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1116 J. FAUPIN & N. FRANTZ

Résumé. — Nous considérons une classe d’opérateurs non auto-adjoints sur un espace de
Hilbert, de la forme H = H0 + CWC, où H0 est auto-adjoint, W est borné et C est borné
et relativement compact par rapport à H0. On suppose que C est un opérateur métrique et
que C(H0 − z)−1C est uniformément borné pour z ∈ C \ R. Nous définissons les singularités
spectrales de H comme les points du spectre essentiel λ ∈ σess(H) tels que C(H −λ±iε)−1CW
n’a pas de limite quand ε → 0+. Nous prouvons que les singularités spectrales de H sont en
bijection avec les valeurs propres associées à des états résonants d’une extension de H à un
espace de Hilbert plus gros. Ensuite, nous montrons que les états qui disparaissent à l’infini
pour H, c’est à dire les φ tels que e±itHφ → 0 quand t → ∞, coïncident avec les vecteurs
propres généralisés de H associés à des valeurs propres λ ∈ C, ∓ Im(λ) > 0. Finalement,
nous définissons le sous-espace spectral absolument continu de H et montrons qu’il satisfait
Hac(H) = Hp(H∗)⊥, où Hp(H∗) est le sous-espace spectral ponctuel de l’opérateur adjoint H∗.
Nous obtenons ainsi une décomposition en somme directe de l’espace de Hilbert en terme de
sous-espaces spectraux de H. L’un des arguments principaux de nos preuves est une formule de
résolution spectrale pour un opérateur borné r(H) régularisant l’opérateur identité au voisinage
des singularités spectrales. Nos résultats s’appliquent à des opérateurs de Schrödinger avec des
potentiels complexes.
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Spectral decomposition of some non-self-adjoint operators 1117

1. Introduction

We are interested in this paper in the evolution of a quantum system governed by
the time-dependent Schrödinger equation
(1.1) i∂tφ = Hφ,

with a non-self-adjoint operator H.
Non-self-adjoint “Hamiltonians” in Quantum Mechanics are considered in vari-

ous contexts, see [BGSZ15, Kre17] and references therein. We mention here two
frameworks that are especially relevant for our study.

As effective or phenomenological operators, non-self-adjoint operators are used to
describe non-conservative phenomena. A celebrated example is the optical model in
nuclear physics describing both the elastic and inelastic scattering of a neutron – or a
proton – at a nucleus. It was introduced by Feshbach, Porter and Weisskopf [FPW54]
as an empirical model allowing, in particular, for the description of the formation of
a compound nucleus [Boh36]. In this model, the unnormalized state of the neutron at
a positive time t is given by the solution φt = e−itHφ to (1.1), with H = −∆ + V (x)
a dissipative Schrödinger operator in L2(Rd), Im(V (x)) ⩽ 0. Part of the energy of
the neutron may be transferred to the nucleus, possibly leading to the absorption,
or capture, of the neutron by the nucleus. Mathematically, this is reflected in the
dissipative nature of the equation since, in particular, given a normalized initial state
φ ∈ L2(Rd), we have that ∥e−itHφ∥L2 ⩽ 1 for all t ⩾ 0. The probability of absorption

pabs(φ) := 1 − lim
t → ∞

∥∥∥e−itHφ
∥∥∥2

L2

does not vanish in general.
The nuclear optical model leads to predictions that correspond to experimental

scattering data to a high precision. Theoretical justifications of the model have been
given in [Fes58a, Fes58b, Fes62] (see also [BGSZ15, Fes92, Hod71]). The idea of the
justification consists in projecting out, in the Schrödinger equation associated to the
total system nucleus – neutron, the degrees of freedom corresponding to the nucleus.
This can be performed using Schur’s complement formula and leads to a Schrödinger
equation for the neutron which is non-linear in energy. The effective, non-self-adjoint
Hamiltonian for the neutron is then obtained by averaging over energy.

PT -symmetric operators constitute another widely used class of non-self-adjoint
operators in Quantum Mechanics. It was observed by Bender and Boettcher [BB98]
that a large class of “PT -invariant Hamiltonians” have real spectra and can therefore
be quantum mechanically relevant in many situations. For Schrödinger operators,
H = −∆ + V (x) on L2(Rd), with V a complex potential, PT -symmetry means that

[H,PT ] = 0,
where P is the parity operator, (Pφ)(x) = φ(−x), and T the time-reversal operator,
(T φ)(x) = φ(x).

In recent years, PT -symmetric operators have attracted lots of attention, from
theoretical studies showing that PT -invariant operators have real spectra under
suitable conditions [DDT01, KBZ06, Kre08, KSTV15, Mos02, Shi02], to experimen-
tal studies revealing PT -symmetry-like structures, in particular in optics [Lon09,
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1118 J. FAUPIN & N. FRANTZ

RBM+12, RMEG+10]. See [EGMK+18] for more references and more recent de-
velopments, [KSTV15] for results on the pseudo-spectra of PT -symmetric opera-
tors, and [BK08, BK12, WB20] for the study of PT -symmetric operators having
continuous spectra. It may also be worth mentioning that a mathematically re-
lated and, perhaps, more relevant concept than PT -symmetry, is that of quasi-
self-adjointness [Die61, SGH92]. We refer to [KSTV15] for a relationship between
quasi-self-adjointness and PT -symmetry.

In this paper, we consider an abstract class of non-self-adjoint operators in a
complex Hilbert space H, of the form H = H0 + V . We suppose that H0 is a
self-adjoint operator with purely absolutely continuous spectrum and that V is a
relatively compact perturbation of H0. In particular, the essential spectra of H and
H0 coincide. We suppose furthermore that V admits a factorization as V = CWC,
with W bounded and C a strictly positive operator such that

sup
z ∈C\R

∥∥∥C(H0 − z)−1C
∥∥∥

B(H)
< ∞.

Such factorizations go back to the seminal work of Kato [Kat65], see also [KK66].
We are interested in a spectral decomposition of the non-self-adjoint operator

H, in relation with the long-time behavior of the solutions to (1.1). Note that
H being a bounded perturbation of H0, the operator −iH generates a strongly
continuous group {e−itH}t ∈R and hence, for any φ ∈ H, (1.1) admits a global
solution R ∋ t 7→ e−itHφ ∈ H.

Roughly speaking, our main contributions can be summarized as follows. First,
defining the spaces of asymptotically disappearing states as

H±
ads(H) :=

{
φ ∈ H, lim

t → ±∞

∥∥∥e−itHφ
∥∥∥

H
= 0

}
,

we will show that H±
ads(H) coincide with the vector space spanned by all eigen-

vectors, or generalized eigenvectors, corresponding to eigenvalues λ of H such that
∓ Im(λ) > 0. Next, defining the absolutely continuous spectral subspace Hac(H) of
H as the closure of{

φ ∈ H, ∃ cφ > 0,∀ ψ ∈ H,
∫
R

∣∣∣〈e−itHφ, ψ
〉

H

∣∣∣2 dt ⩽ cφ ∥ψ∥2
H

}
,

we will prove that Hac(H) = Hp(H∗)⊥, where H∗ stands for the adjoint of H and
Hp(H∗) is the point spectral subspace of H∗, i.e. the vector space spanned by all
eigenstates or generalized eigenstates of H∗. These characterizations of H±

ads(H) and
Hac(H) in turn imply a J-orthogonal decomposition of the Hilbert space (for some
conjugation operator J , see Hypothesis 3.4 for precise conditions on J) given by

H = Hac(H) ⊕ H+
ads(H) ⊕ H−

ads(H) ⊕ Hb(H),(1.2)

where Hb(H) is the space of “bound states”, i.e. the closure of the vector space
spanned by all generalized eigenvectors of H corresponding to real eigenvalues. Hence
we obtain a decomposition of the Hilbert space into “scattering states” (corresponding
to elements of Hac(H)), asymptotically disappearing states and bound states. This
generalizes the well-known spectral decomposition for self-adjoint operators without
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singular continuous spectrum (in the case of self-adjoint operators H, of course, we
have H±

ads(H) = {0}).
To prove these results, we will require that H only has finitely many eigenvalues

(counting algebraic multiplicities) and finitely many spectral singularities. As in
previous works concerning dissipative operators in Hilbert spaces [Fau21, FF18,
FN19], the notion of spectral singularities plays a central role in this paper. In our
context, we will define a spectral singularity as a point λ of the essential spectrum
of H such that one of the two limits

lim
ε → 0+

C(H − λ± iε)−1CW

does not exist in the norm topology of B(H). We will prove that λ is a spectral
singularity of H if and only if it is an eigenvalue of an extension H ′ of H to a larger
Hilbert space H′

C , corresponding to an eigenstate (a “resonant” state) belonging to
a suitable subspace of H′

C (the space H′
C will be defined as the anti-dual of Ran(C),

equipped with a suitable norm).
Our results concerning the spaces of asymptotically disappearing states H±

ads(H)
generalize previous results for dissipative operators recently obtained in [FF18]. Our
proof is more direct, in particular it does not rely on the scattering theory for the pair
(H,H0), which was a crucial element of the proof in [FF18]. Our results showing that
Hac(H) = Hp(H∗)⊥ seem to be new. It is worth mentioning that, contrary to previous
results on absolutely continuous spectral subspaces for non-self-adjoint operators
(see [Dav80a] for dissipative operators and [KN09, Nab76] and references therein
for a more general context), we do not use the theory of dilations of contractive
semigroups.

The abstract theory developed in this paper applies to Schrödinger operators
H = −∆ + V (x) on L2(Rd), under suitable decay assumptions on the complex
potential V . In this case, spectral singularities correspond to real resonances. Some
of our results on spectral singularities may thus be seen as abstract versions of
corresponding well-known properties in the theory of resonances for Schrödinger
operators [DZ19]. On the other hand, the characterizations of the subspaces H±

ads(H)
and Hac(H), as well as the spectral decomposition formula (1.2), seem to give new
results also in the context of Schrödinger operators.

Before stating our results in more precise terms in Section 3, we begin with
describing in details the abstract setting studied in this paper in Section 2.

Notations 1.1. — In what follows, given two Hilbert spaces H1, H2, the notation
B(H1,H2) stands for the set of bounded operators from H1 to H2. If H1 = H2, we
set B(H1) := B(H1,H1). If E is a Banach space and E ′ its anti-dual, we denote by

⟨u,Φ⟩E;E′ := Φ(u), Φ ∈ E ′, u ∈ E,

the usual duality bracket.

The domain of an operator A on a Hilbert space H is denoted by D(A). The
spectrum and resolvent set of A are denoted by σ(A) and ρ(A), respectively. For
z ∈ ρ(A), we let

RA(z) := (A− z)−1
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1120 J. FAUPIN & N. FRANTZ

be the resolvent of A. In the case where A is the unperturbed operator H0, we will
also use the shorthand R0 := RH0 .

We let C± := {z ∈ C, ± Im(z) > 0} and C̄± := {z ∈ C, ± Im(z) ⩾ 0}. The
complex open disc centered at λ and of radius r is denoted by

D̊(λ, r) := {z ∈ C, |z − λ| < r}.

2. Abstract setting

2.1. The model

Let (H, ⟨. , .⟩H) be a complex separable Hilbert space. On H, we consider the
operator
(2.1) H := H0 + V,

where H0 is self-adjoint and semi-bounded from below and V ∈ B(H) is a bounded
operator. In particular, H is a closed operator with domain D(H) = D(H0) and its
adjoint is given by

H∗ = H0 + V ∗, D(H∗) = D(H0).
Without loss of generality, we suppose that H0 ⩾ 0. Since H is a perturbation of
the self-adjoint operator H0 by the bounded operator V , −iH is the generator of a
strongly continuous one-parameter group {e−itH}t ∈R satisfying∥∥∥e−itH

∥∥∥
B(H)

⩽ e|t|∥V ∥B(H) , t ∈ R,

(see e.g [Dav07] or [EN00]).
We assume that there exists a metric operator C ∈ B(H) such that C is relatively

compact with respect to H0 and V is of the form
(2.2) V = CWC,

with W ∈ B(H). We recall that a metric operator is a strictly positive operator, i.e.
C ⩾ 0 and Ker(C) = {0}, see e.g. [AT13].

We mention that the semi-boundedness of H0, which we assume throughout the
paper for simplicity, can be relaxed, assuming for instance that H0 has a spectral
gap.

2.2. Spectral subspaces, spectral projections

Recall that σ(H) stands for the spectrum of H and ρ(H) = C \ σ(H) its resolvent
set. As usual, the point spectrum of H is defined as the set of all eigenvalues of H,

σp(H) :=
{
λ ∈ C, Ker(H − λ) ̸= {0}

}
.

The discrete spectrum of H, σdisc(H), is the set of all isolated eigenvalues λ with
finite algebraic multiplicities mλ(H), where

mλ(H) := dim
( ∞⋃

k=1
Ker

(
(H − λ)k

))
.
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Spectral decomposition of some non-self-adjoint operators 1121

Under our assumptions, since V is a relatively compact perturbation of H0, the
essential spectrum σess(H) := σ(H)\σdisc(H) coincides with the essential spectrum of
H0 and the discrete spectrum σdisc(H) is at most countable and can only accumulate
at points of σess(H) (see [RS75, Corollary 2 of Theorem XIII.14]). See Figure 2.1.

×

×

×

×

×

×

×

×

×

××××××××× ××××××
×

Figure 2.1. Spectrum of H. The essential spectrum of H, represented by thick
lines, coincides with that of H0 and is contained in [0,∞). Eigenvalues of H
are represented by crosses. The discrete spectrum of H consists of isolated
eigenvalues of finite algebraic multiplicities which may accumulate at any point
of the essential spectrum. The point spectrum of H may also contain eigenvalues
embedded in the essential spectrum.

It should be noted that there exist various definitions of essential spectra for
non-self-adjoint operators [EE87, Chapter IX], but these definitions coincide in our
context. This follows from the fact that H is a relatively compact perturbation of
the self-adjoint operator H0 together with [RS75, Corollary 2 of Theorem XIII.14]
and [EE87, Theorems IX.1.6 and IX.2.1]. In turn, this shows that σess(H) coincides
with the set of λ ∈ C such that H − λ is not Fredholm.

We define in addition the set of all eigenvalues embedded in the essential spectrum
of H:

σemb(H) := σp(H) ∩ σess(H).

2.2.1. Eigenspaces corresponding to isolated eigenvalues

For λ ∈ σdisc(H), we denote by

(2.3) Πλ(H) := 1
2πi

∫
γ

(z Id −H)−1 dz

the usual Riesz projection, where γ is a circle oriented counterclockwise and centered
at λ, of sufficiently small radius (so that λ is the only point of the spectrum of H
contained in the interior of γ). The algebraic multiplicity of λ satisfies mλ(H) =
dim Ran(Πλ(H)) (notice here that if λ is a discrete eigenvalue, then H−λ is Fredholm
as discussed above and hence Ran(H − λ) is closed).
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Since the restriction of H to Ran(Πλ(H)) may have a nontrivial Jordan form,
Ran(Πλ(H)) is in general spanned by generalized eigenvectors of H associated to λ,
i.e., by vectors u ∈ D(Hk) such that (H − λ)ku = 0 for some 1 ⩽ k ⩽ mλ(H). We
set

Hdisc(H) := Span {u ∈ Ran(Πλ(H)), λ ∈ σdisc(H)}cl ,

where Acl stands for the closure of a subset A ⊂ H. We will sometimes assume that
the discrete spectrum of H is finite. The spectral projection Πdisc(H) onto Hdisc(H)
is then defined by
(2.4) Πdisc(H) :=

∑
λ ∈ σdisc(H)

Πλ(H).

We will also consider the following three subspaces of Hdisc(H):

H+
disc(H) := Span

{
u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) < 0

}cl
,(2.5)

H0
disc(H) := Span

{
u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) = 0

}cl
,(2.6)

H−
disc(H) := Span

{
u ∈ Ran (Πλ(H)) , λ ∈ σdisc(H), Im(λ) > 0

}cl
.(2.7)

Observe that H+
disc(H) is the closure of the vector space spanned by all general-

ized eigenvectors corresponding to eigenvalues with negative imaginary part, and
likewise for H−

disc(H). The reason for these conventions will be understood later
(see Theorem 3.7). Clearly, if σdisc(H) is finite, we have the following direct sum
decomposition:

Hdisc(H) = H−
disc(H) ⊕ H0

disc(H) ⊕ H+
disc(H).

