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Abstract. — One of the main tools used to understand both qualitative and quantitative
spectral behaviour of periodic and almost periodic Schrödinger operators is the gauge transform
method. In this paper, we extend this method to an abstract setting, thus allowing for greater
flexibility in its applications that include, among others, matrix-valued operators. In particular,
we obtain asymptotic expansions for the density of states of certain almost periodic systems
of elliptic operators, including systems of Dirac type. We also prove that a range of periodic
systems including the two-dimensional Dirac operators satisfy the Bethe–Sommerfeld property,
that the spectrum contains a semi-axis — or indeed two semi-axes in the case of operators
that are not semi-bounded.

Résumé. — La méthode de la transformée de jauge est l’un des principaux outils utilisés
pour étudier le comportement spectral des opérateurs de Schrödinger périodiques et presque
périodiques, autant d’un point de vue qualitatif que quantitatif. Dans cet article, nous géné-
ralisons cette méthode dans un contexte abstrait, nous permettant une plus grande flexibilité
dans les applications, entre autres aux matrices d’opérateurs. En particulier, nous obtenons
une expansion asymptotique de la densité d’états de certain systèmes d’opérateurs presque
périodiques elliptiques, dont des opérateurs de Dirac. Nous démontrons aussi que plusieurs
systèmes périodiques, incluant l’opérateur de Dirac bidimensionnel, possèdent la propriété de
Bethe–Sommerfeld, comme quoi leur spectre contient un demi-axe, ou même deux demi-axes
lorsqu’ils ne sont pas semibornés.
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1. Introduction

1.1. A Gauge transform

During the last fifteen years, substantial progress has been made in the spectral
theory of periodic and almost periodic scalar operators. An important tool that was
developed during this period and was used to obtain asymptotic spectral results was
the method of gauge transform (see, e.g., [Ivr19, MPS14, PS10, PS12, PS16, PS19,
Sob05, Sob06]), sometimes also called the quantum Birkhoff normal form [CVN08].
This method, which heavily uses commutator estimates, was originally created for
classical pseudo-differential operators (see e.g. [Roz78, Wei77]) but was then modified
to the periodic case by Sobolev [Sob05, Sob06] and to the almost periodic setting by
Parnovski and Shterenberg [PS12]. The aim of this paper is to describe the method
of gauge transform on an abstract level and then apply this abstract scheme to a
concrete example — elliptic systems of operators (including Dirac operators).

Here is the basic setting: suppose that we are given an operator

(1.1) A = A0 +B,

where A0 is a diagonal operator in a given basis and B is a perturbation, which is
assumed to be small in some sense. The standard example which the reader may
want to keep in mind is

(1.2) A0 = diag
(
a1(−∆)α/2, . . . , am(−∆)α/2

)
,

where α > 0, 0 ̸= aj ∈ R, and B is a pseudo-differential perturbation of order
smaller than α with periodic or almost periodic coefficients. For instance, a Dirac
operator with an almost periodic potential can be brought to such a form by a
unitary transformation. In many applications we will furthermore require A to be
self-adjoint, even though our general scheme may not always require it.
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We want to find an operator A′ that is unitarily equivalent to A and is simpler —
either diagonal or, failing this, has a form
(1.3) A′ = UAU−1 = A′

0 +B′,

where A′
0 is diagonal, U is unitary, and B′ is a perturbation that is smaller than B.

The notion of “smallness” assumes that we have a small parameter, and B′ has this
small parameter entering in a higher power than B. The most common example of
application to PDEs assumes that the order of B′ is smaller than the order of B
(so the role of the small parameter is played by the inverse of the energy), but in
some cases the small parameter can be chosen to be a coupling constant, see [PS19].
The operators A and A′ have the same spectrum and the hope is that it is easier to
describe the spectrum of A′, both quantitatively and qualitatively. As an example of
the spectral properties we want to study, we list the following two types of problems:

(1) Obtaining asymptotic expansions for the so-called integrated density of states
N(A;λ) as the spectral parameter λ tends to ±∞;

(2) If B has periodic coefficients, to prove that whenever A is unbounded above
(resp. below), its spectrum contains a semi-axis [λ0,∞) (resp. (−∞, λ0]). Such
an operator A is said to satisfy the Bethe–Sommerfeld property.

If we seek the unitary operator U in (1.3) in the form U = exp(iΨ), then we have

(1.4) A′ = A0 +B + i[A0,Ψ] + i[B,Ψ] − 1
2[[A0,Ψ],Ψ] − 1

2[[B,Ψ],Ψ] +R,

where R consists of further terms given by formally expanding the series for the
exponentials exp(iΨ). Our hope is to solve the equation
(1.5) B + i[A0,Ψ] = 0
for Ψ, so that the second and third terms of (1.4) cancel each other. Ideally, the rest
of the terms (starting from the fourth one) would indeed be smaller than B. In most
cases, however, these two wishes turn out to be infeasible.

The main obstacle is that solutions Ψ to equation (1.5) involve a denominator
that could be small for some B (for example, to have any hope of solving (1.5),
the diagonal part of B has to be absent). Therefore, we usually have to modify our
procedure and divide the perturbation B into two parts — good (or non-resonant)
part BNR for which the equation
(1.6) BNR + i[A0,Ψ] = 0
has a nice solution ΨNR and bad (or resonant) part BR = B − BNR which we will
be unable to destroy using our procedure. Thus, at the end we will have
(1.7) A′ = A′

0 +BR +B′,

where B′ is smaller (in order, say) than B. Of course, we also hope that the resonant
part BR is better in some sense than the initial perturbation B; in many applications,
the operator BR acts in subspaces of our Hilbert space generated by “specially
designated and geometrically defined” areas of the phase space.

After we have reduced our operator to the improved form (1.7), in principle we
can repeat the same procedure — finitely, or even infinitely many times. The latter
process is much more difficult to realise, and we will not give examples of it in this
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paper. However, in many settings we indeed have to run this procedure several times
(more than once) in order to achieve the desired “smallness” of the remainder. In
other words, we construct the “improved” operator in the form
(1.8) An = exp(iΨn) . . . exp(iΨ2) exp(iΨ1)A exp(−iΨ1) exp(−iΨ2) . . . exp(−iΨn).
We call this method the serial gauge transform. Sometimes, it is more convenient to
look for the improved operator in the form
(1.9) A(n) = exp(i(Ψn + . . .+ Ψ2 + Ψ1))A exp(−i(Ψ1 + Ψ2 + . . .+ Ψn)),
which we call the parallel gauge transform. In both situations, the operators Ψj are
solutions of equations similar in form to (1.6).

Another important distinction between different variations of the gauge transform
is as follows. In order to prove that the order of the remainder B′ is smaller than the
order of B, we have to estimate the orders of various commutators. Sometimes, it is
enough to have the basic estimate: the order of the commutator is not greater than
the sum of the orders of its entries. This estimate holds without any restrictions, but
for it to be effective we need to have some a priori inequalities between the orders
of the principal term A0 and the perturbation B; we call this approach the weak
gauge transform. On the other hand, quite often we can improve our estimate on
commutators: for example, in the classical scalar pseudo-differential calculus, the
order of the commutator can be estimated by the sum of the orders of the entries
minus one. If we have such an estimate, we can guarantee that the order of B′ is
indeed smaller than the order of B, assuming nothing other than that the order of A0
is larger than the order of B. This approach is called the strong gauge transform. In
this paper, we will define the weak and strong gauge transforms rigorously and give
a general abstract setting in which they can be applied. We discuss the advantages
and drawbacks of both types of gauge transforms and finish with a couple of concrete
applications.

The first application is to obtain asymptotic expansions for the density of states of
elliptic almost periodic operator systems. Under some technical conditions described
later, we may either obtain complete or limited expansions as the spectral parameter
goes to ±∞. The other application is to prove that some elliptic periodic systems
have the Bethe–Sommerfeld property. This will be done under the same conditions
that allow us to obtain a complete asymptotic expansion for the density of states.
In either of these cases, some Dirac operators are examples of those to which we can
apply our results.

1.2. Description of the results for elliptic systems and the Dirac operator

While describing the precise class of operators A for which we obtain spectral
asymptotics requires definitions that are made later, we can make these results
explicit for Dirac operators in dimension 2 and 3 perturbed by classical pseudo-
differential almost periodic operators right away. The two-dimensional Dirac operator
with mass M acts in L2(R2;C2) and is given by
(1.10) A2,M := −i(σ1∂x1 + σ2∂x2) + σ3M,

TOME 6 (2023)
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where σ1, σ2, σ3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.(1.11)

The three-dimensional Dirac operator with mass M acts in L2(R3;C4) and is given
by
(1.12) A3,M := −i (γ1∂x1 + γ2∂x2 + γ3∂x3) + ΓM,

where the matrices γj, Γ are the Dirac matrices (see [Upm02])(1)

(1.13) γj =
(

0 σj

σj 0

)
, and Γ =

(
Id2 0
0 − Id2

)
.

We obtain asymptotic expansions for the density of states of operators of the type
A = Ad,M + B under the assumption that B is a “generic” almost periodic pseudo-
differential perturbation. The precise meaning of generic is given in Section 7. The
density of states for elliptic differential operators A that are not semi-bounded can
be defined by the formula

(1.14) N(λ;A) := lim
L → ∞

N(λ;A(L))
(2L)d

.

Here, A(L) is the restriction of A to the cube [−L,L]d with periodic boundary
conditions, and N(λ;A(L)) is the counting function for the discrete eigenvalues of
A(L) in the interval [0, λ) when λ > 0 and (λ, 0] when λ < 0. Later, we will give
several equivalent definitions of N(λ) which are more convenient to work with and
allow pseudo-differential perturbations.

Theorem 1.1. — Let A = A2,M + B, where B is a generic symmetric pseudo-
differential operator with almost periodic coefficients of order β < 1 acting in
L2(R2;C2). Then, there is a complete asymptotic expansion for the density of states
of A in the sense that for every K > −2, there is a finite set L ⊂ (0, 2 + K) and
constants C±

j , C±
j,log, j ∈ L ∪ {0} such that

(1.15) N(±λ; A) = C±
0 λ

2 +
∑
j ∈ L

(
C±

j λ
2−j + C±

j,logλ
2−j log λ

)
+O

(
λ−K

)
as λ → ∞.

Theorem 8.2 is a more general version of Theorem 1.1. It is applicable to elliptic
systems of pseudodifferential operators whose principal symbol has only simple
eigenvalues.

We obtain a restricted expansion for the three-dimensional case.
Theorem 1.2. — Let A = A3,M + B, where B is a generic operator of the form

B = B1γ1 +B2γ2 +B3γ3 +BΓΓ +BId Id4,

where each Bj, j ∈ {1, 2, 3,Γ, Id} is a scalar symmetric pseudo-differential operator
with almost periodic coefficients of order β, 0 ⩽ β ⩽ 1/2. Then, writing γ∗ =
(1) Many authors would write αj for γj and β for Γ, see e.g. [Tha91]. We keep our convention in
line with higher-dimensional generalisations and to avoid some notational conflicts later on.

ANNALES HENRI LEBESGUE



Gauge transform and applications 1037

max {β − 1, 2β − 1} there is a finite set L ⊂ (0, 1−γ∗) and constants C±
j,q, j ∈ L∪{0},

q ∈ {0, 1, 2} such that

(1.16) N(±λ;A) = C±
0 λ

3 +
∑
j∈L

2∑
q=0

C±
j,qλ

3−j logq(λ) +O
(
λ2+γ∗)

as λ → ∞.

This time, it is Theorem 8.1 which is a more general version of Theorem 1.2. It is
applicable to elliptic systems of pseudodifferential operators whose principal symbol
has multiple eigenvalues under some more restrictive conditions on the perturbation.

We also obtain that two-dimensional Dirac operators satisfy the Bethe–Sommerfeld
property.

Theorem 1.3. — Let A = A2,M +B, where B is a symmetric pseudo-differential
operator of order β < 1 with periodic coefficients. Then, there exists λ0 > 0 such
that the spectrum of A contains intervals (−∞,−λ0] and [λ0,∞).

This theorem also has a more general version in Theorem 10.1. It is applicable to
systems whose principal symbol has only simple eigenvalues.

In Section 12, we also describe generalisations of these results to higher dimensional
Dirac operators, and give some technical conditions under which we can get complete
asymptotic expansions or the Bethe–Sommerfeld property for the three-dimensional
Dirac operator.

1.3. Description of the main results and plan of the paper

In the first half of our paper, we discuss the gauge transform in an abstract
setting. The setting is developed while keeping in mind particular applications to
almost periodic operators. As such, the space on which the operators act looks like
an abstract version of a Besicovitch space. In the second half, we will discuss the
specific applications of the results obtained in the first half to elliptic systems of
pseudo-differential almost periodic operators; in particular, in the last section we will
show that Dirac operators are a specific example of them. An interesting part of the
application of our methods to systems is that we need to intertwine and alternate
the use of the weak and strong gauge transforms, whereas in the past only one type
was used at a time. In order to help the reader familiar with previous literature on
the method of gauge transform, we have kept the notation as close as possible to
the one used in [MPS14, PS10].

Plan and results of Part I

In Section 2 we define an algebra of operators S∞ acting on a non separable Hilbert
space which should be thought of as an abstract version of a Besicovitch space. For
some set Ξ this algebra will be concretely realised on ℓ2(Ξ) through a group action
on its basis elements. This algebra is filtered as an algebra of pseudo-differential op-
erators on ℓ2(Ξ), and it has similar properties to those of classical pseudo-differential
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operators in the PDE sense. Their natural domains are generalisations of Sobolev
spaces. This section contains many technical but very useful lemmas describing
boundedness properties, adjoints, compositions and commutators of operators in S∞.
One of the main differences with classical pseudo-differential operators is illustrated
in Proposition 2.16, which plays the role of the Calderón–Vaillancourt theorem in our
setting. It essentially says that we can directly correlate symbol norms of operators
with the norms of individual summands in Paley–Wiener type decompositions.

In Section 3, we turn our attention to some natural subspaces of S∞ – operators
that are either elliptic or diagonal. Just as in the classical setting, our definition
of elliptic operators allows us to characterise natural domains of self-adjointness
for operators in the algebra S∞. The three main results of this section illustrate
the three most important properties of elliptic operators. In Proposition 3.5, they
are shown to admit a parametrix, and are therefore invertible up to a controllable
error. Lemma 3.6 is used repeatedly throughout the paper and shows that lower
order perturbations of elliptic operators are relatively bounded, with explicit bounds.
Finally, in Proposition 3.7, we show that elliptic operators are closed and self-adjoint
if symmetric.

In Section 4, we consider the situation where operators in S∞ are affiliated to a I∞
or II∞ factor. This is common in the study of almost-periodic operators and their
generalisations. We define a general notion of density of states measures (DSM) in
S∞ as traces in the affiliated I∞ or II∞ factor. We give a variational description of
the DSM of an interval J even in situations where the operator is not bounded below.
This is used to show the principal results of this section: small perturbations of elliptic
self-adjoint operators do not change their density of states much. The definition of
“smallness” of the perturbation is made clear in that section. In Lemma 4.12, we
control to what extent perturbations of smaller order can affect the DSM, whereas in
Lemma 4.13 it is perturbations that are spectrally supported away from the interval
J that are shown to have a small effect.

In Section 5, we describe the abstract gauge transform scheme, which is split into
two cases: the weak and strong gauge transforms. In both cases, we describe the
resonant regions geometrically as subsets of the index set Ξ. The serial scheme for
the weak gauge transform is described in Lemmas 5.5 and 5.6 and Corollary 5.7,
whereas the parallel scheme is described in Proposition 5.9. In both cases, only trivial
estimates on the commutator are used. In Lemma 5.10, we describe conditions under
which a stronger scheme can be used. Since conditions for the strong transform to be
applicable are varying in nature, we do not attempt at completely classifying them.

Finally, in Section 6, we describe the case where the symbols are functions into
Matm×m(C) rather than C. We describe how this can be reduced to the abstract
scalar case and introduce a new class of operator systems: uncoupled operators. Our
goal is to show that under some specific conditions, elliptic systems are unitarily
equivalent to uncoupled operators up to a remainder which we can control. In that
light, the main results of this section are Theorems 6.4 and 6.6 which give explicit
conditions under which one can use the weak gauge transform to conjugate elliptic
symmetric operators into almost uncoupled ones. The remainders are small (in the
sense of Section 4) perturbations.
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Plan and results of Part II

In the second part, we apply the results of Part I to concrete systems of elliptic
pseudo-differential operators with periodic and almost periodic perturbations. More
specifically, we study operator systems of the form A = A0 + B, defined on a dense
domain in L2(Rd;Cm) where A0 is defined as in (1.3), and B is a pseudo-differential
perturbation of order β < α. In Section 7, we give a description of these operators in
term of Besicovitch space, and we make the relevant definitions concerning periodic
operators. In Sections 7.2 and 8, we obtain asymptotic expansions for the IDS. In
Section 9, we describe how periodic operators enter in our framework while exhibiting
more structure. In Sections 10 and 11 we prove that some elliptic systems of operators
have the Bethe–Sommerfeld property using some combinatorial geometric arguments.
Finally in Section 12 we expose how Dirac operators may fit in our setting.

Since the precise description of the results requires some notations and language
defined in Part I, we postpone their description to the beginning of Part II.

Acknowledgements

The authors are grateful to Marcello Seri and the anonymous referee for their
careful reading and comments on this paper, which greatly improved the exposition.

Part I : An abstract gauge transform scheme

2. Generalised almost-periodic operators

In this section, we define an algebra of generalised almost-periodic operators. We
start by defining the space on which those operators are defined. We also define
generalised Sobolev spaces which are their natural domains. We then describe the
algebraic properties of the generalised almost-periodic operators, and obtain version
of the Calderón–Vaillancourt theorem in our context in Proposition 2.16.

2.1. Generalised Sobolev spaces

Let Ξ be an infinite, possibly uncountable set equipped with a weight function
⟨·⟩ : Ξ → [1,∞). We will often call Ξ the index set. For γ ∈ R we define the spaces

Hγ(Ξ):=
{
x : Ξ → C
x : ξ 7→ xξ

:
∑
ξ ∈ Ξ

⟨ξ⟩2γ |xξ|2 < ∞
}

(2.1)

and
H∞(Ξ):=

⋂
γ ∈R

Hγ(Ξ).(2.2)

TOME 6 (2023)
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In particular, every x ∈ Hγ(Ξ) vanishes at all but countably many ξ ∈ Ξ. Every
Hγ(Ξ) is a Hilbert space with inner product
(2.3) (x, y)Hγ(Ξ) :=

∑
ξ ∈ Ξ

⟨ξ⟩2γxξ yξ.

It is easy to see that H0(Ξ) = ℓ2(Ξ) with the standard orthonormal basis indexed
bijectively from Ξ as

(2.4) E := {eξ : ξ ∈ Ξ} , eξ : η ∈ Ξ 7→

1 if η = ξ,

0 if η ̸= ξ
,

and that Hγ1(Ξ) ⊂ Hγ2(Ξ) for all γ1 > γ2 ∈ R. It follows from their definition that
Hγ(Ξ) is the completion of span(E) under the norm generated by (2.3), where span(E)
consists of finite linear combinations from E , i.e. elements where xξ = 0 except for
finitely many ξ. When there is no risk of confusion, we will write Hγ := Hγ(Ξ).

2.2. An algebra of operators

Let G be a group that acts from the left on Ξ, so that the action is free, i.e. only
the identity of G has fixed points. We denote by g ▷ ξ the action of g ∈ G on ξ ∈ Ξ.
Starting from the weight function ⟨·⟩ on Ξ we define one on G by
(2.5) ⟨g⟩ := 1 + sup

ξ ∈ Ξ
|⟨g ▷ ξ⟩ − ⟨ξ⟩| .

We assume that G has a bounded range of action, which means that ⟨g⟩ is finite for
all g ∈ G.

It will be useful for future convenience to observe the following properties of the
weight function:

Lemma 2.1. — For all f, g ∈ G, ξ ∈ Ξ and t ∈ R the following relations hold:
(1)

(2.6) ⟨g⟩ =
〈
g−1

〉
;

(2) Peetre-type inequalities:
(2.7) ⟨g⟩−1⟨ξ⟩ ⩽ ⟨g ▷ ξ⟩ ⩽ ⟨g⟩⟨ξ⟩

and
(2.8) ⟨fg⟩t ⩽ min

{
⟨f⟩t⟨g⟩|t|, ⟨f⟩|t|⟨g⟩t

}
.

Proof. — For all g ∈ G, ξ ∈ Ξ the definition (2.5) implies (2.6) and the estimates

max
{
1, 1 + ⟨ξ⟩ − ⟨g⟩

}
⩽ ⟨g ▷ ξ⟩ ⩽ ⟨ξ⟩ + ⟨g⟩ − 1.(2.9)

Note the relations
(2.10) a+ 1 − b =

(
(b− 1)(a− b) + a

)
/b ⩾ a/b, for all a ⩾ b ⩾ 1.

and
(2.11) a+ b− 1 ⩽ a+ b− 1 + (a− 1)(b− 1) = ab, for all a, b ⩾ 1.
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The first estimate in (2.7) follows from (2.9) and (2.10), the second from (2.9)
and (2.11). Now by (2.5) and (2.10) for all f, g ∈ G we obtain

(2.12)
⟨fg⟩ ⩽ 1 + sup

ξ ∈ Ξ
|⟨fg ▷ ξ⟩ − ⟨g ▷ ξ⟩| + sup

ξ ∈ Ξ
|⟨g ▷ ξ⟩ − ⟨ξ⟩|

= ⟨f⟩ + ⟨g⟩ − 1 ⩽ ⟨f⟩⟨g⟩,

which implies (2.8) for t > 0. Now (2.12) and (2.6) imply

(2.13) ⟨g⟩ =
〈
f−1fg

〉
⩽ ⟨f⟩⟨fg⟩ and ⟨f⟩ =

〈
fgg−1

〉
⩽ ⟨fg⟩⟨g⟩,

which delivers (2.8) for t < 0. The case t = 0 is trivial. □

Definition 2.2. — We call a function b : G× Ξ → C, (g, ξ) 7→ bg(ξ) an almost
periodic symbol if there exists a countable set Θ ⊂ G, closed under inversion and
containing the identity idG, such that for all g ∈ G \ Θ, bg(ξ) ≡ 0. Whenever there
is no risk of confusion, we will write id := idG. We call Θ a frequency set for b and
the functions {bθ( · )}θ ∈ Θ the Fourier coefficients of b. For every symbol b and every
γ ∈ R, l ⩾ 0, we define the family of norms

(2.14) ∥b∥(γ)
l :=

∑
θ ∈ Θ

⟨θ⟩l sup
ξ ∈ Ξ

(
⟨ξ⟩−γ |bθ(ξ)|

)
.

The class of symbols of order γ is defined as

(2.15) Sγ := Sγ(G,Ξ) :=
{
b : G× Ξ → C : ∥b∥(γ)

l < ∞ for all l ⩾ 0
}
.

The space of symbols is naturally a linear space. It is clear that if Θ is a frequency
set for a symbol, then any Γ ⊃ Θ is also one. It is obvious from the definition that
∥·∥(γ)

l is a decreasing function of γ and an increasing function of l, thus
(2.16) Sγ1 ⊂ Sγ2 , for all γ1 ⩽ γ2.

We introduce
(2.17) S∞ :=

⋃
γ ∈R

Sγ and S−∞ :=
⋂

γ ∈R
Sγ.

Lemma 2.3. — For every γ ∈ R, the space Sγ equipped with the family of norms
{∥·∥(γ)

l }l⩾ 0 is a Fréchet space.

Proof. — Consider a sequence
(2.18) (bn)n⩾ 1 ⊂ Sγ

that is Cauchy with respect to ∥·∥(γ)
l for every l ⩾ 0, and denote by Θ(n) a frequency

set for each bn. Then, for all θ ∈ G, we observe that bθ(ξ) := lim
n → ∞

(bn)θ(ξ) exists
and vanishes outside the countable set Θ = ⋃

n Θ(n). It is a simple computation to
see that b ∈ Sγ with ∥bn − b∥(γ)

l → 0, as n → ∞, for all l ⩾ 0. Hence, the claim
follows. □

Definition 2.4. — Let b : G × Ξ → C be a symbol with frequency set Θ ⊂ G
and
(2.19)

(
bθ(ξ)

)
θ ∈ Θ

∈ ℓ2(Θ), for all ξ ∈ Ξ.
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Then the almost periodic linear operator associated to b is
(2.20) B := Op(b) : span(E) → ℓ2(Ξ)
defined by
(2.21) Beξ :=

∑
θ ∈ Θ

bθ(ξ)eθ ▷ ξ, for all ξ ∈ Ξ.

Remark 2.5. — If b ∈ S∞, then, in view of (2.14) and (2.15), (bθ(ξ))θ ∈ Θ ∈
ℓ1(Θ) ⊂ ℓ2(Θ) holds for all ξ ∈ Ξ. This means that we can associate an almost
periodic operator to every symbol in S∞. On the other hand, since the group action
of G on Ξ is free, b can be recovered from B via the identity
(2.22) bg(ξ) = (eg ▷ ξ, Beξ)ℓ2(Ξ) , for all g ∈ G, ξ ∈ Ξ.

Thus, there is a one-to-one correspondence between almost periodic symbols and
almost periodic operators. This correspondence is in contrast to the case of classical
pseudo-differential operators where this correspondence is only modulo smoothing
operators. Hence, we allow ourselves to overload the notation and write B = Op(b) ∈
Sγ if b ∈ Sγ , γ ∈ R ∪ {±∞}, and let ∥B∥(γ)

l := ∥b∥(γ)
l for all l ⩾ 0, γ ∈ R. Note that

this correspondence gets lost if one does not require the group action of G on Ξ to
be free. Our construction can be generalised to such non-free group actions, but for
simplicity of the exposition we do not do it in this paper.

We call B quasi-periodic if b admits a finite frequency set. A simple example of a
quasi-periodic operator of class Sγ, γ ∈ R, is Op(h) with

hg(ξ) :=

h̃(ξ) if g = id,
0 otherwise.

Here, h̃ is a function on Ξ satisfying
∣∣∣h̃(ξ)

∣∣∣ ⩽ ⟨ξ⟩γ for all ξ ∈ Ξ.

Remark 2.6. — Our terminology is justified by the following example. Suppose
that G is a locally compact abelian (LCA) group and GB is its Bohr compactification,
see [Shu78, §1]. Index by Ξ the set of characters Ẽ := {ẽξ : ξ ∈ Ξ} of G or,
equivalently, GB. On CAP(G), the continuous almost periodic functions on G, we
can define an inner product (f, g) = M(fg), where M(f) is the mean of f with
respect to the normalised Haar measure on GB. The Besicovitch space B2(G) is
defined as the closure of CAP(G) with respect to the norm induced by this inner
product. By [Shu78, Proposition 1.5], the map

(2.23) E → Ẽ eξ 7→ ẽξ,

extends to an isometric isomorphism ℓ2(Ξ) → B2(G). In particular, for G = (Rd,+),
one has Ẽ = {x 7→ exp(ix · ξ), ξ ∈ Rd} and the operators in S∞(Rd,Rd) correspond
to almost periodic pseudo-differential operators in B2(Rd) or L2(Rd), see [Shu78,
§3–4] and [PS12, Equation (8.8)]. The present work can be applied to more general
settings, for example, when the underlying groupG is non-abelian. Note that the Bohr
compactification construction is inadequate in that situation, e.g., for G = SL(2;R)
we have GB = {id}, see [Shu78, p. 4].
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From Lemma 2.3 we obtain the following corollary.

