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1372 B. CLOEZ & C. FRITSCH

Micro-organisms are modeled though a pure jump process whose jump rates depend on the
substrate concentration.

It goes to extinction almost-surely in the sense that micro-organism population vanishes.
In this work, we show that, conditionally on the non-extinction, its distribution converges
exponentially fast to a quasi-stationary distribution.

Due to the deterministic part, the dynamics of the Crump–Young model are highly degen-
erated. The proof is therefore original and consists of technically precise estimates and new
approaches for quasi-stationary convergence.

Résumé. — Le modèle de Crump–Young se compose de deux processus stochastiques
entièrement couplés modélisant la dynamique du substrat et des micro-organismes dans un
chemostat. Le substrat évolue selon une équation différentielle ordinaire dont les coefficients
dépendent du nombre de micro-organismes. Les micro-organismes sont modélisées via un
processus de saut pur dont les taux de saut dépendent de la concentration en substrat.

Ce processus s’éteint presque sûrement dans le sens où la population de micro-organismes
s’éteint presque sûrement. Dans cet article, nous démontrons que, conditionnellement à la
non-extinction, la loi du processus converge exponentiellement vite vers une distribution quasi-
stationnaire.

En raison de la partie déterministe du modèle, la dynamique du modèle de Crump–Young
est fortement dégénérée. La preuve est donc originale et consiste en des estimées précises et de
nouvelles approches pour démontrer la convergence vers des distributions quasi-stationnaires.

1. Introduction

The evolution of bacteria in a bioreactor is usually described by a set of ordinary
differential equations derived from a mass balance principle, see [HLRS17, SW95].
However, in 1979, Kenny S. Crump and Wan-Shin C. O’Young introduced in [CO79]
a piecewise deterministic Markov process, as defined in [Dav93], to model such a
population.

This model consists in a pair of càdlàg processes (Xt, St)t⩾ 0 where St is the nutrient
concentration at time t and obeys a differential equation, and Xt is the bacteria
population size at time t and obeys a Markov jump process. More precisely, they
are defined by the following mechanisms:

• bacterial division: the process (Xt)t⩾ 0 jumps from Xt to Xt+1 at rate µ(St)Xt;
• bacterial washout: the process (Xt)t⩾ 0 jumps from Xt to Xt − 1 at rate DXt;
• substrate dynamics: between the jumps of (Xt)t⩾ 0, the continuous dynamics

of (St)t⩾ 0 are given by the following ordinary differential equation

S ′
t = D (sin − St) − k µ(St)Xt ,(1.1)

where µ : R+ → R+ and D, sin, k > 0 are the specific growth rate, the dilution
rate of the chemostat, the input substrate concentration and the inverse of the yield
coefficient (i.e. the proportion of cell formed per unit of substrate concentration
consumed) respectively. Note that we do not consider the death of bacteria in
this model. However, the results of this article can be generalized, under suitable
assumptions, with a bacterial loss rate d(Xt, St) + D, taking into account a death
rate d(Xt, St) in addition to the bacterial washout, due to the output flow of the
chemostat, at rate D.
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Quasi-stationary behavior of the Crump–Young model 1373

Formally, the generator of this Markov process is the operator L given by

(1.2) Lf(x, s) = [D(sin − s) − kµ(s)x] ∂sf(x, s) + µ(s)x (f(x+ 1, s) − f(x, s))
+Dx (f(x− 1, s) − f(x, s)) ,

for all x ∈ N (with N = {0, 1, 2, . . . } the set of natural numbers including 0), s ⩾ 0
and f ∈ C0,1(N × R+), with C0,1(N × R+) the space of functions f : N × R+ → R
such that for x ∈ N, s 7→ f(x, s) ∈ C1(R+).

Since the work of Crump and Young, several chemostat models have been intro-
duced to complete the modeling approach of the chemostat. In particular if the
bacteria population size is not too small, it can be relevant to use stochastic continu-
ous approximation of the process (Xt)t as in [CF17, CJLV11, FRRS17]. Conversely,
[CJLV11] also propose a discrete version for the process (St)t, which is relevant in a
small number of substrate particles. Models with a mass-structured description of the
bacteria population are also been proposed in stochastic version through individual
based models [CF15, FHC15] or in deterministic version through partial differential
equations [FRT67, Ram79]. See also [WHB+16] for a panorama in mathematical
modelling for microbial ecology.

Despite the simplicity of the Crump–Young model and the fact that it has been
studied in several articles (e.g. [CF17, CJLV11, CMMSM13, CO79, WHB+16]), the
long-time behavior of this process is not well understood. It is well known that, under
suitable assumptions, it goes extinct in finite time with probability one. However, it
can be relevant to look at the distribution of the population size at time t given that
the process is not extinct. In fact numerical simulations suggest that, under suitable
assumptions on the growth rate µ and if the bacteria population is not too small,
the Crump–Young model converges towards a stationary type behavior before the
extinction [CF17]. It then becomes interesting to study, not the stationary behavior
of the process, which is extinction, but its quasi-stationary distribution (QSD). QSD
refers to the stationary distribution of the process conditioned on not being extinct
(see Equation (2.2) below).

Crump and Young, in their original work [CO79], propose an approximation of the
moments of a “quasi-steady-state”(in fact the quasi-stationary behavior, even if it
is not rigorously defined in this way in their article). They made the approximation
that the expectation of the process admits an equilibrium which is the non-trivial
equilibrium (i.e. with a non-extinct bacteria population) of a deterministic model.
This approximation is valid at least in large population size of the bacteria population
since the Crump–Young model converges in distribution towards the deterministic
model in large population size (see [CF17]). More recently, the existence of a QSD, as
well as some regularity properties of this QSD, was proved in [CMMSM13]. As stated
above, we illustrated in [CF17], the convergence of the Crump–Young model towards
this QSD. In addition, we also illustrated in [CF17], the validity of the approximation
of Crump and Young in large population size. Nevertheless, the long-time behavior
of the process before extinction (as defined in [CMSM13, MV12, vDP13]) was, until
now, unknown. In particular, the convergence of the non-extinct process was not
proved.
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1374 B. CLOEZ & C. FRITSCH

In this work, we prove that, under suitable assumptions, there exists a unique
QSD π which admits some moments (existence was proved in [CMMSM13], but not
uniqueness). Moreover, we prove that this QSD is also a Yaglom limit, that is for
all (x, s) ∈ N∗ × R+ and bounded function f : N∗ × R+ → R (with N∗ = N \ {0} =
{1, 2, . . . }), we have

lim
t→ ∞

E(x,s) [f(Xt, St) | TExt > t] = π(f),

with TExt := inf{t ⩾ 0 | Xt = 0} the extinction time of the process. That is for all
initial condition, conditionally on the non-extinction, the law of process converges
toward the QSD π.

This limiting result is the main result of the present article. It is stated in Corol-
lary 2.3. This corollary is a consequence of Theorem 2.2. This theorem gives a more
complete description of the quasi-stationary behavior. It describes the uniqueness of
π through integrability/moment properties; moreover it gives an exponential speed
of convergence to it for a certain class of initial distributions.

Convergence to QSD is usually proved using Hilbert space methods [CCL+09,
CMSM13, VD91]. However, our process of interest is not reversible, therefore its
infinitesimal generator cannot be made self-adjoint on a suitable Hilbert space.
To overcome this problem, we use recent results [BCGM22, CG20, CV20, CV23]
which are a generalization of usual techniques to prove convergence to stationary
distribution [MT09]. These techniques are applicable to general Banach spaces that
are not necessarily Hilbert spaces, for processes that are not necessarily reversible
or when the existence of the principal eigenvector is unknown. A drawback is that
sharp estimates are needed on the paths such as uniform bounds on hitting times.
These estimates are often obtained through irreducibility properties, however proving
irreducibility properties for piecewise deterministic processes is an active and difficult
subject of research [BHS18, BLBMZ15, BS19, Cos16]. See for instance the surprising
behavior of some piecewise deterministic Markov processes in [BLBMZ14, LMR15].
A main part of our proof is nevertheless based on such result.

An important feature of the Crump–Young model is that it is not irreducible.
Indeed, fixing the number of bacteria x, the flow associated to the substrate dynamics
has a unique equilibrium s̄x, which is never reached. In the following, we demonstrate
that the hitting times of other points are finite. However, since the hitting times of
points (x, s̄x) are infinite, it is challenging to obtain uniform estimates for the other
hitting times, which are fundamental for the QSD existence and convergence.

The deterministic part of the substrate dynamics leads to additional difficulties.
This non diffusive behavior prevents the dynamics from reaching any point in short
time. This adds difficulty in obtaining the previous uniform estimates which are
necessary for applying the results of [BCGM22, CV20].

All these difficulties are usual in piecewise deterministic models. Finally, even
though our model may seem very specific, our proof could be replicated in other
contexts and therefore open doors for other applications where this type of processes
is applicable. These applications include, but are not limited to, neuroscience [GL16,
PTW10], genomics [Gor12, HBEG17], and ecology [Cos16].
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The paper is organized as follows. We establish our main results in Section 2: first
we state the exponentially fast convergence of the process towards a unique QSD for
initial distributions on a restrictive subset of N∗ ×R+ (Theorem 2.2) then we extend
the convergence towards the QSD for any initial condition of the process in N∗ ×R+
(Corollary 2.3). Section 3 is devoted to the proof of Theorem 2.2, based on results
of [BCGM22] and [CV20] which give conditions leading to the existence and the
uniqueness of the QSD as well as the convergence statement. We begin by detailing
the scheme of our proof establishing sufficient conditions for applying [BCGM22]
and [CV20]. These conditions, proved in Section 3.4, are mainly based on hitting
time estimates, established in Section 3.3. These hitting time estimates represent
the main challenges and validate the originality of our work, since our process is not
irreducible and contains a deterministic component. Section 4 is devoted to the proof
of Corollary 2.3. For a better readability of the main arguments of the proofs, we
postpone technical results in two appendices. The first one establishes bounds and
monotony properties of the underlying flow associated to the substrate dynamics
as well as some classical properties on the probability of jump events. The second
one contains the proof of the above-mentioned hitting time estimates and some
properties based on Lyapunov functions bounds. We remind in a third appendix the
useful results of [BCGM22] and [CV20].

Notation. In the following, P(x,s) denotes the distribution of the process (Xt, St)t⩾ 0
conditioned on the event {(X0, S0) = (x, s)}. For all probability measure ξ on N∗×R+,
Pξ denotes the distribution of the process whose the initial condition is distributed
according to ξ, that is Pξ(·) =

∫
N∗×R+

P(x,s)(·)ξ(dx, ds). The associated expectations
of Pξ and P(x,s) are denoted by Eξ and E(x,s) respectively.

For any probability measure ξ on the space E, with E = N∗×(0, s̄1) or E = N∗×R+,
and any function f : E → R, we will denote by ξ(f) the integral of f w.r.t to ξ on
E, that is ξ(f) :=

∫
E f(x, s) ξ(dx, ds).

2. Main results
In all the paper, we will make the following assumption.
Assumption 2.1. — The specific growth rate µ : R+ 7→ R+ satisfies to following

properties: µ ∈ C1(R+) and is an increasing function such that µ(0) = 0 and µ(s) > 0
for all s > 0.

Under Assumption 2.1, it is well known that the process (Xt)t⩾ 0 goes extinct in fi-
nite time with probability one (see [CF17, Theorem 4 and Remark 7] and [CMMSM13,
Theorem 3.1]); namely
(2.1) P(x,s) (TExt < +∞) = 1, ∀ (x, s) ∈ N∗ × R+.

The stationary behavior of the process is then the extinction of the bacteria
population. We are then interested in the quasi-stationary behavior of the process.
Recall that a QSD π, for the process (Xt, St)t, is a probability measure on N∗ × R+
such that
(2.2) Pπ ((Xt, St) ∈ · | TExt > t) = π, ∀ t ⩾ 0,
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1376 B. CLOEZ & C. FRITSCH

that is π is a stationary distribution for the process conditioned on the non-extinction.
From [MV12, Proposition 2] or [CMSM13, Theorem 2.2], if π is a QSD, there exists

a non-negative number λ ⩾ 0 such that

(2.3) Pπ (TExt > t) = e−λt, ∀ t ⩾ 0.

Then, if the extinction time TExt is almost surely finite (which is the case for our
process by (2.1)), then starting from the QSD, TExt follows an exponential law with
parameter λ > 0, hence the mean time to the extinction is 1/λ.

We denote by s̄1 ∈ (0, sin) the unique solution of D(sin − s̄1) − k µ(s̄1) = 0 (see
Lemma A.2). Following the lines of the proofs of [CMMSM13, Proposition 2.1 and
Corollary 3.1], we can show that N × (0, sin) is an invariant set for (Xt, St)t⩾ 0 and
that N∗ × (0, s̄1) is an invariant set for (Xt, St)t⩾ 0 until the extinction time TExt.
Consequently, for any initial distribution ξ on N∗ × (0, s̄1), the process evolves in
(N∗ × (0, s̄1)) ∪ ({0}× (0, sin)), where {0}× (0, sin) is the absorbing set corresponding
to the extinction of the process.

Theorem 2.2 below states, under the assumption µ(s̄1) > D, the existence and the
uniqueness (under integrability conditions) of a QSD on N∗ × (0, s̄1). Equation (2.4)
gives the convergence of the law of the process conditioned on the non-extinction
toward this QSD for initial distributions ξ in N∗ × (0, s̄1) (satisfying an integrability
condition). Moreover, it gives an exponential speed of this convergence for this
class of initial distributions. Closely related, Equation (2.5) describes the speed of
convergence toward the extinction set {0} × (0, sin) of the law of the process without
conditioning. The statement of this theorem is based on Lyapunov functions which
are used to prove contraction properties entailing the existence of a QSD π as well
as the convergence. For an easier reading of this theorem, the reader can refer to the
comments just below Theorem 2.2.

Corollary 2.3 below states that the convergence toward the QSD also holds for all
initial conditions (x, s) ∈ N∗ × R, that is π is a Yaglom limit.

For ρ > 1 and p > 0, let define for all (x, s) ∈ N∗ × (0, s̄1)

Wρ,p : (x, s) 7→ ρx + 1
s

+ 1
(s̄1 − s)p and ψ : (x, s) 7→ x.

Theorem 2.2. — We assume that µ(s̄1) > D. Then there exists a unique QSD
π on N∗ × (0, s̄1) such that there exist ρ > 1 and p ∈ (0, µ(s̄1)−D

D+k µ′(s̄1)) satisfying
π(Wρ,p) < +∞. Moreover, for each ρ > 1 and each p ∈ (0, µ(s̄1)−D

D+k µ′(s̄1)) the QSD π

satisfies π(Wρ,p) < +∞, and there exist C, ω > 0 (depending on ρ and p) such that
for any initial distribution ξ on N∗ × (0, s̄1) such that ξ(Wρ,p) < +∞, and for all
t ⩾ 0, we have

(2.4) sup
∥f∥∞ ⩽ 1

|Eξ [f(Xt, St) | TExt > t] − π(f)| ⩽ C min
(
ξ (Wρ,p)
ξ(ψ) ,

ξ (Wρ,p)
ξ(h)

)
e−ωt

and

(2.5) sup
∥f∥∞ ⩽ 1

∣∣∣eλ t Eξ [f(Xt, St) 1Xt ̸=0] − ξ(h) π(f)
∣∣∣ ⩽ C ξ (Wρ,p) e−ω t ,
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Quasi-stationary behavior of the Crump–Young model 1377

where h defined for every (x, s) ∈ N∗ × (0, s̄1) by

h(x, s) := lim
t→ ∞

eλtP(x,s)(TExt > t) ∈ (0,+∞),(2.6)

is such that supN∗×(0,s̄1) h/Wρ,p < ∞ and where λ, defined by (2.3), satisfies

0 < λ ⩽ D.(2.7)

Assumptions on µ are quite standard. For the classical deterministic model [SW95],
there assure the convergence of the model towards a unique non-trivial steady-state.
In the same way, for our stochastic model, the assumption µ(s̄1) > D implies that
when the bacteria population is small (at the minimum when there is only one
bacterium in the bioreactor), it tends to increase rather than go extinct. In fact,
when Xt = 1, the substrate concentration then converges (until the next jump of
the process (Xt)t) toward its equilibrium s̄1 (see Section A.1). Therefore the division
rate µ(St) converges towards µ(s̄1) and, if there is no jump of (Xt)t, becomes larger
that the washout rate D. A classical choice for µ is the so-called Monod rate. See
also [CF17] where numerical simulations illustrate the impact of different growth
rates µ on the long-time behavior of the Crump–Young model.

The uniqueness of the QSD π as well as the set of initial distributions ξ for which the
exponential convergence holds, depends on integrability properties of the Lyapunov
function Wρ,p w.r.t. π and ξ. Consequently, choosing large parameters ρ and p
ensures that the QSD π admits moments of large order. Conversely, choosing small
parameters ρ and p will give that uniqueness holds in a large set of measures, and
that the convergences (2.4) and (2.5) hold for a large class of initial distributions ξ.
In addition, we can see that the heavier the tail ξ, the slower the convergence in (2.4)-
(2.5). Moreover, if the tail is too heavy then the convergence may not occur. It is
then possible to have a second heavy-tailed quasi-stationary distribution π̃ as it is
the case for the Galton–Watson process (see for instance [MV12]). In this case, for
any ρ > 1 and p ∈ (0, µ(s̄1)−D

D+k µ′(s̄1)), we would have π̃(Wρ,p) = +∞.
Equation 2.4 describes the speed of convergence toward π of the laws conditioned

on non-extinction (these laws evolve according to a non-linear dynamics due to the
conditioning). Equation 2.5 describes the speed of convergence to the extinction set
{0} × (0, sin) of the laws without conditioning (which evolve linearly). These two
inequalities are not rewritings of each other.

Function h is defined from Equation (2.6) (where Equation (2.6) states that the
limit in the definition of h is well defined, positive and finite). From this expression, we
can see that starting from (x, s), the population has approximately h(x, s)/h(x′, s′)
times more chance of survival in the long term than starting from (x′, s′). This
function then describes the impact of the initial position on surviving probabilities.
As a side result, in addition to the existence of h, Theorem 2.2 also gives that this
non-explicit function verifies

h(x, s) ⩽ Cρ,p

(
ρx + 1

s
+ 1

(s̄1 − s)p

)
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1378 B. CLOEZ & C. FRITSCH

for some Cρ,p > 0 and any x ∈ N∗, s ∈ (0, s̄1), ρ > 1 and p > 0 small enough. Closely
related, the inequality λ ⩽ D means that the population will not become extinct at
a faster rate than the dilution rate (as one would expect).

Theorem 2.2, which is a consequence of [CV20, BCGM22], implies that π, h,−λ
are the eigenelements of the semigroup defined by (3.1). In particular, π and h are
the left eigenmeasure and the right eigenfunction associated with the eigenvalue −λ,
respectively. In addition, several properties which can be useful in practice (spectral
properties, the definition of the so-called Q-process, i.e. the process conditioned to
never be extinct. . .) can be deduced from [BCGM22, CV20]. Since the main objective
of our paper is to give a method to verify that results of [BCGM22, CV20] hold
for hybrid processes with a pure jump component and a continuous one, we do not
list these consequences here. For more details, the reader can refer to these two
references.

Obviously, the QSD π satisfies the properties established in [CMMSM13], in par-
ticular for any x ∈ N∗, the measure π(x, .) is absolutely continuous with respect to
the Lebesgue measure, with C∞-density on the set R \ {0, s̄x}, where s̄x is defined
in Lemma A.2 (see [CMMSM13, Proposition 5.1].

A direct consequence of (2.4) is the convergence of the law of the process condi-
tioned on the non-extinction towards the QSD π for any initial condition (x, s) ∈
N∗ × (0, s̄1). The following corollary states that this convergence actually holds for
any initial condition (x, s) ∈ N∗ × R+, i.e. π is a Yaglom limit.

Corollary 2.3. — Assume that µ(s̄1) > D. For every (x, s) ∈ N∗ × R+ and
bounded function f : N∗ × R+ → R, we have

lim
t→ ∞

E(x,s) [f(Xt, St) | TExt > t] = π(f)

that is, the QSD π is the Yaglom limit of the process.
Remark 2.4. — Assuming that µ is locally Lipschitz instead of µ ∈ C1(R+) is

sufficient to obtain the convergences established in Theorem 2.2 and Corollary 2.3.
The condition p ∈ (0, µ(s̄1)−D

D+k µ′(s̄1)) then becomes p ∈ (0, µ(s̄1)−D
D+k klip

) for any local Lipschitz
constant klip in a neighborhood of s̄1. See the end of Sections B.5 and 4.

We will see that the process (Xt, St)t⩾ 0 is not irreducible on N∗ × (0,+∞). In gen-
eral, such non-irreducible processes may have several quasi-stationary distributions
and the convergence to them depends on the initial condition of the process; see for
instance the Bottleneck effect and condition H4 part of [BCP18, Section 3.1]. In our
setting, we will show, using Lyapunov functions, that the convergence holds for any
initial distribution on N∗ × (0,+∞) because N∗ × (0, s̄1) is attractive.

