ]

∑
j1 ̸= j2 ∈ [n]

H1 (Xi1j1) H1 (Xi2j1) H1 (Xi1j2) H1 (Xi2j2)
)

,

H
(ℓ,n)
(1,1) (X) = 1

6n(n − 1)

( ∑
i1 ̸= i2 ∈ [ℓ]

∑
j1 ̸= j2 ∈ [n]

H2 (Xi1j1) H2 (Xi2j2)

−
∑

i1 ̸= i2 ∈ [ℓ]

∑
j1 ̸= j2 ∈ [n]

H1 (Xi1j1) H1 (Xi2j1) H1 (Xi1j2) H1 (Xi2j2)
)

.

Combining the content of Theorem 3.2 with the orthogonality relation (3.9), allows
one to derive variance expansions of spectral variables F (X) ∈ L2(µX) where X ∼
Nℓ×n(0, Idℓ ⊗ Idn) as a converging series in terms of its Fourier-Hermite coefficients.

Proposition 3.3. — For integers 1 ⩽ ℓ ⩽ n, let X ∼ Nℓ×n(0, Idℓ ⊗ Idn) and
F (X) ∈ L2(µX). Then,

Var[F (X)] =
∑
k ⩾ 1

∑
κ⊢k

4k(n
2 )κ

k!Cκ(Idℓ)
E
[
F (X)H(ℓ,n)

κ (X)
]2

,

where the convergence of the series is part of the conclusion.

3.2. Fourier–Hermite coefficients of Gaussian determinants as intrinsic
volumes of ellipsoids

In this section, we consider rectangular Gaussian matrices X and provide the
Wiener chaos expansion of determinants of the form det(XXT )1/2. In [ZK12], Kablu-
chko and Zaporozhets consider the case where X ∈ Rℓ×n has centred independent
rows with respective covariance matrices Σ1, . . . , Σℓ, and prove that (see in particu-
lar [ZK12, Theorem 1.1])

E
[
det

(
XXT

)1/2
]

= (n)ℓ

(2π)ℓ/2κn−ℓ

V (EΣ1 , . . . , EΣℓ
,Bn, . . . , Bn) ,(3.17)

where V (EΣ1 , . . . , EΣℓ
,Bn, . . . , Bn) denotes the mixed volume of the ellipsoids EΣi

, i
= 1, . . . , ℓ associated with matrices Σi and Bn denotes the unit ball in Rn with
volume κn = πn/2/Γ(1 + n/2). We also refer the reader to [Vit91, Theorem 3.2],
where the author proves a similar formula linking the expected absolute determinant
of a matrix with i.i.d. copies of a random vector to the volume of the zonoid associated
with the random distribution.

In Theorem 3.6 below, we substantially extend the framework of Kabluchko and
Zaporozhets to arbitrary projection coefficients associated with the Wiener chaos
expansion of such Gaussian determinants in the case where the rows of X are
i.i.d centred Gaussian vectors with the same covariance matrix Σ.
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Let Σ ∈ Rn×n be a symmetric positive-definite matrix and {X(i) = (X(i)
1 , . . . , X(i)

n )
: i ∈ [ℓ]} a collection of independent Gaussian vectors with covariance matrix Σ.
We write X ∈ Rℓ×n for the matrix whose ith row is X(i). It follows that X has
distribution Nℓ×n(0, Idℓ ⊗Σ) with density function

ϕ
(ℓ,n)
Σ (X) = (2π)−nℓ/2 det(Σ)−ℓ/2etr

(
−2−1XΣ−1XT

)
.(3.18)

As a consequence, the matrix XΣ−1/2 has the Nℓ×n(0, Idℓ ⊗ Idn) distribution (see
e.g. [GN00, Theorem 2.3.10]). Based on the matrix-variate Hermite polynomials
H(ℓ,n)

κ and their orthogonality relation with respect to ϕ(ℓ,n) in (3.9), we define

H(ℓ,n)
κ (X; Σ) := det(Σ)ℓkH(ℓ,n)

κ

(
XΣ−1/2

)
.(3.19)

In particular, we note that H(ℓ,n)
κ (·, Idn) = H(ℓ,n)

κ (·). The following proposition shows
that H(ℓ,n)

κ (·, Σ) are orthogonal with respect to the density ϕ
(ℓ,n)
Σ in (3.18).

Proposition 3.4. — For every integers k, l ⩾ 0 and every partitions κ ⊢ k, σ ⊢ l,
we have∫

Rℓ×n
H(ℓ,n)

κ (X; Σ)H(ℓ,n)
σ (X; Σ)ϕ(ℓ,n)

Σ (X)(dX)

= I {κ = σ} × det(Σ)2ℓk4−k

(
n

2

)−1

κ

k!Cκ(Idℓ).

Therefore, the family of normalized polynomials

HΣ:=
{
c(κ; Σ)−1/2H(ℓ,n)

κ (·; Σ) : κ ⊢ k ⩾ 0
}

,

c(κ; Σ):= det(Σ)2ℓk4−k

(
n

2

)−1

κ

k!Cκ(Idℓ)
(3.20)

forms a complete orthonormal system of L2(µX), where µX denotes the spectral
measure of XXT associated with X. Hence, for every F ∈ L2(µX), one has the
expansion

F (X) =
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ; Σ)H(ℓ,n)
κ (X; Σ),

where the projection coefficients are given by

F̂ (κ; Σ) = c(κ; Σ)−1
∫
Rℓ×n

F (X)H(ℓ,n)
κ (X; Σ)ϕ(ℓ,n)

Σ (X)(dX)

= c(κ; Σ)−1EX

[
F (X)H(ℓ,n)

κ (X; Σ)
]

, X ∼ Nℓ×n(0, Idℓ ⊗Σ).
(3.21)

The next result provides an explicit formula for the projection coefficients F̂ (κ; Σ)
in the special case where F (X) = det(XXT )1/2.

Theorem 3.5. — For integers 1 ⩽ ℓ ⩽ n and Σ ∈ Rn×n positive-definite symmet-
ric, let X ∼ Nℓ×n(0, Idℓ ⊗Σ). Then, F (X) = det(XXT )1/2 is an element of L2(µX),
and one has the decomposition

F (X) =
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ; Σ)H(ℓ,n)
κ (X; Σ),
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where the Fourier–Hermite coefficients of F are given by the formula

(3.22) F̂ (κ; Σ) = (−2)k

det(Σ)ℓkk!

(
n

2

)
κ

k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

× det(Σ)−ℓ/22ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) ∫
O(n,ℓ)

det
(
UΣ−1UT

)−(n+1)/2
µ̃(dU).

Here,
(

κ
σ

)
denote the generalized binomial coefficients defined by (2.3), and µ̃

stands for the Haar probability measure on the Stiefel manifold O(n, ℓ) of ℓ-frames
in Rn.

As anticipated, our next result yields a geometric interpretation of the projection
coefficients F̂ (κ; Σ) appearing in (3.22) in terms of mixed volumes and intrinsic
volumes of ellipsoids (see Section 2.3 for preliminaries on these notions and in
particular notation (2.17)).

Theorem 3.6. — For integers 1 ⩽ ℓ ⩽ n and Σ ∈ Rn×n positive-definite sym-
metric, let X ∼ Nℓ×n(0, Idℓ ⊗Σ). Then, for F (X) = det(XXT )1/2, we have

F̂ (κ; Σ) = M(κ; Σ, ℓ, n) · V (EΣ[ℓ],Bn[n − ℓ])(3.23)

= M(κ; Σ, ℓ, n) · κn−ℓ

(
n

ℓ

)−1

Vℓ(EΣ),(3.24)

where

M(κ; Σ, ℓ, n) := (−2)k

det(Σ)ℓkk!

(
n

2

)
κ

k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

(n)ℓ

(2π)ℓ/2κn−ℓ

and where V (·, . . . , ·) and Vℓ(·) stand for the mixed and ℓth intrinsic volumes, re-
spectively (see also notation (2.17)), Bn denotes the unit ball in Rn and κn =
πn/2/Γ(1 + n/2) denotes its volume. In particular, for κ = (0),

E
[
det

(
XXT

)1/2
]

= (n)ℓ

(2π)nℓ/2κn−ℓ

V
(
EΣ[ℓ],Bn[n − ℓ]

)

= (n)ℓ

(2π)ℓ/2

(
n

ℓ

)−1

Vℓ(EΣ).
(3.25)

Remark 3.7. —
(a) We point out that (3.25) coincides with (3.17) in the case where Σi = Σ for

i = 1, . . . , ℓ. In this sense, relations (3.23) and (3.24) therefore considerably
generalize the content of [ZK12, Theorem 1.1] to arbitrary chaotic projection
coefficients F̂ (κ; Σ) associated with partitions κ of order k ⩾ 1.

(b) Our proof of Theorem 3.6 suggests the following new relation for intrinsic
volumes of ellipsoids

Vℓ(EΣ) =
(

n

ℓ

)
κn

κn−ℓ

det(Σ)−ℓ/2
∫

O(n,ℓ)
det(UΣ−1UT )−(n+1)/2µ̃(dU),
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where 1 ⩽ ℓ ⩽ n and µ̃ indicates the Haar probability measure on the Stiefel
manifold O(n, ℓ).

(c) In Section 4.2.1, we sketch an attempt to further generalize the findings of
Kabluchko and Zaporozhets to the more general setting where the rows of X
are independent with respective covariance matrices Σ1, . . . , Σℓ. As we will
explain, we are not successful to adapt our techniques employed in the proof
of Theorems 3.5 and 3.6 to this more general framework. Such a difficulty may
be explained by the fact that the polynomials defined in (4.17) are not easily
tractable for matrix calculus, as we have to deal with each row separately.

The following Corollary is obtained from Theorem 3.5 applied with Σ = Idn, that
is, when X has independent rows with independent coordinates. In this case, we
have H(ℓ,n)

κ (X; Idn) = H(ℓ,n)
κ (X) and F̂ (κ; Idn) = F̂ (κ) as in (3.13).

Corollary 3.8. — For integers 1 ⩽ ℓ ⩽ n, let X ∼ Nℓ×n(0, Idℓ ⊗ Idn). Then,
F (X) = det(XXT )1/2 is an element of L2(µX), and one has the decomposition

F (X) =
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)H(ℓ,n)
κ (X),

where the Fourier–Hermite coefficients of F are given by the formula

F̂ (κ) = 2ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) (−2)k

k!

(
n

2

)
κ

k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

.(3.26)

In particular,

E
[
det

(
XXT

)1/2
]

= 2ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) .(3.27)

Remark 3.9. —
(a) Combining the contents of Corollary 3.8 and Theorem 3.2, we see that (3.26)

provides the chaotic projection coefficients associated with the Wiener-chaos
decomposition of det(XXT )1/2. In Section 3.4, we consider functionals of
multi-dimensional Gaussian fields arising in stochastic geometry, that admit
a certain integral representation in terms of Jacobian determinants, and
effectively use formula (3.26) to obtain a compact expression of their Wiener-
Itô chaos expansions.

(b) Formula (3.27) is to be compared with the definition of α(ℓ, n) in [Not21,
Eq. (1.8)] and in particular with Remark 1.2 (a) therein for a link to the
so-called flag coefficients [

n

ℓ

]
:=
(

n

ℓ

)
κn

κn−ℓκℓ

,

also appearing in the Gaussian Kinematic formula (see for instance [AT07,
Chapter 13]). In particular, one has that

E
[
det

(
XXT

)1/2
]

= ℓ!κℓ

(2π)ℓ/2

[
n

ℓ

]
.
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3.3. Generalized Ornstein–Uhlenbeck semigroup

3.3.1. A Mehler-type representation

In this section, we provide the equivalent counterpart on matrix spaces of the
classical Ornstein–Uhlenbeck semigroup {Pt : t ⩾ 0} on R defined via Mehler’s
formula (see e.g. [NP12, Theorem 2.8.2])

Ptf(x) = E
[
f
(
e−tx +

√
1 − e−2tX0

)]
, X0 ∼ N (0, 1), x ∈ R, t ⩾ 0.

For an integer d ⩾ 1, f : Rd → R, X0 ∼ Nd(0, Idd), x ∈ Rd and t ⩾ 0, we write

(3.28) P
(d)
t f(x) = E

[
f
(
e−tx +

√
1 − e−2tX0

)]
,

for the Ornstein–Uhlenbeck operator in dimension d, in such a way that Pt = P
(1)
t .

We fix integers 1 ⩽ ℓ ⩽ n, and define the space
Π(ℓ, n) =

{
f : Rℓ×n → R : f(XH) = f(X) for every H ∈ O(n)

}
,(3.29)

that is, an element of Π(ℓ, n) is a matrix-variate function that is right-invariant under
orthogonal transformations. For a diagonal matrix A = diag(a1, . . . , an) ∈ Rn×n

with a1, . . . , an ⩾ 0 and f ∈ Π(ℓ, n), we introduce the operator

(3.30) O(ℓ,n)
t;A f(X) = E

[∫
O(n)

f
(

XHe−tA + X0
(
Idn −e−2tA

)1/2
)

µ̃(dH)
∣∣∣∣∣X

]
,

t ⩾ 0
where the expectation is taken with respect to X0 ∼ Nℓ×n(0, Idℓ ⊗ Idn), for a matrix
M ∈ Rn×n,

etM =
∑
p⩾ 0

1
p! (tM)p

denotes the matrix exponential of M , and µ̃ indicates the probability Haar measure
on the orthogonal group O(n).

