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Abstract. — We study the asymptotic behaviour of a version of the one-dimensional Mott
random walk in a regime that exhibits severe blocking. We establish that, for any fixed time,
the appropriately-rescaled Mott random walk is situated between two environment-measurable
barriers, the locations of which are shown to have an extremal scaling limit. Moreover, we give
an asymptotic description of the distribution of the Mott random walk between the barriers
that contain it.

Résumé. — Nous étudions le comportement asymptotique d’une version de la marche aléa-
toire de Mott en dimension un, dans un régime où un phénomène aigu de bloquage a lieu. Nous
établissons que, pour tout temps fixé, la marche aléatoire de Mott correctement redimensionnée
se situe entre deux barrières mesurables en fonction de l’environnement. L’emplacement de ces
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barrières présente une limite d’échelle qui s’exprime en termes de processus extrémaux. Nous
donnons également une description asymptotique de la distribution de la marche aléatoire de
Mott entre les barrières qui la contiennent.

1. Introduction

In one dimension, Mott variable-range hopping, which captures the dynamics of
an electron in a disordered conduction medium in the Anderson localisation regime,
is known to exhibit either diffusive or subdiffusive behaviour, depending on how
the parameters of the model are chosen. (Historically, Mott variable-range hopping
goes back to the study of electronic processes in non-crystalline materials [Mot69,
Mot72], and the one-dimensional case in particular provides a model of such a
process in a wire [Ale82, Lee84, SKL86, SM98].) In [CF09], mathematically rigourous
scaling limits for Mott variable-range hopping were obtained in the diffusive regime,
as were criteria distinguishing this from the subdiffusive regime. Concerning the
latter, anomalous polynomial scaling limits were derived in [CFJ20], wherein the
subdiffusivity in question was shown to arise from a “blocking” mechanism, with
regions of low conductivity persisting in the limit. The present article extends this
study of the subdiffusive regime to a parameter region where the blocking behaviour
is even more severe, leading to scaling limits that are described in terms of the so-
called extremal processes that arise naturally in the study of sums of independent and
identically-distributed random variables whose distributions have slowly-varying tails.
(For background on the classical work in the latter area, see [Gne43, Lam64, Res87].)

We start by introducing the version of the Mott random walk that will be the focus
of this article. Let ω = (ωi)i ∈Z be the atoms of a homogeneous Poisson process on
R with unit intensity, conditioned to have an atom at zero (i.e. sampled according
to the relevant Palm distribution). We assume this is built on a probability space
with probability measure P. Moreover, for definiteness concerning the labelling, we
will always suppose

· · · < ω−2 < ω−1 < ω0 = 0 < ω1 < ω2 < · · · .

Given a realisation of ω, we define conductances (cα,λ(x, y))x,y∈ω by setting cα,λ(ωi, ωi)
= 0 and
(1.1) cα,λ(ωi, ωj) := exp

(
− |ωi − ωj|α + λ(ωi + ωj)

)
, ∀ i ̸= j,

where α > 1 and λ ∈ R are deterministic constants. The associated continuous-time
random walk we consider, which will be denoted by X = (Xt)t⩾ 0, has generator
characterised by (

Lα,λf
)

(ωi) :=
∑
j ∈Z

cα,λ(ωi, ωj)
cα,λ(ωi)

(
f(ωj) − f(ωi)

)
,(1.2)

for bounded f : ω → R, where
cα,λ(ωi) :=

∑
j ∈Z

cα,λ(ωi, ωj).

ANNALES HENRI LEBESGUE



Extremal regime for one-dimensional Mott variable-range hopping 1171

It is readily checked that, since α > 1, the random variable cα,λ(ωi) is finite for every
i ∈ Z, P-a.s. Note that this means the generator at (1.2) is well-defined. Moreover,
the Markov chain X has unit mean exponential holding times, which implies it does
not explode (i.e. remains in ω for all time), and has invariant measure µ, with
(1.3) µ({ωi}) = cα,λ(ωi).
We will typically call X the Mott random walk, and write P α,λ

ω for the law of X
started from 0, conditional on ω; this is the so-called quenched law of X. The
corresponding annealed law is obtained by integrating out the randomness of the
environment, i.e.

Pα,λ :=
∫

P α,λ
ω (·) P(dω).

Our first main result, Theorem 1.1 (see also Remark 1.2), establishes that the
running supremum and infimum of X, i.e.

X t := sup
s⩽ t

Xs, X t := inf
s⩽ t

Xs,

localize on environment-measurable processes. En route to proving this, we also
obtain a similar conclusion for the exceedance times (∆+

x )x⩾ 0 and (∆−
x )x⩾ 0, defined

by setting
∆+

x := inf{t ⩾ 0 : Xt > x},

∆−
x := inf{t ⩾ 0 : Xt < −x}.

We note that (∆+
x )x⩾ 0 and (∆−

x )x⩾ 0 are càdlàg functions, and represent the right-
continuous inverses of X and −X, respectively. As will be explained in more detail
after we have given the statements of our results, the long-term behavior of X and
X is essentially explained by the nearest-neighbour edge resistances,

rα,λ(ωj, ωj+1) := cα,λ(ωj, ωj+1)−1.

Indeed, as alluded to at the beginning of the section, the key feature of the Mott
random walk in the regime that we are studying is blocking, and, intuitively, the
family (rα,0(ωj, ωj+1))j=0, ..., k−1 describes the height of the barriers that X has to
overcome to reach ωk. (Note that the drift parameter λ is not particularly important
in determining barrier heights.) The family (rα,0(ωj, ωj+1))j ∈Z is independent and
identically distributed (i.i.d.), with

P
(
rα,0(ω1, ω0) > u

)
= 1

L(u) , ∀ u ⩾ 1,(1.4)

where
L(u) = elog1/α(u)(1.5)

is slowly varying as u → ∞, and has inverse given by
(1.6) L−1(u) = elogα(u).

(Note that L and L−1 are only defined as above when u ⩾ 1. We extend L to a
continuous, strictly increasing function on [0, ∞) by setting L(u) = u for u ∈ [0, 1).
The inverse L−1 function is then extended in the same way.) Based on the above
observation, and in particular using the function L to capture the appropriate
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scaling, we define environment-measurable processes (mn,+(x))x⩾ 0 and (mn,−(x))x⩾ 0
by setting:

mn,+(x) := max
0⩽ωj ⩽xn

1
n

L
(
rα,0 (ωj, ωj+1)

)
,(1.7)

mn,−(x) := max
−xn⩽ωj ⩽ 0

1
n

L
(
rα,0 (ωj−1, ωj)

)
.(1.8)

The right-continuous inverses are given by
m−1

n,+(t) := inf{x ⩾ 0 : mn,+(x) > t},(1.9)
m−1

n,−(t) := − inf{x ⩾ 0 : mn,−(x) > t},(1.10)
respectively. We are now ready to state our initial conclusion, which starts to provide
a picture of the behaviour of the one-dimensional Mott random walk in the extremal,
weak drift regime. The subsequent result, Theorem 1.3, will demonstrate that the
environment-measurable processes (mn,+(x))x⩾ 0 and (mn,−(x))x⩾ 0 (and their right-
continuous inverses) have explicit, non-trivial distributional limits as n → ∞. Note
that we use dU to metrise the topology of uniform convergence on compacts, dJ1

to metrise the local Skorohod J1 topology and dM1 to metrise the local Skorohod
M1 topology; further details are given in Appendix A. Moreover, see Figure 1.1 for
output of a simulation that illustrates the result.

Theorem 1.1. — Fix α > 1 and λ ∈ R.
(a) As n → ∞,

dU

((
n−1L

(
n−1∆−

nx

)
, n−1L

(
n−1∆+

nx

))
x⩾ 0

, (mn,−(x), mn,+(x))x⩾ 0

)
→ 0

in Pα,λ/n-probability.
(b) As n → ∞,

dM1

((
n−1XnL−1(nt), n−1XnL−1(nt)

)
t⩾ 0

,
(
m−1

n,−(t), m−1
n,+(t)

)
t⩾ 0

)
→ 0

in Pα,λ/n-probability.

Remark 1.2. — The arguments we give below will further establish that, for each
fixed t > 0, we have localisation of the rescaled versions of X and X in the sense
that

Pα,λ/n
((

n−1XnL−1(nt), n−1XnL−1(nt)
)

=
(
m−1

n,−(t), m−1
n,+(t)

))
→ 1.

See Remark 4.3 for a sketch of the proof. This is similar to the one-site localisation
in probability for the Bouchaud trap model with slowly-varying traps of [CM17,
Theorem 1.1]. (We recall that, conditional on a trapping environment (τi)i ∈Z, which
is an i.i.d. sequence of (0, ∞)-valued random variables, the (symmetric) Bouchaud
trap model on Z is the continuous time nearest-neighbour Markov chain on Z with
jump rates from i to i ± 1 given by 1

2τi
. To say that the Bouchaud trap model has

slowly-varying traps means that P(τi > x) is slowly varying as x → ∞.)
To characterise the limits of the processes (mn,+(x))x⩾ 0 and (mn,−(x))x⩾ 0, we

introduce a Poisson point process on R × (0, ∞) of intensity v−2dxdv, the set of
atoms of which will be written {(xi, vi) : i ∈ Z}. We again suppose this is built on an
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Extremal regime for one-dimensional Mott variable-range hopping 1173

Figure 1.1. Simulation of the Mott random walk X for 109 steps with α = 1.5
(top left), α = 2.5 (top right) and α = 3.5 (bottom), and, in each case, λ = 0.
Space runs along the horizontal axis, and time runs upwards, with the vertical
axes being rescaled as t 7→ L−1(t) (note that L depends on α). The vertical lines
indicate the atoms of ω, and the red curves indicate the ω-measurable processes
mn,+ and mn,−, which describe the space-time region that the Mott random walk
is highly likely to both be contained within and fully explore.
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underlying probability space with probability measure P. We define two associated
càdlàg processes by setting, for x ⩾ 0,

m+(x) := sup{vi : 0 ⩽ xi ⩽ x},(1.11)
m−(x) := sup{vi : −x ⩽ xi ⩽ 0}.(1.12)

These are examples of extremal processes, which naturally arise in the study of
random variables with slowly-varying tails, see [Kas86] and [Res87, Chapter 4], for
example. The right-continuous inverses of m+ and m−, which will be denoted m−1

+
and m−1

− , are defined similarly to (1.9) and (1.10), respectively. Our second main
result follows from classical results on extremal processes, and, in conjunction with
the previous theorem, gives scaling limits for the running supremum and infimum
of X (as well as the exceedance times) under the annealed law Pα,λ.

Theorem 1.3. — Fix α > 1.
(a) As n → ∞,

P
(
(mn,−(x), mn,+(x))x⩾ 0 ∈ ·

)
→ P

(
(m−(x), m+(x))x⩾ 0 ∈ ·

)
weakly as probability measures on D([0, ∞),R2) with respect to the topology
induced by dJ1 .

(b) As n → ∞,

P
((

m−1
n,−(t), m−1

n,+(t)
)

t⩾ 0
∈ ·
)

→ P
((

m−1
− (t), m−1

+ (t)
)

t⩾ 0
∈ ·
)

weakly as probability measures on D([0, ∞),R2) with respect to the topology
induced by dM1 .

In our third main result, we give the asymptotic finite-dimensional distributions of
the Mott random walk X under scaling. In particular, Theorem 1.1 and Remark 1.2
already give that (asymptotically) n−1XnL−1(nt) sits between the sites m−1

n,−(t) and
m−1

n,+(t), and the next theorem shows that its density is proportional to e2λx on this
interval. Moreover, as the proof strategy will explain, the process mixes suitably
quickly that, conditional on the environment, the locations of n−1XnL−1(nt) are
asymptotically independent for distinct values of t. Note that we write Eα,λ/n

ω for
the expectation under P α,λ/n

ω .

Theorem 1.4. —
(a) For any collection of times satisfying 0 < t1 < t2 < · · · < tk and continuous

bounded functions f1, . . . , fk, as n → ∞,∣∣∣∣∣∣∣∣E
α,λ/n
ω

(
k∏

i=1
fi

(
n−1XnL−1(nti)

))
−

k∏
i=1

∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxfi(x)dx∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxdx

∣∣∣∣∣∣∣∣ → 0

in P-probability.
(b) For any collection of times satisfying 0 < t1 < t2 < · · · < tk, as n → ∞,

Pα,λ/n
((

n−1XnL−1(nti)
)k

i=1
∈ ·
)

→ P
((

Uλ
ti

)k

i=1
∈ ·
)
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Extremal regime for one-dimensional Mott variable-range hopping 1175

where, conditional on (m−, m+), (Uλ
ti

)k
i=1 is an independent collection of ran-

dom variables, with Uλ
ti

having density proportional to e2λx on (m−1
− (ti), m−1

+
(ti)) (and zero elsewhere). In particular, in the case λ = 0, the limiting random
variables are simply uniform on the relevant interval.

Let us now briefly outline our proof strategy for the above results. As in [CFJ20],
the argument used to prove Theorem 1.1 can, at least heuristically, be understood
in terms of the scaling of the resistance in the electrical network associated with
(cα,λ(x, y))x,y ∈ ω. Towards understanding this, first consider the zero drift (λ = 0) case
and recall that the nearest-neighbour edge resistances rα,0(ωi, ωi+1) = cα,0(ωi, ωi+1)−1

have a distributional tail P(rα,0(ωi, ωi+1) ⩾ u) = 1/L(u), where the slowly-varying
function L is defined in (1.5). Now, if we disregard the non-nearest-neighbour edges,
then the effective resistance between ω0 and ωn becomes simply a sum of independent
and identically-distributed random variables:

Rα,0
nn (ω0, ωn) =

n−1∑
i=0

rα,0 (ωi, ωi+1) .

We thus readily deduce from the classical result of [Kas86, Theorem 2.1] that, as
n → ∞,
(1.13)

(
n−1L

(
Rα,0

nn

(
ω0, ω⌊nx⌋

)))
x⩾ 0

→ (m+(x))x⩾ 0

in distribution in the space D([0, ∞),R) with respect to the Skorohod J1 topology,
and similarly for resistances along the negative axis. To get from (1.13) to Theorem 1.1
requires a little more work, as we will next describe.