3. Proof of Theorem 2.2

We fix ρ > 1 and p ∈ (0, µ(s̄1)−D
D+k µ′(s̄1)). We will prove that [BCGM22, Theorem 5.1]

and [CV20, Corollary 2.4] (which are recalled in Appendix, see Theorems C.2 and C.4)
apply to the continuous semigroup (Mt)t⩾ 0 defined by
(3.1) Mtf(x, s) := E(x,s) [f(Xt, St) 1Xt ̸= 0]
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Quasi-stationary behavior of the Crump–Young model 1379

for (x, s) ∈ N∗ × (0, s̄1) and f : N∗ × (0, s̄1) → R such that sup(x,s) ∈N∗×(0,s̄1)
|f(x,s)|
V (x,s) <

∞, where V defined below is such that c1 Wρ,p ⩽ V ⩽ c2 Wρ,p for c1, c2 > 0. The-
orem 2.2 is then a combination of these two results. The former gives the bound
ξ(Wρ,p)/ξ(h) whereas the latter gives the bound ξ(Wρ,p)/ξ(ψ) in (2.4). Note that
the reason for working with V rather than Wρ,p is that the bound (BLF1) below is
easier to obtain.

Let us fix α and θ such that

α ⩾
ρ− 1
k

, θ >
p (D + k µ′(s̄1)) +D

µ(s̄1) − (p(D + k µ′(s̄1)) +D) > 0(3.2)

and set, for all (x, s) ∈ N∗ × (0, s̄1)

ψ : (x, s) 7→ x, V : (x, s) 7→ ρxeαs

log(ρ) + 1
s

+ 1 + 1x⩽ 1θ

(s̄1 − s)p .(3.3)

Note that 1 ⩽ ψ ⩽ V on N∗×(0, s̄1). For convenience, we extend the definition of ψ on
the absorbing set by ψ(0, s) = 0 for s ∈ (0, sin) such that ψ(Xt, St) 1Xt ̸= 0 = ψ(Xt, St).

We will show that the following three properties are sufficient to prove Theorem 2.2
and we will then prove them.

(1) Bounds on Lyapunov functions: There exist η > D and ζ > 0 such that, for
all (x, s) ∈ N∗ × (0, s̄1) and t ⩾ 0,

E(x,s) [V (Xt, St) 1Xt ̸= 0] ⩽ e−ηtV (x, s) + ζt ψ(x, s) ,(BLF1)
E(x,s) [ψ(Xt, St)] ⩾ e−D tψ(x, s),(BLF2)

with ζt := ζ e
(µ(s̄1)−D)t

η−D .
(2) Minorization condition: for every t > 0, for every subset K := [[1, N ]] ×

[δ1, δ2] ⊂ N∗ × (0, s̄1), with N ∈ N∗ and δ2 > δ1 > 0, there exist a probability
measure ν such that ν(K) = 1, and ϵ > 0 satisfying

∀ (x, s) ∈ K, P(x,s)((Xt, St) ∈ ·) ⩾ ϵν(·).(MC)
(3) Mass ratio inequality: for every compact set K of N∗ × (0, s̄1), we have

sup
(x,s),(y,r) ∈K

sup
t⩾ 0

E(x,s) [ψ(Xt, St)]
E(y,r) [ψ(Xt, St)]

< +∞.(MRI)

We first establish, in Section 3.1, that the three properties above (Bounds on
Lyapunov functions (BLF1) and (BLF2); Minorization condition (MC) (as defined
in [MT09]) and Mass ratio inequality (MRI)) are sufficient conditions for proving
Theorem 2.2. This three properties are then proved in Section 3.4.

Bounds on Lyapunov functions are established using classical drift conditions on
the generator (see, for instance, [BCGM22, Section 2.4]). The originality of our
approach lies in the proof of the minorization condition (MC) and the mass ratio
inequality (MRI). The proofs of these two properties are based on irreducibility
properties that we describe in Section 3.3. The minorization condition establishes
that with a positive probability ϵ, every starting point leads the dynamics to the
same state at the same time, ensuring in particular that the process is aperiodic.
The set of starting points which satisfy this property is usually called a small set
(see for instance [MT09]). A natural approach to proving this result is to show that
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the measures δ(x,s)Mt admit of density functions with respect to some reference
measure (such as counting measure for fully discrete processes, or Lebesgue measure
for diffusion processes) and demonstrate that these densities have a common lower
bound. Unfortunately, due to the deterministic part of the dynamics, for every y ∈ N∗,
the measure δ(x,s)Mt(dy, .) keeps a Dirac mass component in addition to a density
w.r.t. the Lebesgue measure. Furthermore, we need to show that it holds for any
time t > 0 which becomes difficult when the process is neither diffusive nor discrete.
The mass ratio inequality implies that the extinction time does not vary greatly
with respect to the initial condition. It was shown in [CG20] that this condition can
be reduced to estimating hitting times. Once again, a natural approach is to prove
that the measures δ(x,s)Mt admit of density functions but with moreover a common
upper bound (see for example [BL12]). To our knowledge, there is no such result for
quasi-stationary distributions in relation to this kind of processes.

3.1. Sufficient conditions for proving Theorem 2.2

We will show that (BLF1)-(BLF2); (MC) and (MRI) imply that conditions of
[BCGM22, Theorem 5.1] and [CV20, Corollary 2.4] hold.

Let us first detail how these three properties imply [BCGM22, Assumption A]
(see Assumption C.1 in Appendix) on N∗ × (0, s̄1). First (BLF1) implies that for all
(x, s) ∈ N∗ × (0, s̄1) and for all t ⩾ 0, E(x,s)[V (Xt, St) 1Xt ̸= 0] ⩽ (e−η t + ζt)V (x, s)
and then (Mt)t⩾ 0 actually acts on functions f : N∗ × (0, s̄1) → R such that
sup(x,s) ∈N∗×(0,s̄1)

|f(x,s)|
V (x,s) < ∞.

Let τ > 0 and KR := {(x, s) ∈ N∗ × (0, s̄1), V (x, s) ⩽ Rψ(x, s)}, with R chosen
sufficiently large such that KR is non empty and such that R > ζτ

e−D τ −e−η τ , where
η > D and ζ > 0 are such that (BLF1) holds. By definition of V and ψ, we can easily
show that KR is a compact set of N∗ × (0, s̄1). We choose δ1, δ2 > 0 and N ∈ N∗ such
that KR ⊂ K := [[1, N ]] × [δ1, δ2] ∈ N∗ × (0, s̄1). Then using the fact that ψ ⩽ V/R
on the complementary of KR, for all (x, s) ∈ N∗ × (0, s̄1), we obtain from (BLF1),

E(x,s) [V (Xτ , Sτ ) 1Xτ ̸= 0] ⩽
(
e−ητ + 1

R
ζτ

)
V (x, s) + ζτ 1(x,s) ∈KR

ψ(x, s)

⩽
(
e−ητ + 1

R
ζτ

)
V (x, s) + ζτ 1(x,s) ∈Kψ(x, s),

and the bound on R ensures that(
e−ητ + 1

R
ζτ

)
< e−D τ .

Consequently (BLF1) and (BLF2) imply that [BCGM22, Assumptions (A1) and
(A2)] are satisfied.

From (BLF1) and the fact that 1K ⩽ ψ ⩽ V , for any positive function f and
(x, s) ∈ K, we have

E(x,s) [f (Xτ , Sτ )ψ (Xτ , Sτ )]
E(x,s) [ψ (Xτ , Sτ )]

⩾
1

(e−ητ + ζτ ) supK V
E(x,s)

[
f(Xτ , Sτ )1(Xτ ,Sτ ) ∈K

]
,
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and then, since K was chosen of the form [[1, N ]] × [δ1, δ2], by (MC), [BCGM22,
Assumption (A3)] is also satisfied.

Moreover (MRI) ensures the existence of some constant C ⩾ 1 such that for every
(x, s), (y, r) ∈ K and t ⩾ 0, we have
E(x,s) [ψ(Xt, St)]

ψ(x, s) ⩽ E(x,s) [ψ(Xt, St)] ⩽ CE(y,r) [ψ(Xt, St)] ⩽ CN
E(y,r) [ψ(Xt, St)]

ψ(y, r) ,

then integrating the last term w.r.t. ν(dy, dr) on K leads to [BCGM22, Assump-
tion (A4)].

Therefore [BCGM22, Theorem 5.1] implies that there exist a unique QSD π on
N∗ × (0, s̄1) such that π(V ) < +∞, a measurable function h : N∗ × (0, s̄1) → R+ such
that sup(x,s) ∈N∗×(0,s̄1) h(x, s)/V (x, s) < ∞ and constants λ, C ′, ω′ > 0 such that for
any initial distribution ξ on N∗ × (0, s̄1) such that ξ(V ) < +∞ and for all t ⩾ 0,

sup
∥f∥∞ ⩽ 1

|Eξ [f(Xt, St) | TExt > t] − π(f)| ⩽ C ′ ξ(V )
ξ(h) e

−ω′t(3.4)

and
sup

∥f∥∞ ⩽ 1

∣∣∣eλ t Eξ [f(Xt, St) 1Xt ̸=0] − ξ(h) π(f)
∣∣∣ ⩽ C ′ ξ(V ) e−ω′ t .(3.5)

Taking f ≡ 1 and ξ = δ(x,s) with (x, s) ∈ N∗ × (0, s̄1) in (3.5) leads to the expression
of h given by (2.6) and choosing ξ = π ensures that λ satisfies (2.3). In addi-
tion [BCGM22, Lemma 3.4.] ensures that h > 0 on N∗ × (0, s̄1). Moreover from (2.2)
and (2.3), for all t ⩾ 0, Eπ[ψ(Xt, St)] = e−λ tπ(ψ), then integrating (BLF2) with
respect to π gives the bounds (2.7).

Let us now detail how the three properties imply that (Mn τ )n∈N satisfies [CV20,
Assumption G] (see Assumption C.3). We consider the same compact K = [[1, N ]] ×
[δ1, δ2] as before. By (MC), for all (x, s) ∈ K and all measurable A ⊂ K,

E(x,s)
[
V (Xτ , Sτ ) 1Xτ ̸= 0 1(Xτ ,Sτ )∈A

]
⩾ ϵ

∫
A
V (y, r) ν(dy, dr) ⩾ ϵ̃ ν(A)V (x, s)

with ϵ̃ := ϵ
inf(y,r) ∈ K V (y,r)
sup(y,r) ∈ K V (y,r) > 0, then [CV20, Assumption (G1)] is satisfied. [BCGM22,

Assumptions (A1) and (A2)] imply [CV20, Assumption (G2)], then it holds. Since
for all (y, r) ∈ K, 1 ⩽ ψ(y, r) ⩽ N , then (MRI) directly implies [CV20, Assump-
tion (G3)]. Moreover, as (MC) holds for all t > 0, then [CV20, Assumption (G4)]
is also satisfied. Finally, by (BLF1) and (BLF2), for all (x, s) ∈ N∗ × (0, s̄1) and all
t ∈ [0, τ ],

E(x,s) [V (Xt, St) 1Xt ̸= 0]
V (x, s) ⩽ 1 + ζτ and E(x,s) [ψ(Xt, St)]

ψ(x, s) ⩾ e−D τ .

Therefore, from [CV20, Corollary 2.4.], there exist C ′′ > 0, ω′′ > 0 and a positive
measure νP on N∗ × (0, s̄1) satisfying νP (V ) = 1 and νP (ψ) > 0 such that for any
initial distribution ξ on N∗ × (0, s̄1) such that ξ(V ) < +∞, we have

sup
∥f∥∞ ⩽ 1

∣∣∣∣∣ ξMt f

ξMt V
− νP (f)

∣∣∣∣∣ ⩽ C ′′ e−ω′′ t ξ(V )
ξ(ψ) , ∀ t ⩾ 0.(3.6)
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Following the same way as [BCGM22, Proof of Corollary 3.7], for all f such that
∥f∥∞ ⩽ 1, from triangle inequality and since

∣∣∣νP (f)
νP (1)

∣∣∣ ⩽ 1, we have∣∣∣∣∣ ξMtf

ξMt 1
− νP (f)
νP (1)

∣∣∣∣∣ ⩽ ξMtV

ξMt 1

(∣∣∣∣∣ ξMtf

ξMt V
− νP (f)

∣∣∣∣∣+
∣∣∣∣∣νP (f)
νP (1)

∣∣∣∣∣
∣∣∣∣∣ ξMt1
ξMt V

− νP (1)
∣∣∣∣∣
)

⩽
ξMtV

ξMt 1

(∣∣∣∣∣ ξMtf

ξMt V
− νP (f)

∣∣∣∣∣+
∣∣∣∣∣ ξMt1
ξMt V

− νP (1)
∣∣∣∣∣
)
.

Applying (3.6) first to f and second to 1 gives∣∣∣∣∣ ξMtf

ξMt 1
− νP (f)
νP (1)

∣∣∣∣∣ ⩽ ξMtV

ξMt 1
2C ′′ e−ω′′ t ξ(V )

ξ(ψ) .

Moreover, (3.6) applied to 1 also leads to
ξMt 1
ξMt V

⩾ νP (1) − C ′′ e−ω′′ t ξ(V )
ξ(ψ) ,

then for t ⩾ 1
ω′′ log( 2C′′ ξ(V )

νP (1) ξ(ψ)) we have ξMt 1
ξMt V

⩾ νP (1)
2 and then∣∣∣∣∣ ξMtf

ξMt 1
− νP (f)
νP (1)

∣∣∣∣∣ ⩽ 4
νP (1) C

′′ e−ω′′ t ξ(V )
ξ(ψ) .

Furthermore, for t ⩽ 1
ω′′ log( 2C′′ ξ(V )

νP (1) ξ(ψ)), we obtain∣∣∣∣∣ ξMtf

ξMt 1
− νP (f)
νP (1)

∣∣∣∣∣ ⩽ 2 ⩽
4

νP (1) C
′′ e−ω′′ t ξ(V )

ξ(ψ) .

Therefore,

(3.7) sup
∥f∥∞ ⩽ 1

∣∣∣∣∣Eξ [f(Xt, St) | TExt > t] − νP (f)
νP (1)

∣∣∣∣∣ ⩽ 4
νP (1) C

′′ e−ω′′ t ξ(V )
ξ(ψ) .

Finally, from (3.4) and (3.7), we have π = νP

νP (1) . Moreover, on N∗ × (0, s̄1), we have

min
{
log(ρ)−1, 1

}
Wρ,p ⩽ V ⩽ max

{
1 + θ,

eα s̄1

log (ρ)

}
Wρ,p,

then (2.4) and (2.5) hold with ω = min{ω′, ω′′} and

C = max
{

1 + θ,
eα s̄1

log(ρ)

}
max

{
C ′,

4C ′′

νP (1)

}
.

Note that (2.5) and (2.6), which have been proved using [BCGM22, Theorem 5.1],
could also have been proved using the second part of [CV20, Corollary 2.4], where
(C.1) holds with λ0 = −λ and ηP = h

νP (1) .
The previous QSD π = πρ,p depends on ρ and p. However, for any initial distribution

ξ on N∗ × (0, s̄1) such that ξ(Wρ,p) < +∞ for all ρ > 1, p ∈ (0, µ(s̄1)−D
D+k µ′(s̄1)) (Dirac

measures on N∗ × (0, s̄1) for example), (2.4) gives that
lim
t→ ∞

Pξ [(Xt, St) ∈ . | TExt > t] = πρ,p

then by uniqueness of the limit, all QSD indexed by ρ and p are the same.
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3.2. Additional notation

We can extend the notation [s1, s2] and [s1, s2) to the case where s1 > s2 by
considering the set of values between s2 and s1. In other words,

[s1, s2] =

[s1, s2] if s1 ⩽ s2,

[s2, s1] if s1 > s2,
[s1, s2) =

[s1, s2) if s1 ⩽ s2,

(s2, s1] if s1 > s2.

This allows us to use the same notation regardless of whether s1 is greater than or
less than s2.

Let us begin by giving additional notation relative to flow associated to the ordinary
differential equation (1.1); namely this concerns the case when the number of bacteria
is constant, that is the behavior between the population jumps.

For all (ℓ, s0) ∈ N∗ × R+, let t 7→ ϕ(ℓ, s0, t) be the flow function associated to
the substrate equation (1.1) with ℓ bacteria and initial substrate concentration s0.
Namely, ϕ is the unique solution of

dϕ(ℓ,s0,t)
dt = D(sin − ϕ(ℓ, s0, t)) − k µ(ϕ(ℓ, s0, t)) ℓ,

ϕ(ℓ, s0, 0) = s0.
(3.8)

This flow converges when t → ∞ to s̄ℓ which is the unique solution of

(3.9) D(sin − s̄ℓ) − k µ(s̄ℓ) ℓ = 0

where the sequence of points (s̄ℓ)ℓ⩾ 1 is strictly decreasing (see Lemmas A.2 and A.3).
Due to monotony properties, (see Lemmas A.1 and A.3) we can build inverse func-
tions of t 7→ ϕ(ℓ, s0, t) and s0 7→ ϕ(ℓ, s0, t) (both applications are represented in
Figure 3.1). On the one hand, for all ℓ ∈ N∗ and s0 ∈ R+ such that s0 ≠ s̄ℓ, the appli-
cation t 7→ ϕ(ℓ, s0, t) is bijective from R+ to [s0, s̄ℓ). We denote by s 7→ ϕ−1

t (ℓ, s0, s)
the continuation of its inverse function, defined from R+ to R+ by

ϕ−1
t (ℓ, s0, s) =

t such that ϕ(ℓ, s0, t) = s if s ∈ [s0, s̄ℓ) ,
+∞ if not.

It represents the time that the substrate concentration needs to go from s0 to
s with a fixed number ℓ of bacteria (without jump event). If s is not reachable
from s0 with ℓ individuals, then this time is considered as infinite. By definition,
ϕ−1

t (ℓ, s0, ϕ(ℓ, s0, t)) = t and if s ∈ [s0, s̄ℓ) then ϕ(ℓ, s0, ϕ
−1
t (ℓ, s0, s)) = s.

On the other hand, for all ℓ ∈ N∗ and t ∈ R+, the application s0 7→ ϕ(ℓ, s0, t) is
bijective from R+ to [ϕ(ℓ, 0, t), +∞). Let s 7→ ϕ−1

s0 (ℓ, s, t) be the continuation of its
inverse function, which is defined from R+ to R+ by

ϕ−1
s0 (ℓ, s, t) =

s0 such that ϕ(ℓ, s0, t) = s if s ⩾ ϕ(ℓ, 0, t),
0 if not.

For s ⩾ ϕ(ℓ, 0, t), it represents the needed initial substrate concentration to obtain
substrate concentration s at time t by following the dynamics with ℓ individuals. By
definition, ϕ−1

s0 (ℓ, ϕ(ℓ, s0, t), t) = s0 and if s ⩾ ϕ(ℓ, 0, t), then ϕ(ℓ, ϕ−1
s0 (ℓ, s, t), t) = s.
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t=φ−1
t (`,s0 ,s)

s0

s=φ(`,s0 ,t)

s̄`

(a) t 7→ ϕ(ℓ, s0, t)

0 s0 =φ−1
s0

(`,s,t) s̄`

φ(`,0,t)

s=φ(`,s0 ,t)

s̄`

(b) s0 7→ ϕ(ℓ, s0, t)

Figure 3.1. Graphical representation of t 7→ ϕ(ℓ, s0, t) and s0 7→ ϕ(ℓ, s0, t).

3.3. Bounds on the hitting times of the process

In this section, we will develop some irreducibility properties of the Crump–Young
process through bounds on its hitting times, which will be useful to prove the mass
ratio inequality in Section 3.4.3. To that end, let K be a non empty compact set of
N∗ × (0, s̄1) and let sK = min(x,s) ∈K s and SK = max(x,s) ∈K s. We will prove that
each point of K\⋃ℓ⩾ 1(ℓ, s̄ℓ) can be reached, in a uniform way, from any point of K.
Points (ℓ, s̄ℓ) can not be reached.

There exists LsK
∈ N∗, such that s̄ℓ < sK for all ℓ ⩾ LsK

(see Lemma A.2),
let then set LK = max{max(ℓ,s)∈K ℓ, LsK

}. The constants sK , SK and LK satisfy
K ⊂ [[1, LK ]] × [sK , SK ] ⊂ [[1, LK ]] × (s̄LK

, s̄1).
Let also

tmin := max
{
ϕ−1

t (1, s̄LK
, SK) , ϕ−1

t (LK , s̄1, sK)
}

(3.10)

be the maximum between the time to go from s̄LK
to SK with one individual and the

time to go from s̄1 to sK with LK individuals. Since both times are finite then tmin
< ∞. Note that, from the monotony properties of the flow (see Lemma A.3) for all
s1, s2 such that s̄LK

⩽ s1 ⩽ s2 ⩽ SK , then ϕ−1
t (1, s1, s2) ⩽ ϕ−1

t (1, s̄LK
, SK) ⩽ tmin and

for all s1, s2 such that sK ⩽ s2 ⩽ s1 ⩽ s̄1, ϕ−1
t (LK , s1, s2) ⩽ ϕ−1

t (LK , s̄1, sK) ⩽ tmin.
Then tmin is the minimal quantity such that, for all s1, s2 satisfying s̄LK

⩽ s1 ⩽ s2 ⩽
SK or sK ⩽ s2 ⩽ s1 ⩽ s̄1, there exists L ∈ [[1, LK ]], such that ϕ−1

t (L, s1, s2) ⩽ tmin
(i.e. the substrate concentration s2 is reachable from s1 in a time less than tmin with
a constant bacterial population in [[1, LK ]]).

Proposition 3.1. — For all τ0 > tmin, τ > τ0, ε > 0 and δ > 0, there exists
C > 0, such that, for all (x, s) ∈ K, for all (y, r) ∈ K satisfying |r− s̄y| > δ, we have

P(x,s)
(
τ − ε ⩽ T̃ y,r ⩽ τ

)
⩾ C > 0 ,

where T̃ y,r := inf{t ⩾ τ0, (Xt, St) = (y, r)} is the first hitting time of (y, r) after τ0.