The next result specifies the action of the operators O(ℓ,n)
t;A for generic diagonal

matrices A with non-negative entries on the class of matrix-variate Hermite polyno-
mials and naturally complements the action of Pt on Hermite polynomials on the
real line given by (see e.g. [NP12, Proposition 1.4.2])

PtHk(x) = e−ktHk(x).(3.31)

Theorem 3.10. — For every diagonal matrix A = diag(a1, . . . , an) ∈ Rn×n such
that a1, . . . , an ⩾ 0, every integer k ⩾ 0 and every partition κ ⊢ k, we have that

O(ℓ,n)
t;A H(ℓ,n)

κ (X) =
Cκ

(
e−2tA

)
Cκ(Idn) H(ℓ,n)

κ (X).(3.32)

In particular, the family {O(ℓ,n)
t;A : t ⩾ 0} is a semigroup on the class Π(ℓ, n) if and

only if a1 = . . . = an = a. More precisely, in this case, O(ℓ,n)
t;A coincides with P

(ℓn)
at on

the class Π(ℓ, n).
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From (3.32) it becomes clear that the polynomials H(ℓ,n)
κ are eigenfunctions of O(ℓ,n)

t;A
with respective eigenvalue Cκ(e−2tA)Cκ(Idn)−1. Moreover, if F ∈ L2(µX) admits the
expansion (3.12), then O(ℓ,n)

t;A F ∈ L2(µX) and

O(ℓ,n)
t;A F =

∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)
Cκ

(
e−2tA

)
Cκ(Idn) H(ℓ,n)

κ ,

that is, the projection coefficients of O(ℓ,n)
t;A F are obtained from those of F by multi-

plying by Cκ(e−2tA)Cκ(Idn)−1. Let us make some remarks about Theorem 3.10.

Remark 3.11. —
(a) Using the fact that H(ℓ,n)

κ is an element of the class Π(ℓ, n) (as can be seen
for instance from (3.8)), we deduce from (3.32) applied with A = Idn that

P
(ℓn)
t H(ℓ,n)

κ (X) = O(ℓ,n)
t;Idn

H(ℓ,n)
κ (X) =

Cκ

(
e−2t Idn

)
Cκ(Idn) H(ℓ,n)

κ (X)

= e−2ktH(ℓ,n)
κ (X),

(3.33)

where we used that Cκ(e−2t Idn) = e−2ktCκ(Idn) by homogeneity. Recalling that
H(ℓ,n)

κ (X) is an element of the 2kth Wiener chaos associated with Vec(X), it is
clear that the classical Ornstein–Uhlenbeck semigroup {P

(ℓn)
t : t ⩾ 0} acts on

the entries Xij of X via the relation P
(ℓn)
t H(ℓ,n)

κ (X) = e−2ktH(ℓ,n)
κ (X), which

is consistent with (3.33).
(b) Let us assume that A = diag(a, . . . , a), a ⩾ 0. Then the relation in (3.32)

reduces to

O(ℓ,n)
t;A H(ℓ,n)

κ (X) = e−2taH(ℓ,n)
κ (X),

in view of the relation Cκ(e−2tA) = e−2taCκ(Idn). In particular, from this
identity, one can directly verify the semigroup property verified by O(ℓ,n)

t;A on
matrix-Hermite polynomials, as for every s, t ⩾ 0,

O(ℓ,n)
t+s;AH(ℓ,n)

κ (X) = e−2(t+s)aH(ℓ,n)
κ (X) = O(ℓ,n)

t;A O(ℓ,n)
s;A H(ℓ,n)

κ (X).

Combining this relation with (3.32) in particular suggests the identity

Cκ

(
e−2(t+s)A

)
Cκ(Idn) =

Cκ

(
e−2tA

)
Cκ

(
e−2sA

)
Cκ(Idn)2 ,

which fails to hold in the case where the diagonal entries of A are not all
equal. Indeed, for simplicity a direct computation in the case ℓ = n = 2, κ =
(1), a1 = 1, a2 = 2 shows that the left and right-hand sides of the above
relation are respectively given by

1
2
[
e−2(t+s) + e−4(t+s)

]
,

1
4e−2te−4s,

which are different.
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3.3.2. An extension of the orthogonality relation for matrix-variate Hermite
polynomials

It is well-known that for jointly standardized Gaussian random variables X, Y
such that E [XY ] = ρ, the univariate Hermite polynomials on the real line satisfy
the orthogonality relation (see e.g. [NP12, Proposition 2.2.1])

E [Hk(X)Hl(Y )] = I {k = l} × k!ρk.(3.34)

Exploiting the action of the operator O(ℓ,n)
t;A on matrix-variate Hermite polynomials

derived in Theorem 3.10 allows us to establish the matrix-counterpart of the orthog-
onality relation (3.34) in the setting where the correlation of the Gaussian matrix
entries X and Y is reflected in a matrix R. This is the content of the following
Theorem.

Theorem 3.12. — Let X, X0 ∼ Nℓ×n(0, Idℓ ⊗ Idn) be independent and R be
a deterministic matrix of dimension n × n. Let Y

L= XR + X0(Idn −R2)1/2 in dis-
tribution. Then, for every integers k, l ⩾ 0 and every partitions κ ⊢ k, σ ⊢ l, we
have

E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (Y )

]
= I {κ = σ} × 4−k

(
n

2

)−1

κ

k!Cκ(R2) Cκ(Idℓ)
Cκ(Idn) .(3.35)

Some remarks concerning Theorem 3.12 are in order.
Remark 3.13. —
(a) By independence of X and X0 and the distributional identity Y

L= XR +
X0(Idn −R2)1/2, we have that for every i, i′ ∈ [ℓ], j, j′ ∈ [n],

E [XijYi′j′ ] =
n∑

k=1
E [XijXi′k] Rkj′

=
n∑

k=1
I {i = i′, j = k} Rkj′ = I {i = i′} Rjj′ ,

where we used that X ∼ Nℓ×n(0, Idℓ ⊗ Idn), yielding that, for every j, j′ =
1, . . . , n, |Rjj′| ⩽ 1 by virtue of the Cauchy-Schwarz inequality. The above
observation implies that R is necessarily symmetric and positive-semidefinite
as a covariance matrix, and therefore has non-negative eigenvalues r1, . . . , rn.
Note that if R = ∆ = diag(r1, . . . , rn) is diagonal, we therefore necessarily
have |rj| ⩽ 1 for every j = 1, . . . , n, so that (Idn −R2)1/2 is well-defined.
Our arguments to prove Theorem 3.12 are based on the following general
reduction argument: for f, g ∈ Π(ℓ, n), writing R = O∆OT with O ∈ O(n)
and ∆ = diag(r1, . . . , rn),

E
[
f(X)g

(
XO∆OT + X0O

(
Idn −R2

)1/2
OT

)]
= E

[
f(XO)g

(
XO∆ + X0O

(
Idn −∆2

)1/2
)]

= E
[
f(X)g

(
X∆ + X0

(
Idn −∆2

)1/2
)]

,
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where we used the fact that f(X) = f(XO) and g(XOT ) = g(X) since
f, g ∈ Π(ℓ, n) as well as the fact that (XO, X0O) L= (X, X0), showing in
particular that |rj| ⩽ 1 for every j = 1, . . . , n.

(b) We point out two particular cases of Theorem 3.12: (1) if R = Idn, rela-
tion (3.35) reduces to the orthogonality of Hermite polynomials stated in (3.9)
and (2) when R = diag(ρ, . . . , ρ), (3.35) gives

(3.36) E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
ρX +

√
1 − ρ2X0

)]

= I {κ = σ} × 4−k

(
n

2

)−1

κ

k!Cκ

(
ρ2 Idn

) Cκ(Idℓ)
Cκ(Idn)

= I {κ = σ} × 4−k

(
n

2

)−1

κ

k!ρ2kCκ(Idℓ),

where we used homogeneity of zonal polynomials. For completeness, in Ex-
ample 3.14 we present three explicit examples of (3.36) for the Hermite
polynomials in (3.16) by relying on product formulae for univariate Hermite
polynomials.

(c) Writing X = Vec(X) and Y = Vec(Y ), we know by Theorem 3.2 that
H(ℓ,n)

κ (X) ∈ CX
2k and H(ℓ,n)

κ (Y ) ∈ CY
2k. In particular by orthogonality of

Wiener chaoses, it is clear that H(ℓ,n)
κ (X) and H(ℓ,n)

σ (Y ) are orthogonal in L2(P)
when k ̸= l. Remarkably relation (3.35) yields a stronger orthogonality in the
sense that, even if k = l, the elements H(ℓ,n)

κ (X) and H(ℓ,n)
σ (Y ), belonging

both to the Wiener chaos of order 2k, are orthogonal as soon as κ ̸= σ.
(d) Combining relation (3.8) with (3.35), we deduce an extended orthogonality

relation for generalized matrix-variate Laguerre polynomials

E
[
L

(n−ℓ−1
2 )

κ

(
2−1XXT

)
L

(n−ℓ−1
2 )

σ

(
2−1Y Y T

)]
= γ−1

κ γ−1
σ E

[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (Y )

]
= I {κ = σ} ×

(
n

2

)−1

κ

k!Cκ(R2) Cκ(Idℓ)
Cκ(Idn) ,

where we used that γκ := (−2)−k(n
2 )−1

κ , thus extending the orthogonality
relation in (2.11) obtained for R = Idn.

Example 3.14. — In this example, we explicitly compute the covariance

E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (Y )

]
, Y := ρX +

√
1 − ρ2X0

in the three examples (i) κ = σ = (1), (ii) κ = (2), σ = (1, 1) and (iii) κ = σ = (1, 1)
by relying on the explicit expansions of the corresponding matrix-Hermite poly-
nomials in terms of univariate Hermite polynomials in (3.16) and moment formu-
lae for products of the latter. Our computations developed below are consistent
with (3.36). In view of the covariance structure between X and Y , we have that
E [XijYi′j′ ] = I {i = i′, j = j′} ρ. We start with (i). Using the covariance structure
together with the expression for H

(ℓ,n)
(1) in (3.16) yields
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E
[
H

(ℓ,n)
(1) (X)H(ℓ,n)

(1) (Y )
]

= 1
4n2

∑
i1,i2 ∈ [ℓ]

∑
j1,j2 ∈ [n]

E [H2 (Xi1j1) H2 (Yi2j2)]

= ρ2

2n2

∑
i1,i2 ∈ [ℓ]

∑
j1,j2 ∈ [n]

I {i1 = i2, j1 = j2} = ρ2

2n2 ℓn = ρ2 ℓ

2n
,

where we used (3.34). On the other hand, using that (n/2)(1) = n/2 and C(1)(Idℓ) =
tr(Idℓ) = ℓ yields from (3.36)

E
[
H

(ℓ,n)
(1) (X)H(ℓ,n)

(1) (Y )
]

= 4−1 2
n

ρ2ℓ = ρ2 ℓ

2n
,

which coincides with the above. Let us now treat (ii). In view of (3.16), we can write

H
(ℓ,n)
(2) (X) := 1

12n(n + 2)

5∑
i=1

Ai(X), H
(ℓ,n)
(1,1) (Y ) := 1

6n(n − 1)
(
B1(Y ) + B2(Y )

)
,

where A1(X), . . . , A5(X) and B1(Y ), B2(Y ) are the double summations appearing
in the respective definitions of H

(ℓ,n)
(2) (X) and H

(ℓ,n)
(1,1) (Y ) (including their multiplicative

coefficient). We can thus compute

(3.37) E
[
H

(ℓ,n)
(2) (X)H(ℓ,n)

(1,1) (Y )
]

= 1
12n(n + 2)

1
6n(n − 1)

5∑
i=1

2∑
j=1

E [Ai(X)Bj(Y )] ,

which is a sum of ten terms. First we recall the following relations for jointly standard
Gaussian random variables N1, N2, Z1, Z2 such that E [N1N2] = E [Z1Z2] = 0,

E [H4(N1)H2(Z1)H2(Z2)] = 24E [N1Z1]2 E [N1Z2]2 ,

E [H2(N1)Z1Z2] = 2E [N1Z1]E [N1Z2] ,

E [N1N2Z1Z2] = E [N1Z1]E [N2Z2] + E [N1Z2]E [N2Z1] .

Combining these relations with the covariance structure between X and Y , one
verifies that

E [Ai(X)Bj(Y )] = 0, ∀ (i, j) /∈ {(5, 2), (4, 1)}
and

E [A4(X)B1(Y )] = −E [A5(X)B2(Y )] = 8ℓ(ℓ − 1)n(n − 1)ρ4,

implying in particular that E[H(ℓ,n)
(2) (X)H(ℓ,n)

(1,1) (Y )] = 0 in view of (3.37). Proceeding
similarly for example (iii), we write

E
[
H

(ℓ,n)
(1,1) (X)H(ℓ,n)

(1,1) (Y )
]

= 1
36n2(n − 1)2

2∑
i,j=1

E [Bi(X)Bj(Y )]

where B1 and B2 are as above, for which we compute
E [B1(X)B1(Y )] = E [A4(X)B1(X)] = 8ℓ(ℓ − 1)n(n − 1)ρ4,

E [B1(X)B2(Y )] = E [B2(X)B1(Y )] = E [A4(X)B2(Y )] = 0,
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E [B2(X)B2(Y )] = −1
2E [A5(X)B2(Y )] = 4ℓ(ℓ − 1)n(n − 1)ρ4,

where A4 and A5 are the terms appearing in H
(ℓ,n)
(2) . Summing these terms yields

(3.38) E
[
H

(ℓ,n)
(1,1) (X)H(ℓ,n)

(1,1) (Y )
]

= 1
36n2(n − 1)2

2∑
i,j=1

E [Bi(X)Bj(Y )] = 1
3n(n − 1)ℓ(ℓ − 1)ρ4.

On the other hand, computing (n/2)(1,1) = n(n − 1)/4 and C(1,1)(Idℓ) = 2
3ℓ(ℓ − 1)

yields from (3.36)

E
[
H

(ℓ,n)
(1,1) (X)H(ℓ,n)

(1,1) (Y )
]

= 4−2
(

n

2

)−1

(1,1)
2!ρ4C(1,1)(Idℓ) = 1

3n(n − 1)ℓ(ℓ − 1)ρ4,

which is consistent with (3.38).

3.4. Applications to geometric functionals of Gaussian random fields

In this section, we apply our main results of Sections 3.1, 3.2 and 3.3 to the study
of geometric functionals of multidimensional Gaussian fields.

In Section 3.4.1, we consider random variables admitting an integral representation
in terms of Jacobian determinants associated with multi-dimensional Gaussian fields.
We argue that such a definition can be interpreted as the total variation of vector-
valued functions, generalizing the classical definition of total variation of multi-variate
functions. More specifically, in the setting of a certain matrix correlation structure
between two Jacobian matrices, appearing notably in the study of Gaussian Laplace
eigenfunctions, we exploit the findings of Theorem 3.12 to obtain a precise expression
for the variance of the total variation in terms of integrals of zonal polynomials.