Corollary 2.7. — Let (Bn)n⩾ 1 ⊂ Sγ be such that

(2.24)
∑
n⩾ 1

∥Bn∥(γ)
l < ∞

for all l ⩾ 0. Then the sum

(2.25) B :=
∑
n⩾ 1

Bn

converges in Sγ with

(2.26) ∥B∥(γ)
l ⩽

∑
n⩾ 1

∥Bn∥(γ)
l .

Up until now, operators from S∞ were only defined on span(E). We now show that
they can be extended in a natural way.

Lemma 2.8. — For every β, γ ∈ R the operator B ∈ Sγ can be uniquely extended
to a bounded linear operator B : Hβ → Hβ−γ. Moreover, we have the bound

(2.27) ∥B∥Hβ → Hβ−γ ⩽ ∥B∥(γ)
|β−γ| .

Proof. — Let x, y ∈ span(E), i.e. xξ = yξ = 0 for all but finitely many ξ. Then,
the Cauchy–Schwarz and Peetre inequalities (2.7) imply

(2.28)

|(x,By)Hβ−γ | =

∣∣∣∣∣∣
∑

θ ∈ Θ

∑
ξ ∈ Ξ

⟨θ ▷ ξ⟩2(β−γ)xθ ▷ ξbθ(ξ) yξ

∣∣∣∣∣∣
⩽
∑

θ ∈ Θ
⟨θ⟩|β−γ| sup

ζ ∈ Ξ

(
⟨ζ⟩−γ |bθ(ζ)|

)
×

×

∑
ξ ∈ Ξ

⟨θ ▷ ξ⟩2(β−γ) |xθ▷ξ|2
1/2∑

ξ ∈ Ξ
⟨ξ⟩2β |yξ|2

1/2

⩽ ∥B∥(γ)
|β−γ| ∥x∥Hβ−γ ∥y∥Hβ .

The claim follows by density of span E in Hα for all α ∈ R. □

We obtain the following immediate corollary.

Corollary 2.9. — Every B ∈ S0 extends to a bounded operator on ℓ2 = H0

such that

(2.29) ∥B∥ℓ2 → ℓ2 ⩽ ∥B∥(0)
0 .

Definition 2.10. — For b ∈ S∞, we define

(2.30) b†
θ(ξ) :=

bθ−1(θ ▷ ξ) if θ ∈ Θ,
0 if θ ∈ G \ Θ

for all ξ ∈ Ξ, where Θ is a frequency set for b.
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Lemma 2.11. — If b ∈ Sγ, then b† ∈ Sγ. Moreover, for all x, y ∈ Hγ, one has
(2.31) (x,By)ℓ2(Ξ) =

(
B†x, y

)
ℓ2(Ξ)

, i.e. B† ⊂ B∗.

In particular, B is symmetric on Hγ if and only if B = B†.
Proof. — Every frequency set Θ for b ∈ Sγ is also one for b†. Moreover, since

Θ = Θ−1 holds by convention, (2.6) and (2.7) imply that for all l ⩾ 0,∥∥∥b†
∥∥∥(γ)

l
=

∑
θ ∈ ΘB

⟨θ⟩l sup
ξ ∈ Ξ

[
⟨ξ⟩−γ|bθ−1(θ ▷ ξ)|

]
=

∑
θ ∈ ΘB

⟨θ⟩l sup
ξ ∈ Ξ

[ 〈
θ−1 ▷ ξ

〉−γ
|bθ−1(ξ)|

]
⩽

∑
θ ∈ ΘB

⟨θ⟩l+|γ| sup
ξ ∈ Ξ

[
⟨ξ⟩−γ|bθ−1(ξ)|

]
=

∑
θ ∈ ΘB

⟨θ⟩l+|γ| sup
ξ ∈ Ξ

[
⟨ξ⟩−γ|bθ(ξ)|

]
= ∥b∥(γ)

l+|γ| ,

thus b† ∈ Sγ holds. Moreover, (2.22) and (2.30) yield
(2.32) (eη, Beξ) =

(
B†eη, eξ

)
, for all η, ξ ∈ Ξ.

In view of Lemma 2.8 and the density of span(E) in Hγ, (2.32) extends to (2.31).
This finishes the proof of the lemma. □

Definition 2.12. — Let a, b ∈ S∞ be symbols with frequency sets Θa and Θb.
The composed symbol a ◦ b with frequency set

Θa◦b := ΘaΘb := {θaθb : θa ∈ Θa, θb ∈ Θb}(2.33)
is defined as
(2.34) (a ◦ b)θ(ξ) :=

∑
θaθb=θ

aθa(θb ▷ ξ)bθb
(ξ) for all θ ∈ Θa◦b, ξ ∈ Ξ.

Lemma 2.13. — For α, β ∈ R let A = Op(a) ∈ Sα and B = Op(b) ∈ Sβ. Then
AB ∈ Sα+β and AB = Op(a ◦ b). Moreover, for all l ⩾ 0 we have the bound

(2.35) ∥AB∥(α+β)
l ⩽ ∥A∥(α)

l ∥B∥(β)
l+|α| .

Proof. — The frequency set Θa◦b is, clearly, a countable set. For any l ⩾ 0, we
have

(2.36)

∥a ◦ b∥(α+β)
l =

∑
θ ∈ Θa◦b

∑
θaθb=θ

⟨θ⟩l sup
ξ ∈ Ξ

(
⟨ξ⟩−α−β |aθa(θb ▷ ξ)| |bθb

(ξ)|
)

⩽
∑

θb ∈ Θb

⟨θb⟩l+|α| sup
ξ ∈ Ξ

(
⟨ξ⟩−β |bθb

(ξ)|
)

×
∑

θa ∈ Θa

⟨θa⟩l sup
ζ ∈ Ξ

(
⟨θb ▷ ζ⟩−α |aθa(θb ▷ ζ)|

)
⩽ ∥a∥(α)

l ∥b∥(β)
l+|α| .

Thus a ◦ b ∈ Sα+β and (2.21) implies AB = Op(a ◦ b). □
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It is natural to consider operators from S∞ on the common domain H∞. Then
Lemmata 2.8, 2.11, and 2.13 yield the following corollary.

Corollary 2.14. — S∞ = ⋃
γ ∈R Sγ is a ∗-algebra of operators on H∞, filtered by

R, with involution †. The subalgebra of regularising operators S−∞ forms a two-sided
ideal of S∞.

We also consider the adjoint actions ad(A;B) := i(AB −BA) with the frequency
set Θad(a;b) = Θa◦b ∪ Θb◦a. The Fourier coefficients of ad(A;B) are

(2.37) ad(a; b)θ(ξ) = i
 ∑

θaθb=θ

aθa(θb ▷ ξ)bθb
(ξ) −

∑
θbθa=θ

bθb
(θa ▷ ξ)aθa(ξ)

 ,
for all θ ∈ Θad(a;b). If G is commutative, (2.37) simplifies to

(2.38) ad(a; b)θ(ξ) = i
∑

θaθb=θ

(
aθa(θb ▷ ξ)bθb

(ξ) − bθb
(θa ▷ ξ)aθa(ξ)

)
.

For k = 1, 2, 3, . . . and A,B,B1, . . . Bk ∈ S∞, we define recursively

(2.39)

ad(A;B1, . . . , Bk) := ad (ad(A;B1, . . . , Bk−1);Bk) ,
ad0(A;B) := A,

adk(A;B) := ad
(
adk−1(A;B);B

)
.

The following lemma is a direct consequence of Lemma 2.13.

Lemma 2.15. — Let k ∈ N and assume that Aj ∈ Sγj for 0 ⩽ j ⩽ k. Put

(2.40) γ =
k∑

j=0
γj, γ̂ =

k∑
j=0

|γj|.

Then ad(A0;A1, . . . , Ak) ∈ Sγ. Furthermore, if for all 0 ⩽ j ⩽ k we have Aj = A†
j,

then ad(A0;A1, . . . , Ak) = ad(A0;A1, . . . , Ak)†. Moreover, for all l ⩾ 0 we have

(2.41) ∥ad(A0;A1, . . . , Ak)∥(γ)
l ⩽ 2k

k∏
j=0

∥Aj∥
(γj)
l+γ̂−|γj | .

In particular, for any A ∈ Sα, B ∈ S0 and k ∈ N we obtain the estimate∥∥∥adk(A;B)
∥∥∥(α)

l
⩽ 2k ∥A∥(α)

l

(
∥B∥(0)

l+|α|

)k
.(2.42)

For some Ξ and G it may be possible to improve this lemma and show that
ad(A;B) ∈ Sγ holds with γ < α+ β for all A ∈ Sα, B ∈ Sβ. This will be discussed
in Section 5.4.

The following proposition provides bounds on norms of operators restricted to
“annuli” in Ξ.

Proposition 2.16. — For 1 ⩽ m ⩽ M ⩽ ∞, let Υ ⊂ {ξ ∈ Ξ : m ⩽ ⟨ξ⟩ ⩽M}
and denote by PΥ the orthogonal projection in ℓ2(Ξ) onto the closure of span{eξ :
ξ ∈ Υ}. Then, for any A ∈ Sγ with γ ⩾ 0, the norm inequality

(2.43) ∥APΥ∥ℓ2 → ℓ2 ⩽Mγ ∥A∥(γ)
0
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holds. For any A ∈ Sγ with γ ⩽ 0, we get the inequality

(2.44) ∥APΥ∥ℓ2 → ℓ2 ⩽ mγ ∥A∥(γ)
0 .

Proof. — Observe that PΥ is a quasi-periodic operator with a frequency set Θ =
{id} and the symbol (pΥ)id = 1Υ (the indicator function of Υ). Thus, for all γ ∈ R
and l ⩾ 0,

(2.45) ∥PΥ∥(−γ)
l = sup

ξ ∈ Υ
⟨ξ⟩γ ⩽

mγ if γ ⩽ 0,
Mγ if γ ⩾ 0.

If M < ∞ or γ ⩽ 0, then Corollary 2.9 and Lemma 2.13 imply the bound

(2.46) ∥APΥ∥ℓ2 → ℓ2 ⩽ ∥A∥(γ)
0 ∥PΥ∥(−γ)

|γ| ,

and the statement of the lemma follows from (2.45). On the other hand, the inequal-
ity (2.43) is trivial for M = ∞ and γ > 0. □

3. Elliptic and diagonal operators

In this section, we introduce particular classes of operators from S∞ and study their
properties. Some of these classes do depend on the specific choice of orthonormal
basis E for ℓ2(Ξ). However, the class of operators on which our main theorems depend,
that of elliptic operators, is invariant under change of basis.

Definition 3.1. — The subalgebra DS∞ ⊂ S∞ of diagonal operators is defined
as

(3.1) DS∞ := {A = Op(a) ∈ S∞ : {id} is a frequency set for a} .

For symbols of operators from DS∞ we can suppress the subscript id, i.e. we let
a(ξ) := aid(ξ) for all A = Op(a) ∈ DS∞, ξ ∈ Ξ. For α ∈ R ∪ {−∞} we define
DSα := DS∞ ∩ Sα. Introduce the map D : S∞ → DS∞, A 7→ AD, that projects
A = Op(a) onto its diagonal part AD := Op(aD) where

(3.2) aD(ξ) := aid(ξ),
i.e.

(3.3) ADeξ = ⟨eξ, Aeξ⟩eξ

holds for all ξ ∈ Ξ. We also define the off-diagonal part as AOD := Op(aOD) with
aOD := a− aD.

Note that for any A ∈ Sα with α ∈ R and all l ⩾ 0,

(3.4)
∥∥∥AD

∥∥∥(α)

l
+
∥∥∥AOD

∥∥∥(α)

l
= ∥A∥(α)

l

and

(3.5)
∥∥∥AD

∥∥∥(α)

l
=
∥∥∥AD

∥∥∥(α)

0
.
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Definition 3.2. — The set DESα of diagonal elliptic operators of order α ∈ R
is defined as the set of operators A = Op(a) ∈ DSα for which there exist ellipticity
parameters κ > 0 and r ⩾ 1 such that
(3.6) |a(ξ)| ⩾ κ⟨ξ⟩α for all ξ ∈ Ξ such that ⟨ξ⟩ ⩾ r.

Let the set of ellipticity parameters (κ, r) of A be denoted by E(A). Note that
(κ, r) ∈ E(A) implies (κ̃, r̃) ∈ E(A) for all 0 < κ̃ ⩽ κ, and r̃ ⩾r.

Definition 3.3. — The set SESα of strongly elliptic operators of order α ∈ R
consists of operators A ∈ Sα such that AD ∈ DESα and AOD ∈ Sγ for some γ < α.
For (κ, r) ∈ E(AD) we define Pr as the diagonal operator with symbol 1{ξ:⟨ξ⟩⩽r}. We
also define P c

r as Id −Pr, and
(3.7) Ãκ,r := ADP c

r + κrαPr.

Definition 3.4. — The set ESα of elliptic operators of order α ∈ R consists of
operators A ∈ Sα for which there exists a unitary U ∈ S0 with UAU † ∈ SESα.

Clearly, both SESα and ESα are closed under addition of operators in Sβ, β < α.
As we did with diagonal operators, we set
(3.8) T∞ :=

⋃
γ ∈R

Tγ, T−∞ :=
⋂

γ ∈R
Tγ, for T ∈ {DES,SES,ES}.

Proposition 3.5. — Let A ∈ S∞ and α > 0 such that AD ∈ DESα. For any
(κ, r) ∈ E(AD) the operator Ãκ,r is invertible with Ã−1

κ,r ∈ DS−α and for all l ⩾ 0 we
have

(3.9)
∥∥∥Ã−1

κ,r

∥∥∥(γ)

l
=
∥∥∥Ã−1

κ,r

∥∥∥(γ)

0
⩽ κ−1

r−α for γ ⩾ 0,
r−α−γ for − α ⩽ γ < 0.

Moreover, the following estimates hold for all γ ∈ R, l ⩾ 0:∥∥∥AÃ−1
κ,r − Id

∥∥∥(γ−α)

l
⩽ rα−γ + 1

κ

(
rα−γ

∥∥∥AD
∥∥∥(α)

0
+
∥∥∥AOD

∥∥∥(γ)

l

)
(3.10)

and ∥∥∥Ã−1
κ,rA− Id

∥∥∥(γ−α)

l
⩽ rα−γ + 1

κ

(
rα−γ

∥∥∥AD
∥∥∥(α)

0
+
∥∥∥AOD

∥∥∥(γ)

l+α

)
.(3.11)

Proof. — We have that Ãκ,r −AD = (κrα−AD)Pr, and since Pr ∈ S−∞, which is an
ideal of S∞, we observe that Ãκ,r ≡ AD mod S−∞. By (3.6) and (3.7), Ãκ,r ∈ DS∞

and its symbol satisfies
(3.12) |ãκ,r(ξ)| = |aid(ξ)| 1{⟨ξ⟩>r} + κrα1{⟨ξ⟩⩽r} ⩾ κ⟨ξ⟩α1{⟨ξ⟩>r} + κrα1{⟨ξ⟩⩽r}

for all ξ ∈ Ξ. Hence Ã−1
κ,r = Op

(
ã−1

κ,r

)
∈ DS−α and (3.9) holds.

The estimates (3.10) and (3.11) follow by applying (2.35) term-wise to the right
hand sides of the identities

AÃ−1
κ,r − Id = −Pr + κ−1r−αADPr + AODÃ−1

κ,r,

Ã−1
κ,r A− Id = −Pr + κ−1r−αADPr + Ã−1

κ,r A
OD

and taking (3.5) into account. □
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Our current goal is to understand perturbations of strongly elliptic operators of
positive order. In particular, we show that operators of lower order are relatively
bounded with respect to them.

Lemma 3.6. — Let β ∈ R, α > max(β, 0), 0 < γ < α, and assume that A ∈ SESα

with AOD ∈ Sγ and B ∈ Sβ. Then for β ⩽ 0 the operator B is bounded, and, in the
case of α > β > 0, for every x ∈ Hα and

(κ, r) ∈ E
(
AD

)
∩
{
r ⩾

(∥∥∥AOD
∥∥∥(γ)

0
/κ
)1/(α−γ)

}
,

we have

(3.13) ∥Bx∥ ⩽
rβ−α∥B∥(β)

0

κ− rγ−α∥AOD∥(γ)
0

(
∥Ax∥ + κrα

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
∥x∥

)
.

In particular, B is infinitesimally A-bounded in ℓ2(Ξ).

Proof. — The only non-trivial case is α > β > 0. For every x ∈ Hα we have

∥Bx∥ ⩽
∥∥∥BÃ−1

κ,r

∥∥∥ ∥∥∥ADx
∥∥∥+

∥∥∥B (Ã−1
κ,rA

D − Id
)∥∥∥ ∥x∥ ,

with Ãκ,r defined as in (3.7). Corollary 2.9 and displays (2.35), (3.9) and (3.11) imply
the estimates ∥∥∥B (Ã−1

κ,rA
D − Id

)∥∥∥ ⩽ ∥B∥(β)
0

∥∥∥Ã−1
κ,rA

D − Id
∥∥∥(−β)

|β|

⩽ rβ∥B∥(β)
0

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
and ∥∥∥BÃ−1

κ,r

∥∥∥ ⩽ ∥B∥(β)
0

∥∥∥Ã−1
κ,r

∥∥∥(−β)

0

⩽ κ−1∥B∥(β)
0 rβ−α,

and we obtain

(3.14) ∥Bx∥ ⩽ κ−1rβ−α∥B∥(β)
0

( ∥∥∥ADx
∥∥∥+ κrα

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
∥x∥

)
,

which is (3.13) with AD ∈ DESα replacing A. Applying (3.14) with B = AOD, we
arrive at

(3.15)

∥∥∥AODx
∥∥∥ ⩽ κ−1rγ−α

∥∥∥AOD
∥∥∥(γ)

0

∥∥∥ADx
∥∥∥

+ rγ
∥∥∥AOD

∥∥∥(γ)

0

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
∥x∥.

Hence we have

∥Ax∥ ⩾
∥∥∥ADx

∥∥∥−
∥∥∥AODx

∥∥∥
⩾
(

1 − κ−1rγ−α
∥∥∥AOD

∥∥∥(γ)

0

) ∥∥∥ADx
∥∥∥− rγ

∥∥∥AOD
∥∥∥(γ)

0

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
∥x∥,
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which implies

(3.16)
∥∥∥ADx

∥∥∥
⩽
(

1 − κ−1rγ−α
∥∥∥AOD

∥∥∥(γ)

0

)−1 (
∥Ax∥ + rγ

∥∥∥AOD
∥∥∥(γ)

0

(
1 + κ−1

∥∥∥AD
∥∥∥(α)

0

)
∥x∥

)
.

Substituting (3.16) into (3.14) we obtain (3.13). □

We conclude the section with the following proposition.

Proposition 3.7. — For α ∈ R, every operator from ESα is closed on Hmax{α,0}

in the Hilbert space ℓ2(Ξ). Every symmetric operator from ESα defined on Hmax{α,0}

is self-adjoint.

Proof. — For α ⩽ 0 we have ESα ⊂ S0, and the statements follow from Corol-
lary 2.9. Now assume A ∈ SESα with α > 0. By (2.3), Definition 3.3 and Lemma 2.8,
for any (κ, r) ∈ E(AD) we have the estimates

(3.17) κ2∥x∥2
Hα ⩽

∥∥∥Ãκ,rx
∥∥∥2

⩽
(∥∥∥Ãκ,r

∥∥∥(α)

α

)2
∥x∥2

Hα

for all x ∈ Hα. Hence the graph norm of Ãκ,r is equivalent to the norm of Hα, and
Ãκ,r is closed on Hα. If Ãκ,r is symmetric, then for every x ∈ dom(Ã∗

κ,r) there exists
Cx ⩾ 0 such that for all y ∈ Hα

(3.18)
∣∣∣(x, Ãκ,ry

)∣∣∣ ⩽ Cx∥y∥ℓ2(Ξ).

In particular, with (yn)ξ := (ã)κ,r,id(ξ)1⟨ξ⟩⩽n xξ for n ⩾ r, ξ ∈ Ξ, we obtain by (3.6)
and (3.7) that ∑

ξ ∈ Ξ
⟨ξ⟩⩽n

⟨ξ⟩2α|xξ|2 ⩽ κ−1
(
x, Ãκ,ryn

)
⩽ κ−1Cx∥yn∥ℓ2(Ξ)

⩽ κ−1Cx

∥∥∥Ãκ,r

∥∥∥(α)

0

 ∑
ξ ∈ Ξ

⟨ξ⟩⩽n

⟨ξ⟩2α|xξ|2


1/2

.

(3.19)

Passing to the limit n → ∞, it follows from (2.3) that ∥x∥Hα ⩽ κ−1Cx∥Ãκ,r∥(α)
0 , i.e.

dom
(
Ã∗

κ,r

)
⊂ Hα = dom

(
Ãκ,r

)
,

hence Ãκ,r is self-adjoint. By Lemma 3.6 A− Ãκ,r is infinitesimally Ãκ,r-bounded, so
that A is also self-adjoint (see, e.g., Theorems 3.4.2 and 4.1.9 in [BS87]).

For A ∈ ESα, by Definition 3.4 there exist a unitary U ∈ S0 and H ∈ SESα such
that A = UHU †. Moreover, it follows from Lemma 2.8 that UHα = U †Hα = Hα.
Now, let (xn)n ∈N ⊂ Hα with xn → x and U †HUxn → z in ℓ2, as n → ∞. Since U
is bounded, Uxn → Ux and HUxn → Uz, thus the closedness of H implies that
Ux ∈ Hα and HUx = Uz, i.e. x ∈ Hα and UHU †x = z. Hence, A is closed on Hα

and self-adjoint if symmetric. □
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4. The Density of States Measure and von Neumann
Algebras

In this section, following [Shu79a], we consider a representation of S∞ into another
operator algebra, affiliated with an infinite factor (accounting for the almost peri-
odicity), and define the density of states measure (DSM) for self-adjoint operators
in ES∞ with respect to this representation. For a suitable representation, this DSM
will coincide with the classically defined DSM on elliptic differential operators with
almost periodic coefficients. We follow the construction and terminology of [Shu79a,
§1], generalising Shubin’s symbol classes to the ones defined in Section 2.

4.1. Representations of the operator algebra

Before stating the abstract conditions we assume on the algebra of almost-periodic
operators on Ξ, let us recall a few definitions, which can be found in [Năı72, §34–38].

Definition 4.1. — Let H be a Hilbert space and B(H) be the algebra of bounded
linear operators on H. For a subalgebra A ⊂ B(H), its commutant is defined as
(4.1) A′ := {B ∈ B(H) : AB = BA for all A ∈ A} .

We say that A ⊂ B(H) is a factor if A∩A′ = span(IdH). A family of densely defined,
not necessarily bounded, operators S with domains in H is said to be affiliated to
A if every B ∈ S commutes with every unitary U ∈ A′, this relationship is denoted
SηA. Similarly, a subspace K ⊂ H is affiliated to A, again denoted KηA if it is
invariant under the action of every unitary U ∈ A′. If K is closed, this is readily seen
to be equivalent to the projection PK being in A.

Let us now set up some notation for the rest of this section. We set H as some
Hilbert space, and A as a factor of either type I∞ or II∞ in B(H), the algebra of
bounded linear operators in H. The precise definition of factor type is not relevant
to us, we only use the fact that they carry a well-defined notion of trace, see the
beginning of Section 4.2.

Let H̃∞ be a dense subspace of H and

S̃∞ =
⋃

γ ∈R
S̃γ

be a ∗-algebra of unbounded linear operators in H defined on H̃∞, filtered by R. We
assume that S̃∞H̃∞ ⊂ H̃∞, and that S̃∞ is invariant under the involution Ã 7→ Ã† :=
Ã∗|H̃∞ , where Ã∗ is the adjoint to Ã ∈ S̃∞. We also suppose that S̃∞ is affiliated
with the factor A. Finally, we assume there is a representation ρ : S∞ → S̃∞ having
the following properties:

(i) ρ is a homomorphism of filtered ∗-algebras with ρ(Sγ) ⊂ S̃γ, for all γ ∈ R.
(ii) For every A ∈ S0, ρ(A) extends to a bounded linear operator on H with

(4.2) ∥ρ(A)∥H→H = ∥A∥ℓ2(Ξ) → ℓ2(Ξ) .
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(iii) For all A ∈ S∞, ρ(A) is closable in H with the closure A♯ := ρ(A). For every
α > 0 there exists a dense subspace H̃α ⊃ H̃∞ such that
(a) H̃α ⊂ H̃γ if 0 < γ ⩽ α,
(b) A ∈ DESα implies dom(A♯) = H̃α,
(c) for all B ∈ S0, B♯H̃α ⊂ H̃α.

(iv) If A ∈ DESα, α > 0, is self-adjoint on Hα, then A♯ is self-adjoint.

Remark 4.2. — When A is a I∞ factor some of the statements in this section
become rather trivial. However, we include this case for applications in Section 10.

Remark 4.3. — In [Shu79a], Shubin considers G = Rd acting on itself by transla-
tion, with almost periodic operators acting both in Besicovitch space B2(Rd) ∼= ℓ2(Rd)
and in L2(Rd) through the Fourier integral representation of pseudo-differential op-
erators. The appropriate Hilbert space is then

(4.3) H = B2
(
Rd
)

⊗ L2
(
Rd
)
,

and the II∞ factor A is generated by the two families of operators

(4.4)
{
eξ ⊗ eξ : ξ ∈ Rd

}
and

{
I ⊗ Tξ : ξ ∈ Rd

}
,

where eξ is multiplication by the character eξ(x) = eiξ·x and Tξ is the translation
operator Tξf(x) = f(x − ξ). The representation ρ is given on A = Op(a) ∈ S∞ by
the linear operator ρ(A) = a(x + y;Dy) acting on

(4.5) H̃∞ := B2
(
Rd
)

⊗ Ĥ∞
(
Rd
)
.

Here, x is the variable of functions in B2(Rd), y is the variable of functions in L2(Rd),
Dy = −i∇y, and Ĥ∞(Rd) := {f ∈ C∞(Rd) : ∂αf ∈ L2(Rd) for all α ∈ Nd

0}.

Properties (i) and (ii) of the representation ρ imply the following lemma.

Lemma 4.4. — If A ∈ S0, then A♯ is defined on H and satisfies(
A♯
)∗

=
(
A†
)♯

=
(
A∗
)♯

and
∥∥∥A♯

∥∥∥
H→H

= ∥A∥ℓ2(Ξ) → ℓ2(Ξ).

In particular, the map S0 → B(H), A 7→ A♯ is an injective homomorphism of
∗-algebras. If U ∈ S0 is unitary, then so is U ♯.

We will now carry over Lemma 3.6 to images under ♯. This provides us with some
information on the domains of operators from (S∞)♯.

Lemma 4.5. — Let β ∈ R, B ∈ Sβ and A ∈ SESα for some α > 0. Then
(1) ⋃ζ > max{β,0} H̃ζ ⊂ dom(B♯),
(2) dom(A♯) = H̃α.
(3) Suppose β < α and 0 < γ < α with AOD ∈ Sγ. Then for β ⩽ 0 the operator

B♯ is bounded, and, otherwise, for every φ ∈ H̃α and

(κ, r) ∈ E
(
AD

)
∩
{
r ⩾

(∥∥∥AOD
∥∥∥(γ)

0
/κ
)1/(α−γ) }

,
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we have

(4.6)
∥∥∥B♯φ

∥∥∥
H
⩽

rβ−α∥B∥(β)
0

κ− rγ−α ∥AOD∥(γ)
0

( ∥∥∥A♯φ
∥∥∥
H

+ κrα
(

1 + κ−1
∥∥∥AD

∥∥∥(α)

0

)
∥φ∥H

)
.