The corresponding spectral projections Π♯
disc(H), where ♯ stands for +, − or 0, are

defined as in (2.4).

2.2.2. Eigenspaces corresponding to embedded eigenvalues

Suppose now that λ is an eigenvalue of H embedded in its essential spectrum.
The Riesz projection corresponding to λ is then ill-defined, but, under some further
conditions, one can define the spectral projection Πλ(H) as follows.

In the following (see Hypothesis 3.4 below), we will suppose the existence of a
conjugation operator J ∈ B(H) satisfying
(2.8) JD(H0) ⊂ D(H0) and ∀ u ∈ D(H0), JHu = H∗Ju.

In particular, J establishes a one-to-one correspondence between Ker((H − λ)k) and
Ker((H∗ − λ̄)k) for all k ∈ N and hence

mλ(H) = mλ̄(H∗).
To shorten notation, let mλ = mλ(H) = mλ̄(H∗). In order to study the absolutely
continuous spectral subspace of H (see (2.13)–(2.14)), we will suppose that for each
embedded eigenvalue λ ∈ σess(H), mλ is finite and the symmetric bilinear form
(2.9) Ker((H − λ)m

λ ) × Ker((H − λ)m
λ ) ∋ (u, v) 7→ ⟨Ju, v⟩H is non-degenerate.
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Spectral decomposition of some non-self-adjoint operators 1123

This implies that there exists a basis (φk)1⩽ k ⩽mλ
of Ker((H − λ)mλ) such that

⟨Jφi, φj⟩H = δij, 1 ⩽ i, j ⩽ mλ.

We can then define the spectral projection Πλ(H) onto the generalized eigenspace
corresponding to λ as

(2.10) Πλ(H)u =
mλ∑
k=1

⟨Jφk , u⟩H φk, u ∈ H.

It is not difficult to observe that Πλ(H) is a projection commuting with H, such that
Πλ(H) ∈ B(H) and Πλ(H)∗ = Πλ(H∗) (see Proposition 2.1 below for a more precise
statement). Note however that if (2.9) does not hold, it is not clear how to define
such a projection. In fact, in the simplest case where mλ = 1, one easily verifies that
the condition ⟨Jφ, φ⟩ ≠ 0 for any φ ∈ Ker(H − λ) \ {0} is necessary to have the
existence of a projection onto Ker(H − λ) commuting with H.

The closure of the vector space spanned by all generalized eigenstates corresponding
to embedded eigenvalues of H will be denoted by

Hemb(H) := Span {u ∈ Ran(Πλ(H)), λ ∈ σemb(H)}cl .

If σemb(H) is composed of finitely many eigenvalues with finite algebraic multiplicities
and such that (2.9) holds, we will also use the notation

Πemb(H) :=
∑

λ ∈ σemb(H)
Πλ(H).

2.2.3. Point spectral subspace

With the definitions of the spectral projections Πλ(H) given in Sections 2.2.1
and 2.2.2, we have the following proposition, which covers both cases of isolated and
embedded eigenvalues.

Proposition 2.1. — Suppose that there exists a conjugation operator J such
that (2.8) holds. Let λ be an eigenvalue of H with finite algebraic multiplicity mλ.
If λ ∈ σess(H), suppose in addition that (2.9) holds. Then Πλ(H) ∈ B(H), Πλ(H) is
a projection which preserves D(H) and commutes with H. Its range and adjoint are
given respectively by

Ran(Πλ(H)) = Ker((H − λ)mλ), Πλ(H)∗ = Πλ(H∗).
We have

(HΠλ(H))∗ = H∗Πλ(H∗),
and if λ, λ′ are two distinct eigenvalues of H satisfying the assumptions above, then

Πλ(H)Πλ′(H) = 0.
In the case of isolated eigenvalues, Proposition 2.1 follows from the definition (2.3)

of the Riesz projection Πλ(H) (see e.g. [RS75, Theorem XII.5]). In the general case,
it suffices to observe that the restriction of H to Hp(H) has a discrete spectrum
(since Hp(H) is finite dimensional) and that the Riesz projections associated to its
eigenvalues are given by the restrictions of (2.3) or (2.10) to Hp(H). For embedded
eigenvalue, we prove Proposition 2.1 in Appendix A.
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We will assume below that H only has a finite number of eigenvalues with finite
algebraic multiplicities. Under this simplifying assumption, we set

Πp(H) :=
∑

λ ∈ σp(H)
Πλ(H),

and observe that
Πp(H)∗ =

∑
λ ∈ σp(H)

Πλ(H∗) =: Πp(H∗).

The point spectral subspace of H is then defined by
Hp(H) := Ran(Πp(H)),

and likewise for H∗. It satisfies
Hp(H) = Hdisc(H) ⊕ Hemb(H).

We also observe that under our assumptions, the point spectral subspace corre-
sponding to eigenvalues with positive/negative imaginary parts identifies to the
corresponding discrete spectral subspace:

H+
p (H) := Span

{
u ∈ Ran (Πλ(H)) , λ ∈ σp(H), Im(λ) < 0

}cl
= H+

disc(H),(2.11)

H−
p (H) := Span

{
u ∈ Ran (Πλ(H)) , λ ∈ σp(H), Im(λ) > 0

}cl
= H−

disc(H).(2.12)

2.2.4. Subspaces of asymptotically disappearing states

We define the subspaces of asymptotically disappearing states as

H±
ads(H) :=

{
u ∈ H, lim

t → ±∞

∥∥∥e−itHu
∥∥∥

H
= 0

}cl
.

Note that H+
ads(H) and H−

ads(H) are closed. Using that for a generalized eigenvector
φ ∈ H±

p (H), the norm ∥e−itHφ∥H decays exponentially as t → ±∞, it is not difficult
to verify that

H±
p (H) ⊂ H±

ads(H),
(see Proposition 5.6). In Theorem 3.7 below, we will give conditions under which
this inclusion becomes an equality.

2.2.5. Absolutely continuous spectral subspace

Let

(2.13) M(H) :=
{
u ∈ H, ∃ cu > 0,∀ v ∈ H,

∫
R

∣∣∣〈e−itHu, v
〉

H

∣∣∣2 dt ⩽ cu ∥v∥2
H

}
.

We define the absolutely continuous spectral subspace of H, Hac(H), as the closure
of M(H) in H,
(2.14) Hac(H) := M(H)cl.

Note that if H is self-adjoint, then Hac(H) coincides with the usual absolutely
continuous spectral subspace of H (see [Dav80b, Theorem 6.24]).
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Such a definition of an absolutely continuous spectral subspace for non-self-adjoint
operators goes back to [Dav78], where dissipative operators, Im(V ) ⩽ 0, are consid-
ered, and the integral in (2.13) is taken over [0,∞) instead of R. For self-adjoint
operators, our definition and that of [Dav78] coincide; this is however not the case
for non-self-adjoint operators. See Section 3.4 for a discussion comparing our results
and those of [Dav78, Dav80a] for the absolutely continuous spectral subspace of
dissipative operators. Note also that other definitions of an absolutely continuous
spectral subspace for non-dissipative perturbations of a self-adjoint operator have
been considered in the literature, using the theory of dilations. See [KN09, Nab76]
and references therein.

Our definition of Hac(H) is motivated by the following fact: it is not difficult to
see that if v is a generalized eigenvector of H∗, then t 7→ ⟨e−itHu, v⟩H cannot belong
to L2(R) unless ⟨u, v⟩ = 0 (see Section 5.5). In other words

Hac(H) ⊂ Hp(H∗)⊥.

Theorem 3.8 will show that, under suitable assumptions, Hac(H) = Hp(H∗)⊥. This
generalizes the equality Hac(H) = Hp(H)⊥ which holds for self-adjoint operators
without singular continuous spectrum.

2.3. Extension of the Hilbert space

In this section, we construct an extension of the Hilbert space H containing
the “outgoing and incoming resonant states” that will be introduced below (see
Definition 2.3). To this end we consider a Gelfand triple defined in terms of the
metric operator C appearing in the definition (2.1)–(2.2) of H.

2.3.1. Gelfand triple

Recall that C is supposed to be relatively compact with respect to H0. Let
HC := Ran(C).

Since C is self-adjoint and injective, its inverse C−1 is a self-adjoint unbounded
operator with dense domain D(C−1) := HC . We equip HC with the scalar product

⟨u, v⟩HC
:=
〈
C−1u,C−1v

〉
H
, u, v ∈ HC .

It is not difficult to verify that the identity operator from HC to H is a continuous
embedding, HC ↪→ H.

Let H′
C be the anti-dual of HC (the set of anti-linear continuous maps from

(HC , ∥ · ∥H) to C). Setting
⟨u, v⟩C := ⟨Cu,Cv⟩H , u, v ∈ H,

one verifies that H′
C identifies with the completion of H for the norm ∥.∥C associated

to ⟨·, ·⟩C . Thus we obtain the Gelfand triple
HC ↪→ H ↪→ H′

C .
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Now, given A ∈ B(HC) a bounded operator in HC , the anti-dual of A, denoted by
A′ ∈ B(H′

C), is defined by
(2.15) ⟨u,A′Ψ⟩HC ,H′

C
:= ⟨A∗u,Ψ⟩HC ,H′

C
, Ψ ∈ H′

C , u ∈ HC .

Since the restriction of C to HC belongs to B(HC), we can consider its anti-dual
defined by (2.15); we still use the symbol C ′ to denote the anti-dual of C|HC

. It is
not difficult to show that, for all Ψ ∈ H′

C , C ′Ψ extends to an anti-linear continuous
form on H which identifies to an element of H via the (anti-linear version of) the
Riesz representation theorem. The map C ′ : H′

C → H then extends to a bounded
operator C ′ ∈ B(H′

C ,H) satisfying
∥C ′∥B(H′

C ,H) ⩽ 1.

Moreover, C ′ is an extension of C and for all Ψ ∈ H′
C , there exists a sequence

(vn)n ∈N ⊂ H such that ∥∥∥C ′Ψ − Cvn

∥∥∥
H

→ 0, n → ∞.

Note that the anti-dual of C−1 ∈ B(HC ,H), denoted by (C−1)′ ∈ B(H,H′
C), satisfies

C ′−1 = (C−1)′. Note also that H′
C is equipped with the scalar product

⟨Ψ ,Φ⟩HC′ := ⟨C ′Ψ , C ′Φ⟩H , Ψ,Φ ∈ H′
C ,

which is an extension of ⟨· , ·⟩C to H′
C .

2.3.2. Extension of H

Our next concern is to define the anti-dual of the operator
H = H0 + V = H0 + CWC.

First, we observe that since V = CWC belongs to B(H′
C ,HC), its anti-dual V ′ ∈

B(H′
C ,HC) is well-defined and given by

V ′ = CWC ′.

Now, in order for the anti-dual of the unbounded operator H0 to be well-defined, we
will assume (see Hypothesis 3.5 below) that

D(H0|HC
) := {u ∈ D(H0) ∩ HC , H0u ∈ HC}

is dense in HC for the topology of HC . The anti-dual H ′
0 of H0 is then defined by

D(H ′
0) :=

{
Ψ ∈ H′

C ,∃ α > 0,∀ u ∈ D (H0|HC
) ,
∣∣∣⟨H0u,Ψ⟩HC ,H′

C

∣∣∣ ⩽ α ∥u∥HC

}
,

and
⟨u,H ′

0Ψ⟩HC ,H′
C

:= ⟨H0u,Ψ⟩HC ,H′
C
, Ψ ∈ D(H ′

0), u ∈ D(H0|HC
).

In the same way, we can define
D(H|HC

):= {u ∈ D(H0) ∩ HC , Hu ∈ HC} ,
⟨u,H ′Ψ⟩HC ,H′

C
:=⟨H∗u,Ψ⟩HC ,H′

C
, Ψ ∈ D(H ′), u ∈ D(H|HC

).
Then it is not difficult to see that D(H0|HC

) = D(H|HC
), D(H ′

0) = D(H ′), and
H ′ = H ′

0 + V ′ = H ′
0 + CWC ′.
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Clearly, H ′ is an extension of H since for all u ∈ D(H0), we have
∀ v ∈ D(H0|HC

), |⟨u,H0v⟩H| ⩽ ∥H0u∥H ∥C∥H ∥v∥HC
,

which implies that u ∈ D(H ′
0) and that H ′u = Hu, using the anti-linear version of

the Riesz representation theorem.

2.3.3. The resolvent of H0

One of our main hypotheses (see Hypothesis 3.1) will imply that the limits
(2.16) CR0(λ± i0+)C := lim

ε → 0+
CR0(λ± iε)C

exist for a.e. λ ∈ σess(H0), for the topology of B(H). In other words, the family of
operators (R0(λ± iε))ε>0 converges in B(HC ,H′

C) as ε → 0+ and its limit is denoted
by

R0
(
λ± i0+

)
∈ B(HC ,H′

C).

2.4. Regular spectral points and spectral singularities

In this section we define the notions of regular spectral points and spectral singu-
larities that we consider in this paper.

Definition 2.2 (Regular spectral point and spectral singularity). — Let λ ∈
σess(H).

(i) We say that λ is an outgoing/incoming regular spectral point of H if λ is not
an accumulation point of eigenvalues located in λ± i(0,∞) and if the limit

(2.17) CRH(λ± i0+)CW := lim
ε → 0+

CRH(λ± iε)CW

exists in the norm topology of B(H). If λ is not an outgoing/incoming regular
spectral point, we say that λ is an outgoing/incoming spectral singularity of
H.

(ii) We say that λ is a regular spectral point of H if it is both an incoming and
an outgoing regular spectral point of H. If λ is not a regular spectral point,
we say that λ is a spectral singularity of H.

Our definition of a spectral singularity is related to that of [Sch60] and to the notion
of spectral projections for non-self-adjoint operators [Dun58], which will also be an
important tool in our paper. See (3.17) for the definition of the spectral projection
1I(H) corresponding to a spectral interval I ⊂ σess(H) without spectral singularities.
In [Sch60], a spectral singularity corresponds to an exceptional point λ0 outside
of which the “spectral resolution” I 7→ 1I(H) is countably additive and uniformly
bounded. In our context, this is a weaker requirement than that of Definition 2.2,
see Section 5.1.

Definition 2.2 generalizes the definition of spectral singularities considered in the
context of dissipative operators in [Fau21, FF18, FN19]. As we explain below (see
Section 3.3), for Schrödinger operators, H = −∆+V (x) on L2(Rd) with V a complex,
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decaying potential, spectral singularities correspond to real resonances. Clearly, in
our abstract setting, Definition 2.2 depends on the choice of the decomposition V =
CWC. For Schrödinger operators, however, C is usually chosen as a multiplication
operator C = ⟨x⟩−σ/2 for σ larger than some critical exponent σ0 > 0. It is then
natural to consider the intersection over all σ > σ0 to define a resonance. See
Section 3.3 for more details.

Various characterizations of the notions introduced in Definition 2.2 will be given
in Section 4. Note in particular that, under the assumption that the limits (2.16)
exist, the operator W could have been put to the left of CRH(λ± i0+)C in (2.17),
i.e. the limits in (2.17) exist if and only if the limits WCRH(λ± iε)C, ε → 0+ exist.
Moreover, under the same assumption, we will show that λ is an outgoing/incoming
regular spectral point of H if and only if Id + R0(λ± i0+)V ′ is invertible in B(H′

C).
(Here it should be recalled that V ′ ∈ B(H′

C ,HC) and, assuming that the limits (2.16)
exist, that R0(λ ± i0+) ∈ B(HC ,H′

C). Hence spectral singularities are naturally
associated to resonant states defined as follows.

Definition 2.3 (Incoming/outgoing resonant states). — Let λ ∈ σess(H) be
a spectral singularity of H. The space H′+

C (λ) ⊂ H′
C of outgoing resonant states

corresponding to λ is defined by

H′+
C (λ) := Ker

(
Id +R0(λ+ i0+)V ′

)
.