Firstly, as might be understood from the commute time identity (see, for instance,
[Bar98, Theorem 4.27] for a proof in the context of continuous time random walks),
the scaling of the exceedance times ∆± comes not only from the resistance scaling,
but also from the scaling of the invariant measure µ, see (1.3). Since µ({ωi}) has
finite expectation, the invariant measure in the present setting scales linearly to
Lebesgue measure, which explains the additional factor of n−1 in front of ∆± in
Theorem 1.1(a), as compared to (1.13).

Remark 1.5. — We note that the contribution from the invariant measure can be
neglected if α > 2. Indeed, (1.13) and some elementary calculations reveal that∣∣∣∣ 1nL

(
nRα,0

nn

(
ω0, ω⌊nx⌋

))
− 1

n
L
(
Rα,0

nn

(
ω0, ω⌊nx⌋

))∣∣∣∣
converges to zero in probability if and only if α > 2. As a consequence, for α > 2,
Theorem 1.1(b) can be stated more simply as

dM1

((
n−1XL−1(nt), n−1XL−1(nt)

)
t⩾ 0

,
(
m−1

n,−(t), m−1
n,+(t)

)
t⩾ 0

)
→ 0

in Pα,λ/n-probability. A similar phenomenon was observed for the Bouchaud trap
model with slowly varying traps in [CM15, Theorem 1.7], with α > 2 corresponding
to [CM15, Assumption 1.4].

Secondly, in addition to the contribution from the invariant measure, for the
statement of the full result of Theorem 1.1 one needs to further consider the effect of
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non-nearest neighbour edges and the drift term. Whilst both of these add complexity
to the argument, the qualitative behaviour of the model remains the same. As for
Theorem 1.1(b), this is obtained from Theorem 1.1(a) by simply taking appropriate
inverses. And, as already noted, Theorem 1.3 is a straightforward application of
classical results.

Turning now to Theorem 1.4, a key point to note in the previous conclusions is
that the scaling limits of the exceedance times and the running infimum/supremum
are environment measurable, with the Poisson process {(xi, vi) : i ∈ Z} capturing
the asymptotic behaviour of the locations and sizes of the resistance “barriers” in ω.
In particular, the proof of Theorem 1.1 tells us that at time t the random walk X can
be found between the first nearest-neighbour edges on the left- and right-hand sides
of the origin whose resistances exceed a given threshold. To establish Theorem 1.4
from this, we show that, much more quickly than crossing one of these boundary
edges, the random walk X mixes on the part of the space between them. We thus see
that the relative position of the random walker between these two edges homogenises
to a distribution depending only on the positions of the boundary edges. Moreover,
mixing happens sufficiently fast that, on the time scale being considered, the positions
of the random walk at distinct time points are asymptotically independent.

In the following remarks, we discuss some natural adaptations/generalisations of
our framework.

Remark 1.6. —
(a) The choice of a unit intensity Poisson process is simply for notational con-

venience. It would be possible to obtain corresponding results for a general
intensity ρ > 0, with the slowly varying function L being defined by (1.4).

(b) Similar arguments should also apply for more general point processes such
that (ωi+1 − ωi)i ∈Z are i.i.d. and for which the tail of the nearest-neighbour
resistance distribution is slowly varying. In this case, one might have to make
minor adaptations, replacing the log terms that we use for a generically small
deviation, with one suited to the particular slowly-varying function. (Such
modifications were managed for the Bouchaud trap model with slowly varying
traps in [CM15].)

(c) Due to the original physical motivation, it is common in studies of Mott
variable-range hopping to include “energy marks”, namely a term of the form
−βU(Ei, Ej) in the exponential defining the conductances at (1.1), where
β ⩾ 0 is the inverse temperature, U : R×R → [0, 1] is a symmetric interaction
function, and, representing the energy marks, (Ei)i ∈Z is a family of i.i.d.
random variables on R. The reason for not including such here is again for
convenience, and adding them to the model should not affect the arguments
in an essential way.

(d) Whilst we study the constant-speed version of the Mott random walk, with
unit mean holding times, another standard choice would be to study the
variable-speed version, with generator satisfying(

Lα,λf
)

(ωi) :=
∑
j ∈Z

e−2λωicα,λ (ωi, ωj) (f(ωj) − f(ωi)) ,
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for bounded f : ω → R. As per [CFJ20, Remarks 1.3 and 3.2], the same
arguments will again apply, but with speed measure being given by ν({ωi}) =
e2λωi , which is in fact easier to study than the invariant measure in the
constant-speed case, as defined at (1.3).

(e) In the case of a constant drift λ > 0, we expect that the techniques of this
article would enable one to show that: as n → ∞,

dM1

((
n−1XL−1(nt)

)
t⩾ 0

,
(
m−1

n,+(t)
)

t⩾ 0

)
→ 0

in Pα,λ-probability, and thus

Pα,λ
((

n−1XL−1(nt)
)

t⩾ 0
∈ ·
)

→ P
((

m−1
+ (t)

)
t⩾ 0

∈ ·
)

.

In particular, because in this case the walk moves to the right with little
backtracking, the exceedance times (∆+

x )x⩾ 0 should behave like a sum of i.i.d.
random variables, each representing the time to cross a resistance barrier
(which has order proportional to the size of the barrier). Thus we antici-
pate the exceedance times to grow asymptotically in the same way as the
nearest-neighbour resistance, see (1.13), and taking inverses yields the above
conclusions. Note that, in contrast to Theorem 1.1, there is no additional n
in the scaling, as the excursions away from the current maximum should not
play a significant role in this case.

(f) It is possible to define the model of this article in higher dimensions. For
such, it was shown in [CFP13] that the Mott random walk has a non-trivial
diffusive scaling limit for any α > 0.

We close this discussion by outlining some possible directions for future work. One
question that might be asked is about the precise manner in which the rescaled
running supremum X moves from a localization site m−1

n,+(t−) to a new maximum
m−1

n,+(t). Although the Mott random walk has essentially bounded jump length
and visits a positive proportion of sites between the two gaps, from Theorems 1.1
and 1.3 we know that the running supremum attains these intermediate values for a
vanishingly small time. On the other hand, this does not exclude the possibility that
there are near-maximal resistance barriers between m−1

n,+(t−) and m−1
n,+(t) whose size

does not constitute a new record, but which are still large enough to delay the Mott
random walk to an extent that is asymptotically visible. More precisely, we formulate
the following conjecture about quenched localization for the running supremum.

Conjecture 1.7. — There exists an environment-measurable process (Γt)t⩾0
with Γt ⊆ ω and |Γt| = 2 + ⌊ 1

α−1⌋ such that

(1.14) lim
t → ∞

P α,0
ω

(
X t ∈ Γt

)
= 1, P-a.s.

There is no environment-measurable set satisfying (1.14) with smaller cardinality
than Γt.

It is clear (Γt)t⩾ 0 must infinitely often contain sets of the form {m−1
1,+(t−), m−1

1,+(t)}
with m−1

1,+(t−) ̸= m−1
1,+(t), and thus have size at least two. (Here we refer to m−1

1,+
rather than m−1

n,+, as we are now discussing the unrescaled Mott random walk.)

TOME 6 (2023)
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The above conjecture says that this estimate on the size of Γ(t) is optimal for α > 2
and that the transition of the localisation site from m−1

1,+(t−) to m−1
1,+(t) happens as

a single, large jump in that regime. For α ∈ (1, 2], however, there is, infinitely often,
a finite, deterministic number of near-record gaps between m−1

1,+(t−) and m−1
1,+(t)

where X briefly localizes. The inspiration for Conjecture 1.7 comes from a similar
statement that is known to hold for the Bouchaud trap model with slowly varying
holding times, see [CM17, Mui15]. Additionally, we point to [CM17, Theorem 1.5]
for almost-sure bounds on the ratio of a sum of slowly-varying random variables to
their maximum, which provides useful insight into the nature of near maxima in
sequences of i.i.d. random variables with a slowly-varying distributional tail.

In several places in the above discussion, parallels with the Bouchaud trap model
have been drawn. This is natural given that the latter model can be seen as some-
thing of a dual to the Mott random walk. Indeed, both models admit anomalous
scaling limits, with those of the Bouchaud trap model being characterized by trap-
ping in single sites with large holding time, whereas in our setup the random walk
itself is never stationary (on an asymptotic scale), but is constrained within regions
between large resistance barriers. We refer to [CFJ20, Section 1.5] for a more detailed
discussion of this connection. By equipping each atom (ωi)i ∈Z independently with
a random holding time mean (τi)i ∈Z with suitable tail behavior, we believe that
it is possible to construct a random walk that exhibits both the “trapping” and
“blocking” behavior in such a way that an interesting limit process arises, similar
to [CFJ20, Theorem 1.8], which provides such a result in the case of heavy-tailed
random variables. Towards proving an extension of this kind, we note that the
“blocking” behavior in the Mott random walk is essentially caused by the scaling of
the effective resistance, while the “trapping” caused by large holding times emerges
from the scaling of the invariant measure. In the slowly-varying regime, both of
these objects are supported by extreme values. It is thus reasonable to believe that
effective resistance and invariant measure jointly converge to independent scaling
limits, which can be used to characterize the potential limit process.

The remainder of the article is organised as follows. In Section 2, we define features
of the environment that occur with high probability and facilitate various random
walk estimates being made, and also describe the scaling limit of the invariant
measure of the Mott random walk. The key random walk estimates for our argument
are then established in Section 3. Finally, in Section 4, we put these pieces together
in order to prove Theorems 1.1, 1.3 and 1.4. Concerning notation, constants of form
c, ci, C, Ci may depend on parameters that appear in the argument, such as α, λ,
δ, K, η, but will not depend on the level of scaling n or the particular random
environment ω. Moreover, we will sometimes use a continuous variable, x say, where
a discrete argument is required, with the understanding that it should be treated
as ⌊x⌋.
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2. Typical structure of the environment

The aim of this section is to describe the typical configuration of the environment
in which the Mott random walk evolves. In particular, after introducing some pre-
liminaries concerning the scaling of edges of high resistance in Subsection 2.1, we
define an environment with particular features that is seen with high probability in
Subsection 2.2. Finally, we derive the asymptotic behaviour of the invariant measure
of the Mott random walk in Subsection 2.3.

2.1. Convergence of the records

In this subsection we focus on the edges of high nearest-neighbour resistance, which
will be the critical factor in describing the behaviour of the random walk. We start by
defining barrier locations (a±

i )i ∈Z and corresponding barrier sizes (g±
i )i ∈Z. We high-

light that, although we suppress it from the notation, these are defined for each scale
n model separately, and also depend on a deterministic constant δ > 0. Specifically,
for the barriers on the positive axis, we set a+

0 := argmaxj ∈ {0,1, ..., ⌊nδ⌋}r
α,0(ωj, ωj+1)

(noting that, P-a.s., there are no ties),

(2.1) a+
i+1 := inf

{
j ⩾ a+

i : rα,0 (ωj, ωj+1) > rα,0
(
ωa+

i
, ωa+

i +1

)}
, ∀ i ⩾ 0,

and also
a+

i−1 := argmaxj ∈ {0,1, ..., a+
i −1}rα,0 (ωj, ωj+1) , ∀ i ⩽ 0,

where we define a+
i−1 := 0 if a+

i = 0. We moreover write

(2.2) g+
i := rα,0

(
ωa+

i
, ωa+

i +1

)
, ∀ i ∈ Z.

Proceeding “leftwards” from 0 along the negative axis, we define (a−
i )i ∈Z and (g−

i )i ∈Z
similarly.

The above barriers are nothing but the record process of the nearest-neighbour edge
resistances, with the dependence on n and δ only determining the parameterisation.
In the context of extreme value theory, it is standard to view such a record process
as a function of a certain point process. To this end, we introduce a random measure
on R × (0, ∞) defined by

(2.3)
∑
j ∈Z

δ(j/n,L(rα,0(ωj ,ωj+1))/n).

We consider L(rα,0(ωj, ωj+1)) instead of rα,0(ωj, ωj+1) since the distribution

(2.4) P
(
L
(
rα,0 (ωj, ωj+1)

)
> u

)
= 1

u

is a well-documented case in the literature of extreme value theory. Indeed, we know
from [Res87, Corollary 4.19] that the measure at (2.3) converges in distribution to
the Poisson random measure ζ = ∑

j ∈Z δ(xj ,vj) with intensity v−2dxdv. Precisely,
we view the measures in question as random measures on R × (0, ∞], where (0, ∞]
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is the compactification of (0, ∞) at +∞, equipped with the vague topology. This
compactification makes the function∑

j ∈Z
δ(xj ,vj) 7→ (max{vj : 0 ⩽ xj ⩽ x})x⩾ 0

a continuous map into D([0, ∞),R) when the latter space is equipped with the
Skorohod J1 topology and hence, by the continuous mapping theorem,( 1

n
max

0⩽ j ⩽xn
L
(
rα,0 (ωj, ωj+1)

))
x⩾ 0

n → ∞−−−→ (m+)x⩾ 0

in distribution, where m+ was defined at (1.11), see [Res87, Proposition 4.20].
Next, we define (a+,Pois

k , g+,Pois
k )k ∈Z from the above Poisson random measure ζ as

follows:
a+,Pois

0 := argmax {vi : 0 ⩽ xi ⩽ δ} , g+,Pois
0 := max {vi : 0 ⩽ xi ⩽ δ} ,

and
a+,Pois

k+1 := inf
{
xi ⩾ 0 : vi > g+,Pois

k

}
, ∀ k ⩾ 0,

a+,Pois
k−1 := argmax

{
vi : 0 ⩽ xi < a+,Pois

k

}
, ∀ k ⩽ 0,

where we write g+,Pois
k for the value of vi for the unique atom (xi, vi) in ζ with

xi = a+,Pois
k . We define (a−,Pois

k , g−,Pois
k )k ∈Z on the negative side similarly. From basic

properties of the Poisson random measure, one can check that, almost-surely, these
quantities are well-defined and satisfy

. . . < a−,Pois
1 < a−,Pois

0 < a−,Pois
−1

< · · · < 0 < · · · < a+
−1 < a+,Pois

0 < a+,Pois
1 < . . . ,

(2.5)

(2.6) 0 < · · · < g∗,Pois
−1 < g∗,Pois

0 < g∗,Pois
1 < . . . , for ∗ ∈ {+, −},

(2.7) min
{∣∣∣g+,Pois

k − g−,Pois
l

∣∣∣ : − M ⩽ k, l ⩽ M
}

> 0, for any M ∈ N,

and also
(2.8) a±,Pois

k
k → ∞−−−→ ±∞, g±,Pois

k
k → ∞−−−→ ∞, g±,Pois

k
k → −∞−−−−→ 0,

(2.9) g±,Pois
0

δ↓0−−→ 0.