In particular, B♯ is infinitesimally A♯-bounded in H.

Proof. — For β ⩽ 0 the statements (1) and (3) follow from (4.2). Let now β > 0
and assume that 0 < γ < α with AOD ∈ Sγ. Following the proof of Lemma 3.6
and applying properties (i) and (ii) of the representation ρ where necessary, we
derive (4.6) for φ ∈ H̃∞. Consequently, the graph norm of ρ(B) is dominated by the
graph norm of ρ(A), thus dom(B♯) ⊃ dom(A♯). Applying (4.6) for AOD instead of
B and AD instead of A, we conclude that the graph norms of ρ(A) and ρ(AD) are
equivalent, thus (iiib) implies dom(A♯) = dom((AD)♯) = H̃α, which is (2). Now (1)
follows by varying A ∈ SESα with α > β. Finally, we can extend (4.6) from H̃∞ to
H̃α by density with respect to the graph norm of A♯. □

Properties (iiib) and (iv) of the map ρ can also be extended to operators from the
classes ESα, α > 0.

Lemma 4.6. — Let α > 0 and A ∈ ESα. Then dom(A♯) = H̃α and for all unitary
U ∈ S0

(4.7) U ♯A♯
(
U ♯
)∗

=
(
UAU †

)♯
holds on H̃α.

Moreover, if A is self-adjoint on Hα, then A♯ is self-adjoint.

Proof. — Assume first that A ∈ SESα, so that AD ∈ DESα and AOD ∈ Sγ

for some 0 < γ < α. According to Lemma 4.5(1, 2) we have that dom(A♯) =
H̃α ⊂ dom((AOD)♯). Moreover, if A is self-adjoint, then (AD)♯ is self-adjoint on
H̃α and ρ(AOD) is symmetric on H̃∞, as follows from properties (iv) and (i) of ρ,
respectively. Since dom((AOD)♯) ⊃ H̃α is the closure of H̃∞ with respect to the
graph norm of (AOD)♯, the operator (AOD)♯ is also symmetric on H̃α. Moreover, by
Lemma 4.5(3) it is infinitesimally A♯-bounded. Thus, [BS87, Theorem 4.1.9] implies
that A♯ = (AD + AOD)♯ is self-adjoint on H̃α.

Let now A ∈ ESα. By definition, there exist H ∈ SESα and V ∈ S0 unitary such
that A = V †HV on H∞. Since ρ is a ∗-homomorphism,
(4.8) ρ(A) = ρ(V )†ρ(H)ρ(V )

holds on H̃∞. By Lemma 4.4 the operator V ♯ is unitary, and property (iiic) implies
that
(4.9) V ♯H̃α =

(
V ♯
)∗

H̃α = H̃α.

We have already proved in Lemma 4.5(2) that dom(H♯) = H̃α, thus the argument
at the end of the proof of Proposition 3.7 implies that (V ♯)∗H♯V ♯ is closed on H̃α.
As by (4.8) and Lemma 4.4 this operator is an extension of ρ(A), it follows that
dom(A♯) ⊂ H̃α. Similarly, we have on H̃∞ that
(4.10) ρ(H) = ρ(V )ρ(A)ρ(V )†
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and V ♯A♯(V ♯)∗ is a closed operator on V ♯ dom(A♯) ⊂ H̃∞. Thus,

H̃α = dom
(
H♯
)

⊂ V ♯ dom
(
A♯
)
,

and (4.9) yields H̃α ⊂ dom(A♯). Hence dom(A♯) = H̃α. Finally, let U ∈ S0 be unitary.
Then

(4.11) ρ(U)ρ(A)ρ(U)† = ρ
(
UAU †

)
⊂
(
UAU †

)♯
,

so that on the domain H̃α = dom((UAU †)♯) we have that U ♯A♯(U ♯)∗ is a closed
extension of ρ(U)ρ(A)ρ(U)†, in other words (4.7) holds. If A is self-adjoint on Hα,
then so is H, thus H♯ by the first part of the proof. Hence, the self-adjointness of
A♯ follows from (4.7) with U = V and H instead of A. □

4.2. The density of states measure

Since A is a factor of type I∞ or II∞, there exists, by definition, a semi-finite
faithful normal trace T on A, see [Dix81, I.6 and I.8.4]. Moreover, due to [Dix81,
I.6.4, Corollary], this trace is unique up to multiplication by a positive number. As
in Definition 4.1, we write LηA to denote that L ⊂ H is a closed linear subspace
affiliated to A, i.e. PL ∈ A, where PL is the projection onto L. If LηA, the relative
dimension of L is defined by

D(L) := T(PL) ∈ [0,∞].

If A is a i∞-factor, the range of the relative dimension is cN0 ∪ {∞}, for some c > 0.
It is [0,∞] if A is a ∞-factor.

Definition 4.7. — Let A ∈ S0 ∪ ES∞ be symmetric and J ⊂ R be a Borel
measurable set. Denote by EJ(A♯) the spectral projection of A♯ for J . We define the
density of states measure (DSM) of A on J , relative to the representation ρ, by

(4.12) N(J ;A) := T
(
EJ(A♯)

)
= D

(
EJ(A♯)H

)
.

Remark 4.8. — Usually, the dependence on the representation ρ and the factor
A is unambiguous and is thus not reflected in the notation.

The following corollary generalises [PS12, Lemma 4.4]. It follows directly from
Lemma 4.6 (or Lemma 4.4 for A ∈ S0) and the invariance of T under unitary
transformations in A. We remark at this point that, since S̃∞ηA, one has U ♯ ∈ A
for every unitary U ∈ S0, see Lemma 4.4 and [Năı72, §35.1].

Corollary 4.9. — Let U ∈ S0 be unitary and let A ∈ S0 ∪ ES∞ be symmetric.
Then one has N(J ;A) = N(J ;UAU †) for any Borel measurable set J ⊂ R.

In the remainder of this section, we investigate the behaviour of the DSM for
elliptic operators of positive order under perturbations. In [MPS14, PS12, PS16]
such an analysis was conducted for operators that are bounded from below and the
particular case J = (−∞, λ), λ ∈ R.
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Before continuing, let us introduce the following notation. For any interval J =
[s, t] ⊂ R, s < t and ε ∈ R, we define

Jε :=

 ∅ for ε < s− t

2 ,

[s− ε, t+ ε] otherwise.

The following lemma gives us a variational characterisation of the DSM (cf. [PS12,
Lemma 4.1]).

Lemma 4.10. — Let A ∈ S0 ∪ ES∞ be symmetric. Then, for any interval J =
[q − r, q + r] with q ∈ R and r > 0, we have

(4.13) N(J ;A) = sup
{
D(L) : L ⊂ dom(A♯), LηA,

and
∥∥∥(A♯ − q

)
φ
∥∥∥
H
⩽ r∥φ∥H ∀ φ ∈ L

}
.

The analogous statement holds for the open interval J = (q − r, q + r) with strict
inequality in (4.13).

Remark 4.11. — Usually, variational characterisations such as (4.13) are given
in terms of quadratic forms rather than norms. The reason why we cannot do so is
because we do not assume the operator A♯ to be semi-bounded, J a semi-infinite
interval. One can interpret Lemma 4.10 in terms of quadratic forms as usual for the
nonnegative operator (A♯ − q)2.

Proof. — Choosing L := EJ(A♯)H, we observe that N(J ;A) is at most the right
hand side of (4.13). Suppose that there exists a subspace L that satisfies the assump-
tions on the righthand side of (4.13) and D(L) > D(EJ(A♯)H). Then [Năı72, §37.1,
Lemma] implies that L contains an element φ orthogonal to EJ(A♯)H, implying that
∥(A♯ − q)φ∥2

H > r2∥φ∥2
H, which is a contradiction. □

The following lemma generalises [PS12, Corollary 4.3] to operators that are not
necessarily bounded below and unbounded perturbations.

Lemma 4.12. — Let A ∈ SESα, α > 0, and B ∈ Sβ, β < α, symmetric operators.
Let J := [q − r, q + r] ⊂ R be the interval of length 2r > 0 centred at q ∈ R. Then
there exists a constant C ⩾ 0 depending only on A and β such that, for

(4.14) ε := εJ,A,B :=


∥B∥ if β ⩽ 0,

∥B∥(β)
0

2 + ∥B∥(β)
0

(
r + |q| + C

(
1 + ∥B∥(β)

0

) α
α−β

)
if β > 0,

the inequality

(4.15) N(J−ε;A) ⩽ N(J ;A+B) ⩽ N(Jε;A)

holds.
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Proof. — In view of Lemma 4.5(1,3) and property (i) of the representation ρ, one
has that (A+B)♯ = A♯ +B♯ on dom(A♯) ⊂ dom(B♯). Fix φ ∈ L := EJ((A+B)♯)H ⊂
dom((A+B)♯) = dom(A♯), so that∥∥∥(A♯ +B♯ − q

)
φ
∥∥∥
H
⩽ r ∥φ∥H .(4.16)

We will show that ∥∥∥(A♯ − q
)
φ
∥∥∥
H
⩽ (r + ε) ∥φ∥H(4.17)

holds, which in view of (4.13) implies the second inequality in (4.15). Since∥∥∥(A♯ − q
)
φ
∥∥∥
H
⩽
∥∥∥(A♯ +B♯ − q

)
φ
∥∥∥
H

+
∥∥∥B♯φ

∥∥∥
H

⩽ r ∥φ∥H +
∥∥∥B♯φ

∥∥∥
H
,

(4.18)

it is sufficient to estimate ∥B♯φ∥H. For β ⩽ 0, Lemma 4.4 and Corollary 2.9 imply

(4.19)
∥∥∥B♯φ

∥∥∥
H
⩽
∥∥∥B♯

∥∥∥ ∥φ∥H = ∥B∥ ∥φ∥H = ε ∥φ∥H ,

and (4.17) follows from (4.16) and (4.18).
From now on, we consider β > 0. By assumption we can choose γ ∈ (β, α) such

that AOD ∈ Sγ. Let (κ, r) ∈ E(AD) with

(4.20) r ⩾ max


4

(
1 + ∥B∥(β)

0

)
κ

1/(α−β)

;

2
∥∥∥AOD

∥∥∥(γ)

0
κ


1/(α−γ) .

As φ ∈ dom(A♯), Lemma 4.5(3) yields

(4.21)

∥∥∥B♯φ
∥∥∥
H
⩽ 2 ∥B∥(β)

0

[
rβ−ακ−1

∥∥∥A♯φ
∥∥∥
H

+ rβ
(

1 + κ−1
∥∥∥AD

∥∥∥(α)

0

)
∥φ∥H

]

⩽
∥B∥(β)

0
2


∥∥∥(A♯ − q

)
φ
∥∥∥
H

+ |q|∥φ∥H

1 + ∥B∥(β)
0

+ C
(
1 + ∥B∥(β)

0

) β
α−β ∥φ∥H

 ,
where C is a constant only depending on A and β. Combining (4.18) and (4.21), we
get

2 + ∥B∥(β)
0

2
(
1 + ∥B∥(β)

0

) ∥∥∥(A♯ − q
)
φ
∥∥∥
H

⩽

r + ∥B∥(β)
0

2
(
1 + ∥B∥(β)

0

) (|q| + C
(
1 + ∥B∥(β)

0

) α
α−β

) ∥φ∥H .

Hence, we arrive at (4.17) with ε as in (4.14).
For the first inequality in (4.15) the only non-trivial case is ε ⩽ r. For all φ ∈

EJ−ε(A♯)H ⊂ dom(A♯) we have∥∥∥(A♯ − q
)
φ
∥∥∥
H
⩽ (r − ε) ∥φ∥H .(4.22)
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This implies ∥∥∥(A♯ +B♯ − q
)
φ
∥∥∥
H
⩽ (r − ε) ∥φ∥H +

∥∥∥B♯φ
∥∥∥
H
,(4.23)

where in view of (4.21) and (4.14)

(4.24)
∥∥∥B♯φ

∥∥∥
H
⩽

∥B∥(β)
0

2 + 2 ∥B∥(β)
0

(
r + |q| + C

(
1 + ∥B∥(β)

0

) α
α−β

)
∥φ∥H ⩽ ε ∥φ∥H .

Thus, the first inequality in (4.15) follows and the Lemma 4.12 is proved. □

The next lemma deals with perturbations that are “spectrally far” from a given
interval. It is a generalisation of [MPS14, Lemma 11.1] for operators that are not
necessarily bounded below.

Lemma 4.13. — For α > 0, β < α let H0 ∈ DESα, B ∈ Sβ, and A ∈ S0 be
symmetric operators and set H := H0 + B ∈ SESα. Suppose that there exists a
family of orthogonal projections {Pl}L

l=0 with Pl ∈ S−α, 0 ⩽ l ⩽ L− 1, and PL ∈ S0

that all commute with H0 and satisfy

(4.25)
L∑

l=0
Pl = I, and A = AP0, Bn,l := PnBPl = 0, for |n− l| > 1.

Moreover, let J = (q − r, q + r) be an interval such that

(4.26) Dl := dist
(
J, σ

(
(PlHPl)♯

))
> 0, for all 0 ⩽ l < L.

Finally, assume that
(4.27) 3Lr ⩾ dL := min

1⩽ l < L
Dl

and
(4.28) max

0⩽ l < L
(∥Bl,l−1∥ + ∥Bl,l+1∥)/Dl ⩽ 1/4,

where we use the convention B0,−1 := 0.
Then for

(4.29) ε := 32− L
2

(
r

dL

)1/2
∥A∥

we have that
(4.30) N(J−ε;H) ⩽ N(J ;H + A) ⩽ N (Jε;H) .

Proof. — We only prove the first inequality; the second inequality follows anal-
ogously. It suffices to show that for any φ ∈ EJ−ε(H♯)H ⊂ dom(H♯) = H̃α, one
has ∥∥∥(H♯ + A♯ − q

)
φ
∥∥∥
H
⩽ r ∥φ∥H .

For any K ∈ N, we split the interval J−ε into 2K + 1 subintervals of equal width:
for −K ⩽ k ⩽ K − 1, set

(4.31) Ik :=
(
q + (2k − 1) (r − ε)

2K + 1 , q + (2k + 1) (r − ε)
2K + 1

]
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and

(4.32) IK :=
(
q + (2K − 1) (r − ε)

2K + 1 , q + r − ε

)
.

For φ ∈ EJ−ε(H♯)H and −K ⩽ k ⩽ K define φk := EIk
(H♯)φ ∈ H̃α and

(4.33) ηk := H♯φk −
(
q + 2k (r − ε)

2K + 1

)
φk,

so that
(4.34)

∥∥∥ηk
∥∥∥
H
⩽

r

(2K + 1)
∥∥∥φk

∥∥∥
H

holds. We also introduce
φk

l := P ♯
l φk and ηk

l := P ♯
l ηk, for −K ⩽ k ⩽ K and 0 ⩽ l ⩽ L.

For 0 ⩽ l < L, we clearly have P ♯
l H

♯ = (PlH)♯ on H̃∞ and, since PlH ∈ S0, this
identity extends to H̃α. Moreover, Pl commutes with H0 so that (4.25) implies that
on H̃α

P ♯
l H

♯ = (PlH)♯ = (PlHPl)♯ +B♯
l,l−1 +B♯

l,l+1

= (PlHPl)♯P ♯
l +B♯

l,l−1P
♯
l−1 +B♯

l,l+1P
♯
l+1,

where we use the convention P−1 := 0. Thus, applying P ♯
l to (4.33), we arrive at

(4.35) ηk
l = B♯

l,l−1φ
k
l−1 +

(
(PlHPl)♯ −

(
q + 2k (r − ε)

2K + 1

))
φk

l +B♯
l,l+1φ

k
l+1,

for 0 ⩽ l < L, and Lemma 4.4 together with (4.26) and (4.34) gives for 0 ⩽ l < L,

(4.36)

∥∥∥φk
l

∥∥∥
H
⩽ D−1

l

( ∥∥∥ηk
l

∥∥∥
H

+ ∥Bl,l−1∥
∥∥∥φk

l−1

∥∥∥
H

+ ∥Bl,l+1∥
∥∥∥φk

l+1

∥∥∥
H

)

⩽
r

(2K + 1)dL

∥∥∥φk
∥∥∥
H

+

∥∥∥φk
l−1

∥∥∥
H

+
∥∥∥φk

l+1

∥∥∥
H

4 .

Recursively for 0 ⩽ l < L we deduce that

(4.37)
∥∥∥φk

l

∥∥∥
H
⩽

2r
(2K + 1)dL

∥∥∥φk
∥∥∥
H

+ 1
3
∥∥∥φk

l+1

∥∥∥
H
.

Hence, employing the trivial bound ∥φk
L∥H ⩽ ∥φk∥H, we get that

(4.38)
∥∥∥φk

0

∥∥∥
H
⩽

(
3r

(2K + 1)dL

+ 3−L

)∥∥∥φk
∥∥∥
H
.

In view of Lemma 4.4, it follows that for all −K ⩽ k ⩽ K,

(4.39)

∥∥∥A♯φk
∥∥∥
H

=
∥∥∥(AP0)♯φk

∥∥∥
H

=
∥∥∥A♯φk

0

∥∥∥
H

⩽

(
3r

(2K + 1)dL

+ 3−L

)
∥A∥

∥∥∥φk
∥∥∥
H
,
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whence the Cauchy–Schwarz inequality and the Pythagorean theorem yield

(4.40)

∥∥∥A♯φ
∥∥∥
H
⩽

∑
−K ⩽ k ⩽K

∥∥∥A♯φk
∥∥∥
H

⩽

(
3r

(2K + 1)dL

+ 3−L

)√
2K + 1 ∥A∥ ∥φ∥H .

We choose

(4.41) K =
⌊

3L+1r

2dL

− 1
2

⌋
+ 1,

so that 3L+1r
dL

⩽ 2K + 1 ⩽ 3L+2r
dL

. Then, by (4.27), we have

(4.42)
(

3r
(2K + 1)dL

+ 3−L

)√
2K + 1 ⩽ 32− L

2

(
r

dL

)1/2
.

Consequently, we arrive at∥∥∥(H♯ + A♯ − q
)
φ
∥∥∥
H
⩽
∥∥∥(H♯ − q

)
φ
∥∥∥
H

+
∥∥∥A♯φ

∥∥∥
H

⩽

(
(r − ε) + 32− L

2

(
r

dL

)1/2
∥A∥

)
∥φ∥H

= r ∥φ∥H ,

(4.43)

where we used that φ ∈ EJ−ε(H♯) and the value of ε given in (4.29). □

5. Gauge Transform

Let α ∈ R and A = Op(a) ∈ SESα be symmetric, thus extends to a self-adjoint
linear operator on Hα by Proposition 3.7.

Definition 5.1. — For every symmetric Ψ ∈ S0, the unitary transformation of
A into

[A] := [A]Ψ := exp(−iΨ)A exp(iΨ)
is called a gauge transform.
We remark here that, due to Lemma 2.13 and Corollary 2.9, the series

(5.1) exp(iΨ) =
∞∑

k=0

(
iΨ
)k

k!
converges both in S0 and in the operator norm. In particular, Lemma 2.3 implies
that exp(iΨ) ∈ S0, whence exp(iΨ) is unitary and [A]Ψ ∈ ESα is symmetric. The
following lemma provides an expansion of [A]Ψ into a series of multiple commutators
of A with Ψ, see (2.39) for the definition of adk.

Lemma 5.2. — We have

(5.2) [A]Ψ =
∞∑

k=0

1
k! adk(A; Ψ),

where the series converges absolutely in Sα.
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Proof. — Lemma 2.13 yields the bounds

(5.3)
∥∥∥ΨjAΨm

∥∥∥(α)

l
⩽
(

∥Ψ∥(0)
l

)j
∥A∥(α)

l

(
∥Ψ∥(0)

l+|α|

)m
, for all l ⩾ 0.

Thus, the double series

(5.4) [A]Ψ =
∞∑

j=0

(−iΨ)j

j! A
∞∑

m=0

(iΨ)m

m! =
∞∑

j,m=0

(−iΨ)j

j! A
(iΨ)m

m!

converges absolutely in Sα. Recursively, we obtain

□(5.5) adk(A; Ψ) = k!
∑

j+m=k

(−iΨ)j

j! A
(iΨ)m

m! , for all k ⩾ 0.

In the remainder of this section, we look at gauge transforms that result in an
operator [A]Ψ that is closer to a diagonal operator (i.e. an operator in DESα) than
A. More precisely, we construct Ψ in such a way that the gauge transform removes
as much of the off-diagonal part AOD from A as possible. Let β < α such that
AOD ∈ Sβ. Then we aim at

(5.6) [A]Ψ = AD + AR +R,

where AR ∈ Sβ is an off-diagonal resonant part (which our transformation cannot
eliminate) and R ∈ Sγ for some γ < β. The exact form of the operators AR and R
depends on the choice of Ψ.

As a first step towards (5.6), let us rewrite the series (5.2) as

(5.7) [A]Ψ = AD + AOD + ad
(
AD; Ψ

)
+R,

with

(5.8) R := ad(AOD; Ψ) +
∞∑

k=2

1
k! adk(A; Ψ).

Suppose that Ψ ∈ Sζ with ζ ∈ R and let κ ∈ R. In order to achieve that R ∈ Sγ for
some γ < β, we can use the following estimates:

(1) If ζ < 0, then by Lemma 2.15 we get ad(X; Ψ) ∈ Sκ+ζ for all X ∈ Sκ. We
call a gauge transform that only uses these trivial bounds on the commutator
norms weak.

(2) Sometimes the structure of the commutators allows us to prove ad(X; Ψ) ∈
Sκ+ζ−ε for some ε > 0 and appropriate X ∈ Sκ. A gauge transform exploiting
this improvement shall be called strong.

As we will see, the main issue with the strong gauge transform is that some
conditions under which it can be used may not be formally invariant under the use
of the gauge transform, which is in general an iterative scheme. Furthermore, due
to combinatorial issues it may be harder to verify that those conditions are still
satisfied as the number of steps increase. However, as we will see, in many situations
it is sufficient to make one step of the strong gauge transform, and proceed from
there with the weak one.
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5.1. The commutator equation

We recall that after the gauge transform we would like to arrive at the operator
[A]Ψ as in (5.6), in the best possible case with AR = 0. Comparing (5.6) with (5.7)
we obtain that AR = 0 is equivalent to the commutator equation

(5.9) ad
(
AD; Ψ

)
+ AOD = 0

for Ψ = Op(ψ).
Let A = Op(a) and Θ be a frequency set for a. By (2.37), equation (5.9) is solved

if Θ is a frequency set for ψ and
(5.10) aD(θ ▷ ξ)ψθ(ξ) − ψθ(ξ)aD(ξ) = iaOD

θ (ξ)
holds for all θ ∈ Θ′ := Θ \ {id} and ξ ∈ Ξ. This leads to

(5.11) ψθ(ξ) = iaOD
θ (ξ)

aD(θ ▷ ξ) − aD(ξ) ,

for θ ∈ Θ′ and ξ ∈ Ξ. However, the problem of small denominators aD(θ ▷ ξ) − aD(ξ)
for some pairs (θ, ξ) generally prevents such choice of ψ. This motivates the following
definition.

Definition 5.3. — For δ ∈ R, s > 0, and θ ∈ G, we call a set Λδ,s
θ ⊂ Ξ a

δ-resonant region generated by θ for AD if it satisfies

(5.12) Λδ,s
θ ⊃

{
ξ ∈ Ξ :

∣∣∣aD(θ ▷ ξ) − aD(ξ)
∣∣∣ ⩽ s⟨ξ⟩δ

}
.

A corresponding resonance cut-off is a function χ := χδ,s : G × Ξ → R, mapping
(θ, ξ) 7→ χδ,s

θ (ξ), such that for all θ ∈ G, we have

(5.13)

0 ⩽ χ ⩽ 1,
χδ,s

θ (ξ) = 0, for all ξ ∈ Λδ,s
θ ,

χθ−1(θ ▷ ξ) = χθ(ξ), for all ξ ∈ Ξ.

For a fixed resonance cut-off, we define the resonant part BR := Op(bR) and the
non-resonant part BNR := Op(bNR) of any operator B = Op(b) ∈ S∞ via their
symbols

(5.14)
bR:= bOD

(
1 − χδ,s

)
,

bNR:= bODχδ,s.

Remark 5.4. —
(i) For any δ ∈ R and s > 0, the only δ-resonant region generated by id is

Λδ,s
id = Ξ. Hence, every resonance cut-off χ satisfies χid ≡ 0.

(ii) If Λδ,s
θ satisfies

(5.15) Λδ,s
θ−1 = θ ▷ Λδ,s

θ , for all θ ∈ G,

then the resonance cut-off χ can be chosen as
(5.16) χθ(ξ) := 1Ξ\Λδ,s

θ
(ξ), for all (θ, ξ) ∈ G× Ξ.
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(iii) If BOD ∈ Sγ, γ ∈ R, then
(5.17) BOD = BNR +BR,

and

(5.18)
∥∥∥BNR

∥∥∥(γ)

l
⩽
∥∥∥BOD

∥∥∥(γ)

l
,

∥∥∥BR
∥∥∥(γ)

l
⩽
∥∥∥BOD

∥∥∥(γ)

l

hold for all l ⩾ 0. If B is symmetric, then so are BD, BNR, and BR.

With the help of Definition 5.3, the problem of small denominators in (5.11) can
be circumvented. Let δ ∈ R, s > 0, and fix a resonance cut-off χ corresponding to
δ-resonant regions Λδ,s

θ , θ ∈ G, for AD. Using (5.14), we define

(5.19) ψδ,s
θ (ξ) :=


iaNR

θ (ξ)
aD(θ ▷ ξ) − aD(ξ) if θ ∈ Θ′,

0 otherwise.

Recall that AOD ∈ Sβ so that, in view of Remark 5.4(iii), ANR ∈ Sγ for some γ ⩽ β.

Lemma 5.5. — Let γ ⩽ β with ANR ∈ Sγ. Then (5.19) defines a symbol ψδ,s ∈
Sγ−δ. The operator Ψ := Op(ψδ,s) is symmetric with

(5.20) ∥Ψ∥(γ−δ)
l ⩽

1
s

∥∥∥ANR
∥∥∥(γ)

l
, for all l ⩾ 0.

It satisfies
(5.21) ad

(
AD; Ψ

)
+ ANR = 0.

Proof. — The bounds (5.20) follow directly from (5.19) and (5.12)–(5.14). The
equation (5.21) follows as in (5.9)–(5.11) with NR replacing OD. □

In view of (5.21), (5.7) takes the form
(5.22) [A]Ψ = AD + AR +R,

with R defined in (5.8).

5.2. Weak gauge transform

Let γ ⩽ β such that ANR ∈ Sγ, AOD ∈ Sβ. We choose δ > γ, so that γ − δ < 0
in Lemma 5.5. Note that δ determines the size of the resonant regions and thus the
efficiency of the gauge transform.