ANNALES HENRI LEBESGUE



Quasi-stationary behavior of the Crump–Young model 1385

The proof of Proposition 3.1 relies on a sharp decomposition of all possible combi-
nations of initial conditions. Instead of giving all details on the proof, we will expose
its main steps and the technicalities are postponed in Appendix.

Proof. — Let

ε̄ :=

min
{

3 min {sK − s̄LK
, s̄1 − SK}

max {D sin, k µ(s̄1)LK}
,

4 min {sK − s̄LK
, s̄1 − SK} D (τ0 − tmin) /2

max {D sin, k µ(s̄1)LK} (1 +D (τ0 − tmin) /2)

}
.

We assume, without loss of generality, that 0 < ε ⩽ min{τ − τ0; ε̄} because if the
result holds for all ε > 0 sufficiently small, then it holds for all ε > 0. Assuming
0 < ε ⩽

3 min{sK−s̄LK
, s̄1−SK}

max{D sin, k µ(s̄1)LK} ensures that, for (y, r) ∈ K, s̄LK
⩽ ϕ−1

s0 (y, r, ε3) ⩽ s̄1

(and consequently that s̄LK
⩽ ϕ−1

s0 (y, r, ε4) ⩽ s̄1); see Lemma A.7-1 and Remark A.8.
Consequently Sε

y,r := [[1, LK ]] × [ϕ−1
s0 (y, r, ε3), ϕ−1

s0 (y, r, ε4)] ⊂ [[1, LK ]] × [s̄LK
, s̄1].

To prove Proposition 3.1, we will prove that, with positive probability, the process:
(1) reaches the set Sε

y,r before τ0;
(2) stays in this set until the time τ − ε;
(3) reaches (y, r) in the time interval [τ − ε, τ ].

These steps are illustrated in Figure 3.2 and the associated probabilities are bounded
from below in lemmas below. These ones are proved in Appendix B. To state them,
let us introduce Eεy,r, defined by

Eεy,r
:=
{(
ℓ, rεy,r

) ∣∣∣ ℓ ∈ [[1, LK ]] and s̄ℓ ⩾ rεy,r
}∪ {(

ℓ, Rε
y,r

) ∣∣∣ ℓ ∈ [[1, LK ]] and s̄ℓ ⩽ Rε
y,r

}
⊂ Sε

y,r,

where rεy,r = min(ϕ−1
s0 (y, r, ε3), ϕ−1

s0 (y, r, ε4)) and Rε
y,r = max(ϕ−1

s0 (y, r, ε3), ϕ−1
s0 (y, r, ε4)).

The set Eεy,r represents the points (ℓ, s) ∈ Sε
y,r such that s belongs to the bounds of the

substrate part [ϕ−1
s0 (y, r, ε3), ϕ−1

s0 (y, r, ε4)] and ℓ is such that the flow t 7→ ϕ(ℓ, s, t) leads
the dynamics to stay in [ϕ−1

s0 (y, r, ε3), ϕ−1
s0 (y, r, ε4)], at least for small t, if ϕ−1

s0 (y, r, ε3) ̸=
ϕ−1

s0 (y, r, ε4) (that is if r ̸= s̄y). Note that Eεy,r is well defined if r = s̄y and we obtain
Eεy,s̄y

= [[1, LK ]] × {s̄y}.

Lemma 3.2. — For all τ0 > tmin, there exists Cτ0
1 > 0, such that, for all (x, s) ∈ K,

for all (y, r) ∈ K and for 0 < ε ⩽
4 min{s̄1−SK , sK−s̄LK

}D (τ0−tmin)/2
max{D sin, k µ(s̄1)LK} (1+D (τ0−tmin)/2) ,

P(x,s)
(
TEε

y,r
⩽ τ0

)
⩾ Cτ0

1 ,

where TEε
y,r

:= inf{t ⩾ 0, (Xt, St) ∈ Eεy,r}.

Lemma 3.3. — Let 0 < ε ⩽
3 min{sK−s̄LK

, s̄1−SK}
max{D sin, k µ(s̄1)LK} , δ > 0 and T > 0. Then there

exists Cε,δ,T
2 > 0, such that, for all (y, r) ∈ K satisfying |r − s̄y| > δ, for all

(x, s) ∈ Eεy,r,
P(x,s)

(
(Xt, St) ∈ Sε

y,r, ∀ t ∈ [0, T ]
)
⩾ Cε,δ,T

2 .
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TEεy,r τ−ε τT̃y,r
τ0

t

s

φ−1
s0

(
y,r,ε

3

)φ−1
s0

(
y,r,ε

4

)

s̄y

r
St

step 1

reaches
Sεy,r

step 2

stays in Sεy,r

step 3

reaches
(y,r)

St

Xt

x

y

Xt

Figure 3.2. Illustration of the three steps of the proof of Proposition 3.1.
Step 1: starting from (x, s), the process (Xt, St)t reaches the set Sε

y,r before
τ0. Step 2: the process stays in Sε

y,r until τ − ε. Step 3: the process reaches (y, r)
before τ .

Lemma 3.4. — Let 0 < ε ⩽
3 min{sK−s̄LK

, s̄1−SK}
max{D sin, k µ(s̄1)LK} and δ > 0. Then there exists

Cε,δ
3 > 0, such that, for all (y, r) ∈ K satisfying |r − s̄y| > δ, for all (x, s) ∈ Sε

y,r,

P(x,s)

(
Ty,r ⩽ ε

)
⩾ Cε,δ

3

with Ty,r := inf{t ⩾ 0, (Xt, St) = (y, r)} the first hitting time of (y, r).

Although not optimal, some explicit expressions of Cτ0
1 , Cε,δ,T

2 , Cε,δ
3 of the previ-

ous lemmas are obtained in Appendix B. Let us show below that they imply the
conclusion of Proposition 3.1.

(3.11) P(x,s)
(
τ − ε ⩽ T̃ y,r ⩽ τ

)
⩾ P(x,s)

({
TEε

y,r
⩽ τ0

}
∩
{

(Xt, St) ∈ Sε
y,r, ∀ t ∈

[
TEε

y,r
, τ − ε

] }
∩
{
τ − ε ⩽ T̃ y,r ⩽ τ

})
⩾ P(x,s)

(
TEε

y,r
⩽ τ0

)
× P(x,s)

(
(Xt, St) ∈ Sε

y,r, ∀ t ∈
[
TEε

y,r
, τ − ε

] ∣∣∣∣ TEε
y,r

⩽ τ0

)
× P(x,s)

(
τ − ε ⩽ T̃ y,r ⩽ τ

∣∣∣∣ TEε
y,r

⩽ τ0, (Xt, St) ∈ Sε
y,r, ∀ t ∈

[
TEε

y,r
, τ − ε

] )
.

By Lemma 3.2, the first probability of the last member of (3.11) is bounded from
below by a constant Cτ0

1 > 0. By Lemma 3.3 and the Markov property the second
probability is bounded from below by a constant Cε,δ,τ

2 > 0. By definition, T̃ y,r ⩾ τ0,
moreover (y, r) /∈ Sε

y,r, therefore on the event
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{
(X0, S0) = (x, s), TEε

y,r
⩽ τ0, (Xt, St) ∈ Sε

y,r, ∀ t ∈
[
TEε

y,r
, τ − ε

]}
we have T̃ y,r ⩾ τ − ε almost surely. By Lemma 3.4 and the Markov property, the
third probability is bounded from below by a constant Cε,δ

3 > 0, which achieves the
proof of Proposition 3.1. □

3.4. Proof of the sufficient conditions leading to Theorem 2.2

We prove in this section that the three conditions – Bounds on Lyapunov func-
tions (BLF1) and (BLF2); Minorization condition (MC) and Mass ratio inequal-
ity (MRI) – hold. Since it was proved in Section 3.1 that they imply Theorem 2.2,
it will conclude the proof of this theorem.

Bounds on Lyapunov functions (BLF1) and (BLF2) are given by Lemma 3.6;
Minorization condition (MC) is given by Lemma 3.8; Mass ratio inequality(MRI) is
given by Lemma 3.9.

3.4.1. Bounds on Lyapunov functions

Let Ṽ (x, s) = V (x, s) 1(x,s) ∈N∗×(0,s̄1) for all (x, s) ∈ (N∗ × (0, s̄1)) ∪ ({0} × (0, sin)),
where we remind that V is defined on N∗ × (0, s̄1) by (3.3). Assumptions (3.2) and
a simple computation lead to the following lemma, whose the proof is postponed in
Appendix (see Section B.5).

Lemma 3.5. — There exist η > D and ζ > 0 such that
LṼ ⩽ −ηṼ + ζψ,

on (N∗ ×(0, s̄1))∪({0}×(0, sin)), where L is the infinitesimal generator of (Xt, St)t⩾ 0
defined by (1.2).

Using well-known martingale properties associated to the Crump–Young model,
Lemma 3.5 extends into the following lemma.

Lemma 3.6. — There exist η > D and ζ > 0, such that for all t ⩾ 0, x ∈ N∗ and
s ∈ (0, s̄1), we have
(3.12) e−Dt x = e−Dtψ(x, s) ⩽ E(x,s) [ψ (Xt, St)] ⩽ e(µ(s̄1)−D)t ψ(x, s) = e(µ(s̄1)−D)t x

and

(3.13) E(x,s) [V (Xt, St) 1Xt ̸= 0] ⩽ e−ηtV (x, s) + ζ
e(µ(s̄1)−D)t

η −D
ψ(x, s) .

Proof. — It is classical (see for example [CF15, Section 4]) that, for f ∈ C0,1(N ×
R+), the process

(3.14)
(
f(Xt, St) − f(X0, S0) −

∫ t

0
Lf(Xu, Su)du

)
t⩾ 0

is a local martingale. Since ψ ⩽ Ṽ on (N∗ ×(0, s̄1))∪({0}×(0, sin)), from Lemma 3.5,
Ṽ satisfies LṼ ⩽ ζṼ for some ζ > 0. Then using classical stopping time arguments
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(see [BCGM22, Section 6.2.] or [MT93, Theorem 2.1] and its proof for instance), we
can show that it is a martingale when f = Ṽ and then that (E(x,s)[Ṽ (Xt, St)])t∈ [0,T ]
is bounded for all T > 0. Consequently, (3.14) is also a martingale for f = ψ, because
ψ ⩽ Ṽ . Then, from the dominated convergence theorem and the fact that, from the
expression of ψ,

−Dψ ⩽ Lψ ⩽ (µ(s̄1) −D)ψ,
we obtain (3.12). Similarly, by the linearity of L, from Lemma 3.5 and (3.12),

L
(
Ṽ − ζ

η −D
ψ

)
⩽ −ηṼ + ζψ + ζ

η −D
Dψ = −η

(
Ṽ − ζ

η −D
ψ

)

then, for all (x, s) ∈ N∗ × (0, s̄1)

E(x,s) [V (Xt, St) 1Xt ̸=0] = E(x,s)
[
Ṽ (Xt, St)

]
⩽ e−η tṼ (x, s) + ζ

η −D

(
E(x,s) [ψ(Xt, St)] − e−η tψ(x, s)

)
⩽ e−η tV (x, s) + ζ

η −D
e(µ(s̄1)−D)tψ(x, s) .

and (3.13) holds. □

This part is similar to the approach used in the proof of [CMMSM13, Theorem 4.1].
In fact, in order to prove the existence of the QSD, tightness is sufficient and is en-
sured by the use of Lyapunov functions (see for instance [CMMSM11, Theorem 4.2]).
The significance of our work lies in proving the minorization condition (MC) and
the mass ratio inequality (MRI), for our process, which is not irreducible and in-
cludes a deterministic component. These properties are the objectives of the next
two sections.

3.4.2. Minorization condition

Let K be a compact set of N∗ × (0, s̄1). In agreement with the notations of Sec-
tion 3.3, let sK := min(x,s) ∈K s and SK := min(x,s) ∈K s be respectively the minimal
and maximal substrate concentration of elements of K.

Our aim in this subsection is to prove the minorization condition (MC) established
page 1379 by introducing the coupling measure ν. The proof is based on Lemma 3.7
below.

Lemma 3.7. — Let τ > 0, let 0 < s0 < sK , s1 > s0 and x ∈ N∗. Then there exists
ϵ0 > 0 such that, for all (y, r) ∈ K,

P(y,r)
(
(Xτ , Sτ ) ∈ {x} × [s0, s1]

)
⩾ ϵ0 .

Lemma 3.7 is proved in Appendix (see Section B.6). As for Proposition 3.1, its
proof relies on sharp pathwise estimates. From this, we deduce the next result which
is one the cornerstone of the proof of Theorem 2.2.
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Lemma 3.8. — For every τ > 0, there exist ϵ > 0 and a probability measure ν
on N∗ × (0, s̄1) such that

∀ (y, r) ∈ K, P(y,r) ((Xτ , Sτ ) ∈ ·) ⩾ ϵν.(3.15)

If moreover K = [[1, N ]] × [δ1, δ2], for some N ∈ N∗ and δ2 > δ1 > 0, then we can
choose ν such that ν(K) = 1.

Proof. — Starting from (y, r) ∈ K, the discrete component can reach any point
z of N∗ in any time interval with positive probability, so we can easily use any
Dirac mass δz (times a constant) as a lower bound for the first marginal of the law of
(Xτ , Sτ ). Let us use z = 1. For the continuous component, we can use the randomness
of the last jump time to prove that its law has a lower bound with Lebesgue density.
Consequently to prove (3.15), we consider the paths going to {2} × [s0, s1] for some
s1 ⩾ s0 well chosen, then being subjected to a washout, and we study the last jump
to construct a lower bound with density.

Let us consider some s̄1 > s1 > s0 > 0 such that s0 < sK and 0 < τ0 < τ which
will be fixed at the end of the proof. On the one hand, from Lemma 3.7, there exists
ϵ0 > 0 such that for all (y, r) ∈ K,

(3.16) P(y,r)
(
(Xτ−τ0 , Sτ−τ0) ∈ {2} × [s0, s1]

)
⩾ ϵ0.

On the other hand, let f be any positive function, s ∈ [s0, s1] and t > 0. By
conditioning on the first jump time and using the Markov property, we have

E(2,s) [f(Xt, St)] = e−2D t−2
∫ t

0 µ(ϕ(2,s,u))du f (2, ϕ(2, s, t))

+
∫ t

0
2D e−2Dv−2

∫ v

0 µ(ϕ(2,s,u))du E(1,ϕ(2,s,v)) [f(Xt−v, St−v)] dv

+
∫ t

0
2µ(ϕ(2, s, v)) e−2Dv−2

∫ v

0 µ(ϕ(2,s,u))du E(3,ϕ(2,s,v)) [f(Xt−v, St−v)] dv

⩾
∫ t

0
2D e−2Dv−2

∫ v

0 µ(ϕ(2,s,u))du × e− (t−v)D−
∫ t−v

0 µ(ϕ(1,ϕ(2,s,v),u))du

× f (1, ϕ(1, ϕ(2, s, v), t− v)) dv,

where the last bound comes from a second use of the Markov property on the second
term. Roughly, we bounded our expectation by considering the event “the first event
is a washout and occurs during the time interval (0, t) and no more jump occurs
until t”.

Since s 7→ ϕ(x, s, u) and x 7→ ϕ(x, s, u) are respectively increasing and decreasing
(see Lemma A.1) and µ is increasing, we have for all s ∈ [s0, s1]

µ(ϕ(2, s, u)) ⩽ µ(ϕ(1, s1, u)),

hence

E(2,s) [f(Xt, St)] ⩾ 2D e−2D te−2
∫ t

0 µ(ϕ(1,s1,u))du
∫ t

0
f (1, ϕ(1, ϕ(2, s, v), t− v)) dv.
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By the flow property and Lemma A.1, for 0 < ε < t− v, we have
ϕ(1, ϕ(2, s, v), t− v) = ϕ(1, ϕ(1, ϕ(2, s, v), ε), t− (v + ε))

> ϕ(1, ϕ(2, ϕ(2, s, v), ε), t− (v + ε))
= ϕ(1, ϕ(2, s, v + ε), t− (v + ε))

and then v 7→ ϕ(1, ϕ(2, s, v), t−v) is strictly decreasing on [0, t]. Moreover from (3.8)
the derivative of u 7→ ϕ(1, s, u) is bounded from above by D sin. Since r 7→ ϕ(1, r, t−v)
is increasing for r ⩽ s̄1 from Lemma A.3, then from the expression ϕ(1, r, t − v) =
r +

∫ t−v
0 (D(sin − ϕ(1, r, u)) − k µ(ϕ(1, r, u))) du, we have 0 ⩽ d

drϕ(1, r, t− v) ⩽ 1. In
addition, either s ⩽ s̄2 and d

dvϕ(2, s, v) ⩾ 0 or s < s̄2 and from (3.8) and Lemma A.3,
d
dvϕ(2, s, v) ⩾ −2 k µ(s̄2). So finally, from the chain rule formula

d
dvϕ(1, ϕ(2, s, v), t− v)

= d
dvϕ(2, s, v) d

drϕ(1, r, t− v)|r=ϕ(2,s,v) − d
duϕ(1, ϕ(2, s, v), u)|u=t−v ,

the derivative of v 7→ ϕ(1, ϕ(2, s, v), t− v) is then bounded from below by −D sin −
2 k µ(s̄2). By a change of variable, for every s0 < s1, we have for c0 = [D sin +
2 k µ(s̄2)]−1 and for s ∈ (s0, s1)

E(2,s) [f(Xt, St)] ⩾ c0 2D e−2D te−2
∫ t

0 µ(ϕ(1,s1,u))du
∫ ϕ(1,s,t)

ϕ(2,s,t)
f(1, w)dw

⩾ c0 2De−2D t e−2
∫ t

0 µ(ϕ(1,s1,u))du
∫ ϕ(1,s0,t)

ϕ(2,s1,t)
f(1, w)dw,

where the last term is non negative as soon as ϕ(2, s1, t) < ϕ(1, s0, t). First, we fix any
s0 < sK . Since ϕ(2, s0, t) < ϕ(1, s0, t), by continuity, we can find s1 > s0 satisfying
ϕ(2, s1, t) < ϕ(1, s0, t). Fixing such two points s0 and s1 for t = τ0 with 0 < τ0 < τ ,
then leads to
(3.17) ∀ s ∈ [s0, s1], P(2,s) ((Xτ0 , Sτ0) ∈ ·) ⩾ ϵ1ν,

with
ν(dy, ds) = δ1(dy) 1[ϕ(2,s1,τ0),ϕ(1,s0,τ0)](s)

ϕ(1, s0, τ0) − ϕ(2, s1, τ0)
ds,

and
ϵ1 = c0 2D e−2D τ0 e−2

∫ τ0
0 µ(ϕ(1,s1,u))du(ϕ(1, s0, τ0) − ϕ(2, s1, τ0)).

As a consequence, from (3.16) and (3.17), Equation (3.15) holds with ϵ = ϵ0ϵ1, by
the Markov property.

If K = [[1, N ]] × [δ1, δ2], even if it means choosing τ0 small enough, s0 and s1 can
be chosen such that they furthermore satisfy ϕ(1, s0, τ0) > δ1 and ϕ(2, s1, τ0) < δ2.
Then ν(K) > 0 and (3.17) holds with ϵ̃1 and the probability measure ν̃, satisfying
ν̃(K) = 1, defined by

ν̃ = ν (1K ·)
ν(K) , ϵ̃1 = ϵ1 ν(K) .

Note that if τ0 < ϕ−1
t (2, 0, δ2) (i.e. ϕ−1

s0 (2, δ2, τ0) > 0) then such s0 and s1 exist.
In fact, we can choose s0 and s1 such that s0 ∈ (ϕ−1

s0 (1, δ1, τ0), δ1 ∧ ϕ−1
s0 (2, δ2, τ0))
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and s1 ∈ (s0, ϕ
−1
s0 (2, δ2, τ0) ∧ ϕ−1

s0 (2, ϕ(1, s0, τ0), τ0)). Since δ1 < s̄1 and because ℓ 7→
ϕ−1

s0 (ℓ, s, τ0) and s 7→ ϕ−1
s0 (ℓ, s, τ0) are both increasing (by definition of ϕ−1

s0 and by
Lemma A.1), we can check that δ1 and δ2 are well defined. Moreover s0 and s1 are
such that s0 < δ1 = sK and s0 < s1, and by Lemma A.1, we have

ϕ(1, s0, τ0) > ϕ(1, ϕ−1
s0 (1, δ1, τ0), τ0) ⩾ δ1;

ϕ(2, s1, τ0) < ϕ(2, ϕ−1
s0 (2, δ2, τ0), τ0) = δ2;

ϕ(2, s1, t) < ϕ(2, ϕ−1
s0 (2, ϕ(1, s0, τ0), τ0), τ0) = ϕ(1, s0, τ0). □

3.4.3. Mass ratio inequality

Our aim in this subsection is to prove the mass ratio inequality (MRI) given on
page 1379 by using our bounds on the hitting time given in Proposition 3.1.

Lemma 3.9. — Let K be a compact set of N∗ × (0, s̄1), then

sup
(x,s),(y,r) ∈K

sup
t⩾ 0

E(y,r) [ψ(Xt, St)]
E(x,s) [ψ(Xt, St)]

< +∞.

Proof. — We set L = max(x,s) ∈K x, sK = min(ℓ,s)∈K s and SK = max(ℓ,s) ∈K s. Let

(3.18) 0 < δ < min
{1

2 min
y,z∈K, y ̸=z

|s̄y − s̄z| ; s̄1 − SK

}
.