The space H′−
C (λ) ⊂ H′

C of incoming resonant states is defined by

H′−
C (λ) := Ker

(
Id +R0(λ− i0+)V ′

)
.

As kernels of bounded operators, the vector spaces H′±
C (λ) are closed. We will

prove that eigenvectors associated to embedded eigenvalues of H belong to H′±
C (λ).

Note that in the case of complex Schrödinger operators, H = −∆ + V (x) on
L2(Rd), λ is usually called an outgoing/incoming resonance if the quotient vector
space

Ker
((

Id +R0(λ± i0+)V ′
)

|H′
C

)
/Ker

((
Id +R0(λ± i0+)V ′

)
|H
)

̸= {0},

where (Id +R0(λ± i0+)V ′)|H′
C

stands for the restriction of (Id +R0(λ± i0+)V ′) to
H′

C , and likewise for (Id +R0(λ± i0+)V ′)|H. An outgoing/incoming resonant state
then corresponds to an element of Ker((Id +R0(λ ± i0+)V ′)|H′

C
) which does not

belong to H. See Section 3.3 for more details.

3. Assumptions and main results

3.1. Hypotheses

In this section we detail our main abstract hypotheses. In Section 3.3 we will show
that they are satisfied in the case of complex Schrödinger operators, under suitable
assumptions on the potential.

In our first hypothesis, we require that H0 satisfies a limiting absorption principle
(with weight C) at any point of the essential spectrum.
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Hypothesis 3.1 (Limiting absorption principle for H0). — We have

(3.1) sup
z ∈C±

∥∥∥CR0(z)C
∥∥∥

B(H)
< ∞.

Note that (3.1) implies (see e.g. [CFKS87, Proposition 4.1]) that the spectrum ofH0
is purely absolutely continuous, i.e. that σpp(H0) = ∅, σac(H0) = σ(H0), σsc(H0) = ∅,
where σpp(H0), σac(H0), σsc(H0) stand for the usual pure point, absolutely continuous
and singular continuous spectra of the self-adjoint operator H0.

By Fatou’s Theorem, (3.1) yields that the limits CR0(λ± i0+)C exist for almost
every λ ∈ σess(H), in the norm topology of B(H), and that the map R ∋ λ 7→
CR0(λ ± i0+)C ∈ B(H) is bounded (observe that CR0(λ ± i0+)C = CR0(λ)C if
λ ∈ R \ σess(H)).

Note also that Hypothesis 3.1 implies (see [Kat65] or [RS75, Theorem XIII.25 and
its corollary]) that C is relatively smooth with respect to H0 in the sense of Kato,
i.e. that there exists a constant c0 such that

(3.2) ∀ u ∈ H,
∫
R

∥∥∥Ce−itH0u
∥∥∥2

H
dt ⩽ c2

0 ∥u∥2
H .

Recall that (3.2) is equivalent to

(3.3) ∀ u ∈ H,∫
R

(∥∥∥CR0
(
λ− i0+

)
u
∥∥∥2

H
+
∥∥∥CR0

(
λ+ i0+

)
u
∥∥∥2

H

)
dλ ⩽ 2πc2

0 ∥u∥2
H ,

where λ 7→ CR0(λ ± i0+)u denotes the limit of λ 7→ CR0(λ ± iε)u in L2(R; H) as
ε → 0+ (see [Kat65]).

Next we will assume that the point spectral subspace of H is finite.
Hypothesis 3.2 (Eigenvalues of H). — H has only a finite number of eigenvalues

and each eigenvalue has a finite algebraic multiplicity.
Hypothesis 3.2 prevents the essential spectrum of H from having an accumula-

tion point of eigenvalues. It does not exclude, however, the presence of eigenvalues
embedded in the essential spectrum of H.

Our next hypothesis concerns the spectral singularities of H. We will assume that
H has finitely many spectral singularities with a “finite order”, in the sense that the
map z 7→ CRH(z)CW blows up at most polynomially as z approaches any spectral
singularity λ ∈ σess(H). We will also allow for singularities “at infinity”, in the sense
that z 7→ CRH(z)C may blow up polynomially as z tends to ∞ (z close to the real
axis).

Hypothesis 3.3 (Spectral singularities for H). — H only has a finite number
of spectral singularities {λ1, . . . λn} ⊂ σess(H) and there exist ε0 > 0 and integers
ν1, . . . , νn, ν∞ ⩾ 0 such that

(3.4) sup
Re(z) ∈ σess(H), ± Im(z) ∈ (0,ε0)

1
|z − z0|ν∞

 n∏
j=1

|z − λj|νj

|z − z0|νj

∥∥∥CRH(z)CW
∥∥∥

B(H)

< ∞,

where z0 is an arbitrary complex number such that z0 ∈ ρ(H), z0 ∈ C \ R.
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The factors |z − λj|νj “regularize” the singularities of z 7→ CRH(z)CW as z
approaches λj. Dividing them by |z − z0|νj produces bounded terms. The factor
|z − z0|−ν∞ regularizes a possible singularity at ∞.

Observe that since λ1, . . . , λn are the only spectral singularities of H, for all
λ ∈ σess(H) \ {λ1, . . . , λn}, the limits CRH(λ± i0+)CW exist in the norm topology
of B(H). The condition (3.4) then implies that the maps

(3.5) σess(H) \ {λ1, . . . , λn} ∋ λ

7→ 1
|λ− z0|ν∞

 n∏
j=1

|λ− λj|νj

|λ− z0|νj

CRH

(
λ± i0+

)
CW ∈ B(H)

are bounded. Since, as we will show below (see Proposition 4.6), embedded eigenval-
ues are special spectral singularities, Hypothesis 3.3 is also a condition on embedded
eigenvalues.

As mentioned above, to study the absolutely continuous spectral subspace of H, we
require the existence of a conjugation operator J satisfying, in particular, JH = H∗J .

Hypothesis 3.4 (Conjugation operator). — There exists an anti-linear continu-
ous map J : H → H such that

(i) JD(H0) ⊂ D(H0) and ∀ u ∈ D(H0), JH0u = H0Ju.
(ii) JC = CJ and JW = W ∗J .

Moreover, for all embedded eigenvalues λ ∈ σess(H), the symmetric bilinear form
(3.6) Ker((H − λ)m

λ ) × Ker((H − λ)m
λ ) ∋ (u, v) 7→ ⟨Ju, v⟩ is non-degenerate.

Here it should be recalled (see Section 2.2) that the main purpose of (3.6) is to
allow us to define suitable spectral projections for embedded eigenvalues.

Our last technical hypothesis is required in order for the anti-dual operators H ′
0,

H ′ to be well-defined, see Section 2.3 for more details.

Hypothesis 3.5. — The domain of the restriction of H0 to HC , defined as
D(H0|HC

) := {u ∈ D(H0) ∩ HC , H0u ∈ HC} ,
is dense in HC for the topology of HC .

3.2. Main results

Now we can state our main results. First, we characterize the outgoing (respectively
incoming) spectral singularities of H as eigenvalues of H ′ associated to eigenvectors
belonging to the space of outgoing resonant states H′+

C (λ) (respectively H′−
C (λ)).

Theorem 3.6. — Suppose that Hypothesis 3.5 holds. Let λ ∈ σess(H) and sup-
pose that the limits

CR0(λ± i0+)C := lim
ε → 0+

CR0(λ± iε)C

exist in the norm topology of B(H). The following conditions are equivalent:
(i) λ is an outgoing/incoming spectral singularity of H,
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(ii) λ is an eigenvalue of H ′ associated to an eigenvector Ψ ∈ H′±
C (λ).

Theorem 3.6 shows that λ is a spectral singularity of H if and only if the equation
H ′Ψ = λΨ has a solution Ψ in H′±

C (λ) (recall that H ′ is an extension of H, acting
in the Hilbert space H′

C which contains the original Hilbert space H). For non-
self-adjoint Schrödinger operators, this corresponds to λ being a real resonance of
H = −∆+V (x) if and only if the equation (−∆+V (x))Ψ = λΨ has a distributional
solution such that Ψ belongs to suitable weighted L2-spaces. See Section 3.3 for a
more detailed discussion.

Theorem 3.6 also has various consequences that we will detail in Section 4. Here
we mention the following two consequences. We will show that the eigenvalues of H
embedded in the essential spectrum are special spectral singularities, see Proposi-
tion 4.6. Moreover, in the particular case where H is dissipative, we will prove that
H cannot have outgoing spectral singularities unless its self-adjoint part, Re(H),
already has some, see Section 4.6.

Our next result shows that the subspace H±
ads(H) of asymptotically disappearing

states at ±∞ (recall that H±
ads(H) has been defined in Section 2.2) coincides with the

vector space spanned by all generalized eigenstates of H corresponding to eigenvalues
λ of H such that ± Im(λ) < 0. In other words, the only solutions to (1.1) that vanish
as t → ±∞ are linear combination of generalized eigenstates corresponding to
non-real eigenvalues.

Theorem 3.7. — Suppose that Hypotheses 3.1-3.3 hold. Then
(3.7) H±

ads(H) = H±
p (H).

An analogous result was proven in [FF18] in the particular case of dissipative
operators, answering a question left as an open problem in [Dav80a]. The proof
in [FF18] relies in an essential way on the existence and properties of wave operators.
Besides the fact that we are considering non-dissipative operators, our proof here
is more direct – we do not use scattering theory – and allows for more general
assumptions (compare [FF18, Hypothesis 2.5] and Hypothesis 3.3 of the present
paper, where a singularity at infinity of the weighted resolvent is allowed). The core
of our argument is a suitable spectral decomposition formula, see Proposition 3.15
in the next subsection.

Next we will prove that the absolutely continuous spectral subspace of H defined in
Section 2.2 coincides with the orthogonal complement of the point spectral subspace.

Theorem 3.8. — Suppose that Hypotheses 3.1-3.3 holds. If H has embedded
eigenvalues, suppose in addition that Hypothesis 3.4 holds. Then

Hac(H) = Ran (Id − Πp(H)) = Hp(H∗)⊥.

As mentioned before, in the particular case where H is dissipative, Theorem 3.8
may be compared with a result of [Dav80a]. The absolutely continuous spectral
subspace for dissipative operators is defined in [Dav80a] in the same way as in (2.13),
but with the integral taken over [0,∞) instead of R. Using the theory of dilations of
dissipative operators, it is then proven in [Dav80a] that within such a definition, the
absolutely continuous spectral subspace coincides with the orthogonal complement
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of “bound states” (generalized eigenstates corresponding to real eigenvalues). In our
context where H is not necessarily dissipative, the argument of [Dav80a] fails and
there is no reason to choose positive times over negative times to define Hac(H).

Our definition of Hac(H) is also justified by the following two facts. First, The-
orem 3.8 generalizes the well-known identity Hac(H) = Hp(H)⊥ which holds for
self-adjoint operators without singular continuous spectrum. Another justification
comes from dissipative scattering theory. Indeed, combined with the results of [Dav78,
Dav80a, FF18, Mar75], Theorem 3.8 implies that, in the particular case where H
is dissipative, we have Ran(W−(H,H0))cl = Hac(H), where W−(H,H0) := s-lim
e−itHeitH0 , t → ∞, is the usual wave operator. This again generalizes the well-known
relation which holds in the self-adjoint case.

We mention that if H has no embedded eigenvalues, Hypothesis 3.4 can be dropped
in the statement of Theorem 3.8. This is also the case if H is supposed to be
dissipative (see Proposition 5.10). In the general case, it is however clear that some
assumption should be added to treat the pathological case where the map in (3.6) is
degenerate. Indeed, considering the simplest case where mλ = 1, if ⟨Jφ, φ⟩ = 0 for
any φ ∈ Ker(H − λ), then one can check that Ker(H − λ) ⊂ Hp(H∗)⊥. Therefore,
since Hac(H) should not contain eigenstates of H, we do not expect that the equality
Hac(H) = Hp(H∗)⊥ holds. Another possibility to handle such pathological cases
might be to suitably modify the definition of Hac(H). We do not consider this
possibility here.

To prove Theorem 3.8, we cannot rely on the theory of unitary dilations as in the
dissipative case studied in [Dav80a]. In the same way as for Theorem 3.7, our proof of
Theorem 3.8 relies on the spectral decomposition formula stated in Proposition 3.15.

The next remark gives the J-orthogonal spectral decomposition of the Hilbert
space mentioned in the introduction.

Remark 3.9. — Combining Theorems 3.7 and 3.8, using in addition that J :
Hp(H) → Hp(H∗) is bijective and that the bilinear form Hp(H)×Hp(H) ∋ (u, v) 7→
⟨Ju, v⟩ is non-degenerate, we obtain the following J-orthogonal direct sum decom-
positions of the Hilbert space:

H = Hac(H) ⊕ Hp(H)
= Hac(H) ⊕ Hdisc(H) ⊕ Hemb(H)
= Hac(H) ⊕ H+

ads(H) ⊕ H−
ads(H) ⊕ H0

disc(H) ⊕ Hemb(H),

the direct sum H0
disc(H) ⊕ Hemb(H) =: Hb(H) being the space of “bound states”,

i.e. the closure of the vector space spanned by all generalized eigenvectors of H
corresponding to real eigenvalues (either isolated or embedded).

3.3. Application to Schrödinger operators

We suppose in this section that

H = L2(Rd), H0 = −∆ and V is a complex-valued potential.
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For simplicity, we suppose that d = 3. (The following arguments easily generalize to
any dimension d ⩾ 3 with d odd. In dimension d = 1 or if d is even the situation is
more subtle, due to the singularity of the weighted resolvent of −∆ at 0).

3.3.1. Spectral singularities for short-range complex potentials

We begin with showing that Theorem 3.6 can be applied to H = −∆ + V (x),
under a short-range condition on V . It is well-known that the limits
(3.8) ⟨x⟩−sR0(λ± i0+)⟨x⟩−s, λ > 0,
exist in the norm topology of B(H), for any s > 1

2 , where ⟨x⟩ := (1 + x2) 1
2 . Hence,

assuming that V satisfies the short-range condition
(3.9) x 7→ ⟨x⟩σV (x) ∈ L∞(R3),
with σ > 1, we can choose C to be the multiplication operator by ⟨x⟩−σ/2. The
Hilbert space HC then identifies with the weighted L2-space

HC = L2
σ/2 :=

{
f : R3 → C, x 7→ ⟨x⟩

σ
2 f(x) ∈ L2(R3)

}
,

equipped with the usual norm, its dual being given by
H′

C = L2
−σ/2 =

{
f : R3 → C, x 7→ ⟨x⟩− σ

2 f(x) ∈ L2(R3)
}
.

Since the set of smooth functions with compact supports is contained in D(H0)∩HC ,
one easily deduces that Hypothesis 3.5 is satisfied. Applying Theorem 3.6, we thus
obtain the following proposition.

Proposition 3.10. — Suppose that V is a complex-valued potential satisfy-
ing (3.9) with σ > 1. Let C(x) = ⟨x⟩−σ/2. Then for all λ > 0, the following conditions
are equivalent

(i) λ is an outgoing/incoming spectral singularity of H in the sense of Defini-
tion 2.2,

(ii) There exists Ψ ∈ H′±
C (λ) ⊂ L2

−σ/2, Ψ ̸= 0, such that
(3.10) (−∆ + V (x) − λ)Ψ = 0.

If Ψ in (ii) belongs to L2(R3), then λ is an eigenvalue of H. Otherwise, λ is usually
called a real resonance associated to a resonant state Ψ ∈ H′±

C (λ) \ L2(R3). Such a
resonant state satisfies the outgoing/incoming Sommerfeld radiation condition

u(x) = |x|
1
2 e±iλ

1
2 |x|

(
a

(
x

|x|

)
+ o(1)

)
, |x| → ∞,

with a ∈ L2(S2), a ̸= 0. By Proposition 3.10, one can choose any σ > 1. A resonant
state is thus a distributional solution to (3.10) belonging to ∩σ>1L

2
−σ/2.

Note that if V is real-valued, Agmon’s fundamental work [Agm75] shows that H =
−∆ +V has no spectral singularities in (0,∞). Likewise, if H is dissipative, a simple
argument combined with [Agm75] proves that H cannot have outgoing spectral
singularities in (0,∞) (see [Wan12]). In general, however, spectral singularities cannot
be excluded (see again [Wan12] for an example showing that, for any λ > 0, there
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exists a smooth, compactly supported potential V such that λ is an incoming spectral
singularity of H in the dissipative case).