Finally, by applying the Skorohod representation theorem, we can construct a
coupling so that (2.3) converges to ζ almost surely. Under this coupling, the atoms
of (2.3) away from v = 0 converge to those of ζ and, as a consequence, the jumps
of the extremal process (mn,+(x))x > 0 away from x = 0 converge to those of m+.
(Recall the definition of mn,+ from (1.7).) Since the same argument applies to mn,−
and m− (as defined at (1.8) and (1.12), respectively), we have
(2.10)

(
n−1a±

k , n−1L
(
g±

k

))
k ∈Z

n → ∞−−−→
(
a±,Pois

k , g±,Pois
k

)
k ∈Z

, P-a.s.

We remark that it might have been more natural to write g+,Pois
k for the value of

L−1(vi) for the unique atom (xi, vi) in ζ with xi = a+,Pois
k , so that the above limit

involves L(g+,Pois
k ); we adopt the above convention for brevity of notation later in the
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paper. Furthermore, it will be useful later to write the above convergence in terms of
the spatial position of discrete records, rather than their index. In particular, using
the functional law of large numbers, i.e.

sup
t ∈ [0,T ]

∣∣∣ 1
n
ω⌊tn⌋ − t

∣∣∣ n → ∞−−−→ 0, P-a.s.,

for any T > 0, the convergence at (2.10) yields that, almost surely as n → ∞,

(2.11)
(
n−1ωa±

k
, n−1L

(
g±

k

))
k ⩾ 1

→
(
a±,Pois

k , g±,Pois
k

)
k ⩾ 1

.

2.2. Features of a typical environment

In this subsection, we collect various “nice” features of a typical environment that
we will use in the proof of our main results, and prove that they indeed hold with
high probability. To this end, we define, for k ∈ Z, the first exceedance of g+

k by a
record on the left side of the origin,

ex(k) := inf
{
l ∈ Z : g−

l ⩾ g+
k

}
(2.12)

Note that by construction
g−

ex(k)−1 = max
j ∈
{

a−
ex(k), ..., −1

} rα,0 (ωj, ωj+1)

represents the size of the largest barrier between ωa−
ex(k)

and the origin. Let ℓi be the
ith iterate of the logarithm, for example, ℓ2(n) = log log n, and let

N := 2 +
⌊ 1

α − 1

⌋
be the constant appearing in Conjecture 1.7.

Applying the above notation, we now introduce an event that we will use in
Section 3, which ensures that the environment behaves typically.

Definition 2.1. — For δ > 0 and K, n ∈ N, let Aδ,K
n be the set of those ω that

satisfy the following properties.
• The record locations are at (approximately) linear distance from the origin:

(2.13) ωa+
k
, −ωa−

ex(k)
⩽ nℓ3(n), for any k = 0, . . . , K.

• New record values are much larger than any previous record:

(2.14) g+
k

g+
k−1 + g−

ex(k)−1
> elogα−1 n/ℓ2(n), for any k = 1, . . . , K.

• The contribution from non-record values is bounded in terms of the last record
value:∑a+

k
l=1r

α,0(ωl−1, ωl) ⩽ Ng+
k−1, for any k = 1, . . . , K,(2.15) ∑0

l=a−
ex(k)+1r

α,0(ωl−1, ωl) ⩽ Ng−
ex(k)−1, for any k = 1, . . . , K.(2.16)
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• The atoms of the invariant measure (recall (1.3)) are (approximately) boun-
ded:

(2.17) e− logα+1 n ⩽ cα,λ/n(ωj) ⩽ ℓ1(n)2, for all j = −nℓ3(n), . . . , nℓ3(n).

• The total mass of the invariant measure grows (approximately) linearly:

(2.18) c1n ⩽
∑a+

k

l=a−
ex(k)

cα,λ/n(ωl) ⩽ c2nℓ1(n)2.

The event Ãδ,K
n is defined in the same way, with the role of positive and negative

axis reversed.

The next result shows that these estimates hold with high probability.

Proposition 2.2. — For any δ > 0 and K ∈ N, limn→∞ P(Aδ,K
n ) = 1.

Proof. — It follows from (2.5), (2.8) and (2.11) that

lim
M → ∞

lim inf
n → ∞

P
({

ωa+
k
/n
}

0⩽ k ⩽K
⊂
[
M−1, M

]
and

{
ωa−

ex(k)
/n
}

0⩽ k ⩽K
⊂
[
−M, −M−1

])

is equal to 1. This implies that (2.13) holds with high probability.
Next, note that by (2.6), (2.8) and (2.11), the probability of g−

−M ⩽ g−
ex(0)−1 ⩽

g−
ex(K)−1 ⩽ g−

M can be made arbitrarily large by making M large. Applying this
estimate in conjunction with (2.6), (2.7) and (2.11) again, we obtain

(2.19) lim
ε → 0

lim inf
n → ∞

P


min

{∣∣∣L (g+
k

)
/n − L(g−

ex(l)−1)/n
∣∣∣ : 0 ⩽ k, l ⩽ K

}
⩾ ε,

min
{∣∣∣L (g+

k

)
/n − L

(
g+

k−1

)
/n
∣∣∣ : 1 ⩽ k ⩽ K

}
⩾ ε,{

L
(
g+

k

)
/n, L(g−

ex(k)−1)/n
}K

k=0
⊂ [ε, ε−1]

 = 1.

We shall assume that the event in (2.19) holds for some ε < 1. Then, for 1 ⩽ k ⩽ K,
we have

L
(
g+

k

)
/n ⩾ max

{
L
(
g+

k−1

)
/n, L(g−

ex(k)−1)/n
}

+ ε,

and thus, recalling (1.6) and using the convexity of x 7→ xα, it can be checked that

g+
k ⩾ exp

{
logα

(
L
(
g+

k−1

)
+ εn

)}
⩾ g+

k−1 exp
{
α logα−1

(
L
(
g+

k−1

))
log

(
1 + εn/L

(
g+

k−1

))}
.

Using the inequality log(1 + x) ⩾ x/2 for x ∈ [0, 1] in the last logarithmic factor and
noting that we have εn ⩽ L(g+

k−1) ⩽ ε−1n on the event in (2.19), we find

g+
k ⩾ g+

k−1 exp
(

αε2

2 logα−1(εn)
)

,

and similarly g+
k ⩾ g−

ex(k)−1 exp(αε2

2 logα−1(εn)). The second assertion (2.14) follows
from these bounds together with (2.19).
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To prove (2.15) and (2.16), let νk ∈ N be such that a+
k is the index of the νth

k

record in the sequence (rα,0(ωl, ωl+1))l⩾0. Then we have

(2.20) P
(∑a+

k
l=1r

α,0 (ωl−1, ωl) ⩾ Ng+
k−1

)
⩽
∑
j ⩾ J

P
(∑a+

k
l=1r

α,0 (ωl−1, ωl) ⩾ Ng+
k−1, νk = j

)
+ P(νk < J).

By [Res87, Proposition 4.9], the process m+ has infinitely many jumps near the
origin. This and (2.11) show that νk → ∞ as n → ∞ with high probability. Thus
the second term on the right-hand side of (2.20) tends to zero as n → ∞. On the
other hand, [CM17, Lemma 3.8] gives a bound for the first term on the right-hand
side of (2.20) that is uniform in n and tends to zero as J → ∞. From these facts,
(2.15) follows. The bound at (2.16) can be proved in the same way.

We turn to proving the upper bound in (2.17). We begin by rewriting

cα,λ/n(ωj) =
∑

l ∈Z\{j}
eλ(ωj+ωl)/n−|ωl−ωj |α = e2λωj/n

∑
l ∈Z\{j}

eλ(ωl−ωj)/n−|ωl−ωj |α .(2.21)

The point process (ωl − ωj)l ∈Z\{j} is a Poisson point process with unit intensity,
independent of ωj. Therefore, by using Campbell’s theorem for Poisson processes,
we get

E

exp
2

∑
l ∈Z\{j}

eλ(ωl−ωj)/n−|ωl−ωj |α
 = exp

(∫ (
e2eλx/n−|x|α − 1

)
dx
)

.

One can readily verify that the right-hand side is bounded by a constant cλ > 0 that
depends only on λ. By using Chebyshev’s inequality, we can thus deduce

P

 ∑
l ∈Z\{j}

eλ(ωl−ωj)/n−|ωl−ωj |α ⩽ log n

 ⩾ 1 − cλn−2,

and, by applying the union bound, one further obtains that the above events hold
for all j ∈ [−nℓ3(n), nℓ3(n)] with high probability. In addition, the law of large
numbers implies that maxj=−nℓ3(n), ..., nℓ3(n) |ωj| = max{−ω−nℓ3(n), ωnℓ3(n)} ⩽ 2nℓ3(n)
with high probability. Combining these bounds with (2.21), we find that

(2.22) cα,λ/n(ωj) ⩽ e4|λ|ℓ3(n) log n ⩽ ℓ1(n)3/2

holds for all j ∈ [−nℓ3(n), nℓ3(n)] with high probability as n → ∞. For the lower
bound in (2.17) we observe, for all i = −nℓ3(n), . . . , nℓ3(n),

cα,λ/n(ωi) =
∑

j ∈Z\{i}
e−|ωi−ωj |α+λ(ωi+ωj)/n ⩾ e−|ωi−ωi+1|α−2|λ| max{−ω−nℓ3(n),ωnℓ3(n)}/n.

Hence, the desired lower bound holds, for n large enough, on{
max

{
−ω−nℓ3(n), ωn ℓ3(n)

}
⩽ 2nℓ3(n)

}
∩
{

max
i=−nℓ3(n), ..., nℓ3(n)

|ωi+1 − ωi| ⩽ 2 log n

}
.
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The probability of the first event converges to one by the law of large numbers. To see
that the second event also has large probability, we apply the union bound together
with

P(ωi+1 − ωi ⩾ 2 log n) = n−2.

Finally, we prove (2.18). By the law of large numbers and (2.13), we know that
−2nℓ3(n) ⩽ a−

ex(k) < a+
k ⩽ 2nℓ3(n) holds with high probability. The upper bound

follows from this and (2.22). For the lower bound, note first that
a+

k∑
l=a−

ex(k)

cα,λ/n(ωl) ⩾
⌊δn⌋∑
l=0

cα,λ/n(ωl)

since a+
k ⩾ ⌊δn⌋. Using the law of large numbers again, we may assume ω⌊δn⌋ ⩽ 2δn.

Then the above sum is bounded from below by a constant multiple of ∑⌊δn⌋
l=0 cα,0(ωl).

The proof of Lemma 2.6 in the next subsection shows that the last sum is bounded
from below by cn. □

Next, let us introduce an event that we will use in Section 4 to ensure that the
record values, which correspond to the times where the random walk overcomes the
corresponding gaps, are bounded away from t, for any fixed time t > 0.

Definition 2.3. — For δ, η > 0, K ∈ N and t > 0, let Eδ,η,K
n be the set of all

ω ∈ Aδ,K
n that satisfy

n−1L
(
g−

ex(k)−1

)
, n−1L

(
g+

k−1

)
⩽ t − η < t + η ⩽ n−1L

(
g+

k

)
for some k ∈ {1, . . . , K}. Analogously, the event Ẽδ,η,K

n is defined by reversing the
roles of the positive and negative axes.

Note that the dependence on t is suppressed from Eδ,η,K
n to keep the notation

compact.

Proposition 2.4. — For fixed ε, t > 0, it is possible to choose δ, η small enough
and K large enough so that

lim inf
n → ∞

P
(
Eδ,η,K

n ∪ Ẽδ,η,K
n

)
⩾ 1 − ε.(2.23)

Proof. — Observe that we can write Eδ,η,K
n as Eδ,η,K

n (1)∩Eδ,η,K
n (2)∩Eδ,η,K

n (3)∩Aδ,K
n ,

where
Eδ,η,K

n (1) :=
{
n−1L

(
g+

K

)
⩾ t + η, n−1L

(
g+

0

)
⩽ t − η

}
,

Eδ,η,K
n (2) :=

{
n−1L

(
g+

k

)
̸∈ (t − η, t + η) for any k ∈ {1, . . . , K − 1}

}
,

Eδ,η,K
n (3) :=

{
mn,−

(
m−1

n,−(t − η)
)

> mn,+
(
m−1

n,+(t − η)
)}

.

(Note in particular that, in combination with the other events, the event Eδ,η,K
n (3) is

equivalent to n−1L(g−
ex(k)−1) ⩽ t − η, where k is the unique index in {1, . . . , K} such

that n−1L(g+
k−1) ⩽ t−η ⩽ t+η ⩽ n−1L(g+

k ).) Analogously, reversing the roles of the
positive and negative axes, we can write Ẽδ,η,K

n = Ẽδ,η,K
n (1) ∩ Ẽδ,η,K

n (2) ∩ Ẽδ,η,K
n (3) ∩

Ãδ,K
n .
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To prove (2.23), we consider the bound:

P
((

Eδ,η,K
n ∪ Ẽδ,η,K

n

)c)
⩽ P

((
Aδ,K

n

)c)
+ P

((
Ãδ,K

n

)c)
+ P

(
Eδ,η,K

n (1)c
)

+ P
(
Ẽδ,η,K

n (1)c
)

+ P
(
Eδ,η,K

n (2)c
)

+ P
(
Ẽδ,η,K

n (2)c
)

+ P
(
Eδ,η,K

n (3)c ∩ Ẽδ,η,K
n (3)c

)
.