Lemma 5.6. — Let Ψ = Op(ψδ,s) be the operator defined in (5.19) and R be as
in (5.8). Then ad(AOD; Ψ), R ∈ Sβ+γ−δ are symmetric and, for all l ⩾ 0,

(5.23)
∥∥∥ad

(
AOD; Ψ

)∥∥∥(β+γ−δ)

l
⩽

2
s

∥∥∥AOD
∥∥∥(β)

l+|γ−δ|

∥∥∥ANR
∥∥∥(γ)

l+|β|
,

and

(5.24) ∥R∥(β+γ−δ)
l ⩽

3
s

∥∥∥AOD
∥∥∥(β)

l+|γ−δ|

∥∥∥ANR
∥∥∥(γ)

l+|β|+|γ−δ|
exp

(2
s

∥∥∥ANR
∥∥∥(γ)

l+|β|+|γ−δ|

)
.
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Proof. — The estimates (2.41) and (2.42) together with δ > γ and Lemma 5.5
imply that, for all k ∈ N,∥∥∥adk

(
AOD; Ψ

)∥∥∥(β+γ−δ)

l
⩽ 2

∥∥∥adk−1
(
AOD; Ψ

)∥∥∥(β)

l+|γ−δ|
∥Ψ∥(γ−δ)

l+|β|

⩽
2k

s

(
∥Ψ∥(0)

l+|β|+|γ−δ|

)k−1 ∥∥∥AOD
∥∥∥(β)

l+|γ−δ|

∥∥∥ANR
∥∥∥(γ)

l+|β|
.

(5.25)

Thus, (5.23) follows by choosing k = 1. Moreover, (5.20) implies that for all k ∈ N,∥∥∥adk
(
AOD; Ψ

)∥∥∥(β+γ−δ)

l
⩽
(2
s

∥∥∥ANR
∥∥∥(γ)

l+|β|+|γ−δ|

)k ∥∥∥AOD
∥∥∥(β)

l+|γ−δ|
.(5.26)

Similarly, we get from (5.21) that for all k ⩾ 2,∥∥∥adk
(
AD; Ψ

)∥∥∥(β+γ−δ)

l
=
∥∥∥adk−1

(
ANR; Ψ

)∥∥∥(β+γ−δ)

l

⩽
(2
s

∥∥∥ANR
∥∥∥(γ)

l+|β|+|γ−δ|

)k−1 ∥∥∥ANR
∥∥∥(β)

l+|γ−δ|
.

(5.27)

Hence, the bounds (5.24) follow from (5.8), (5.26), (5.27), and (5.18). □
Lemmata 5.5 and 5.6 have the following immediate corollary, which follows by

choosing γ = β and applying (5.18).

Corollary 5.7. — Let Ψ = Op(ψδ,s) be the operator defined in (5.19) and R
be as in (5.8). Assume that δ > β. Then Ψ ∈ Sβ−δ is symmetric with

(5.28) ∥Ψ∥(β−δ)
l ⩽

1
s

∥∥∥AOD
∥∥∥(β)

l
, for all l ⩾ 0.

Moreover, ad(AOD; Ψ), R ∈ S2β−δ are symmetric and for all l ⩾ 0,∥∥∥ad
(
AOD; Ψ

)∥∥∥(2β−δ)

l
⩽

2
s

(∥∥∥AOD
∥∥∥(β)

l+|β|+|β−δ|

)2
,(5.29)

and

∥R∥(2β−δ)
l ⩽

3
s

(∥∥∥AOD
∥∥∥(β)

l+|β|+|β−δ|

)2
exp

(2
s

∥∥∥AOD
∥∥∥(β)

l+|β|+|β−δ|

)
.(5.30)

As a consequence of Lemma 5.6 we have arrived at (5.6) with R ∈ Sβ+γ−δ and
β+γ− δ < β as desired. One may now iterate the gauge transform to further reduce
the order of the error term, starting from [A]Ψ in the next step. We call such an
iterative scheme serial gauge transform. A few remarks on this iterative scheme are
in order.

Remark 5.8. —
(i) At each step of the serial gauge transform, the resonant regions can be chosen

differently.
(ii) Let us consider a serial gauge transform consisting of k steps, starting with

the operator A0 := A, and transforming into the operator
(5.31) Aj := exp(−iΨj)Aj−1 exp(iΨj) =

[
. . .
[
[A]Ψ1

]
Ψ2
. . .
]

Ψj

at step j = 1, 2, . . . , k. Moreover, suppose for simplicity that δ > β and that
Λδ,s

θ , θ ∈ G, are δ-resonant regions for all AD
j , j = 0, 1, . . . k−1, simultaneously
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(so that the resonant cut-off χ = χδ,s can be chosen at all steps as χθ(ξ) =
1Ξ\Λδ,s

θ
(ξ), (θ, ξ) ∈ G× Ξ). Then (5.22) and Corollary 5.7 imply that

(5.32) A1 := [A]Ψ1 = AD
0 + AR

0 +R1

with R1 ∈ S2β−δ. Repeating the procedure, we obtain
(5.33) Aj = AD

j−1 + AR
j−1 +Rj, j = 1, 2, . . . , k,

with Rj ∈ Sβ+j(β−δ).
(iii) A disadvantage of the serial gauge transform lies in the fact that already the

operator A1 = [A]Ψ1 may have a frequency set as large as
(5.34) Z(Θ) :=

⋃
n ∈N

Θn,

where
(5.35) Θn := Θ · . . . · Θ︸ ︷︷ ︸

product taken n times

.

This set Z(Θ) is usually infinite, even when Θ is finite. Thus, the same
holds for AR

1 , which arises after the second step of gauge transform. This
might be inconvenient since one generally likes to keep the structure of the
resonant operators as simple as possible. However, one can resolve this issue
by excluding the terms belonging to Sβ+j(β−δ) from ANR

j at the jth step (by
moving them to the remainder). Then Θj+1 will be the frequency set for AR

j .
In the next sub-section, we describe a different iterative gauge transform scheme

that we call the parallel gauge transform. This is often more convenient to work with
than the serial gauge transform.

5.3. Parallel weak gauge transform

Here, we perform several steps of the gauge transform at the same time, i.e.
(5.36) A(k̃) = [A]Ψ(k̃) ,

where

(5.37) Ψ(k̃) =
k̃∑

j=1
Ψj

for some k̃ ∈ N. Fix again δ ∈ R, s > 0 and a resonant cut-off χδ,s satisfying (5.13)
corresponding to δ-resonant regions Λδ,s

θ , θ ∈ G, for AD, see Definition 5.3. Follow-
ing [PS12, Section 9], the operators Ψl, Bl, and Tl are recursively defined by
(5.38) B1 := AOD,

Bl : =
l−1∑
j=1

1
j!

∑
k1+k2+···+kj=l−1

ad
(
AOD; Ψk1 ,Ψk2 , . . . , Ψkj

)
, l ⩾ 2,

Tl : =
l∑

j=2

1
j!

∑
k1+k2+···+kj=l

ad
(
AD; Ψk1 ,Ψk2 , . . . , Ψkj

)
, l ⩾ 2,

(5.39)
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and the relations
ad
(
AD; Ψ1

)
+BNR

1 = 0,

ad
(
AD; Ψl

)
+BNR

l + TNR
l = 0, l ⩾ 2.

(5.40)

More precisely, let Θ be a frequency set for A and for all l ⩾ 1, let bl and tl be the
symbols of Bl and Tl, respectively. Analogously to (5.19), we solve (5.40) by choosing
Ψl := Op(ψl) with

(ψ1)θ(ξ):=


i
(
bNR

1

)
θ
(ξ)

aD(θ ▷ ξ) − aD(ξ) if θ ∈ Θ′,

0 otherwise
(5.41)

and

(ψl)θ(ξ):=


i
(
bNR

l

)
θ
(ξ) + i

(
tNR
l

)
θ
(ξ)

aD(θ ▷ ξ) − aD(ξ) if θ ∈ (Θl)′,

0 otherwise
(5.42)

for l ⩾ 2. Note that for all l ⩾ 1, Θl is a frequency set for Bl, Tl, and Ψl. Finally, put

Yk̃:=
k̃∑

l=1
Bl +

k̃∑
l=2

Tl,(5.43)

and
Rk̃+1:=Bk̃+1 +R

(1)
k̃+1 +R

(2)
k̃+1,(5.44)

with

R
(1)
k̃+1 : =

∑
j ⩾ k̃+1

1
j! adj

(
A; Ψ(k̃)

)
,

R
(2)
k̃+1 : =

k̃∑
j=1

1
j!

∑
k1+k2+···+kj ⩾ k̃+1

ad
(
A; Ψk1 ,Ψk2 , . . . , Ψkj

)
.

(5.45)

Then we arrive at
(5.46) A(k̃) = AD + Y D

k̃ + Y R
k̃ +Rk̃+1,

see Lemma 5.2, where Y R
k̃

is an operator with frequency set Θk̃. The following Propo-
sition provides norm estimates for the operators after the parallel gauge transform.
In particular, it shows that if δ > β, then we can assure that the error term Rk̃

belongs to classes of arbitrarily small order by choosing k̃ sufficiently large.

Proposition 5.9. — Let AOD ∈ Sβ with δ > β. Then we have for all l ⩾ 0,

∥Ψk∥(k(β−δ))
l ≪

(∥∥∥AOD
∥∥∥(β)

l+nk

)k

, k ⩾ 1

∥Bk∥(k(β−δ)+δ)
l + ∥Tk∥(k(β−δ)+δ)

l ≪
(∥∥∥AOD

∥∥∥(β)

l+nk

)k

, k ⩾ 2,
(5.47)
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where nk is an increasing function of k, depending on k, β and δ, and the implied
constants depend only on k, β, δ, and s in (5.12). Moreover, the operators Ψ(k̃) ∈ Sβ−δ,
Yk̃ ∈ Sβ, Rk̃+1 ∈ Sk̃(β−δ)+β are symmetric and satisfy the bounds

(5.48)

∥∥∥Ψ(k̃)
∥∥∥(β−δ)

l
+ ∥Yk̃∥(β)

l ≪
(

1 +
∥∥∥AOD

∥∥∥(β)

l+nk̃

)k̃

,∥∥∥Rk̃+1

∥∥∥(k̃(β−δ)+β)

l
⩽ CA,k̃,β,δ,l,

for all l ⩾ 0, where the implied constants only depend on k̃, β, δ, and s; and CA,k̃,β,δ,l

is a bounded function of the symbol norms {∥AOD∥β
l }l⩾ 0, k̃, β, δ, and l.

Proof. — The bounds (5.47) are easily deduced from Corollary 5.7 by induction
in k, estimating all involved commutators using (2.41). The estimates on the symbol
norms of Ψ(k̃) and Yk̃ follow readily.

Let us prove the estimates on the norms of Rk̃+1. Starting with R(1)
k̃+1 we note that,

for m ⩾ k̃ + 1 and Ψ := Ψ(k̃)

(5.49) ∥adm(A; Ψ)∥(k̃(β−δ)+β)
l

⩽
∥∥∥adm

(
AD; Ψ

)∥∥∥(k̃(β−δ)+β)
l

+
∥∥∥adm

(
AOD; Ψ

)∥∥∥(k̃(β−δ)+β)
l

=
∥∥∥adm−1

(
Y NR

k̃ ; Ψ
)∥∥∥(k̃(β−δ)+β)

l
+
∥∥∥adm

(
AOD; Ψ

)∥∥∥(k̃(β−δ)+β)
l

⩽ 2m−k̃−1
∥∥∥adk̃

(
Y NR

k̃ ; Ψ
)∥∥∥(k̃(β−δ)+β)

l

(
∥Ψ∥(0)

l+|k̃(β−δ)+β|

)m−k̃−1

+ 2m−k̃
∥∥∥adk̃(AOD; Ψ)

∥∥∥(k̃(β−δ)+)
l

(
∥Ψ∥(0)

l+|k̃(β−δ)+β|

)m−k̃

,

where we apply (2.42) in the second inequality. Dividing by m! and summing over
m ⩾ k̃+ 1 we obtain a convergent sum, for which we use the estimates on the norms
of Yk̃ and Ψ(k̃). Estimating ∥Rk̃+1∥(2) k̃(β − δ) + βl is somewhat easier since there are
no convergence issues. This finishes the proof of the Proposition 5.9. □

5.4. Strong gauge transform

The aim of any (iterative) gauge transform scheme is to force the error term R after
the gauge transform, see e.g. (5.6) or (5.46), into a class of (relatively) small order.
For instance, in (5.7) and (5.8), we aim at R ∈ Sγ for some γ < β. If Ψ belongs to a
class of negative order, as is the case if one can choose δ > β in Definition 5.3, for
example, it can be trivially satisfied for some η < β, as was seen to be the case with
the weak gauge transform. In some cases, however, one can not guarantee more than
Ψ ∈ S0, whether it be by choosing δ = β, or by introducing additional cut-offs in the
definition of Ψ. This is notably the case for Schrödinger-type operators, whenever
the perturbation is not in Sβ for β < α− 1. In such a case, one can no longer rely on
the trivial product estimates for ad(AOD; Ψ) to get that ad(AOD; Ψ) ∈ Sη for some
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η < β. In the next lemma, we give a sufficient condition that, nevertheless, yields
the required improvement through commuting with Ψ.

Lemma 5.10. — Suppose that A ∈ ESα and that Ψ ∈ S0 is defined as in (5.19).
If both ad(AOD; Ψ) ∈ Sγ and ad(ANR; Ψ) ∈ Sγ, then, with

[A]Ψ = exp(−iΨ)A exp(iΨ),

we have that

R:= [A]Ψ − AD − AR ∈ Sγ.

Remark 5.11. — If, in addition to the assumptions of this lemma, we have AOD

̸∈ Sγ, this would mean that commuting with Ψ has improved order and we can
therefore call this gauge transform strong. Note that we do not require improvements
in order to happen at every iteration of the commutator, but only at the first step.

Proof. — It follows from Lemma 5.2 and equation (5.21) that

(5.50)
R =

∑
k ⩾ 1

1
k! adk

(
AOD; Ψ

)
+
∑
k ⩾ 2

1
k! adk

(
AD,Ψ

)
=
∑
k ⩾ 1

1
k! adk−1

(
ad
(
AOD; Ψ

)
; Ψ
)

+
∑
k ⩾ 2

1
k! adk−1

(
ad
(
ANR; Ψ

)
; Ψ
)
.

As in the proof of Lemma 5.2, both series converge absolutely in Sγ. □

Remark 5.12. — The hypotheses of the previous lemma can be achieved in many
ways. The most common one does not depend on the operator A, but only on the
algebraic structure of S∞: it is when commutators naturally improve order. The
principal example is pseudo-differential operators in L2(Rd) that are almost periodic
with respect to the translation group Rd. To obtain the commutator estimates in this
case one requires some limited smoothness in ξ. We refer to [Sob05, Lemma 3.4] for
a proof, and [MPS14, PS10, PS12, PS16, Sob06] for examples of further applications.
In all of these cases, the smooth structure of functions on Rd was used, and the
resonance cut-off functions were taken to be smooth approximations to indicator
functions of the non-resonant regions rather the indicators themselves.

It is also possible that one cannot reach Ψ ∈ S0 through only non-resonant cut-offs.
In such a case, in order to achieve convergence of the series for exp(iΨ) and [A]Ψ
achieved in (5.1) and Lemma 5.2 we will need energy cut-offs, i.e. cutting off large ξ.
See [MPS14, PS10] where this idea is being used.

Remark 5.13. — While the weak and the strong gauge transform are defined
similarly, the heuristic explanation as to why they work is quite different. One can
think of the weak gauge transform as a very sophisticated perturbation theory. Indeed,
if Ψ is of negative order, its norm is small and so exp(iΨ) is a small perturbation of
the identity. This means that perturbations are additive in the first order, and the
gauge transform is a convenient way of doing the bookkeeping. On the other hand,
the strong gauge transform works due to certain algebraic structure present in the
problem. As a toy example, consider the operator A = A0 +B acting in ℓ2(Z), where
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A0 is diagonal with (A0)jj = j for j ∈ Z, and B is self-adjoint and Töplitz (and, for
simplicity, bounded). Define Ψ to be the off-diagonal matrix defined by

Ψjk =


iBjk

k−j
, j ̸= k

0, j = k
.

Then, Ψ is also self-adjoint and Töplitz. Since Töplitz operators commute (1.4)
immediately implies that exp(iΨ)A exp(−iΨ) = A0. Note that no smallness of B
(and thus Ψ) is assumed here.

6. Systems of Almost Periodic Operators

In this section, we provide a construction suitable to describe almost periodic
operators with matrix-valued symbols within the framework of Sections 2 – 5.

6.1. Symbol formalism for systems of almost periodic operators

Let the index set Ξ and the group G be as in Section 2. Let m ∈ N and b : G×Ξ →
L(Cm) be a function such that there exists a countable frequency set Θ = Θ−1 ⊂ G
with bθ(ξ) = 0 for all θ ∈ G \ Θ and ξ ∈ Ξ. Furthermore, assume that
(6.1)

∑
θ ∈ Θ

∥bθ(ξ)∥2 < ∞, for all ξ ∈ Ξ,

where ∥ · ∥ is the operator norm on L(Cm). For every ξ ∈ Ξ, let {vj(ξ) : j ∈ Z/mZ}
be an orthonormal basis for Cm so that {eξ ⊗ vj(ξ)}ξ ∈ Ξ, j ∈Z/mZ is an orthonormal
basis for ℓ2(Ξ;Cm) = ℓ2(Ξ) ⊗ Cm. In analogy to (2.21), an almost periodic operator
B in ℓ2(Ξ;Cm) with symbol b is defined by
(6.2) B

(
eξ ⊗ vj(ξ)

)
:=

∑
θ ∈ Θ

eθ▷ξ ⊗
[
bθ(ξ)vj(ξ)

]
.

We introduce the index set Ξm := Ξ × Z/mZ equipped with the weight function
(6.3) ⟨(ξ, j)⟩m := ⟨ξ⟩
and define the group Gm := G× Z/mZ, and its (free) action on Ξm by
(6.4) (g, k) ▷ (ξ, j) := (g ▷ ξ, k + j).
Applying the unitary map Tm : ℓ2(Ξm) → ℓ2(Ξ;Cm) defined by
(6.5) Tm

(
e(ξ,j)

)
:= eξ ⊗ vj(ξ), (ξ, j) ∈ Ξm,

we can relate the operator B to the operator
(6.6) B := T ∗

mBTm

in ℓ2(Ξm). For every g ∈ G and ξ ∈ Ξ, let [bg(ξ)] be the matrix representation of
bg(ξ) : Cm → Cm with respect to the pair of bases {vj(ξ)}j and {vj(g ▷ ξ)}j on the
domain and codomain, respectively, i.e.
(6.7) bg(ξ)vj(ξ) =

∑
k ∈Z/mZ

[
bg(ξ)

]
kj
vk(g ▷ ξ), for all j ∈ Z/mZ.
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Define the scalar symbol b : Gm × Ξm → C by

(6.8) b(g,k)(ξ, j) := [bg(ξ)](k+j)j

for (g, k) ∈ Gm and (ξ, j) ∈ Ξm, and note that Θ × Z/mZ is a frequency set for b.
In view of (2.21), (6.4), and (6.8), we have

(6.9) Op(b)e(ξ,j) =
∑

(θ,k) ∈ Θ×Z/mZ
[bθ(ξ)]kj e(θ ▷ ξ,k), for (ξ, j) ∈ Ξm.

Hence, (6.2), (6.5), (6.6), (6.7), and (6.9) yield T ∗
mBTm = B = Op(b). This justifies

calling the operators from S∞(Gm,Ξm) systems of almost periodic operators, also
known as matrix-valued operators. We shall use the notation

(6.10) Tγ
m := Tγ(Gm,Ξm), T ∈ {S,DS,DES,SES,ES}, γ ∈ R ∪ {±∞} ,

and

(6.11) Hγ
m := Hγ(Ξm), γ ∈ R ∪ {±∞} .

Since the map of symbols b 7→ b is one-to-one, for those b which are mapped to
b ∈ S∞

m we write Op(b) := Op(b). We use this identification to apply the results of
Sections 2–5 without always making explicit the conjugation by the operators Tm.
Note that ⟨(g, k)⟩m = ⟨g⟩, for all (g, k) ∈ Gm, see (2.5) and (6.3). Hence, for b ∈ Sβ

m,
we have the equivalence of norms,

(6.12) c−1
m ∥b∥(β)

l ⩽
∑

θ ∈ Θ
⟨θ⟩l sup

ξ ∈ Ξ
⟨ξ⟩−β ∥bθ(ξ)∥ ⩽ cm ∥b∥(β)

l ,

where the constant cm > 0 only depends on m. Two sub-algebras of S∞
m will be of

particular interest in the sequel: uncoupled operators and diagonal operators.

Definition 6.1. — The uncoupled operators in Sβ
m, β ∈ R ∪ {±∞}, are defined

by

(6.13) USβ
m

:=
{
B ∈ Sβ

m : the matrix
[
bg(ξ)

]
, see (6.7), is diagonal for all g ∈ G, ξ ∈ Ξ

}
=
{
B ∈ Sβ

m : the frequency set for b can be chosen as a subset of G× {0}
}
.

For any operator A = Op(a) ∈ Sα
m, α ∈ R ∪ {±∞}, we define the symbol

(6.14)
[
aU

g (ξ)
]

kj
:=


[
ag(ξ)

]
kj

if k = j

0 if k ̸= j
, for all g ∈ G, ξ ∈ Ξ, k, j ∈ Z/mZ.

We write AU := Op(aU) for the projection of A onto USα
m which we call the

uncoupled part. We also denote AC := A − AU its coupled part. It can easily be
seen that if A ∈ Sγ

m, γ ∈ R then for all l ⩾ 0

(6.15)
∥∥∥AU

∥∥∥(γ)

l
⩽ ∥A∥(γ)

l ,
∥∥∥AC

∥∥∥(γ)

l
⩽ ∥A∥(γ)

l

and that if A is symmetric so are AU and AC.
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The second sub-algebra is DS∞
m , see (6.10) and Definition 3.1. Noting that idGm =

(idG, 0), we infer from (6.8) that

(6.16) DS∞
m =

{
B ∈ US∞

m : bg(ξ) = 0 for all g ∈ G \ {idG}
}
,

so that DS∞
m ⊂ US∞

m ⊂ S∞
m . As in the scalar case, for any operator A = Op(a) ∈ Sα

m,
α ∈ R ∪ {±∞}, we denote by

AD := Op(aD)
[
aU

g (ξ)
]

kj
:=


[
ag(ξ)

]
kj

if k = j and g = id
0 otherwise.

(6.17)

and AOD = A − AD. This definition makes it so that AD = TmA
DT ∗

m. Similarly, if
resonant and non-resonant regions are defined in terms of Ξm, we set AR = TmA

RT ∗
m

and ANR = TmA
NRT ∗

m. We can also combine notions of coupling and resonance; we
set for instance AR,U = (AR)U , and proceed similarly for other combinations of the
indices.

The following lemma is useful when changing the reference orthonormal basis of
Cm. Nevertheless, for the rest of this section the reference basis of ℓ2(Ξ;Cm) will
remain fixed as {eξ ⊗ vj(ξ)}(ξ,j) ∈ Ξm .

Lemma 6.2. — Assume that, for every ξ ∈ Ξ, the set {uj(ξ) : j ∈ Z/mZ} is an
orthonormal basis for Cm. Then the unitary operator
(6.18) U : ℓ2 (Ξ;Cm) → ℓ2 (Ξ;Cm) , eξ ⊗ vj(ξ) 7→ eξ ⊗ uj(ξ)
satisfies T ∗

mUTm ∈ S0
m.

Proof. — It is clear from (6.18) that T ∗
mUTm = Op(u) where ug(ξ) ∈ U(m) is

unitary for all g ∈ G, ξ ∈ Ξ, and {idG} is a frequency set for u. Thus the equivalence
of norms (6.12) implies that T ∗

mUTm ∈ S0
m. □

The previous lemma has the following corollary, justifying our terminology of
uncoupled operators.

Corollary 6.3. — Let {vj : j ∈ Z/mZ} be a fixed basis for Cm. Then any
operator A ∈ US∞

m is unitarily equivalent to an orthogonal sum ⊕
j ∈Z/mZAj where

for every j ∈ Z/mZ, Aj acts in ℓ2(Ξ) ⊗ span {vj}.

6.2. Gauge transform in S∞
m : the reduction to uncoupled operators

We would like to apply a weak gauge transform to an operator in the class SES∞
m

— cf. (6.10) — in order to obtain an operator of the same order with an uncoupled
principal symbol. In this section, we give two sufficient conditions that allow us to do
this. The first one is more restrictive on the off-diagonal part and gives a non-trivial
remainder, but allows for a principal symbol with multiple eigenvalue. The second
one requires the principal symbol to have only simple eigenvalues, in which case the
procedure is more efficient and the restrictions on the off-diagonal symbol are much
milder.

TOME 6 (2023)



1070 J. LAGACÉ, S. MOROZOV, L. PARNOVSKI, B. PFIRSCH & R. SHTERENBERG

Theorem 6.4. — Let A = Op(a) ∈ SESα
m be symmetric and let β < α be such

that AC := Op(aC) ∈ Sβ
m. Assume that

(6.19)
[
aid
]

(ξ) = ⟨ξ⟩α diag(a1(ξ), . . . , am(ξ))

and that Θ is a frequency set for aOD. Here, for j ∈ Z/mZ, aj : Ξ → R are bounded
functions such that for all θ ∈ Z(Θ) = ⋃∞

k=1 Θk,

(6.20) lim
⟨ξ⟩ → ∞

aj(θ ▷ ξ)
aj(ξ)

= 1.

Suppose finally that there exists C, c > 0 such that for every j ∈ Z/mZ and
k ∈ Z/mZ \ {0}, either
(6.21) inf

⟨ξ⟩ > C
|aj(ξ) − aj+k(ξ)| ⩾ c > 0,

or
(6.22)

[
aOD

]
j,j+k

∈ S2β−α.

Then, for all ε > 0 and N ∈ N there exists a symmetric operator Ψ ∈ Sβ−α
m such

that
(6.23) [A]Ψ = exp(−iΨ)A exp(iΨ) = AD + Y + R1 + R2

where Y ∈ USβ
m, R1 ∈ S2β−α, ∥R2∥Hβ

m→H0
m
< ε and Y,R1,R2 are symmetric. If A

is quasi-periodic, one can choose R2 = 0.

Remark 6.5. — The conditions (6.21) and (6.20) are satisfied in the simple case
of constant functions aj(ξ) = aj ∈ R \ {0}.

Proof. — Fix ε′ > 0. We first eliminate the long-range coupling. Since ∥AOD∥β
0 <

∞, there exists a finite subset Θ̃ ⊂ Θ, closed under inversion and containing the
identity, such that
(6.24)

∑
θ ∈ Θ\Θ̃

sup
ξ ∈ Ξ

⟨ξ⟩−β
∥∥∥aOD

θ (ξ)
∥∥∥ < ε′.

Let B := Op(b) with the symbol

(6.25) bθ(ξ) :=

aOD
θ (ξ) if θ ∈ Θ̃,

0 otherwise.