At the threshold energy 0, the limiting absorption principle states that the limits
⟨x⟩−sR0

(
±i0+

)
⟨x⟩−s,

exist in the norm topology of B(H) for any s ⩾ 1. Note that, as we will argue in
Section 4, the two limits above in fact coincide with the limit

⟨x⟩−sR0(0)⟨x⟩−s := lim
z → 0, z ∈C\R+

⟨x⟩−sR0(z)⟨x⟩−s.

(Note also that the limit ⟨x⟩−sR0(0)⟨x⟩−s′ exists, more generally, provided that
s, s′ > 1/2 and s + s′ > 2, see [JK79].) Assuming now that V satisfies the short-
range condition (3.9) with σ ⩾ 2, we can choose C to be the multiplication operator
by ⟨x⟩−σ/2 and proceed as before. Since, as we will see in Section 4, 0 is an outgoing
spectral singularity of H if and only if it is an incoming spectral singularity of H,
this gives the following proposition.

Proposition 3.11. — Suppose that V is a complex-valued potential satisfy-
ing (3.9) with σ ⩾ 2. Let C(x) = ⟨x⟩−σ/2. Then the following conditions are equiva-
lent

(i) 0 is a spectral singularity of H in the sense of Definition 2.2,
(ii) There exists Ψ ∈ H′±

C (λ) ⊂ L2
−σ/2 such that

(−∆ + V (x))Ψ = 0.
Anticipating results that we will prove in the abstract setting in the case where

H is dissipative (see Section 4.6), we also have the following proposition.
Proposition 3.12. — Suppose that V is a complex-valued potential such that

Im(V ) ⩽ 0 and Im(V ) < 0 on a non-trivial open set. Suppose that (3.9) holds with
σ > 1 and let C(x) = ⟨x⟩−σ/2. Then

H has no positive outgoing spectral singularities.
In particular, H has no positive embedded eigenvalues. Suppose that (3.9) holds
with σ > 2. Then

0 is not a spectral singularity of H.

See Section 4.6 for a proof of Proposition 3.12. Note also that the results of
Proposition 3.12 have been established in [Wan11, Wan12], using different arguments.

3.3.2. Spectral decomposition for compactly supported complex potentials

We now show that Theorems 3.7 and 3.8 can be applied to H = −∆ +V (x) under
the condition that
(3.11) V ∈ L∞

c (R3) :=
{
u ∈ L∞(R3), u is compactly supported

}
.

Similarly as in (3.8), we have
sup

z ∈C±

∥∥∥⟨x⟩−sR0(z)⟨x⟩−s
∥∥∥

B(H)
< ∞,
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for any s > 1. Hence, choosing C(x) = ⟨x⟩−s, Hypothesis 3.1 is satisfied.
Assuming (3.11), it is known that H has only finitely many eigenvalues with

finite algebraic multiplicities. See, e.g., [FLS16] and references therein. In particular,
Hypothesis 3.2 is satisfied.

To verify that Hypothesis 3.3 holds, we can rely on the theory of resonances, defined
as poles of the meromorphic extension of the weighted resolvent, see e.g. [DZ19].
Assuming (3.11), the map

{z ∈ C, Im(z) > 0} ∋ z 7→
(
H − z2

)−1
: L2(R3) → L2(R3)

is meromorphic and extends to a meromorphic map
(3.12) C ∋ z 7→ R(z2) : L2

c(R3) → L2
loc(R3),

where L2
c(R3) := {u ∈ L2(R3), u is compactly supported} and L2

loc(R3) := {u : R3 →
C, u ∈ L2(K) for all compact set K ⊂ R3}. Poles of the map in (3.12) are called
resonances of H. One then verifies that a real resonance ±λ0 of H, with λ0 ⩾ 0,
corresponds to an outgoing/incoming spectral singularity λ2

0 in the sense of Defini-
tion 2.2. Moreover, H has only finitely many spectral singularities {λ1, . . . , λn} and
Hypothesis 3.3 is satisfied, with νj the multiplicity of the corresponding resonances
±
√
λj, and ν∞ = 0. See e.g. [DZ19] and references therein for an exposition of the

theory of resonances of Schrödinger operators, and [FF18, Section 6] for a more
detailed comparison between the notions of resonances and spectral singularities
considered in this paper.

Applying Theorem 3.7, we obtain the following result.

Proposition 3.13. — Suppose that V is a complex-valued potential such that
V ∈ L∞

c (R3). Then
H±

ads(H) = H±
p (H).

To apply Theorem 3.8, we need to verify in addition that Hypothesis 3.4 holds.
Clearly, we can take the conjugation operator J as the complex conjugation. We
then obtain

Proposition 3.14. — Suppose that V is a complex-valued potential such that
V ∈ L∞

c (R3). Assume that, for all embedded eigenvalues λ ∈ [0,∞), the symmetric
bilinear form
(3.13) Ker

(
(H − λ)mλ

)
∋ (u, v) 7→

∫
R3
u(x)v(x)dx is non-degenerate.

Then
(3.14) Hac(H) = Hp(H∗)⊥.

In the case where H is dissipative, even if H has embedded eigenvalues, Propo-
sition 5.10 below shows that Condition (3.13) can be dropped. Moreover, under
some “form-subordinate smallness conditions”, it is possible to show that H has
no point spectrum (see [FKV18]; see also [CFK20] for similar results for Pauli and
Dirac Hamiltonians). If H does have embedded eigenvalues, as explained before,
(3.13) seems however necessary for (3.14) to hold. We mention that an assump-
tion comparable to (3.13) has been used, for threshold eigenvalues, in the recent

TOME 6 (2023)



1136 J. FAUPIN & N. FRANTZ

works [Aaf21, Wan20] to study the large-time behaviors of solutions to Schrödinger
equations with a complex potentials.

3.4. Organisation of the paper and ingredients of the proof

The proof of Theorem 3.6 (given in Section 4.2) relies, in particular, on a “bound-
ary value version” of the Birmann–Schwinger principle that we state and prove in
Section 4.1, see Proposition 4.1. This proposition extends a related result for dissi-
pative operators proven in [FN19, Lemma 4.1]. Further results concerning spectral
singularities are proven in Section 4.

As mentioned in the previous section, the main ingredient in the proofs of Theo-
rems 3.7 and 3.8 is a spectral decomposition formula suitably modified to take into
account the spectral singularities {λj}n

j=1 of H. It can be stated as follows. Assum-
ing Hypothesis 3.3, with ν1, . . . , νn, ν∞ defined by this hypothesis, we set, for all
z ∈ C \ {z0},

(3.15) r(z) := (z − z0)−(ν1+···+νn+ν∞)
n∏

j=1
(z − λj)νj ,

where we recall that z0 ∈ ρ(H), z0 ∈ C \ R. We then write

r(H) = RH(z0)ν1+···+νn+ν∞
n∏

j=1
(H − λj)νj ,

which defines a bounded operator in B(H). Note that if λj is an embedded eigenvalue
of H, then for any generalized eigenstate φj corresponding to λj, we have r(H)φj = 0
(provided that νj is large enough). We will prove the following proposition.

Proposition 3.15. — Suppose that Hypotheses 3.1, 3.2 and 3.3 hold. Then

(3.16) r(H) =

r(H)Πdisc(H) + w-limε → 0+
1

2πi

∫
σess(H)

r(λ)
(
RH(λ+ iε) − RH(λ− iε)

)
dλ.

Proposition 3.15 generalizes the well-known resolution of the identity formula for
self-adjoint operators to a class of non self-adjoint operators with finitely many
spectral singularities. In particular, if H has no spectral singularities and ν∞ = 0 in
Hypothesis 3.3, then we can take r = 1 and (3.16) reduces to

Id = Πdisc(H) + w-limε → 0+
1

2πi

∫
σess(H)

(
RH(λ+ iε) − RH(λ− iε)

)
dλ,

which corresponds to Stone’s formula in the particular case where H is self-adjoint.
Equation (3.16) is also related to the notion of spectral projections for non-self-

adjoint operators [DS71, Dun58, Sch60], defined by

(3.17) 1I(H) := w-limε → 0+
1

2iπ

∫
I

(
RH(λ+ iε) − RH(λ− iε)

)
dλ,

where I ⊂ σess(H) is a closed interval without spectral singularities. We mention
that such spectral projections were used in a stationary approach to non-unitary
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scattering theory, for differential operators in [Moc67, Moc68], and in an abstract
setting in [Gol70, Gol71, Hui71].

We will recall in Section 5 that the spectral projections (3.17) are well-defined on
intervals without spectral singularities, and show that they induce a bounded Borel
functional calculus. In intervals containing spectral singularities, we will construct a
“regularized” functional calculus, which in turn allows us to prove Proposition 3.15.
Based on the latter, the proofs of Theorems 3.7 and 3.8 are given in Sections 5.4
and 5.5, respectively.

Some extensions of results already appearing in the literature are collected in
appendices.

4. Spectral singularities

In this section we prove various characterizations of our definition of spectral
singularities (see Definition 2.2). We will consider an arbitrary λ ∈ σess(H). Our
main assumption will be that the limits
(4.1) CR0(λ± i0+)C := lim

ε → 0+
CR0(λ± iε)C.

exist in the norm topology of B(H).
We begin in Section 4.1 with a characterization of spectral singularities analogous

to the Birmann–Schwinger principle for eigenvalues. Next we prove Theorem 3.6 in
Section 4.2. In Section 4.3, we define the set of spectral singularities for the adjoint
operator H∗ and show that it coincides with the set of spectral singularities of H.
Section 4.4 proves that eigenvalues embedded in the essential spectrum of H can be
seen as particular spectral singularities. In Section 4.5, assuming that (4.1) is regular
with respect to λ in a suitable sense, we show that the notion of spectral regularity
introduced in Definition 2.2 is a local property. We also consider the special case of
spectral singularities located at “endpoints” of the essential spectrum, and show that
in this case outgoing and incoming spectral singularities coincide. Finally, Section 4.6
is devoted to the particular case where H is a dissipative operator.

4.1. Birmann–Schwinger principle for spectral singularities

Assuming that H0 satisfies a limiting absorption principle at λ, as stated in (4.1),
we have the following characterizations of the definition of a regular spectral point.
Item (ii) can be seen as a “boundary value” version of the Birmann–Schwinger princi-
ple (see e.g. [BtEG20, GLMZ05, HK22] and references therein). The proof of the next
proposition is a quite straightforward extension to that of [FN19, Lemma 4.1], where
the result is proven for dissipative operators. It is therefore deferred to Appendix B.

Proposition 4.1. — Let λ ∈ σess(H) and suppose that the limits (4.1) exist in
the norm topology of B(H). Then the following conditions are equivalent:

(i) λ is an outgoing/incoming regular spectral point of H,
(ii) Id +CR0(λ± i0+)CW is invertible in B(H),

TOME 6 (2023)



1138 J. FAUPIN & N. FRANTZ

(iii) Id + R0(λ± i0+)V ′ is invertible B(H′
C).

Proof. — See Appendix B. □

It should be noted that, since C is relatively compact with respect to H0, the
operator CR0(λ±iε)CW is compact in B(H), for all ε > 0. Hence CR0(λ±i0+)CW
is also compact in B(H). By the Fredholm alternative, (ii) is then equivalent to
Ker(Id +CR0(λ± i0+)CW ) = {0}. Likewise, (iii) is equivalent to Ker(Id + R0(λ±
i0+)V ′) = {0} since R0(λ± i0+)V ′ is compact in B(H′

C).

4.2. Proof of Theorem 3.6

Now we turn to the proof of Theorem 3.6, which characterizes outgoing/incoming
spectral singularities as eigenvalues of the extended operator H ′ corresponding to
eigenvectors belonging to the space H±

C(λ) of outgoing/incoming resonant states.
Before proving Theorem 3.6, we need two preliminary lemmas. The first one is the

following well-known estimate of the operator norm ∥R0(λ± iε)C∥, assuming that
the limits (4.1) exist.

Lemma 4.2. — Let λ ∈ σess(H) and suppose that the limits (4.1) exist in the
norm topology of B(H). There exists c0 > 0 such that

(4.2) ∀ ε > 0, ∥R0 (λ± iε)C∥B(H) ⩽ c0ε
− 1

2 .

Proof. — See Appendix B. □

Next we show that, under our assumptions, R0(λ±i0+) are right inverses of H ′
0 −λ.

Lemma 4.3. — Suppose that Hypothesis 3.5 holds. Let λ ∈ σess(H) and suppose
that the limits (4.1) exist in the norm topology of B(H). Then for all v ∈ HC ,
R0(λ± i0+)v ∈ D(H ′

0) and

(4.3) (H ′
0 − λ)R0

(
λ± i0+

)
v = v.

Proof. — Let v = Cφ ∈ HC . Since R0(λ ± iε) converges to R0(λ ± i0+) in
B(HC ,H′

C), we have, for all u ∈ D(H0|HC
),〈

(H0 − λ)u,R0
(
λ± i0+

)
v
〉

HC ;H′
C

= lim
ε → 0+

〈
(H0 − λ)u,R0(λ± iε)Cφ

〉
H

= ⟨u,Cφ⟩H ± lim
ε → 0+

iε ⟨u,R0(λ± iε)Cφ⟩H .

It follows from (4.2) that

∥R0(λ± iε)C∥H = O
(
ε− 1

2
)
, ε → 0+.

Thus we obtain that, for all u ∈ D(H|HC
),〈

(H0 − λ)u,R0
(
λ± i0+

)
v
〉

HC ;H′
C

= ⟨u, v⟩H .

Since | ⟨u, v⟩H | ⩽ ∥u∥HC
∥v∥H′

C
, this shows that R0(λ±i0+)v ∈ D(H ′

0) and that (4.3)
holds. □

Now we are ready to prove Theorem 3.6
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Proof of Theorem 3.6. — (i)⇒(ii) Suppose for instance that λ is an outgoing
spectral singularity. By Proposition 4.1, Id + R0(λ + i0+)V ′ is not invertible in
B(H′

C). Since R0(λ + i0+)V ′ is compact in B(H′
C), it follows from the Fredholm

alternative that there exists Ψ ∈ H′
C , Ψ ̸= 0, such that

(4.4) −R0
(
λ+ i0+

)
V ′Ψ = Ψ.

By Lemma 4.3, this implies that Ψ ∈ D(H ′
0) = D(H ′) and that

(4.5) −V ′Ψ = (H ′
0 − λ)Ψ.

Since H ′ = H ′
0 + V ′, this proves (ii).

(ii)⇒(i) Suppose now that λ is an eigenvalue of H ′ associated to an eigenvector
Ψ ∈ H′+

C (λ), Ψ ̸= 0. Then

(H ′ − λ)Ψ = 0 with Ψ = −R0
(
λ+ i0+

)
V ′Ψ.

In particular,
(Id +R0(λ+ i0+)V ′)Ψ = 0,

and hence Id +R0(λ + i0+)V ′ is not invertible in B(H′
C). By Proposition 4.1, this

proves (i). □

4.3. Spectral singularities of the adjoint operator

Recall that the regular spectral points and spectral singularities of H have been
defined in Definition 2.2. The corresponding definition for the adjoint operator H∗

is the following.

Definition 4.4 (Regular spectral point and spectral singularity for H∗). — Let
λ ∈ σess(H).

(i) We say that λ is an outgoing/incoming regular spectral point of H∗ if λ is
not an accumulation point of eigenvalues located in λ ∓ i (0,∞) and if the
limit

(4.6) CRH∗(λ∓ i0+)CW ∗ := lim
ε → 0+

CRH∗(λ∓ iε)CW ∗

exists in the norm topology of B(H). If λ is not an outgoing/incoming regular
spectral point, we say that λ is an outgoing/incoming spectral singularity of
H∗.

(ii) We say that λ is a regular spectral point of H∗ if it is both an incoming and
an outgoing regular spectral point of H∗. If λ is not a regular spectral point,
we say that λ is a spectral singularity of H∗.