Note that, from Lemma A.2, elements of (s̄ℓ)ℓ∈K are all distinct and then the right
member of (3.18) is then strictly positive. Let also

K̃ := [[1, L+ 1]] × [min{sK , s̄L},max{SK , s̄2}]

be a compact set of N∗ × (0, s̄1) such that K ⊂ K̃ and let tmin defined by (3.10) for
the compact set K̃. Let τ > tmin, from (3.12),

sup
(x,s),(y,r) ∈K

sup
t⩽ τ

E(y,r) [ψ(Xt, St)]
E(x,s) [ψ(Xt, St)]

⩽ eµ(s̄1) τ L < +∞,

then it remains to prove that there exist C > 0, such that for all (x, s), (y, r) ∈ K
and t ⩾ τ , we have

E(y,r) [ψ(Xt, St)] ⩽ C E(x,s) [ψ(Xt, St)] .(3.19)

We first show by Proposition 3.1 that (3.19) holds for

(y, r) ∈ K̃ \
(
L+1⋃
ℓ=1

{ℓ} × B(s̄ℓ, δ)
)

with B(s̄ℓ, δ) := {r, |r−s̄ℓ| ⩽ δ}. Then for (y, r) ∈ K∩⋃Lℓ=1{ℓ}×B(s̄ℓ, δ), conditioning
on the first event, either no jump occurs and we make use of (3.12), or a jump occurs
and the process after the jump belongs to K̃ \ (⋃L+1

ℓ=1 {ℓ}×B(s̄ℓ, δ)) which then allows
to use (3.19).
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By the Markov property, for all 0 ⩽ u ⩽ t, for all (y, r) ∈ K̃, E(y,r)[ψ(Xt, St)] =
E(y,r)[E(Xt−u,St−u)[ψ(Xu, Su)]]. Applying (3.12) to E(Xt−u,St−u)[ψ(Xu, Su)], we then
obtain

e−Du E(y,r) [ψ(Xt−u, St−u)] ⩽ E(y,r) [ψ(Xt, St)]
⩽ e(µ(s̄1)−D)u E(y,r) [ψ(Xt−u, St−u)] .

(3.20)

Mimicking the arguments of the proof of [CG20, Theorem 1.1], we then deduce
that for every (x, s) ∈ K ⊂ K̃ and (y, r) ∈ K̃ \ (⋃L+1

ℓ=1 {ℓ} × B(s̄ℓ, δ)), for all t ⩾ τ ,

E(x,s) [ψ (Xt, St)] ⩾ E(x,s)

[
1Ty,r ⩽ τ × E(y,r) [ψ (Xt−u, St−u)]|u=Ty,r

]
⩾ P(x,s) (Ty,r ⩽ τ)

∫ τ

0
E(y,r) [ψ (Xt−u, St−u)]σx,sy,r(du)

⩾ C̃
∫ τ

0
e−(µ(s̄1)−D)uσx,sy,r(du)E(y,r) [ψ(Xt, St)]

⩾ C̃e−(µ(s̄1)−D)τE(y,r) [ψ(Xt, St)] ,

(3.21)

with Ty,r := inf{t ⩾ 0, (Xt, St) = (y, r)} the first hitting time of (y, r) and C̃ > 0. In
the first line, we used the strong Markov property, in the second line σx,sy,r represents
the law of Ty,r conditionally to {((X0, S0) = (x, s)) ∩ (Ty,r ⩽ τ)} and the third line
comes from (3.20) and Proposition 3.1.

It remains to extend the previous inequality to (y, r) ∈ K ∩⋃Lℓ=1{ℓ} × B(s̄ℓ, δ). By
conditioning on the first jump and using the Markov property, we have

(3.22) E(y,r) [ψ(Xt, St)] = e−Dy t−y
∫ t

0 µ(ϕ(y,r,u))du ψ (y, ϕ(y, r, t))

+
∫ t

0
y D e−Dy v−y

∫ v

0 µ(ϕ(y,r,u))du E(y−1,ϕ(y,r,v)) [ψ(Xt−v, St−v)] dv

+
∫ t

0
y µ(ϕ(y, r, v))e−Dy v−y

∫ v

0 µ(ϕ(y,r,u))du E(y+1,ϕ(y,r,v)) [ψ(Xt−v, St−v)] dv.

First notice that, since δ < s̄1 − SK , then (y, r) necessarily satisfies y ⩾ 2. Therefore
(y − 1, ϕ(y, r, v)) ∈ K̃ and (y + 1, ϕ(y, r, v)) ∈ K̃ (see Lemma A.3).

From the definition of ψ and (3.12), we have, for any (x, s) ∈ K

ψ (y, ϕ(y, r, t)) = y

x
ψ (x, s) ⩽ y

x
eD t E(x,s) [ψ(Xt, St)] .(3.23)

From (3.20),
E(y−1,ϕ(y,r,v)) [ψ(Xt−v, St−v)] ⩽eDv E(y−1,ϕ(y,r,v)) [ψ(Xt, St)] .

Now since (y, r) ∈ ⋃L
ℓ=1{ℓ} × B(s̄ℓ, δ), then r ∈ B(s̄y, δ), and ϕ(y, r, v) ∈ B(s̄y, δ) for

all v ⩾ 0 because of Lemma A.3 (i.e. equilibrium points are attractive). Thus, by
definition of δ, we have

|ϕ(y, r, v) − s̄y−1| ⩾ |s̄y−1 − s̄y| − |ϕ(y, r, v) − s̄y| > 2δ − δ = δ,

then

(y − 1, ϕ(y, r, v)) /∈
L⋃
ℓ=1

{ℓ} × B(s̄ℓ, δ).
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We can then apply (3.20) and (3.21) to obtain
E(y−1,ϕ(y,r,v)) [ψ (Xt−v, St−v)] ⩽ eDv E(y−1,ϕ(y,r,v)) [ψ(Xt, St)]

⩽ eDv C̃−1e(µ(s̄1)−D)τE(x,s) [ψ (Xt, St)] .
(3.24)

Similarly, we have
E(y+1,ϕ(y,r,v)) [ψ (Xt−v, St−v)] ⩽eDv C̃−1e(µ(s̄1)−D)τE(x,s) [ψ (Xt, St)] .(3.25)

From (3.22)-(3.23)-(3.24) and (3.25), we then obtain

E(y,r) [ψ (Xt, St)]

⩽ E(x,s) [ψ (Xt, St)]
(
e−D (y−1) t−y

∫ t

0 µ(ϕ(y,r,u))du y

x

+ C̃−1 e(µ(s̄1)−D)τ
∫ t

0
y (D + µ(ϕ(y, r, v))) e−D (y−1) v−y

∫ v

0 µ(ϕ(y,r,u))du dv
)
.

⩽
(
L ∧ C̃−1e(µ(s̄1)−D)τ

)
E(x,s) [ψ(Xt, St)]

×
(

1 +
∫ t

0
D e−D (y−1) v−y

∫ v

0 µ(ϕ(y,r,u))du dv
)
.

Since y ⩾ 2, then∫ t

0
D e−D (y−1) v−

∫ v

0 yµ(ϕ(y,r,u))du dv ⩽
∫ t

0
D e−Dvdv ⩽ 1

and (3.19) holds with C := 2 (L ∧ C̃−1e(µ(s̄1)−D)τ ), which finishes the proof of
Lemma 3.9. □

4. Proof of Corollary 2.3

Proof. — Let us now show that the convergence towards the quasi-stationary
distribution π, established in Theorem 2.2, extends for initial measures with support
larger than N∗ × (0, s̄1). The proof is in two parts, first we extend the convergence
to initial conditions in N∗ × (0,+∞) and then for S0 = 0.

For the first part of the proof, it is sufficient to show that h can be extended for
all (x, s) ∈ N∗ × [s̄1,+∞) such that h(x, s) ∈ (0,∞) and

lim
t→ ∞

eλtE(x,s)[f(Xt, St)] = π(f) × h(x, s),(4.1)

for any bounded function on N × R+ such that f(0, ·) = 0. In fact, if such function
h exists, then choosing f(x, s) = 1x ̸= 0 leads to h(x, s) = limt→ ∞ eλtP(x,s)(TExt > t)
(extending the definition of h given by (2.6) on N∗ × R+) and the result holds.

Let ϵ > 0 and set Tϵ = TN∗×(0,s̄1−ϵ] being the hitting time of N∗ × (0, s̄1 − ϵ]. We
have
E(x,s) [f(Xt, St)] = E(x,s)

[
f(Xt, St)1(Tϵ ∧TExt)⩽ t

]
+ E(x,s)

[
f(Xt, St)1(Tϵ ∧TExt)>t

]
.

On the one hand, from Lemma B.5 we can choose ϵ sufficiently small such that,
from the Markov inequality,

P(x,s) (Tϵ ∧ TExt > t) ⩽ E(x,s)
[
e(D+C)(Tϵ ∧TExt)

]
e−(D+C)t ⩽ Aeβse−(D+C)t,(4.2)
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where A, β and C are positive constants (which depend on ϵ) given by Lemma B.5.
Since λ ⩽ D by (2.7), we then have

eλtE(x,s) [f(Xt, St)1Tϵ ∧TExt >t] ⩽ ∥f∥∞e
λtP(x,s) (Tϵ ∧ TExt > t)

⩽ ∥f∥∞Ae
βse−Ct −→t→ ∞ 0 .

On the other hand, noting that f(Xt, St)1TExt ⩽ t = 0, from the strong Markov
Property

(4.3) eλtE(x,s)
[
f(Xt, St)1(Tϵ ∧TExt)⩽ t

]
= eλtE(x,s) [f(Xt, St)1Tϵ ⩽ t]

= eλtE(x,s)
[
E(XTϵ ,STϵ ) [f(Xu, Su)]|u=t−Tϵ

1Tϵ ⩽ t

]
.

Moreover, fixing ρ > 1 and p ∈ (0, µ(s̄1)−D
D+k µ′(s̄1)), for all 0 < ω̃ ⩽ ω (with ω depending

on ρ and p), since (2.5) holds replacing ω by ω̃ and as, by continuity of the process
(St)t, (XTϵ , STϵ) ∈ N∗ × {s̄1 − ϵ} ⊂ N∗ × (0, s̄1) on the event {Tϵ ⩽ t}, we obtain

(4.4)
∣∣∣eλt E(x,s)

[
E(XTϵ ,STϵ ) [f (Xu, Su)]|u=t−Tϵ

1Tϵ ⩽ t

]
− E(x,s)

[
eλTϵ h (XTϵ , STϵ) π(f)1Tϵ ⩽ t

]∣∣∣
⩽ E(x,s)

[
eλTϵ

∣∣∣eλ(t−Tϵ)E(XTϵ ,STϵ ) [f (Xu, Su)]|u=t−Tϵ
− h (XTϵ , STϵ) π(f)

∣∣∣1Tϵ ⩽ t

]
⩽ ∥f∥∞ C e−ω̃ tE(x,s)

[
e(λ+ω̃)TϵWρ,p (XTϵ , STϵ) 1Tϵ ⩽ t

]
.

In addition,

E(x,s)
[
e(λ+ω̃)TϵWρ,p (XTϵ , STϵ) 1Tϵ ⩽ t

]
⩽ C̃ E(x,s)

[
e(λ+ω̃)Tϵ V0 (XTϵ , STϵ) 1Tϵ ⩽ t

]
with C̃ = log(ρ) e−α(s̄1−ε) +(s̄1 −ϵ)−1 +ϵ−p and V0 defined by V0(x, s) = ρx eα s/ log(ρ)
for all (x, s) ∈ N × R+. In the same way as in Section B.5, for all η > 0, there exists
Cη > 0 such that L(V0(x, s) −Cη) ⩽ −η(V0(x, s) −Cη) for all (x, s) ∈ N∗ ×R+. And
by the same arguments used in the proof of Lemma B.5, ((V0(Xt, St) −Cη) eη t)t is a
submartingale. Then by the stopping time theorem and remarking that {Tϵ ⩽ t} ⊂
{Tϵ ⩽ TExt}, we obtain for η = λ+ ω̃

(4.5) E(x,s)
[
e(λ+ω̃)TϵWρ,p (XTϵ , STϵ) 1Tϵ ⩽ t

]
⩽ C̃

∣∣∣E(x,s)
[
e(λ+ω̃)Tϵ ∧ t (V0 (XTϵ ∧ t, STϵ ∧ t) − Cη)

]∣∣∣+ C̃ Cη E(x,s)
[
e(λ+ω̃)Tϵ1Tϵ ⩽ t

]
⩽ C̃ |V0(x, s) − Cη| + C̃ Cη E(x,s)

[
e(λ+ω̃) (Tϵ ∧TExt)

]
.

By (2.7), λ ⩽ D. Then, for 0 < ω̃ ⩽ ω sufficiently small (smaller than the constant
C of Lemma B.5), Lemma B.5 and (4.5) lead to

E(x,s)
[
e(λ+ω̃)TϵWρ,p (XTϵ , STϵ) 1Tϵ ⩽ t

]
⩽ C̃ |V0(x, s) − Cη| + C̃ Cη Ae

β s .(4.6)

Hence, (4.3), (4.4) and (4.6) gives

eλtE(x,s)
[
f(Xt, St)1(Tϵ∧TExt)⩽ t

]
−→t→ ∞ π(f)E(x,s)

[
eλTϵh (XTϵ , STϵ) 1Tϵ <∞

]
,
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where we used that h ⩽ ChWρ,p on N∗ ×(0, s̄1), (4.6) and the dominated convergence
theorem. Then, (4.1) holds with h(x, s) = E(x,s)[eλTϵh(XTϵ , STϵ)1Tϵ<∞] for all (x, s) ∈
N∗ × [s̄1,+∞), which is finite by the previous arguments. Moreover Lemma B.5
ensures that h(x, s) > 0.

It remains to show the result for s = 0. Let x ∈ N∗, the Markov property gives for
t′ > t > 0,

E(x,0) [f(Xt′ , St′) | TExt > t′] = E(x,0) [f (Xt′ , St′) 1TExt >t′ ]
E(x,0) [1TExt >t′ ]

= E(x,0) [f(Xt′ , St′)1TExt >t′ | TExt > t]
E(x,0) [1TExt>t′ | TExt > t]

=
E(x,0)

[
E(Xt,St)

[
f (Xt′−t, St′−t) 1TExt>(t′−t)

] ∣∣∣ TExt > t
]

E(x,0)
[
E(Xt,St) [1TExt>t′−t]

∣∣∣ TExt > t
]

=
Eξ
[
f (Xt′−t, St′−t) 1TExt > (t′−t)

]
Eξ [1TExt >t′−t]

= Eξ [f(Xt′−t, St′−t) | TExt > (t′ − t)]

where ξ is the law of (Xt, St) conditioned on the event {TExt > t}∩{(X0, S0) = (x, 0)}.
Assume that ξ is a probability distribution on N∗ × (0, s̄1), then, from (2.4),

sup
∥f∥∞ ⩽ 1

|Eξ [f(Xt′−t, St′−t) | TExt > t′ − t] − π(f)|

⩽ C min
(
ξ (Wρ,p)
ξ(h) ,

ξ (Wρ,p)
ξ(ψ)

)
e−ω(t′−t)

with ρ > 1 and p ∈ (0, µ(s̄1)−D
D+k µ′(s̄1)). Since ξ(ψ) ̸= 0 (or ξ(h) ̸= 0 because from

Theorem 2.2, h(y, r) ∈ (0,∞) for all (y, r) ∈ N∗ × (0, s̄1)), then Corollary 2.3 holds
for s = 0 if in addition ξ(Wρ,p) = E(x,0)[Wρ,p(Xt, St) | TExt > t] < +∞. So let us
prove that, for ρ sufficiently small, ξ is a probability distribution on N∗ × (0, s̄1) and
that ξ(Wρ,p) < +∞, which both consist of proving that

E(x,0)

[ 1
St

∣∣∣∣ TExt > t
]
< +∞.

Indeed, note that conditionally on the non-extinction St ⩽ ϕ(1, 0, t) < s̄1. Moreover
(Xt)t can be stochastically dominated by a pure birth process with birth rate µ(s̄1),
whose the law at time t is a negative binomial distribution with parameters x and
e−µ(s̄1)t. Then, for 1 < ρ < (1 − eµ(s̄1)t)−1, E(x,0)[ρXt | TExt > t] ⩽ (e−µ(s̄1)t ρ/(1 −
ρ (1 − e−µ(s̄1)t)))x.

Since the process (Xt)t dominates a pure death process with death rate (per
capita) D, we have P(x,0)(TExt > t) ⩾ e−Dxt, then it is sufficient to prove that for all
(sufficiently small) t > 0,

E(x,0)

[ 1
St

]
< +∞.
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Instead of using a Lyapunov function, we prove this bound using a coupling method.
On [0, t], from (1.1) and given that S0 = 0, we have the following upper-bound

∀ u ∈ [0, t], Su ⩽ (S0 +Dsint) ∧ sin ⩽ Dsint,

and also the two following ones
∀ s ∈ [0, Dsint], µ(s) ⩽ µ̄t, µ

′(s) ⩽ µ̄′
t,

for some constant µ̄t, µ̄′
t > 0. Consequently, we can couple (Xu)u∈ [0,t] with a Yule

process (Zu)u∈ [0,t] (namely a pure birth process) with jumps rate (per capita) µ̄t in
such a way

∀ u ⩽ t, Xu ⩽ Zu.

In particular, Xu ⩽ Zt. From this bound and the evolution equation of the sub-
strate (1.1), we have

∀ u ∈ [0, t], S ′
u ⩾ D(sin − Su) − kµ̄′

tSuZt,(4.7)
and then, by a Gronwall type argument,

∀ u ∈ [0, t], Su ⩾
Dsin

D + kµ̄′
tZt

(
1 − e−Du−kµ̄′

tZtu
)
⩾

Dsin

D + kµ̄′
tZt

(
1 − e−Du

)
.

Finally using the classical equality for pure birth processes E(x,0)[Zt] = xeµ̄tt, we
obtain

E(x,0)

[ 1
St

]
⩽

D + kµ̄′
txe

µ̄tt

Dsin (1 − e−Dt) ,

which ends the proof of Corollary 4. □

Note that relaxing the assumptions as in Remark 2.4, even if it means choosing t
small enough, µ̄′

t can be replaced by a local Lipschitz constant in a neighborhood of
0 in (4.7).

Appendix A. Classical and simple results on the
Crump–Young process

In the present section, we gather some basic properties of the Crump–Young
process, under Assumption 2.1.

A.1. Preliminary results on the flow

In this subsection, we expose simple results on the flow functions relative to the
substrate dynamics with no evolution of the bacteria. We begin by results on the
behavior of ϕ, defined by (3.8), and then we give bounds on ϕ−1

t and ϕ−1
s0 .

Lemma A.1. — The flow satisfies the following properties: for all s, s̃ ∈ R+,
t > 0, ℓ, ℓ̃ ∈ N∗ such that s < s̃ and ℓ < ℓ̃

(1) ϕ(ℓ, s, t) > ϕ(ℓ̃, s, t) ;
(2) ϕ(ℓ, s, t) < ϕ(ℓ, s̃, t).

ANNALES HENRI LEBESGUE



Quasi-stationary behavior of the Crump–Young model 1397

Proof. — The first inequality comes from the decreasing property of ℓ 7→ D(sin −s)
− k µ(s) ℓ. The second point comes from the Cauchy–Lipschitz (or Picard–Lindelöf)
theorem. □

Lemma A.2. — For every ℓ ∈ N∗, Equation (3.9), that is
D(sin − s̄ℓ) − k µ(s̄ℓ) ℓ = 0 ,

admits a unique solution in (0, sin). Furthermore the sequence (s̄ℓ)ℓ⩾ 1 is strictly
decreasing and limℓ→ ∞ s̄ℓ = 0.

Proof. — The map gℓ : s 7→ D(sin − s) − k µ(s) ℓ is strictly decreasing, gℓ(0) =
Dsin > 0, gℓ(sin) = −k µ(sin)ℓ < 0 then (3.9) admits a unique solution in (0, sin).
Moreover, for every s > 0, the sequence (gℓ(s))ℓ⩾ 1 is strictly decreasing then (s̄ℓ)ℓ⩾ 1
is also strictly decreasing and

lim
ℓ→ ∞

µ(s̄ℓ) = lim
ℓ→ ∞

D (sin − s̄ℓ)
k ℓ

= 0

then, by Assumption 2.1, limℓ→ ∞ s̄ℓ = 0. □

Lemma A.3. — For every s ∈ R+, ℓ ∈ N∗ and t ⩾ 0,
(1) if s < s̄ℓ, then u 7→ ϕ(ℓ, s, u) is strictly increasing from R+ to [s, s̄ℓ);
(2) if s > s̄ℓ, then u 7→ ϕ(ℓ, s, u) is strictly decreasing from R+ to (s̄ℓ, s].

In particular
|s− s̄ℓ| ⩾ |ϕ(ℓ, s, t) − s̄ℓ| .

Proof. — By Lemma A.1, if s < s̄ℓ then ϕ(ℓ, s, t) < s̄ℓ for every t ⩾ 0. On [0, s̄ℓ),
∂tϕ(ℓ, ·, t) is strictly positive because, by Assumption 2.1, gℓ : s 7→ D(sin−s)−k µ(s) ℓ
is strictly decreasing and gℓ(s̄ℓ) = 0. Finally,

s ⩽ ϕ(ℓ, s, t) < s̄ℓ.

In the same way, on (s̄ℓ,+∞), ∂tϕ(ℓ, ·, t) is strictly negative and s ⩾ ϕ(ℓ, s, t) > s̄ℓ
for s ⩾ s̄ℓ which ends the proof. □

Corollary A.4. — For every s0, s1, s2 ∈ R+ and ℓ ∈ N∗ satisfying s0 ⩾ s1 ⩾
s2 > s̄ℓ or s0 ⩽ s1 ⩽ s2 < s̄ℓ then

ϕ−1
t (ℓ, s0, s2) = ϕ−1

t (ℓ, s0, s1) + ϕ−1
t (ℓ, s1, s2) < +∞ .