For R̃ := AOD − B, (6.12) implies

(6.26)
∥∥∥R̃∥∥∥(β)

0
< cmε

′,

and we write Ã := AD + B so that A = Ã + R̃ and ÃD = AD. For every j ∈ Z/mZ,
define the set
(6.27) Ij := {k ∈ Z/mZ : (6.21) holds} .
Finiteness of Θ̃ and bounded range of action imply that

(6.28) lim
⟨ξ⟩ → ∞

sup
θ ∈ Θ̃

∣∣∣∣∣⟨θ ▷ ξ⟩⟨ξ⟩
− 1

∣∣∣∣∣ = 0.
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Combining this with (6.20) and (6.21), as well as boundedness of the functions aj

implies the existence of s′ depending on ε′ and the constants c, C in (6.21) such that

(6.29) inf
j ∈Z/mZ

inf
k ∈ Ij

inf
θ ∈ Θ̃

inf
⟨ξ⟩ > s′

∣∣∣∣aj+k(θ ▷ ξ)⟨θ ▷ ξ⟩α − aj(ξ)⟨ξ⟩α

∣∣∣∣ > c

2⟨ξ⟩α.

Thus, for (g, k) ∈ Gm, the sets

(6.30) Λα,c/2
(g,k) :=


{
(ξ, j) ∈ Ξm : min {⟨ξ⟩, ⟨g ▷ ξ⟩} ⩽ s′

}
, if g ∈ Θ̃ and k ∈ Ij,

Ξm, otherwise

are α-resonant regions for the operator Ã = T ∗
mATm, cf. (5.12), and we choose the

corresponding (scalar) resonance cut-off function
(6.31) χ(g,k)(ξ, j) := 1Ξm\Λα,c/2

(g,k) (ξ,j),

see Remark 5.4(ii). Thus, taking Ψ as in Lemma 5.5, we have that Ψ = TmΨT ∗
m ∈

Sβ−α
m . In view of (5.22), we deduce that

(6.32) [Ã]Ψ = exp(−iΨ)Ã exp(iΨ) = AD + ÃR + R,
where Corollary 5.7 and conjugation by Tm give R ∈ S2β−α

m . We turn our attention
to ÃR. We decompose it as ÃR = ÃR,U + ÃR,C. By definition of the resonant region
Λα,c/2

(g,k) , we have that

(6.33)
[
ãR,C

]
j,j+k

=
[
ãOD,C

]
j,j+k

if k ̸∈ Ij

and

(6.34) supp
([

aR,C
]

j,j+k

)
⊂
{
ξ ∈ Ξ : min

θ ∈ Θ̃
⟨θ ▷ ξ⟩ ⩽ s′

}
if k ∈ Ij.

By (6.22), for every k ̸∈ Ij we have [ãR,C]j,j+k ∈ S2β−α. Finiteness of Θ̃ and bounded
range of action imply that the support of [aR,C]j,j+k is bounded for k ∈ Ij. Together,
along with Proposition 2.16, this gives ÃR,C ∈ S2β−α

m .
All of this implies

(6.35) [A]Ψ = AD + ÃR,U + ÃR,C + R + exp(−iΨ)R̃ exp(iΨ).
We claim that this has the desired form (6.23) with

(6.36) Y = ÃR,U , R1 = ÃR,C + R, and R2 = exp(−iΨ)R̃ exp(iΨ).

Indeed, it follows from (5.18) and (6.15) that ÃR,U ∈ USβ
m. We have that ÃR,C,R ∈

S2β−α
m so that their sum R1 also is.
Finally, recall that exp(iΨ) ∈ S0

m by Corollary 2.7. In particular, we have

(6.37) ∥exp(iΨ)∥(0)
|β| ⩽

∞∑
k=0

(
∥Ψ∥(0)

|β|

)k

k! ,

where by Corollary 5.7 and conjugation with Tm we have

(6.38) ∥Ψ∥(0)
|β| ⩽ ∥Ψ∥(β−α)

|β| ⩽
4
c

∥∥∥B∥∥∥(β)

|β|
⩽

4
c

∥∥∥AOD
∥∥∥(β)

|β|
,
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with c the constant in (6.21). Consequently, ∥exp(iΨ)∥(0)
|β| is bounded uniformly in

ε′ ↘ 0. Hence, for any ε > 0, choosing

(6.39) 0 < ε′ <
ε(

∥exp(iΨ)∥(0)
|β|

)2
cm

,

we obtain by Lemma 2.8 and (6.26) that

(6.40)
∥R2∥Hβ

m → H0
m
⩽ ∥exp(iΨ)∥H0

m → H0
m

∥∥∥R̃∥∥∥
Hβ

m → H0
m

∥exp(iΨ)∥Hβ
m → Hβ

m

⩽
∥∥∥R̃∥∥∥(β)

0

(
∥exp(iΨ)∥(0)

|β|

)2
< ε.

This finishes the proof. □

Theorem 6.6. — Let A = Op(a) ∈ SESα
m be symmetric and let β < α such

that AOD := Op(aOD) ∈ Sβ
m with frequency set Θ ⊂ G. Assume that

(6.41)
[
aid(ξ)

]
= ⟨ξ⟩α diag(a1(ξ), . . . , am(ξ))

for some bounded functions aj : Ξ → R. Moreover, suppose that there exist C, c > 0
such that

(6.42) inf
⟨ξ⟩>C

min
j ̸=k

|aj(ξ) − ak(ξ)| ⩾ c > 0,

and that, for all j = 1, 2, . . . , m, and θ ∈ Z(Θ) =
∞⋃

k=1
Θk,

(6.43) lim
⟨ξ⟩ → ∞

aj(θ ▷ ξ)
aj(ξ)

= 1.

Then, for all ε > 0 and N ∈ N there exists a symmetric operator Ψ ∈ Sβ−α
m such

that

(6.44) [A]Ψ = exp(iΨ)A exp(iΨ) = AD + YU + R1 + R2

with Y ∈ Sβ
m, R1 ∈ S−N

m , ∥R2∥Hβ
m → H0

m
< ε, and Y, R1, R2 symmetric. If AOD is

quasi-periodic, then one can choose R2 = 0.

Proof. — The proof essentially follows the scheme of the proof of Theorem 6.4. We
first eliminate long-range coupling and find B ∈ Sβ

m and R̃ such that A = AD+B+R̃
and ∥∥∥R̃∥∥∥(β)

0
< ε′.

Assumption (6.42) leads this time to α-resonant regions

(6.45) Λα,c/2
(g,k) =

{(ξ, j) ∈ Ξm : min {⟨ξ⟩, ⟨g ▷ ξ⟩} ⩽ s′} , if k ̸= 0,
Ξm, if k = 0

for some s′ depending on ε′. Put

(6.46) K := N + β

α− β
.
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We apply a parallel weak gauge transform according to (5.46). We have from Propo-
sition 5.9 and conjugating by Tm that there exists symmetric operators Ψ ∈ Sβ−α

m ,
Y ∈ Sβ

m and R ∈ S−N
m such that

(6.47) [Ã]Ψ = exp(−iΨ)Ã exp(iΨ) = AD + YD + YR + R
and

(6.48) ∥Ψ∥(β−α)
|β| ≪

(
1 +

∥∥∥AOD
∥∥∥(β)

nK

)K

.

where the implicit constant depends only on c and K. Inequality (6.48) implies that
∥ exp(iΨ)∥(0)

|β| is uniformly bounded as ε′ ↘ 0.
With the resonant region as in (6.45), for every Y ∈ Sγ

m, γ < α we have that
YD + YR = YU + RY, where the symbol of RY has bounded support, implying
RY ∈ S−∞

m . We put R1 = R + RY ∈ S−N
m and R2 = exp(−iΨ)R̃ exp(iΨ) gives us

(6.49) ∥R2∥Hβ
m → H0

m
⩽ ε′

(
∥exp(iΨ)∥(|β|)

0

)2
.

Therefore for any ε > 0 by choosing 0 < ε′ < ε
(
∥exp(iΨ)∥(|β|)

0

)−2
we obtain

(6.50) [A]Ψ = AD + YU + R1 + R2

with the claimed properties. □

Part II : Applications to asymptotic properties of systems

In this second part, we consider some specific examples where the methods and
results developed in the first half are applicable. As was mentioned earlier, these
methods work very well for operators

H = H0 +B

of Schrödinger type acting on L2(Rd). Here, H0 = (−∆)α/2 and B is a pseudo-
differential perturbation of order β < α. In particulars, the gauge transform method
allows us to solve the following two types of problems, see [BP09, MPS14, Par08,
PS16, PS12, PS10, Sob06]:

• obtain a complete asymptotic expansion for the integrated density of states
of almost periodic operators, as the spectral parameter goes to infinity;

• prove that some elliptic periodic operators have the Bethe–Sommerfeld prop-
erty, which asserts that the spectrum of such operators contains a half-line
[λ; ∞) for some λ ∈ R.

We now consider these questions in the setting of elliptic systems of operators. We
establish answers to both of these problems in the case where symbols are periodic,
for the Bethe–Sommerfeld property, and almost periodic, for the integrated density
of states. We will do so by using the tools developed in Part I of this paper to reduce
these operators to uncoupled operators. We will show that such a reduction cannot
change the integrated density of states too much, and we will show that it cannot
open infinitely many gaps in the spectrum. Since elliptic systems of operators do not
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have to be semi-bounded, we will obtain these results as the spectral parameter goes
to ±∞. In order to do this, we will establish quantitative estimates based upon the
results of Sections 4, 5 and 6 under generic assumptions about the perturbations.

In Section 7, we describe the Besicovitch space of almost periodic functions and
the operators acting on it. In particular, in Section 7.2, we describe the generic
conditions required to prove the existence of complete asymptotics for the integrated
density of states (IDS).

In Section 8, we state and prove the main Theorems 8.1 and 8.2 describing the
asymptotic behaviour of the IDS for elliptic systems of operators. Recall that they
are more general versions of Theorems 1.1 and 1.2. These theorems are proved by
performing various reductions; in turn to a finite interval of the spectral parameter, to
quasiperiodic operators and then to uncoupled operators, using the gauge transform.

From Sections 9 to 11, we change perspective and we study periodic operators. In
Section 9 we describe the structure of such operators, interpreting the Bloch–Floquet
decomposition through the lens of almost periodic functions. We also introduce an
auxiliary tool useful in the study of the Bethe—Sommerfeld property, the spectral
overlap function.

In Section 10, we give conditions under which elliptic systems of periodic operators
enjoy the Bethe–Sommerfeld property. We then use the reduction to uncoupled
operators and bounds for the density of states obtained in Section 8 to show that it
is sufficient to prove that the spectral overlap function is sufficiently bounded away
from 0 for uncoupled operators. This will be done by reusing the results of Section 4,
but interpreting fibrewise eigenvalue counting functions as instances of the IDS.

We prove those lower bounds in Section 11 by refining arguments based on com-
binatorial geometry that were previously used in proving the Bethe–Sommerfeld
conjecture for Schrödinger-type operators.

Finally in Section 12, we spend a few words to show that periodic and almost
periodic perturbations of the Dirac operator fit in the framework that we have
described in this part.

7. Besicovitch space and systems of operators

In this section, we turn back to the space B2(Rd;Cm) of almost periodic vector-
valued functions, corresponding to the case where G = Ξ = Rd and

(7.1) g1g2 := g1 + g2, g ▷ ξ := g + ξ,

for all g1,g2, ξ ∈ Rd. The weight function is ⟨ξ⟩ = 1+ |ξ|. From (2.5) we also get that
⟨g⟩ = 1 + |g| and that G has bounded range of action. The case m = 1 corresponds
to the usual Besicovitch space. We now offer a concrete description of this space,
along with a few results relating the properties of operators acting on L2 and B2.
These results can be found in [CMS73, Shu78, Shu79b].

Let {v1, . . . , vm} be an orthonormal basis for Cm and for 1 ⩽ j ⩽ m let

(7.2) eξ,j(x) := exp(iξ · x) ⊗ vj.
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The space B2(Rd;Cm) is the closure of

(7.3) span
{
eξ,j : ξ ∈ Rd, j = 1, . . . , m

}
,

taken with respect to the inner product

(7.4) (f, g)B2 = lim
L → ∞

1
(2L)d

∫
[−L,L]d

f · ḡ dx.

For the remainder of this article, we will use S∞
m , DS∞

m , etc. to refer to the spaces
of almost periodic operators acting on B2(Rd;Cm). Let A be an operator in Sα

m with
symbol a(x, ξ). The action of A in L2(Rd;Cm) as an operator in the Hörmander
class Ψα(Rd;Cm) with almost periodic symbol is defined through the usual Fourier
integral representation of pseudo-differential operators (see e.g. [Hör07]) as

Õp(a)f(x) = 1
(2π)d

∫∫
Rd×Rd

exp(iξ · (x − y))a(x, ξ)f(y) dy dξ.

The following proposition links its properties as an operator in L2 and B2, respec-
tively.

Proposition 7.1. — If A ∈ S∞
m is bounded or elliptic, then

(7.5) specB2(A) = specL2(A)
as a set. In particular, if A is bounded, its norm in L2 and B2 coincide.

The proof of this proposition is exactly the same as the one in [Shu78] for the
case m = 1. Indeed, it relies on some facts about function approximation proven
in [Shu78, Lemmata 4.1 and 4.2] which remain true as m > 1 since they apply
coordinatewise. Boundedness or ellipticity then implies Proposition 7.1. When we
refer to the norm of an operator, we will not distinguish whether that operator is
acting in L2(Rd;Cm) or B2(Rd;Cm) since those norms are the same.

As mentioned in Remark 4.3, there is a faithful, norm-preserving ∗-representation
A 7→ A♯ of almost periodic operators given by A♯ := a(x + y, Dy) acting in

Hm := B2
(
Rd
)

⊗ L2
(
Rd
)

⊗ Cm.

Here x is a variable of functions in B2(Rd;Cm) and y is a variable of functions in
L2(Rd;Cm). The operator A♯ is interpreted as a direct integral over x of operators
acting in L2(Rd;Cm). We denote by eJ(x, y) the Schwartz kernel of the spectral
projection EJ(A). Note that in view of Proposition 7.1 and [CMS73], if A ⩽ B as
operators, then A♯ ⩽ B♯ and ∥A∥ =

∥∥∥A♯
∥∥∥.

Finally, the operator A♯ is affiliated to the II∞ factor A generated by the two
families of operators{

eξ ⊗ eξ ⊗M : ξ ∈ Rd, M ∈ Mm

}
and

{
I ⊗ Tξ ⊗M : ξ ∈ Rd, M ∈ Mm

}
,

where eξ is the operator of multiplication by eiξ·x, Tξ is the operator of translation
Tξf(x) = f(x − ξ) and Mm is the algebra of m×m matrices with complex entries.
This means that the results of Section 4–6 on the density of states measure (DSM)
also called the integrated density of states (IDS) apply to this algebra of operators
and this representation.
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In the classical setting, the IDS is defined for differential operators using the large
box limit and for pseudo-differential operators as the trace of the Schwartz kernel

(7.6) N(J ; A) = Mx(tr eJ(x,x)),

where M is the almost periodic mean. Note that this kernel is actually a smooth
integral kernel whenever J is a bounded interval, see [PS16].

Our terminology for the IDS is justified in [Shu79b, Remark 3.1], where it is shown
that the IDS as defined in Section 4 is the same as the one obtained from the classical
definition for either differential or pseudo-differential operators.

7.1. Concrete systems of operators

From now on, we turn our attention to almost periodic pseudo-differential operators
whose principal symbol is diagonal and nondegenerate.

Definition 7.2. — A uncoupleable operator is an operator A ∈ ESα
m for which

there exists an unitary operator U ∈ S0
m so that U∗AU = A0 + B ∈ SESα

m has the
following properties.

• The principal part A0 ∈ DESα
m, with symbol

(7.7) a0(ξ) = diag (a1 |ξ|α , . . . , am |ξ|α) ,

with aj ̸= 0 and without loss of generality a1 ⩾ . . . ⩾ am. We set m+ =
max {j : aj > 0}, where by convention m+ = 0 if a1 < 0.

• The subprincipal part B ∈ Sβ
m for β < α and has frequency set Θ. We also

suppose that B is formally self-adjoint, i.e. that its symbol satisfies

(7.8) bθ(ξ) = b−θ(ξ + θ)∗,

for all ξ ∈ D and θ ∈ Θ, where for a matrix a, a∗ is its conjugate transpose.
If aj ̸= ak for j ̸= k, we say that A is a competely uncoupleable operator.

Remark 7.3. — Since we are interested only in spectral properties of elliptic
operators, for the remainder of this paper we can always assume that the operators
are already in SESα

m.

Without loss of generality, we assume that the frequency set Θ spans Rd, contains
0, and is symmetric about 0. Recall from (5.34) that, using sum rather than product
notations for the group of shifts in Rd, that we also put

(7.9) Θk = Θ + . . .+ Θ,

where the sum is taken k times, and

(7.10) Z(Θ) =
⋃

k ∈N
Θk

The set Z(Θ) is countable and non-discrete, unless Θ generates a lattice.
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7.2. Conditions on the perturbation and its frequency set

In this section, we state the exact conditions under which we can obtain asymptotics
for the integrated density of states for a system of operators acting in B2(Rd;Cm).
We also show how we can reduce the problem to computing the IDS solely on some
intervals contained in a large enough range of energies.

We are interested in the asymptotics for the positive energy and negative energy
integrated densities of states for an uncoupleable operator A = A0 + B, defined as

N+(λ):=N+(λ; A) := N([0, λ); A),(7.11)

and

N−(λ):=N−(λ; A) := N((−λ, 0]; A),(7.12)

as λ → ∞. For this, we will need some conditions on the frequency set of the per-
turbation B. In Section 8, we reduce the operator A to a direct sum of operators
of the type appearing in [MPS14]. In that paper, the perturbations are required to
satisfy some conditions, which we describe for completeness. Conditions 7.4 and 7.7
correspond to [MPS14, Conditions A and C] and we do not use them explicitly. Con-
dition 7.5 addresses [MPS14, equation 2.4], while Condition 7.6 addresses [MPS14,
Condition B]. We refer the reader to [MPS14], as well as [PS12] for a more detailed
discussion around these conditions and their genericity.

We first need the following generic condition on the set Z(Θ) defined in (7.10).

Condition 7.4. — Suppose that θ1, . . . , θd ∈ Z(Θ). Then, Z({θ1, . . . , θd}) is
discrete.

This condition is clearly satisfied for periodic B, but for quasi-periodic or almost
periodic B it is meaningful. The next two conditions describe how well B is ap-
proximated by finite sums of homogeneous functions of ξ, and by quasi-periodic
operators.

Condition 7.5. — There exists a constant C0 > 1 and a discrete subset J ⊂
(−∞, β] such that for all θ ∈ Rd and |ξ| ⩾ C0,

(7.13) (1 − 1C0(ξ))bθ(ξ) =
∑
ι ∈ J

|ξ|ι b(ι)
θ

(
ξ

|ξ|

)
,

where b(ι)
θ ∈ S0

m is positively homogeneous of degree 0. We also suppose that for
η ∈ Sd−1, b(ι)

θ (η) has a series representation (written in multi-index notation)

(7.14) b(ι)
θ (η) =

∑
n ∈Nd

0

b(ι,n)
θ ηn,

which converges absolutely in a ball of radius greater than one of Rd.

If B is quasi-periodic and J0 is finite, these are the only conditions that we need.
Otherwise, we need to find a quasi-periodic approximation of B. In view of (6.24),
such an approximation will always exist, but we need a quantitative version of it.
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Condition 7.6. — For every k ∈ N, there exists Ck > C0 such that for each
ρ > Ck, there exists a finite symmetric Θ̃ ⊂ (Θ ∩ B(ρ1/k)) and a finite subset
Jk ⊂ (−∞, β] with

(7.15) #Jk ⩽ ρ1/k

such that the symbol

(7.16) r(k)
θ (ξ) :=

bθ(ξ) if θ ̸∈ Θ̃,
bθ(ξ) −∑

ι ∈ Jk
|ξ|ι b(ι)

θ

(
ξ

|ξ|

)
if θ ∈ Θ̃,

satisfies, for all ℓ ∈ N,

(7.17)
∥∥∥r(k)

∥∥∥(β)

ℓ
⩽ cℓ,kρ

−k,

for some cℓ,k > 0.

Finally, we need a Diophantine condition on the frequencies of B, for which we need
some definitions. Fix k̃ ∈ N (which will depend on the order of the remainder in the
asymptotic expansion, but not on k as in Condition 7.6). We say that V is a quasi-
lattice subspace of dimension q if there are linearly independent θ1, . . . , θq ∈ Θ̃k̃

such that V = span(θ1, . . . , θq). We denote by V the collection of all quasi-lattice
subspaces.

We need a notion of non-trivial angle between two subspaces which are strongly
distinct, i.e. so that neither is a subspace of the other. For this, we use the largest
principal angle (which we abbreviate simply as “the angle”) between subspaces, which
is defined variationally recursively in the following way. Let U,V ⊂ Rd be subspaces
with min(dim(U), dim(V)) = ℓ. The first angle φ1(U,V) ∈ [0, π/2] between them is
defined via

(7.18) cos(φ1(U,V)) := max
{

|x · y|
|x| |y|

: x ∈ U,y ∈ V

}
,

and we fix unit vectors x1,y1 realising this first angle. Then, for 1 ⩽ q ⩽ ℓ, the qth

angle is defined as

(7.19) cos(φq(U,V)) :=

max
{

|x · y|
|x| |y|

: x ∈ U,y ∈ V,x · xp = 0,y · yp = 0 for all 1 ⩽ p < q

}
.

We then set the angle between U and V as φ(U,V) = φℓ(U,V). This angle is non-
zero if and only if U and V are strongly distinct, and is π/2 as soon as there is a
vector in one subspace orthogonal to the other.

Recalling that for any k the choice of Θ̃ depends on ρ, we put

(7.20) R(ρ) = sup
θ∈ Θ̃k̃

|θ| , r(ρ) = inf
θ∈ (Θ̃k̃)′

|θ| ,

as well as

(7.21) s := s(ρ) = s(Θ̃k̃) := inf sin(φ(U,V)),
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where the infimum is over all strongly distinct pairs of subspaces in V. It is clear
that
(7.22) R(ρ) = O

(
ρ1/k

)
,

where the implicit constant might depend on k and k̃; however, we need the following
condition for r and s.

Condition 7.7. — For each fixed k and k̃, the sets Θ̃ can be chosen in such way
that for sufficiently large ρ, depending on k and k̃, the number of elements of Θ̃k̃

satisfies #Θ̃k̃ ⩽ ρ1/k and we have that

(7.23) s(ρ) ⩾ ρ−1/k

and
(7.24) r(ρ) ⩾ ρ−1/k.

Remark 7.8. — Condition 7.7 is automatically satisfied for quasi-periodic and
smooth periodic B. See [PS12] for further discussion of this condition.

8. Asymptotic expansions for the IDS

We now suppose that the perturbation B satisfies Conditions 7.4–7.7 and we set
ρ = λ1/α, where α is the order of A0. We prove the two following theorems, depending
on whether all the aj in (7.7) are distinct or not. Recall that m+ = max {j : aj > 0},
with m+ = 0 if aj < 0 for all j.

Theorem 8.1. — Let A be a uncoupleable operator with subprincipal part
B ∈ Sβ

m, β ⩽ α/2 satisfying Conditions 7.4–7.7. Suppose that there exists γ ⩽ 0
such that whenever aj = ak for some 1 ⩽ j ̸= k ⩽ m, then [B]j,k ∈ Sγ and put
γ∗ = max(2β − α, γ). Then, there exists a discrete set L ⊂ (0, 1 − γ∗) and constants
C±

0 and C±
q,j, 0 ⩽ q ⩽ d− 1, j ∈ L such that

(8.1) N± (A; ρα) = C±
0 ρ

d +
∑
j ∈ L

d−1∑
q=0

C±
j,qρ

d−j logq(ρ) +O
(
ρd−1+γ∗)

,

as ρ → ∞. If m+ = m (resp. if m+ = 0), then C−
0 = C−

j,q = 0 (resp. C+
0 = C+

j,q = 0)
except for (j, q) = (d, 0).

Theorem 8.2. — Let A be a competely uncoupleable operator satisfying Condi-
tions 7.4–7.7. Then, for every K ∈ R there exists a discrete set L ⊂ (0, d+K) and
constants C±

0 , C
±
q,j, 0 ⩽ q ⩽ d− 1, j ∈ L, such that

(8.2) N± (A; ρα) = C±
0 ρ

d +
∑
j ∈ L

d−1∑
q=0

C±
j,qρ

d−j logq(ρ) +O
(
ρ−K

)
,

as ρ → ∞. If m+ = m (resp. if m+ = 0), then C−
0 = C−

j,q = 0 (resp. C+
0 = C+

j,q = 0)
except for (j, q) = (d, 0).

TOME 6 (2023)



1080 J. LAGACÉ, S. MOROZOV, L. PARNOVSKI, B. PFIRSCH & R. SHTERENBERG

Remark 8.3. — Note that the statement form+ ∈ {0,m} follows from the operator
being semi-bounded either above or below, respectively.

Note as well that if J ⊂ Z, i.e. if the symbol of A is a classical symbol, see [Tay11,
Chapter 7], then L = {0, . . . , K + d− 1}.

The set L of allowable exponents can be made explicit, depending on J and K,
see [MPS14, Remark 2.7].

The proof of Theorems 8.1 and 8.2 are obtained after many reductions to simpler
cases. Recall that they are the general versions of Theorems 1.1 and 1.2 in the
introduction.

8.1. IDS for uncoupled operators

In this subsection, we prove that the conclusion of Theorem 8.2 holds in the special
case where A ∈ USα

m, regardless of whether an operator is uncoupleable or competely
uncoupleable. This means that in addition of satisfying the conditions of Section 7.2,
its symbol is given by
(8.3) a(x, ξ) = a0(ξ) + b(x, ξ),
where b(x, ξ) is a diagonal matrix.

Proposition 8.4. — Let A ∈ USα
m be an uncoupleable operator satisfying

Conditions 7.4–7.7. Then, for every K ∈ R there exists a discrete set L ⊂ (0, d+K)
and constants C±

0 , C
±
q,j, 0 ⩽ q ⩽ d− 1, j ∈ L, such that

(8.4) N± (A; ρα) = C±
0 ρ

d +
∑
j∈L

d−1∑
q=0

C±
j,qρ

d−j logq(ρ) +O
(
ρ−K

)
,

as ρ → ∞. If m+ = m (resp. if m+ = 0), then C−
0 = C−

j,q = 0 (resp. C+
0 = C+

j,q = 0)
except for (j, q) = (d, 0).

Proof. — Since A ∈ USα
m, it can be split as a direct sum of operators A1 ⊕. . .⊕Am

acting in the mutually orthogonal subspaces B2(Rd) ⊗ vj. As such, we have that on
any interval J ,

(8.5) N(J ; A) =
m∑

j=1
N(J ;Aj).

This means that, for j ⩽ m+, Aj is semi-bounded below and acts invariantly on
B2(Rd)⊗vj as the operator considered in [MPS14]. For j > m+, it is the operator −Aj

that acts in such a way. From [MPS14, Theorem 2.5], this means that N((−∞, λ); Aj)
(resp. N((λ,∞); Aj)) enjoys an asymptotic expansion of the form (8.2) for 1 ⩽ j ⩽
m+ (resp. m+ < j ⩽ m). Observe that we have

(8.6) N+ (ρα; A) =
m+∑
j=1

N((−∞, ρα);Aj) −
m+∑
j=1

N((−∞, 0];Aj) +
m∑

j=m++1
N((0, ρα);Aj).
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The terms in the first sum have the required asymptotic expansion. The terms in
the second sum do not depend on ρ, hence they might only change the constant
term in (8.2). Finally, the operators in the third sum are semi-bounded above, hence
for ρ large enough the terms are constant and once again only affect the constant
term. This proves the existence of the asymptotic expansion (8.2) for N+. The proof
for N− is the same, interchanging the role of the semi-bounded below and above
operators. □

8.2. Reduction to a finite interval

The strategy in this subsection is an adaptation of the one found in [MPS14, PS12].
It consists in showing that an asymptotic expansion holds in overlapping dyadic
intervals In.