Now, the final term here is clearly zero since Eδ,η,K
n (3)c ∩ Ẽδ,η,K

n (3)c is the empty set.
Next, we have from (2.11) that

lim sup
n → ∞

P
(
Eδ,η,K

n (1)c
)
⩽ P

(
g+,Pois

0 > t − η
)

+ P
(
g+,Pois

K < t + η
)

,

which, by (2.8) and (2.9), can be made arbitrarily small by taking δ small and
K large. We can deal with P(Ẽδ,η,K

n (1)c) similarly. For fixed δ and K, the terms
P((Aδ,K

n )c) and P((Ãδ,K
n )c) converge to zero as n → ∞ by Proposition 2.2. Finally,

again for fixed δ and K, we have from (2.11) that

lim sup
n → ∞

P
(
Eδ,η,K

n (2)c
)

= P
(
g+,Pois

k ∈ [t − η, t + η] for some k ∈ {1, . . . , K − 1}
)

.

That the right-hand side here converges to zero as η → 0 is a straightforward
consequence of the fact that, with probability one, the Poisson random measure ζ
defined in Subsection 2.1 has no atoms at a fixed level t. Since the term P(Ẽδ,η,K

n (2)c)
can be dealt with in the same way, this completes the proof of Proposition 2.4. □

2.3. Convergence of the invariant measure

In this subsection, we show that the measure defined by

(2.24) µα,λ,ω
n :=

∑
k ∈Z

1
n

cα,λ/n(ωk)δωk/n

converges to e2λxE[cα,0(ω0)]dx. The specific statement that we will need for later is
as follows.

Proposition 2.5. — For any t > 0 and f ∈ Cb(R),∫ m−1
n,+(t)

m−1
n,−(t)

f(x)µα,λ,ω
n (dx) −

∫ m−1
n,+(t)

m−1
n,−(t)

e2λxf(x)E
[
cα,0(ω0)

]
dx

n → ∞−−−→ 0

in P-probability.

Towards checking this, we start with the following simple result in the case λ = 0.

Lemma 2.6. — For any real numbers a < b,

µα,0,ω
n ([a, b]) − E

[
cα,0(ω0)

]
(b − a) n → ∞−−−→ 0

in P-probability.
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Proof. — Note first that

µα,0,ω
n ([ωan/n, ωbn/n]) =

∑
k ∈ [an,bn]

1
n

cα,0(ωk)

is an empirical mean of the stationary and ergodic sequence (cα,0(ωk))k ∈Z, and hence
it converges to the constant (b − a)E[cα,0(ω0)] as n → ∞, P-almost surely. Next,
since limn → ∞ ωan/n = a and limn → ∞ ωbn/n = b, P-almost surely, it readily follows
that

µα,0,ω
n ([a, b]) − µα,0,ω

n ([ωan/n, ωbn/n]) n → ∞−−−→ 0

in P-probability. □

Proof of Proposition 2.5. — For convenience, in this proof, we will assume that
λ > 0. The proof for λ ⩽ 0 follows the same argument. Observing that

cα,λ/n(ωk) = e2λωk/n
∑

l ∈Z\{k}
eλ(ωl−ωk)/n−|ωl−ωk|α ,

we define the “stationary part” of the invariant measure to be

µ̃α,λ,ω
n :=

∑
k ∈Z

1
n

δωk/n

∑
l ∈Z\{k}

eλ(ωl−ωk)/n−|ωl−ωk|α .

With this notation, we have
∫

f(x)µα,λ,ω
n (dx) =

∫
e2λxf(x)µ̃α,λ,ω

n (dx).
Since mn,± converge to the processes m± whose records satisfy (2.5)–(2.9), the

event that

m−1
n,+(t) ∈

{
a+

i /n : 0 ⩽ i ⩽ K
}

⊆
[
M−1, M

]
,

m−1
n,−(t) ∈

{
a−

j /n : 0 ⩽ j ⩽ K
}

⊆
[
−M, −M−1

]
is readily checked to hold with arbitrarily high probability, uniformly in n, when δ
is chosen suitably small and K and M suitably large. Thus it suffices to show that,
for any fixed 0 ⩽ i, j ⩽ K and f ∈ Cb([−M, M ]),∫ a+

i /n

a−
j /n

e2λxf(x)µ̃α,λ,ω
n (dx) −

∫ a+
i /n

a−
j /n

e2λxf(x)E
[
cα,0(ω0)

]
dx

n → ∞−−−→ 0(2.25)

in P-probability. We will first show that µ̃α,λ,ω
n can be replaced by µα,0,ω

n , see (2.28)
below. Once that is achieved, the result follows by dividing [a−

j /n, a+
i /n] into small

intervals and applying Lemma 2.6 to each interval separately. To ease notation, we
write fλ(x) = e2λxf(x), which is continuous and bounded on [−M, M ].

Towards the first aim, we take θ ∈ (0, 1) and use the bound: for j ∈ N and J > 0,

P(|ωj − j| > J) = P(ωj − j > J) + P(ωj − j < −J)

⩽ e−θ(j+J)E
[
eθω1

]j
+ eθ(j−J)E

[
e−θω1

]j
⩽ e−θ(j+J)

( 1
1 − θ

)j

+ eθ(j−J)
( 1

1 + θ

)j

.

ANNALES HENRI LEBESGUE



Extremal regime for one-dimensional Mott variable-range hopping 1187

It follows that

P(|ωj − j| > J) ⩽

exp
{
−cn1/3

}
, when 0 ⩽ j ⩽ 2Mn and J = n2/3,

exp{−cj}, when j > 2Mn and J = j
4 ,

where we have taken θ = n−1/3/M2 in the first case and θ = 1
10 in the second. Similar

bounds hold when j ⩽ 0. Combining these with a union bound, we can show that
the event ⋂

j ∈ [−2Mn,2Mn]

{
|ωj − j| ⩽ n2/3

}
∩

⋂
j ̸ ∈[−2Mn,2Mn]

{
|ωj − j| ⩽ j

4

}
(2.26)

has probability larger than 1−exp(−cn1/3). In what follows, we consider ω in this set.
Note that the second condition ensures ωj ̸∈ [−Mn, Mn] for all j ̸∈ [−2Mn, 2Mn]
and thus these indices may be dropped from consideration. We first estimate

(2.27)
∣∣∣∣∣
∫ a+

i /n

a−
j /n

fλ(x)µ̃α,λ,ω
n (dx) −

∫ a+
i /n

a−
j /n

fλ(x)µα,0,ω
n (dx)

∣∣∣∣∣
⩽

∑
k : ωk ∈[−Mn,Mn]

1
n

|fλ(ωk/n)|
∑

l ∈Z\{k}

(
eλ|ωl−ωk|/n − 1

)
e−|ωl−ωk|α .

We divide the inner sum into two pieces and bound these separately. First, apply-
ing (2.26), ∑

l : 0 <|ωl−ωk| <n1/4

(
eλ|ωl−ωk|/n − 1

)
e−|ωl−ωk|α ⩽ cn2/3

(
eλn−3/4 − 1

)
⩽ cn−1/12.

Second, if ωk ∈ [−Mn, Mn] and l ̸∈ [−2Mn, 2Mn], then on (2.26) it holds that

|ωl − ωk| ⩾ 3|l|
4 − |ωk| ⩾ |l|

4 ,

and so ∑
l : |ωl−ωk|⩾n1/4

(
eλ|ωl−ωk|/n − 1

)
e−|ωl−ωk|α ⩽

∑
l : |ωl−ωk|⩾n1/4

e−(1−λ/n)|ωl−ωk|

⩽ Cne−(1−λ/n)n1/4 + 2
∑

l⩾ 2Mn

e−(1−λ/n)l/4

⩽ Ce−cn1/4
.

Substituting these bounds into (2.27) and noting that (2.26) implies #{k : − Mn ⩽
ωk ⩽ Mn} ⩽ 4Mn for sufficiently large n, we obtain∣∣∣∣∣

∫ a+
i /n

a−
j /n

fλ(x)µ̃α,λ,ω
n (dx) −

∫ a+
i /n

a−
j /n

fλ(x)µα,0,ω
n (dx)

∣∣∣∣∣ ⩽ cn−1/12.(2.28)

For the next step, we introduce osc(f ; I) := supx,y ∈ I |f(x) − f(y)|. By the uniform
continuity of fλ ∈ Cb[−M, M ], we can make max{osc(fλ; [ l

N
, l+1

N
]) : − MN ⩽ l ⩽

MN − 1} as small as we wish by setting N large. Let
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L :=
{
l ∈ Z :

[
l

N
, l+1

N

]
⊆
[
a−

j /n, a+
i /n

]}
,

∂L :=
{
l ∈ Z :

[
l

N
, l+1

N

]
∩
{
a−

j /n, a+
i /n

}
̸= ∅

}
.

With this notation, we obtain∣∣∣∣∣
∫ a+

i /n

a−
j /n

fλ(x)µα,0,ω
n (dx) −

∫ a+
i /n

a−
j /n

fλ(x)E
[
cα,0(ω0)

]
dx

∣∣∣∣∣
⩽
∑
l ∈ L

osc
(
fλ;

[
l

N
, l+1

N

]) (
µα,0,ω

n

([
l

N
, l+1

N

])
+ E

[
cα,0(ω0)

]
1
N

)
+
∑
l ∈ L

∥fλ∥∞

∣∣∣µα,0,ω
n

([
l

N
, l+1

N

])
− E

[
cα,0(ω0)

]
1
N

∣∣∣
+
∑

l ∈ ∂L
∥fλ∥∞

(
µα,0,ω

n

([
l

N
, l+1

N

])
+ E[cα,0(ω0)] 1

N

)
.

For any N ∈ N, Lemma 2.6 ensures that

max
{∣∣∣µα,0,ω

n

([
l

N
, l+1

N

])
− E

[
cα,0(ω0)

]
1
N

∣∣∣ : − MN ⩽ l ⩽ MN − 1
}

n → ∞−−−→ 0

in P-probability. Substituting this into the preceding bound, we obtain∫ a+
i /n

a−
j /n

fλ(x)µα,0,ω
n (dx) −

∫ a+
i /n

a−
j /n

fλ(x)E
[
cα,0(ω0)

]
dx

n → ∞−−−→ 0(2.29)

in P-probability. Combining (2.28) and (2.29) yields (2.25), as desired. □

3. Barrier crossing time estimates

In this section, we study the time taken by the Mott random walk to cross resistance
barriers. One technical complication compared to the sketch provided in Section 1 is
that we need to take the non-nearest-neighbour edges into account. In this general
setting, the effective resistance between two sets A, B ⊆ ω is defined by

Reff(A, B)−1 := inf
{
E(f, f) f : ω → [0, 1], f |A ≡ 0, f |B ≡ 1

}
,(3.1)

where the energy of a function f : ω → [0, 1] is given by

E(f, f) :=
∑

i ̸= j ∈Z
cα,λ/n(ωi, ωj)(f(ωi) − f(ωj))2.(3.2)

We also abbreviate Reff(a, b) := Reff({a}, {b}) in the case where A and B are single-
tons. (Note that we suppress the dependence on α, λ and n from the notation.)

The constants α, λ, δ and K will be fixed throughout, and we recall the event
Aδ,K

n from Definition 2.1. Moreover, we recall the notation for barrier locations of
(a+

i )i⩾ 0 from (2.1), and also introduce

b+
i := a+

i + 1, i ⩾ 0,
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so that {ωa+
i
, ωb+

i
}, i ⩾ 0, represent edges of record resistance in the environment.

We define corresponding exceedance times by setting, for i ⩾ 0,
α+

i := inf
{
t ⩾ 0 : Xt ⩾ ωa+

i

}
,(3.3)

β+
i := inf

{
t ⩾ 0 : Xt ⩾ ωb+

i

}
.(3.4)

The main result of this section is the following, which shows that, up to powers
of ℓ1(n), these exceedance times concentrate on environment-measurable quantities.
Note that, from the definition at (2.2), we have g+

i := r0(ωa+
i
, ωb+

i
).

Theorem 3.1. — For each α > 1, λ ∈ R, K ∈ N and δ > 0, as n → ∞,
sup

ω ∈ Aδ,K
n

sup
k=1, ..., K

P α,λ/n
ω

(
α+

k ⩾
(
g+

k−1 + g−
ex(k)−1

)
nℓ1(n)4

)
→ 0,(3.5)

sup
ω ∈ Aδ,K

n

sup
k=1, ..., K

P α,λ/n
ω

(
β+

k ⩽
ng+

k

ℓ1(n)16

)
→ 0.(3.6)

3.1. An auxiliary random walk

Towards proving Theorem 3.1, it will be helpful to introduce, for each n and k, a
finite graph G+

k ⊆ ω. Intuitively, we want the behavior of the Mott random walk on
G+

k to be the same as on ω until at least time β+
k . We therefore include a sufficiently

large interval to the left of the origin, which ensures that the random walk on ω
leaves G+

k by crossing {ωa+
k
, ωb+

k
} with high probability.

To define this, first recall the definition of a−
ex(k) from (2.12) and write, similarly

to the corresponding definition on the positive axis, b−
ex(k) = a−

ex(k) − 1, so that
{ωb−

ex(k)
, ωa−

ex(k)
} is the closest nearest-neighbour edge to the left-hand side of the

origin whose resistance exceeds g+
k . We then define the vertex set of G+

k to be

V
(
G+

k

)
:=
{

ωb−
ex(k)

, ωa−
ex(k)

, . . . , ωa+
k
, ωb+

k

}
,

and the edge set to be all possible (unordered) pairs of distinct vertices in V (G+
k ).

We will consider this as an electrical network with (symmetric) conductances given
by

c
α,λ/n
k (ωi, ωj) :=



cα,λ/n (ωi, ωj) , if a−
ex(k) ⩽ i, j ⩽ a+

k ,∑
l⩾ b+

k
cα,λ/n (ωi, ωl) , if a−

ex(k) ⩽ i ⩽ a+
k , j = b+

k ,∑
l⩽ b−

ex(k)
cα,λ/n (ωl, ωj) , if i = b−

ex(k), a−
ex(k) ⩽ j ⩽ a+

k ,∑
l⩽ b−

ex(k)

∑
m⩾ b+

k
cα,λ/n(ωl, ωm), if i = b−

ex(k), j = b+
k .