In Section 3.4.2, we apply the general framework of Section 3.4.1 to vectors of inde-
pendent arithmetic random waves with the same eigenvalue on the three-dimensional
torus, and prove a CLT in the high-energy regime for their generalized total variation
on the full torus.

In Section 3.4.3, we consider the nodal volumes associated with vectors of in-
dependent arithmetic random waves on the three torus. In particular, we provide
its Wiener–Itô chaos expansions in terms of both, multivariate and matrix-variate
Hermite polynomials, and provide some insight for variance estimates of its chaotic
components.

3.4.1. Generalized total variation of vector-valued functions

Let n ⩾ 1 be an integer and consider a centred smooth Gaussian field f = {f(z) :
z ∈ Rn} on Rn. For 1 ⩽ ℓ ⩽ n, we consider ℓ i.i.d copies f(1), . . . , f(ℓ) of f and are
interested in the ℓ-dimensional Gaussian field

fℓ =
{
fℓ(z) =

(
f(1)(z), . . . , f(ℓ)(z)

)
: z ∈ Rn

}
.
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We denote by f′ℓ(z) ∈ Rℓ×n the Jacobian matrix of fℓ evaluated at z ∈ Rn. Moreover,
we assume that (i) for every z ∈ Rn, the distribution of fℓ(z) is non-degenerate and
(ii) for every z ∈ Rn, f′ℓ(z) ∼ Nℓ×n(0, Idℓ ⊗ Idn). We define the following random
variable.

Definition 3.15. — For a compact domain U ⊂ Rn, we define

(3.39) Vℓ,n(fℓ; U) :=
∫

U
Φ (f′ℓ(z)) dz,

where Φ(M) := det(MMT )1/2 for M ∈ Rℓ×n.

We note that the above integral is well-defined since U is compact and det(f′ℓ(z))
is a multivariate polynomial in the entries of f′ℓ(z). We remark that the random
variable Vℓ,n(fℓ; U) can be seen as a generalization of the total variation of vector-
valued functions. Indeed, for ℓ = 1, (3.39) coincides with the definition of the total
variation for functions Rn → R. For ℓ = n, [DP12, FFM04] consider a relaxed total
variation of the Jacobian given by the Area formula (see e.g. [AW09, Proposition 6.1])

Vn,n(fn; U) =
∫

U
|det (f′n(z))| dz =

∫
Rn

Ny(fn; U)dy,

where Ny(fn; U) = card({z ∈ U : fn(z) = y}). Using the Co-area formula ([AW09,
Proposition 6.13]) in (3.39) shows that

Vℓ,n(fℓ; U) =
∫
Rℓ

σy(fℓ; U)dy,

where σy(fℓ; U) denotes the (n − ℓ)-dimensional Hausdorff measure of the level set
{z ∈ U : fℓ(z) = y}: Thus, the definition (3.39) generalizes the above setting to
functions Rn → Rℓ with ℓ < n.

From now on, 1 ⩽ ℓ ⩽ n are fixed and we write V(fℓ; U) = Vℓ,n(fℓ; U). The fact
that, for every z ∈ Rn, Φ(f′ℓ(z)) is an element of L2(µf′

ℓ
(z)) implies that V(fℓ; U)

can be expanded in matrix-variate Hermite polynomials by means of Corollary 3.8,
yielding its Wiener chaos expansion

(3.40) V (fℓ; U) =
∑
k ⩾ 0

V (fℓ; U) [2k] , V (fℓ; U) [2k] =
∑
κ⊢k

Φ̂(κ)
∫

U
H(ℓ,n)

κ (f′ℓ(z)) dz,

where Φ̂(κ) is as in (3.26) and V(fℓ; U)[2k] denotes the projection of V(fℓ; U) onto
the Wiener chaos of order 2k associated with fℓ. In the following proposition, we
compute the variance of the total variation of fℓ on U in the specific framework,
where the matrices f′ℓ(z) and f′ℓ(z′) satisfy a certain matrix correlation structure for
every z, z′ ∈ Rn (see (3.41) below).

Proposition 3.16. — Let the above notation prevail. Assume furthermore that
for every z, z′ ∈ Rn,

f′ℓ(z′) L= f′ℓ(z)R(z, z′) + X0
(
Idn −R(z, z′)2

)1/2
,(3.41)

in distribution, where X0 = X0(z, z′) is an independent copy of f′ℓ(z) and R(z, z′) is
a deterministic matrix. Then,
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(3.42) Var[V (fℓ; U)]

=
∑
k ⩾ 1

∑
κ⊢k

Φ̂(κ)24−k
(

n

2

)−1

κ
k! Cκ(Idℓ)

Cκ(Idn)

∫
U×U

Cκ

(
R(z, z′)2

)
dzdz′,

where Φ̂(κ) is as in (3.26).

3.4.2. Applications to Arithmetic Random Waves on the three-torus

The study of local and non-local features in the high-energy regime associated with
zero and non-zero level sets of Gaussian Laplace eigenfunctions on manifolds has
gained great importance in past years, where different models have been taken into
consideration. Celebrated models include Berry’s monochromatic random waves (see
e.g. [DEL21, MPRW16, NPR19, PV20] and [Ber77, Ber02] for seminal contributions),
spherical harmonics (see e.g. [CMW16a, CMW16b, MP11, MRW20, Wig10]) and
arithmetic random waves (ARW) on the torus (see e.g. [BM19, Cam19, DNPR19,
KKW13, Not21, ORW08, PR18, RW08]).

In this section, we apply the general framework presented in Section 3.4.1 to the
setting of vectors of independent arithmetic random waves on the three-torus, T3.

Arithmetic random waves on the d-torus

Let Td = Rd/Zd = [0, 1]/∼, d ⩾ 2 denote the torus of dimension d. Arithmetic
random waves on Td, first introduced in [ORW08, RW08] are Gaussian Laplace
eigenfunctions satisfying

∆Tn(z) + EnTn(z) = 0, En = 4π2n, z ∈ Td

where
n ∈ Sd :=

{
m ⩾ 1 :∃ (m1, : . . . , md) ∈ Zd : m2

1 + . . . + m2
d = m

}
,

that is, n is an integer expressible as a sum of d integer squares. The set of frequencies
associated with n ∈ Sd is

Λn :=
{
λ = (λ1, . . . , λd) ∈ Zd : λ2

1 + . . . + λ2
d = n

}
,

and we write |Λn| =: Nn for its cardinality, that is, Nn is the number of ways in
which n is represented as a sum of squares. An L2(Td)-basis of eigenfunctions is given
by complex exponentials of the form {eλ(·) := exp(2πi⟨λ, ·⟩) : λ ∈ Λn}, where ⟨·, ·⟩
denotes the standard Euclidean inner product on Rd. For n ∈ Sd, the ARW with
eigenvalue En is defined as random a linear combination of complex exponentials

Tn(z) = 1√
Nn

∑
λ ∈ Λn

aλeλ(z),(3.43)

where the coefficients {aλ : λ ∈ Λn} are independent standard complex Gaussian
random variables save for the relation a−λ = aλ, which makes Tn real-valued. Alter-
natively, ARWs are defined as the Gaussian process {Tn(z) : z ∈ Td} on Td with
covariance function
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(3.44) r(n)(z, z′) := E [Tn(z)Tn(z′)]

= 1
Nn

∑
λ ∈ Λn

eλ(z − z′) =: r(n)(z − z′), z, z′ ∈ Td.

Note that r(n) only depends on the difference z − z′, meaning that the random field
{Tn(z) : z ∈ Td} is stationary. Moreover, the fact that rn(0) = 1, implies that for
every z ∈ Td, Tn(z) has variance one.

Total variation of vectors of ARW on T3

For an integer 1 ⩽ ℓ ⩽ 3 and n ∈ S3, we consider i.i.d copies T (1)
n , . . . , T (ℓ)

n of Tn

in (3.43) and consider the associated ℓ-dimensional Gaussian field

T(ℓ)
n :=

{
T(ℓ)

n (z) =
(
T (1)

n (z), . . . , T (ℓ)
n (z)

)
: z ∈ T3

}
.(3.45)

Our specific goal is to study the high-energy behaviour of the total variation
V(T(ℓ)

n ;T3) (as defined in (3.39)) of T(ℓ)
n on the full torus, that is when Nn → ∞.

Since for every z ∈ T3, we have

Var
[

∂

∂zj

T (i)
n (z)

]
= En

3 , i ∈ [ℓ], j ∈ [n],

we introduce the normalised partial derivatives

∂̃jT
(i)
n (z) :=

(
En

3

)−1/2 ∂

∂zj

T (i)
n (z),(3.46)

with unit variance and write Ṫ(ℓ)
n (z) ∈ Rℓ×n for the normalised Jacobian matrix of

T(ℓ)
n . According to (3.39), we use the homogeneity of the determinant in order to

rewrite the total variation as

V
(
T(ℓ)

n ;T3
)

=
(

En

3

)ℓ/2 ∫
T3

Φ
(

Ṫ(ℓ)
n (z)

)
dz,(3.47)

where
Φ(M) =

√
det (MMT ).

Differentiating (3.43) and using the fact that r(n)(0) = 1 implies that Ṫ(ℓ)
n (z) ∼

Nℓ×n(0, Idℓ ⊗ Idn) and is stochastically independent of T(ℓ)
n (z) for every z ∈ T3. We

furthermore adopt the notation

r
(n)
j,j′(z) := ∂2

∂zj∂z′
j

r(n)(z), r̃
(n)
j,j′(z) :=

(
En

3

)−1
r

(n)
j,j′(z).(3.48)

The statement of our result is divided into three parts: (i) gives the expected total
variation of vector-valued ARWs on the full torus, (ii) is an exact variance asymptotic
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and (iii) is a Central Limit Theorem in the high-energy regime for the normalised
total variation

V̂
(
T(ℓ)

n ;T3
)

:=
V
(
T(ℓ)

n ;T3
)

− E
[
V
(
T(ℓ)

n ;T3
)]

Var
[
V
(
T(ℓ)

n ;T3
)]1/2 .(3.49)

Theorem 3.17. — Let the above notation prevail.
(i) (Expected total variation) For every n ∈ S3, we have

E
[
V
(
T(ℓ)

n ;T3
)]

=
(

En

3

)ℓ/2
2ℓ/2 Γℓ(2)

Γℓ

(
3
2

)(3.50)

(ii) (Asymptotic variance) As n → ∞, n ̸≡ 0, 4, 7 (mod 8),

Var
[
V
(
T(ℓ)

n ;T3
)]

=
(

En

3

)ℓ

2ℓ Γℓ(2)2

Γℓ

(
3
2

)2
ℓ

2Nn

(
1 + O

(
n−1/28+o(1)

))
(3.51)

(iii) (CLT) As n → ∞, n ̸≡ 0, 4, 7 (mod 8),

V̂
(
T(ℓ)

n ;T3
) L−→ N (0, 1),(3.52)

where L−→ denotes convergence in distribution.

We remark that (3.50) and (3.51) imply that the normalised total variation
V(T(ℓ)

n ;T3)/Eℓ
n converges in probability to (2

3)ℓ/2 Γℓ(2)
Γℓ(3/2) as n → ∞, n ̸≡ 0, 4, 7

(mod 8).
Our proof of Theorem 3.17 is based on expanding the total variation in (3.47)

into matrix-variate Hermite polynomials by means of Corollary 3.8 (see also (3.40)).
As we will prove, the high-energy distributional behaviour of the normalised total
variation is entirely characterized by its projection on the second Wiener chaos, which
explains the underlying Gaussian fluctuations. In order to prove the negligibility of
higher-order Wiener chaoses with respect to the second one, we rely on fine estimates
for the second and sixth integral moments of r(n) derived in [BM19].

3.4.3. Digression: Comparison with [Not21]

In this section, we compare our findings with [Not21], where we study nodal
volumes L(ℓ)

n := H3−ℓ(Z(T(ℓ)
n )) of the nodal sets Z(T(ℓ)

n ) associated with T(ℓ)
n in (3.45)

(here, Hk denotes the k-dimensional Hausdorff measure, with H0 indicating counting
measure). Such a work is in particular based on the asymptotic study of the fourth
chaotic projection associated with the Wiener-Itô chaos expansion of L(ℓ)

n . Recall
that, in view of the Co-Area formula, the nodal volume L(ℓ)

n is defined P-almost
surely and in L2(P) as

L(ℓ)
n =

(
En

3

)ℓ/2 ∫
T3

δ(0, ..., 0)
(
T(ℓ)

n (z)
)

× Φ
(

Ṫ(ℓ)
n (z)

)
dz,(3.53)

where Φ is as in (3.47), Ṫ(ℓ)
n is the normalised Jacobian matrix of T(ℓ)

n , and δ(0, ..., 0)(x)
:= δ0(x1) · · · δ0(xℓ), x = (x1, . . . , xℓ) denotes the multiple Dirac mass at the origin.
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Using matrix-Hermite polynomials studied in the present article, the chaotic projec-
tion of L(ℓ)

n on the Wiener chaos of order 2q is obtained by means of Corollary 3.8
as

(3.54) L(ℓ)
n [2q]

=
(

En

3

)ℓ/2 ∑
q1+2q2=2q

∫
T3

∑
|α|=q1

β̃α

α! H⊗ℓ
α

(
T(ℓ)

n (z)
)

×
∑
κ⊢q2

Φ̂(κ)H(ℓ,3)
κ

(
Ṫ(ℓ)

n (z)
)

dz

=
(

En

3

)ℓ/2 ∑
q1+2q2=2q

∑
|α|=q1

∑
κ⊢q2

β̃α

α! Φ̂(κ)
∫
T3

H⊗ℓ
α

(
T(ℓ)

n (z)
)

H(ℓ,3)
κ

(
Ṫ(ℓ)

n (z)
)

dz

where for a multi-index α ∈ Nℓ, β̃α denote the projection coefficients of the Dirac
mass and Φ̂(κ) can be computed from (3.26) (applied with n = 3)

Φ̂(κ) = (−2)k
(3

2

)
κ

2ℓ/2 · 1
k!