For K > −d, we choose ρ0 sufficiently large, to be fixed later. For every n ∈ N,
we put ρn := 2ρn−1 = 2nρ0. We also define the intervals In := [ρn−1, ρn+1]. We prove
the following theorem, which implies Theorems 8.1 and 8.2 as a corollary.

Theorem 8.5. — Let A be an operator satisfying the conditions of either Theo-
rem 8.1 or 8.2. Then, for either K = −d+ 1 − γ∗ in the former case or any K ∈ R in
the latter, there exists ρ0 large enough, a discrete set L ⊂ (0, d+K) and constants
C±

0 , C
±
j,q for every j ∈ L and 0 ⩽ q ⩽ d − 1 such that for every n ∈ N and every

0 < µ < ν with µ, ν ∈ In,

(8.7) N((µα, να); A) =

C+
0 (νd − µd) +

∑
j∈L

d−1∑
q=0

C+
j,q

(
νd−j logq(ν) − µd−j logq(µ)

)
+O

(
ρ−K

n

)
,

where the implicit constants might depend on K, but not on n. Similarly,

(8.8) N((−να,−µα); A) =

C−
0 (νd − µd) +

∑
j∈L

d−1∑
q=0

C−
j,q

(
νd−j logq(ν) − µd−j logq(µ)

)
+O

(
ρ−K

n

)
.

Remark 8.6. — The reader familiar with previous works on the integrated den-
sity of states for almost periodic operators can notice that the roles of the dyadic
decomposition in intervals In is slightly different here. In previous work, this decom-
position was necessary because the resonant zones were significantly different for
different spectral intervals. This yielded coefficients C± depending possibly on n. It
was however shown that the asymptotics had to match if the coefficients didn’t grow
too fast.

In our case, we need this decomposition in order to apply Theorem 8.9 when
the perturbation is unbounded. Indeed, it relies on Lemma 4.13 which can only be
applied for some interval with control on how far away the endpoints can be. We
will therefore obtain asymptotics when both endpoints belong to a specific dyadic
interval, then glue the intervals together. We end up comparing the density of states
with the one obtained in [MPS14] for operators acting on scalar functions, i.e. the
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case m = 1. In such a case, the dependence on n of the coefficients has already been
removed.

Proof of Theorems 8.1 and 8.2 assuming Theorem 8.5. — We prove the theorem
for N+, the proof for N− is the same. For K ∈ R, suppose that ρ0 is large enough
for Theorem 8.5 to hold. Suppose without loss of generality that for all n, ρn is a
point of continuity of N+. For ρ ∈ In, we have that

(8.9)
N+(ρα) = N+(ρα

0 ) +
n−1∑
j=1

N((ρα
j−1, ρ

α
j ); A) +N((ρα

n−1, ρ
α); A)

= N+(ρα
0 ) +

∑
j∈L

d−1∑
q=0

C+
j,q

(
ρd−j logq(ρ) − ρd−j

0 logq(ρ0)
)

+
n∑

j=1
Sj,

where Sj = O
(
ρ−K

j

)
. This implies that

(8.10)
n∑

j=1
Sj ≪ ρ−K

0

n∑
j=1

2−Kj ≪ ρ−K
n ≪ ρ−K

since ρ ∈ In. One can see that the term depending on ρ0 is O (1), so that it can be
included either in the error term (ρ−K) when K ⩽ 0 or in the constant term in (8.2)
and (8.1) otherwise. □

8.3. Reduction to a quasiperiodic operator

We now show in the following lemma that it is sufficient to prove Theorem 8.5 for
quasiperiodic operators.

Lemma 8.7. — Let A ∈ SESα
m be an uncoupleable operator with subprincipal

part B ∈ Sβ
m satisfying Condition 7.6 and k ⩾ 2. Then, there exists ρ0 > 0 and

0 < c0 < 1 so that for every n ∈ N there exists a quasi-periodic uncoupleable
operator A′ ∈ SESα

m with frequency set Θ̃ ⊂ B(ρ1/k
n ) such that

• A − A′ ∈ Sβ
m;

• supp(a′OD) ⊂ {|ξ| > c0ρn};

• there is ε ≪ ρα−k
n such that for all J ⊂ Iα

n ,

(8.11) N((±J)−ε; A′) ⩽ N(±J ; A) ⩽ N((±J)ε; A′).

Proof. — For k ∈ N let Θ̃ ⊂ Θ∩B(ρ1/k
n ) be the frequency set given by Condition 7.6

with ρ = ρn, and R ∈ Sβ
m be the operator with symbol given in (7.16), which by (7.17)

satisfies ∥R∥(β)
0 ≪ ρ−k

n . Setting A′′ = A − R we have that A − A′′ ∈ Sβ
m, and that

Θ̃ is a frequency set for A′′ and that as long as ρ0 is large enough,

(8.12) ∥A′′∥(γ)
0 ⩽ 2 ∥A∥(γ)

0

for all β ⩽ γ ⩽ α.
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Writing any interval J ⊂ ±Iα
n in the form [M − r,M + r], it is easy to see that

|M | + r ⩽ (2ρn)α. Put β0 = max {β, 0}. By Lemma 4.12, estimate (8.11) holds with
A′′ instead of A′ and

(8.13) ε1 = ∥R∥(β0)
0

2 + ∥R∥(β0)
0

(
|M | + r + C

(
1 + ∥R∥(β0)

0

) α
α−β0

)
≪ ρα−k

n

instead of ε. Let us now define
(8.14) A′ = A′′ − A′′ODPc0ρn = (A′′)D + A′′OD(1 − Pc0ρn),
where 0 < c0 < 1 is to be determined later. By (8.12) and (3.4)

(8.15) ∥A′∥(γ)
0 ⩽ 4 ∥A∥(γ)

0

for all β ⩽ γ ⩽ α. We apply Lemma 4.13 with
(8.16) H0 = (A′′)D, B = A′′OD(1 − Pc0ρn), A = A′′ODPc0ρn , H = A′.

By Proposition 2.16,

(8.17)
∥∥∥A′′ODPc0ρn

∥∥∥ ⩽ (c0ρn)β0
∥∥∥A′′OD

∥∥∥(β0)

0
.

Set X = ⌊(2 − α + k + β0) log3 ρn⌋, and let

(8.18) Zl := c0ρn + lρ2/3
n , 0 ⩽ l ⩽ X − 1,

so that if ρ0 is large enough, ZX−1 ⩽ 2c0ρn. For 0 ⩽ l ⩽ X introduce the family of
projections

(8.19) Pl :=


PZ0 for l = 0,
PZl

− PZl−1 for 0 < l < X,

1 − PZX−1 for l = X.

We now verify that the conditions of Lemma 4.13 are satisfied. It is clear that
BPc0ρnPZ0 = BPc0ρn , and relations (4.25) follow from (7.22) and (8.18) as long as
k ⩾ 2 and ρ0 is large enough. By Proposition 2.16, for 0 ⩽ l < X,

(8.20) ∥PlA′Pl∥ ⩽ Zα
X−1 ∥A′∥(α)

0 ⩽ 4(2c0ρn)α ∥A∥(α)
0 .

We also have that
(8.21)

∥∥∥PlA′′ODPl−1

∥∥∥+
∥∥∥PlA′′ODPl+1

∥∥∥ ⩽ 2Zβ
X−1 ∥A′′∥(β0)

0 ⩽ 4(2c0ρn)β0 ∥A∥(β0)
0

For 0 ⩽ l < X, set
(8.22) Dl = dist(J, spec(PlA′Pl)♯).
By (8.20) and Lemma 4.4 for l ⩽ X − 1

(8.23) spec((PlA′Pl)♯) ⊂
[
−4(2c0ρn)α ∥A∥(α)

0 , 4(2c0ρn)α ∥A∥(α)
0

]
,

so that setting c−α
0 = 2α+3 ∥A∥(α)

0 gives

(8.24) Dl ⩾
ρα

n

2 ,
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in particular (4.26) holds. Combining with (8.21) we have that

(8.25) max
0⩽ l < X


∥∥∥PlA′′ODPl−1

∥∥∥+
∥∥∥PlA′′ODPl+1

∥∥∥
Dl

 ⩽ 2(2c0)βρβ−α
n ∥A∥(β0)

0 ,

so that for ρ0 large enough, (4.28) is satisfied.
Since the conditions of Lemma 4.13 are satisfied, for

(8.26) ε2 = 32−X
∥∥∥A′′ODPc0ρn

∥∥∥ ⩽ 2ρα−k
n ∥A∥(β0)

0 ,

we have that
(8.27) N (I−ε1−ε2 ; A′) ⩽ N(I−ε1 ; A′′) ⩽ N(I; A);
and
(8.28) N(I+ε1+ε2 ; A′) ⩾ N(I+ε1 ; A′′) ⩾ N(I; A).
Our claim therefore holds with ε = ε1 + ε2. □

8.4. Reduction to uncoupled operators

In this subsection, we show that in order to prove Theorem 8.5 for quasi-periodic
operators, it is sufficient to do so for uncoupled operators. At the end of the section,
we finally prove Theorem 8.5 after all those reductions, which completes the proof
of Theorems 8.1 and 8.2.

Theorem 8.8. — Let A be an operator satisfying the conditions of Theorem 8.1.
Then, for every n ∈ N there is an operator A′ ∈ USα

m and ε ≪ ργ∗
n such that for all

µ, ν ∈ In and I = (µα, να),
(8.29) N(±I−ε; A′) ⩽ N(±I; A) ⩽ N(±Iε; A′).
In particular,
(8.30) N(±I; A) = N(±I; A′) +O

(
ρd−1+γ∗

n

)
.

Proof. — We only prove this theorem for I, the proof for −I follows from the same
argument, making the relevant sign changes. By Proposition 8.4, we see that (8.30)
follows from (8.29). We therefore only prove the latter.

We keep a quantitative track of the estimates found in Section 6.2. By Lemma 8.7,
we can without loss of generality assume for some fixed C0 > 0 that A is a quasi-
periodic operator whose frequency set Θ lies in the ball B(ρ1/k

n ) for some k ∈ N
and such that the support of aOD lies in {|ξ| > C0ρn}. In particular, we can assume
that there is s > 0 such that for all ξ ∈ supp(aOD), all θ ∈ Θ and all j, k such that
aj ̸= ak,

(8.31)
∣∣∣∣aj |θ + ξ|α − ak |ξ|α

∣∣∣∣ > s |ξ|α .

By Theorem 6.4, since A is quasi-periodic there are symmetric operators Y ∈ USβ
m,

R ∈ Sγ∗
m and Ψ ∈ Sβ−α

m such that A is unitarily equivalent through conjugation with
exp(iΨ) to
(8.32) A′ + R = AD + Y + R.

ANNALES HENRI LEBESGUE



Gauge transform and applications 1085

Here, the symbol of Ψ is given by

(8.33) [ψθ(ξ)]j,k = i[bC
θ(ξ)]j,kχj,k

aj |ξ + θ|α − ak |ξ|α
,

where χj,k = 1 if aj ̸= ak and 0 otherwise. Using the fact that

ad(A; Ψ) = ad
(
AOD; Ψ

)
+ ad

(
AD; Ψ

)
= ad

(
AOD; Ψ

)
− ANR,

the operator R is obtained from equations (6.35), (6.36) with R̃ = 0, and (5.8) by

(8.34) R = BR,C + ad
(
AOD; Ψ

)
+

∞∑
k=2

1
k! adk

(
AOD; Ψ

)
−

∞∑
k=2

1
k! adk−1

(
ANR; Ψ

)
.

By Lemma 4.12,
(8.35) N(I−ε; A′) ⩽ N(I; A′ + R) ⩽ N(Iε; A′)
for ε = ∥R∥. Since Ψ has order β−α and is supported on {|ξ| > cρ}, by Corollary 2.9
and Lemma 2.13 we have as in Proposition 2.16 that

(8.36)
∥∥∥ad

(
AOD; Ψ

)∥∥∥ ≪ ρ2β−α
n

∥∥∥AOD
∥∥∥(β)

0
∥Ψ∥(−β)

|β| ,

so this gives the contribution from the second term in (8.34). The third and fourth
terms uses the same estimate and the fact that this sum is absolutely convergent.
Finally, for the first term we supposed that BR,C ∈ Sγ

m, and it is also supported on
{|ξ| > cρ} so that by Proposition 2.16,

(8.37)
∥∥∥BR,C

∥∥∥ ≪ ργ
n.

Together, this completes the proof of Theorem 8.8. □

When aj ̸= ak whenever j ̸= k, we get the following stronger statement.

Theorem 8.9. — Let A be an operator satisfying the hypotheses of Theorem 8.2.
There is a decreasing sequence {γK}K ∈N, γK → −∞ such that for all K,n ∈ N there
is an operator AK ∈ USα

m and some ε ≪ ρ−α−d−K
n such that for all µ, ν ∈ In, and

I = (µα, να),
(8.38) N(I−ε; AK) ⩽ N(I; A) ⩽ N(Iε; AK)
and such that if K1 < K2, then
(8.39) AK1 ≡ AK2 mod SγK1

m .

In particular,

(8.40) N(±I; A) = N(±I; AK) +O
(
ρ−K

n

)
.

Proof. — This statement is proven in the same way as the previous one, replacing
the use of Theorem 6.4 with the parallel gauge transform Theorem 6.6, with a number
of steps depending on K. This is possible because the condition on the terms coupling
aj = ak for j ̸= k is vacuously verified, so that it is assuredly preserved after each
step of gauge transform. This yields a remainder R ∈ S−N

m for any N , allowing for
the arbitrary precision in the approximation for the density of states. □
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Remark 8.10. — Note that after this reduction, Conditions 7.5 and 7.6, corre-
sponding to [MPS14, Equation 2.4 and Condition B], do not hold anymore. However,
the reason why these conditions are needed is to have a specific form for the func-
tions bθ1(ξ+θ2), where θ1,θ2 ∈ Θ̃, see [MPS14, Equation 10.5]. This expansion still
holds if these conditions are imposed on the symbol prior to reduction to uncoupled
operators.

Proof of Theorem 8.5. — By Theorems 8.8 and 8.9, there is ρ0 large enough so
that for any n there is an operator AK ∈ USα

m such that for µ, ν ∈ In,

(8.41) N((µα, να); A) = N((µα, να); AK) +O
(
ρ−K

n

)
,

where K = 1 − d − γ∗ if A satisfies the hypotheses of Theorem 8.1 and K ∈ R
if A satisfies the hypotheses of Theorem 8.2. Equation (8.7) (with coefficients C±

j,q

depending on n) then follows by Proposition 8.4 for AK and the fact that
(8.42) N((µα, να); AK) = N+(να; AK) −N+(µα; AK).

In order to remove the dependence on n of the coefficients, it is sufficient for
every K ∈ N to prove that they must agree for all n large enough. Since the
coefficients obtained in Proposition 8.2 do not depend on n, this means that as soon
as µ, ν ∈ In ∩ In+1, (8.42) gives the same coefficients for the asymptotic expansion
up to terms of order ρ−K

n , which means that the coefficients need to agree for all n
large enough. □

9. The structure of periodic operators

We now turn our attention to periodic operators. In this section, we describe the
structure of operators that are periodic with respect to some lattice Λ, and we give
a quantitative approach to the study of the Bethe–Sommerfeld property. We realise
the usual Bloch–Floquet decomposition through Besicovitch spaces.

9.1. Description of periodic operators

For periodic operators we assume that G is not Rd but rather the dual lattice
Θ := Λ† ⊂ Rd. We note that in this case Z(Θ) = Θ.

Invariance of A under the action of Λ means that for all k ∈ Rd, the subspace
(9.1) ℓ2

k(Θ;Cm) := span {eξ,j : 1 ⩽ j ⩽ m, ξ ∈ Θ + k} ⊂ B2
(
Rd;Cm

)
is an invariant subspace for A, and we denote by A(k) the restriction of A to this
subspace. It is clear from the definition that we can restrict ourselves to k ∈ O† =
Rd/Λ† = Rd/Θ, and we call k a quasimomentum. For any ξ ∈ Rd, its fractional part
{ξ} ∈ O† is the image of ξ under the quotient map. The spectrum of A can be
obtained as
(9.2) spec(A) =

⋃
k ∈ O†

spec(A(k)),
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see [Kuc93, Theorem 4.5.1]. For every k ∈ O† the spectrum of A(k) in ℓ2
k(Θ;Cm) is

discrete.
The usual approach to studying the L2(Rd;Cm) theory of periodic operators is

through the Bloch–Floquet decomposition, see e.g. [Kuc93], where we represent A as
a direct integral over O† of the fibre operators A(k). This would require us to intro-
duce a considerable amount of machinery. However, the Bethe-Sommerfeld property
is strictly about the spectrum as a set, and to every elliptic periodic operator acting
in L2(Rd;Cm) there corresponds an elliptic operator acting in B2(Rd;Cm) with the
same spectrum. We therefore consider periodic operators as operators on Besicovitch
space where we decompose them according to the invariant subspaces (9.1). This
makes our statements and proofs more direct.

Remark 9.1. — The subspaces ℓ2
k(Θ;Cm) can be realised as

H0(Θ + k;Cm) = span ({eθ+k,j,θ ∈ Θ, 1 ⩽ j ⩽ m}).

The group G is Θ acting on Θ + k by translation. In this case, consider the I∞ factor
A generated by {eθ ⊗M : θ ∈ Θ,M ∈ Mm} .

It is clear that the restriction of the subalgebra of periodic operators to ℓ2
k(Θ;Cm)

is affiliated to A, and that it respects the conditions described at the beginning
of Section 4. The associated trace of the spectral projection over an interval J is
simply N(J ; A(k)) := # {j : λj(A(k)) ∈ J}, the number of eigenvalues of A(k) in
that interval.

We also make the observation that for a bounded, periodic self-adjoint operator Ψ,
the restriction to ℓ2

k(Θ;Cm) of the unitary operator exp(iΨ) is still unitary, since
ℓ2

k(Θ;Cm) is an invariant subspace. This means that we can simultaneously use the
gauge transform on each of the fibre operators and that the estimates from Section 4
hold uniformly for the counting function of the fibre operators.

Let us now describe the structure of the spectrum of A in terms of the spectra
of the fibre operators A(k). Since A is self-adjoint, it has Fredholm index 0, this
implies that the Bloch variety

(9.3)
{
(k, λ) ⊂ O† × R : λ ∈ spec(A(k))

}
is a principal analytic set [Kuc93, Corollary 3.1.6 and Section 3.4.C]. As such, if A is
semi-bounded below, we can naturally label the eigenvalues of A(k) in non-decreasing
order, counting multiplicity. Then, the functions λj(k) := λj(A(k)) are piecewise
analytic functions of k. If A is not semi-bounded, we can label the eigenvalues in
non-decreasing order by j ∈ Z and it is possible to choose the labelling so that the
functions λj(k) are piecewise analytic. This requirement determines the labelling
uniquely up to a uniform shift of the indices. Note that continuity in k of the
functions λj and discreteness of the spectrum imply that labelling the eigenvalues
at one quasimomentum k induces a labelling everywhere in O†. The interval

(9.4) ιj := ιj(A) :=
⋃

k ∈ O†

λj(A(k))

is called the jth spectral band of A.
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9.2. The overlap function

In order to prove that an operator has the Bethe–Sommerfeld property we study
the band overlap, characterized by the overlap function ζ(λ; A), λ ∈ R, introduced
by M. Skriganov [Skr85]. The overlap function is defined as the maximal number t
such that the symmetric interval [λ− t, λ+ t] is entirely contained in one band, i.e.

(9.5) ζ(λ; A) :=

maxj max {t ⩾ 0 : [λ− t, λ+ t] ⊂ ιj} if λ ∈ spec(A)
0 if λ ̸∈ spec(A).

It is not hard to see that ζ is a continuous function of λ. In order to use our
machinery we will relate the overlap function to the eigenvalue counting functions of
the operators A(k). This type of idea has been used in the past but crucially relied
on the fact that A was semi-bounded below. In the following proposition we find an
equivalent formulation that is robust under perturbations yet works for operators
that are not semi-bounded. Recall that for an interval I = [s, t] ⊂ R and ε ∈ R, we
define

(9.6) Iε :=

∅ for ε < s−t
2 ,

[s− ε, t+ ε] otherwise.

Lemma 9.2. — Suppose that A1, A2 are self-adjoint periodic operators. Suppose
that for all p ∈ {1, 2}, k ∈ O, Ap(k) has discrete spectrum. For λ ∈ R and t > 0, let

(9.7) δ := min
k ∈ O†

max {dist(µ; spec(A1(k))) : µ ∈ [λ− t, λ+ t]} .

Suppose that there is 0 ⩽ ε ⩽ δ/4 such that for all k ∈ O† and any interval
I ⊂ [λ− t, λ+ t]

(9.8) N(I; A2(k)) ⩽ N(Iε; A1(k)) and N(I; A1(k)) ⩽ N(Iε; A2(k)).

Then, for p ∈ {1, 2} there exist sets of consecutive integers Jp ⊂ Z and surjective
maps

λ•(Ap(k)) : Jp → spec(Ap(k))
j 7→ λj(Ap(k))

such that for all j ∈ Jp, λj(Ap(k)) are continuous in k and such that

(9.9) |λj(A1(k)) − λj(A2(k))| ⩽ ε

for all k and j such that λj(Ap(k)) ∈ [λ− t, λ+ t].

Remark 9.3. — We do not ask in the previous lemma that both operators share
the properties of being either bounded, semi-bounded above or below, or unbounded
in both directions.

Proof. — For any k ∈ O†, 0 < η ⩽ δ, we say that µ ∈ [λ − t, λ + t] is η-distant
(from the spectrum of A1(k)) at k if

(9.10) dist(µ, spec(A1(k))) ⩾ η.
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By (9.7), for every k ∈ O† there exists µ ∈ [λ − t, λ + t] which is δ-distant at k.
By the second inequality in (9.8), if µ is η-distant at k for some η > δ/4, then for
p ∈ {1, 2}
(9.11) (µ− ε, µ+ ε) ∩ spec(Ap(k)) = ∅.
Choose k0 ∈ O† and µ0 a point δ-distant at k0. Maps j 7→ λj(Ap(k)) can be uniquely
defined from the properties that they are nondecreasing, mapping to continuous
functions in k, and that λ0(Ap(k0)) is the smallest eigenvalue larger than µ0. Note
that the sets J1 and J2 are both defined uniquely from these properties, in particular
if Ap is unbounded both above and below then Jp = Z.

We now prove that, for all k ∈ O†, if µ is δ/2-distant at k, then for all j ∈ J1 ∩ J2,
then
(9.12)

(
λj(A1(k)) − µ

)(
λj(A2(k)) − µ

)
> 0,

in other words, for p ∈ {1, 2}, λj(Ap(k)) are both on the same side of µ. The
functions λj(Ap(k)) were constructed specifically so that (9.12) holds at k0 and µ0,
our goal is to show that this property propagates to other µ and k.

We first prove that if (9.12) holds for some µ δ/2-distant at k, then it holds for
all other ν δ/2-distant at k. This is a direct consequence of (9.8) and (9.11), which
imply that

(9.13) N
(
[µ, ν]; A1(k)

)
= N

(
[µ, ν]; A2(k)

)
.

By continuity, for every k ∈ O† there is sk > 0 so that whenever µ is δ-distant at
k, µ is also δ/2-distant at every k′ ∈ B(k, sk). This also implies that if (9.12) holds
at k for one of those µ, it also holds for that µ at every k′ ∈ B(k, sk), and therefore
at every ν δ/2-distant at k′.

By compactness of O†, there are k1, . . . , kℓ such that O† is covered by the balls
Uj = B(kj, skj

/2), with 0 ⩽ j ⩽ ℓ. If Uj ∩ Uj′ ̸= ∅, we have that kj′ ∈ B(kj, skj
),

so that if (9.12) holds for some µ δ-distant at kj then it also holds for all ν δ/2-
distant at kj′ , and therefore also at any k′ ∈ Uj′ . By connectedness of O†, this means
that (9.12) only needs to be verified for some kj, 0 ⩽ j ⩽ ℓ and one µ which is
δ/2-distant at kj. Choosing k0 and µ0, this means that (9.12) holds everywhere.

Suppose now that for some p ∈ {1, 2} there is some j ∈ Jp and k ∈ O† such that
λj(Ap(k)) ∈ [λ− t, λ+ t] and
(9.14) λj(A1(k)) − λj(A2(k)) > ε.

Let µ be δ-distant at k. Without loss of generality assume that [µ,∞)∩spec(Ap) ̸= ∅
and let
(9.15) j′ = min {ℓ : λℓ(Ap)(k) > µ} .
Supposing that j ⩾ j′, and using (9.11) we obtain

(9.16) N ([µ, λj(A2(k))] ; A2(k)) ⩾ j + 1 − j′ > N
(
[µ, λj(A2(k))]ε ; A1(k)

)
,

which contradicts the second inequality in (9.8). Similarly, supposing that λj(A2(k))
− λj(A1(k)) > ε contradicts the first inequality in (9.8). The case j < j′ is treated
analogously. We can therefore deduce that (9.9) holds at every k ∈ O†. □
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The previous Lemma 9.2 admits the following corollary in the situation where the
difference A1 − A2 is a bounded operator. The reader interested solely in this case
might notice that the proofs of the statement could have been more direct on its
own.

Corollary 9.4. — Let A = A0 + B be a self-adjoint unbounded periodic
operator such that A(k) has discrete spectrum for all k ∈ O† and such that B is
bounded. Then, there exist labelings λj(A0(k)) and λj(A(k)) of the eigenvalues of the
fibre operators such that the functions λj(A0(·)) and λj(A(·)) are both continuous
on O† and such that for every k ∈ O†

(9.17) |λj(A0(k) − λj(A(k))| ⩽ ∥B∥ .

Proof. — It suffices to observe that ∥B(k)∥ ⩽ ∥B∥ for all k ∈ O†. Defining the
continuous family of operators At = A0 + tB, it is easy to see that A1 = A and
∥At − As∥ = |t− s| ∥B∥. From Lemma 4.12, we know that for all I ⊂ R, (9.8) holds
for As,At with ε = |t− s| ∥B∥. It is also clear that δ defined in (9.7) is continuous
in the parameter t. Setting

(9.18) N =
⌈

∥B∥
min0⩽ t⩽ 1 εt

⌉
,

and applying recursively Lemma 9.2 to the operators Aj/N and A(j+1)/N , with
0 ⩽ j < N yields the result we seek. □

The previous lemma and corollary provide us with an explicit way to compare the
overlap function. This is made precise in the following proposition.

Proposition 9.5. — Suppose that A1,A2 are self-adjoint, periodic operators
such that for all p ∈ {1, 2} and k ∈ O† the operator Ap(k) has discrete spectrum.
Suppose that for ε > 0 there is a non-decreasing labelling of their eigenvalues so that
whenever λj(Ap(k)) ∈ [λ− 4ζ(λ; A1), λ+ 4ζ(λ; A1)] we have

(9.19) |λj(A1(k)) − λj(A2(k))| ⩽ ε.

Then,

(9.20) ζ(λ; A2) ⩾ ζ(λ; A1) − 2ε.