In particular, this is the network obtained from the original network defining the
Mott random walk by identifying all the vertices {b+

k , b+
k +1, . . . } with b+

k and all the
vertices {. . . , b−

ex(k) − 1, b−
ex(k)} with b−

ex(k). See Figure 3.1 for an example realisation
of the configuration of vertices within G+

k with k = 2 and 3. We note that, by basic
properties of Poisson processes, it is possible to check that, P-a.s., the graph G+

k

is well-defined and the conductances described above are all finite. Moreover, if
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we consider (Pk, Xk) to be the continuous time Markov chain started from 0 with
generator L

α,λ/n
k , as characterised by

(
L

α,λ/n
k f

)
(ωi) :=

∑
j ∈
{

b−
ex(k), ..., b+

k

} c
α,λ/n
k (ωi, ωj)
c

α,λ/n
k (ωi)

(f(ωj) − f(ωi)) ,

where we set

c
α,λ/n
k (ωi) :=


∑

j ∈
{

b−
ex(k),a−

ex(k), ..., a+
k

,b+
k

}
\{i}

c
α,λ/n
k (ωi, ωj) , if a−

ex(k) ⩽ i ⩽ a+
k ,

1, if i ∈
{
b−

ex(k), b+
k

}
,

then Xk behaves exactly as the Mott random walk X, up until the time it exits the
set {ωa−

ex(k)
, . . . , ωa+

k
}. Note that the choice of c

α,λ/n
k (ωi) = 1 for i ∈ {b−

ex(k), b+
k } is

arbitrary for this subsection, but will be convenient for the argument of the next
subsection.

a
+
1 a

+
2 a

+
3a

+
0a

+
−1a

−
ex(3)

=a
−
ex(2)

a
−
ex(3)−1

=a
−
ex(2)−1

g
+
−1g

+
0g

+
1

g
−
ex(2)

=g
−
ex(3)

g
−
ex(2)−1

=g
−
ex(3)−1

g
+
2

g
+
3

nδ

G+
3

G+
2

1

Figure 3.1. An illustration of the point process (i, rα,0(ωi, ωi+1))i ∈Z together
with the indices used to define the auxiliary graphs G+

2 and G+
3 .

Let Rk
eff denote the effective resistance on G+

k , which is defined similarly to (3.1).
We close this subsection by proving upper and lower bounds for Rk

eff . We recall that,
by the definition in Section 2,

g−
ex(k)−1 = max

j ∈
{

a−
ex(k), ..., −1

} rα,0 (ωj, ωj+1) ,
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which represents the size of the largest barrier between ωa−
ex(k)

and the origin. (Again,
see Figure 3.1.)

Lemma 3.2. — There exists C > 1 such that the following hold on Aδ,K
n , for all

n large enough.
(i) For all A, B ⊆ G+

k with A∩{ωa−
ex(k)

, . . . , ωa+
k
} ≠ ∅, B ∩{ωa−

ex(k)
, . . . , ωa+

k
} ≠ ∅,

Rk
eff(A, B) ⩽ C

(
g+

k−1 + g−
ex(k)−1

)
ℓ1(n).

(ii) For all A ⊆ {ωa−
ex(k)

, . . . , ωa+
k
} and B ⊆ {ωb−

ex(k)
, ωb+

k
},

Rk
eff(A, B) ⩾ g+

k

Cℓ1(n)5 .

(iii) Rk
eff(ωa−

ex(k)
, ωa+

k
) ⩾

g+
k−1+g−

ex(k)−1
Cℓ1(n)5 .

Proof. — We start with part (i). By Rayleigh’s monotonicity property (see [DS84,
Section 1.4.1], for example), we may assume that A = {ωi} and B = {ωj} for some
a−

ex(k) ⩽ i < j ⩽ a+
k . Then

Rk
eff (ωi, ωj) ⩽

∑j
l=i+1R

k
eff (ωl−1, ωl)

⩽
∑a+

k

l=a−
ex(k)

Rk
eff (ωl−1, ωl)

⩽
∑a+

k

l=a−
ex(k)

rα,λ/n (ωl−1, ωl)

= ∑a+
k

l=a−
ex(k)

rα,0 (ωl−1, ωl) e−λ(ωl−1+ωl)/n

⩽ C
(
g+

k−1 + g−
ex(k)−1

)
e2|λ|ℓ3(n).

We have used the triangle inequality for the resistance metric (see [Bar17, Theo-
rem 2.64], for example) in the first inequality. The third inequality is again due
to Rayleigh’s monotonicity property and the final inequality follows from (2.13)
and (2.15)–(2.16), which hold on Aδ,K

n . The claim now follows from ℓ3 = log log ℓ1.
For part (ii), using again the monotonicity property of the effective resistance and

the parallel law (see [Bar17, Remark 2.52], for example), we have that

(3.7) Rk
eff(A, B) ⩾ Rk

eff

(
V
(
G+

k

)
\{ωb−

ex(k)
, ωb+

k
},
{

ωb−
ex(k)

, ωb+
k

})
⩾
(∑a+

k

m=a−
ex(k)

c
α,λ/n
k

(
ωb−

ex(k)
, ωm

)
+∑a+

k

l=a−
ex(k)

c
α,λ/n
k

(
ωl, ωb+

k

))−1

=
(∑

l⩽ b−
ex(k)

∑
m⩾ a−

ex(k)
cα,λ/n (ωl, ωm) +∑

l⩽ a+
k

∑
m⩾ b+

k
cα,λ/n (ωl, ωm)

)−1
.

Now, note that, since α > 1, for l ⩽ b−
ex(k), m ⩾ a−

ex(k),
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cα,λ/n(ωl, ωm) = e−|ωl−ωm|α+λ(ωl+ωm)/n

⩽ e
−|ωl−ω

b−
ex(k)

|α−|ω
b−
ex(k)

−ω
a−

ex(k)
|α−|ω

a−
ex(k)

−ωm|α+λ(ωl+ωm)/n

= cα,λ/n
(

ωl, ωb−
ex(k)

)
cα,0

(
ωb−

ex(k)
, ωa−

ex(k)

)
cα,λ/n

(
ωa−

ex(k)
, ωm

)
e

−2λ

(
ω

b−
ex(k)

+ω
a−

ex(k)

)
/n

.

Hence, on Aδ,K
n , for n large enough,

(3.8) ∑
l⩽ b−

ex(k)

∑
m⩾ a−

ex(k)
cα,λ/n (ωl, ωm)

⩽ cα,λ/n
(

ωb−
ex(k)

)
cα,0

(
ωb−

ex(k)
, ωa−

ex(k)

)
cα,λ/n

(
ωa−

ex(k)

)
e

−2λ

(
ω

b−
ex(k)

+ω
a−

ex(k)

)
/n

⩽ C
(
g+

k

)−1
ℓ1(n)4ℓ2(n)2λ

⩽ C
(
g+

k

)−1
ℓ1(n)5,

where for the second inequality we have applied (2.13) and (2.17) and the fact that

cα,0
(

ωb−
ex(k)

, ωa−
ex(k)

)
= rα,0

(
ωb−

ex(k)
, ωa−

ex(k)

)−1
⩽ rα,0

(
ωa+

k
, ωb+

k

)−1
= (g+

k )−1.

Applying the same argument to the second sum in (3.7), we obtain

Rk
eff (A, B) ⩾

((
g+

k

)−1
+
(
g−

ex(k)

)−1
)−1

/Cℓ1(n)5 ⩾
g+

k

2Cℓ1(n)5 .

In the final inequality, we have again used that g+
k ⩽ g−

ex(k). We turn to the proof of
part (iii). Similar to (3.7)–(3.8), one can show that

Rk
eff

(
ωa−

ex(k)
, ωa+

k

)
⩾ Rk

eff

({
ωb−

ex(k)
, . . . , ωa+

k−1

}
,
{

ωb+
k−1

, ωb+
k

})
⩾

g+
k−1

Cℓ1(n)5 .

Since the same argument applies when we consider the edge of nearest neighbour
resistance g−

ex(k)−1, it follows that

Rk
eff

(
ωa−

ex(k)
, ωa+

k

)
⩾ C max

{
g−

ex(k)−1, g+
k−1

}
/ℓ1(n)5 ⩾

C

2
(
g−

ex(k)−1 + g+
k−1

)
/ℓ1(n)5.

□

3.2. Upper bound on barrier crossing times

Using definitions analogous to (3.3) and (3.4) for exceedance times on the negative
axis, we have that

β−
ex(k) = inf

{
t ⩾ 0 : Xt ⩽ ωb−

ex(k)

}
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is the first time the random walk on ω leaves G+
k on the left-hand side. As a first step

towards proving (3.5), we check that, on the event Aδ,K
n with n large, there is a high

quenched probability that the Mott random walk X exceeds ωa+
k

before time β−
ex(k).

Lemma 3.3. — There exists a C ∈ (0, ∞) such that for n ∈ N and 1 ⩽ k ⩽ K,
on Aδ,K

n ,
P α,λ/n

ω

(
α+

k ⩾ β−
ex(k)

)
⩽ Cℓ1(n)6e−(log n)α−1/ℓ2(n).

Proof. — For a set A ⊆ {b−
ex(k), . . . , b+

k }, write

TA := inf
{
t ⩾ 0 : Xk

t = ωi for some i ∈ A
}

(3.9)

for the hitting time of A by Xk. By construction, we have that

P α,λ/n
ω

(
α+

k ⩾ β−
ex(k)

)
= Pk

(
T{a+

k
,b+

k } ⩾ Tb−
ex(k)

)
.

Here and in the following, we write Ti instead of T{i} for simplicity. On AK,δ
n , we can

bound the latter expression as follows:

Pk

(
T{a+

k
,b+

k } ⩾ Tb−
ex(k)

)
⩽

Rk
eff

(
0,
{
ωa+

k
, ωb+

k

})
Rk

eff

(
0, ωb−

ex(k)

)

⩽
C
(
g+

k−1 + g−
ex(k)−1

)
ℓ1(n)6

g+
k

⩽ Cℓ1(n)6e−(log n)α−1/ℓ2(n),

(3.10)

where the first inequality is due to [Bar17, Lemma 2.62], in the second inequality
we have applied the upper and lower bounds from Lemma 3.2(i)–(ii) and the final
inequality is due to (2.14). □

It is thus enough to estimate the time taken by X to leave {ωa−
ex(k)

, . . . , ωa+
k

−1},
which is what we do next.

Lemma 3.4. — There exists a C ∈ (0, ∞) such that for n ∈ N and 1 ⩽ k ⩽ K,
on Aδ,K

n ,

P α,λ/n
ω

(
min

{
α+

k , β−
ex(k)

}
⩾
(
g+

k−1 + g−
ex(k)−1

)
nℓ1(n)4

)
⩽

C

ℓ1(n) .

Proof. — It is a straightforward consequence of the commute time identity (see
[CRR+97] or [Bar17, Theorem 2.63]) that

Ek

T{
b−

ex(k),a+
k

,b+
k

} ⩽ Rk
eff

(
0,
{

ωb−
ex(k)

, ωa+
k
, ωb+

k

})∑a+
k

−1
l=a−

ex(k)
c

α,λ/n
k (ωl),

where we again write TA for the hitting time of a set A by Xk, see (3.9). By (2.18),
it holds that ∑a+

k
−1

l=a−
ex(k)

c
α,λ/n
k (ωl) = ∑a+

k
−1

l=a−
ex(k)

cα,λ/n(ωl) ⩽ Cnℓ1(n)2.
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Hence, using Lemma 3.2(i) and the equivalence of the laws of X and Xk up to the
exit time of {ωa−

ex(k)
, . . . , ωa+

k
}, we obtain that

Eα,λ/n
ω

(
min{α+

k , β−
ex(k)}

)
⩽ C

(
g+

k−1 + g−
ex(k)−1

)
nℓ1(n)3.

The result follows by applying this bound in conjunction with Markov’s inequality.
□

Proof of (3.5). — A simple union bound gives

P α,λ/n
ω

(
α+

k ⩾
(
g+

k−1 + g−
ex(k)−1

)
nℓ1(n)4

)
⩽ P α,λ/n

ω

(
min

{
α+

k , β−
ex(k)

}
⩾
(
g+

k−1 + g−
ex(k)−1

)
nℓ1(n)4

)
+ P α,λ/n

ω

(
α+

k ⩾ β−
ex(k)

)
.

Hence, combining Lemmas 3.3 and 3.4 gives the result. □

3.3. Lower bound on barrier crossing times

For proving (3.6), it will be convenient to continue working with the graph G+
k

defined at the beginning of Subsection 3.1. For a given realisation of such a graph,
we introduce stopping times for the random walk Xk by setting σ(0) := 0 and, for
i ⩾ 0,

τ(i) := inf
{
t ∈ [σ(i), ∆] : X(t) = ωa+

k

}
,

σ(i + 1) := inf
{

t ∈ [τ(i), ∆] : X(t) = ωa−
ex(k)

}
,

where ∆ := T{b−
ex(k),b+

k
} (we again write TA for the hitting time of a set A by Xk,

see (3.9)), and we set the infimum of an empty set to be ∞ by convention. Fur-
thermore, let G := inf {i ⩾ 0 : τ(i) = ∞}. Clearly, if G ⩾ 2, then ∆ ⩾ SG−1, where
Sm := ∑m

i=1(τ(i) − τ(i − 1)). Since ∆ is equal in distribution to min{β−
ex(k), βk}, we

have

P α,λ/n
ω

(
β+

k ⩾
ng+

k

ℓ1(n)16

)
⩾ Pk

(
SG−1 ⩾ ng+

k /ℓ1(n)16
)

.(3.11)

It will thus suffice to understand the distribution of SG−1. The next two lemmas give
estimates on G and the excursion time τ(1) − τ(0), respectively. Combining these
will give the result of interest.

Lemma 3.5. — There exists C1 ∈ (0, ∞) such that for n ∈ N and 1 ⩽ k ⩽ K,
on Aδ,K

n ,

Pk

G ⩾
g+

k

C1ℓ1(n)7
(
g−

ex(k)−1 + g+
k−1

)
 ⩾ e−C1ℓ1(n)−1

.