Γℓ(2)
Γℓ

(
3
2

) k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s (2)σ(

3
2

)
σ

.(3.55)

Writing out the explicit values of the projection coefficients in (3.55) for partitions
κ ∈ {(2), (1, 1)} and using the expressions for matrix-variate Hermite polynomials
in (3.16), we eventually recover the projection coefficients associated with Φ appear-
ing in [Not21, Proposition B.5]. We remark that, unlike the Wiener chaos expansion
of the generalized total variation in (3.40), the presence of the multiple Dirac mass
leads to an expression containing both, multivariate and matrix-variate Hermite
polynomials. Specifying (3.54) to q = 2 yields that the projection of L(ℓ)

n on the
fourth Wiener chaos can be written compactly as the sum of five terms

L(ℓ)
n [4] =

(
En

3

)ℓ/2 [
S

(ℓ)
1 (n) + . . . + S

(ℓ)
5 (n)

]
,

where

S
(ℓ)
1 (n) := β4

4! Φ̂((0))
∑

i ∈ [ℓ]

∫
T3

H4
(
T (i)

n (z)
)

dz

S
(ℓ)
2 (n) :=

(
β2

2!

)2

Φ̂((0))
∑

i < j ∈ [ℓ]

∫
T3

H2
(
T (i)

n (z)
)

H2
(
T (j)

n (z)
)

dz

S
(ℓ)
3 (n) := β2

2! Φ̂((1))
∑

i ∈ [ℓ]

∫
T3

H2
(
T (i)

n (z)
)

H
(ℓ,3)
(1)

(
Ṫ(ℓ)

n (z)
)

dz

S
(ℓ)
4 (n) := β̃0Φ̂((2))

∫
T3

H
(ℓ,3)
(2)

(
Ṫ(ℓ)

n (z)
)

dz

S
(ℓ)
5 (n) := β̃0Φ̂((1, 1))

∫
T3

H
(ℓ,3)
(1,1)

(
Ṫ(ℓ)

n (z)
)

dz.

Such an expression should be compared with [Not21, Eq.(3.23)]. We remark that
in the case ℓ = 1, the terms S

(1)
2 (n) and S

(1)
5 (n) disappear, since in this case, only

matrix-Hermite polynomials associated with partitions κ of length one contribute to
the chaotic expansion of L(ℓ)

n . The rich combinatorial structure of matrix-Hermite
polynomials allows us to deduce a number of interesting observations about variance
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estimates: Exploiting Theorem 3.12 for the term S
(ℓ)
4 (n) (and similarly for S

(ℓ)
5 (n))

yields

Var
[
S

(ℓ)
4 (n)

]
= β̃2

0Φ̂((2))24−2
(3

2

)−1

(2)
2!C(2)(Idℓ)

C(2)(Id3)

∫
T3×T3

C(2)
(
Rn(z − z′)2

)
dzdz′

= β̃2
0Φ̂((2))24−2

(3
2

)−1

(2)
2!C(2)(Idℓ)

C(2)(Id3)

∫
T3

C(2)
(
Rn(z)2

)
dz,

where the last identity follows by stationarity. Moreover since the terms S
(ℓ)
4 (n) and

S
(ℓ)
5 (n) involve different partitions of the integer 2, Theorem 3.12 implies that the

random variables S4(n) and S5(n) are orthogonal in L2(P). It should be remarked
that S

(ℓ)
4 (n) and S

(ℓ)
5 (n) are however not orthogonal in L2(P) to the remaining terms

S(ℓ)
p (n), p = 1, 2, 3, as can be seen for instance from

E
[
S

(ℓ)
4 (n)S(ℓ)

1 (n)
]

=
(

β4

4!

)2

Φ̂((2))2 ×
∑

i ∈ [ℓ]

∫
T3×T3

E
[
H4

(
T (i)

n (z)
)

H
(ℓ,3)
(2)

(
Ṫ(ℓ)

n (z′)
)]

dzdz′,

involving covariances between univariate and matrix-variate Hermite polynomials.
In order to deal with such expressions, one can expand matrix-Hermite polynomials
into univariate Hermite polynomials and rely on the classical diagram formulae for
the latter.

4. Proofs of main results

4.1. Proofs of Section 3.1

Proof of Theorem 3.2

Proof. — Since F ∈ L2(µX) ⊂ L2(ϕ(ℓ,n)), we can expand it in the two orthonormal
systems H[ℓn] and H[ℓ×n] defined in (3.1) and (3.11) respectively, yielding

F =
∑
k ⩾ 0

proj
(
F
∣∣∣CX

k

)
=
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)H(ℓ,n)
κ .(4.1)

Using the representation of zonal polynomials in (2.6), we write Cκ(XXT ) as a
homogeneous polynomial of degree 2k in the entries of X = (Xij), that is

Cκ

(
XXT

)
=

∑
|α|=2k

zκ
α

ℓ∏
i=1

n∏
j=1

X
αij

ij ,

where α ∈ Nℓ×n is a multi-index such that |α| = 2k and zκ
α is an explicit constant

depending on α and κ. Using the above representation of zonal polynomials in the
generalized Rodrigues formula (3.6), it follows that

H(ℓ,n)
κ (X) = 4−k

(
n

2

)−1

κ

[
ϕ(ℓ,n)(X)

]−1
Cκ

(
∂X∂XT

)
ϕ(ℓ,n)(X)
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= 4−k
(

n

2

)−1

κ

[
ϕ(ℓ,n)(X)

]−1 ∑
|α|=2k

zκ
α

ℓ∏
i=1

n∏
j=1

∂αij

∂X
αij

ij

ϕ(ℓ,n)(X)

= 4−k
(

n

2

)−1

κ

∑
|α|=2k

zκ
α

ℓ∏
i=1

n∏
j=1

[ϕ(Xij)]−1 ∂αij

∂X
αij

ij

ϕ(Xij).

Then, using the classical Rodrigues formula for Hermite polynomials on the real
line (3.7) for every i ∈ [ℓ], j ∈ [n], we infer that

[ϕ(Xij)]−1 ∂αij

∂X
αij

ij

ϕ(Xij) = (−1)αij Hαij
(Xij),

so that, using the fact that |α| = 2k,

H(ℓ,n)
κ (X) = 4−k

(
n

2

)−1

κ

∑
|α|=2k

zκ
α

ℓ∏
i=1

n∏
j=1

(−1)αij Hαij
(Xij)

= 4−k
(

n

2

)−1

κ

∑
|α|=2k

zκ
αH⊗ℓn

α (X11, . . . , Xℓn).

The above expression yields the expansion of H(ℓ,n)
κ (X) into multivariate Hermite

polynomials and implies in particular that H(ℓ,n)
κ (X) is an element of the Wiener

chaos of order 2k associated with the vector X = Vec(X). The formula for the
projection of F onto CX

2k in (3.14) then follows summing over all partitions of k. The
fact that the projection of F onto Wiener chaos of odd order is zero follows from the
fact that the RHS of (4.1) does not involve any multivariate Hermite polynomials
of cumulative odd order since H(ℓ,n)

κ (X) ∈ CX
2k.

In order to prove formula (3.15), we use the identity (3.8) and subsequently ap-
ply the polar decomposition X = R1/2U according to (2.13), yielding (dX) =
πnℓ/2

Γℓ( n
2 ) det(R)n−ℓ−1

2 ν(dR)µ̃(dU), (see e.g. [Chi03, Theorem 1.5.2]). Therefore, we have
from (3.13)

F̂ (κ) = c(κ)−1
∫
Rℓ×n

F (X)H(ℓ,n)
κ (X)ϕ(ℓ,n)(X)(dX)

= c(κ)−1γκ(2π)−nℓ/2
∫
Rℓ×n

f0
(
XXT

)
L

(n−ℓ−1
2 )

κ

(
2−1XXT

)
etr

(
−2−1XXT

)
(dX)

= c(κ)−1γκ(2π)−nℓ/2
∫

O(n,ℓ)

∫
Pℓ(R)

f0(R)L(n−ℓ−1
2 )

κ (2−1R)etr
(
−2−1R

)
×

× πnℓ/2

Γℓ

(
n
2

) det(R)
n−ℓ−1

2 ν(dR)µ̃(dU)

= c(κ)−1γκ(2π)−nℓ/2
∫

Pℓ(R)
f0(R)L(n−ℓ−1

2 )
κ

(
2−1R

)
etr

(
−2−1R

)
× πnℓ/2

Γℓ

(
n
2

) det(R)n−ℓ−1
2 ν(dR)

= 1
2nℓ/2Γℓ

(
n
2

) (−2)k

k!Cκ(Idℓ)

∫
Pℓ(R)

f0(R)L(n−ℓ−1
2 )

κ (2−1R)etr
(
−2−1R

)
det(R)n−ℓ−1

2 ν(dR),
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where we used that µ̃ is a probability measure on O(n, ℓ) and the definitions of c(κ)
and γκ in (3.11) and (3.8), respectively. This finishes the proof of Theorem 3.2. □

Proof of Proposition 3.3

Proof. — By Theorem 3.2, the Wiener-Itô chaos expansion of F (X) is given by

(4.2) F (X) =
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)H(ℓ,n)
κ (X),

where F̂ (κ) is as in (3.13). Computing the L2(P)-norm on both sides of (4.2) and
using the orthogonality relation (3.9) then yields

E
[
F (X)2

]
=
∑
k ⩾ 0

∑
l⩾ 0

∑
κ⊢k

∑
σ⊢l

F̂ (κ)F̂ (σ)E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (X)

]

=
∑
k ⩾ 0

∑
κ⊢k

F̂ (κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ)

= F̂ ((0))2 +
∑
k ⩾ 1

∑
κ⊢k

F̂ (κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ).

Since F̂ ((0)) = E [F (X)], we obtain the expansion for the variance of F (X),

Var[F (X)] =
∑
k ⩾ 1

∑
κ⊢k

F̂ (κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ)

=
∑
k ⩾ 1

∑
κ⊢k

[
4−k

(
n

2

)−1

κ
k!Cκ(Idℓ)

]−1

E
[
F (X)H(ℓ,n)

κ (X)
]2

=
∑
k ⩾ 1

∑
κ⊢k

4k
(

n
2

)
κ

k!Cκ(Idℓ)
E
[
F (X)H(ℓ,n)

κ (X)
]2

,

where we used (3.11). □

4.2. Proofs of Section 3.2

Polar decomposition of Gaussian rectangular matrices

Let us assume that X has the Nℓ×n(0, Idℓ ⊗Σ) distribution with density function
ϕ

(ℓ,n)
Σ (X) defined in (3.18), and write X = R1/2U for its polar decomposition ac-

cording to (2.13). In the following lemma, we compute the joint probability density
function of the pair (R, U).

Lemma 4.1. — If X ∼ Nℓ×n(0, Idℓ ⊗Σ), the joint probability density of the pair
(R, U) is given by

(4.3) f(R,U)(R, U) = 1
Γℓ

(
n
2

) 1
2nℓ/2 det(Σ)−ℓ/2 det(R)n−ℓ−1

2 etr
(
−2−1UΣ−1UT R

)
.
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Proof. — Applying the polar change of variable X = R1/2U gives (dX) = πnℓ/2

Γℓ( n
2 )

det(R)n−ℓ−1
2 ν(dR)µ̃(dU) (see e.g. [Chi03, Theorem 1.5.2]), so that

ϕΣ(X)(dX) = ϕΣ
(
R1/2U

) πnℓ/2

Γℓ

(
n
2

) det(R)
n−ℓ−1

2 ν(dR)µ̃(dU)

= 1
Γℓ(n

2 )
1

2nℓ/2 det(Σ)−ℓ/2 det(R)
n−ℓ−1

2 etr
(
−2−1UΣ−1UT R

)
ν(dR)µ̃(dU),

where we used that etr(−2−1R1/2UΣ−1UT R1/2) = etr(−2−1UΣ−1UT R). □

The following lemma (see [Chi03, Theorem 2.4.2]) gives the marginal density
functions of R and U , respectively. These are obtained when integrating the joint
density f(R,U)(R, U) with respect to U and R, respectively.

Lemma 4.2 ([Chi03, Theorem 2.4.2]). — Assume that X ∼ Nℓ×n(0, Idℓ ⊗Σ) and
write X = R1/2 ·U . Then, the marginal density functions of R and U are respectively
given by

fR(R) = 1
2nℓ/2Γℓ

(
n
2

)
det(Σ)ℓ/2 0F0

(
; ; −2−1Σ−1, R

)
det(R)

n−ℓ−1
2 ,(4.4)

where

pFq (a1, . . . , ap; b1, . . . , bq; S, T ) =
∑
k ⩾ 0

∑
κ⊢k

(a1)κ · · · (ap)κ

(b1)κ · · · (bq)κ

Cκ(S)Cκ(T )
k!Cκ(Idℓ)

denotes the hypergeometric function with two matrix arguments (see e.g. [Chi03,
Appendix A.6]) and

fU(U) = det(Σ)−ℓ/2 det
(
UΣ−1UT

)−n/2
.(4.5)

The density function of U in (4.5) is referred to as the matrix angular central
distribution with parameter Σ on O(n, ℓ). We also point out that, when Σ = Idn, the
matrix R follows the Wishart distribution with density function

1
2nℓ/2Γℓ

(
n
2

)0F0
(
; ; −2−1 Idℓ, R

)
det(R)n−ℓ−1

2 = 1
2nℓ/2Γℓ

(
n
2

)etr
(
−2−1R

)
det(R)n−ℓ−1

2

and the matrix angular central distribution of U reduces to the uniform distribution
on O(n, ℓ). Moreover, it follows from (4.3), that in this case, R and U are independent.
Combining (4.3) with (4.5), we obtain the conditional probability density of R
given U :

(4.6) f(R,U)(R, U)
fU(U)

= 1
Γℓ(n

2 )
1

2nℓ/2 det(R)
n−ℓ−1

2 etr
(
−2−1UΣ−1UT R

)
det

(
UΣ−1UT

)n/2
.

In the forthcoming sections, whenever Z is a random variable, we often write EZ [·]
to indicate mathematical expectation with respect to the law of Z.
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Proof of Proposition 3.4

Proof. — We observe that the following relation holds

ϕ
(ℓ,n)
Σ (X) = det(Σ)−ℓ/2ϕ(ℓ,n)

(
XΣ−1/2

)
,(4.7)

where ϕ(ℓ,n) denotes the standard Gaussian density on Rℓ×n. From the definition (3.19)
and the relation (4.7), it hence follows that∫

Rℓ×n
H(ℓ,n)

κ (X; Σ)H(ℓ,n)
σ (X; Σ)ϕ(ℓ,n)

Σ (X)(dX)

= det(Σ)ℓk+ℓl−ℓ/2
∫
Rℓ×n

H(ℓ,n)
κ

(
XΣ−1/2

)
H(ℓ,n)

σ

(
XΣ−1/2

)
ϕ(ℓ,n)

(
XΣ−1/2

)
(dX).