The following proposition shows that, under our assumptions, λ is an outgo-
ing/incoming regular spectral point of H if and only λ is an outgoing/incoming
regular spectral point of H∗.

Proposition 4.5. — Let λ ∈ σess(H) and suppose that the limits (4.1) exist in
the norm topology of B(H). Then the following conditions are equivalents:

(i) λ is a regular outgoing/incoming spectral point of H,
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(ii) λ is not an accumulation point of eigenvalues located in λ± i(0,∞) and
lim

ε → 0+
WCRH(λ± iε)C

exists in the norm topology of B(H),
(iii) λ is a regular outgoing/incoming spectral point of H∗.

Proof. — Taking adjoints, it is clear that (ii)⇔(iii). We prove that (i)⇒(ii). Sup-
pose for instance that λ is an outgoing regular spectral point of H. By Proposition 4.1,
Id +CR0(λ+ i0+)CW is invertible in B(H). We claim that Id +WCR0(λ+ i0+)C
is invertible in B(H). Indeed, for all ε > 0, a direct computation gives

Id =
(
Id −(W (Id +CR0(λ+ iε)CW )−1CR0(λ+ iε)C)

)
(Id +WCR0(λ+ iε)C) .

Letting ε → 0+, we obtain that

Id =(
Id −(W (Id +CR0(λ+ i0+)CW )−1CR0(λ+ i0+)C)

) (
Id +WCR0(λ+ i0+)C

)
.

Thus Id +WCR0(λ+ i0+)C is injective. Since WCR0(λ+ i0+)C is compact, Fred-
holm’s alternative implies that Id +WCR0(λ + i0+)C is bijective in B(H). Now,
writing

WCRH(λ+ iε)C = (Id +WCR0(λ+ iε)C)−1WCR0(λ+ iε)C,
for ε > 0 small enough and next letting ε → 0+, we deduce that limε→0+ WCRH(λ+
iε)C exists in B(H).

The proof of (i)⇒(ii) in the case of an incoming regular spectral point as well as
the proof of (ii)⇒(i) are analogous. □

4.4. Embedded eigenvalues

In this section, we prove that given our definition of spectral singularities (see
Definition 2.2), an eigenvalue of H embedded in the essential spectrum is both an
incoming and an outgoing spectral singularity.

Proposition 4.6. — Let λ ∈ σess(H) and suppose that the limits (4.1) exist in
the norm topology of B(H). If λ is an eigenvalue of H, then λ is both an outgoing
and an incoming spectral singularity of H.

Proof. — Let λ be an eigenvalue of H. There exists u ∈ D(H), u ̸= 0, such that
(H − λ)u = 0. Suppose by contradiction that λ is an outgoing regular spectral point
of H. Since λ is not an accumulation point of eigenvalues located in λ+ i(0,∞), we
can write, for ε > 0 small enough,
(4.7) 0 = CR0(λ+ iε)(H − λ)u = (Id +CR0(λ+ iε)CW )Cu+ iεCR0(λ+ iε)u.
Lemma 4.2 yields

lim
ε → 0+

εCR0(λ+ iε)u = 0.
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Inserting this into (4.7), we obtain that

(Id +CR0(λ+ i0+)CW )Cu = 0,

which is impossible since Id +CR0(λ+ i0+)CW is injective by Lemma 4.1.
Similarly, λ cannot be an incoming regular spectral point of H. This concludes

the proof of the proposition. □

It should also be noted that, by Theorem 3.6, the eigenvectors associated to an
embedded eigenvalue λ belong to H′±

C (λ).

4.5. Local spectral regularity

In this section, we show that the notion of spectral regularity introduced in Def-
inition 2.2 is a local property. We will need to distinguish the case of a spectral
singularity embedded in the interior of the essential spectrum of H from the case of
an “endpoint spectral singularity”. It should be noted that endpoints of the essential
spectrum are sometimes called “thresholds”, but the notion of a spectral threshold
also has different meanings in some contexts (see e.g. [How74]). We mention that
spectral singularities embedded in the essential spectrum, either in the interior or at
endpoints, have been recently studied, in a Banach spaces setting, in [BC22].

Here we will say that a point λ ∈ σess(H) is a spectral endpoint of H if there exists
r > 0 such that either

σess(H) ∩ D̊(λ, r) ⊂ [λ,∞),(4.8)

or

σess(H) ∩ D̊(λ, r) ⊂ (−∞, λ].(4.9)

We say that λ is a left spectral endpoint if (4.8) holds and a right spectral endpoint
if (4.9) holds.

If λ belongs to σess(H), we will in this section make the assumption that there
exists r > 0 such that the maps

(4.10) D̊(λ, r) ∩ C± ∋ z 7→ CR0(z)C

extend by continuity to D̊(λ, r) ∩ C̄±.
The next proposition shows that the notion of spectral regularity is a local property.

Note that Item (ii) of Proposition 4.7 corresponds to the definition of a regular
spectral point in [FF18, FN19], in the particular case where H is dissipative. The
proof of the next result being a quite straightforward extension of the proof of [FN19,
Lemma 4.1], it is deferred to Appendix B.

Proposition 4.7. — Let λ ∈ σess(H). Suppose that there exists r > 0 such that
the maps (4.10) extend by continuity to D̊(λ, r) ∩ C̄±. The following conditions are
equivalent:

(i) λ is an outgoing/incoming regular spectral point,
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(ii) There exists a compact interval Kλ ⊂ R whose interior contains λ, such that
Kλ does not have any accumulation point of eigenvalues of H located in C±,
and such that the limit

CRH

(
µ± i0+

)
CW := lim

ε → 0+
CRH(µ± iε)CW

exists uniformly in µ ∈ Kλ in the norm topology of B(H).

Proof. — See Appendix B. □

Proposition 4.7 has the following consequence.

Corollary 4.8. — Suppose that for all λ ∈ σess(H), there exists r > 0 such
that the maps (4.10) extend by continuity to D̊(λ, r) ∩ C̄±. Then the set of spectral
singularities of H is a closed set whose Lebesgue measure vanishes.

Proof. — Let E := E+ ∪ E−, where
E± := {λ ∈ σess(H0), λ is an outgoing/incoming spectral singularity of H}.

It follows from Proposition 4.7 that E+ and E− are closed. Hence E is closed.
Moreover, by the assumption that z 7→ CR0(z)CW extends by continuity to the real
axis, we can apply [Yaf92, Theorem 1.8.3], which implies that Id +CR0(λ± i0+)CW
is invertible in B(H) for a.e. λ ∈ σess(H). By Proposition 4.1, this proves that the
Lebesgue measures of E+ and E− vanish. □

Our next concern is to characterize outgoing/incoming regular spectral points
λ ∈ σess(H) as nontangential limits of the weighted resolvent CRH(z)CW , as z → λ.
If λ is a left spectral endpoint, we will assume that there exists r > 0 such that the
map

(4.11) {λ+ ν, |ν| < r, 0 < arg(ν) < 2π} = D̊(λ, r) \ [λ,∞) ∋ z 7→ CR0(z)C
extends by continuity to {λ + ν, |ν| < r, 0 ⩽ arg(ν) ⩽ 2π}. Il λ is a right spectral
endpoint, we will assume that there exists r > 0 such that the map

(4.12) {λ+ ν , |ν| < r, −π < arg(ν) < π} = D̊(λ, r) \ (−∞, λ] ∋ z 7→ CR0(z)C
extends by continuity to {λ+ ν , |ν| < r, −π ⩽ arg(ν) ⩽ π}. The next proposition
proves, in particular, that under these assumptions, outgoing and incoming spectral
singularities at endpoints coincide.

Proposition 4.9. — The following properties hold true.
(i) Let λ be in the interior of σess(H). Suppose that there exists r > 0 such

that the maps (4.10) extend by continuity to D̊(λ, r) ∩ C̄±. The following
conditions are equivalent:
(a) λ is an outgoing/incoming regular spectral point,
(b) There exist a complex neighborhood Oλ of λ such that O±

λ := Oλ ∩C± ⊂
ρ(H) and a continuous map γ : (0, 1] → O±

λ such that
lim

ε → 0+
γ(ε) = λ and lim

ε → 0+
CRH(γ(ε))CW

exists in the norm topology of B(H).
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(ii) Let λ ∈ σess(H) be a spectral endpoint of H such that (4.8) holds. Suppose
that there exists r > 0 such that the map (4.11) extends by continuity to
{λ+ ν, |ν| < r, 0 ⩽ arg(ν) ⩽ 2π}. The following conditions are equivalent:
(a) λ is an outgoing regular spectral point of H,
(b) λ is an incoming regular spectral point of H,
(c) There exist a complex neighborhood Oλ of λ such that Oλ\[λ,∞) ⊂ ρ(H)

and a continuous map γ : (0, 1] → Oλ \ [λ,∞) such that
(4.13) lim

ε → 0+
γ(ε) = λ and lim

ε → 0+
CRH(γ(ε))CW

exists in the norm topology of B(H).
The same holds if (4.9) holds instead of (4.8), assuming that there exists
r > 0 such that the map (4.12) extends by continuity to {λ+ν, |ν| < r, −π ⩽
arg(ν) ⩽ π} and replacing Oλ \ [λ,∞) by Oλ \ (−∞, λ] in (iic).

Proof. — Consider the most difficult case (ii). We prove that (iia)⇒(iic). Let
λ ∈ σess(H) be an outgoing regular spectral point of H and suppose that (4.8) holds.
By Proposition 4.1, we know that Id +CR0(λ+ i0+)CW is invertible in B(H). Since,
by assumption, the map (4.11) extends by continuity to {λ+ν, |ν| < r, 0 ⩽ arg(ν) ⩽
2π} for some r > 0, and since the set of invertible operators in B(H) is open, this
implies that there exists a complex neighborhood Oλ ⊂ D̊(λ, r) of λ, such that the
map

(4.14) Oλ \ [λ,∞) ∋ z 7→
(

Id +CR0(z)CW
)−1

is analytic. The usual Birmann–Schwinger principle yields Oλ \ [λ,∞) ⊂ ρ(H). It
then suffices to take γ(ε) = λ+ iδε, with δ > 0 small enough.

Next we prove that (iic)⇒(iia). In the same way as in Proposition 4.1, the existence
of the limit (4.13) is equivalent to the invertibility of Id +CR0(γ(0+))CW in B(H).
Note that the limit CR0(γ(0+))C exists in the norm topology of B(H) since we
have assumed that there exists r > 0 such that the map z 7→ CR0(z)C extends by
continuity to {λ + ν, |ν| < r, 0 ⩽ arg(ν) ⩽ 2π}. We can then argue as before; this
gives the existence of a complex neighborhood Oλ of λ such that the map (4.14)
is analytic and extends by continuity to {λ + ν, |ν| < r, 0 ⩽ arg(ν) ⩽ 2π}. In
particular, Id +CR0(λ+ i0+)CW is well-defined and invertible in B(H). Applying
Proposition 4.1, this shows that λ is an incoming regular spectral point of H.

The proof of (iib)⇔(iic) is identical. One proceeds analogously to prove (ii) in the
case where (4.9) holds instead of (4.8).

Finally, the argument easily adapts to prove (i). □

Note that in the case of an outgoing/incoming regular spectral point λ ∈ σess(H),
our proof shows that z 7→ CRH(z)CW has a nontangential limit at λ, in the sense
that the limit

(4.15) lim
ε → 0+

CRH(γ(ε))CW

does not depend on the continuous curve γ : (0, 1] → C± such that γ(ε) → λ as
ε → 0+. See Figure 4.1. This property can also be deduced from Lindelöf’s Theorem
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(see e.g. [Rud80]) if the map z 7→ CRH(z)CW is known to be analytic and bounded
in the domain O±

λ .

•λ

Oλ

γ

Figure 4.1. Outgoing spectral singularity located inside the essential spectrum.
The figure shows an example of a curve γ : (0, 1] → O+

λ , where O+
λ = Oλ ∩ C+

and Oλ is a complex neighborhood of λ. The thick line represents the essential
spectrum of H.

Likewise, in the case of a regular spectral point λ located at a spectral endpoint of
H, the limit (4.15) does not depend on the continuous curve γ : (0, 1] → C \ [λ,∞)
(or γ : (0, 1] → C \ (−∞, λ], depending on whether (4.8) or (4.9) holds). This is the
reason why the incoming and outgoing spectral singularities coincide. See Figure 4.2.

•λ

Oλ
γ

Figure 4.2. Spectral singularity located at an endpoint. The figure shows an
example of a curve γ : (0, 1] → Oλ \ [λ,∞), where Oλ is a complex neighborhood
of λ. The thick line represents the essential spectrum of H.

We conclude this section with the following consequence of the previous proposi-
tions.

Corollary 4.10. — The following properties hold true.
(1) Let λ be in the interior of σess(H). Suppose that there exists r > 0 such

that the maps (4.10) extend by continuity to D̊(λ, r) ∩ C̄±. If λ is an out-
going/incoming regular spectral point of H, then there exists a complex
neighborhood Oλ of λ such that H has no eigenvalue in Ō±

λ := Oλ ∩ C̄±,
σp(H) ∩ Ō±

λ = ∅.
(2) Let λ ∈ σess(H) be a spectral endpoint of H such that (4.8) holds. Suppose

that there exists r > 0 such that the map (4.11) extends by continuity to
{λ+ ν, |ν| < r, 0 ⩽ arg(ν) ⩽ 2π}. If λ is a regular spectral point of H, then
there exists a complex neighborhood Oλ of λ such that H has no eigenvalue
in Oλ,

σp(H) ∩ Oλ = ∅.
The same holds if (4.9) holds instead of (4.8), assuming that there exists
r > 0 such that the map (4.12) extends by continuity to {λ+ν, |ν| < r, −π ⩽
arg(ν) ⩽ π}.
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Proof. — It suffices to combine Propositions 4.7 and 4.9. □

4.6. Spectral singularities for dissipative operators

In this section, we focus on the particular case where the operator H is dissipative.
Recall that H = H0 + V with V ∈ B(H). We write

V = V1 − iV2, V1 = CW1C, V2 = CW2C,

where W1 := Re(W ) and W2 := − Im(W ). Here the real and imaginary parts
of a bounded operator A ∈ B(H) are defined as usual by Re(A) := 1

2(A + A∗),
Im(A) := 1

2i
(A− A∗). We suppose that

W2 ⩾ 0,
so that

H = H0 + V1 − iV2 =: HV1 − iV2

is indeed dissipative. Our purpose is to prove that if λ is an outgoing regular spectral
point of the self-adjoint part HV1 = H0 + V1, then λ is also an outgoing regular
spectral point for H. In other words, adding the “dissipative part” −iV2 cannot
create outgoing spectral singularities.

We begin with recalling the following easy lemma (see [Dav80a, Lemma 6.1]
or [FF18, Lemma 3.1]). We include a proof for the convenience of the reader.

Lemma 4.11. — Let λ ∈ R be a real eigenvalue of H. Then λ is an eigenvalue of
HV1 and
(4.16) Ker(H − λ) ⊂ Hp(HV1) ∩ Ker(V2).

Proof. — Let u ∈ Ker(H − λ), u ̸= 0. Then

λ ∥u∥2
H = ⟨u,Hu⟩H = ⟨u,HV1u⟩H − i

∥∥∥∥W 1
2

2 Cu
∥∥∥∥2

H
.

Since λ ∈ R, identifying the real and imaginary parts, we obtain that u ∈ Ker(W
1
2

2 C)
⊂ Ker(V2) and therefore Hu = HV1u = λu. This establishes (4.16). □

Note that Definition 2.2 of a regular spectral point of H applies to HV1 as well. In
other words, λ ∈ σess(HV1) is an outgoing/incoming regular spectral point of HV1 if

CRV1

(
λ± i0+

)
CW1 := lim

ε → 0+
CRV1(λ± iε)CW1

exits in B(H). Otherwise, λ is an outgoing/incoming spectral singularity of HV1 .
Moreover, Proposition 4.1 applied to HV1 shows that λ is an outgoing/incoming
regular spectral point of HV1 if and only if Id +CR0(λ ± i0+)CV1 is invertible in
B(H), which is also equivalent to Id +R0(λ± i0+)V ′

1 being invertible in B(H′
C).