Proof. — First note that, similarly to (3.10),

Pk(τ(0) = ∞) = Pk

(
Ta+

k
> ∆

)
⩽

Rk
eff

(
0, ωa+

k

)
Rk

eff

(
0,
{

ωb−
ex(k)

, ωb+
k

}) .
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By Lemma 3.2, on Aδ,K
n , the numerator here can be bounded above by C(g+

k−1 +
g−

ex(k)−1)ℓ1(n) while the denominator is bounded from below by Cg+
k /ℓ1(n)5. Hence

we conclude that

(3.12) Pk(τ(0) = ∞) ⩽
Cℓ1(n)6

(
g+

k−1 + g−
ex(k)−1

)
g+

k

.

For subsequent stopping times, we have that

Pk (σ(i + 1) = ∞ | τ(i) < ∞)

= Pk

(
Ta−

ex(k)
> ∆ Xk

0 = ωa+
k

)
⩽

Rk
eff

(
ωa−

ex(k)
, ωa+

k

)
Rk

eff

(
ωa+

k
,
{

ωb−
ex(k)

, ωb+
k

}) ,

and also

Pk(τ(i) = ∞ | σ(i) < ∞)

= Pk

(
Ta+

k
> ∆ Xk

0 = ωa−
ex(k)

)
⩽

Rk
eff

(
ωa−

ex(k)
, ωa+

k

)
Rk

eff

(
ωa−

ex(k)
,
{

ωb−
ex(k)

, ωb+
k

}) .

Again applying Lemma 3.2, together with a strong Markov property argument, gives
that

Pk(τ(i + 1) = ∞ | τ(i) < ∞) ⩽
Cℓ1(n)6

(
g−

ex(k)−1 + g+
k−1

)
g+

k

for appropriately adjusted C. Applying the above bounds, we find that

Pk (G ⩾ i + 1) = Pk (τ(i) < ∞) ⩾
1 −

Cℓ1(n)6
(
g−

ex(k)−1 + g+
k−1

)
g+

k

i

.

Together with (2.14), the result follows. □

Next, we give a lower bound on the excursion times.

Lemma 3.6. — There exists C2 ∈ (0, ∞) such that for n ∈ N and 1 ⩽ k ⩽ K, on
Aδ,K

n ,

Pk

τ(i) − τ(i − 1) ⩾
C2
(
g−

ex(k)−1 + g+
k−1

)
n

ℓ1(n)5

∣∣∣∣∣∣ τ(i − 1) < ∞

 ⩾
C2

ℓ1(n)8 .

Proof. — Let

T
a+

k

a−
ex(k)

:= inf
{

t ⩾ Ta−
ex(k)

: Xk
t = ωa+

k

}
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be the first time that Xk hits ωa+
k

after hitting ωa−
ex(k)

. It then holds that

(3.13) Pk

(
τ(i) − τ(i − 1) ⩽ t | τ(i − 1) < ∞

)
= Pk

(
T

a+
k

a−
ex(k)

⩽ min
{

t, T{b−
ex(k),b+

k
}

}
Xk

0 = ωa+
k

)
⩽ Pk

(
T

a+
k

a−
ex(k)

⩽ t Xk
0 = ωa+

k

)
.

To obtain a lower bound for this probability, we consider the process X̃k = (X̃k
t )t⩾ 0

obtained by observing Xk on the set

Ṽ k := V
(
G+

k

)
\
{

ωb−
ex(k)

, ωb+
k

}
=
{

ωa−
ex(k)

, . . . , ωa+
k

}
.

Precisely, define an additive functional Ãk = (Ãk
t )t⩾ 0 by setting Ãk

t :=
∫ t

0 1{Xk
s ∈Ṽ k}ds,

and then let

(3.14) X̃k
t := Xk

(Ãk)−1
t

,

where (Ãk)−1 is the right-continuous inverse of Ãk. By standard theory concerning the
traces of Dirichlet and resistance forms (see [FOT11, Theorem 6.2.1], as described
in [Bar98, Theorem 4.17], and [Kig12, Theorem 8.4]), X̃k is the continuous-time
Markov chain on Ṽ k corresponding to the resistance metric Rk

eff |Ṽ k×Ṽ k
and measure

c
α,λ/n
k |Ṽ k

. Defining T̃
a+

k

a−
ex(k)

from X̃k analogously to the definition of T
a+

k

a−
ex(k)

from Xk,
we have that

T̃
a+

k

a−
ex(k)

⩽ T
a+

k

a−
ex(k)

.

(Indeed, the difference is given by the time spent by Xk in the set {ωb−
ex(k)

, ωb+
k
} before

T
a+

k

a−
ex(k)

.) Hence, (3.13) implies

(3.15) Pk (τ(i) − τ(i − 1) ⩽ t | τ(i − 1) < ∞) ⩽ Pk

(
T̃

a+
k

a−
ex(k)

⩽ t X̃k
0 = ωa+

k

)
.

In estimating the right-hand side here, we use the following sequence of inequalities

(3.16) Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωa+

k

)
⩽ t + Ek

(
1
{

T̃ a−
ex(k)

> t
}(

t +∑a+
k

l=a−
ex(k)

1{X̃k
t =ωl}Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωl

))
X̃k

0 = ωa+
k

)
+ Ek

(
1
{

T̃ a−
ex(k)

⩽ t, T̃
a+

k

a−
ex(k)

> t
}

(
t +∑a+

k

l=a−
ex(k)

1{X̃k
t =ωl}Ek

(
T̃ a+

k

∣∣∣ X̃k
0 = ωl

)) ∣∣∣∣ X̃k
0 = ωa+

k

)
⩽ t + Ek

(
1
{

T̃
a+

k

a−
ex(k)

> t
}(

t +∑a+
k

l=a−
ex(k)

1{X̃k
t =ωl}Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωl

))
X̃k

0 = ωa+
k

)
,
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where we write T̃ a+
k

for the hitting time of ωa+
k

by X̃k, and we have used the Markov

property in the first inequality and the fact that T̃
a+

k

a−
ex(k)

⩾ T̃ a+
k

in the second inequality.
To make use of (3.16), we will now derive a lower bound for the expectation in the
first line and an upper bound for the inner expectations in the final line.

Towards the second goal, we observe that by the commute time identity (again,
see [Bar17, Theorem 2.63], (2.18) and Lemma 3.2(i), for any j ∈ {a−

ex(k), . . . , a+
k },

(3.17) Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωj

)
⩽ Ek

(
T̃ j

a−
ex(k)

X̃k
0 = ωj

)
+ Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωa+

k

)
⩽ Rk

eff

(
ωj, ωa−

ex(k)

)∑a+
k

l=a−
ex(k)

c
α,λ/n
k (ωl) + Rk

eff

(
ωa−

ex(k)
, ωa+

k

)∑a+
k

l=a−
ex(k)

c
α,λ/n
k (ωl)

⩽ C
(
g−

ex(k)−1 + g+
k−1

)
nℓ1(n)3,

where T̃ j

a−
ex(k)

is defined analogously to T̃
a+

k

a−
ex(k)

. Turning to the lower bound for the
first line in (3.16), again applying the commute time identity and Lemma 3.2(iii),
yields

(3.18) Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωa+

k

)

= Rk
eff

(
ωa−

ex(k)
, ωa+

k

)∑a+
k

l=a−
ex(k)

c
α,λ/n
k (ωl) ⩾

g+
k−1 + g−

ex(k)−1

Cℓ1(n)5
∑a+

k

l=a−
ex(k)

c
α,λ/n
k (ωl).

As we also have from (2.18) and the definition c
α,λ/n
k (ωi) = 1 for i ∈ {b−

ex(k), b+
k } that

∑a+
k

l=a−
ex(k)

c
α,λ/n
k (ωl) = ∑b+

k

l=b−
ex(k)

c
α,λ/n
k (ωl) − 2 ⩾ Cn,

we obtain by inserting this bound into the inequality at (3.18) that

(3.19) Ek

(
T̃

a+
k

a−
ex(k)

X̃k
0 = ωa+

k

)
⩾ C

(
g−

ex(k)−1 + g+
k−1

)
n/ℓ1(n)5.

We now have all the estimates we need to continue with the proof. Namely, insert-
ing (3.17) and (3.19) into (3.16) gives

C
(
g−

ex(k)−1 + g+
k−1

)
n

ℓ1(n)5

⩽ t + Pk

(
T̃

a+
k

a−
ex(k)

> t X̃k
0 = ωa+

k

) (
t + C

(
g−

ex(k)−1 + g+
k−1

)
nℓ1(n)3

)
.

Rearranging this inequality gives that for some C3, C4 > 0,

Pk

(
T̃

a+
k

a−
ex(k)

> t X̃k
0 = ωa+

k

)
⩾

C3
(
g−

ex(k)−1 + g+
k−1

)
nℓ1(n)−5 − t

t + C4
(
g−

ex(k)−1 + g+
k−1

)
nℓ1(n)3

.
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Consequently, taking t = 1
2C3(g−

ex(k)−1 + g+
k−1)nℓ1(n)−5, we obtain

Pk

(
T̃

a+
k

a−
ex(k)

> 1
2C3

(
g−

ex(k)−1 + g+
k−1

)
nℓ1(n)−5 X̃k

0 = ωa+
k

)
⩾

C

ℓ1(n)8 .

In conjunction with the bound at (3.15), the result follows. □

We can now prove the main result of this subsection.
Proof of (3.6). — On Aδ,K

n , by applying the previous two lemmas, we have that

Pk

(
SG−1 ⩾ ng+

k /ℓ1(n)16
)

⩾ e−C1ℓ1(n)−1
Pk

SG−1 ⩾
ng+

k

ℓ1(n)16

∣∣∣∣∣∣ G ⩾
g+

k

C1ℓ1(n)7
(
g−

ex(k)−1 + g+
k−1

)


⩾ e−C1ℓ1(n)−1
Pk

B ⩾
C1g

+
k

C2
(
g−

ex(k)−1 + g+
k−1

)
ℓ1(n)16

 ,

where C1 and C2 are the constants of Lemmas 3.5 and 3.6, respectively, and B
is a binomial random variable with ⌊g+

k /C1ℓ1(n)7(g−
ex(k)−1 + g+

k−1)⌋ − 1 trials and
success probability C2/ℓ1(n)8. In particular, recalling that, on Aδ,K

n , it holds that
g+

k /(g−
ex(k)−1+g+

k−1) ⩾ e(log n)α−1/ℓ2(n), for suitably large n the expectation and variance
of B are both contained in the interval1

2
C2g

+
k

C1
(
g−

ex(k)−1 + g+
k−1

)
ℓ1(n)15

,
3
2

C2g
+
k

C1
(
g−

ex(k)−1 + g+
k−1

)
ℓ1(n)15

 .

Thus, by the Chebyshev inequality and (2.14),

Pk

B ⩾
C1g

+
k

C2
(
g−

ex(k)−1 + g+
k−1

)
ℓ1(n)16

 ⩾ 1 − Pk

(
|B − Ek[B]| ⩾ Ek[B]

2

)

⩾ 1 − 4Vark[B]
Ek[B]2

n → ∞−−−→ 1.

From this,

inf
ω ∈ Aδ,K

n

Pk

(
SG−1 ⩾ ng+

k /ℓ1(n)16
)

n → ∞−−−→ 1,(3.20)

and recalling (3.11), we complete the proof. □

Remark 3.7. — Note that SG−1 ⩾ ng+
k /ℓ1(n)16 implies Ta+

k
< ∞ and depends

only on the behaviour of the random walk after Ta+
k
. Therefore, (3.20) remains valid

for the random walk starting from ωa+
k
.
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4. Proof of main results

4.1. Exceedance time and extrema scaling

In this subsection, we will prove Theorems 1.1 and 1.3. To begin with, we apply
the barrier crossing time estimates of Section 3 to deduce the following one-sided
version of Theorem 1.1(a).

Proposition 4.1. — Fix α > 1 and λ ∈ R. As n → ∞,

dU

((
n−1L

(
n−1∆+

nx

))
x⩾ 0

, (mn,+(x))x⩾ 0

)
→ 0

in Pα,λ/n-probability.

Proof. — Fix δ > 0 and K ∈ N, and define (α+
k , β+

k )k ⩾ 0 as at (3.3) and (3.4). Note
that if nx ∈ [ωa+

k
, ωa+

k+1
) for some k ⩾ 1, then ∆+

nx ∈ [β+
k , α+

k+1]. Hence, on the event

Cδ,K
n := ⋂K

k=1

{
α+

k < ng+
k−1ℓ1(n)4, β+

k > ng+
k ℓ1(n)−16

}
,

it holds that: if nx ∈ [ωa+
k
, ωa+

k+1
) for some k ∈ {1, . . . , K − 1}, then

n−1L
(
g+

k ℓ1(n)−16
)
⩽ n−1L

(
n−1∆+

nx

)
⩽ n−1L

(
g+

k ℓ1(n)4
)

.

Moreover, on Cδ,K
n , if nx < ωa+

1
, then

n−1L
(
n−1∆+

nx

)
⩽ n−1L

(
g+

0 ℓ1(n)4
)

.

Next, observe that if nx ∈ [ωa+
k
, ωa+

k+1
) for some k ⩾ 1, then m+

n (x) = n−1L(g+
k ), and

if nx < ωa+
1
, then m+

n (x) ⩽ n−1L(g+
0 ). Consequently, on Cδ,K

n ,

sup
x < n−1ω

a+
K

∣∣∣n−1L
(
n−1∆+

nx

)
− m+

n (x)
∣∣∣

⩽ n−1L
(
g+

0 ℓ1(n)4
)

+ sup
k=1, ..., K

(
n−1L

(
g+

k ℓ1(n)4
)

− n−1L
(
g+

k ℓ1(n)−16
))

.