Applying the change of variables Y = XΣ−1/2, we have (dY ) = det(Σ−1/2)ℓ(dX) =
det(Σ)−ℓ/2(dX) (see e.g. [Mui82, Theorem 2.1.5]), i.e. (dX) = det(Σ)ℓ/2(dY ), so that
the integral above becomes

det(Σ)ℓk+ℓl−ℓ/2
∫
Rℓ×n

H(ℓ,n)
κ

(
XΣ−1/2

)
H(ℓ,n)

σ (XΣ−1/2)ϕ(ℓ,n)
(
XΣ−1/2

)
(dX)

= det(Σ)ℓk+ℓl
∫
Rℓ×n

H(ℓ,n)
κ (Y )H(ℓ,n)

σ (Y )ϕ(ℓ,n)(Y )(dY )

= I {κ = σ} det(Σ)2ℓk4−k
(

n

2

)−1

κ
k!Cκ(Idℓ),

where we used (3.9). This proves the statement. □

Proof of Theorem 3.5

The proof of Theorem 3.5 is based on the following key identity.

Lemma 4.3. — Let A ∈ Cℓ×ℓ be a complex symmetric matrix with positive real
part, B ∈ Cℓ×ℓ a complex symmetric matrix and t ∈ C such that ℜ(t) > (ℓ − 1)/2.
Then, we have

(4.8)
∫

Pℓ(R)
etr (−AR) det(R)t− ℓ+1

2 L(γ)
κ (RB)ν(dR) =(

γ + ℓ + 1
2

)
κ

Cκ(Idℓ)Γℓ(t) det(A)−t
k∑

s=0

∑
σ⊢s

(
κ

σ

)
(−1)s(

γ + ℓ+1
2

)
σ

1
Cσ(Idℓ)

(t)σCσ

(
BA−1

)
.

Proof. — This identity follows directly from the definition of Laguerre polynomi-
als in (2.10): indeed by linearity, it suffices to apply relation (2.12) on each zonal
polynomial Cσ appearing in the expansion of L(γ)

κ . □

We are now in position to prove Theorem 3.5.
Proof of Theorem 3.5. — The fact that the random variable F (X) = det(XXT )1/2

is an element of L2(µX) follows from the following observation: Denoting by s1, . . . , sℓ

the eigenvalues of XXT , we have that

ANNALES HENRI LEBESGUE



Matrix Hermite polynomials, Random determinants and the geometry of Gaussian fields 1009

det
(
XXT

)
= 1

ℓ!
∑

i1 ̸= ... ̸= iℓ ∈ [ℓ]
si1 · · · siℓ

=
∫
R

· · ·
∫
R

1
ℓ!I {ti ̸= tj, ∀ i ̸= j ∈ [ℓ]} µX(dt1) . . . µX(dtℓ).

This justifies the decomposition into matrix-variate Hermite polynomials of F . We
now prove formula (3.22). Using the definition of the polynomials H(ℓ,n)

κ (X; Σ)
in (3.19) and the relation (3.8), we obtain from (3.21)

F̂ (κ; Σ) = c(κ; Σ)−1EX

[
F (X)H(ℓ,n)

κ (X; Σ)
]

= c(κ; Σ)−1 det(Σ)ℓkγκEX

[
F (X)L(n−ℓ−1

2 )
κ

(
2−1XΣ−1XT

)]
,

where X ∼ Nℓ×n(0, Idℓ ⊗Σ). Applying the polar decomposition X = R1/2U and
noting that F (R1/2U) = det(R)1/2, we have

F̂ (κ; Σ) = c(κ; Σ)−1 det(Σ)ℓkγκE(R,U)

[
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1R1/2UΣ−1UT R1/2

)]
= c(κ; Σ)−1 det(Σ)ℓkγκE(R,U)

[
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)]

where in the last line we used the fact that L
( n−ℓ−1

2 )
κ (2−1R1/2UΣ−1UT R1/2) = L

( n−ℓ−1
2 )

κ

(2−1UΣ−1UT R) in view of the permutation invariance property (2.9) of zonal poly-
nomials appearing in the definition of matrix-variate Laguerre polynomials (2.10).
By conditioning on U , we can rewrite the above expectation as

E(R,U)

[
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)]
= EU

[
ER|U

[
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)]]
=: EU [Zκ(U ; Σ)] ,

where

Zκ(U ; Σ) := ER|U

[
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)]
,

so that

F̂ (κ; Σ) = c(κ; Σ)−1 det(Σ)ℓkγκEU [Zκ(U ; Σ)] .(4.9)

We start by computing Zκ(U ; Σ). Using the conditional probability density of R
given U in (4.6), we have
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(4.10) Zκ(U ; Σ)

=
∫

Pℓ(R)
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

) f(R,U)(R, U)
fU(U) ν(dR)

=
∫

Pℓ(R)
det(R)1/2L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)
× 1

Γℓ(n
2 )

1
2nℓ/2 det(R)

n−ℓ−1
2 etr

(
−2−1UΣ−1UT R

)
× det

(
UΣ−1UT

)n/2
ν(dR)

=
∫

Pℓ(R)
det(R)

n−ℓ
2 L

(n−ℓ−1
2 )

κ

(
2−1UΣ−1UT R

)
etr

(
−2−1UΣ−1UT R

)
ν(dR)

× 1
Γℓ

(
n
2

) 1
2nℓ/2 det

(
UΣ−1UT

)n/2

=: 1
Γℓ

(
n
2

) 1
2nℓ/2 det

(
UΣ−1UT

)n/2
· Iκ(U ; Σ),

where

(4.11) Iκ(U ; Σ)

=
∫

Pℓ(R)
det(R)n−ℓ

2 L
(n−ℓ−1

2 )
κ

(
2−1UΣ−1UT R

)
etr

(
−2−1UΣ−1UT R

)
ν(dR).

Exploiting identity (4.8) with γ = (n − ℓ − 1)/2, t = (n + 1)/2 and A = B =
2−1UΣ−1UT yields

Iκ(U ; Σ)

=
(

n

2

)
κ

Cκ(Idℓ)
k∑

s=0

∑
σ⊢s

(
κ

σ

)
(−1)s(

n
2

)
σ

1
Cσ(Idℓ)

(
n + 1

2

)
σ

Γℓ

(
n + 1

2

)

× det
(
2−1UΣ−1UT

)−(n+1)/2
Cσ(Idℓ)

= det
(
2−1UΣ−1UT

)−(n+1)/2
(

n

2

)
κ

Cκ(Idℓ)Γℓ

(
n + 1

2

) k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

= det
(
UΣ−1UT

)−(n+1)/2
2ℓ(n+1)/2

(
n

2

)
κ

Cκ (Idℓ)

Γℓ

(
n + 1

2

) k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

= det
(
UΣ−1UT

)−(n+1)/2
· dκ,
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where

(4.12) dκ := 2ℓ(n+1)/2
(

n

2

)
κ

Cκ(Idℓ)Γℓ

(
n + 1

2

) k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

.

Replacing this expression into the RHS of (4.10) eventually gives

Zκ(U ; Σ) = 1
Γℓ

(
n
2

) 1
2nℓ/2 det

(
UΣ−1UT

)n/2
det

(
UΣ−1UT

)−(n+1)/2
· dκ

= dκ
1

Γℓ

(
n
2

) 1
2nℓ/2 det

(
UΣ−1UT

)−1/2
.

Taking expectations with respect to U gives from (4.9)

F̂ (κ; Σ) = c(κ; Σ)−1 det(Σ)ℓkγκEU [Zκ(U ; Σ)]

= c(κ; Σ)−1 det(Σ)ℓkγκdκ
1

Γℓ

(
n
2

) 1
2nℓ/2EU

[
det

(
UΣ−1UT

)−1/2
]

.

The expectation with respect to U is computed using (4.5),

EU

[
det

(
UΣ−1UT

)−1/2
]

=
∫

O(ℓ,n)
det

(
UΣ−1UT

)−1/2
fU(U)µ̃(dU)

= det(Σ)−ℓ/2
∫

O(ℓ,n)
det

(
UΣ−1UT

)−(n+1)/2
µ̃(dU).

Replacing this expression into the previous relation, we conclude that

F̂ (κ; Σ)

= c(κ; Σ)−1 det(Σ)ℓk−ℓ/2γκdκ
1

Γℓ

(
n
2

) 1
2nℓ/2

∫
O(ℓ,n)

det
(
UΣ−1UT

)−(n+1)/2
µ̃(dU)

= det(Σ)−ℓk4k
(

n

2

)
κ

1
k!Cκ(Idℓ)

det(Σ)−ℓ/2γκdκ
1

Γℓ

(
n
2

) 1
2nℓ/2

×
∫

O(n,ℓ)
det

(
UΣ−1UT

)−(n+1)/2
µ̃(dU),

where we used the definition of c(κ; Σ) in (3.20). Combining this expression with the
definitions of γκ in (3.8) and dκ in (4.12), yields after simplifications

F̂ (κ; Σ) = (−2)k

det(Σ)ℓkk!

(
n

2

)
κ

k∑
s=0

∑
σ⊢s

(
κ

σ

)
(−1)s

(
n+1

2

)
σ(

n
2

)
σ

× det(Σ)−ℓ/22ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) ∫
O(n,ℓ)

det
(
UΣ−1UT

)−(n+1)/2
µ̃(dU),

which finishes the proof of Theorem 3.5. □
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Proof of Theorem 3.6

Proof. — In order to prove (3.23), it is sufficient to prove the relation

(4.13) det(Σ)−ℓ/22ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) ∫
O(n,ℓ)

det
(
UΣ−1UT

)−(n+1)/2
µ̃(dU)

= (n)ℓ

(2π)ℓ/2κn−ℓ

V (EΣ[ℓ],Bn[n − ℓ]) ,

since then (3.23) directly follows after combining (4.13) with (3.22). Let us now
prove (4.13). A direct computation shows that

(4.14) 2ℓ/2 Γℓ

(
n+1

2

)
Γℓ

(
n
2

) = (n)ℓ

(2π)ℓ/2
κn

κn−ℓ

, κn = πn/2

Γ(1 + n/2) .

Since the mixed volume on the RHS of (4.13) only involves the convex bodies EΣ
and Bn, we can use (2.18) to represent it as an intrinsic volume,

(4.15) V (EΣ[ℓ],Bn[n − ℓ]) = κn−ℓ(
n
ℓ

) Vℓ(EΣ).

Using the integral representation (2.16) for the ℓth intrinsic volume yields

Vℓ(EΣ) =
(

n

ℓ

)
κn

κℓκn−ℓ

∫
G(n,ℓ)

volℓ (EΣ | U ) νn,ℓ(dU ),

where νn,ℓ is the Haar probability measure on the Grassmannian G(n, ℓ). Combining
this with (4.14) shows that the identity in (4.13) is equivalent to

(4.16) det(Σ)−ℓ/2
∫

O(n,ℓ)
det

(
UΣ−1UT

)−(n+1)/2
µ̃(dU)

= 1
κℓ

∫
G(n,ℓ)

volℓ(EΣ|U )νn,ℓ(dU ).

Therefore it remains to prove (4.16). We rewrite the LHS of (4.16) as follows∫
O(n,ℓ)

det
(
UΣ−1UT

)−1/2
Πn,ℓ(dU) =

∫
O(n,ℓ)

det
([

UΣ−1UT
]−1

)1/2
Πn,ℓ(dU),

where Πn,ℓ(dU) = det(Σ)−ℓ/2 det(UΣ−1UT )−n/2µ̃(dU) is a probability measure on
O(n, ℓ) by virtue of (4.5). We now argue that∫

O(n,ℓ)
det

([
UΣ−1UT

]−1
)1/2

Πn,ℓ(dU) =
∫

O(n,ℓ)
det

(
UΣUT

)1/2
Πn,ℓ(dU).

In order to see this, let us write Σ = OΛOT for O ∈ O(n), Λ = diag(λ1, . . . , λn).
Then, we have det(UΣ−1UT ) = det(WΛ−1W T ) with W = UO ∈ O(n, ℓ) since
WW T = UO(UO)T = Idℓ. Therefore, it suffices to consider the case where Σ =
Λ is diagonal. Moreover, since W ∈ O(n, ℓ) we have for every Q ∈ O(ℓ) that
(QW )(QW )T = QWW T QT = Idℓ, that is QW ∈ O(n, ℓ). This implies that, up to
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rotating the matrix W = UO, we can assume that the rows of W coincide with the
ℓ first canonical basis vectors e1, . . . , eℓ in Rn. Then, we compute

det
([

WΛ−1W T
]−1

)
= det

(
WΛ−1W T

)−1
=
(

ℓ∏
i=1

λ−1
i

)−1

=
ℓ∏

i=1
λi = det

(
WΛW T

)
.

Therefore, integrating on O(n, ℓ) and noting that Πn,ℓ(d(QU)) = Πn,ℓ(dU) for every
Q ∈ O(ℓ) yields the claim. Now, since Πn,ℓ is left-invariant by orthogonal transfor-
mations, it can be viewed as a probability measure on O(n, ℓ)/O(ℓ) ≃ G(n, ℓ), where
two elements U1, U2 in O(n, ℓ) are equivalent if and only if there exists Q ∈ O(ℓ) such
that U1 = QU2. Thus, since νn,ℓ is the unique left and right-invariant Haar probabil-
ity measure on G(n, ℓ), it must coincide with Πn,ℓ. Writing U for the ℓ-dimensional
linear subspace generated by the rows of U , we have that the matrix UΣUT rep-
resents the ellipsoid EΣ|U of volume volℓ(EΣ|U ) = κℓ det(UΣUT )1/2, implying in
turn ∫

O(n,ℓ)
det

(
UΣUT

)1/2
Πn,ℓ(dU) =

∫
G(n,ℓ)

1
κℓ

volℓ (EΣ | U ) νn,ℓ(dU ).