The next proposition is the main result of this subsection.

Proposition 4.12. — Suppose that Hypothesis 3.5 holds. Let λ ∈ σess(H) and
suppose that the limits (4.1) exist in the norm topology of B(H). If λ is an outgoing
regular spectral point of HV1 then λ is an outgoing regular spectral point of H.
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Proof. — Suppose that λ is an outgoing regular spectral point of HV1 . Suppose also,
by contradiction, that λ is an outgoing spectral singularity of H. By Theorem 3.6,
there exists Ψ ∈ H+

C such that

(4.17) Ψ = −R0
(
λ+ i0+

)
V ′Ψ and (H ′ − λ)Ψ = 0.

Recall from Section 2.3 that V ′ ∈ B(H′
C ,HC) is given by V ′ = CWC ′. Since

W = W1 − iW2, this yields
⟨V ′Ψ,Ψ⟩HC ,H′

C
= ⟨W1C

′Ψ, C ′Ψ⟩H + i ⟨W2C
′Ψ, C ′Ψ⟩H ,

and hence, since W2 ⩾ 0,

(4.18) Im
(

⟨V ′Ψ,Ψ⟩HC ,H′
C

)
= ⟨W2C

′Ψ, C ′Ψ⟩H ⩾ 0.

Now, using (4.17), we have

(4.19) Im
(

⟨V ′Ψ,Ψ⟩HC ,H′
C

)
= − Im

〈
V ′Ψ ,R0

(
λ+ i0+

)
V ′Ψ

〉
HC ,H′

C

= −1
2i
(〈
WC ′Ψ , CR0

(
λ+ i0+

)
V ′Ψ

〉
H

−
〈
CR0

(
λ+ i0+

)
V ′Ψ ,WC ′Ψ

〉
H

)
= −1

2i
(〈
WC ′Ψ , CR0

(
λ+ i0+

)
V ′Ψ

〉
H

−
〈
WC ′Ψ , CR0

(
λ− i0+

)
V ′Ψ

〉
H

)
= lim

ε → 0+
−ε ⟨WC ′Ψ , CR0(λ+ iε)R0(λ− iε)V ′Ψ⟩H

= lim
ε → 0+

−ε ⟨R0(λ− iε)V ′Ψ ,R0(λ− iε)V ′Ψ⟩H ⩽ 0.

Equations (4.18) and (4.19) imply that W2C
′Ψ = 0. Inserting this into (4.17), we

obtain that
Ψ = −R0

(
λ+ i0+

)
V ′

1Ψ and (H ′
0 + V ′

1 − λ) Ψ = 0.

which is a contradiction since λ is a regular spectral point of HV1 . □

Remark 4.13. — The previous proof actually shows that, under the conditions of
Proposition 4.12,
(4.20) λ is an outgoing spectral singularity of H ⇒ W2C

′Ψ = 0.
Since C ′ is injective, this in turn yields

W2 is injective ⇒ H has no outgoing spectral singularities.

In the context of Schrödinger operators, one can also combine (4.20) with the
unique continuation principle (see e.g. [RS75, Theorem XIII.63]) to obtain Proposi-
tion 3.12.

Proof of Proposition 3.12. — Let λ > 0. Assuming that (3.9) holds with σ > 1,
suppose by contradiction that λ is an outgoing spectral singularity of H. Then, by
Proposition 3.10, there exists Ψ ∈ L2

−σ/2, Ψ ̸= 0, such that

(−∆ + V (x) − λ)Ψ = 0.
This implies that Ψ ∈ H2

loc(R3) and that |∆Ψ(x)| ⩽ (∥V ∥L∞ + λ)|Ψ(x)| for a.e.
x ∈ R3. Now, since there exists a non-trivial open set U such that Im(V ) < 0 on

ANNALES HENRI LEBESGUE



Spectral decomposition of some non-self-adjoint operators 1147

U , (4.20) and the fact that C(x) = ⟨x⟩−σ/2 imply that Ψ(x) = 0 on U . By [RS75,
Theorem XIII.63], we conclude that Ψ = 0. This is a contradiction.

The same argument holds for λ = 0 under the condition that (3.9) holds with
σ > 2. □

5. Spectral resolution formula and spectral subspaces

In this section, we begin with constructing a functional calculus for H. In Sec-
tion 5.1, we consider the simplest case of intervals without spectral singularities, next,
in Section 5.2, we construct a regularized functional calculus in intervals possibly
containing spectral singularities. The latter is subsequently used in Section 5.3 to
establish the spectral resolution formula stated in Proposition 3.15. Finally we prove
Theorems 3.7 and 3.8 in Sections 5.4 and 5.5, respectively.

5.1. Functional calculus in intervals not containing spectral singularities

Consider first a closed interval I ⊂ R that does not contain any spectral singularity
of H. We will furthermore assume that a limiting absorption principle holds for H
in I, in the sense that there exists ε0 > 0 such that
(5.1) sup

Re(z) ∈ I, ± Im(z) ∈ (0,ε0)

∥∥∥CRH(z)CW
∥∥∥

B(H)
< ∞.

Note that, in the same way as for H0, Fatou’s Theorem and (5.1) yield that the
limits CRH(λ± i0+)CW exist for almost every λ ∈ I, in the norm topology of B(H),
and that the map I ∋ λ 7→ CRH(λ± i0+)CW ∈ B(H) is bounded.The main purpose
of this subsection is then to define a spectral projection for H in I by mimicking
Stone’s formula, setting

(5.2) 1I(H) := w-limε → 0+
1

2πi

∫
I

(
RH(λ+ iε) − RH(λ− iε)

)
dλ.

The next proposition shows that, under our assumptions, 1I(H) is a well-defined
non-orthogonal projection. The proof is similar to that given in [FF18] for dissipative
operators. For the convenience of the reader, a sketch of the proof of Proposition 5.1
focusing on the differences with [FF18] is reported in Appendix C.

Proposition 5.1. — Suppose that Hypothesis 3.1 holds. Let I ⊂ R be a closed
interval and suppose that there exists ε0 > 0 such that (5.1) holds. Then the weak
limit (5.2) exists in B(H) and we have
(5.3) 1I1(H)1I2(H) = 1I1∩I2(H),
for any closed intervals I1, I2 ⊂ I without spectral singularity, with the convention
that 1∅(H) = 0. In particular, 1I(H) is a projection. Its adjoint is given by

(5.4) 1I(H)∗ = 1I(H∗) = w-limε → 0+
1

2πi

∫
I

(
RH∗(λ+ iε) − RH∗(λ− iε)

)
dλ.

Proof. — See Appendix C. □
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We note the following representation formula which follows from our proof:

(5.5) 1I(H) = 1I(H0) − 1
2iπ

∫
I

R0
(
λ∓ i0+

)
CWCR0

(
λ± i0+

)
dλ

+ 1
2iπ

∫
I

R0
(
λ± i0+

)
CWCRH

(
λ± i0+

)
CWCR0

(
λ± i0+

)
dλ,

in the sense of quadratic forms on H × H. We recall that, for all u ∈ H, λ 7→
CR0(λ± i0+)u denotes the limit of λ 7→ CR0(λ± iε)u in L2(R; H) as ε → 0+, while,
for a.e. λ, CRH(λ ± i0+)CW is the limit of CRH(λ ± iε)CW as ε → 0+, in the
norm topology of B(H).

Under the same assumptions and using similar arguments, we also have the follow-
ing functional calculus. We denote by cb(I) the set of bounded continuous functions
on I.

Proposition 5.2. — Under the conditions of Proposition 5.1, the map

(5.6) cb(I) ∋ f 7→ f(H)

:= w-limε → 0+
1

2πi

∫
I
f(λ)

(
RH(λ+ iε) − RH(λ− iε)

)
dλ ∈ B(H)

is a Banach algebra morphism. Moreover, for all t ∈ R,

(5.7) eitH1I(H) = w-limε → 0+
1

2πi

∫
I
eitλ

(
RH(λ+ iε) − RH(λ− iε)

)
dλ

and for all z0 ∈ ρ(H),

(5.8) RH(z0)1I(H) = w-limε → 0+
1

2πi

∫
I
(λ− z0)−1

(
RH(λ+ iε) − RH(λ− iε)

)
dλ.

Proof. — See Appendix C. □

We mention that this functional calculus uniquely extends to a Borel functional
calculus, i.e. an algebra morphism L∞(I) ∋ f → f(H). See e.g. [GGH13, Theo-
rem 2.4].

5.2. “Regularized” functional calculus

Our next concern is to regularize the definition (5.2) in the case where the spectral
interval I contains spectral singularities. More generally, we will now consider a
closed interval I ⊂ R and a bounded holomorphic function

h : U → C, {z ∈ C, Re(z) ∈ I, | Im(z)| ⩽ ε0} ⊂ U,

with ε0 > 0 and U open, such that

(5.9) sup
Re(z) ∈ I, ± Im(z) ∈ (0,ε0)

|h(z)|
∥∥∥CRH(z)CW

∥∥∥
B(H)

< ∞.

We will also assume that
(5.10) λ 7→ sup

0 < ε < ε0
|h′(λ± iε)| ∈ L2(I),
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where h′ stands for the derivative of h. The “regularized spectral projection” for H
in I is then defined by

(5.11) (h1I)(H) := w-limε → 0+
1

2πi

∫
I

(
h(λ+iε)RH(λ+iε)−h(λ−iε)RH(λ−iε)

)
dλ.

In this context, Proposition 5.1 should be modified as follows.

Proposition 5.3. — Suppose that Hypothesis 3.1 holds. Let I ⊂ R be a closed
interval. Suppose that there exist ε0 > 0 and a bounded holomorphic function
h defined on a complex neighborhood of {z ∈ C, Re(z) ∈ I, | Im(z)| ⩽ ε0} such
that (5.9) and (5.10) hold. Then the weak limit (5.11) exists in B(H) and its adjoint
is given by

(h1I)(H)∗ = (h1I)(H∗)

= w-limε→0+
1

2πi

∫
I

(
h(λ+ iε)RH∗(λ+ iε) − h(λ− iε)RH∗(λ− iε)

)
dλ.

Proof. — See Appendix C. □

It is not difficult to verify that, if H is self-adjoint, then (h1I)(H) = h(H)1I(H)
(see the proof of Proposition 5.3). However, under the assumptions of Proposition 5.3,
this formula does not make sense since 1I(H) is ill-defined in general.

Similarly as in (5.5), our proof will show that

(5.12) (h1I)(H) = (h1I)(H0) − 1
2iπ

∫
I
h(λ)R0(λ∓ i0+)CWCR0(λ± i0+)dλ

+ 1
2iπ

∫
I
h(λ)R0(λ± i0+)CWCRH(λ± i0+)CWCR0(λ± i0+)dλ,

in the sense of quadratic forms on H × H.
One can also define a “regularized functional calculus” on the set of functions

cb,reg(I) :=
{
f : I → C, ∃ g ∈ cb(I), f = hg}.

Proposition 5.4. — Under the conditions of Proposition 5.3, the map

cb,reg(I) ∋ f 7→ f(H) ∈ B(H),

where

f(H) := w-limε → 0+
1

2πi

∫
I
g(λ)

(
h(λ+ iε)RH(λ+ iε) − h(λ− iε)RH(λ− iε)

)
dλ

is an algebra morphism and there exists c > 0 such that

(5.13) ∥f(H)∥B(H) ⩽ c∥g∥L∞ ,

for all f ∈ cb,reg(I), with f = hg. Moreover, for all t ∈ R,

(5.14) eitH(h1I)(H)

= w-limε → 0+
1

2πi

∫
I
eitλ

(
h(λ+ iε)RH(λ+ iε) − h(λ− iε)RH(λ− iε)

)
dλ
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and for all z0 ∈ ρ(H),

(5.15) RH(z0)(h1I)(H)

= w-limε → 0+
1

2πi

∫
I
(λ− z0)−1

(
h(λ+ iε)RH(λ+ iε) − h(λ− iε)RH(λ− iε)

)
dλ.

Proof. — See Appendix C. □

Again, this functional calculus uniquely extends to a Borel functional calculus. For
other definitions of functional calculi for general operators on Banach spaces under
an assumption of polynomial growth of the resolvent near the real axis, we refer
to [Dav95, GGH13].

5.3. Spectral resolution formula

We now turn to the proof of the resolution formula stated in Proposition 3.15. It
relies in particular on the following resolvent bounds.

Lemma 5.5. — Suppose that Hypothesis 3.1 holds. Let I ⊂ R be a closed interval
and suppose that there exists ε0 > 0 such that (5.1) holds.

(i) There exists c > 0 such that, for a.e. λ ∈ I, for all ε ∈ (0, ε0),

∥RH(λ± iε)∥B(H) ⩽ cε−1.

(ii) There exists c > 0 such that, for all ε ∈ (0, ε0), for all u ∈ H,∫
I

∥RH(λ± iε)u∥2
H dλ ⩽ cε−1∥u∥2

H.

Proof. — See Appendix C. □

To prove Proposition 3.15, we will rely on the following construction. Assume
that Hypotheses 3.2 and 3.3 hold. Let σdisc,real(H) = {e1, . . . , ep} be the set of real,
discrete eigenvalues of H, with e1 < · · · < ep. Note that σdisc,real(H) is finite by
Hypothesis 3.2. Let δ > 0 be the distance between σdisc,real(H) and σess(H). For
ε > 0 small enough, we consider the complex open set Uε such that σ(H) ⊂ Uε and
the boundary of Uε is given by (i) small circles surrounding each discrete eigenvalue
of H and no other point of σ(H), (ii) rectangles whose opposite sides are given by
the complex segments [eℓ +δ/2+ iε, eℓ+1 −δ/2+ iε] and [eℓ +δ/2− iε, eℓ+1 −δ/2− iε]
and (iii) the curve given by the complex segments [ep + δ/2 ± iε, ε−3 ± iε], [ep +
δ/2 − iε, ep + δ/2 + iε] and the (long) circle arc centered at the origin and joining the
complex points ε−3 + iε and ε−3 − iε. The circles and rectangles defined by (i), (ii)
are oriented counterclockwise, while the curve defined by (iii) is oriented clockwise.
See Figure 5.1. We denote by Γ(i) the union of curves defined by (i) and by Γε,♯ the
unions of curves defined by ♯, where ♯ stands for (ii) or (iii). If σdisc,real(H) is empty,
then Γε,(ii) is absent and we replace ep −δ > 2 by −1 in the definition of Γε,(iii) (fixing
arbitrarily −1 as a real number such that −1 < inf σess(H)).
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Figure 5.1. The contour Γε. The crosses and thick lines represent the eigenvalues
and essential spectrum of H, respectively.

Note that the proof of Proposition 3.15 is the only place where we use the assump-
tion that H0 is semi-bounded from below. Without much efforts, we can replace this
assumption by the condition that H0 has a spectral gap.

We are now ready to prove Proposition 3.15. Recall that the function r has been
defined in (3.15), for some z0 ∈ ρ(H), z0 ∈ C \ R.

Proof of Proposition 3.15. — In order to be able to apply Proposition 5.4 for
a suitable function h, it is convenient to add a decaying term to the regularizing
function r. Hence we set

(5.16) r̃(z) := (z − z0)−1r(z) = (z − z0)−(ν1+···+νn+ν∞+1)
n∏

j=1
(z − λj)νj ,

so that r̃ satisfies (5.10) in any interval I ⊂ R. Let C̄ := C∪{∞} denote the Riemann
sphere. We note that σ(H) ∪ {∞} ⊂ Uε ∪ {∞} and that Uε ∪ {∞} is an open set
in C̄. The function r̃ is extended to C̄ by setting r̃(∞) = 0. By the Riesz–Dunford
functional calculus (see e.g. [DS71, Section VIII.9]), using in particular that r̃ is
analytic in a neighborhood of σ(H) ∪ {∞} in C̄, we have that

r̃(H) = − 1
2iπ

∫
Γε

r̃(z)RH(z)dz.(5.17)

We consider successively the contributions to this integral from Γ(i), Γε,(ii) and
Γε,(iii). The contribution from Γ(i) gives, by definition, the Riesz projection onto the
discrete spectral subspace of H,

(5.18) − 1
2iπ

∫
Γ(i)

r̃(z)RH(z)dz = r̃(H)Πdisc(H).