Proof. — The result directly comes from the monotony properties of the flow given
by Lemma A.3 and the flow property. □

Lemma A.5. — For all ℓ ∈ N∗, s ⩾ 0, and t ⩾ t̃ ⩾ 0,

ϕ−1
s0 (ℓ, s, t) > 0 ⇒ ϕ−1

s0

(
ℓ, s, t̃

)
> 0.

Proof. — On the one hand, for every u ⩾ 0, by Lemma A.1 and definition of ϕ−1
s0 ,

we have
ϕ−1

s0 (ℓ, s, u) > 0 ⇔ s > ϕ(ℓ, 0, u).
From Lemma A.3 u 7→ ϕ(ℓ, 0, u) is increasing. Thus

ϕ−1
s0 (ℓ, s, t) > 0 ⇔ s > ϕ(ℓ, 0, t) ⇒ s > ϕ

(
ℓ, 0, t̃

)
⇔ ϕ−1

s0

(
ℓ, s, t̃

)
> 0. □
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Lemma A.6. — For ℓ ∈ N∗, (s0, s) ∈ [0, s̄1]2, such that s0 ̸= s̄ℓ and ϕ−1
t (ℓ, s0, s)

< ∞,
|s− s0|

max {D sin, k µ(s̄1) ℓ}
⩽ ϕ−1

t (ℓ, s0, s) ⩽
|s− s0|
D |s̄ℓ − s|

.

Proof. — Since ϕ−1
t (ℓ, s0, s) < ∞, then

s = s0 +
∫ ϕ−1

t (ℓ,s0,s)

0

[
D(sin − ϕ(ℓ, s0, u)) − k µ(ϕ(ℓ, s0, u)) ℓ

]
du

= s0 +
∫ ϕ−1

t (ℓ,s0,s)

0

[
D(s̄ℓ − ϕ(ℓ, s0, u)) + k (µ(s̄ℓ) − µ(ϕ(ℓ, s0, u))) ℓ

]
du .

The first equality will allow to obtain the lower bound and the second one will lead to
the upper bound for ϕ−1

t (ℓ, s0, s). Either s0 ⩽ s < s̄ℓ then, from Lemma A.3, the flow
u 7→ ϕ(ℓ, s0, u) is increasing and for all u ∈ [0, ϕ−1

t (ℓ, s0, s)], s0 ⩽ ϕ(ℓ, s0, u) ⩽ s < s̄ℓ.
Since µ is increasing, we then obtain,

ϕ−1
t (ℓ, s0, s)D(s̄ℓ − s) ⩽ s− s0 ⩽ ϕ−1

t (ℓ, s0, s)D sin .

Or s0 ⩾ s > s̄ℓ then the flow u 7→ ϕ(ℓ, s0, u) is decreasing and s0 ⩾ ϕ(ℓ, s0, u) ⩾ s >
s̄ℓ for all u ∈ [0, ϕ−1

t (ℓ, s0, s)]. Since ϕ(ℓ, s0, u) ⩽ s̄1 ⩽ sin and µ is increasing, we
then obtain

−ϕ−1
t (ℓ, s0, s) k µ(s̄1) ℓ ⩽ s− s0 ⩽ ϕ−1

t (ℓ, s0, s)D (s̄ℓ − s)

and the result holds. □

Lemma A.7. —
(1) For all (ℓ, s, ε) ∈ N∗ × [0, s̄1] × R+ such that ϕ−1

s0 (ℓ, s, ε) ⩽ s̄1,∣∣∣s− ϕ−1
s0 (ℓ, s, ε)

∣∣∣ ⩽ εmax {D sin, k µ(s̄1) ℓ} .

(2) For all (ℓ, s, ε) ∈ N∗ × R+ × R+ such that ϕ−1
s0 (ℓ, s, ε) > 0,

D|s− s̄ℓ| ε ⩽
∣∣∣s− ϕ−1

s0 (ℓ, s, ε)
∣∣∣ .

Remark A.8. — If s ⩽ s̄1, then assumption ϕ−1
s0 (ℓ, s, ε) ⩽ s̄1 is satisfied when

ε ⩽ s̄1−s
k µ(s̄1) ℓ . Indeed, from Lemmas A.3 and A.2, u 7→ ϕ(ℓ, s̄1, u) is decreasing, then

for all u ⩾ 0, ϕ(ℓ, s̄1, u) ⩽ s̄1 and

ϕ(ℓ, s̄1, ε) = s̄1 +
∫ ε

0

[
D (sin − ϕ(ℓ, s̄1, u)) − k µ (ϕ(ℓ, s̄1, u)) ℓ

]
du ⩾ s̄1 − ε k µ(s̄1) ℓ .

Then ε ⩽ s̄1−s
k µ(s̄1) ℓ implies that s ⩽ ϕ(ℓ, s̄1, ε). Hence, either ϕ−1

s0 (ℓ, s, ε) = 0 ⩽ s̄1, or
ϕ(ℓ, ϕ−1

s0 (ℓ, s, ε), ε) = s ⩽ ϕ(ℓ, s̄1, ε) and then, by Lemma A.1, ϕ−1
s0 (ℓ, s, ε) ⩽ s̄1.
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Proof of Lemma A.7. — First, we assume that ϕ−1
s0 (ℓ, s, ε) > 0. By definition of

ϕ−1
s0 ,
s = ϕ−1

s0 (ℓ, s, ε)

+
∫ ε

0

[
D
(
sin − ϕ

(
ℓ, ϕ−1

s0 (ℓ, s, ε), u
))

− k µ
(
ϕ
(
ℓ, ϕ−1

s0 (ℓ, s, ε), u
))

ℓ
]

du

= ϕ−1
s0 (ℓ, s, ε)

+
∫ ε

0

[
D
(
s̄ℓ − ϕ

(
ℓ, ϕ−1

s0 (ℓ, s, ε), u
))

+ k
(
µ(s̄ℓ) − µ

(
ϕ
(
ℓ, ϕ−1

s0 (ℓ, s, ε), u
))

ℓ
)]

du .

On the one hand, if s ⩽ s̄ℓ, then for all u ∈ [0, ε], ϕ−1
s0 (ℓ, s, ε) ⩽ ϕ(ℓ, ϕ−1

s0 (ℓ, s, ε), u) ⩽
s ⩽ s̄ℓ, hence, from the second equality and since µ is increasing,

s− ϕ−1
s0 (ℓ, s, ε) ⩾ D(s̄ℓ − s) ε > 0 .

In the same way, if s ⩾ s̄ℓ, then for all u ∈ [0, ε], ϕ−1
s0 (ℓ, s, ε) ⩾ ϕ(ℓ, ϕ−1

s0 (ℓ, s, ε), u) ⩾
s ⩾ s̄ℓ, hence

ϕ−1
s0 (ℓ, s, ε) − s ⩾ D(s− s̄ℓ) ε > 0

and the lower bound of |s− ϕ−1
s0 (ℓ, s, ε)| then holds.

On the other hand, if s ∈ [0, s̄1] and ϕ−1
s0 (ℓ, s, ε) ∈ [0, s̄1], then for all u ∈ [0, ε],

ϕ(ℓ, ϕ−1
s0 (ℓ, s, ε), u) ⩽ s̄1 and from the first equality,∣∣∣s− ϕ−1

s0 (ℓ, s, ε)
∣∣∣ ⩽ εmax {D sin, k µ(s̄1) ℓ} ,

then the upper bound for |s− ϕ−1
s0 (ℓ, s, ε)| holds for 0 < ϕ−1

s0 (ℓ, s, ε) ⩽ s̄1.
If ϕ−1

s0 (ℓ, s, ε) = 0, then s ⩽ ϕ(ℓ, 0, ε) and∣∣∣s− ϕ−1
s0 (ℓ, s, ε)

∣∣∣ = s ⩽
∫ ε

0

[
D(sin − ϕ(ℓ, 0, u)) − k µ(ϕ(ℓ, 0, u)) ℓ

]
du ⩽ εD sin

and the upper bound for |s− ϕ−1
s0 (ℓ, s, ε)| also holds for ϕ−1

s0 (ℓ, s, ε) = 0. □

A.2. Preliminary results on the jumps

In contrast with the previous section, in the present one, we let the bacteria evolve.
Let (Ti)i∈N∗ be the sequence of the jump times of the process (Xt)t⩾0:

Ti :=

inf{t > 0, Xt− ̸= Xt} if i = 1;
inf{t > Ti−1, Xt− ̸= Xt} if i > 1.

Let us also introduce a classical notation in the study of piecewise deterministic
Markov process (see [BLBMZ15] for instance). Let (x0, s0) ∈ N∗ × R+, 0 ⩽ t1 ⩽
· · · ⩽ tN+1 and let Ψ (x0, s0, (tj, xj)1⩽ j ⩽N , tN+1) be the iterative solution ofΨ(x0, s0, t1) = ϕ(x0, s0, t1),

Ψ (x0, s0, (tj, xj)1⩽j⩽i, ti+1) = ϕ
(
xi,Ψ (x0, s0, (tj, xj)1⩽j⩽i−1, ti) , ti+1 − ti

)
.

(A.1)

Then Ψ(x0, s0, (tj, xj)1⩽ j ⩽N , t) represents the substrate concentration at time t,
given the initial condition is (x0, s0) and that the bacterial population jumps from
xi−1 to xi at time ti for i = 1, · · · , N .
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For all n ∈ N∗, u1, . . . un > 0, let set

ED(u1, . . . , un) :=
n⋂
i=1

{Xui
= X0 − i} ∩ {Ti = ui}

and
EB(u1, . . . , un) :=

n⋂
i=1

{Xui
= X0 + i} ∩ {Ti = ui}

the event “the first n events are washouts (respectively divisions) and occur at time
u1, . . . un”.

In Lemma A.9 below, we use Poisson random measures to bound the probability of
one event by the probability of this event conditionally on having followed a certain
path (no jump, successive washouts or successive divisions).

Lemma A.9. — Let A be a measurable set (of the underlying probability space).
We have the following inequalities.

(1) For all δ ⩾ 0 and (x, s) ∈ N∗ × R+

P(x,s)(A) ⩾ P(x,s)(A ∩ {T1 > δ}) ⩾ e−(D+µ(s̄1∨s))x δ P(x,s) (A | T1 > δ) .
(2) For all δ ⩾ 0, (x, s) ∈ N∗ × R+ and 1 ⩽ n ⩽ x,

P(x,s)(A) ⩾ P(x,s)

(
A ∩

n⋂
i=1

{
{Ti ⩽ δ} ∩ {XTi

= x− i}
})

⩾
∫ δ

0

∫ δ

u1
· · ·

∫ δ

un−1

 x∏
k=x−n+1

Dk

 e
−(D+µ(s̄1∨s))

(
xu1+

n−1∑
i=1

(x−i) (ui+1−ui)
)

× P(x,s)

(
A
∣∣∣∣ED(u1, . . . , un)

)
dun . . . du1 .

(3) For all δ ⩾ 0, (x, s) ∈ N∗ × R+ and all n ⩾ 1

P(x,s)(A) ⩾ P(x,s)

(
A ∩

n⋂
i=1

{
{Ti ⩽ δ} ∩ {XTi

= x+ i}
})

⩾
∫ δ

0

∫ δ

u1
· · ·

∫ δ

un−1

(
n∏
k=1

µ (Ψ(x, s, (ui, x+ i)1⩽ i⩽ k−1, uk)) (x+ k − 1)
)

× e
−(D+µ(s̄1∨s))

(
xu1+

n−1∑
i=1

(x+i) (ui+1−ui)
)

× P(x,s)

(
A

∣∣∣∣EB(u1, . . . , un)
)

dun . . . du1 .

Proof. — Under the event {Xt ⩾ 1} (or equivalently under the event {Xu ⩾
1 for u ∈ [0, t]} since {0} is an absorbing state for the process (Xt)t), from the
comparison theorem and Lemma A.3, for all 0 ⩽ u ⩽ t we have Su ⩽ ϕ(1, S0, u) ⩽
S0 ∨ s̄1. Let (x, s) ∈ N∗ × R+, the individual jump rate µ(St) of the process (Xt, St)
starting from (x, s) is then bounded by µ(s̄1 ∨ s).

The bounds established in the lemma are classical and based on the construction
of the process (Xt, St) from Poisson random measures: we consider two independent
Poisson random measures Nd(du, dj, dθ) and Nw(du, dj) defined on R+ ×N∗ × [0, 1]
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and R+ × N∗ respectively, corresponding to the division and washout mechanisms
respectively, with respective intensity measures

nd(du, dj, dθ) = µ(s̄1 ∨ s) du
∑
ℓ⩾ 1

δℓ(dj)
 dθ

and

nw(du, dj) = D du
∑
ℓ⩾ 1

δℓ(dj)
 .

Then the process (Xt, St) starting from (X0, S0) = (x, s) can be defined by

(Xt, St) = (x, ϕ(x, s, t))

+
∫ t

0

∫
N∗

∫ 1

0
1{j ⩽Xu− } 1{0⩽ θ⩽µ(Su)/µ(s̄1∨s)}

[(1, ϕ(Xu− + 1, Su, t− u) − ϕ(Xu− , Su, t− u)] Nd(du, dj, dθ)

+
∫ t

0

∫
N∗

1{j ⩽Xu− } [(−1, ϕ(Xu− − 1, Su, t− u) − ϕ(Xu− , Su, t− u)] Nw(du, dj) .

We refer to [CF15] for more details on this construction.
(1) By construction of the process, if (X0, S0) = (x, s), we get T1 = Td ∧Tw where,

Td is the time of the first jump of the process

t 7→ Nd

(
[0, t] × {x} ×

[
0, µ(ϕ(x, s, u))

µ(s̄1 ∨ s)

])
and Tw is the time of the first jump of the process t 7→ Nw([0, t] × {x}).

The distribution of Td is a non-homogeneous exponential distribution with param-
eter µ(ϕ(x, s, u))x, i.e. with the probability density function

t 7→ µ(ϕ(x, s, t))x exp
(

−
∫ t

0
µ(ϕ(x, s, u))xdu

)
.

The distribution of Tw is a (homogeneous) exponential distribution with parameter
Dx. Td and Tw are independent, then

P(x,s)(T1 > δ) = e−
∫ δ

0 (µ(ϕ(x,s,u))+D)xdu ⩾ e−(D+µ(s̄1∨s))x δ

and the first result holds.
(2) On the event ⋂ki=1{{Ti = ui} ∩ {XTi

= x− i}}, the distribution of Tk+1 − uk
is a non-homogeneous exponential distribution with parameter (µ(ϕ(x− k, STk

, t)) +
D) (x − k) with STk

= Ψ(x, s, (ui, x − i)1⩽ i⩽ k−1, uk) ∈ (0, s̄1 ∨ s), i.e. with the
probability density function (evaluated in t)

(µ(ϕ(x− k, STk
, t)) +D) (x− k) e−

∫ t

0 (µ(ϕ(x−k,STk
,u))+D) (x−k)du

⩾ (µ(ϕ(x− k, STk
, t)) +D) (x− k) e−(µ(s̄1∨s)+D) (x−k) t

and on the event {Tk+1 = u}, the event is a bacterial washout with probability
D/(µ(ϕ(x− k, STk

, u)) +D). We then obtain the second assertion.
(3) The third assertion is obtained in the same way as the second one. □
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Appendix B. Proofs of technical Lemmas

B.1. Additional notation

For all n ⩾ ℓ ⩾ 1 and all t ⩾ 0, let Pd(n, ℓ, t) defined by

Pd(n, ℓ, t) =
∫ t

0

∫ t

u1
· · ·

∫ t

uℓ−1

 n∏
k=n−ℓ+1

Dk

 e
−(D+µ(s̄1))

(
nu1+

ℓ−1∑
i=1

(n−i) (ui+1−ui)
)

duℓ . . . du1

be the probability that the ℓ first events are deaths and occur in the time interval
[0, t] for a birth-death process, with per capita birth rate µ(s̄1) and death rate D,
starting from n individuals.

For all n ⩾ ℓ ⩾ 1 and all t ⩾ 0, let Pb(n, ℓ, t) defined by

Pb(n, ℓ, t) =
∫ t

0

∫ t

u1
· · ·

∫ t

uℓ−1

(
n+ℓ−1∏
k=n

µ(s̄1) k
)
e

−(D+µ(s̄1))
(
nu1+

ℓ−1∑
i=1

(n+i) (ui+1−ui)
)

duℓ . . . du1

be the probability that the ℓ first events are births and occur in the time interval
[0, t] for a birth-death process, with per capita birth rate µ(s̄1) and death rate D,
starting from n individuals.

Remark B.1. — Both maps t 7→ Pd(n, ℓ, t) and t 7→ Pb(n, ℓ, t) are increasing.
For all L ∈ N∗, S, S̄ such that s̄L < S ⩽ S̄ < s̄1, we define the hitting time TL,[S,S̄]

by
TL,[S,S̄] := inf

{
t ⩾ 0, (Xt, St) ∈ B(L, [S, S̄])

}
,

where
B(L, [S, S̄]) :=

{
(ℓ,S) | ℓ ∈ [[1, L]] and s̄ℓ ⩾ S

}
∪
{
(ℓ, S̄)

∣∣∣ ℓ ∈ [[1, L]] and s̄ℓ ⩽ S̄
}
.

In addition of being a hitting time of [[1, L]] × [S, S̄], the boundary B(L, [S, S̄]) is
chosen such that the process remains in this set during some positive time after
TL,[S,S̄] if S < S̄. If S = S̄ then B(L, [S, S̄]) = [[1, L]] × {S}.

B.2. Proof of Lemma 3.2

Lemma 3.2 is a consequence of Lemma B.2 below.
Lemma B.2. — Let L ∈ N∗, S, S̄ such that s̄L < S ⩽ S̄ < s̄1, and let (x, s) ∈

[[1, L]] × [s̄L, s̄1],
(1) if s ⩽ S, then for τ0 > ϕ−1

t (1, s,S),
P(x,s)

(
TL,[S,S̄] ⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ) Pd(x, x− 1, δ)

⩾ e−(D+µ(s̄1)) (τ0−δ) Pd(L,L− 1, δ)

with δ := (τ0 − ϕ−1
t (1, s,S)) D |s̄1−s|

D |s̄1−s|+max{D sin, k µ(s̄1)L} ;
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(2) if s ⩾ S̄, then for τ0 > ϕ−1
t (L, s, S̄),

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ)L (µ(s̄L)/µ(s̄1))L−x Pb(x, L− x, δ)

⩾ e−(D+µ(s̄1)) (τ0−δ)L (µ(s̄L)/µ(s̄1))L−1 Pb(1, L− 1, δ)

with δ := (τ0 − ϕ−1
t (L, s, S̄)) D |s̄L−s|

D |s̄L−s|+max{D sin, k µ(s̄1)L} ;
(3) if s ∈ (S, S̄), then for τ0 > ϕ−1

t (1, s, S̄) ∧ ϕ−1
t (L, s,S) =: t⋆

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ1−δ2)L

× (µ(s̄L)/µ(s̄1))L−1 Pd(L,L− 1, δ1)Pb(1, L− 1, δ2)
with

δ1:=
τ0 − t⋆

2
D |s̄1 − s|

D |s̄1 − s| + max{D sin, k µ(s̄1)L}
and

δ2:=
τ0 − t⋆

2
D |s̄L − s|

D |s̄L − s| + max{D sin, k µ(s̄1)L}
.

Proof of Lemma 3.2. — Let (y, r) ∈ K and let us define S := ϕ−1
s0 (y, r, ε3),

S̄ := ϕ−1
s0 (y, r, ε4) if r ⩽ s̄y and S̄ := ϕ−1

s0 (y, r, ε3), S := ϕ−1
s0 (y, r, ε4) if r ⩾ s̄y. Then

TEε
y,r

= TLK ,[S,S̄]. From Lemma A.7-1 and Remark A.8, we have |r − ϕ−1
s0 (y, r, ε4)| ⩽

ε
4 max{D sin, k µ(s̄1)y}, then the condition

ε ⩽
4 min {s̄1 − SK , sK − s̄LK

} D (τ0 − tmin)/2
max {D sin, k µ(s̄1)LK} (1 +D (τ0 − tmin)/2)

implies that, for r ∈ [sK , SK ] ⊂ [s̄LK
, s̄1] and y ∈ [[1, LK ]],

s ⩽ ϕ−1
s0

(
y, r,

ε

4

)
⩽ S(B.1)

with s := sK − (sK−s̄LK
)D (τ0−tmin)/2

1+D (τ0−tmin)/2 and S := SK + (s̄1−SK)D (τ0−tmin)/2
1+D (τ0−tmin)/2 .

In addition, since s̄LK
<s⩽sK⩽SK⩽S<s̄1, from Corollary A.4 and Lemma A.6,

ϕ−1
t (1, sK ,S) = ϕ−1

t (1, sK , SK) + ϕ−1
t (1, SK ,S)

⩽ tmin + S − SK
D |s̄1 − S|

= τ0 − τ0 − tmin

2
(B.2)

and
ϕ−1

t (LK , SK , s) = ϕ−1
t (LK , SK , sK) + ϕ−1

t (LK , sK , s)

⩽ tmin + sK − s
D |s − s̄LK

|
= τ0 − τ0 − tmin

2 .
(B.3)

Let set

δ1:=
τ0 − tmin

2
D |s̄1 − s|

D |s̄1 − s| + max{D sin, k µ(s̄1)LK}
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and

δ2:=
τ0 − tmin

2
D |s̄LK

− s|
D |s̄LK

− s| + max {D sin, k µ(s̄1)LK}
.