Proof. — If 2ε > ζ(λ; A1), the result follows trivially from nonnegativity of the
overlap function. Otherwise, choose j ∈ Z such that

[λ− ζ(λ; A1), λ+ ζ(λ; A1)] ⊂ ιj(A1).

Then (9.19) implies

(9.21) [λ− ζ(λ; A1) + ε, λ+ ζ(λ; A1) − ε] ⊂ ιj(A1)−ε ⊂ ιj(A2).

The claim then follows from inspection of the definition (9.5) of the overlap function.
□

ANNALES HENRI LEBESGUE



Gauge transform and applications 1091

10. Systems of periodic operators – The Bethe–Sommerfeld
property

In this section we prove that certain systems of periodic operators enjoy the Bethe–
Sommerfeld property in a quantitative way. This will imply that the spectrum of an
elliptic periodic operator A in some classes contains a half-line. Our proof is again
based on a reduction of the problem to uncoupled operators.

It is clear that if we show that the overlap function (9.5) is bounded away from
0 at sufficiently large λ for some operator A, then A has the Bethe–Sommerfeld
property. This is the strategy employed in [PS10], where the self-adjoint operators
of the form
(10.1) A = (−∆)α +B,

with B ∈ Sβ, β < 2α, and B is Λ-periodic are studied. It is shown in [PS10] that
there are S, c and λ0, depending only on Θ and the symbol norms of B, such that
for all λ ⩾ λ0, ζ(λ;H) ⩾ cλS.

It is clear, since the spectrum of a finite direct sum of operators is the union of their
individual spectra, that a direct sum of operators enjoying the Bethe–Sommerfeld
property also enjoys the Bethe–Sommerfeld property. Nevertheless, the passage from
scalar operators to uncoupled operators is not as easy as in Proposition 8.4 where
the density of states of a direct sum of operators is readily seen to be the sum
of the density of states of the summands. Indeed, when we try to establish the
Bethe–Sommerfeld property we need the direct sum not only to have half-rays in its
spectrum but also to preserve good lower bounds on the overlap function, otherwise
the reduction to uncoupled operators could be able to open gaps. While it is possible
a priori (see Example 11.1) that for some direct sum of operators there are no lower
bounds on the overlap function in terms of the overlap functions of the summands,
our aim is now to show that for our class of operators this does not happen.

10.1. The Bethe–Sommerfeld property

Our main theorem concerning systems of periodic operators is the following.
Theorem 10.1. — Suppose that A ∈ ESα

m, α > 0 is a periodic, self-adjoint
competely uncoupleable operator with AD of the form (7.7) and aj ̸= ak whenever
j ̸= k. Then, there exist positive λ̃, S, c such that

(1) if A is unbounded above, [λ̃,∞) ⊂ spec(A) and for every λ ⩾ λ̃, ζ(λ; A)
⩾ cλ−S;

(2) if A is unbounded below, (−∞,−λ̃] ⊂ spec(A) and for every λ ⩾ λ̃, ζ(−λ; A)
⩾ cλ−S.

The overlap exponent S depends only on α and the dimension d. The parameters λ̃
and c can be chosen uniformly in the symbol norms of A and AOD.

Remark 10.2. — Saying that the parameters are chosen uniformly in the symbol
norms means that if A and A′ are operators satisfying the conditions of Theorem 10.1
and for all s, ℓ, ∥A′∥s

ℓ ⩽ ∥A∥s
ℓ and ∥A′OD∥s

ℓ ⩽ ∥AOD∥s
ℓ then the parameters obtained

for A also work for A′.
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The proof of Theorem 10.1 hinges on three observations.
• For uncoupled operators, it is sufficient to prove bounds on the overlap func-

tion provided the operator is bounded below; this is proven in Lemma 10.3.
• There is a lower bound on the overlap function for uncoupled semi-bounded

elliptic operators; this is Proposition 10.4.
• Given an elliptic operator A, we find an uncoupled elliptic operator A′ so that

the overlap function of A′ provides a lower bound for the overlap function of
A at large values of λ; this is the content of Lemma 10.6.

Lemma 10.3. — Let A ∈ USα
m ∩ SESα

m is self-adjoint and periodic, and suppose
that
(10.2) A = A+ ⊕ A−

with A+ semi-bounded below and A− semi-bounded above. Then, there is λ0 > 0
so that for every λ > λ0, ζ(±λ; A) = ζ(±λ; A±).

Proof. — Since A− is semi-bounded above, there is some λ0 > 0 such that
spec(A−) ∩ (λ0,∞) = ∅. It therefore follows that for λ > λ0, and every k ∈ O†

(10.3) spec(A+(k)) ∩ [λ,∞) = spec(A(k)) ∩ [λ,∞)
and ζ(λ; A) = ζ(λ; A+) follows from the definition of the overlap function. Replacing
A with −A in the argument, this also proves that ζ(−λ; A) = ζ(−λ; A−) as soon
as λ > λ0, up to maybe increasing the value of λ0. □

Proposition 10.4. — Let A ∈ USα
m ∩ ESα

m, α > 0 be periodic, essentially
self-adjoint, semi-bounded below operator with principal part AD

0 of the form (7.7).
Then, there exist λ̃, S, c > 0 such that the interval [λ̃,∞) ⊂ spec(A) and for every
λ ⩾ λ̃, ζ(λ; A) ⩾ cλ−S. The overlap exponent S depends only on α and d. The
parameters λ̃ and c can be chosen uniformly in the symbol norms of A and AOD.

The proof of this proposition is very involved technically and uses some precise
estimates in combinatorial geometry. Section 11 is entirely dedicated to the proof of
this statement. We can deduce immediately from it and Lemma 10.3 the following
corollary.

Corollary 10.5. — Let A ∈ USα
m ∩ ESα

m, α > 0 be periodic, essentially self-
adjoint operator with principal part AD

0 of the form (7.7). Then, there exist λ̃, S, c > 0
such that

(1) if A is unbounded above, the interval [λ̃,∞) ⊂ spec(A) and for every λ ⩾ λ̃,
ζ(λ; A) ⩾ cλ−S;

(2) if A is unbounded below, the interval (−∞,−λ̃] ⊂ spec(A) and for every
λ ⩾ λ̃, ζ(−λ; A) ⩾ cλ−S.

The overlap exponent S depends only on α and d. The parameters λ̃ and c can be
chosen uniformly in the symbol norms of A and AOD.

Lemma 10.6. — Suppose that A ∈ ESα
m, α > 0 is a periodic, self-adjoint, com-

pletely uncoupleable operator with principal part AD
0 of the form (7.7) and aj ̸= ak

whenever j ≠ k. Then, for every K ∈ R there exists an operator AK ∈ USα
m ∩SESα

m
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periodic, essentially self-adjoint and with principal part AD
K,0 = AD

0 such that for
every |λ| large enough, we have that

(10.4) ζ(λ; A) ⩾ ζ(λ; AK) +O
(
|λ|−K

)
.

Proof. — From Remark 9.1 and Theorem 8.9, for any K there are cK , λK > 0 and
an operator AK ∈ USα

m such that for all λ > λK and for εK := cKλ
−α−K and any

interval I ⊂ [λ− 2ζ(λ; A), λ+ 2ζ(λ; A)] we have that for every k ∈ O†,
(10.5) N(I; A(k)) ⩽ N(IεK

; AK(k)) and N(I; AK(k)) ⩽ N(IεK
; A(k)).

Furthermore, we observe that the gauge transform leaves the principal part of elliptic
operators untouched, so that the principal part of A and AK coincide, as required.

As in (9.7), put

(10.6) δK =

min
k ∈ O†

max
{

dist(µ; spec(AK(k))) : µ ∈ [λ− 2ζ(λ; AK), λ+ 2ζ(λ; AK)]
}

⩾ CK
ζ(λ; AK)

maxk N([λ− 2ζ(λ; AK), λ+ 2ζ(λ; AK)]; AK(k))
for some CK > 0. By Lemma 9.2 and Proposition 9.5, if εK < δK/4, then (10.5)
implies (10.4). It follows from Corollary 10.5 that ζ(λ; AK) ⩾ c′

Kλ
−S for some S

independent of K. Weyl’s law implies that there is C ′
K such that

(10.7) max
k

N([λ− 2ζ(λ; AK), λ+ 2ζ(λ; AK)]; AK(k)) ⩽ C ′
Kλ

d/α.

It follows that by choosing K > S + d
α
, we have εK = cKλ

−α−K < δK/4 for λ large
enough depending only on that fixed choice of K and the constants cK , c

′
K , CK , C

′
K

encountered along, finishing the proof of Lemma 10.6. □
Before proceeding with the proof of Proposition 10.4, we indicate how it can be

used to prove Theorem 10.1.
Proof of Theorem 10.1. — We only prove the case where A is unbounded above,

the other case follows by replacing A with −A. Following Lemma 10.6, we find
for any K > −α an operator AK ∈ USα

m ∩ SESα
m satisfying the hypothesis of

Corollary 10.5 and unbounded above, so that ζ(λ; A) ⩾ ζ(λ; AK) + (λ−K) as soon
as λ is large enough. In turn, it follows from Corollary 10.5 that ζ(λ; AK) ⩾ cKλ

−S

for some S depending only on d and α. Choosing any K > S provides exactly the
statement of Theorem 10.1. □

11. Bethe–Sommerfeld for uncoupled operators

In this section we prove Proposition 10.4 — that semi-bounded below self adjoint
elliptic periodic operators enjoy the Bethe–Sommerfeld property. The strategy is an
adaptation of the ideas found in [BP09, Par08, PS10], adapted to uncoupled systems
rather than operators acting on scalar functions. Of course, since the systems are
uncoupled we are able to borrow some of the results from the scalar theory and
apply them to individual summands. Since the method is somewhat involved, we
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first give a heuristic description of the various steps; there we also indicate why we
cannot recover Proposition 10.4 from individually invoking results that are known
for each of the summands comprising A = A1 ⊕ . . .⊕ Am.

11.1. Heuristic approach

Since A is semi-bounded below, we do not have to worry about where the labelling
of the eigenvalues in each fiber starts: for each k ∈ O† we can write spec(A(k)) as
an increasing sequence accumulating only at infinity:
(11.1) λ1(A(k)) ⩽ λ2(A(k)) ⩽ . . . ↗ ∞,

with the function k 7→ λℓ(A(k)) being piecewise analytic. Following the definition
of the overlap function in (9.5), finding a lower bound δ := δ(λ) for ζ(λ; A) means
finding some ℓ ∈ N so that the image of the function λℓ(A(•)) : O† → R contains
an interval of radius δ around λ.

In order to find this interval, we aim at using the pigeonhole principle: for every λ
large enough we find k1,k2 ∈ O† such that the counting functions at k1,k2 satisfy
(11.2) N((−∞, λ+ δ); A(k1)) < N((−∞, λ− δ); A(k2)).
From this we deduce the existence of some ℓ such that λℓ(A(k2)) < λ− δ < λ+ δ <
λℓ(A(k1)). For every ℓ ∈ N the functions k 7→ λℓ(A(k)) are continuous, so that we
immediately deduce that the ℓth band has radius δ.

We now exhibit two examples. The first one is there to show that the overlap
function does not necessarily remain bounded away from zero when taking the direct
sum of two operators with overlap function bounded away from zero.

Example 11.1. — Consider the 1 × 1 family of matrices A1(k) = (sin2 k) and
A2 = (cos2 k) indexed by k ∈ R/2πZ. Of course, for each k each of those matrices
has exactly one eigenvalue, and the overlap function associated to each is

(11.3) ζ(λ;Aj) =

1/2 − |λ− 1/2| if |λ− 1/2| < 1/2
0 otherwise.

However, if we consider the 2 × 2 family of matrices given by A = A1(k) ⊕
A2(k); they have two eigenvalues given by λ1(A) = min(sin2 k, cos2 k) and λ2(A) =
max(sin2 k, cos2 k). In particular, ζ(1/2, A) = 0. This shows that a direct sum of
operators can have zero overlap function without having a gap in its spectrum.

The second example is a simple computation of the overlap function for the Lapla-
cian. Some of the features of this computation will be present in the general case.

Example 11.2. — This computation was first performed in [DT82] for the 2D
Laplacian and can be used to deduce a Bethe–Sommerfeld property when the per-
turbation has low enough order (in terms of the dimension). We reproduce the
computation because our own strategy will exhibit similar salient features. Consider
the Laplacian −∆ =: A ∈ US2

1, whose spectrum is of course the interval [0,∞). It is
still an instructive exercise to compute the overlap function to understand its inner
spectral structure.
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The Laplacian is periodic with respect to any lattice, so let us make our decom-
position with respect to 2πZd which has dual lattice Θ := Zd. Then, writing ∆k for
the Laplacian acting in ℓ2(Θ;Cm) we can write the spectrum as

(11.4) spec(−A) =
⋃

k ∈Rd/Zd

spec(−∆k) =
⋃

k ∈Rd/Zd

{
4π2|n + k|2 : n ∈ Zd

}
.

Writing 1R for the indicator of a ball of radius R, we can write the counting functions
at k ∈ Rd/Zd as

(11.5) N((−∞, λ); A(k)) =
∑

n ∈Zd

1√
λ

(
4π2 |n + k|2

)
.

The counting function N is periodic in the variable k, so let

(11.6) N̂((−∞, λ); A)m :=
∫

O†
N((−∞, λ); A(k))em(k) dk

be its Fourier coefficient at m.
Our first observation is that

(11.7)

N̂((−∞, λ); A)0 =
∫

O†

∑
n ∈Zd

1√
λ

(
4π2 |n + k|2

)
dk

=
∫
Rd

1√
λ

(
4π2 |k|2

)
dk

= Vol(B(0, 1))
(2π)d

λd/2.

We have unfolded the sum of integrals over translates of the fundamental domain
O† into an integral over the whole of Rd. A similar idea will be used in our general
strategy later. Similarly, using well known formulae for the Fourier transform of the
indicator of a unit ball in terms of the Bessel function Jd/2 we obtain

(11.8) N̂((−∞, λ); A)m

=
∫

O†

∑
n ∈Zd

1√
λ

(
4π2 |n + k|2

)
em(k) dk

=
∫
Rd

1√
λ

(
4πd |k|2

)
em(k) dk

= λd/2

|m|d/2Jd/2(2π |m|λ)

= λ
d−2

4

2π |m|
d+1

2
sin

(
2πλ |m| + 1 − d

4 π

)
+O

(
λ

d−4
4 |m|

−d−3
2

)
.

If d ̸≡ 1 mod 4, the sin in the first term in the last equality is always bounded away
from 0, whereas if d ≡ 1 mod 4 it can be made larger than λ−ε for any ε > 0 with
an appropriate choice of m, see [PS01], so that in the end we have that for every
λ > 0 and ε > 0 there exists m so that

(11.9) N̂((−∞, λ); A)m ≫ λ
d−2

4 −εd ,
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where εd = ε if d ≡ 1 mod 4 and 0 otherwise. A simple application of the triangle
inequality tells us that for every periodic function f ,
(11.10) ∥f∥L1(O†) ⩾

∥∥∥f̂∥∥∥
L∞(Λ)

so that

(11.11)
∫

O†

∣∣∣∣∣N((−∞, λ); A(k)) − Vol(B(0, 1))
(2π)d

λd/2
∣∣∣∣∣ dk ≫ λ

d−2
4 −εd .

Since

(11.12)
∫

O†

(
N((−∞, λ); A(k)) − Vol(B(0, 1))

(2π)d
λd/2

)
dk = 0,

this means that there is C > 0 so that for every λ > 0 there exists k1,k2 so that

(11.13) N((−∞, λ); A(k1)) ⩾
Vol(B(0, 1))

(2π)d
λd/2 + Cλ

d−2
4 −εd

and

(11.14) N((−∞, λ); A(k2)) ⩽
Vol(B(0, 1))

(2π)d
λd/2 − Cλ

d−2
4 −εd .

In particular, for any S < 2−d
4 , taking δ = λS we have the existence of k1,k2 ∈ O†

so that
(11.15) N((−∞, λ+ δ); A(k1)) < N((−∞, λ− δ); A(k2)),
in other words the Laplacian has overlap exponent at least 2−d

4 − εd.

Before delving into the more general case, let us discuss a key feature of the previous
example. In order to describe the spectrum of each Aj(k), we found functions
fj : Rd → R so that for every k ∈ O† the restriction of fj to the fibre k + Θ is
a bijection to spec(Aj(k)). This works as easily for other diagonal operators, but
not for operators whose symbol depend on the space variable x. One of the main
purposes of using the gauge transform is to make it so that the operator depends,
in a way, as little on x as possible.

Remark 11.3 (Remark on asymptotic notation). — In the remainder of this section
we make extensive use of the Landau asymptotic notation:

• f ≪ g or g ≫ f to mean that there exists a constant C such that |f | ⩽ C |g|;
• f ≍ g to mean f ≪ g and g ≪ f .

The implicit constants will always be allowed to depend on the numbers a1, . . . , am

in the definition of the principal symbol of A, on the dimension and on the symbol
norms of the subprincipal part. Other dependencies will be mentioned explicitly.

11.2. Reduction of the operator and description of the spectrum

Our first step towards proving Proposition 10.4 is to use the gauge transform to
reduce the operator to a form that is more manageable. We use ρ := λ1/α as a radius
in momentum space. In [PS10, Theorem 4.3 and Lemma 10.4], large frequencies are

ANNALES HENRI LEBESGUE



Gauge transform and applications 1097

cut out and a gauge transform is applied to deduce that for each summand Aj, for
every L > 0, there is an operator Ã with symbol

(11.16) ã = ãD
0 + b̃D + b̃R,

where b̃D is a diagonal subprincipal part and b̃R is the resonant part, so that:
• The Fourier coefficients b̃θ(ξ) are supported in an annulus cρ < |ξ| < cρ,

and in resonant regions Λν,2−4

θ as defined in Section 5. Here, c, C > 0 depend
on the numbers aj and ν ∈ (0, 1) depends on the order of the perturbation.
Furthermore, the frequency set Θκ for b̃ is contained in a ball of radius ρκ

for some 0 < κ < min(d−2, d−1(1 − ν)).
• The overlap functions satisfy ζ(A;λ) > ζ(Ã) + (λ−L).

This means that it is sufficient to prove that Ã with symbol as in (11.16) has an
overlap function bounded below by a power of λ. From now on, we assume that this
reduction has been done and abuse notation by omitting the tildes and writing the
model operator as A.

Remark 11.4. — We assume for the rest of the section that ν and κ as obtained
above are fixed, and that κd < 1 − ν. We also always fix Θκ to be the frequency set
for b.

Just as in Example 11.2, we want to ’unfold’ the spectrum of each fibre operators
Aj(k) by assigning one eigenvalue to each translate of O† by an element of Γ†. This
gives us m functions gj : Rd → spec(Aj) so that the restriction of gj to every fibre
k + O† gives a bijection to spec(Aj(k)). Of course, outside the union of the resonant
regions, we see that

(11.17) A(eξ ⊗ vj) =
(
aj |ξ|α + bD

j (ξ)
)
eξ ⊗ vj

so that it makes sense to put there gj(ξ) = aj |ξ|α + bD
j (ξ). The definition of these

functions gj is given in [PS10, Section 7], where some of their properties are studied.
We collect the important ones for our purpose here.

Lemma 11.5. — For every 1 ⩽ j ⩽ m there exists a function gj : Rd → spec(Aj)
so that the restriction of gj to every fibre k+O† is a bijection (respecting multiplicity)
satisfying the following properties:

• We can write gj(ξ) = aj |ξ|α + Gj(ξ), with |Gj(ξ)| ≪ ρβ whenever |ξ| ≍ ρ,
for some β < α.

• For δ ∈ (0, ρα/4) define the “annular” regions

(11.18) Aj := Aj(ρ; δ) := g−1
j ([ρα − δ, ρα + δ]) ,

which by the previous item we know is contained in a genuine annulus |ξ| ≍ ρ.
Put

(11.19) Rj := Aj ∩
⋃

θ ∈ Θ ∩ B(ρκ)
Λγ,1
θ and Bj := Aj \ Rj.
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Then, on Bj, the functions Gj are of class C2 and for every ξ ∈ Bj we have
the estimate

(11.20) |∇Gj(ξ)| + ρ
∣∣∣∇2Gj(ξ)

∣∣∣ ≪ ργ

for some γ < α− 1.

11.3. Geometry of the resonant regions

The main takeaway from Lemma 11.5 is that although the perturbations Gj are
small with respect to aj |ξ|α everywhere, their derivatives are only controlled within
the non-resonant region. As such, we would like the non-resonant regions to be as
large as possible, and as such we now turn our attention to studying their geometry.

We first introduce some notation. The sets we describe depend on both parameters
ρ and δ used to define Aj; however we often drop the (explicit) dependence on these
parameters to make notation lighter. For every ξ ∈ Rd \ {0}, let uξ := |ξ|−1 ξ be the
unit vector in the direction of ξ. For any subset U of the sphere Sd−1, we denote its
radial extension by

Urd :=
{
ξ ∈ Rd : uξ ∈ U

}
.

For T ∈ (0, 1) and θ ∈ Θ \ {0}, we define spherical resonant regions as

(11.21) S(θ;T ) :=
{
ζ ∈ Sd−1 : |ζ · uθ| < T

}
, and S(T ) =

⋃
θ ∈ Θκ

S(θ;T ).

The name is justified from the fact that by elementary trigonometry, we have the
inclusion for the resonant regions

(11.22) Aj ∩ Λν,2−4

θ ⊂ S
(
θ, ρν−1

)
rd

so that Rj(ρ; δ) ⊂ S
(
ρν−1

)
rd
,

where ν is as fixed in Remark 11.4. In particular, we also define a spherical non-
resonant region as

(11.23) T (ρ) := Sd−1 \ S
(
ρν−1

)
so that B̃j := Trd ∩ Aj ⊂ Bj.

The objective of the next lemma is to prove that small enough neighborhoods of
the spherical resonant regions have small volume.

Lemma 11.6. — Let κ, Θκ and ν be as fixed by Remark 11.4 and define

(11.24) T̃ (ρ) := Sd−1 \ S
(
2ρν−1

)
,

(11.25) Zj(ρ; δ) := Aj ∩ Srd

(
2ρν−1

)
,

and
(11.26) Gj(ρ; δ) := Aj ∩ T̃ rd = Aj \ Zj.

Then, Gj ⊂ Bj, and for all ξ ∈ Gj, dist(ξ,Rj) ≫ ρν . Furthermore, for ε0 =
1 − ν − dκ > 0,
(11.27) vol(Zj(ρ; δ)) ≪ δρd−α−ε0 ,
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and
(11.28) vol(Gj(ρ; δ)) ≍ δρd−α.

Proof. — It is clear from the definition that Gj ⊂ B̃j ⊂ Bj. For ζ ∈ Sd−1, define
the sets
(11.29) Ij(ζ) := Aj ∩ {ζ}rd .

It follows from [PS10, Equation (8.5)] that for all ζ ∈ T , the interval Ij(ζ) is an
interval of length |Ij| ≪ δρ1−α (uniformly in ζ), and
(11.30) Ij ⊂ {ξ : |ξ| ≍ ρ} ,
furthermore, by definition,

dist
(
T̃ (ρ),S

(
θ; ρν−1

))
> ρν−1.

It therefore follows from (11.22), (11.26) and basic trigonometry that dist(Gj,Rj) ≫
ρν . For the volume estimate for Zj, we compute

(11.31)
vol(Zj) ⩽

∑
θ∈ Θκ

∫
S(θ;2ρν−1)

∫
Ij(ζ)

td−1 dt dζ

≪ #(Θκ) max
θ

vold−1
(
S
(
θ; 2ρν−1

))
δρd−α.

Uniformly in θ we have vold−1(S(θ; 2ρν−1) ≪ ρν−1. We also have that #Θκ ≪ ρdκ.
Putting these two estimates in (11.31) yields (11.27). For the estimate on vol(Gj(ρ; δ)),
we observe that vol(Gj) = vol(Aj) − vol(Zj) and that by Lemma 11.5,
(11.32) vol(Aj) ≍ δρd−α.

Estimate (11.28) then follows from the fact that vol(Zj) = o (vol(Aj)). □

For our purposes, we need not only to have volume estimates on the resonant and
non-resonant regions, but also on intersections of their translates. For b1,b2 ∈ Rd

and i, j ∈ {1, . . . , m} we define the crossing sets
(11.33) Xij(ρ, δ,b1,b2) := (Ai(ρ; δ) + b1) ∩ (Aj(ρ; δ) + b2).
We are interested in volume estimates, and since
(11.34) vol(Xij(ρ, δ,b1,b2)) = vol(Xij(ρ, δ,0,b2 − b1)),
we restrict ourselves to sets of the form
(11.35) Xij(b) := Xij(ρ, δ,b) := Xij(ρ, δ,0,b).
Denote by φ(a,b) the (smaller) angle between a and b. For any angle ω ∈ [0, π], we
define the set
(11.36) Xij,ω(b) := {ξ ∈ Xij(b) : φ(ξ, ξ − b) > ω} .

In our application, we need to control the volume of crossing sets for angles bounded
away from zero. The next proposition tells us that unless b is comparable in size to
ρ, this volume is zero.

Proposition 11.7. — Let δ > 0 and ω ∈ (0, π). There are c and C, also depend-
ing on numbers aj such that Xij,ω(ρ, δ,b) ̸= ∅ implies that cρ ⩽ |b| ⩽ Cρ.
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Proof. — We first make the observation that there exists C > 0, depending on α
and the numbers aj such that if |b| > Cρ, then for ρ large enough Ai ∩ (Aj +b) = ∅.
On the other hand, it follows from basic planar trigonometry that for every ω,
there exists c, depending on the constants in |ξ| ≍ ρ, such that if |b| < cρ, then
φ(ξ, ξ − b) ⩽ ω. □

It follows from Proposition 11.7 and the results in [PS10, Section 9] that the
following holds: for any ω ∈ (0, π), ε > 0, if δρ2−α+2ε → 0 as ρ → ∞, then

(11.37) vol (Xij,ω(ρ, δ,b)) ≪ δ2ρ4−2α+d+6ε + δρ1−α−ε(d−1),

uniformly in b. We now define crossing sets for the non-resonant sets Gj. For b ∈ Rd,
let

(11.38) Yij(b) := Gi ∩ (Gj + b)

and for any angle ω ∈ (0, π),

(11.39) Yij,ω(b) := {ξ ∈ Yij(b) : φ(ξ, ξ − b) > ω} = Xij,ω(b) ∩ Yij(b).

Before going on, let us make the following notational convention.

Convention. — For any family of subsets E(δ) ⊂ Rd depending on the parame-
ter δ > 0, we denote

E ′(δ) := E ′(δ, Z) := E(Zδ),
where Z is some large constant to be determined later and depending only on the
dimension d, the order α and the numbers {a1, . . . , am}.

We need the following lemma.

Lemma 11.8. — For any ω ∈ (0, π) and ε > 0, the condition δρ2−α+2ε → 0 as
ρ → ∞ implies

(11.40) vol
 m⋃

i,j=1

⋃
θ∈ Θ

Y ′
ij,ω(θ)

 ≪ δ2ρ4−2α+2d+6ε + δρ1−α+d−ε(d−1),

the implicit constants depending only on δ, ω, Z, and the coefficients aj.