This proves (4.16) and thus (4.13). Formula (3.24) follows from (3.23) and rela-
tion (4.15). Formula (3.25) is obtained when setting κ = (0) in (3.23) and (3.24),
respectively, and using the fact that F̂ ((0); Σ) = EX [F (X)]. □

4.2.1. An attempt at generalizing to distinct covariance matrices

In this section, we try to generalize the results of Theorem 3.5 and Theorem 3.6
to the more general setting where the rows of X are independent Gaussian vectors
with distinct covariance matrices.

Let {Σi ∈ Rn×n : i ∈ [ℓ]} be positive-definite symmetric matrices and {X(i) =
(X(i)

1 , . . . , X(i)
n ) : i ∈ [ℓ]} a collection of ℓ independent Gaussian vectors with re-

spective covariance matrices Σ1, . . . , Σℓ. We write X for the ℓ × n matrix whose
ith row is X(i). Then, the vector Vec(XT ) has the multivariate normal distribution
Nℓn(0, Ω), where

Ω =
ℓ∑

i=1

(
eie

T
i ⊗ Σi

)
= diag(Σ1, . . . , Σℓ) = Σ1 ⊕ . . . ⊕ Σℓ,

with ei ∈ Rℓ denoting the ith canonical basis vector. The density function of X is
given by

ϕΩ
(
Vec

(
XT

))
= (2π)−nℓ/2 det(Ω)−nℓ/2etr

(
−1

2Ω−1Vec
(
XT

)
Vec

(
XT

)T
)

.

If X is distributed as above, a computation shows that the ℓ × n matrix

YX :=
(

Idℓ ⊗Vec
(
XT

)T
Ω−1/2

)
(Vec(Idℓ) ⊗ Idn)

has the standard matrix normal distribution. Therefore, we consider the matrix-
variate polynomials

H(ℓ,n)
κ (X; Ω) = det(Ω)kH(ℓ,n)

κ (YX), κ ⊢ k(4.17)
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satisfying the orthogonality relation (similar as in the proof of Proposition 3.4)∫
Rℓ×n

H(ℓ,n)
κ (X; Ω)H(ℓ,n)

σ (X; Ω)ϕΩ(Vec(XT ))(dX)

= I {κ = σ} × det(Ω)2k4−k

(
n

2

)−1

κ

k!Cκ(Idℓ),

and thus the family
HΩ:=

{
c(κ; Ω)−1/2H(ℓ,n)

κ (·; Ω) : κ ⊢ k ⩾ 0
}

,

c(κ; Ω):= det(Ω)2k4−k

(
n

2

)−1

κ

k!Cκ(Idℓ)

forms an orthonormal system of L2(µX), where, as usual, µX indicates the spectral
measure associated with XXT . Expanding the function F (X) = det(XXT )1/2 ∈
L2(µX) in the basis HΩ, using the relation

ϕΩ
(
Vec

(
XT

))
= det(Ω)−1/2ϕ(ℓ,n)(YX)

and the definition of H(ℓ,n)
κ (·; Ω), we have that the associated projection coefficients

are

F̂ (κ; Ω)

= c(κ; Ω)−1
∫
Rℓ×n

F (X)H(ℓ,n)
κ (X; Ω)ϕΩ

(
Vec

(
XT

))
(dX)

= det(Ω)k−1/2
∫
Rℓ×n

F (X)H(ℓ,n)
κ (YX)ϕ(ℓ,n)(YX)(dX)

= det(Ω)k−1/2γκ

∫
Rℓ×n

F (X)L( n−ℓ−1
2 )

κ

(
2−1YXY T

X

)
(2π)−nℓ/2etr

(
−2−1YXY T

X

)
(dX).

The idea is now to perform the polar change of variables X = R1/2U . In order to do
so, we compute tr(YXY T

X ):

tr
(
YXY T

X

)
= tr

(
Ω−1Vec

(
XT

)
Vec

(
XT

)T
)

= Vec
(
XT

)T
Ω−1Vec

(
XT

)
= Vec

(
XT

)T
ℓ∑

i=1

(
eie

T
i ⊗ Σ−1

i

)
Vec

(
XT

)
=

ℓ∑
i=1

Vec
(
XT

)T (
eie

T
i ⊗ Σ−1

i

)
Vec

(
XT

)
.

Then, using the relation Vec(S)T (BD ⊗ E)Vec(S) = tr(DST ESB) (see e.g.
[GN00, Theorem 1.2.22]), we obtain

tr(YXY T
X ) =

ℓ∑
i=1

Vec
(
XT

)T (
eie

T
i ⊗ Σ−1

i

)
Vec(XT ) =

ℓ∑
i=1

tr
(
eT

i R1/2UΣ−1
i UT R1/2ei

)

=
ℓ∑

i=1
tr
(
eie

T
i R1/2UΣ−1

i UT R1/2
)

= tr
(

ℓ∑
i=1

eie
T
i R1/2UΣ−1

i UT R1/2
)

.

The difficulty to proceed now is the following: the above computation suggests that
we cannot write tr(YXY T

X ) as tr(AR) for some matrix A, due to the fact that one
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cannot exploit the permutation invariance of the trace in view of presence of the
matrix eie

T
i . We remark that, when Σi = Σ for every i = 1, . . . , ℓ, the above

formula gives tr(YXY T
X ) = tr(Idℓ UΣ−1UT ) = tr(UΣ−1UT ), which coincides with our

computations in the proof of Theorem 3.5. This observation makes it in particular
difficult to directly apply the integration formula (2.12), and thus hints to the fact
that the polynomials H(ℓ,n)

κ (·; Ω) are not easily amenable to matrix calculus.

4.3. Proofs of Section 3.3

Proofs of Theorem 3.10 and Theorem 3.12

Our proofs of Theorem 3.10 and Theorem 3.12 involve auxiliary polynomials
introduced in [Hay69]. For X ∈ Rℓ×n and A ∈ Rn×n symmetric, we consider the
polynomials Pκ(X, A), κ ⊢ k defined by (see [Hay69, Eq. (34)])

etr
(
−XXT

)
Pκ(X, A) = (−1)k

πnℓ/2

∫
Rℓ×n

etr
(
−2iXUT

)
etr

(
−UUT

)
Cκ

(
UAUT

)
(dU).

These polynomials have the following properties (see e.g. [MPH95, p. 229] and [Hay69,
Section 6]).

Lemma 4.4. — For every k ⩾ 0, κ ⊢ k and symmetric A ∈ Rn×n, we have that

Pκ(X, Idn) = 2k
(

n

2

)
κ

H(ℓ,n)
κ

(√
2X

)
(4.18) ∫

O(n)
Pκ(XH, A)µ̃(dH) =

∫
O(n)

Pκ(X, HAHT )µ̃(dH) = Cκ(A)
Cκ(Idn)Pκ(X, Idn)(4.19)

Pκ(X, A) = EV

[
Cκ

(
(X + iV )A(X + iV )T

)]
, V ∼ N (0, Idℓ /2 ⊗ Idn) .(4.20)

In order to prove Theorem 3.10, we shall first show the following Lemma, linking
the conditional expectation of H(ℓ,n)

κ with the polynomial Pκ introduced above.
Lemma 4.5. — Let k ⩾ 0 be an integer, κ ⊢ k a partition of k and ∆ =

diag(d1, . . . , dn) a diagonal matrix with |di| ⩽ 1 for i = 1, . . . , n. Then, for X0 ∼
Nℓ×n(0, Idℓ ⊗ Idn), we have for every X ∈ Rℓ×n,

EX0

[
H(ℓ,n)

κ

(
X∆ + X0

(
Idn −∆2

)1/2
)]

= 2−k
(

n

2

)−1

κ
Pκ

(
X√

2
, ∆2

)
.(4.21)

Proof. — For W = (Wlj) ∈ Rℓ×n we use the implicit representation (2.6) of
Cκ(WW T ) as homogeneous polynomials of degree 2k in the entries of W ,

Cκ

(
WW T

)
=

∑
|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

W
αij

lj .

Then, using (4.20) with B = diag(b1, . . . , bn) such that b1, . . . , bn ⩾ 0, we can write
Pκ(W, B) = EV

[
Cκ

(
(W + iV )B(W + iV )T

)]
= EV

[
Cκ

((
WB1/2 + iV B1/2

) (
WB1/2 + iV B1/2

)T
)]
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=
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

EVlj

[(
Wlj

√
bj + iVlj

√
bj

)αlj
]

=
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

b
αlj/2
j EVlj

[(Wlj + iVlj)αlj ] .

Using the one-dimensional representation of Hermite polynomials as Gaussian ex-
pectation,

EVlj
[(Wlj + iVlj)αlj ] = 2−αlj/2Hαlj

(√
2Wlj

)
leads to

Pκ(W, B) =
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

b
αlj/2
j 2−αlj/2Hαlj

(√
2Wlj

)

= 2−k
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

b
αlj/2
j H2αlj

(√
2Wlj

)
.

(4.22)

Applying (4.22) with W = X/
√

2 and B = ∆2, yields

Pκ

(
X√

2
, ∆2

)
= 2−k

∑
|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

d
αlj

j Hαlj
(Xlj).(4.23)

On the other hand, applying (4.22) with W = (X/
√

2)∆ + (X0/
√

2)(Idn −∆2)1/2

and B = Idn, we have

(4.24) Pκ

(
X√

2
∆ + X0√

2
(
Idn −∆2

)1/2
, Idn

)

= 2−k
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

Hαlj

(
djXlj +

√
1 − d 2

j X0,lj

)
.

Taking expectation with respect to X0 in (4.24), we infer

EX0

[
H(ℓ,n)

κ

(
X∆ + X0

(
Idn −∆2

)1/2
)]

= 2−k
(

n

2

)−1

κ
EX0

[
Pκ

(
X√

2
∆ + X0√

2
(
Idn −∆2

)1/2
, Idn

)]
(by (4.18))

= 2−k
(

n

2

)−1

κ
EX0

2−k
∑

|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

Hαlj

(
djXlj +

√
1 − d2

jX0,lj

) (by (4.24))

= 2−k
(

n

2

)−1

κ
2−k

∑
|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

EX0,lj

[
Hαlj

(
djXlj +

√
1 − d2

jX0,lj

)]
(by independence)

= 2−k
(

n

2

)−1

κ
2−k

∑
|α|=2k

zκ
α

ℓ∏
l=1

n∏
j=1

d
αlj

j Hαlj
(Xlj) (by (3.31))
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= 2−k
(

n

2

)−1

κ
Pκ

(
X√

2
, ∆2

)
, (by (4.23))

which proves relation (4.21). □

We are now in position to prove Theorem 3.10.
Proof of Theorem 3.10. — In order to prove (3.32), we use Fubini and apply (4.21)

with ∆ = e−tA and integrate both sides with respect to the Haar measure on O(n)
to obtain:

O(ℓ,n)
t;A H(ℓ,n)

κ (X) = E
[∫

O(n)
H(ℓ,n)

κ

(
XHe−tA + X0

(
Idn −e−2tA

)1/2
)

µ̃(dH)
∣∣∣∣∣X

]

=
∫

O(n)
E
[
H(ℓ,n)

κ

(
XHe−tA + X0

(
Idn −e−2tA

)1/2
) ∣∣∣∣X] µ̃(dH)

= 2−k
(

n

2

)−1

κ

∫
O(n)

Pκ

(
XH√

2
, e−2tA

)
µ̃(dH)

= 2−k
(

n

2

)−1

κ

Cκ

(
e−2tA

)
Cκ(Idn) Pκ

(
X√

2
, Idn

)
=

Cκ

(
e−2tA

)
Cκ(Idn) H(ℓ,n)

κ (X),

where we used (4.18) and (4.19). This finishes the proof of the first part of the
statement. Let us now prove the second part: Assume first that A = diag(a, . . . , a)
and let f ∈ Π(ℓ, n) (see (3.29)). Then, one has that

O(ℓ,n)
t;A f(X) =

∫
O(n)

E
[
f
(
e−atXH +

√
1 − e−2atX0H

) ∣∣∣X] µ̃(dH)

=
∫

O(n)
E
[
f
(
e−atX +

√
1 − e−2atX0

) ∣∣∣X] µ̃(dH) = P
(ℓn)
at f(X),

(4.25)

where we used the facts that X0
L= X0H for H ∈ O(n), f is an element of Π(ℓ, n)

and µ̃ is a probability measure on O(n). Finally, if the ai’s are not all equal, then
arguing as in Remark 3.11(b), one can derive a relation contradicting the semigroup
property of O(ℓ,n)

t;A . □

Proof of Theorem 3.12. — We proceed in two steps. In view of Remark 3.13, the
matrix R is necessarily symmetric and has non-negative eigenvalues. We start by
showing that (3.35) holds for diagonal matrices R = diag(r1, . . . , rn). The state-
ment for arbitrary symmetric matrices will then follow from the diagonal case by a
reduction argument.

Step 1: R is diagonal. — Let us first assume that r1, . . . , rn > 0. Since X
L=

XH, H ∈ O(n) and using the fact that H(ℓ,n)
κ (XH) = H(ℓ,n)

κ (X) for every H ∈ O(n)
(as can be seen e.g. from (3.5) or (3.8)), we have

(4.26) E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
XR + X0

(
Idn −R2

)1/2
)]
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= E
[
H(ℓ,n)

κ (X)E
[
H(ℓ,n)

σ

(
XR + X0

(
Idn −R2

)1/2
) ∣∣∣∣X]]

= E
[∫

O(n)
H(ℓ,n)

κ (XH)E
[
H(ℓ,n)

σ

(
XHR + X0

(
Idn −R2

)1/2
) ∣∣∣∣X] µ̃(dH)

]

= E
[
H(ℓ,n)

κ (X)E
[∫

O(n)
H(ℓ,n)

σ

(
XHR + X0

(
Idn −R2

)1/2
)

µ̃(dH)
∣∣∣∣∣X

]]
= E

[
H(ℓ,n)

κ (X)O(ℓ,n)
1;R∗ H(ℓ,n)

σ (X)
]

,

where R∗ := diag(ln(1/r1), . . . , ln(1/rn)). Then, exploiting the action of O(ℓ,n)
t;R∗ on

matrix-variate Hermite polynomials given in (3.32) we infer

E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
XR + X0

(
Idn −R2

)1/2
)]

=
Cκ

(
e−2R∗

)
Cκ(Idn) E

[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (X)

]
= Cκ(R2)

Cκ(Idn)E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ (X)

]
= I {κ = σ} × 4−k

(
n

2

)−1

κ
k!Cκ(R2) Cκ(Idℓ)

Cκ(Idn) ,

where we used that e−2R∗ = R2 and the orthogonality relation for Hermite polyno-
mials (3.9). If some of r1, . . . , rn are equal to zero, the conclusion remains valid, as
in this case, from (4.26), we can use (4.21) and (4.19) yielding the same conclusion.

