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Abstract. — We consider a magnetic Laplacian on a compact manifold, with a constant
non-degenerate magnetic field. In the large field limit, it is known that the eigenvalues are
grouped in clusters, the corresponding sums of eigenspaces being called the Landau levels. The
first level has been studied in-depth as a natural generalization of the Kähler quantization. The
current paper is devoted to the higher levels: we compute their dimensions as Riemann–Roch
numbers, study the associated Toeplitz algebras and prove that each level is isomorphic with
a quantization twisted by a convenient auxiliary bundle.

Résumé. — Soit un Laplacien magnétique sur une variété compacte, avec un champ ma-
gnétique non-dégénéré et constant. Lorsque le champ est grand, il est connu que les valeurs
propres se regroupent en paquets, les sommes d’espaces propres associées sont alors appelés
niveaux de Landau. Le niveau le plus bas a déjà été largement étudié comme une généralisation
de la quantification kählerienne. Cet article est consacré aux niveaux supérieurs: nous calcu-
lons leurs dimensions comme des nombres de Riemann–Roch, étudions les algèbres associées
d’opérateurs de Toeplitz et montrons que chaque niveau est isomorphe à une quantification
tordue par le fibré auxiliaire qui convient.
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70 L. CHARLES

1. Introduction

The main theme of this paper and its companion [Cha21] is the Landau levels
of compact manifolds. For a physicist, the Landau quantization refers to a charged
particle confined to two dimensions and exposed to a magnetic field. It has discrete
energy levels connected by ladder operators. Besides the planar geometry considered
by Landau [Lan30], the case of Riemann surfaces has been investigated in the context
of the quantum Hall effect, see [IL94] and references therein.

On a mathematical point of view, a natural generalisation is the Bochner Laplacian
acting on the sections of a Hermitian line bundle L on a compact manifold. This
Laplacian is defined from two data: a Riemannian metric of the base and a connection
of the line bundle. The idea underlying this work is that when the curvature of the
connection is non-degenerate and large with respect to the metric, the spectrum of
the Laplacian exhibits a structure similar to the Landau quantization.

More specifically, let us assume that the curvature is related to the Riemannian
metric by a complex structure, and consider the spectrum of the Laplacian of Lk in
the large k limit. In this setting, Faure–Tsujii [FT15] have shown that the eigenvalues
are grouped in clusters, each of them representing a generalised Landau level. The
first level was previously identified by Guillemin–Uribe [GU88] and studied further
by Borthwick–Uribe [BU96] as a generalization of Kähler quantization. In particular,
its dimension is given by a Riemann–Roch number and it comes with an algebra of
Toeplitz operators quantizing the classical Poisson algebra.

Our goal in this paper is to extend these results to the higher Landau levels. Our
main results are:

(1) the dimension of the mth Landau level is the Riemann–Roch number of
Lk ⊗ Fm when k is sufficiently large, where Fm is the symmetric mth power
of the complex tangent bundle of the base.

(2) there is an algebra of Berezin–Toeplitz operators associated to the mth Landau
level, the symbol of these operators being sections of the endomorphism bundle
EndFm.

(3) the mth Landau level is isomorphic with the first Landau level twisted by
Fm through a ladder operator, these isomorphisms are compatible with the
Berezin–Toeplitz operators.

The main ingredient to establish these results is an asymptotic expansion of the
Schwartz kernel of the spectral projector of each level. For the first level, when the
complex structure is integrable, the Kähler case, this kernel is the Szegö kernel. Its
asymptotic is well-understood since the seminal work by Boutet de Monvel and
Sjöstrand [BdMS76] and has been used in numerous papers starting from [BdMG81,
BMS94, Zel98]. In the non-Kähler case, the asymptotics of the first level projector
kernel has been obtained by Borthwick–Uribe [BU07] and Ma–Marinescu [MM08].
For the higher Landau levels, this asymptotic expansion will be proved in our second
paper [Cha21].

In the current paper, we will rely on this asymptotic expansion or more generally
we will show that the previous results hold for higher Landau levels defined as
the image of any projector whose Schwartz kernel has the convenient asymptotics.
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Landau levels on a compact manifold 71

Here the inspiration is the generalised Toeplitz structure of Boutet de Monvel–
Guillemin [BdMG81] and our previous work [Cha16], the idea being that the only
important feature of the Landau levels is this asymptotic expansion.