Proof. — It is sufficient to prove the result for a single pair i, j, then sum the
estimates over all m2 of those pairs. From Proposition 11.7, there are constants c
and C depending only on ω, δ, T and the numbers aj such that

(11.41)
vol

 ⋃
θ∈ Θ

Y ′
ij,ω(θ)

 ⩽
∑
θ∈ Θ

cρ⩽|θ|⩽Cρ

vol (Yij,ω(θ))

≪ δ2ρ4−2α+2d+6ε + δρ1−α+d−ε(d−1),

where the last line comes from Yij,ω(θ) ⊂ Xij,ω(θ), estimate (11.37), and the fact
that

□(11.42) #
{
θ ∈ Θ† : cρ ⩽ |θ| ⩽ Cρ

}
≪ ρd.
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11.4. Estimating the overlap function

We are now ready to provide the estimate (11.2). For this, we will find k1,k2 ∈ O†

and three types of eigenvalue branches λℓ(•):
(1) branches so that λℓ(k1) < ρα − δ and λℓ(k2) > ρα + δ; these branches go

across [ρα − δ, ρα + δ];
(2) branches which we cannot control in any way, they may be above ρα − δ at

k1 and below ρα + δ at k2;
(3) branches so that λℓ(k1) and λℓ(k2) are not in the interval [ρα − δ, ρα + δ]; this

will follow from them being far enough from the interval at some midpoint.
Branches of type (1) contribute to inequality (11.2) whereas branches of type (2) are
the adversary; therefore, we aim at proving that there are strictly more branches of
type (1) than branches of type (2). Branches of type (3) either contribute to both
sides of inequality (11.2) or to neither, so that their number is irrelevant.

In order to achieve this goal, it is convenient to “refold” the functions gj. Indeed,
rather than considering them as global functions of ξ, for each θ ∈ Θ we consider
gj(k + θ) as a function of k ∈ O†. More precisely, put Θ̃ := {1, . . . , m} × Θ, and for
every p = (j,θ) ∈ Θ̃, put

(11.43) gp(k) := gj(k + θ).

By definition of g, for any ρ > 0 and any k ∈ O† we have

(11.44) N((−∞, ρα; A(k)) = #
{
p ∈ Θ̃ : gp(k) ⩽ ρα

}
,

so that we can directly study the functions gp; it will be useful to go back and forth
between their geometric description and the fact that these are still the eigenvalues
of some operator.

The following lemma explains why it was important to show that intersections of
non-resonant zones with large angles had small volume: when the angle is small, the
functions gj are increasing and we will use this fact to construct the branches of
type (1).

Lemma 11.9. — Let ν be as fixed in Remark 11.4. For all ξ ∈ Gj, and all b
such that |ξ + b| ≍ ρ and φ(ξ, ξ + b) ⩽ π/4 there is a t0 ≫ ρ−ν such that for all
t ∈ [−t0, t0]:

• the point ξ + t(ξ + b) is in B′
j;

• the function t 7→ gj(ξ + t(ξ + b)) is increasing;
• the derivative satisfies

(11.45) d
dtgj(ξ + t(ξ + b)) ≫ ρα.

The implicit constant in t0 ≫ ρ−ν depends only on the functions gj and the implicit
constants in |ξ + b| ≍ ρ.

Proof. — Since ξ ∈ Gj, we have that not only ξ ∈ Bj for some j, but also, by
Lemma 11.6, that there exists r > 0 such that for all j′, we have dist(ξ; Rj′) > rρ1−ν .
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Therefore, for |t| ⩽ t0 := rρ−ν , we have that ξ + t(ξ + b) ∈ B′
j. By Lemma 11.5, we

have that

(11.46)
∣∣∣∣∣ d
dtGj(ξ + t(ξ + b))

∣∣∣∣∣ ≪ ργ+1 = o (ρα) .

On the other hand,
d
dt |ξ + t(ξ + b)|α(11.47)

= α |ξ + t(ξ + b)|α−2
(
|ξ| |ξ + b| cos (φ(ξ, ξ + b)) + t |ξ + b|2

)
≫ ρα,(11.48)

where the last line holds from the fact that cosφ(ξ, ξ + b) >
√

2/2. □

Branches of type (2) will come from either ξ = k + θ which are in a resonant
region, or where the angle between ξ and ξ+θ is large. The next two lemmas aim at
controlling these two types of situations. But first, we introduce even more notation:
define

(11.49) Z :=
⋃

1⩽ j ⩽m

Zj, and G :=
⋃

1⩽ j ⩽m

Gj.

It follows directly from the definitions of Zj (11.25) and Gj (11.26) that G ∩ Z = ∅.
Furthermore, for every ξ ∈ G and every 1 ⩽ j ⩽ m, ξ ∈ Gj or ξ ̸∈ Aj. For every
ξ ∈ Rd, and any subset E ⊂ Rd, we define

(11.50) n(ξ, E) = # {θ ∈ Θ : ξ + θ ∈ E} .

Lemma 11.10. — Let

(11.51) N :=
{
ξ ∈ Rd : n(ξ; G) ⩽ mn(ξ; Z ′)

}
and NG = N ∩ G. Then, we have that

(11.52) vol(NG) ≪ vol(Z ′) ≪ δρd−α−ε0 ,

where ε0 is as in Lemma 11.6.

Proof. — Observe first that for any E ⊂ Rd, the function n(ξ;E) is constant
on the fibres ξ mod Θ, in other words it depends only on the fractional part {ξ}.
This means that it is well defined on O† and N is invariant under the action of Θ.
We therefore have that

vol(NG) =
∫

N /Θ
n(ξ; G) dξ(11.53)

⩽ m
∫

N /Θ
n(ξ; Z ′) dξ(11.54)

= m vol(N ∩ Z ′)(11.55)
⩽ m vol(Z ′).(11.56)

The claim now follows from Lemma 11.6. □
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Lemma 11.11. — Let

(11.57) U :={
ξ ∈ G \ N : ξ + θ1 ∈ Y ′

ij,π/4(θ1 − θ2) for some 1 ⩽ i, j ⩽ m and θ1,θ2 ∈ Θ
}
.

Then, if ε and δ are such that δρd−α+2ε → 0, we have

(11.58) vol(U) ≪ δ2ρ4−2α+2d+6ε + δρ1−α+d−ε(d−1).

Proof. — Suppose that ξ ∈ U ⊂ G, so that ξ ∈ Gk for some 1 ⩽ k ⩽ m. Consider
the lattice elements θ1,θ2 ∈ Θ† such that ξ + θ1 ∈ Y ′

ij,π/4(θ1 − θ2). By definition of
Y ′

ij,π/4 and translation, this means that

(11.59) ξ ∈ (G ′
i − θ1) ∩ (G ′

j − θ2),
and therefore that
(11.60) ξ ∈ Y ′

ki(−θ1) ∩ Y ′
kj(−θ2).

Furthermore, φ(ξ + θ1, ξ + θ2) > π/4. As such,
(11.61) max {φ(ξ, ξ + θ1), φ(ξ, ξ + θ2)} > π/8.
Combining the previous two displays yields
(11.62) ξ ∈ Y ′

ki,π/8(−θ1) ∪ Ykj,π/8(−θ2).

Therefore,

(11.63)
vol(U) ⩽ vol

 m⋃
i,j=1

⋃
θ∈Θ

Y ′
ij,π/8(θ)


≪ δ2ρ4−2α+2d+6ε + δρ1−α+d−ε(d−1),

the last line holding by virtue of Lemma 11.8. □

The next proposition indicates that the sets U and NG are thin relative to G.

Proposition 11.12. — Let

(11.64) s := min
{
αd− d2 − 3d− α− 2

2(d+ 2) , α− d+ α− d− 2
2(d+ 2)

}
.

For ρ large enough and δ = o (ρs), the set

K := G \ (NG ∪ U)
is non empty.

Proof. — Recall from Lemma 11.6 that vol(G) ≍ δρd−α. On the other hand,
Lemma 11.10 implies that there is ε0 > 0 such that
(11.65) vol(NG) ≪ δρd−α−ε0 ,

and from Lemma 11.11 that as soon as δρd−α+2ε → 0 we have that

(11.66) vol(U) ≪ δ2ρ4−2α+2d+6ε + δρ1−α+d−ε(d−1).
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Take

(11.67) ε := α− d− 2
2(d+ 2) .

Observe that indeed when δ = o (ρs) we have δρ2−α+2ε → 0 as ρ → ∞. We also
observe that with that choice of parameters vol(U)+vol(NG) = o (vol(G)) and hence,
for large enough ρ, K is not empty. □

We are now in a position to place our final building block towards the proof of
Proposition 10.4.

Proposition 11.13. — There exists ρ0 > 0 and S ∈ R (depending on {a1, . . . ,
am}, α, and the implicit constants in Lemma 11.5) so that

(11.68) #
{
p ∈ Θ̃ : gp(k1) ⩽ ρα + ρS

}
< #

{
p ∈ Θ̃ : gp(k2) ⩽ ρα − ρS

}
.

Proof. — Let s be defined as in (11.64). For any ε > 0, set S = min{s− ε, α+ ν
− 1}, where ν < 1 is fixed in Remark 11.4. By Proposition 11.12, for ρ large enough
the set K is not empty; so fix ξ0 ∈ K. For 1 ⩽ j ⩽ m, let Γj,Γ′

j ⊂ Θ be defined as

(11.69) Γj := {θ ∈ Θ : ξ0 + θ ∈ Gj} and Γ′
j :=

{
θ ∈ Θ : ξ0 + θ ∈ G ′

j

}
.

It follows from the definition of K that

(11.70)
m∑

j=1
#Γj ⩾ n(ξ0; G).

Since ξ0 ̸∈ U , for all θ ∈ Γj we have φ(ξ0, ξ0 + θ) ⩽ π/4 for all θ ∈ Γj. It follows
from Lemmas 11.5 and 11.9, since δ ≪ ρα+ν−1, that there exist t ≪ ρν−1 and Z0
independent of ρ such that for all 1 ⩽ j ⩽ m and θ ∈ Γj we have

(11.71) ρα − Z0δ ⩽ gj

(
(1 − t)ξ0 + θ

)
⩽ ρα − δ

and

(11.72) ρα + δ ⩽ gj

(
(1 + t)ξ0 + θ

)
⩽ ραZ0δ.

Of course, if these estimates hold, they also hold replacing Z0 with any Z > Z0.
The precise value we assign to Z may change as the proof goes along but remains
independent of ρ and δ. We denote by J the radial interval of length |J | ≪ ρν−1

= o (1):

(11.73) J := [(1 − t)ξ0, (1 + t)ξ0],

and put k0,k1, and k2 to be the projections on O† of ξ0, (1 − t)ξ0. and (1 + t)ξ0,
respectively. We now restrict ourselves to the operator

(11.74) AJ := A(PJ +Θ ⊗ Id),

where the projection PJ +Θ is defined in Proposition 2.16. We also put Qj to be the
projection on the jth coordinate in Cm, so that (Id ⊗Qj)(eξ ⊗ vj) = eξ ⊗ vj and
(Id ⊗Qj)(eξ ⊗ vℓ) = 0 for all j ≠ ℓ. From Lemma 11.9, for every ξ ∈ J and θ ∈ Γj
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we have that ξ + θ ∈ B′
j. Since AJ acts diagonally on span {eξ ⊗ vj : ξ ∈ J + Γj},

it commutes with the projection

(11.75) P =
m∑

j=1
PJ +Γj

⊗Qj.

In particular, for every k ∈ [k1,k2], the spectrum of A(k) decomposes (respecting
multiplicity) into
(11.76) spec(A(k)) = spec(A(k)P(k)) ⊔ spec(A(k)(Id −P(k))).
It follows from the definition of Γj and inequalities (11.71) and (11.72) that every
eigenvalue of A(k1)P(k1) is smaller than ρα − δ and every eigenvalue of A(k2)P(k2)
is larger than ρα + δ.

It follows from [PS10, Theorem 3.6] that there is Z ⩾ Z0 large enough so that for
every ℓ ∈ N,

(11.77) |λℓ(A(k0)(Id −P(k0)) − ρα| > Zδ

implies |λℓ(A(k)(Id −P(k)) − ρα| > δ

for every k ∈ J . In particular, all of those eigenvalue branches which are at distance
larger than Zδ from ρα at k0 stay on the same side of the interval [ρα − δ, ρα + δ]
and contribute the same quantity to both sides of inequality (11.68). Finally, if
(11.78) |λℓ(A(k0)(Id −P(k0)) − ρα| ⩽ Zδ,

this means that ξ0 + θ ∈ Z ′, and we cannot know their values at k1 or k2. However,
since ξ0 ∈ K, there are at most mn(ξ; Z ′) < n(ξ; G) values of p = (θ, j) for which
this holds. In the end, this means that

(11.79)
1 ⩽ n(ξ0; G) −mn(ξ0; Z ′)

⩽ #
{
p ∈ Θ̃ : gp(k2) ⩽ ρα − ρS

}
− #

{
p ∈ Θ̃ : gp(k1) ⩽ ρα + ρS

}
which is our claim. □

We can now finish with the proof of Proposition 10.4.
Proof. — Proof of Proposition 10.4 By construction of the functions gp, inequal-

ity (11.68) is equivalent to inequality (11.2) with δ = ρS. The overlap exponent S is
seen from (11.64) to depend only on α and d, whereas the other parameters λ̃ and c
depend on the implied constants in Lemma 11.5. This Lemma was taken from the
constructions of [PS10, Section 7] where the constants are shown to depend only on
the symbol norms of A and AOD. □

12. The Dirac Operator

In this section, we aim to get conditions on perturbations of the Dirac operator so
that the gauge transform and, more importantly, all the theorems from Part II can be
applied. Basic facts and theorems on the Dirac operator are found in [GM91, Tha91].
We consider Dirac operators built through Clifford algebras, of which the usual two-
and three-dimensional cases are examples. We are then able to explicitly describe
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perturbations to which we can apply the gauge transform method and recover the
results of Sections 7–11.

12.1. Clifford algebras

We give here basic facts about Clifford algebras used to construct the Dirac
operator in the flat setting. They can be found in [GM91, Section 7]. Let Rp,q be
the euclidean space of dimension p+ q equipped with the canonical quadratic form
η of signature (p, q). In our applications, we consider only the cases R0,d (Euclidean)
and R1,d (Minkowski). We denote their orthonormal bases respectively {v1, . . . , vd}
and {v0,v1, . . . , vd}. Consider the algebra Ap,q generated by {1,v1, . . . , vd} or
{1,v0, . . . ,vd} with the relations
(12.1) vjvk + vkvj = −2ηjk.

It is easy to see that Ap,q has dimension 2p+q. For any subset S := {s1, . . . , sk} ⊂
{0, . . . , d} (or of {1, . . . , d} in the euclidean setting), we denote by vS the element
vs1 · · · vsk

∈ Ap,q, where by convention v∅ = 1. The Clifford algebra on Rp,q is
isomorphic to the exterior algebra Λ∗(Rd).

From the anticommutation relation (12.1), we deduce that each pair of the 2p+q

generators of Ap,q either commutes or anticommutes, according to the rule

(12.2)

vjvS = (−1)|S|vSvj if j ̸∈ S,

vjvS = (−1)|S|−1vSvj if j ∈ S.

When p + q is even, there is a faithful representation of Ap,q acting on the spinor
space C2(p+q)/2 . A specific representation by matrices constructed recursively is given
in [Upm02] in the Euclidean and Minkowski cases. This representation γ has the
property that for all 1 ⩽ j ⩽ d, the matrix γj := γ(vj) is skew-hermitian and squares
to − Idp+q, γ0 := γ(v0) is hermitian and squares to the identity, and there is some
|c| = 1 so that the grading operator Γ := c

∏
j γj is a diagonal matrix of the form

(12.3) Γ =
(

Id(p+q)/2 0
0 − Id(p+q)/2

)
.

We can observe that for all j, Γγj = −γjΓ. The operator Γ is called “grading”
because it induces a Z2 grading on Ap,q. The even subalgebra of Ap,q consists of
all the elements commuting with Γ, while the odd subspace consists of all the
anti-commuting elements. In particular, all the γj are in the odd subspace, which is
characterised as a product of an odd number of generators, while the even subalgebra
is characterised as products of even number of generators.

Lemma 12.1. — Let γ be an element of the odd subspace. Then, as a matrix it
has the form

(12.4) γ :=
(

0 X
Y 0

)
,

where each of the blocks is a m/2 ×m/2 matrix.
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Proof. — This follows from a simple computation of the relation γΓ + Γγ = 0 on
the matrix elements. □

The representation γ also allows us to see that, as a C∗-algebra, Ap,q is naturally
isomorphic to an algebra of operators on a Hilbert space Sp+q, which is called the
spinor space. When m is even, we have that Sp+q

∼= C2(p+q)/2 . Therefore, setting
m = 2(p+q)/2, we can use this representation to obtain operators in S∞

m .

12.2. Dirac operators

We define (spatial) Dirac operators differently depending on whether the number
of spatial dimensions is even or odd.

Definition 12.2. — Let d be odd. The d-dimensional free Dirac operator Ad is
the first order system acting on spinors in L2(Rd;Cm), for m = 2 d+1

2 given by

(12.5) Ad =
d∑

j=1
γj∂j,

where the γj are given by the representation of A1,d−1 in L(Cm).

Definition 12.3. — Let d be even. The d-dimensional free Dirac operator Ad is
the first order system acting on spinors L2(Rd;Cm), for m = 2 d

2 given by

(12.6) Ad =
d∑

j=1
γj∂j,

where the γj are given by the representation of A0,d in L(Cm).

It is easy to see in both cases that A2
d = −∆ Idm.

Example 12.4. — The two-dimensional Dirac operator with mass M is given
in [Tha91, Equation 1.14] as
(12.7) A2,M = −i (σ1∂x1 + σ2∂x2) + σ3M,

where σ1, σ2, σ3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(12.8)

It is a perturbation of order 0 of the free Dirac operator. Indeed, the Pauli matrices
can be used for a representation of the Clifford algebra A0,2, and σ3 corresponds to
the grading operator Γ.

Example 12.5. — The three-dimensional Dirac operator with massM from [Tha91,
Equation 1.11] given by
(12.9) A3,M = −i (γ1∂x1 + γ2∂x2 + γ3∂x3) + ΓM
is also a perturbation of order 0 of the free Dirac operator. Here, the matrices γj are
the Dirac γ-matrices used as a representation of A1,3, and our notation generalises
this notion, following [Upm02].
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We now show that the operators Ad are elliptic in the sense of Section 3.

Proposition 12.6. — Let m := m(d) be the dimension of the spinor space on
which Ad acts. The operator U ∈ S0

m with symbol

(12.10) u(x, ξ) := 1{|ξ|⩾ 1}(ξ)√
2

Idm + i

|ξ|
Γ

d∑
j=1
ξjγj

+ 1{|ξ| < 1}(ξ) Idm

is unitary. Furthermore, UAdU∗ ∈ DES1
m and there is R ∈ S−∞

m such that the
symbol of UAdU∗ − R is |ξ| Γ.

Proof. — The symbol of the adjoint of U is given, following (2.30), by

(12.11) u†(x, ξ) = 1{|ξ|⩾ 1}(ξ)√
2

Idm − i

|ξ|
Γ

d∑
j=1
ξjγj

+ 1{|ξ| < 1}(ξ) Idm

and we can compute that

(12.12)

[
u ◦ u†

]
(ξ) = 1{|ξ|⩾ 1}(ξ)

2

Idm − 1
|ξ|2

d∑
j,k=1

Γ2γjγkξjξk

+ 1{|ξ| < 1}(ξ) Idm

= 1{|ξ|⩾ 1}(ξ)
2

Idm − 1
|ξ|2

∑
j

γ2
j ξ

2
j

+ 1{|ξ| < 1}(ξ) Idm

= Idm .

In a very similar fashion, we see that the symbol of UAdU∗ is given by
(12.13) [u ◦ ad ◦ u†](ξ) = 1{|ξ|⩾ 1}(ξ) |ξ| Γ + 1{|ξ| < 1}(ξ)ad(ξ).
This proves our claim where R ∈ S−∞

m has symbol
□(12.14) r(ξ) = 1{|ξ| < 1}(ξ)(ad(ξ) − |ξ| Γ).

We now see that for d = m = 2, the operators A2 +B, B ∈ Sβ
m, β < 1 are unitarily

equivalent to an operator satisfying the hypotheses of Theorems 8.2 and Theo-
rem 10.1, which proves that we generically have a complete asymptotic expansion
for the density of states, and that if B is periodic then A has the Bethe–Sommerfeld
property. In other words, the following two theorems are proved, which are more
precise reformulations of Theorems 1.1 and 1.3.

Theorem 12.7. — Let β < 1 and A = A2+B, where B ∈ Sβ
2 satisfies the generic

conditions A, B and C. Then, for every K > −2 there is a finite set L ⊂ (0, 2 +K)
so that for every j ∈ L ∪ {0} there are constants C±

j , C±
j,log such that

(12.15) N±(A;λ) = C±
0 λ

2 +
∑
j ∈ L

(
C±

j λ
2−j + C±

j,logλ
2−j log λ

)
+O

(
λ−K

)
as λ → ∞.

Theorem 12.8. — Let β < 1 and A = A2 + B, where B ∈ Sβ
2 is periodic.

Then, A has the Bethe–Sommerfeld property, i.e. there exists λ0 > 0 such that the
spectrum of A contains intervals (−∞,−λ0] and [λ0,∞).
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We now want to address the question of the perturbations that are allowed when-
ever d ⩾ 3.

Proposition 12.9. — For β < 1, and 0 ⩽ j ⩽ d (with 0 omitted when d is even),
let BId, BΓ, Bj ∈ Sβ

1 be scalar pseudo-differential operators of order β, and put
(12.16) B = BId Idm +BΓΓ +

∑
j

Bjγj.

Then, there are operators B′ ∈ USβ
m, R ∈ Sβ−1

m and B̃ ∈ Sβ
m whose symbol has

image in the odd subspace of Ap,q such that
(12.17) U(Ad + B)U∗ = Op(|ξ|)Γ + B′ + B̃ + R

Proof. — The unitary operator U from (12.10) can be written as

(12.18) U = 1√
2

Idm +
d∑

j=1
UjΓγj

 mod S−∞
m .

Here, Uj ∈ S0
1 are scalar pseudo-differential operators given by

(12.19) Uj = Op
(
iξjχ(ξ)

|ξ|

)
,

where χ is a smooth function supported in {|ξ| ⩾ 1/2} and χ(ξ) ≡ 1 for all |ξ| ⩾ 3/4.
We now compute UBγγU∗ for different values of γ. All the sums range from 1 to d
with additional restrictions, we have only written the restrictions to make notation
lighter. For 1 ⩽ j ⩽ d we have

(12.20) UBjγjU∗ =

1
2

Bjγj +
∑
k ̸=j

[Uk;Bj]Γγkγj − (UjBj +BjUj) Γ +
∑

k

(UkBjUj + UjBjUk) γk

−
∑

k

UkBjUkγj −
∑
ℓ̸=j
k ̸=j
k < ℓ

([Uℓ;BjUk] + [Bj;Uk]Uℓ) γkγℓγj

)
mod S−∞

m .

Let us have a careful look at each of the six terms in Equation (12.20). The second
and the last terms involve commutators of operators with scalar-valued symbols,
they are in Sβ−1

m and we put Rj as their sum. The third term is in USβ
m, and we

denote it B′
j. Finally, the first, fourth and fifth term are readily seen to have symbols

in the odd subspace, we put B̃j as their sum.
The operator UB0γ0U∗ is computed similarly as in (12.20) with some of the terms

vanishing. It is given by

(12.21) UB0γ0U∗ = 1
2

B0γ0 +
∑

k

[Uk;B0]Γγkγ0 −
∑

k

UkB0Ukγ0

−
∑
k<ℓ

([Uℓ;B0Uk] + [B0;Uk]Uℓ)γkγℓγ0

 mod S−∞
m .
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The first and third term have image in the odd subspace, we put B̃0 as their sum. The
second and last terms involve commutators of operators with scalar-valued symbols,
as such they are in Sβ−1

m and we put R0 as their sum. We note that there are no
uncoupled terms.

The operator UBΓΓU∗ is given by

(12.22) UBΓΓU∗ = 1
2

BΓΓ −
∑

k

(UkBΓ +BΓUk)γk

−
∑

k

UkBΓUkΓ +
∑
k<ℓ

([Uℓ;BΓUk] + [BΓ;Uk]Uℓ) Γγℓγk

)
mod S−∞

m .

This time, the first and third terms are seen to be in USβ
m and we put their sum as

B′
Γ. The second term has symbol in the odd subspace and we denote it by B̃Γ. The

last term can be seen to be in Sβ−1
m and we denote it by RΓ.

Finally, the operator UBId Idm U∗ is given by

(12.23) UBId Idm U∗ = 1
2

BId Idm +
∑

k

[Uk;BId]Γγk +
∑

k

UkBIdUk Idm

+
∑
k < ℓ

([Uℓ;BIdUk] + [BId;Uk]Uℓ) γℓγk

 mod S−∞
m .

This time, we see that the first and third terms are in USβ
m, we put their sum as

B′
Id, while the second and last terms are in Sβ−1

m and we put their sum as RId.
Finally, put R̃ ∈ S−∞

m as the sum of the remainders mod S−∞
m obtained at every

step. Combining all our computations and Proposition 12.6 gives us that (12.17)
holds with

□(12.24)

B′ = B′
Id + B′

Γ +
d∑

j=1
B′

j

B̃ = B̃Id + B̃Γ +
d∑

j=0
B̃j

R = R̃ + RId + RΓ +
d∑

j=0
Rj.

The next theorem follows and includes Theorem 1.2 as a special case when d = 3.

Theorem 12.10. — Let m(d) be the dimension of the spinor space on which Ad

acts. For β ⩽ 1/2 and 0 ⩽ j ⩽ d (with 0 omitted when d is even) let BΓ, Bj, BId ∈ Sβ

be scalar pseudo-differential operators satisfying Conditions 7.4–7.7, and put

(12.25) B = BId Idm +BΓΓ +
d∑

j=0
Bjγj,
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and A = Ad + B. Then, putting γ∗ = max {β − 1, 2β − 1}, there exists a finite set
L ⊂ (0, 1 − γ∗) and constants C±

0 and C±
j,q, 0 ⩽ q ⩽ d− 1, j ∈ L such that

(12.26) N±(A;λ) = C±
0 λ

d +
∑
j∈L

d−1∑
q=0

C±
j,qλ

d−j logq λ+O
(
λd−1+γ∗)

as λ → ∞.

Proof. — It follows from Proposition 12.9 that UAU∗ satisfies the hypotheses of
Theorem 8.1 with γ∗ = max {β − 1, 2β − 1}. In particular, the restricted asymptotics
of the IDS given in that theorem are true for such operators with α = 1. □

Finally, in some highly non-generic cases we can get complete asymptotic expan-
sions and the Bethe–Sommerfeld property for d-dimensional Dirac operators with
d ⩾ 3. We state both results and observe that they follow directly from the fact that
after conjugation by U, these operators are uncoupled.

Theorem 12.11. — Let m(d) be the dimension of the spinor space on which
Ad acts, β < 1 and B ∈ USβ

m satisfying Conditions 7.4–7.7. Put A = Ad + U∗BU.
Then, N±(A;λ) satisfies the complete asymptotic expansion (8.2) with α = 1.

Theorem 12.12. — Let m(d) be the dimension of the spinor space on which Ad

acts, β < 1 and B ∈ USβ
m be periodic. Put A = Ad + U∗BU. Then, A has the

Bethe–Sommerfeld property.
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