The contribution from Γε,(ii) gives, for each rectangle, four terms. The integrals
over the vertical segments are of order O(ε). This easily follows from the fact that
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z 7→ |r̃(z)|∥RH(z)∥B(H) is uniformly bounded on these segments, whose lengths are
equal to 2ε. The sum of the integrals over the horizontal segments can be rewritten
as

1
2iπ

∫ eℓ+1−δ/2

eℓ+δ/2

(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
dλ.

Applying Proposition 5.4, we deduce that

w-limε→0+

∫ eℓ+1−δ/2

eℓ+δ/2

(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
dλ

=
∫ eℓ+1−δ/2

eℓ+δ/2
r̃(λ)

(
RH(λ+ i0+) − RH(λ− i0+)

)
dλ.

Therefore, the contribution to (5.17) from Γε,(ii) gives

(5.19) w-limε→0+ − 1
2iπ

∫
Γε,(ii)

r̃(z)RH(z)dz

= 1
2iπ

p−1∑
ℓ=1

∫ eℓ+1−δ/2

eℓ+δ/2
r̃(λ)

(
RH(λ+ i0+) − RH(λ− i0+)

)
dλ.

It remains to consider the contribution from Γε,(iii). As before, the integral over the
small vertical segment is of order O(ε). The sum of the integrals over the horizontal
segments can be rewritten as

1
2iπ

∫ ε−3

ep+δ/2

(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
dλ.

First, we note that∫ ∞

ε−3

(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
dλ = O(ε).

Indeed, we have |r̃(λ± iε)| ⩽ c|λ|−1 for λ large enough and hence, by the Cauchy–
Schwarz inequality,

∫ ∞

ε−3

∣∣∣〈u, r̃(λ± iε)RH(λ± iε)v
〉

H

∣∣∣dλ ⩽ cε 3
2 ∥u∥H

( ∫ ∞

ε−3

∥∥∥RH(λ± iε)v
∥∥∥2

H
dλ
) 1

2

⩽ cε∥u∥H∥v∥H,

the second inequality being a consequence of Lemma 5.5(ii). Hence

1
2iπ

∫ ε−3

ep+δ/2

〈
u,
(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
v
〉

H
dλ

= 1
2iπ

∫ ∞

ep+δ/2

〈
u,
(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
v
〉

H
dλ

+ O(ε)∥u∥H∥v∥H.
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Combining this with Proposition 5.3, we obtain that

w-limε→0+
1

2iπ

∫ ε−3

ep+δ/2

(
r̃(λ+ iε)RH(λ+ iε) − r̃(λ− iε)RH(λ− iε)

)
dλ

= 1
2iπ

∫ ∞

ep+δ/2
r̃(λ)

(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
dλ.

The integral over the circle arc in Γε,(iii) can be estimated as follows. Denote by Cε

this circle arc. For z ∈ Cε, | Im(z)| ⩽ ε0, Lemma 5.5(i) implies that ∥RH(z)∥B(H) ⩽
cε−1. Using in addition that |r̃(z)| ⩽ C|z|−1 = O(ε3) for z ∈ Cε, we obtain∣∣∣∣∣

∫
Cε ∩ {| Im(z)|⩽ ε0}

r̃(z)RH(z)dz
∣∣∣∣∣ = O(ε).

For z ∈ Cε, | Im(z)| ⩾ ε0, it suffices to use that ∥RH(z)∥B(H) ⩽ c together with
|r̃(z)| ⩽ C|z|−1 = O(ε3) to conclude that∣∣∣∣ ∫

Cε∩{| Im(z)|⩾ ε0}
r̃(z)RH(z)dz

∣∣∣∣ = O(ε3).

Putting together the previous estimates, we have shown that

(5.20) w-limε → 0+ − 1
2iπ

∫
Γε,(iii)

r̃(z)RH(z)dz

= 1
2iπ

∫ ∞

ep+δ/2
r̃(λ)

(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
dλ.

Equations (5.17), (5.18), (5.19) and (5.20), together with the fact that RH(λ+i0+) =
RH(λ− i0+) = RH(λ) if λ ∈ ρ(H), yield

(5.21) r̃(H)

= r̃(H)Πdisc(H) + 1
2iπ

∫
σess(H)

r̃(λ)
(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
dλ.

It remains to show that one can replace r̃ by r in the previous equation. For the
first two terms, we have that r̃(H) = RH(z0)r(H) by definition, while (5.15) in
Proposition 5.4 implies∫

σess(H)
r̃(λ)

(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
dλ

= RH(z0)
∫

σess(H)
r(λ)

(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
dλ.

Hence, applying (H − z0) to both sides of (5.21), we obtain (3.16). This concludes
the proof of of Proposition 3.15. □

5.4. Proof of Theorem 3.7

Now we prove Theorem 3.7. We recall that H±
p (H) is the vector space spanned by

all generalized eigenstates corresponding to eigenvalues λ ∈ C such that ∓ Im λ > 0
and that H±

ads is the closure of {u ∈ H, limt→∞ ∥e±itHu∥H = 0}. We begin with
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proving the following easy inclusion, H±
p (H) ⊂ H±

ads(H), which holds under the
assumption that H has finitely many eigenvalues with finite algebraic multiplicities.

Proposition 5.6. — Suppose that Hypothesis 3.2 holds. Then

H±
p (H) ⊂ H±

ads(H).

Proof. — We prove that H+
p (H) ⊂ H+

ads(H). Let λ ∈ σdisc(H) with Im(λ) < 0 and
let u ∈ Ran(Πλ(H)). For all t > 0, we estimate∥∥∥e−itHu

∥∥∥
H
⩽

1
2π

∫
γ
et Im(z) ∥RH(z)u∥H dz,

where γ is the circle defined as in (2.3). Since γ ⊂ C−, we have∥∥∥e−itHu
∥∥∥

H
⩽
e−tδ

2π

∫
γ

∥RH(z)u∥H dz,

for some δ > 0. Hence u ∈ H+
ads(H). The proof of H−

p (H) ⊂ H−
ads(H) is analogous.

□

To prove the converse inclusion, we will use the following easy lemma. Recall that

Π±
disc(H) =

∑
λ ∈ σdisc(H), ∓ Im(λ) > 0

Πλ(H), Π0
disc(H) =

∑
λ ∈ σdisc(H), Im(λ)=0

Πλ(H).

Lemma 5.7. — Suppose that Hypothesis 3.2 holds. Then

H±
ads(H) ⊂ Ker

(
Π∓

disc(H) + Π0
disc(H)

)
.

Proof. — Let u ∈ H+
ads(H). We have

(5.22)
(
Π−

disc(H) + Π0
disc(H)

)
e−itHu = e−itH

(
Π−

disc(H) + Π0
disc(H)

)
u.

The restriction of H to Ran(Π−
disc(H) + Π0

disc(H)) = H−
disc(H) ⊕ H0

disc(H) is a lin-
ear mapping from a finite dimensional space to itself, whose eigenvalues have non-
negative imaginary parts. Hence, by Lyapunov’s Theorem,

lim
t → ∞

∥∥∥e−itH
(
Π−

disc(H) + Π0
disc(H)

)
u
∥∥∥

H
̸= 0 unless

(
Π−

disc(H) + Π0
disc(H)

)
u = 0.

Since the left-hand-side of (5.22) tends to 0 as t → ∞ (for u ∈ H+
ads(H)), we conclude

that indeed (Π−
disc(H) + Π0

disc(H))u = 0. Hence we have proven that H+
ads(H) ⊂

Ker(Π−
disc(H) + Π0

disc(H)). The proof of H−
ads(H) ⊂ Ker(Π+

disc(H) + Π0
disc(H)) is

similar. □

Now we are ready to prove Theorem 3.7. We will use the regularizing function r
defined in (3.15), for some z0 ∈ ρ(H), z0 ∈ C \ R.

Proof of Theorem 3.7. — In view of Proposition 5.6, it remains to show that
H±

ads(H) ⊂ H±
p (H). We prove that H+

ads(H) ⊂ H+
p (H), the inclusion H−

ads(H) ⊂
H−

p (H) can be proven in the same way.
Let u ∈ H+

ads(H). By Proposition 3.15, we can write

r(H)u = Πdisc(H)r(H)u+ ress(H)u,(5.23)
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where

ress(H) := w-limε → 0+
1

2πi

∫
σess(H)

r(λ)
(
RH(λ+ iε) − RH(λ− iε)

)
dλ

is a bounded operator.
Clearly, since r(H) is bounded and commutes with e−itH , we have that r(H)u ∈

H+
ads(H). Lemma 5.7 then implies that r(H)u ∈ Ker(Π−

disc(H) + Π0
disc(H)). Inserting

this into(5.23) gives
r(H)u = Π+

disc(H)r(H)u+ ress(H)u.(5.24)

Now we show that u ∈ Ker(ress(H)). We have Ker(ress(H)) = Ran(ress(H)∗)⊥ where,
by Proposition 5.3,

ress(H)∗ = w-limε → 0+
1

2πi

∫
σess(H)

r(λ)
(
RH∗(λ+ iε) − RH∗(λ− iε)

)
dλ.

For all v = ress(H)∗w ∈ Ran(ress(H)∗), we can write

(5.25) |⟨v, u⟩H| =
∣∣∣ 〈e−itH∗

v, e−itHu
〉

H

∣∣∣ ⩽ ∥∥∥e−itH∗
v
∥∥∥

H

∥∥∥e−itHu
∥∥∥

H
.

By (5.13) and (5.14) in Proposition 5.4, we have∥∥∥e−itH∗
v
∥∥∥

H
=
∥∥∥e−itH∗

ress(H)∗w
∥∥∥

H
⩽ c∥w∥H.

Inserting this into (5.25), letting t → ∞ and using that u ∈ H+
ads(H), we obtain that

⟨v, u⟩ = 0. Hence u ∈ Ker(ress(H)) and therefore (5.24) reduces to
r(H)u = Π+

disc(H)r(H)u.(5.26)

We have proven that r(H)u belongs to H+
disc(H) = H+

p (H). Now the Riesz–Dunford
functional calculus shows that the restriction of r(H) to H+

p (H) is bounded invertible.
Hence we deduce that u ∈ H+

p (H). This concludes the proof of of Theorem 3.7. □

5.5. Proof of Theorem 3.8

Recall that Hp(H) is the closure of the vector space spanned by all generalized
eigenvectors of H, and that the absolutely continuous spectral subspace of H has
been defined in Section 2.2. We want to prove that Hac(H) = Hp(H∗)⊥. We begin
with the following proposition which only requires that Hp(H) be finite dimensional.

Proposition 5.8. — Suppose that Hypothesis 3.2 holds. Then
Hac(H) ⊂ Ran(Id −Πp(H)) = Hp(H∗)⊥.

Proof. — Let u ∈ M(H). We decompose
u = Πp(H)u+ (Id −Πp(H))u.

Suppose by contradiction that Πp(H)u ̸= 0. Then there exists v ∈ Hp(H∗) such
that ⟨u, v⟩H = 1. Indeed, if ⟨u, v⟩H = 0 for all v ∈ Hp(H∗), then u ∈ Hp(H∗)⊥ =
Ker(Πp(H)).
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Now, if v ∈ Hp(H∗) satisfies ⟨u, v⟩ = 1, the map t 7→ ⟨e−itHu, v⟩H cannot belong
to L2(R,C) since 〈

e−itHu, v
〉

H
=
〈
u, eitH∗

v
〉

H
and the restriction of iH∗ to Hp(H∗) is a linear mapping on a finite dimensional
vector space.

This proves that Πp(H)u = 0 and hence that M(H) ⊂ Ran(Id −Πp(H)). Finally
taking the closure of M(H), we get the proposition. □

To prove the converse inclusion, we will use the following easy lemma. Recall that
r has been defined in (3.15), for some z0 ∈ ρ(H), z0 ∈ C \ R.

Lemma 5.9. — Suppose that Hypotheses 3.2 and 3.3 hold. Then

Ran
(
r(H) (Id −Πp(H))

)
is dense in Hp(H∗)⊥.

Proof. — Since H commutes with Πp(H), r(H) preserves Hp(H∗)⊥ = Ran(Id −
Πp(H)). The adjoint of r(H)(Id −Πp(H)) is given by
[
r(H) (Id −Πp(H))

]∗
=
 n∏

j=1
(H∗ − λj)νj

RH∗(z̄0)(ν1+···+νn+ν∞) (Id −Πp(H∗)) .

Since the restriction of H∗ to Ran(Id −Πp(H∗)) has no eigenvalues, the right-hand-
side of the previous equation is an injective operator, which concludes the proof of
the lemma. □

Now we prove Theorem 3.8.
Proof of Theorem 3.8. — By Proposition 5.8, we know that Hac(H) ⊂ Hp(H∗)⊥.

To prove that Hp(H∗)⊥ ⊂ Hac(H), since Hac(H) is closed, it suffices by Lemma 5.9
to show that

Ran
(
r(H) (Id −Πp(H))

)
⊂ Hac(H).

Let u = r(H)(Id −Πp(H))v ∈ Ran(r(H)(Id −Πp(H))). Let (vn)n ∈N = (Cwn)n ∈N
be a sequence in HC = Ran(C) such that vn → v as n → ∞ (recall that HC is dense
in H). We claim that
(5.27) un := r(H) (Id −Πp(H)) vn ∈ Hac(H).
To prove (5.27), applying Proposition 3.15 and the fact that (Id −Πp(H))Πdisc(H) =
0, we first observe that, for all φ ∈ H,

⟨un, φ⟩ =
〈
r(H) (Id −Πp(H)) vn, φ

〉
= − 1

2iπ

∫
Λ
r(λ)

〈(
RH

(
λ+ i0+

)
− RH

(
λ− i0+

) )
vn, ψ

〉
dλ,

where, to simplify notations, we set Λ := σess(H) and ψ := (Id −Πp(H∗))φ. Next we
apply (5.14) in Proposition 5.4 and Plancherel’s Theorem to obtain

(5.28)
∫
R

∣∣∣〈e−itHun , φ
〉∣∣∣2

H
dt

=
∫

Λ

∣∣∣〈r(λ)
(
RH

(
λ− i0+

)
− RH

(
λ+ i0+

))
vn , ψ

〉
H

∣∣∣2 dλ.
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Using the resolvent identity
RH(z) = R0(z) − R0(z)VR0(z) + R0(z)VRH(z)VR0(z),

for all z ∈ ρ(H), we decompose

(5.29)
∫

Λ

∣∣∣r(λ)
〈(

RH(λ− iε) − RH(λ+ iε)
)
vn , ψ

〉
H

∣∣∣2 dλ

⩽
∫

Λ

∣∣∣r(λ)
〈(

R0(λ− iε) − R0(λ+ iε)
)
vn , ψ

〉
H

∣∣∣2 dλ

+
∫

Λ

∣∣∣r(λ)
〈(

R0(λ− iε)VR0(λ− iε)
)
vn , ψ

〉
H

∣∣∣2 dλ

+
∫

Λ

∣∣∣r(λ)
〈(

R0(λ+ iε)VR0(λ+ iε)
)
vn , ψ

〉
H

∣∣∣2 dλ

+
∫

Λ

∣∣∣r(λ)
〈(

R0(λ− iε)VRH(λ− iε)VR0(λ− iε)
)
vn , ψ

〉
H

∣∣∣2 dλ

+
∫

Λ

∣∣∣r(λ)
〈(

R0(λ+ iε)VRH(λ+ iε)VR0(λ+ iε)
)
vn , ψ

〉
H

∣∣∣2 dλ.

We claim that each term of the right-hand-side of the previous equation is bounded
by cn ∥φ∥2

H, for some positive constant cn depending on n. We estimate each term
separately.

For the first term in the right-hand-side of (5.29), it suffices to use that H0 is a
self-adjoint operator with purely absolutely continuous spectrum (by Hypothesis 3.1),
which yields

(5.30)
∫

Λ

∣∣∣r(λ)
〈(

R0
(
λ− i0+

)
− R0

(
λ+ i0+

))
vn , ψ

〉∣∣∣2 dλ ⩽ cn∥r∥2
L∞ ∥ψ∥2

H .