That this estimate holds with high probability as n → ∞, i.e.

lim
n → ∞

Pα,λ/n
(
Cδ,K

n

)
= 1,

follows from Proposition 2.2 and Theorem 3.1.
Recall from (2.11) that the environments for different values of n are coupled in

such a way that n−1L(g+
k ) → g+,Pois

k > 0 as n → ∞. Using the elementary fact that,
for any θ ∈ R and deterministic sequence (xn)n⩾ 0,

lim
n → ∞

n−1L(xn) = x ∈ (0, ∞) =⇒ lim
n → ∞

n−1L
(
xnℓ1(n)θ

)
= x,

it follows that(
n−1L

(
g+

k ℓ1(n)−16
)

, n−1L
(
g+

k ℓ1(n)4
))

k ⩾ 1
→
(
g+,Pois

k , g+,Pois
k

)
k ⩾ 1

.
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Combining these observations, we conclude that, for any x0, ε ∈ (0, ∞),

Pα,λ/n

(
sup

x⩽x0

∣∣∣n−1L
(
n−1∆+

nx

)
− m+

n (x)
∣∣∣ > ε

)

⩽ Pα,λ/n

(
n−1L

(
g+

0 ℓ1(n)4
)

+ sup
k=1, ..., K

(
n−1L

(
g+

k ℓ1(n)4
)

− n−1L
(
g+

k ℓ1(n)−16
))

>ε

)
+ Pα,λ/n

((
Cδ,K

n

)c)
+ Pα,λ/n

(
n−1ωa+

K
⩽ x0

)
→ P

(
g+,Pois

0 > ε
)

+ P
(
a+,Pois

K ⩽ x0
)

.

Finally, by (2.9), the first probability above can be made arbitrarily small by taking
δ small. Also, for fixed δ, we can apply (2.8) to deduce that P(a+,Pois

K ⩽ x0) can be
made arbitrarily small by taking K large. Hence we conclude that

lim
n → ∞

Pα,λ/n

(
sup

x⩽x0

∣∣∣n−1L
(
n−1∆+

nx

)
− m+

n (x)
∣∣∣ > ε

)
= 0,

which implies the result. □

Proof of Theorem 1.1(a). — From the symmetry of the situation, Proposition 4.1
implies a corresponding version for the exceedance times on the negative axis. To-
gether with Proposition 4.1, this implies Theorem 1.1(a). □

Proof of Theorem 1.3(a). — Since (L(rα,0(ωj, ωj+1)))j ∈Z are i.i.d. random vari-
ables satisfying (2.4) the result is an immediate application of [Res87, Proposi-
tion 4.20] (see also [Lam64]). □

For the remaining parts of the theorems, we will apply a standard fact from [Whi02]
about the continuity of the operation of taking an inverse. Indeed, it is known that if
fn → f in the Skorohod J1 topology (or indeed the weaker Skorohod M2 topology),
where fn and f are both unbounded functions in D([0, ∞), [0, ∞)), then the right-
continuous inverses, defined similarly to (1.9), satisfy f−1

n → f−1 with respect to the
Skorohod M1 topology whenever f−1(0) = 0, see [Whi02, Theorem 13.6.1]. (Note
that, by the same result, the operation of taking a right-continuous inverse is also
measurable with respect to the relevant topologies.)

Proof of Theorem 1.1(b) and Theorem 1.3(b). — From Theorem 1.1(a) and
Theorem 1.3(a), we have that(

n−1L
(
n−1∆−

nx

)
, n−1L

(
n−1∆+

nx

)
, mn,−(x), mn,+(x)

)
x⩾ 0

→ (m−(x), m+(x), m−(x), m+(x))x⩾ 0

in distribution with respect to topology on D([0, ∞),R4) induced by dJ1 . Applying
the result of [Whi02] that was introduced before the proof, to deduce Theorem 1.1(b)
and Theorem 1.3(b), it will thus be sufficient to check that, almost-surely, all the
functions above are unbounded and that m−1

− (0) = 0 = m−1
+ (0).

Now, since the values of (m+(x))x ∈ (0,∞) and (m−(x))x ∈ (0,∞) correspond to g+,Pois
k

and g−,Pois
k respectively, they are almost-surely unbounded by (2.8) and satisfy
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m−1
− (0) = 0 = m−1

+ (0) by (2.6). Then, the same hold for mn,+ and mn,− by Theo-
rem 1.3(b) and the Skorohod representation theorem. Finally, we know from Theo-
rem 1.1(a) that

n1/2/L
(
n−1∆+

n

)
→ 0

in Pα,λ/n-probability as n → ∞. Clearly this implies that ∆+
n → ∞ in Pα,λ/n-

probability. Hence there exists a subsequence (ni)i⩾ 1 along which ∆+
ni

diverges
almost-surely (by [Kal02, Lemma 4.2], for example). Since (∆+

x )x⩾ 0 is non-decreasing,
it follows that (∆+

x )x⩾ 0 diverges almost-surely. Consequently, for each n, the same
is true of (n−1L(n−1∆+

nx))x⩾ 0. The same argument gives the corresponding result
for (n−1L(n−1∆−

nx))x⩾ 0, and this completes the proof. □

4.2. Finite dimensional distribution convergence

We now turn to the proof of Theorem 1.4, starting with the one-dimensional
marginal. Specifically, we will establish the following proposition.

Proposition 4.2. — For any 0 ⩽ s < t and continuous bounded function f , as
n → ∞,

sup
ωi ∈ [nm−1

n,−(t),nm−1
n,+(t)]∣∣∣∣∣∣∣∣E

α,λ/n
ω

(
f
(
n−1XnL−1(nt)−nL−1(ns)

)
X0 = ωi

)
−

∫m−1
n,+(t)

m−1
n,−(t) e2λxf(x)dx∫m−1

n,+(t)
m−1

n,−(t) e2λxdx

∣∣∣∣∣∣∣∣
converges to zero in P-probability.

Proof of Proposition 4.2. — We start by considering the case when s = 0 and
X0 = 0. Fix δ, η > 0 and K ∈ N. Recall that in Definition 2.3, Eδ,η,K

n was defined to
be the event that Aδ,K

n holds and, moreover,

(4.1) n−1L
(
g−

ex(k)−1

)
, n−1L

(
g+

k−1

)
⩽ t − η < t + η ⩽ n−1L

(
g+

k

)
for some k ∈ {1, . . . , K}, where t is as in Proposition 4.2. The previous inequalities
imply that

(4.2) m−1
n,−(t) = n−1ωa−

ex(k)
, m−1

n,+(t) = n−1ωa+
k
.

For the time being we will suppose that Eδ,η,K
n holds, and write k for the index

such that (4.1) holds. Recall the definition of the random walk X̃k on Ṽ k =
{ωa−

ex(k)
, . . . , ωa+

k
} from (3.14). By construction, X̃k behaves the same as Xk up

until the time that the latter process exits Ṽ k, and thus X̃k can be coupled with X
so that it follows the same path up until the stopping time min{β−

ex(k), β+
k } (assuming

both processes are started from 0). Consequently,
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∣∣∣Eα,λ/n
ω

(
f
(
n−1XnL−1(nt)

))
− Ek

(
f
(
n−1X̃k

nL−1(nt)

))∣∣∣
⩽ ∥f∥∞P α,λ/n

ω

(
min

{
β−

ex(k), β+
k

}
⩽ nL−1(nt)

)
⩽ ∥f∥∞Pk

(
SG−1 ⩽ nL−1(nt)

)
,

where we define SG−1 as in Subsection 3.3. Noting from (4.1) that, for large n,

(4.3) nL−1(nt) ⩽ ng+
k L−1(nt)

L−1(n(t + η))

= ng+
k elogα(nt)−logα(n(t+η)) ⩽ ng+

k e−C logα−1(nt) <
ng+

k

ℓ1(n)16 ,

we find that

(4.4)
∣∣∣Eα,λ/n

ω

(
f
(
n−1XnL−1(nt)

))
− Ek

(
f
(
n−1X̃k

nL−1(nt)

))∣∣∣
⩽ ∥f∥∞Pk

(
SG−1 <

ng+
k

ℓ1(n)16

)
.

Next, we apply the following bound concerning the mixing of the Markov chain X̃k,
which will be proved in Appendix B: if π̃k is the invariant probability measure of X̃k

and

t̃k
mix := sup

a−
ex(k) ⩽ i,j ⩽ a+

k

Rk
eff(ωi, ωj)

a+
k∑

i=a−
ex(k)

cα,λ/n(ωi),

then for any continuous bounded function f ,

(4.5)
∣∣∣∣Ek

(
f
(
n−1X̃k

nL−1(nt)

))
−
∫

f(n−1x)π̃k(dx)
∣∣∣∣

⩽ ∥f∥∞e−nL−1(nt)/t̃k
mix sup

i=a−
ex(k), ..., a+

k

π̃k(ωi)−1/2.

Note that on the set Ṽ k, π̃k({ωi}) ∝ c
α,λ/n
k (ωi) = cα,λ/n(ωi), and so

(4.6)
∫

f
(
n−1x

)
π̃k(dx) =

∑a+
k

i=a−
ex(k)

f(n−1ωi)cα,λ/n(ωi)∑a+
k

i=a−
ex(k)

cα,λ/n(ωi)
=

∫m−1
n,+(t)

m−1
n,−(t) f(x)µα,λ,ω

n (dx)∫m−1
n,+(t)

m−1
n,−(t) µα,λ,ω

n (dx)
,

where µα,λ,ω
n was defined at (2.24). On Eδ,η,K

n , due to (2.17) and (2.18), it holds that

sup
i=a−

ex(k), ..., a+
k

1
π̃k(ωi)

=
a+

k∑
i=a−

ex(k)

cα,λ/n(ωi) sup
i=a−

ex(k), ..., a+
k

1
cα,λ/n(ωi)

⩽ cnℓ1(n)2elogα+1 n.
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Furthermore, on Eδ,η,K
n , we have the bound

t̃k
mix = sup

a−
ex(k) ⩽ i,j ⩽ a+

k

Rk
eff(ωi, ωj)

a+
k∑

i=a−
ex(k)

cα,λ/n(ωi) ⩽ Cn
(
g+

k−1 + g−
ex(k)−1

)
ℓ1(n)3,

where we have applied (2.18) and Lemma 3.2 to deduce the inequality. Therefore,
again recalling (4.1), for large n,

nL−1(nt)
t̃k
mix

⩾
L−1(nt)

C
(
g+

k−1 + g−
ex(k)−1

)
ℓ1(n)3

⩾
L−1(nt)

CL−1(n(t − η))ℓ1(n)3 ⩾ ec logα−1(nt),

(4.7)

and combining this bound with (4.4), (4.5) and (4.6) yields that
∣∣∣∣∣∣∣∣E

α,λ/n
ω

(
f
(
n−1XnL−1(nt)

))
−

∫m−1
n,+(t)

m−1
n,−(t) f(x)µα,λ,ω

n (dx)∫m−1
n,+(t)

m−1
n,−(t) µα,λ,ω

n (dx)

∣∣∣∣∣∣∣∣× 1Eδ,η,K
n

(ω)

⩽ ∥f∥∞

(
Pk

(
SG−1 <

ng+
k

ℓ1(n)16

)
× 1Eδ,η,K

n
(ω) + cnℓ1(n)2elogα+1 n−Cec logα−1(nt)

)
,

where, at the expense of including the indicator function 1Eδ,η,K
n

, we have dropped
our assumption that Eδ,η,K

n holds. Applying Proposition 2.5 and that

Pk

(
SG−1 <

ng+
k

ℓ1(n)16

)
× 1Eδ,η,K

n
→ 0

in P-probability, which follows from (3.20), we can thus conclude that∣∣∣∣∣∣∣∣E
α,λ/n
ω

(
f
(
n−1XnL−1(nt)

))
−

∫m−1
n,+(t)

m−1
n,−(t) e2λxf(x)dx∫m−1

n,+(t)
m−1

n,−(t) e2λxdx

∣∣∣∣∣∣∣∣× 1Eδ,η,K
n

(ω) → 0

in P-probability.
Our subsequent step is to describe how to extend the result of the previous para-

graph to hold for 0 ⩽ s < t and arbitrary starting points in [nm−1
n,−(t), nm−1

n,+(t)].
Firstly, for such s, we have that: for any η > 0, for large n,

L−1 (n(t − η/2)) ⩽ L−1(nt) − L−1(ns) ⩽ L−1(nt).

Hence, arguing similarly to (4.7), on Eδ,η,K
n , for n large, we have that

nL−1(nt) − nL−1(ns)
t̃k
mix

⩾ ec logα−1(n(t−η/2)).
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Thus, proceeding as for the case when X0 = 0, we find that, uniformly over starting
points ωi ∈ [nm−1

n,−(t), nm−1
n,+(t)],

∣∣∣∣∣∣∣∣E
α,λ/n
ω

(
f
(
n−1XnL−1(nt)−nL−1(ns)

)
X0 = ωi

)
−

∫m−1
n,+(t)

m−1
n,−(t) e2λxf(x)dx∫m−1

n,+(t)
m−1

n,−(t) e2λxdx

∣∣∣∣∣∣∣∣× 1Eδ,η,K
n

(ω)

⩽ ∥f∥∞ sup
ωj ∈ [nm−1

n,−(t),nm−1
n,+(t)]

Pk

(
SG−1 <

ng+
k

ℓ1(n)16 X0 = ωj

)
× 1Eδ,η,K

n
(ω)

+ ∥f∥∞cnℓ1(n)2elogα+1 n−Cec logα−1(nt)
.