Step 2: R is symmetric. — Since R is symmetric, there exists O ∈ O(n) such that
R = O∆ROT , where ∆R is diagonal. Moreover, since R2 = O∆2

ROT , we have
Idn −R2 = Idn −O∆2

ROT = OOT − O∆2
ROT = O

(
Idn −∆2

R

)
OT

yielding (Idn −R2)1/2 = O(Idn −∆2
R)1/2OT as can be seen from the computation[

O
(
Idn −∆2

R

)1/2
OT

]2
=
[
O
(
Idn −∆2

R

)1/2
OT

] [
O
(
Idn −∆2

R

)1/2
OT

]
= O

(
Idn −∆2

R

)
OT = Idn −R2.

Exploiting once more the fact that H(ℓ,n)
κ (XO) = H(ℓ,n)

κ (X) for every O ∈ O(n), we
have

E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
XR + X0

(
Idn −R2

)1/2
)]

= E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
XO∆ROT + X0O

(
Idn −∆2

R

)1/2
OT

)]
= E

[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

((
XO∆R + X0O

(
Idn −∆2

R

)1/2
)

OT
)]

= E
[
H(ℓ,n)

κ (XO)H(ℓ,n)
σ

(
XO∆R + X0O

(
Idn −∆2

R

)1/2
)]

= E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
X∆R + X0

(
Idn −∆2

R

)1/2
)]

,
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where the last equality follows from the fact that the pair (X, X0) has the same
distribution as the pair (XO, X0O). Since ∆R is diagonal, we can apply the conclusion
of Step 1 to infer

E
[
H(ℓ,n)

κ (X)H(ℓ,n)
σ

(
X∆R + X0

(
Idn −∆2

R

)1/2
)]

= I {κ = σ} × 4−k
(

n

2

)−1

κ
k!Cκ

(
∆2

R

) Cκ(Idℓ)
Cκ(Idn)

= I {κ = σ} × 4−k
(

n

2

)−1

κ
k!Cκ

(
R2
) Cκ(Idℓ)

Cκ(Idn) ,

where in the last line, we used the fact that Cκ(∆2
R) = Cκ(O∆2

ROT ) = Cκ(R2). This
finishes the proof of Theorem 3.12. □

4.4. Proofs of Section 3.4

Proof of Proposition 3.16

Proof. — The variance of the total variation is obtained from (3.40). Using the
orthogonality of Wiener chaoses, the variance of V(fℓ; U) is computed to be

Var[V(fℓ; U)] = Var
∑

k ⩾ 1
V (fℓ; U) [2k]

 =
∑
k ⩾ 1

Var[V (fℓ; U) [2k]](4.27)

where

Var[V(fℓ; U)[2k]] =
∑
κ⊢k

∑
σ⊢k

Φ̂(κ)Φ̂(σ)
∫

U2
E
[
H(ℓ,n)

κ (f′ℓ(z)) H(ℓ,n)
σ (f′ℓ(z′))

]
dzdz′,

with Φ̂(κ) as in (3.26). Now, in view of (3.41), we can apply Theorem 3.12 with
R = R(z, z′) to infer

E
[
H(ℓ,n)

κ (f′ℓ(z)) H(ℓ,n)
σ (f′ℓ(z′))

]
= I {κ = σ} × 4−k

(
n

2

)−1

κ
k!Cκ

(
R(z, z′)2

) Cκ(Idℓ)
Cκ(Idn) ,

yielding

Var[V (fℓ; U) [2k]] =
∑
κ⊢k

Φ̂(κ)24−k

(
n

2

)−1

κ

k! Cκ(Idℓ)
Cκ(Idn)

∫
U2

Cκ

(
R(z, z′)2

)
dzdz′.

The relation in (3.42) then follows from (4.27). □

Proof of Theorem 3.17

Proof. — The Wiener chaos expansion of V(T(ℓ)
n ;T3) is given by (3.40):

V(T(ℓ)
n ;T3) =

(
En

3

)ℓ/2 ∑
k ⩾ 0

V
(
T(ℓ)

n ;T3
)

[2k],(4.28)
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where for k ⩾ 0,

V
(
T(ℓ)

n ;T3
)

[2k] =
∑
κ⊢k

Φ̂(κ)
∫
T3

H(ℓ,3)
κ

(
Ṫ(ℓ)

n (z)
)

dz

and Φ̂(κ) is as in (3.26). In particular, for k = 0, we have by (3.27),

E
[
V
(
T(ℓ)

n ;T3
)]

=
(

En

3

)ℓ/2
Φ̂((0)) =

(
En

3

)ℓ/2
2ℓ/2 Γℓ(2)

Γℓ

(
3
2

) ,

which proves (3.50).
Second Wiener chaos component. The second Wiener chaos of V(T(ℓ)

n ;T3) is given
by

V
(
T(ℓ)

n ;T3
)

[2] =
(

En

3

)ℓ/2
Φ̂((1))

∫
T3

H
(ℓ,3)
(1)

(
Ṫ(ℓ)

n (z)
)

dz.(4.29)

In the following lemma, we establish the asymptotic variance of the second Wiener
chaos in the high-energy regime:

Lemma 4.6. — As n → ∞, n ̸≡ 0, 4, 7 (mod 8), we have

Var
[
V
(
T(ℓ)

n ;T3
)

[2]
]

=
(

En

3

)ℓ

2ℓ Γℓ(2)2

Γℓ(3
2)2

ℓ

2Nn

(
1 + O

(
n−1/28+o(1)

))
.

Proof. — Since, for every z, z′ ∈ T3, we have

E
[
∂̃jT

(i)
n (z) · ∂̃j′T (i′)

n (z′)
]

= I {i = i′} ×
(

En

3

)−1
r

(n)
j,j′(z − z′)(4.30)

we note that the matrices Ṫ(ℓ)
n (z) and Ṫ(ℓ)

n (z′) are such that

Ṫ(ℓ)
n (z′) L= Ṫ(ℓ)

n (z)Rn(z − z′) + X0
(
Id3 −Rn(z − z′)2

)1/2
,(4.31)

where X0 = X0(z, z′) is an independent copy of Ṫ(ℓ)
n (z) and the matrix Rn(z − z′) is

given by

Rn(z − z′) :=
(
r̃

(n)
j,j′(z − z′)

)
j, j′ ∈ [3]

, r̃
(n)
j,j′(z − z′) :=

(
En

3

)−1 ∂2

∂zj∂z′
j′

r(n)(z − z′).

Indeed, from (4.31) it follows that (see also Remark 3.13 part (a))

E
[
∂̃jT

(i)
n (z) · ∂̃j′T (i′)

n (z′)
]

= I {i = i′} × r̃
(n)
j,j′(z − z′),

which is (4.30). In particular, the variance of the second Wiener chaos component is
computed by Proposition 3.16,

(4.32) Var
[
V
(
T(ℓ)

n ;T3
)

[2]
]
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=
(

En

3

)ℓ

Φ̂((1))24−1
(3

2

)−1

(1)

C(1)(Idℓ)
C(1)(Id3)

∫
T3×T3

C(1)
(
Rn(z − z′)2

)
dzdz′

=
(

En

3

)ℓ

Φ̂((1))24−1 2
3

ℓ

3

∫
T3

tr
(
Rn(z)2

)
dz

=
(

En

3

)ℓ

Φ̂((1))2 ℓ

18

∫
T3

tr
(
Rn(z)2

)
dz,

where we used that C(1)(A) = tr(A) and stationarity of T(ℓ)
n to reduce integrations

on T3 × T3 to T3. A direct computation gives

tr(Rn(z)2) =
∑

j,j′ ∈ [3]

(
r̃

(n)
j,j′(z)

)2
.

Now, in view of (3.44) and (3.48), we have

r̃
(n)
j,j′(z) =

(
En

3

)−1 (
−4π2

) 1
Nn

∑
λ ∈ Λn

λjλj′eλ(z).

Integrating over T3 and using the orthogonality relation for complex exponentials
on the torus ∫

T3
eλ(z)dz = I {λ = 0}(4.33)

then yields∫
T3

tr(Rn(z)2)dz =
∫
T3

∑
j, j′ ∈ [3]

(
r̃

(n)
j,j′(z)

)2
dz

=
(

En

3

)−2 ∑
j,j′ ∈ [3]

16π4 1
N 2

n

∑
λ,λ′∈Λn

λjλj′λ′
jλ

′
j′

∫
T3

eλ+λ′(z)dz

=
(

En

3

)−2
16π4 1

N 2
n

∑
j,j′ ∈ [3]

∑
λ ∈ Λn

λ2
jλ

2
j′

= 9
n2N 2

n

∑
j, j′ ∈ [3]

∑
λ ∈ Λn

λ2
jλ

2
j′

= 9
Nn

1
n2Nn

∑
j, j′ ∈ [3]

∑
λ ∈ Λn

λ2
jλ

2
j′ .

Now, using the relation (see e.g. [Cam19, Appendix C])
1

n2Nn

∑
λ ∈ Λn

λ2
jλ

2
j′ = 1

5I {j = j′} + 1
15I {j ̸= j′} + O

(
n−1/28+o(1)

)
gives∫

T3
tr
(
Rn(z)2

)
dz = 9

Nn

(3
5 + 6

15 + O
(
n−1/28+o(1)

))
= 9

Nn

(
1 + O

(
n−1/28+o(1)

))
,

so that, computing Φ̂((1)) = 2ℓ/2 Γℓ(2)
Γℓ( 3

2 ) from (3.26) gives by (4.32)

Var
[
V
(
T(ℓ)

n ;T3
)

[2]
]

=
(

En

3

)ℓ

Φ̂((1))2 ℓ

18
9

Nn

(
1 + O

(
n−1/28+o(1)

))
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=
(

En

3

)ℓ

2ℓ Γℓ(2)2

Γℓ(3
2)2

ℓ

2Nn

(
1 + O

(
n−1/28+o(1)

))
,

which finishes the proof of Lemma 4.6. □

Higher-order chaotic components. The goal of this part is to prove the following
statement, dealing with the variance of the tail of the Wiener chaos expansion of
V(T(ℓ)

n ;T3).

Proposition 4.7. — As n → ∞, n ̸≡ 0, 4, 7 (mod 8), we have

Var
∑

k ⩾ 2
V
(
T(ℓ)

n ;T3
)

[2k]
 = o

(
Var

[
V
(
T(ℓ)

n ;T3
)

[2]
])

.(4.34)

In particular, as n → ∞, n ̸≡ 0, 4, 7 (mod 8),

V
(
T(ℓ)

n ;T3
)

= V
(
T(ℓ)

n ;T3
)

[2] + oP(1),(4.35)

where oP(1) denotes a sequence of random variables converging to zero in probability,
that is, in the high-energy regime, the random variable V(T(ℓ)

n ;T3) is dominated in
the L2(P)-sense by its projection on the second Wiener chaos.

The proof of Proposition 4.7 is based on a suitable partition of the torus into singu-
lar and non-singular pairs of cubes, as introduced in [ORW08] (see also e.g. [DNPR19,
Not21, PR18] for further references using this approach).

We now describe this partition. For every n ∈ S3, we partition the torus into a
disjoint union of cubes of length 1/M , where M = Mn ⩾ 1 is an integer proportional
to

√
En, as follows: Let Q0 = [0, 1/M)3; then we consider the partition of T3 obtained

by translating Q0 in the directions k/M, k ∈ Z3. Denote by P(M) the partition of
T3 that is obtained in this way. By construction, we have that card(P(M)) = M3.
Let us now denote by

V
(
T(ℓ)

n ;T3
) [

4+
]

:=
∑
k ⩾ 2

V
(
T(ℓ)

n ;T3
)

[2k]

the projection of V(T(ℓ)
n ;T3) onto chaoses of order at least 4. By linearity, we can

write
(4.36) V

(
T(ℓ)

n ;T3
) [

4+
]

=
∑

Q ∈ P(M)
V
(
T(ℓ)

n ; Q
) [

4+
]

, ℓ ∈ [3]

where V(T(ℓ)
n ; Q) denotes the total variation of T(ℓ)

n in the cube Q. From now on, we
fix a small number 0 < η < 10−10. In the forthcoming definition, we define singular
pairs of points and cubes. Recall the notations

r
(n)
i (z) := ∂

∂zi

r(n)(z), r
(n)
i,j (z) := ∂2

∂zi∂zj

r(n)(z), (i, j) ∈ [3] × [3].

Definition 4.8 (Singular pairs of points and cubes). — A pair of points (z, z′) ∈
T3 × T3 is called a singular pair of points if one of the following inequalities is
satisfied:∣∣∣r(n)(z − z′)

∣∣∣ > η ,
∣∣∣r(n)

i (z − z′)
∣∣∣ > η

√
En/3 ,

∣∣∣r(n)
i,j (z − z′)

∣∣∣ > ηEn/3
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for (i, j) ∈ [3] × [3]. A pair of cubes (Q, Q′) ∈ P(M)2 is called a singular pair
of cubes if the product Q × Q′ contains a singular pair of points. We denote by
S = S(M) ⊂ P(M)2 the set of singular pairs of cubes. A pair of cubes (Q, Q′) ∈ Sc

is called non-singular. By construction, P(M)2 = S ∪ Sc.

For fixed Q ∈ P(M), let us furthermore denote by BQ the union over all cubes
Q′ ∈ P(M) such that (Q, Q′) ∈ S. Arguing as in [DNPR19, Lemma 6.3], we have
that

(4.37) Leb(BQ) = O(Rn(6)),

where Rn(6) =
∫
T3 [r(n)(z)]6dz. In view of (4.36), we can thus split the variance into

its singular and non-singular contribution as follows

Var
[
V
(
T(ℓ)

n ;T3
) [

4+
]]

=

 ∑
(Q,Q′) ∈ S

+
∑

(Q,Q′) ∈ Sc

E
[
V
(
T(ℓ)

n ; Q
) [

4+
]

· V
(
T(ℓ)

n ; Q′
) [

4+
]]

:= ∆(ℓ)
n,1 + ∆(ℓ)

n,2.