Next, remembering that vn = Cwn and V = CWC, the second and third terms in
the right-hand-side of (5.29) are estimated as

(5.31)
∫

Λ

∣∣∣r(λ)
〈(

R0(λ± iε)CWCR0(λ± iε)
)
Cwn , ψ

〉∣∣∣2
H

dλ

⩽ ∥W∥2
B(H) ∥r∥2

L∞ sup
λ∈Λ

(
∥CR0(λ± iε)C∥2

B(H)

)
∥wn∥2

H

∫
Λ

∥CR0(λ∓ iε)ψ∥2
H dλ

⩽ cn∥ψ∥2
H,

where we used Hypothesis 3.1 (and (3.3)) in the second inequality.
Finally, to estimate the fourth and fifth terms in the right-hand-side of (5.29), we

write similarly

(5.32)
∫

Λ

∣∣∣r(λ)
〈(

R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)
)
Cwn , ψ

〉
H

∣∣∣2 dλ

⩽ ∥W∥2
B(H) sup

λ ∈ Λ

(
|r(λ)| ∥CRH(λ± iε)CW∥2

B(H)

)
sup
λ ∈ Λ

(
∥CR0(λ± iε)C∥2

B(H)

)
∥wn∥2

H

×
∫

Λ
∥CR0(λ∓ iε)ψ∥2

H dλ

⩽ cn∥ψ∥2
H,
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where we used Hypotheses 3.1 and 3.3 in the second inequality.
Inserting (5.29)–(5.32) into (5.28) and using that ∥ψ∥H ⩽ ∥φ∥H, we deduce that∫

R

∣∣∣〈e−itHun , φ
〉∣∣∣2

H
dt ⩽ Cn∥φ∥2

H.

Therefore, un ∈ Hac(H) for all n ∈ N. Since un → u in H as n → ∞, and since
Hac(H) is closed, this implies that u ∈ Hac(H) and hence the proof of Theorem 3.8
is complete. □

Our last proposition shows that in the case where H is dissipative, Hypothesis 3.4
can be dropped in the statement of Theorem 3.8. Using the notations from Section 4.6,
we know that the only possible generalized eigenvectors corresponding to a real
eigenvalue of H are eigenvectors in the usual sense, and that they are also eigenvectors
of HV1 (and of H∗). In other words, if λ ∈ R is an eigenvalue of H, then Ker((H−λ)2)
= Ker(H − λ) and we have

u ∈ Ker(H − λ) ⇒ u ∈ Ker(HV1 − λ) ∩ Ker(V2) ⇒ u ∈ Ker(H∗ − λ),

see also Lemma 4.11. Choosing an orthogonal basis {e1, . . . , en} in Ker(H − λ), the
spectral projection corresponding to λ can then be defined in the usual way, setting

Πλ(H)u :=
n∑

j=1
⟨ej, u⟩ej, u ∈ H.

One readily checks that Πλ(H)∗ = Πλ(H∗). The spectral projection Πp(H) onto the
point spectral subspace of H can then be defined as in Section 2.2. Modifying the
previous proof in a straightforward way, we deduce the following.

Proposition 5.10. — Suppose that Hypotheses 3.1-3.3 hold and that H is
dissipative, Im(H) ⩽ 0. Then

Hac(H) = Ran(Id − Πp(H)) = Hp(H∗)⊥.

Appendix A. Proof of proposition 2.1

In this appendix, we give a proof of properties of spectral projections associated
to embedded eigenvalues.

Proof of Proposition 2.1. — We are in the case where λ is an embedded eigen-
value of H. Let (φk)1⩽ k ⩽mλ

a basis of Ker((H − λ)mλ) permitting to define Πλ(H)
(see (2.10)). Then the properties are proved in the following way

• Πλ(H)2 = Πλ(H) : Let u ∈ H, then

Πλ(H)Πλ(H)u =
n∑

k=1
⟨Jφk ,Πλ(H)u⟩H φk =

n∑
k,l=1

⟨Jφl , φk⟩H ⟨Jφk , u⟩H φl

=
n∑

k=1
⟨Jφk , u⟩H φk = Πλ(H)u.
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• ∀ u ∈ D(H0), Πλ(H)Hu = HΠλ(H)u : Let u ∈ D(H0), then

HΠλ(H)u =
n∑

k=1
⟨Jφk , u⟩H φk =

n∑
k,l=1

⟨Jφk , u⟩H ⟨JHφl , φk⟩H φl

=
n∑

l=1
⟨JHφl , u⟩H φl =

n∑
l=1

⟨Jφl , Hu⟩H φl

= Πλ(H)Hu.

• (Πλ(H))⋆ = Πλ(H∗) : Let u, v ∈ H, then

⟨Πλ(H)u, v⟩H =
n∑

k=1
⟨Jφk , u⟩H ⟨φk , v⟩H

=
〈
u,

n∑
k=1

⟨φk , v⟩H Jφk

〉
H

= ⟨u,Πλ(H∗)v⟩H . □

Appendix B. Appendix to Section 4

In this appendix, we provide the proofs of Propositions 4.1 and 4.7. They consist
in a suitable adaptation of the corresponding proofs in [FN19] where the particular
case of dissipative operators have been considered.

Proof of Proposition 4.1. — We prove the result in the case of an outgoing regular
spectral point, the proof in the case of an incoming regular spectral point is identical.

First we prove that (i)⇒(ii). Suppose that λ is an outgoing regular spectral point
of H. There exists ε0 > 0 such that, for all ε ∈ (0, ε0), RH(λ + iε) exists in B(H).
The resolvent identity gives

(B.1) (Id −CRH(λ+ iε)CW )(Id +CR0(λ+ iε)CW ) = Id .

Thus Id +CR0(λ+ iε)CW is injective on H. Since CR0(λ+ iε)CW is compact, the
Fredholm alternative implies that Id +CR0(λ+ iε)CW is invertible in B(H). Letting
ε → 0+, using that the limits in (4.1) exist, we obtain from (B.1) that(

Id −CRH(λ+ i0+)CW )(Id +CR0(λ+ i0+)CW
)

= Id .

Thus Id +CR0(λ+ i0+)CW is surjective, and hence invertible in B(H) by the Fred-
holm alternative.

Next we prove that lemma (ii)⇒(i). Suppose that Id +CR0(λ+ i0+)CW is invert-
ible in B(H). Suppose by contradiction that λ is an accumulation point of eigenvalues
of H located in λ + i(0,∞). Then there exists a sequence (εn)n ∈N of positive real
numbers such that εn → 0 as n → ∞ and, for all n ∈ N, vectors un ∈ H, ∥un∥H = 1,
such that

(H − (λ+ iεn))un = 0.
Applying CR0(λ+ iεn) to this equations yields

CR0(λ+ iεn)(H − (λ+ iεn))un = (Id +CR0(λ+ iεn)CW )Cun = 0.
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Since Id +CR0(λ+ i0+)CW is invertible in B(H), for n large enough, Id +CR0(λ+
iεn)CW is also invertible. Therefore CR0(λ+ iεn)(H − (λ+ iεn)) is injective, which
is a contradiction since un ̸= 0.

It remains to show that CRH(λ+ iε)CW converges in B(H) as ε → 0+. Since for
ε > 0 small enough Id +CR0(λ+ iε)CW is invertible in B(H), (B.1) gives

CRH(λ+ iε)CW =
(

Id +CR0(λ+ iε)CW
)−1

− Id,

This proves that

CRH(λ+ i0+)CW =
(

Id +CR0(λ+ i0+)CW
)−1

− Id

exists in B(H). □

Before proving Proposition 4.7, we recall the proof of Lemma 4.2 which was used
several times in the main text.

Proof of Lemma 4.2. — Consider for instance the operator R0 (λ+ iε)C. Let
ε > 0, u ∈ H. We have

∥R0 (λ+ iε)Cu∥2
H = ⟨R0 (λ+ iε)Cu,R0 (λ+ iε)Cu⟩H

= 1
2iε ⟨Cu, [R0 (λ+ iε) − R0 (λ− iε)]Cu⟩H

= 1
ε

Im (⟨u,CR0 (λ+ iε)Cu⟩H) .

Since the limits (4.1) exist, there exists c0 > 0 such that

sup
ε > 0

Im (⟨u,CR0 (λ+ iε)Cu⟩H) ⩽ c2
0 ∥u∥2

H .

Hence
∥R0 (λ+ iε)Cu∥2

H ⩽
1
ε
c2

0 ∥u∥2
H .

This proves the lemma for R0 (λ+ iε)C. The proof for R0 (λ− iε)C is identical. □

Proof of Proposition 4.7. — Again, we prove the result in the case of an outgoing
regular spectral point, the proof in the case of an incoming regular spectral point
being identical.

(ii)⇒(i) is obvious. We prove that (i)⇒(ii). Suppose that λ is an outgoing regular
spectral point. By Proposition 4.1,

A(λ) := Id +CR0(λ+ i0+)CW

is invertible in B(H). Since the maps in (4.10) extend by continuity to D̊(λ, r) ∩ C̄±,
there exists a compact interval Kλ ⊂ R whose interior contains λ such that, for all
µ ∈ Kλ, A(µ) is invertible. By Proposition 4.1, this implies that each µ ∈ Kλ is not
an accumulation point of eigenvalues located in µ+ i(0,∞) and that, for all µ ∈ Kλ,
CRH(µ+ i0+)CW exists in B(H). Finally, the fact that the limit
CRH(µ+ i0+)CW = lim

ε → 0+
CRH(µ+ iε)CW = (Id +CR0(µ+ i0+)CW )−1 − Id

is uniform in µ ∈ Kλ follows from the continuity of the map z 7→ (Id +CR0(z)CW )−1

on D̊(λ, r) ∩ C̄+. □
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Appendix C. Appendix to Section 5

Proof of Propositions 5.1 and 5.2. — To prove the existence of the weak limit
in (5.2), we use twice the resolvent formula, which gives for ε ∈ (0, ε0), ε0 > 0 small
enough,

(C.1) RH(λ± iε) =
R0(λ± iε) − R0(λ± iε)VR0(λ± iε) + R0(λ± iε)VRH(λ± iε)VR0(λ± iε).

Stone’s formula for the self-adjoint operator H0 shows that

(C.2) w-limε → 0+
1

2πi

∫
I

(
R0(λ+ iε) − R0(λ− iε)

)
dλ = 1I(H0)

in B(H). Since for all u ∈ H CR0(λ ± iε)u converge in L2(I; H) as ε → 0+ by
Hypothesis 3.1, we deduce that the weak limits
(C.3)
w-limε → 0+

∫
I

R0(λ±iε)VR0(λ±iε)dλ = w-limε → 0+

∫
I

R0(λ±iε)CWCR0(λ±iε)dλ

exist in B(H). For the last term from (C.1), we write

(C.4) w-limε → 0+

∫
I

R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)dλ

= w-limε → 0+

∫
I

R0(λ± i0+)CWCRH(λ± iε)CWCR0(λ± i0+)dλ,

where we used that, for all u ∈ H, λ 7→ CR0(λ±iε)u converge in L2(I; H) as ε → 0+,
together with the fact that CRH(λ ± iε)CW is uniformly bounded in ε ∈ (0, ε0)
by (5.1). Since λ 7→ CR0(λ± i0+)u belongs to L2(I,H) for all u ∈ H, combining the
fact that CRH(λ ± iε)CW converges to CRH(λ ± i0+)CW in B(H) for a.e. λ ∈ I
and again that CRH(λ± iε)CW is uniformly bounded in ε ∈ (0, ε0), we obtain

(C.5) lim
ε → 0+

∫
I

〈
u,R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)v

〉
dλ

=
∫

I

〈
CR0(λ∓ i0+)u,WCRH(λ± i0+)CWCR0(λ± i0+)v

〉
dλ,

by Lebesgue’s dominated convergence theorem.
Equations (C.1)–(C.5) prove that the weak limit in (5.2) exists. Moreover, for all

u, v ∈ H, we have that

⟨u,1I(H)v⟩ = ⟨u,1I(H0)v⟩ − 1
2iπ

∫
I

〈
CR0

(
λ∓ i0+

)
u,WCR0

(
λ± i0+

)
v
〉
dλ

+ 1
2iπ

∫
I

〈
CR0

(
λ∓ i0+

)
u,WCRH

(
λ± i0+

)
CWCR0

(
λ± i0+

)
v
〉

dλ.

By the same argument, we obtain that (5.6) is a Banach algebra morphism. Equa-
tion (5.4) is easily proven, while (5.3), (5.7) and (5.8) follow as in [FF18]. □
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Proof of Propositions 5.3 and 5.4. — The proof has the same structure as that of
Propositions 5.1 and 5.2, with the following modifications. First, (C.2) is replaced
by the following argument. We write∫

I

(
h(λ+ iε)R0(λ+ iε) − h(λ− iε)R0(λ− iε)

)
dλ

=
∫

I
h(λ)

(
R0(λ+ iε) − R0(λ− iε)

)
dλ

+
∫

I

(
[h(λ+ iε) − h(λ)]R0(λ+ iε) − [h(λ− iε) − h(λ)]R0(λ− iε)

)
dλ.

For the first term, since H0 is self-adjoint, we have

w-limε → 0+
1

2πi

∫
I
h(λ)

(
R0(λ+ iε) − R0(λ− iε)

)
dλ = h(H0).(C.6)

For the second term, we use the mean-value Theorem together with the Cauchy–
Schwarz inequality, writing for all u, v ∈ H,

(C.7)
∫

I

∣∣∣〈u, [h(λ± iε) − h(λ)]R0(λ± iε)v
〉

H

∣∣∣dλ
⩽ ε∥u∥H

( ∫
I

(
sup

0 < ε < ε0
|h′(λ± iε)|

)2
dλ
) 1

2
( ∫

I

∥∥∥R0(λ± iε)v
∥∥∥2

H
dλ
) 1

2
.

The first integral is bounded by (5.10). The second integral can be rewritten as∫
I

∥∥∥R0(λ± iε)v
∥∥∥2

H
dλ =

∫
I

〈
v,R0(λ∓ iε)R0(λ± iε)v

〉
H

dλ

= 1
2iε

∫
I

〈
v,
(
R0(λ− iε) − R0(λ+ iε)

)
v
〉

H
dλ,

(C.8)

from which we deduce that

(C.9)
( ∫

I

∥∥∥R0(λ± iε)v
∥∥∥2

H
dλ
) 1

2
⩽ cε− 1

2 ∥v∥H.

Together with (C.6), (C.7) and (C.8), this implies that

w-limε → 0+
1

2πi

∫
I

(
h(λ+ iε)R0(λ+ iε) − h(λ− iε)R0(λ− iε)

)
dλ = h(H0).

The rest of the proof follows in the same way as in the proof of Propositions 5.1
and 5.2 (see in particular (C.3) and (C.4)), using that h(λ± iε) and h(λ± iε)CRH

(λ± iε)CW are uniformly bounded in ε ∈ (0, ε0). □

In the proof of the spectral resolution formula stated in Proposition 3.15, we used
Lemma 5.5 which we now prove. The arguments are similar to those used in the
previous proofs.

Proof of Lemma 5.5. — To prove (i), it suffices to use the resolvent equation (C.1)
together with the fact that V = CWC and the estimates ∥R0(λ ± iε)∥B(H) ⩽ ε−1,
∥CR0(λ±iε)∥B(H) ⩽ cε−1/2 (see Lemma 4.2) and ∥CR(H±iε)CW∥B(H) ⩽ c by (5.1).
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To prove (ii), we use again (C.1), writing∫
I

∥RH(λ± iε)u∥2
H dλ ⩽ 2

∫
I

∥R0(λ± iε)u∥2
H dλ

+ 2
∫

I
∥R0(λ± iε)CWCR0(λ± iε)u∥2

H dλ

+ 2
∫

I
∥R0(λ± iε)CWCRH(λ± iε)CWCR0(λ± iε)u∥2

H dλ.

By (C.9), the first term is bounded cε−1. The same holds for the second and third
terms, using again that ∥CR0(λ ± iε)∥B(H) ⩽ cε−1/2 and ∥CR(H ± iε)CW∥B(H)
⩽ c. □
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