From (B.1) S or S̄ (or both) belongs to [s,S], hence for (x, s) ∈ K, we have three
cases.

(1) If s ⩽ S, then S ⩽ S, from Corollary A.4 and from (B.2)

τ0 − ϕ−1
t (1, s,S) ⩾ τ0 − ϕ−1

t (1, sK ,S) ⩾ τ0 − tmin

2 > 0

then from Lemma B.2-1 and Remark B.1,

P(x,s)
(
TEε

y,r
⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ1) Pd(LK , LK − 1, δ1) ;

(2) If s ⩾ S̄, then S̄ ⩾ s, from Corollary A.4 and (B.3),

τ0 − ϕ−1
t

(
LK , s, S̄

)
⩾ τ0 − ϕ−1

t (LK , SK , s) ⩾ τ0 − tmin

2 > 0

then from Lemma B.2-2 and Remark B.1,

P(x,s)
(
TEε

y,r
⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ2)LK

(
µ(s̄LK

)
µ(s̄1)

)LK−1

Pb(1, LK − 1, δ2) ;

(3) If s ∈ (S, S̄), then S or S̄ belongs to [s,S], and at least one of both conditions
τ0 −ϕ−1

t (1, s,S) ⩾ τ0−tmin
2 > 0 or τ0 −ϕ−1

t

(
LK , s, S̄

)
⩾ τ0−tmin

2 > 0 is satisfied.
We then deduce from Lemma B.2-3 and Remark B.1 that

P(x,s)
(
TEε

y,r
⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0− δ1+δ2

2 )LK Pd

(
LK , LK − 1, δ1

2

)

×
(
µ(s̄LK

)
µ(s̄1)

)LK−1

Pb

(
1, LK − 1, δ2

2

)
.

Finally Lemma 3.2 holds with

Cτ0
1 := e−(D+µ(s̄1)) (τ0−min{δ1,δ2})LK

× Pd

(
LK , LK − 1, δ1

2

) (
µ(s̄LK

)
µ(s̄1)

)LK−1

Pb

(
1, LK − 1, δ2

2

)
. □

Proof of Lemma B.2. —
Proof of Item (1). — If s ⩽ S, we will prove that one way for the process to reach

B(L, [S, S̄]) before τ0 is if the population jumps from x to 1 by x − 1 successive
washout events during the time duration

δ := (τ0 − ϕ−1
t (1, s,S)) D |s̄1 − s|

D |s̄1 − s| + max {D sin, k µ(s̄1)L}
and if then no event occurs during the time duration τ0 − δ. The main arguments of
the proof are the following: we will see that during the time duration δ, the substrate
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concentration remains greater than or equal to s− δ max{D sin, k µ(s̄1)L} and that
δ is chosen such that

ϕ−1
t

(
1, s− δ max{D sin, k µ(s̄1)L},S

)
⩽ τ0 − δ

that is the remaining time after the successive washout events is enough for the
substrate process to reach S.

• if x = 1 and s0 ∈ [s− δ max{D sin, k µ(s̄1)L},S], from Lemma A.9 we have

P(1,s0)
(
TL,[S,S̄] ⩽ τ0 − δ

)
⩾ P(1,s0)

({
TL,[S,S̄] ⩽ τ0 − δ)

}
∩ {T1 > τ0 − δ}

)
⩾ e−(D+µ(s̄1)) (τ0−δ) P(1,s0)

(
TL,[S,S̄] ⩽ τ0 − δ

∣∣∣∣T1 > τ0 − δ
)
.

Moreover, from Lemma A.6

ϕ−1
t

(
1, s− δ max {D sin, k µ(s̄1)L} , s

)
⩽
δ max {D sin, k µ(s̄1)L}

D |s̄1 − s|
= T

with T = (τ0−ϕ−1
t (1, s,S)) max{D sin, k µ(s̄1)L}

D |s̄1−s|+max{D sin, k µ(s̄1)L} . Then from Corollary A.4,

ϕ−1
t (1, s0,S) = ϕ−1

t

(
1, s− δ max {D sin, k µ(s̄1)L} ,S

)
− ϕ−1

t

(
1, s− δ max {D sin, k µ(s̄1)L} , s0

)
⩽ ϕ−1

t

(
1, s− δ max {D sin, k µ(s̄1)L} , s

)
+ ϕ−1

t

(
1, s,S

)
⩽ T + ϕ−1

t

(
1, s,S

)
= τ0 − δ .

Then, since from Lemma A.3 t 7→ ϕ(1, s0, t) is increasing,

ϕ(1, s0, τ0 − δ) ⩾ ϕ
(
1, s0, ϕ

−1
t (1, s0,S)

)
= S .

On the event {(X0, S0) = (1, s0), T1 > τ0 − δ}, we then have Sτ0−δ ⩾ S a.s.
Since (St)t⩾ 0 is a continuous process, from the intermediate value theorem,
(St)t⩾ 0 reaches S in the time interval [0, τ0 − δ]. Moreover, since S < s̄1 then

P(1,s0)
(
TL,[S,S̄] ⩽ τ0 − δ

∣∣∣T1 > τ0 − δ
)

= 1

and therefore
P(1,s0)

(
TL,[S,S̄] ⩽ τ0 − δ

)
⩾ e−(D+µ(s̄1)) (τ0−δ) .(B.4)

Since P(1,s)(TL,[S,S̄] ⩽ τ0) ⩾ P(1,s)(TL,[S,S̄] ⩽ τ0 − δ), taking s0 = s leads to the
result.

• if x > 1, from Lemma A.9,

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾
∫ δ

0

∫ δ

u1
· · ·

∫ δ

ux−2

(
x∏
k=2

Dk

)
e

−(D+µ(s̄1))
(
xu1+

x−2∑
i=1

(x−i) (ui+1−ui)
)

P(x,s)
(
TL,[S,S̄] ⩽ τ0

∣∣∣ ED (u1, . . . , ux−1)
)

dux−1 · · · du1 .
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On the one hand, on the event ED(u1, . . . , ux−1) ∩ {(X0, S0) = (x, s)}, with
ux−1 ⩽ δ, the substrate concentration at time ux−1 verifies

Sux−1 = Ψ(x, s, (ui, x− i)1⩽ i⩽x−2, ux−1)) ⩾ s− δ max {D sin, k µ(s̄1)L} ,

where we recall that Ψ was defined by (A.1). Indeed, we more generally have
that, for all t ∈ [0, δ],

St = s+
∫ t

0
(D (sin − Su) − k µ(Su)Xu) du ⩾ s− δ k µ(s̄1)L .

On the other hand, at the end of the washout phase, either Sux−1 ⩾ S and
then TL,[S,S̄] < ux−1 ⩽ τ0 or Sux−1 < S and then TL,[S,S̄] ⩾ ux−1. Applying the
Markov Property as well as (B.4) in the last case, we obtain

P(x,s)

(
TL,[S,S̄] ⩽ τ0

∣∣∣∣ ED (u1, . . . , ux−1)
)

= 1{Ψ(x,s,(ui,x−i)1 ⩽ i ⩽ x−2,ux−1)⩾S}
+ 1{Ψ(x,s,(ui,x−i)1 ⩽ i ⩽ x−2,ux−1)<S}
× P(1,Ψ(x,s,(ui,x−i)1 ⩽ i ⩽ x−2,ux−1))

(
TL,[S,S̄] ⩽ τ0 − ux−1

)
⩾ e−(D+µ(s̄1)) (τ0−δ)

and then

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ) Pd(x, x− 1, δ) .(B.5)

Proof of Item (2). — If s ⩾ S̄, one way for the process to reach B(L, [S, S̄]) before
τ0 is if the population jumps from x to L by L− x successive division events during
the time duration δ := (τ0 − ϕ−1

t (L, s, S̄)) D |s̄L−s|
D |s̄L−s|+max{D sin, k µ(s̄1)L} and if then no

event occurs during the time duration τ0 − δ. We omit the details of the proof which
is exactly the same as for the case s ⩽ S and leads to

• if x = L, for all s0 ∈ [S̄, s+ δ max{D sin, k µ(s̄1)L}]

P(L,s0)
(
TL,[S,S̄] ⩽ τ0

)
⩾ P(L,s0)

(
TL,[S,S̄] ⩽ τ0 − δ

)
⩾ e−(D+µ(s̄1)) (τ0−δ)L ;

• if x < L, remarking that Ψ(x, s, (ui, x + i)1⩽ i⩽ k−1, uk) ⩾ s̄L for all 1 ⩽ k ⩽
L− x in the term below, since µ is increasing

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ e−(D+µ(s̄1)) (τ0−δ)L

×
∫ δ

0

∫ δ

u1
· · ·

∫ δ

uL−x−1
e

−(D+µ(s̄1))
(
xu1+

L−x−1∑
i=1

(x+i) (ui+1−ui)
)

×
(
L−x∏
k=1

µ (Ψ (x, s, (ui, x+ i)1⩽ i⩽ k−1, uk)) (x+ k − 1)
)

× duL−x . . . du1

⩾ e−(D+µ(s̄1)) (τ0−δ)L
(
µ(s̄L)
µ(s̄1)

)L−x

Pb(x, L− x, δ) .
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Proof of Item (3). — If s ∈ (S, S̄), in order that the process reaches B(L, [S, S̄]),
it is necessary for the process (St)t⩾ 0 to exit [S, S̄] and come back to this set.

If τ0 > ϕ−1
t (1, s, S̄), we will bound from below the probability that the process

exits (S, S̄) by the bound S̄, at time TL,[S̄,S̄] (that is we also impose that the bacterial
population is in [[1, L]] at this exit time) before the time τ0 − τ0−ϕ−1

t (1,s,S̄)
2 and then

comes back to [S, S̄] during the time interval (TL,[S̄,S̄], τ0]. We obtain

(B.6) P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ P(x,s)

{TL,[S,S̄] ⩽ τ0
}

∩

TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2




⩾ P(x,s)

TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2


× P(x,s)

TL,[S,S̄] ⩽ τ0

∣∣∣∣∣∣ TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2

 .

On the one hand, since τ0 > τ0 − τ0−ϕ−1
t (1,s,S̄)

2 > ϕ−1
t (1, s, S̄), from Lemma B.2-1

we have

(B.7) P(x,s)

TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2



⩾ e
−(D+µ(s̄1))

(
τ0−

τ0−ϕ−1
t (1,s,S̄)

2 −δ1

)
Pd(x, x− 1, δ1)

with δ1 := τ0−ϕ−1
t (1,s,S̄)

2
D |s̄1−s|

D |s̄1−s|+max{D sin, k µ(s̄1)L} .
On the other hand, from the definition of TL,[S̄,S̄], (XTL,[S̄,S̄]

, STL,[S̄,S̄]
) ∈ [[1, L]]×{S̄},

then by the law of total probability

P(x,s)

TL,[S,S̄] ⩽ τ0

∣∣∣∣∣∣ TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2


=

L∑
i=1

P(x,s)

TL,[S,S̄] ⩽ τ0

∣∣∣∣∣∣ TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2 , XTL,[S̄,S̄]

= i


× P(x,s)

XTL,[S̄,S̄]
= i

∣∣∣∣∣∣ TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2

 .
Set Ai := {TL,[S̄,S̄] ⩽ τ0 − τ0−ϕ−1

t (1,s,S̄)
2 , XTL,[S̄,S̄]

= i}, the Markov property entails
now
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P(x,s)
(
TL,[S,S̄] ⩽ τ0

∣∣∣ Ai)
⩾ P(x,s)

(
TL,[S,S̄] ⩽ τ0

∣∣∣∣ Ai, TL,[S̄,S̄] ⩽ TL,[S,S̄]
)
P(x,s)

(
TL,[S̄,S̄] ⩽ TL,[S,S̄]

∣∣∣∣ Ai)
+ P(x,s)

(
TL,[S,S̄] ⩽ τ0

∣∣∣∣ Ai, TL,[S̄,S̄] > TL,[S,S̄]
)
P(x,s)

(
TL,[S̄,S̄] > TL,[S,S̄]

∣∣∣∣ Ai)

⩾ P(i,S̄)

TL,[S,S̄] ⩽
τ0 − ϕ−1

t

(
1, s, S̄

)
2

 P(x,s)

(
TL,[S̄,S̄] ⩽ TL,[S,S̄]

∣∣∣∣ Ai)

+ 1 × P(x,s)

(
TL,[S̄,S̄] > TL,[S,S̄]

∣∣∣∣ Ai)

⩾ P(i,S̄)

TL,[S,S̄] ⩽
τ0 − ϕ−1

t

(
1, s, S̄

)
2

 .
In addition, for all i ∈ [[1, L]], from Lemma B.2-2 applied to τ0−ϕ−1

t (1,s,S̄)
2 > 0 =

ϕ−1
t (L, S̄, S̄),

P(i,S̄)

TL,[S,S̄] ⩽
τ0 − ϕ−1

t

(
1, s, S̄

)
2



⩾ e
−(D+µ(s̄1))

(
τ0−ϕ−1

t (1,s,S̄)
2 −δ2

)
L
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ2)

with δ2 := τ0−ϕ−1
t (1,s,S̄)

2
D |s̄L−s|

D |s̄L−s|+max{D sin, k µ(s̄1)L} . Therefore

(B.8) P(x,s)

TL,[S,S̄] ⩽ τ0

∣∣∣∣∣∣ TL,[S̄,S̄] ⩽ τ0 −
τ0 − ϕ−1

t

(
1, s, S̄

)
2



⩾ e
−(D+µ(s̄1))

(
τ0−ϕ−1

t (1,s,S̄)
2 −δ2

)
L
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ2) .

Finally, from (B.6), (B.7) and (B.8)

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)

⩾ e
−(D+µ(s̄1))

(
τ0−

τ0−ϕ−1
t (1,s,S̄)

2 −δ1

)
Pd(x, x− 1, δ1)

× e
−(D+µ(s̄1))

(
τ0−ϕ−1

t (1,s,S̄)
2 −δ2

)
L
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ2)

⩾ e−(D+µ(s̄1)) (τ0−δ1−δ2)L Pd(L,L− 1, δ1)
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ2) .
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If τ0 > ϕ−1
t (L, s,S), we can bound from below the probability that the substrate

process exits (S, S̄) by the bound S, at time TL,[S,S] before the time τ0 − τ0−ϕ−1
t (L,s,S)

2
and then comes back to [S, S̄] during the time interval (TL,[S,S], τ0]. In the same way
as for τ0 > ϕ−1

t

(
1, s, S̄

)
, we obtain

P(x,s)
(
TL,[S,S̄] ⩽ τ0

)
⩾ P(x,s)

(
TL,[S,S] ⩽ τ0 − τ0 − ϕ−1

t (L, s,S)
2

)

× P(x,s)

(
TL,[S,S̄] ⩽ τ0

∣∣∣∣∣ TL,[S,S] ⩽ τ0 − τ0 − ϕ−1
t (L, s,S)

2

)

⩾ e
−(D+µ(s̄1))

(
τ0−

τ0−ϕ−1
t (L,s,S)

2 −δ2

)
L
(
µ(s̄L)
µ(s̄1)

)L−x

Pb(x, L− x, δ2)

× e
−(D+µ(s̄1))

(
τ0−ϕ−1

t (L,s,S)
2 −δ1

)
Pd(L,L− 1, δ1)

⩾ e−(D+µ(s̄1)) (τ0−δ1−δ2)L Pd(L,L− 1, δ1)
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ2)

with

δ1:=
τ0 − ϕ−1

t (L, s,S)
2

D |s̄1 − s|
D |s̄1 − s| + max{D sin, k µ(s̄1)L}

and

δ2:=
τ0 − ϕ−1

t (L, s,S)
2

D |s̄L − s|
D |s̄L − s| + max{D sin, k µ(s̄1)L}

. □

B.3. Proof of Lemma 3.3

Assuming 0 < ε ⩽
3 min{sK−s̄LK

, s̄1−SK}
max{D sin, k µ(s̄1)LK} ensures that [ϕ−1

s0 (y, r, ε3), ϕ−1
s0 (y, r, ε4)] ⊂

[s̄LK
, s̄1] from Lemma A.7-1 and Remark A.8. Moreover, remarking that,

ϕ−1
s0

(
y, r,

ε

3

)
= ϕ−1

s0

(
y, ϕ−1

s0

(
y, r,

ε

4

)
,
ε

3 − ε

4

)
,

from Lemma A.7-2 we have∣∣∣∣ϕ−1
s0

(
y, r,

ε

3

)
− ϕ−1

s0

(
y, r,

ε

4

)∣∣∣∣ ⩾ D
∣∣∣∣ϕ−1

s0

(
y, r,

ε

4

)
− s̄y

∣∣∣∣ ε

12
= D

(∣∣∣∣ϕ−1
s0

(
y, r,

ε

4

)
− r

∣∣∣∣+ |r − s̄y|
)

ε

12
⩾ D

(
D
ε

4 + 1
)

|r − s̄y|
ε

12 .

Lemma 3.3 is then a consequence of Lemma B.3 below with β = D (D ε
4 + 1) δ ε

12 .
Lemma B.3 states that the probability that the process stays in an interval can be
bounded from below by a constant which only depends on the interval length.
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Lemma B.3. — Let β > 0, L ∈ N∗ and T > 0. Then there exists CB.3 > 0
such that for all S and S̄ such that s̄L ⩽ S < S̄ ⩽ s̄1 and S̄ − S = β, for all
(x, s) ∈ B(L, [S, S̄]),

P(x,s)
(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, T ]

)
⩾ CB.3 .

Proof. — Let ℓ := max{l ∈ N∗ such that s̄l ⩾ S}, and let s1 and s2 such that
S < s1 < s2 < S̄. Note that, from Lemma A.2, 1 ⩽ ℓ ⩽ L− 1. We aim to show that
Inequalities (B.9) and (B.10) below hold. Namely, if s̄ℓ ∈ [S, S̄], then

(B.9) P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ e−(D+µ(s̄1))LT min

Pd(L,L− 1, tS̄−S);
(
µ(s̄L)
µ(s̄1)

)L−1

Pb
(
1, L− 1, tS̄−S

) ,

with tS̄−S = |S̄ − S|/max{D sin, k µ(s̄1)L} and if s̄ℓ /∈ [S, S̄], then

(B.10) P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ C⌊T

γ ⌋+1 min

Pd(L,L− 1, t1);
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, t2)


where the preceding constants are defined by

C = µ(s̄L)D
(D + µ(s̄1))2 e

−(D+µ(s̄1)) ℓ ϕ−1
t (ℓ,S,s2) e−(D+µ(s̄1)) (ℓ+1)ϕ−1

t (ℓ+1,S̄,s1)

×
[
1 − e−(D+µ(s̄1)) ℓ ϕ−1

t (ℓ,s2,S̄)
] [

1 − e−(D+µ(s̄1)) (ℓ+1)ϕ−1
t (ℓ+1,s1,S)

]
and

γ = ϕ−1
t (ℓ, s1, s2) + ϕ−1

t (ℓ+ 1, s2, s1) ;

t1 =

∣∣∣S̄ − s2

∣∣∣
max {D sin, k µ(s̄1)L}

; t2 = |s1 − S|
max {D sin, k µ(s̄1)L}

.

Remarking that, if s̄ℓ /∈ [S, S̄], then |s̄ℓ − s2| ⩾ |S̄ − s2| and |s1 − s̄ℓ+1| ⩾ |s1 − S|,
we obtain from Lemma A.6, remarking in addition that in this case 1 ⩽ ℓ ⩽ L− 1,

C ⩾
µ(s̄L)D

(D + µ(s̄1))2 e
− D+µ(s̄1)

D
L

(
s2−S
S̄−s2

+ S̄−s1
s1−S

)

×

1 − e
− (D+µ(s̄1)) (S̄−s2)

max{D sin, k µ(s̄1) L}
 1 − e

− (D+µ(s̄1)) (s1−S)

max{D sin, k µ(s̄1) L}


and

γ ⩾
2 |s2 − s1|

max {D sin, k µ(s̄1)L}
.
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In particular, choosing s1 = S + (S̄ − S)/4 and s2 = S + 3 (S̄ − S)/4, Lemma B.3
holds with

CB.3 =

min


 µ(s̄L)D

(D + µ(s̄1))2 e
−6 D+µ(s̄1)

D
L

1 − e
− (D+µ(s̄1)) β

4 max{D sin, k µ(s̄1) L}
2


max{D sin, k µ(s̄1) L} T

β
+1

;

e−(D+µ(s̄1))LT


× min

Pd(L,L− 1, tB.3);
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, tB.3)

 > 0

with tB.3 = β/(4 max{D sin, k µ(s̄1)L}).
So let us prove, first, that if s̄ℓ ∈ [S, S̄] then (B.9) holds and, second, that if

s̄ℓ /∈ [S, S̄] then (B.10) holds. To prove (B.10), we first show that C⌊T
γ ⌋+1 is a lower

bound for x = ℓ and s < s1 (including (x, s) = (ℓ,S)) and for x = ℓ+ 1 and s > s2
(including (x, s) = (ℓ+ 1, S̄)); we then deduce the result for x ̸= ℓ and s = S and for
x ̸= ℓ+ 1 and s = S̄, with (x, s) ∈ B(L, [S, S̄]) reaching one of both previous cases
by successive washout or division events; then leading to (B.10) for any possible
initial condition in B(L, [S, S̄]).

If s̄ℓ ∈ [S, S̄]:
• If x = ℓ: If no event occurs during [0, T ], then by Lemma A.3, for all s0 ∈

[S, S̄], the process starting from (ℓ, s0) stays in {ℓ} × [s0, s̄ℓ] ⊂ {ℓ} × [S, S̄].
Hence,

P(ℓ,s0)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ P(ℓ,s0)(T1 ⩾ T )

⩾ e−(D+µ(s̄1)) ℓ T

⩾ e−(D+µ(s̄1))LT .