The contributions to the variance of the terms ∆(ℓ)
n,j, j = 1, 2 are given in Lemma 4.9

and 4.10 below. The combination of both results proves Proposition 4.7.

Lemma 4.9 (Singular part). — As n → ∞, n ̸≡ 0, 4, 7 (mod 8), we have that∣∣∣∆(ℓ)
n,1

∣∣∣ = o
(
Var

[
V
(
T(ℓ)

n ;T3
)

[2]
])

.

Proof. — Using the triangle inequality, the Cauchy–Schwarz inequality, and (4.37),
we can write∣∣∣∆(ℓ)

n,1

∣∣∣ ⩽ ∑
(Q,Q′) ∈ S

√
Var

[
V
(
T(ℓ)

n ; Q
)

[4+]
]√

Var
[
V
(
T(ℓ)

n ; Q′
)

[4+]
]

(4.38)

≪ E3
nRn(6) · Var

[
V
(
T(ℓ)

n ; Q0
) [

4+
]]

,(4.39)

where we exploited stationarity of T(ℓ)
n and where Q0 denotes the cube around the

origin. Now we notice that

Var
[
V
(
T(ℓ)

n ; Q0
) [

4+
]]

⩽ Var
[
V
(
T(ℓ)

n ; Q0
)]

⩽ E
[
V
(
T(ℓ)

n ; Q0
)2
]

.

By definition of the total variation (3.47), we can write

E
[
V
(
T(ℓ)

n ; Q0
)2
]

=
(

En

3

)ℓ ∫
Q0×Q0

E
[
Φ
(

Ṫ(ℓ)
n (z)

)
Φ
(

Ṫ(ℓ)
n (z′)

)]
dzdz′.

Now for every fixed z, z′ ∈ Q0, we have by the Cauchy–Schwarz inequality

E
[
Φ
(

Ṫ(ℓ)
n (z)

)
Φ
(

Ṫ(ℓ)
n (z′)

)]
⩽

√√√√E
[
Φ
(

Ṫ(ℓ)
n (z)

)2
]
E
[
Φ
(

Ṫ(ℓ)
n (z′)

)2
]

= E
[
Φ(N)2

]
= O(1),
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where N L= Nℓ×3(0, Idℓ ⊗ Id3). Therefore, bearing in mind that Leb(Q0) = M−3 =
O(E−3/2

n ), it follows that

E
[
V
(
T(ℓ)

n ; Q0
)2
]

= O
(
Eℓ

nM−6
)

= O
(
Eℓ−3

n

)
.

Combining this with the estimate in (4.38) yields |∆(ℓ)
n,1| ≪ E3

nRn(6)Eℓ−3
n ≪ Eℓ

nRn(6).
By [BM19, Eq. (1.18)], we have that Rn(6) ≪ N −7/3+o(1)

n , as n → ∞, n ̸≡ 0, 4, 7
(mod 8). Combining this with the estimate in Lemma 4.6 yields the desired conclusion.

□

Lemma 4.10 (Non-singular part). — As n → ∞, n ̸≡ 0, 4, 7 (mod 8), we have
that ∣∣∣∆(ℓ)

n,2

∣∣∣ = o
(
Var

[
V
(
T(ℓ)

n ;T3
)

[2]
])

.

Proof. — Using the expansion in matrix-Hermite polynomials and arguing as in
the proof of Proposition 3.16, we have that∣∣∣∆(ℓ)

n,2

∣∣∣ ⩽
Eℓ

n

∑
k ⩾ 2

∑
κ⊢k

Φ̂(κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ)

Cκ(Id3)
∑

(Q,Q′) ∈ Sc

∫
Q×Q′

∣∣∣Cκ

(
Rn(x − y)2

)∣∣∣ dxdy.

Now for a matrix S ∈ Cm×m, we denote by ρ(S) := max(|λ1|, . . . , |λm|), where
λi denote the eigenvalues of S. We now use the following two facts: (i) For every
partition κ ⊢ k, every matrix S ∈ Cm×m and every x such that ρ(S) < x, one has that
|Cκ(S)| ⩽ xkCκ(Idm) (see for instance [MPH95, p. 197]) and (ii) by Gerschgorin’s
Theorem (see for instance [GR14, p. 1084]), writing S = (sij),

ρ(S) ⩽ min
 max

i=1, ..., m

m∑
j=1

|sij|, max
j=1, ..., m

m∑
i=1

|sij|

 =: ρ̃(S).

Applying the facts above with the symmetric matrix S = Rn(x − y)2 and x = 2ρ̃(S)
yields

(4.40)
∣∣∣∆(ℓ)

n,2

∣∣∣ ⩽ Eℓ
n

∑
k ⩾ 2

∑
κ⊢k

Φ̂(κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ)

×
∑

(Q,Q′)∈Sc

∫
Q×Q′

(
2ρ̃
(
Rn(x − y)2

))k
dxdy.

By definition of ρ̃ and the triangular inequality, we have that

(4.41) 2ρ̃(Rn(x − y)2) ⩽ 2 max
i=1,2,3

3∑
j,l=1

∣∣∣r̃(n)
il (x − y)

∣∣∣ ∣∣∣r̃(n)
lj (x − y)

∣∣∣ ,
which is bounded by 18η2 < 1 on the non-singular regions. Combining this with the
fact that we are summing over integers k ⩾ 2 yields∑

(Q,Q′) ∈ Sc

∫
Q×Q′

(
2ρ̃
(
Rn(x − y)2

))k
dxdy
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=
∑

(Q,Q′) ∈ Sc

∫
Q×Q′

(
2ρ̃
(
Rn(x − y)2

))k−2 (
2ρ̃
(
Rn(x − y)2

))2
dxdy

≪
∫
T3

(
ρ̃
(
Rn(z)2

))2
dz.

Combining (4.41) with the Cauchy-Schwarz inequality and the estimate∫
T3

[
r̃

(n)
j,j′(z)

]2p
dz = O(Rn(2p)), p ⩾ 1,

where the constant involved in the “big-O” notation depends only on p (see for
instance [Not21, Lemma E.2]), we deduce that∫

T3

(
ρ̃(Rn(z)2)

)2
dz ≪

∫
T3

max
i,l=1,2,3

∣∣∣r̃(n)
il (z)

∣∣∣2 max
j,l=1,2,3

∣∣∣r̃(n)
jl (z)

∣∣∣2 dz

=
∫
T3

max
j,l=1,2,3

∣∣∣r̃(n)
jl (z)

∣∣∣4 dz ≪ Rn(4).

Therefore, in view of the estimate (4.40), and the fact that Φ ∈ L2(µX) for X ∼
Nℓ×n(0, Idℓ ⊗ Idn), we conclude that∣∣∣∆(ℓ)

n,2

∣∣∣ ≪ Eℓ
nRn(4)

∑
k ⩾ 2

∑
κ⊢k

Φ̂(κ)24−k
(

n

2

)−1

κ
k!Cκ(Idℓ)

⩽ Eℓ
nRn(4)E

[
Φ(X)2

]
≪ Eℓ

nRn(4).

Now, the Cauchy–Schwarz inequality implies that

Rn(4) =
∫
T3

[
r(n)(z)

]4
dz ⩽

(∫
T3

[
r(n)(z)

]2
dz
∫
T3

[r(n)(z)]6dz
)1/2

=
√

Rn(2)Rn(6).

Using the estimates (see [BM19, Eq. (1.16) and (1.18)])

Rn(2) = 1
Nn

, Rn(6) ≪ N −7/3+o(1)
n , n → ∞, n ̸≡ 0, 4, 7 (mod 8)

implies that
√

Rn(2)Rn(6) ≪ N −5/3+o(1)
n . The fact that

Eℓ
nN −5/3+o(1)

n = o
(
Var

[
V
(
T(ℓ)

n ,T3
)])

follows from the order of the variance of the second Wiener chaos in Lemma 4.6. □

Limiting distribution of the normalised total variation. The next proposition estab-
lishes a CLT in the high-frequency regime for normalised version of the second
chaotic component of the total variation

V̂
(
T(ℓ)

n ;T3
)

[2] :=
V
(
T(ℓ)

n ;T3
)

[2]

Var
[
V
(
T(ℓ)

n ;T3
)

[2]
]1/2 .(4.42)

Proposition 4.11. — As n → ∞, n ̸≡ 0, 4, 7 (mod 8), we have

V̂
(
T(ℓ)

n ;T3
)

[2] L−→ N (0, 1).
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Proof. — The expression of V(T(ℓ)
n ;T3)[2] is given in (4.29). Normalising that

expression by the square root of the order of the variance in (3.51) yields

V̂
(
T(ℓ)

n ;T3
)

[2] =
√

2
√

Nn√
ℓ

∫
T3

H
(ℓ,3)
(1)

(
Ṫ(ℓ)

n (z)
)

dz.

Using (3.16), we can rewrite

H
(ℓ,3)
(1)

(
Ṫ(ℓ)

n (z)
)

= 1
6

ℓ∑
k=1

3∑
j=1

H2
(
∂̃jT

(k)
n (z)

)
.

Now, for every k ∈ [ℓ], we write H2(u) = u2 − 1 and exploit once more the orthogo-
nality relations for complex exponentials on the torus (4.33) in order to write

3∑
j=1

∫
T3

H2
(
∂̃jT

(k)
n

)
dz =

3∑
j=1

∫
T3

[(
∂̃jT

(k)
n (z)

)2
− 1

]
dz

=
3∑

j=1

3
nNn

∑
λ ∈ Λn

λ2
j

(
|ak,λ|2 − 1

)
= 3

Nn

∑
λ ∈ Λn

(
|ak,λ|2 − 1

)
,

where we used that λ2
1 + λ2

2 + λ2
3 = n, so that

V̂
(
T(ℓ)

n ;T3
)

[2] =
√

2
√

Nn√
ℓ

∫
T3

H
(ℓ,3)
(1)

(
Ṫ(ℓ)

n (z)
)

dz

= 1√
ℓ

1√
2

ℓ∑
k=1

1√
Nn

∑
λ ∈ Λn

(
|ak,λ|2 − 1

)

= 1√
ℓ

ℓ∑
k=1

1√
Nn/2

∑
λ ∈ Λn/∼

(
|ak,λ|2 − 1

)
,

where Λn/∼ stands the equivalence classes in Λn obtained by identifying λ with −λ,
so that |Λn/∼| = Nn/2. Note that the random variables {|ak,λ|2 − 1 : λ ∈ Λn/∼}
are i.i.d, centred and have unit variance. The classical CLT thus implies that, as
n → ∞, n ̸≡ 0, 4, 7 (mod 8),

ℓ∑
k=1

1√
Nn/2

∑
λ∈Λn/∼

(|ak,λ|2 − 1) L−→
ℓ∑

k=1
Zk,

where (Z1, . . . , Zℓ) is a standard Gaussian vector. The statement then follows from
(4.43). □

End of the proof of Theorem 3.17. Relation (4.35) implies that the second chaotic
component of the total variation dominates the Wiener chaos expansion in (4.28).
In particular, (4.35) implies that, as n → ∞, n ̸≡ 0, 4, 7 (mod 8)

Var
[
V
(
T(ℓ)

n ;T3
)]

= Var
[
V
(
T(ℓ)

n ;T3
)

[2]
]
(1 + o(1)),
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and that the normalised sequences of random variables{
V̂
(
T(ℓ)

n ;T3
)

: n ∈ S3
}

,
{
V̂
(
T(ℓ)

n ;T3
)

[2] : n ∈ S3
}

defined in (3.49) and (4.42) respectively, have the same limiting distribution. Com-
bining this with the asymptotic variance for the second chaos in Lemma 4.6 proves
the variance estimate in (3.51). Finally, the CLT in (3.52) for the total variation
follows when combining (4.35) with the content of Proposition 4.11. This concludes
the proof of Theorem 3.17. □

Appendix A. Proof of Proposition 3.1

We recall that L2(µX) = L2(Ω, σ(µX),P), where σ(µX) is the σ-field generated by
random variables of the form ∫

R
f(x)µX(dx)

where f is a finite linear combination of trigonometric functions of the form cos(ax),
sin(bx) with a, b ∈ R. Since f(x) is equal to the limit of its Taylor expansion for
every x ∈ R, and since the support of µX consists of at most ℓ points, we deduce
that σ(µX) is generated by random variables as above where f = p is a polynomial.
Our goal is now to prove that, if F ∈ L2(µX) is such that E

[
FH(ℓ,n)

κ (X)
]

= 0 for
every κ ⊢ k and every k ⩾ 0, then F = 0, P-almost everywhere. In order to obtain
the desired conclusion, we will use the following three facts: (i) zonal polynomials
can be expanded into a finite linear combination of matrix-Hermite polynomials (see
e.g [Chi92, Eq. (4.12)]), (ii) the product of finitely many zonal polynomials is a finite
linear combination of zonal polynomials (see (2.8)) and (iii) every monomial of the
form tk(X) := tr([XXT ]k) = sk

1 + . . . + sk
ℓ (where s1, . . . , sℓ denote the eigenvalues

of XXT ) can be represented as a linear combination of zonal polynomials (see (2.1)).
Using these three facts shows that, whenever F satisfies the assumption above, then
E [Ftj0(X)a0 . . . tjM

(X)aM ] = 0 for every finite M ⩾ 1 and every collection of integers
j0, . . . , jM ⩾ 0 and a0, . . . , aM ⩾ 0. In particular, writing p(x) = ∑M

j=0 cjx
j for a

polynomial of degree M , one has that

E
[
F exp

(
i
∫
R

p (x)µX(dx)
)]

= E

F exp
i

M∑
j=0

cj

(
sj

1 + . . . + sj
ℓ

)
= E

F exp
i

M∑
j=0

cjtj(X)
 = E

F
M∏

j=0
exp (icjtj(X))


=

∑
a0, ..., aM ⩾ 0

(ic0)a0 · · · (icM)aM

a0! · · · aM ! E [Ft0(X)a0 . . . tM(X)aM ] = 0

by assumption. By a standard approximation argument, we therefore deduce that
E [F |σ(µX)] = 0, yielding the desired conclusion.
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