Since ω ∩ [nm−1
n,−(t), nm−1

n,+(t)] = Ṽ k, the probability involving SG−1 can be bounded
in almost the same way as (3.20). The only adaptation needed in the proof concerns
the estimate for τ(0), as presented at (3.12). Specifically, on Eδ,η,K

n , similarly to the
steps leading to (3.12), using Lemma 3.2 we can check that:

sup
ωj ∈ [nm−1

n,−(t),nm−1
n,+(t)]

Pk (τ(0) = ∞ X0 = ωj) ⩽ sup
ωj ∈ Ṽ k

Rk
eff

(
ωj, ωa+

k

)
Rk

eff

(
ωj,

{
ωb−

ex(k)
, ωb+

k

})

⩽
Cℓ1(n)6

(
g+

k−1 + g−
ex(k)−1

)
g+

k

and the right-hand side here can be made arbitrarily small by taking n large. On
the other hand, if τ(0) < ∞, then we can use the strong Markov property at τ(0)
and Remark 3.7. Thus we can conclude that

sup
ωj ∈ [nm−1

n,−(t),nm−1
n,+(t)]

Pk

(
SG−1 <

ng+
k

ℓ1(n)16 X0 = ωj

)
× 1Eδ,η,K

n
(ω) n → ∞−−−→ 0

in P-probability. Summarising, this establishes that the supremum over starting
points ωi ∈ [nm−1

n,−(t), nm−1
n,+(t)] of

(4.8)

∣∣∣∣∣∣∣∣E
α,λ/n
ω

(
f
(
n−1XnL−1(nt)−nL−1(ns)

)
X0 = ωi

)
−

∫m−1
n,+(t)

m−1
n,−(t) e2λxf(x)dx∫m−1

n,+(t)
m−1

n,−(t) e2λxdx

∣∣∣∣∣∣∣∣
× 1Eδ,η,K

n
(ω)

converges to zero in P-probability as n → ∞.
Finally, observe that by symmetry, we have that (4.8) still converges to zero in

P-probability when Eδ,η,K
n is replaced by Ẽδ,η,K

n . By Proposition 2.4, we know that
lim infn → ∞ P(Eδ,η,K

n ∪ Ẽδ,η,K
n ) can be made arbitrarily close to one by adjusting δ,

K and η. This completes the proof of Proposition 4.2. □
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Remark 4.3. — The above proof contains the main ideas needed to check the
localisation result of Remark 1.2. Indeed, the argument established that

P α,λ/n
ω

(
n−1XnL−1(nt) < m−1

n,−(t) or n−1XnL−1(nt) > m−1
n,+(t)

)
× 1Eδ,η,K

n
(ω)

⩽ P α,λ/n
ω

(
min

{
β−

ex(k), β+
k

}
⩽ nL−1(nt)

)
× 1Eδ,η,K

n
(ω) → 0

in P-probability, where k is the index satisfying (4.1). The symmetry of the situation
means we can deduce a similar result on Ẽδ,η,K

n , and applying Proposition 2.4 thus
yields

P α,λ/n
ω

(
n−1XnL−1(nt) < m−1

n,−(t) or n−1XnL−1(nt) > m−1
n,+(t)

)
→ 0

in P-probability. We further have that

P α,λ/n
ω

(
n−1XnL−1(nt) > m−1

n,−(t) or n−1XnL−1(nt) < m−1
n,+(t)

)
× 1Eδ,η,K

n
(ω)

⩽ P α,λ/n
ω

(
max

{
α−

ex(k), α+
k

}
> nL−1(nt)

)
× 1Eδ,η,K

n
(ω),

where α−
ex(k) = inf{t ⩾ 0 : Xt ⩽ ωa−

ex(k)
}. Applying (4.1) and Theorem 3.1, one can

check that
P α,λ/n

ω

(
α+

k > nL−1(nt)
)

× 1Eδ,η,K
n

(ω) → 0

in P-probability. The same approach gives the corresponding limit with α+
k replaced

by α−
ex(k), and we can also deal with the situation on Ẽδ,η,K

n in a similar fashion.
Hence, again applying Proposition 2.4, we find that

P α,λ/n
ω

(
n−1XnL−1(nt) > m−1

n,−(t) or n−1XnL−1(nt) < m−1
n,+(t)

)
→ 0

in P-probability, which completes the proof of the result claimed in Remark 1.2.

Proof of Theorem 1.4(a). — To deduce the finite-dimensional statement of The-
orem 1.4(a) from Proposition 4.2, we will repeatedly apply the Markov property.
Specifically, for the first step, observe

Eα,λ/n
ω

(
I∏

i=1
fi

(
n−1XnL−1(nti)

))

= Eα,λ/n
ω

(
I−1∏
i=1

fi

(
n−1XnL−1(nti)

)
Eα,λ/n

ω

(
fI

(
n−1XnL−1(ntI)

)
XnL−1(ntI−1)

))
.

Hence, defining

In,i :=

∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxfi(x)dx∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxdx
,
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we have∣∣∣∣∣Eα,λ/n
ω

(
I∏

i=1
fi

(
n−1XnL−1(nti)

))
− Eα,λ/n

ω

(
I−1∏
i=1

fi

(
n−1XnL−1(nti)

))
In,I

∣∣∣∣∣
⩽ CEα,λ/n

ω

(∣∣∣Eα,λ/n
ω

(
fI

(
n−1XnL−1(ntI)

)
XnL−1(ntI−1)

)
− In,I

∣∣∣)
⩽ C sup

ωi ∈ [m−1
n,−(tI−1),m−1

n,+(tI−1)]

∣∣∣Eα,λ/n
ω

(
fI

(
n−1XnL−1(ntI)−nL−1(ntI−1)

)
X0 = ωi

)
− In,I

∣∣∣
+ CP α,λ/n

ω

(
XnL−1(ntI−1) ̸∈

[
m−1

n,−(tI−1), m−1
n,+(tI−1)

])
.

Since [m−1
n,−(tI−1), m−1

n,+(tI−1)] ⊆ [m−1
n,−(tI), m−1

n,+(tI)], the first of these terms con-
verges to zero in P-probability by Proposition 4.2. To handle the second term, we
consider Eδ,η,K

n as in the proof of Proposition 4.2 with t = tI−1. Recalling (4.2) and
the definition of SG−1 from Subsection 3.3, we have that

P α,λ/n
ω

(
XnL−1(ntI−1) ̸∈

[
m−1

n,−(tI−1), m−1
n,+(tI−1)

])
× 1Eδ,η,K

n
(ω)

⩽ P α,λ/n
ω

(
min

{
β−

ex(k), β+
k

}
⩽ nL−1(ntI−1)

)
× 1Aδ,K

n
(ω)

⩽ Pk

(
SG−1 <

ng+
k

ℓ1(n)16

)
× 1Aδ,K

n
(ω),

where we apply the bound at (4.3) to obtain the second inequality (with k being the
index satisfying (4.1)). Moreover, by (3.20), the upper bound here converges to zero
in P-probability. A similar limit holds when Eδ,η,K

n is replaced by Ẽδ,η,K
n (again with

t = tI−1). Since lim infn → ∞ P(Eδ,η,K
n ∪ Ẽδ,η,K

n ) can be made arbitrarily close to 1 by
adjusting δ, K and η by Proposition 2.4, we can conclude that∣∣∣∣∣Eα,λ/n

ω

(
I∏

i=1
fi

(
n−1XnL−1(nti)

))
− Eα,λ/n

ω

(
I−1∏
i=1

fi

(
n−1XnL−1(nti)

))
In,I

∣∣∣∣∣ → 0

in P-probability. Iterating the argument gives the result. □

Proof of Theorem 1.4(b). — Given Theorem 1.4(a), to prove the result, it will
suffice to check that: for any collection of times satisfying 0 < t1 < · · · < tk and
continuous bounded functions f1, . . . , fk,

E

 k∏
i=1

∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxfi(x)dx∫m−1
n,+(ti)

m−1
n,−(ti)

e2λxdx

 → E

 k∏
i=1

∫m−1
+ (ti)

m−1
− (ti)

e2λxfi(x)dx∫m−1
+ (ti)

m−1
− (ti)

e2λxdx


as n → ∞. Since the ratios of integrals within the expectations are continuous
bounded functions of their limits, this convergence follows from the fact that(

m−1
n,−(ti), m−1

n,+(ti)
)k

i=1
→
(
m−1

− (ti), m−1
+ (ti)

)k

i=1

in distribution as n → ∞. This is in turn a consequence of Theorem 1.3(b) and
the observation that, for every t ⩾ 0, both m−1

− and m−1
+ are P-a.s. continuous at t,

which follows from [Res87, Proposition 4.9], for example. □
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Appendix A. Metrics on the space of càdlàg functions

For the convenience of readers, we recall here some standard notions of distance
on the space of càdlàg functions. For a more detailed introduction, see [Whi02,
Chapters 3 and 12]. Write D([0, ∞),R) for the space of càdlàg functions from [0, ∞)
into R. For f, g ∈ D([0, ∞),R), we define

(A.1) dU(f, g) :=
∫ ∞

0
e−T min

{
1, dT

U(f, g)
}

dT,

where
dT

U(f, g) := sup
t ∈ [0,T ]

|f(t) − g(t)| .

This is a metric on D([0, ∞),R) that characterises the topology of uniform conver-
gence on compacts. To capture the Skorohod J1 topology, we define dJ1(f, g) similarly
to (A.1), but with dT

U(f, g) replaced by

dT
J1(f, g) := inf

λ

(
dT

U(f ◦ λ, g) + sup
t ∈ [0,T ]

|λ(t) − t|
)

,

where the infimum is over increasing homeomorphisms λ : [0, T ] 7→ [0, T ]. For the
Skorohod M1 topology, we need to introduce notation for the completed (partial)
graph of f ∈ D([0, ∞),R). In particular, we set

ΓT
f :=

{
(t, x) ∈ [0, T ] × R : x ∈

[
min

{
f(t−), f(t)

}
, max

{
f(t−), f(t)

}]}
.

Moreover, we define a parametric representation of ΓT
f to be a continuous surjection

(u, v) : [0, 1] 7→ ΓT
f such that, if s < t, then either u(s) < u(t) or u(s) = u(t) and

|f(u(s)−) − v(s)| ⩽ |f(u(t)−) − v(t)|. We then define dM1(f, g) similarly to (A.1),
but with dT

U(f, g) replaced by

dT
M1(f, g) := inf

(uf ,vf ),(ug ,vg)

(
sup

t ∈ [0,1]
|uf (t) − ug(t)| + sup

t ∈ [0,1]
|vf (t) − vg(t)|

)
,

where the infimum is over parametric representations (uf , vf) of ΓT
f and (ug, vg) of

ΓT
g . Finally, in the course of the article, we sometimes use the same notation to

discuss distances between functions in D([0, ∞),Rd). If f, g ∈ D([0, ∞),Rd), then
our convention is that

dU(f, g) :=
d∑

i=1
dU(fi, gi),

where fi and gi are the components of f and g, respectively, i.e. we write f(t) =
(f1(t), . . . , fd(t)) and g(t) = (g1(t), . . . , gd(t)). We similarly define dJ1 and dM1 on
D([0, ∞),Rd).

Appendix B. Mixing time estimate

We prove the bound at (4.5) from the proof of Theorem 1.4. As we shall see below,
this is essentially a bound on a mixing time and a similar result is proved in [NP08,
Lemma 4.1, Corollary 4.2] for discrete time random walks. The proof in that paper
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can be adapted to our continuous time random walks, but we provide a slightly
different proof for readers’ convenience. Our proof will be given in a general setting
since it simplifies the notation and also the argument might be of general interest.

Let G be a finite connected graph (with no loops or multiple edges) and suppose
that for each edge {x, y} in G, a nonnegative weight cx,y = cy,x > 0 is assigned.
We consider the continuous random walk ((Yt)t⩾ 0, {Px}x ∈ G) whose generator ∆ is
defined in the same way as (1.2). The invariant measure µ and the effective resistance
Reff are also defined in the same way as (1.3) and (3.1). Let π = µ(·)/µ(G) denote
the invariant distribution. Note first that we have, for any x ∈ G,∣∣∣∣Ex(f(Yt)) −

∫
fdπ

∣∣∣∣
⩽
∑

y ∈ G

|f(y)||Px(Y (t) = y) − π(y)| ⩽ 2∥f∥∞dTV(Px(Y (t) ∈ ·), π),

where we write dTV for the total variation distance between measures on G. Thus it
suffices to obtain the following bound on the total variation distance

sup
x ∈ G

dTV(Px(Y (t) ∈ ·), π) ⩽ 1
2 exp−t/(µ(G)diamReff (G)) sup

x ∈ G
π(x)−1/2.(B.1)

By Jensen’s inequality, we can bound the total variation distance as follows:

dTV(Px(Y (t) ∈ ·), π) = 1
2
∥∥∥π(·)−1Px(Y (t) ∈ ·) − 1

∥∥∥
L1(π)

⩽
1

2µ(G)1/2

∥∥∥π(·)−1Px(Y (t) ∈ ·) − 1
∥∥∥

L2(µ)
.

(B.2)

Furthermore, we know from [Bar17, Corollary 5.9] that∥∥∥π(·)−1Px(Y (t) ∈ ·) − 1
∥∥∥

L2(µ)
⩽ e−tλ2(G)

∥∥∥π(·)−11{x} − 1
∥∥∥

L2(µ)

= µ(G)1/2e−tλ2(G)
(

1
π(x) − 1

)1/2

,
(B.3)

for any t ⩾ 0, where

λ2(G) = inf
{

E(f, f) : ∥f∥L2(µ) = 1 and
∑

x ∈ G

f(x)µ(x) = 0
}

is the so-called spectral gap. The operator E was defined in (3.2) for the weighted
graph corresponding to the Mott random walk, and the definition for arbitrary
weighted graphs is analogous. We note that λ2(G) is the second smallest eigenvalue
of −∆ and the above variational expression can be found in [Bar17, Lemma 3.36].

Now we are going to relate λ2(G) to µ(G)diamReff(G). To this end we use the
variational representation of the effective resistance:

Reff(x, y) = sup
{

|f(x) − f(y)|2

E(f, f) : E(f, f) > 0
}

,(B.4)
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which follows readily from (3.1). Let ϕ be an L2(µ)-normalized eigenfunction of −∆
associated with λ2(G). Then, since E(ϕ, ϕ) = λ2(G), we can use (B.4) to get

Reff(x, y) ⩾ |ϕ(x) − ϕ(y)|2

λ2(G) .(B.5)

From µ(G) maxx ∈ G |ϕ(x)|2 ⩾ ∥ϕ∥2
L2(µ) = 1, it follows that there exists x∗ ∈ G such

that |ϕ(x∗)| ⩾ µ(G)−1/2. On the other hand, the condition ∑x ∈ G ϕ(x)µ(x) = 0 for
the eigenfunction ϕ implies that there exists y∗ ∈ G with ϕ(x∗)ϕ(y∗) < 0. Then we
have |ϕ(x∗) − ϕ(y∗)| ⩾ µ(G)−1/2. Substituting this into (B.5) and rearranging, we
get

λ2(G) ⩾ 1
µ(G)Reff(x∗, y∗) ⩾

1
µ(G)diamReff(G) .

Combining this bound with (B.2) and (B.3), we obtain (B.1).
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