(B.11)

• If x > ℓ: From Lemma A.9,

P(x,s)
(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, T ]

)

⩾
∫ tS̄−S

0

∫ tS̄−S

u1
· · ·

∫ tS̄−S

ux−ℓ−1

 x∏
k=ℓ+1

Dk

 e
−(D+µ(s̄1))

(
xu1+

x−ℓ−1∑
i=1

(x−i) (ui+1−ui)
)

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

∣∣∣ ED(u1, . . . , ux−ℓ)
)

dux−ℓ . . . du2 du1 .

Since (x, s) ∈ B(L, [S, S̄]), we easily check from Lemma A.6 that, on the event
{(X0, S0) = (x, s)} ∩ ED(u1, . . . , ux−ℓ), the process (Xt, St)0⩽ t⩽ux−ℓ

stays in
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[[1, L]] × [S, S̄] for ux−ℓ ⩽ tS̄−S . By the Markov property and (B.11) we then
obtain, for s0 = Ψ(x, s, (ui, x− i)1⩽ i⩽x−ℓ−1, ux−ℓ) ∈ [S, S̄]:

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

∣∣∣ ED(u1, . . . , ux−ℓ)
)

= P(ℓ,s0)
(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, (T − ux−ℓ) ∨ 0]

)
⩾ e−(D+µ(s̄1))LT ,

and therefore

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ e−(D+µ(s̄1))LT Pd

(
x, x− ℓ, tS̄−S

)
⩾ e−(D+µ(s̄1))LT Pd

(
L,L− 1, tS̄−S

)
.

• If x < ℓ: in the same way, replacing the washouts event condition ED(u1, . . . ,
ux−ℓ) by the divisions event condition EB(u1, . . . , uℓ−x) in the previous case,
we obtain

P(x,s)
(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, T ]

)
⩾ e−(D+µ(s̄1))LT

(
µ(s̄L)
µ(s̄1)

)ℓ−x
Pb
(
x, ℓ− x, tS̄−S

)

⩾ e−(D+µ(s̄1))LT
(
µ(s̄L)
µ(s̄1)

)L−1

Pb
(
1, L− 1, tS̄−S

)
and then (B.9) holds.

If s̄ℓ /∈ [S, S̄]: By definition, ℓ is such that s̄ℓ > S̄ and s̄ℓ+1 < S. Note that through-
out this part of the proof, we will use the following properties (see Corollary A.4):
for all S ⩽ r0 ⩽ r1 ⩽ r2 ⩽ S̄,

ϕ−1
t (ℓ, r0, r1) ⩽ ϕ−1

t (ℓ, r0, r2) < +∞, ϕ−1
t (ℓ+1, r1, r0) ⩽ ϕ−1

t (ℓ+1, r2, r0) < +∞ .

• If x = ℓ and S ⩽ s ⩽ s1: We prove that

P(ℓ,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ C⌊T

γ ⌋+1 .(B.12)

One way for the substrate concentration process (St)t∈ [0,T ] to stay in [S, S̄]
is if the first event is a division and occurs at time T1 ∈ [ϕ−1

t (ℓ, s, s2), ϕ−1
t (ℓ, s,

S̄)), the second event is a washout and occurs at time T2 ∈ [T1 + ϕ−1
t (ℓ +

1, ST1 , s1), T1 + ϕ−1
t (ℓ + 1, ST1 ,S)) and if the process (St)T2 ⩽ t⩽T∨T2 stays in

[S, S̄]. In fact, we easily check that on this event

(Xt, St) ∈


{ℓ} × [s, S̄) if 0 ⩽ t < T1,

{ℓ+ 1} × [s2, S̄) if t = T1,

{ℓ+ 1} × (S, S̄) if T1 ⩽ t ⩽ T2.
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Therefore, from Lemma A.9 and the Markov Property

(B.13) P(ℓ,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ P(ℓ,s)

({
XT1 = ℓ+ 1

}
∩
{
ϕ−1

t (ℓ, s, s2) ⩽ T1 ⩽ ϕ−1
t (ℓ, s, S̄)

}
∩
{
XT2 = ℓ

}
∩
{
ϕ−1

t (ℓ+ 1, ST1 , s1) ⩽ T2 − T1 ⩽ ϕ−1
t (ℓ+ 1, ST1 ,S)

}
∩
{
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, T ]

})
⩾ µ(s̄L) ℓ

∫ ϕ−1
t (ℓ,s,S̄)

ϕ−1
t (ℓ,s,s2)

e−(D+µ(s̄1)) ℓ u1 D (ℓ+ 1)
∫ ϕ−1

t (ℓ+1,ϕ(ℓ,s,u1),S)

ϕ−1
t (ℓ+1,ϕ(ℓ,s,u1),s1)

e−(D+µ(s̄1)) (ℓ+1)u2

P(ℓ,ϕ(ℓ+1,ϕ(ℓ,s,u1),u2))
(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, (T − u1 − u2) ∨ 0]

)
du2 du1 .

Assumption s < s1 implies that u1 ⩾ ϕ−1
t (ℓ, s1, s2), moreover u1 ⩾ ϕ−1

t (ℓ, s,
s2) implies that u2 ⩾ ϕ−1

t (ℓ + 1, s2, s1). Hence T − u1 − u2 ⩽ T − γ. In
addition, u2 ∈ [ϕ−1

t (ℓ+ 1, ϕ(ℓ, s, u1), s1), ϕ−1
t (ℓ+ 1, ϕ(ℓ, s, u1),S)] implies that

ϕ(ℓ+1, ϕ(ℓ, s, u1), u2) ∈ [S, s1]. Then, in order to obtain (B.12), by recurrence,
it is sufficient to prove that

(B.14) µ(s̄L) ℓ
∫ ϕ−1

t (ℓ,s,S̄)

ϕ−1
t (ℓ,s,s2)

e−(D+µ(s̄1)) ℓ u1 D (ℓ+ 1)

×
∫ ϕ−1

t (ℓ+1,ϕ(ℓ,s,u1),S)

ϕ−1
t (ℓ+1,ϕ(ℓ,s,u1),s1)

e−(D+µ(s̄1)) (ℓ+1)u2 du2 du1 ⩾ C .

Remarking that, from Corollary A.4, we have
ϕ−1

t (ℓ+ 1, ϕ(ℓ, s, u1),S) − ϕ−1
t (ℓ+ 1, ϕ(ℓ, s, u1), s1) = ϕ−1

t (ℓ+ 1, s1,S)
we then obtain

D (ℓ+ 1)
∫ ϕ−1

t (ℓ+1,ϕ(ℓ,s,u1),S)

ϕ−1
t (ℓ+1,ϕ(ℓ,s,u1),s1)

e−(D+µ(s̄1)) (ℓ+1)u2 du2

= D

D + µ(s̄1)
e−(D+µ(s̄1)) (ℓ+1)ϕ−1

t (ℓ+1,ϕ(ℓ,s,u1),s1)
(
1 − e−(D+µ(s̄1)) (ℓ+1)ϕ−1

t (ℓ+1,s1,S)
)

⩾
D

D + µ(s̄1)
e−(D+µ(s̄1)) (ℓ+1)ϕ−1

t (ℓ+1,S̄,s1)
(
1 − e−(D+µ(s̄1)) (ℓ+1)ϕ−1

t (ℓ+1,s1,S)
)
.

In the same way,

µ(s̄L) ℓ
∫ ϕ−1

t (ℓ,s,S̄)
ϕ−1

t (ℓ,s,s2)
e−(D+µ(s̄1)) ℓ u1 du1

= µ(s̄L)
D + µ(s̄1)

e−(D+µ(s̄1)) ℓ ϕ−1
t (ℓ,s,s2)

(
1 − e−(D+µ(s̄1)) ℓ ϕ−1

t (ℓ,s2,S̄)
)

⩾
µ(s̄L)

D + µ(s̄1)
e−(D+µ(s̄1)) ℓ ϕ−1

t (ℓ,S,s2)
(
1 − e−(D+µ(s̄1)) ℓ ϕ−1

t (ℓ,s2,S̄)
)
.

Hence (B.14) holds.
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• If x = ℓ+ 1 and s2 ⩽ s ⩽ S̄: Replacing both steps:
(1) the first event is a division and occurs at time T1 ∈ [ϕ−1

t (ℓ, s, s2)),
ϕ−1

t (ℓ, s, S̄))
(2) the second event is a washout and occurs at time

T2 ∈ [T1 + ϕ−1
t (ℓ+ 1, ST1 , s1)), T1 + ϕ−1

t (ℓ+ 1, ST1 ,S))
in the proof for x = ℓ and s ⩽ s1 by
(1) the first event is a washout and occurs at time T1 ∈ [ϕ−1

t (ℓ + 1, s, s1)),
ϕ−1

t (ℓ+ 1, s,S))
(2) the second event is a division and occurs at time T2 ∈ [T1+ϕ−1

t (ℓ, ST1 , s2)),
T1 + ϕ−1

t (ℓ, ST1 , S̄))
gives the same lower bound starting from x = ℓ+ 1 and s ⩾ s2:

P(ℓ+1,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ C⌊T

γ ⌋+1 .(B.15)

• If x ̸= ℓ+ 1 and s = S̄: Since (x, s) ∈ B(L, [S, S̄]), therefore, x > ℓ+ 1. Let
t1 = |S̄ − s2|/max{D sin, k µ(s̄1)L}, by Lemma A.9,

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)

⩾
∫ t1

0

∫ t1

u1
· · ·

∫ t1

ux−ℓ−2

 x∏
k=ℓ+2

Dk

 e
−(D+µ(s̄1))

(
xu1+

x−ℓ−1∑
i=1

(x−i) (ui+1−ui)
)

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

∣∣∣ ED(u1, . . . , ux−ℓ−1)
)

dux−ℓ−1 . . . du2 du1 .

Since s̄x−i ⩽ s̄ℓ+1 < s2 for all i ∈ [[1, x − ℓ − 1]], we easily check from
Lemma A.6 that, on the event {(X0, S0) = (x, s)} ∩ ED(u1, . . . , ux−ℓ−1),
the process (Xt, St)0⩽ t⩽ t1 stays in [[1, L]] × [s2, S̄]. By the Markov property
and (B.15) we then obtain, for s0 = Ψ(x, s, (ui, x − i)1⩽ i⩽x−ℓ−2, ux−ℓ−1) ∈
[s2, S̄] with ux−ℓ−1 ⩽ t1:

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

∣∣∣ ED(u1, . . . , ux−ℓ−1)
)

= P(ℓ+1,s0)

(
(Xt, St) ∈ [[1, L]] × [S, S̄], ∀ t ∈ [0, (T − ux−ℓ−1) ∨ 0]

)
⩾ C⌊T

γ ⌋+1 ,

and therefore

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ C⌊T

γ ⌋+1 Pd (x, x− ℓ− 1, t1)

⩾ C⌊T
γ ⌋+1 Pd(L,L− 1, t1) .

ANNALES HENRI LEBESGUE
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• If x ≠ ℓ and s = S: Remarking that (x, s) ∈ B(L, [S, S̄]) implies x < ℓ, in
the same way as the previous case and using (B.12), we obtain

P(x,s)
(
(Xt, St) ∈ [[1, L]] ×

[
S, S̄

]
, ∀ t ∈ [0, T ]

)
⩾ C⌊T

γ ⌋+1
(
µ(s̄L)
µ(s̄1)

)ℓ−x
Pb(x, ℓ− x, t2)

⩾ C⌊T
γ ⌋+1

(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, t2)

with t2 = |s1 − S|/max{D sin, k µ(s̄1)L}. □

B.4. Proof of Lemma 3.4

Lemma 3.4 is a corollary of the following lemma with δ1 = ε
4 and δ2 = ε

3 .

Lemma B.4. — Let L ∈ N∗, ε > 0 and let δ1, δ2 such that ε/2 > δ2 > δ1 >
0. Then for all (y, r) ∈ [[1, L]] × [s̄L, s̄1] \{(ℓ, s̄ℓ), ℓ ∈ [[1, L]]} such that 0 < δ1 ⩽

min{r−s̄L, s̄1−r}
max{D sin, k µ(s̄1)L} and for all (x, s) ∈ [[1, L]] × [ϕ−1

s0 (y, r, δ2), ϕ−1
s0 (y, r, δ1)]

P(x,s)

(
Ty,r ⩽ ε

)
⩾ Cε,δ1,δ2

|s̄y−r|

with

Cε,δ1,δ2
|s̄y−r| = e−(D+µ(s̄1))L ε

2 × min

Pd (L,L− 1, t⋆) ;
(
µ(s̄L)
µ(s̄1)

)L−1

Pb (1, L− 1, t⋆)


where

t⋆ = min {D |s̄y − r| δ1 , D (D δ2 + 1) |s̄y − r| (ε/2 − δ2)}
max {D sin, k µ(s̄1)L}

.

Proof. — The aim is to prove that, with positive probability, the process goes from
(x, s) to {y} × [ϕ−1

s0 (y, r, ε/2), r], in a time less than ε/2; and then starting from an
initial condition in {y} × [ϕ−1

s0 (y, r, ε/2), r] it reaches (y, r) in a time less than ε/2.
We then have three cases.

1. If x = y then by definition of ϕ−1
s0 (y, r, .), for all s0 ∈ [ϕ−1

s0 (y, r, ε/2), r] if there
is no jump during the time interval [0, ε/2], then the process starting from (y, s0)
reaches (y, r) before the time ε/2, then, from Lemma A.9,

P(y,s0)

(
Ty,r ⩽ ε/2

)
⩾ P(y,s0)

(
T1 > ε/2

)
⩾ e−(D+µ(s̄1))L ε

2 .(B.16)

As P(y,s)(Ty,r ⩽ ε) ⩾ P(y,s)(Ty,r ⩽ ε/2) and s ∈ [ϕ−1
s0 (y, r, ε/2), r], then the result

holds.
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2. If x < y then from Lemma A.9,

(B.17) P(x,s)

(
Ty,r ⩽ ε

)

⩾
∫ t⋆

0

∫ t⋆

u1
· · ·

∫ t⋆

uy−x−1

 x∏
k=y+1

Dk

 e
−(D+µ(s̄1))

(
xu1+

x−y−1∑
i=1

(x−i) (ui+1−ui)
)

P(x,s)

(
Ty,r ⩽ ε

∣∣∣∣ ED(u1, . . . , ux−y)
)

dux−y . . . du2 du1 .

In order to obtain the result, it is sufficient to prove that for all u1 < · · · < ux−y < t⋆,

Ψ (x, s, (ui, x− i)1⩽ i⩽x−y−1, ux−y) ∈
[
ϕ−1

s0 (y, r, ε/2), r
]
.(B.18)

Indeed we easily check, using (B.21) below and Lemma A.7, that t⋆ ⩽ δ1 < ε/2. By
the Markov property and (B.16) we then obtain

P(x,s)

(
Ty,r ⩽ ε

∣∣∣∣ ED(u1, . . . , ux−y)
)

= P(x,s)

(
ux−y ⩽ Ty,r ⩽ ε

∣∣∣∣ ED(u1, . . . , ux−y)
)

= P(y,Ψ(x,s,(ui,x−i)1 ⩽ i ⩽ x−y−1,ux−y))
(
Ty,r ⩽ ε− ux−y

)
⩾ P(y,Ψ(x,s,(ui,x−i)1 ⩽ i ⩽ x−y−1,ux−y)) (Ty,r ⩽ ε/2)

⩾ e−(D+µ(s̄1))L ε
2 .

and

P(x,s)

(
Ty,r ⩽ ε

)
⩾ e−(D+µ(s̄1))L ε

2 Pd(x, x− y, t⋆) ⩾ e−(D+µ(s̄1))L ε
2 Pd(L,L− 1, t⋆) .

Let us prove that (B.18) holds. More generally, we will prove that for all n ∈ N,
for all u1 < · · · < un+1 < t⋆, for all (xi)1⩽ i⩽n with value in [[1, L]]

Ψ (x, s, (ui, xi)1⩽ i⩽n, un+1) ∈
[
ϕ−1

s0 (y, r, ε/2), r
]
.(B.19)

By (A.1) and (3.8)

(B.20) |Ψ(x, s, (ui, xi)1⩽ i⩽n, un+1) − s| ⩽ t⋆ max{D sin, k µ(s̄1)L} .

First δ1 ⩽ min{r−s̄L, s̄1−r}
max{D sin, k µ(s̄1)L} ensures, from Lemma A.7-1 and Remark A.8 that

s̄L ⩽ ϕ−1
s0 (y, r, δ1) ⩽ s̄1, then from Lemma A.7-2,

(B.21)
∣∣∣r − ϕ−1

s0 (y, r, δ1)
∣∣∣ ⩾ D |s̄y − r| δ1,

Second,
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Quasi-stationary behavior of the Crump–Young model 1417

• if ϕ−1
s0 (y, r, ε/2) > 0, since ϕ−1

s0 inherits a flow property from ϕ, we have
ϕ−1

s0 (y, r, ε/2) = ϕ−1
s0 (y, ϕ−1

s0 (y, r, δ2), ε/2 − δ2). Then from Lemma A.7-2∣∣∣ϕ−1
s0 (y, r, ε/2) − ϕ−1

s0 (y, r, δ2)
∣∣∣ ⩾ D

∣∣∣ϕ−1
s0 (y, r, δ2) − s̄y

∣∣∣ (ε2 − δ2

)
= D

(∣∣∣ϕ−1
s0 (y, r, δ2) − r

∣∣∣+ |r − s̄y|
) (ε

2 − δ2

)
⩾ D (D δ2 + 1)|r − s̄y|

(
ε

2 − δ2

)
,

hence, by (B.20), the definition of t⋆, (B.21) and the previous inequality,

|Ψ(x, s, (ui, xi)1⩽ i⩽n, un+1) − s|

⩽ min
{∣∣∣r − ϕ−1

s0 (y, r, δ1)
∣∣∣ ;
∣∣∣ϕ−1

s0 (y, r, ε/2) − ϕ−1
s0 (y, r, δ2)

∣∣∣}
with s ∈ [ϕ−1

s0 (y, r, δ2), ϕ−1
s0 (y, r, δ1)] ⊂ [ϕ−1

s0 (y, r, ε/2), r] and (B.19) holds.
• If ϕ−1

s0 (y, r, ε/2) = 0, hence by (B.20), the definition of t⋆ and (B.21),

|Ψ(x, s, (ui, xi)1⩽ i⩽n, un+1) − s| ⩽
∣∣∣r − ϕ−1

s0 (y, r, δ1)
∣∣∣

with s ∈ [0, ϕ−1
s0 (y, r, δ1)] then Ψ(x, s, (ui, xi)1⩽ i⩽n, un+1) ∈ [0, r] and (B.19)

holds.
3. If x < y then in the same way, reaching y by x − y successive division events,

we have

P(x,s)

(
Ty,r ⩽ ε

)
⩾ e−(D+µ(s̄1))L ε

2

(
µ(s̄L)
µ(s̄1)

)y−x

Pb (x, y − x, t⋆)

⩾ e−(D+µ(s̄1))L ε
2

(
µ(s̄L)
µ(s̄1)

)L−1

Pb (1, L− 1, t⋆) . □

B.5. Proof of Lemma 3.5

On {0} × (0, sin), we have LṼ = 0 = V . So let us prove the result on N∗ × (0, s̄1).
For convenience, we consider the natural extension of V to x = 0 given by V (0, s) =
log(ρ)−1eαs+s−1 +(1+θ)/(s̄1 −s)p for all s ∈ (0, s̄1). Since for all (x, s) ∈ N∗ ×(0, s̄1)

LṼ (x, s) = LV (x, s) −DV (0, s) 1x=1 ⩽ LV (x, s)
and since Ṽ = V on N∗ × (0, s̄1), it is sufficient to prove that there exist η > D and
ζ > 0 such that, on N∗ × (0, s̄1),

LV ⩽ −ηV + ζψ .

We will prove that there exists η > D such that LV + ηV is bounded from above
on N∗ × (0, s̄1). Since ψ ⩾ 1 on N∗ × (0, s̄1) it therefore implies the result. To that
end, let define, for all (x, s) ∈ N × (0, s̄1)

V0 : (x, s) 7→ log(ρ)−1 ρxeαs,

V1 : (x, s) 7→ s−1,

V2 : (x, s) 7→ (1 + 1x⩽ 1θ) (s̄1 − s)−p
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so that V = V0 +V1 +V2. By the linearity of L, we then have LV = LV0 +LV1 +LV2
on N∗ × (0, s̄1), with for (x, s) ∈ N∗ × (0, s̄1)

LV0(x, s) =
[
[D(sin − s) − kµ(s)x]α + (ρ− 1)

(
µ(s) − D

ρ

)
x

]
V0(x, s)

LV1(x, s) = −D(sin − s) − kµ(s)x
s

V1(x, s)

LV2(x, s) =
[
p
D(sin − s) − kµ(s)x

s̄1 − s
− µ(s)1x=1

θ

1 + θ
+ 2D θ 1x=2

]
V2(x, s).

We will prove that there exist η > D such that LV0 +LV1 +η(V0 +V1) and LV2 +ηV2
are bounded from above on N∗ × (0, s̄1).

Let η ∈ R and let 0 < ε < D ρ−1
ρ

. Since α ⩾ ρ−1
k

we have(
LV0 + LV1 + η(V0 + V1)

)
(x, s) ⩽ A(x, s) +B(x, s)

with

A(x, s) :=
[
D sin α−

(
D
ρ− 1
ρ

− ε

)
x+ η

]
V0(x, s),

B(x, s) :=
[
−D(sin − s) − kµ(s)x

s
+ η − ε x

V0(x, s)
V1(x, s)

]
V1(x, s) .

We easily check that A is bounded on every set on the form [[1, L]]×(0, s̄1) with L ⩾ 1,
moreover sups∈ (0,s̄1) A(x, s) tends towards −∞ when x → ∞. Then A is bounded
from above. In addition, from the expression of V0 and V1, kµ(s)

s
− ε V0(x,s)

V1(x,s) ⩽ 0
if x ⩾ C + 2 log(1/s)/ log(ρ), with C := log(k µ(s̄1) log(ρ)/ε)/ log(ρ). Therefore,
setting µ̄′

1 = sups∈ [0,s̄1] µ
′(s), we obtain

B(x, s) ⩽
[
−D(sin − s)

s
+ η + k

µ(s)
s

∣∣∣∣∣C + 2
log(ρ) log

(1
s

)∣∣∣∣∣
]

1
s

⩽

[
−D(sin − s)

s
+ η + k µ̄′

1 |C| + 2 k µ̄′
1

log(ρ)

∣∣∣∣log
(1
s

)∣∣∣∣
]

1
s
.

The right member does not depend on x, is bounded on every set on the form (r, s̄1)
with 0 < r < s̄1, and tends towards −∞ when s → 0. Hence B is bounded from
above and LV0 + LV1 + η(V0 + V1) is bounded from above for every η ∈ R.

We easily check that LV2 + ηV2 is bounded on every set on the form N∗ × (0, r],
with 0 < r < s̄1. Moreover, for x ⩾ 2 and s̄2 < s < s̄1, we have

D(sin − s) − kµ(s)x ⩽ D(sin − s) − 2 kµ(s) < D(sin − s̄2) − 2 k µ(s̄2) = 0

then

sup
x⩾ 2

LV2(x, s)
V2(x, s)

⩽ p
D(sin − s) − 2 k µ(s)

s̄1 − s
+ 2D θ
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tends to −∞ when s → s̄1 then LV2 +ηV2 is bounded from above on N∗ \{1}×(0, s̄1)
for all η ∈ R. For x = 1, (3.2) leads to

lim
s→ s̄1

LV2(1, s)
V2(1, s)

= lim
s→ s̄1

[
p [D(sin − s) − kµ(s)]

s̄1 − s
− θµ(s)

1 + θ

]

= lim
s→ s̄1

p [D(s̄1 − s) + k(µ(s̄1) − µ(s))]
s̄1 − s

− θµ(s̄1)
1 + θ

= p [D + k µ′(s̄1)] − θµ(s̄1)
1 + θ

< −D.
It follows that LV2 +η V2 is bounded from above for all 0 < η < − lims→ s̄1 LV2(1, s)/
V2(1, s). Therefore Lemma 3.5 holds and we can choose any η ∈ (D,− lims →̄ s1

LV2(1, s)/V2(1, s)).
Note that relaxing the assumptions as in Remark 2.4, the limit above does not

necessary exist. However we can bound from above lim sups→ s̄1 LV2(1, s)/V2(1, s) by
−D replacing µ′(s̄1) by klip in (3.2). In the same way, in the upper bound for B, µ̄′

1
can be replaced by a local Lipschitz constant of µ in the neighborhood of 0 when s
tends towards 0.

B.6. Proof of Lemma 3.7

Since s1 7→ P(y,r)((Xτ , Sτ ) ∈ {x} × [s0, s1) is increasing, we assume, without loss of
generality, that s1 ⩽ sK . In the same way as the proof of Proposition 3.1, we prove
that the probability P(y,r)((Xτ , Sτ ) ∈ {x} × [s0, s1]) is bounded from below by the
probability that the process (Xt, St)t

(1) reaches B(L, [s̃0, s̃1]) before τ − ε (i.e. TL,[s̃0,s̃1] ⩽ τ − ε);
(2) stays in [[1, L]] × [s̃0, s̃1] during the time interval [TL,[s̃0,s̃1], τ − ε];
(3) reaches {x} × [s0, s1] in the time interval [τ − ε, τ ] and stays in this set until

τ ;
that is

(B.22) P(y,r)
(
(Xτ , Sτ ) ∈ {x} × [s0, s1]

)
⩾ P(y,r)

(
TL,[s̃0,s̃1] ⩽ τ − ε

)
× P(y,r)

(
(Xt, St) ∈ [[1, L]] × [s̃0, s̃1] ,∀ t ∈

[
TL,[s̃0,s̃1], τ − ε

] ∣∣∣ TL,[s̃0,s̃1] ⩽ τ − ε
)

× P(y,r) ((Xτ , Sτ ) ∈ {x} × [s0, s1] | E) ,
where

E :=
{
TL,[s̃0,s̃1] ⩽ τ − ε

}
∩
{
(Xt, St) ∈ [[1, L]] × [s̃0, s̃1] ,∀ t ∈

[
TL,[s̃0,s̃1], τ − ε

]}
with L, s̃0, s̃1 and ε well chosen so that we can bound from below the three probabili-
ties in the right member of (B.22). More precisely, we will choose L sufficiently large
such that the substrate concentration s1+s0

2 can be reached from SK in a time less
than τ with L individuals; and s̃0, s̃1 and ε will be chosen such that [s̃0, s̃1] ⊂ [s0, s1]
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is centered in s1+s0
2 and such that the process can not exit from [s0, s1] is a time less

that ε with a bacterial population in [[1, L]].
From Lemma A.2, there exists Ls0 ⩾ x ∧ max(y,r) ∈K y such that s̄ℓ < s1+s0

2 for all
ℓ ⩾ Ls0 . Moreover, for ℓ ⩾ Ls0 , since s̄ℓ < s1+s0

2 < SK , then ϕ−1
t (ℓ, SK , s1+s0

2 ) < +∞
and

s1 + s0

2 = SK +
∫ ϕ−1

t (ℓ,SK ,
s1+s0

2 )
0

[
D(sin − ϕ(ℓ, SK , u)) − k µ(ϕ(ℓ, SK , u)) ℓ

]
du

⩽ SK +
[
D
(

sin − s1 + s0

2

)
− k µ

(
s1 + s0

2

)
ℓ
]
ϕ−1

t

(
ℓ, SK ,

s1 + s0

2

)
then

ϕ−1
t

(
ℓ, SK ,

s1 + s0

2

)
⩽

SK − s1+s0
2

k µ
(
s1+s0

2

)
ℓ−D

(
sin − s1+s0

2

) .
The right term in the previous inequality tends to 0 when ℓ → ∞, we can then
choose L ⩾ Ls0 such that ϕ−1

t (L, SK , s1+s0
2 ) < τ .

Let set 0 < ε < min{τ − ϕ−1
t (L, SK , s1+s0

2 ), s1−s0
2 max{D sin, k µ(s̄1)L}} and let us define

s̃0 = s0+ε max{D sin, k µ(s̄1)L} and s̃1 = s1−ε max{D sin, k µ(s̄1)L}, then s̃0 < s̃1
and [s̃0, s̃1] ⊂ [s0, s1].

From Corollary A.4, τ −ε > ϕ−1
t (L, SK , s1+s0

2 ) > ϕ−1
t (L, SK , s̃1) > ϕ−1

t (L, r, s̃1), for
all (y, r) ∈ K. Then from Lemma B.2-2 and Remark B.1,

(B.23) P(y,r)
(
TL,[s̃0,s̃1] ⩽ τ − ε

)
⩾ e−(D+µ(s̄1)) (τ−ε−δ)L

(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, δ) =: C1

with δ := (τ − ε− ϕ−1
t (L, SK , s̃1)) D |s̄L−sK |

D |s̄L−sK |+max{D sin, k µ(s̄1)L} .
Moreover, from Lemma B.3, there exists C2 > 0 such that for all (z, s) ∈

B(L, [s̃0, s̃1]),
P(z,s) ((Xt, St) ∈ [[1, L]] × [s̃0, s̃1] , ∀ t ∈ [0, τ − ε]) ⩾ C2,

therefore, by the Markov Property

(B.24) P(y,r)
(
(Xt, St) ∈ [[1, L]] × [s̃0, s̃1],∀ t ∈

[
TL,[s̃0,s̃1], τ − ε

] ∣∣∣ TL,[s̃0,s̃1] ⩽ τ − ε
)

⩾ C2 .

In addition, on the event {Xu ∈ [[1, L]], ∀ u ∈ [0, ε]},

|Sε − S0| =
∣∣∣∣∫ ε

0

(
D (sin − Su) − k µ(Su)Xu

)
du
∣∣∣∣ ⩽ ε max{D sin, k µ(s̄1)L}

then, since s̃0−s0 = s1−s̃1 = ε max{D sin, k µ(s̄1)L}, for all (z, s) ∈ [[1, L]]×[s̃0, s̃1]),

P(z,s)
(
Sε ∈ [s0, s1]

∣∣∣Xu ∈ [[1, L]], ∀ u ∈ [0, ε]
)

= 1 .

Therefore, bounding from below the probability by the probability that, in addition,
there is no event if z = x, there are z − x washouts is z > x and there are x − z
divisions if z < x in the time interval [0, ε] and no more event, then
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P(z,s)
(
(Xε, Sε) ∈ {x} × [s0, s1]

)
⩾ P(z,s) (T1 > ε) 1z=x

+ P(z,s)

(
z−x⋂
i=1

{Ti ⩽ ε} ∩ {XTi
= z − i} ∩ {Tz−x+1 > ε}

)
1z>x

+ P(z,s)

(
x−z⋂
i=1

{Ti ⩽ ε} ∩ {XTi
= z + i} ∩ {Tx−z+1 > ε}

)
1z<x .

For all u1 < · · · < u|z−x| ⩽ ε, from the Markov Property and Lemma A.9, if z > x

P(z,s)
(
T|z−x|+1 > ε

∣∣∣ ED(u1, . . . , u|z−x|
)

= P(x,Ψ(z,s,(ui,z−i)1 ⩽ i ⩽ |z−x|−1,u|z−x|))
(
T1 > ε− u|z−x|

)
⩾ e−(D+µ(s̄1))x ε

and if z < x

P(z,s)
(
T|z−x|+1 > ε

∣∣∣ EB(u1, . . . , u|z−x|
)

= P(x,Ψ(z,s,(ui,z+i)1 ⩽ i ⩽ |z−x|−1,u|z−x|))
(
T1 > ε− u|z−x|

)
⩾ e−(D+µ(s̄1))x ε

then, still from Lemma A.9,
P(z,s)

(
(Xε, Sε) ∈ {x} × [s0, s1]

)
⩾ e−(D+µ(s̄1))x ε 1z=x

+ Pd(L,L− 1, ε) e−(D+µ(s̄1))x ε 1z >x

+
(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, ε) e−(D+µ(s̄1))x ε 1z <x

⩾ C3

with

C3 := e−(D+µ(s̄1))x ε

× min

Pd(L,L− 1, ε) e−(D+µ(s̄1))x ε,

(
µ(s̄L)
µ(s̄1)

)L−1

Pb(1, L− 1, ε)

 .
Then by Markov Property,
(B.25) P(y,r)

(
(Xτ , Sτ ) ∈ {x} × [s0, s1]

∣∣∣ E) ⩾ C3 .

Finally, from (B.22), (B.23), (B.24) and (B.25)
P(y,r)

(
(Xτ , Sτ ) ∈ {x} × [s0, s1]

)
⩾ C1 C2 C3 =: ϵ0 > 0 .

B.7. Lemma B.5 and its proof

Lemma B.5. — There exist ε > 0 and A,C, β > 0 such that for all (x, s) ∈
N∗ × [s̄1,+∞)

E(x,s)
[
e(D+C)(Tε ∧TExt)

]
⩽ Aeβs and P(x,s)(Tε < ∞) > 0.
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with Tε = TN∗×(0,s̄1−ε] := inf{t ⩾ 0, (Xt, St) ∈ N∗ × (0, s̄1 − ε]} the hitting time of
N∗ × (0, s̄1 − ε].

Proof. — Let g be defined for (x, s) ∈ N × R+ by
g(x, s) = (1x⩾ 2 + (1 + δ1)1x=1 + δ01x=0) eβs ,

with δ0, δ1 and β positive constants (fixed below). Then g ⩾ min{1, δ0} and

Lg(x, s)
g(x, s) +D =


[D(sin − s) − kµ(s)] β − µ(s) δ1

1+δ1
+D δ0

1+δ1
if x = 1,

[D(sin − s) − 2 kµ(s)] β +D (1 + δ1) if x = 2,
[D(sin − s) − kµ(s)x] β +D if x ⩾ 3.

We can choose δ0, δ1, β and ε > 0 such that
Lg(x, s) ⩽ −(C +D)g(x, s), ∀ (x, s) ∈ N∗ × [s̄1 − ε,+∞) ,(B.26)

with C > 0. Indeed, let δ1 > 0 and let ε̄ ∈ (0, s̄1 − s̄2) be fixed. From Lemmas A.2
and A.3, we have D (sin − s̄1 + ε̄) − 2 k µ(s̄1 − ε̄) < 0, then we can choose β > 0
sufficiently large such that

C1 :=
[
D(sin − s̄1 + ε̄) − 2 kµ(s̄1 − ε̄)

]
β +D (1 + δ1) < 0 .

Moreover, [D(sin − s̄1 + ε) − kµ(s̄1 − ε)]β − µ(s̄1 − ε) δ1
1+δ1

−→ε→0 −µ(s̄1) δ1
1+δ1

< 0,
then we can choose ε ∈ (0, ε̄) and δ0 > 0 sufficiently small such that

C2 :=
[
D(sin − s̄1 + ε) − kµ(s̄1 − ε)

]
β − µ(s̄1 − ε) δ1

1 + δ1
+D

δ0

1 + δ1
< 0 .

Setting such β, δ0 and ε, then for all x ⩾ 1 and s ⩾ s̄1 − ε we have

Lg(x, s)
g(x, s) +D ⩽

C2 if x = 1
C1 if x ⩾ 2

and (B.26) holds with C := −(C1 ∨ C2) > 0.
For any initial condition (x, s) ∈ N∗×[s̄1,+∞), we have (Xu, Su) ∈ N∗×[s̄1−ε,+∞)

for all u < Tε ∧ TExt, then by standard arguments using the Dynkin’s formula
and (B.26) (see for instance [MT93, Theorem 2.1] and its proof)(

g (Xt∧Tε ∧TExt , St∧Tε ∧TExt) e(C+D)(t∧Tε ∧TExt)
)
t

is a nonnegative super-martingale. Then, since by (2.1) Tε ∧ TExt is a.s. finite, by
classical arguments (stopping time theorem applied to truncated stopping times and
Fatou’s lemma)

min(1, δ0)E(x,s)
[
e(C+D)(Tε ∧TExt)

]
⩽ E(x,s)

[
g (XTε ∧TExt , STε ∧TExt) e(C+D)(Tε ∧TExt)

]
⩽ g(x, s)

which leads to the first part of the lemma.
We can show that the upper bound of Lemma A.6 holds even if s0 ⩾ s̄1. Then

from Lemma A.2, for all ℓ ⩾ 2 and s ⩾ s̄1 − ε > s̄2,

ϕ−1
t (ℓ, s, s̄1 − ε) ⩽ s− s̄1 + ε

D (s̄1 − ε− s̄ℓ)
⩽

s− s̄1 + ε

D (s̄1 − ε− s̄2)
=: ts̄1−ε .
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Then, if x ⩾ 2, from Lemma A.9

P(x,s)(Tε < ∞) ⩾ P(x,s)(ts̄1−ε < T1) ⩾ e−(D+µ(s))x ts̄1−ε > 0 .(B.27)
If x = 1, then for all δ > 0, from Lemma A.9 and the Markov property

P(1,s)(Tε < ∞) ⩾ P(1,s)
(
{T1 ⩽ δ} ∩ {XT1 = 2} ∩ {Tε < ∞}

)
⩾
∫ δ

0
µ (ϕ(1, s, u)) e−(D+µ(s))u P(1,s)

(
Tε < ∞

∣∣∣∣{Xu = 2} ∩ {T1 = u)
)

du

=
∫ δ

0
µ (ϕ(1, s, u)) e−(D+µ(s))u P(2,ϕ(1,s,u))(Tε < ∞) du .

From Lemma A.3, ϕ(1, s, u) > s̄1 > s̄1 − ε, then by (B.27), P(1,s)(Tε < ∞) > 0. □

Appendix C. Theorems of [BCGM22] and [CV20]

We recall in this section the theorems of [BCGM22] and [CV20] which establish
the convergence towards a unique quasi-stationary distribution.

Let (Xt)t⩾ 0 be a càdlàg Markov process on the state space X ∪ {∂}, where X
is a measurable space and ∂ is an absorbing state. Let V : X → (0,∞) a mea-
surable function. We assume that for any t > 0, there exists Ct > 0 such that
Ex[V (Xt)1Xt /∈ ∂ ] ⩽ Ct V (x) for any x ∈ X . We denote by B(V ) the space of measur-
able functions f : X → R such that supx∈ X

|f(x)|
V (x) < ∞ and B+(V ) its positive cone.

Let (Mt)t⩾0 the semigroup defined for any measurable function f ∈ B(V ) and any
x ∈ X by

Mtf(x) := Ex [f(Xt) 1Xt /∈ ∂]
and let define the dual action, for any ξ ∈ P(V ), with P(V ) the set of probability
measures that integrate V , by

ξMtf := Eξ [f(Xt) 1Xt /∈ ∂] =
∫

X
Mtf(x)ξ(dx).

Assumption C.1 ([BCGM22, Assumption A]). — Let ψ : X → (0,∞) such that
ψ ⩽ V . There exist τ > 0, β > α > 0, θ > 0, (c, d) ∈ (0, 1]2, K ⊂ X and ν a
probability measure on X supported by K such that supK V/ψ < ∞ and

(A1) MτV ⩽ αV + θ 1K ψ,
(A2) Mτψ ⩾ β ψ,
(A3) infx∈K

Mτ (f ψ)(x)
Mτψ(x) ⩾ c ν(f) for all f ∈ B+(V/ψ),

(A4) ν(Mnτψ
ψ

) ⩾ d supx∈K
Mnτψ(x)
ψ(x) for all positive integers n.

Theorem C.2 ([BCGM22, Theorem 5.1]). — Assume that (Mt)t⩾0 satisfies As-
sumption C.1 with infX V > 0. Then, there exist a unique quasi-stationary distri-
bution π such that π ∈ P(V ), and λ0 > 0, h ∈ B+(V ), C, ω > 0 such that for all
ξ ∈ P(V ) and t ⩾ 0,∥∥∥eλ0 t Pξ(Xt ∈ ·) − ξ(h) π

∥∥∥
TV

⩽ C ξ(V ) e−ω t
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and

∥Pξ(Xt ∈ .|Xt ̸= ∂) − π∥TV ⩽ C
ξ(V )
ξ(h) e

−ω t,

with ∥.∥TV the total variation norm on X .

Assumption C.3 ([CV20, Condition (G) (including Remark 2.2)]). — There exist
positive real constants θ1, θ2, c1, c2, c3, an integer n1 ⩾ 1, a function ψ : X → R+ and
a probability measure ν on a measurable subset K of X such that

(G1) (Local Dobrushin coefficient). For all x ∈ K and all measurable A ⊂ K,

Pn1(V 1A)(x) ⩾ c1 ν(A)V (x).

(G2) (Global Lyapunov criterion). We have θ1 < θ2 and

inf
x∈K

ψ(x)
V (x) > 0, sup

x∈ X

ψ(x)
V (x) ⩽ 1,

P1V (x) ⩽ θ1 V (x) + c2 1K(x)V (x), ∀ x ∈ X
P1ψ(x) ⩾ θ2 ψ(x), ∀ x ∈ X .

(G3) (Local Harnack inequality). We have

sup
n∈Z+

supy ∈K Pnψ(y)/ψ(y)
infy ∈K Pnψ(y)/ψ(y) ⩽ c3.

(G4) (Aperiodicity). For all x ∈ K, there exists n4(x) such that for all n ⩾ n4(x),

Pn(1K V )(x) > 0.

Theorem C.4 ([CV20, Corollary 2.4]). — Assume that there exists t0 > 0 such
that (Pn)n∈N := (Mnt0)n∈N satisfies Assumption C.3, (MtV

V
)t∈ [0,t0] is upper bounded

by a constant c̄ > 0 and (Mtψ
ψ

)t∈ [0,t0] is lower bounded by a constant c > 0. Then
there exist a positive measure νP on X such that νP (V ) = 1 and νP (ψ) > 0, and
some constants C ′′ > 0 and γ > 0 such that, for all measurable functions f : X → R
satisfying |f | ⩽ V and all positive measure ξ on X such that ξ(V ) < ∞ and ξ(ψ) > 0,∣∣∣∣∣ ξMtf

ξMtV
− νP (f)

∣∣∣∣∣ ⩽ C ′′ e−γ t ξ(V )
ξ(ψ) , ∀ t ⩾ 0.

In addition, there exists λ0 ∈ R such that νPMt = eλ0 t νP for all t ⩾ 0, and
e−λ0 tMtV converges uniformly and exponentially toward ηP in B(V ) when t → ∞.
Moreover, there exist some constants C ′′′ > 0 and γ′ > 0 such that, for all measurable
functions f : X → R satisfying |f | ⩽ V and all positive measures ξ on X such that
ξ(V ) < +∞, ∣∣∣e−λ0 t ξMtf − ξ(ηP ) νP (f)

∣∣∣ ⩽ C ′′′ e−γ′ t ξ(V ), ∀ t ⩾ 0 .(C.1)
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