The main tool we will use for the proofs is a particular class of operators containing
the Landau level projectors, the associated Toeplitz operators and also the generalised
ladder operators. The operators in this class are controlled at first order by their
symbols, which are defined as sections of a bundle of non-commutative algebras.
Each of these algebras is generated by the spectral projectors and ladder operators
of a Landau Hamiltonian. By this mechanism, the basic properties of the Landau
quantization are transferred to the Bochner Laplacian.

To finish this general introduction, let us mention the two contemporaneous pa-
pers [Kor22b, Kor22a] by Yuri Kordyukov on the same subject, which contain some
results on Berezin–Toeplitz operators common with ours, cf. Remark 1.5 for a com-
parison. However, the computation of the dimension of the mth Landau level, the
ladder operators and the general operator algebras we use, do not appear in any
other work. Let us mention as well that in a related but different context, belonging
to homogeneous microlocal analysis instead of semi-classical analysis, Boutet de
Monvel–Guillemin [BdMG81, Chapter 15] and Epstein–Melrose [EM04, Chapter 6]
have considered generalised Szegö projections at higher level with associated Toeplitz
algebras, which are similar to our constructions.

1.1. Magnetic Laplacian

1.1.1. Constant magnetic intensity

Consider a Riemannian manifold (M, g) with a Hermitian line bundle L equipped
with a connection ∇. Associated to these data is a Laplacian 1

2∇∗∇ acting on
C∞(M,L), which from the physical point of view is a Schrödinger operator with a
magnetic field Ω = i curv(∇) ∈ Ω2(M,R).

We will assume that Ω is non-degenerate at each point and has a constant magnetic
intensity with respect to g in the following sense. In the case where M is a surface,
the magnetic intensity is the positive function defined by |Ω| = B volg, where volg
is the Riemannian volume, and we merely assume that B is constant. In higher
dimension, Ω being non-degenerate, the dimension of M is even, say 2n. At any
p ∈ M , there exists a skew-symmetric endomorphism jB(p) of (TpM, gp) such that
Ωp(X, Y ) = gp(jB(p)X, Y ). The eigenvalues of jB(p) are ±iBℓ(p) with 0 < B1(p) ⩽
. . . ⩽ Bn(p). We assume that these eigenvalues are all equal, B1 = . . . = Bn, and do
not depend on p. Equivalently jB(p) = Bj(p) with B a positive constant and j an
almost complex structure of M compatible with g, cf. [MS17, Proposition 2.5.6].

So we have that Ω = Bω where B > 0 is constant and ω is a symplectic form of M
defined by ω(X, Y ) = g(jX, Y ). We will consider the large B limit. To do this, we
will replace L by Lk, k ∈ N, so that the curvature of ∇Lk is kBω, and let k tend to
infinity. We will also normalise the metric so that B = 1, and our magnetic intensity
is simply k.
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72 L. CHARLES

Alternatively, we can introduce our data as follows. Consider a compact symplectic
manifold (M2n, ω) with a compatible almost complex structure j and a Hermitian
line bundle L → M with a connection ∇ having curvature 1

i
ω. Such a bundle is called

a prequantum bundle in the Kostant–Souriau theory, where it is used to define the
geometric quantization of M . For any positive integer k, we consider the Laplacian

∆k = 1
2

(
∇Lk

)∗
∇Lk : C∞(M,Lk) → C∞

(
M,Lk

)
(1.1)

with ∇Lk : C∞(M,Lk) → Ω1(M,Lk) the covariant derivative induced by ∇, and the
Riemannian metric g(X, Y ) = ω(jX, Y ) independent of k.

Earlier results

It is known that the spectrum σ(∆k) of ∆k is partitioned into clusters around each
point of k(n2 + N) in the large k limit. More precisely, for any m ∈ N, define the
interval Im

I0 =
[
0, n2 + 1

2

]
, Im =

(
n
2 +m

)
+
[
−1

2 ,
1
2

[
if m ⩾ 1,

so that we have a partition [0,∞[= ⋃
m∈N Im. Then we set

Σm,k :=
(
k−1σ(∆k)

)
∩ Im, Hm,k :=

⊕
λ∈ Σm,k

ker
(
k−1∆k − λ

)
.(1.2)

It was proved by Faure–Tsuji [FT15] that

Σm,k ⊂
(
n
2 +m+ Cmk

− 1
4 [−1, 1]

)
(1.3)

and by Demailly [Dem85] that

dim Hm,k =
(
k

2π

)n(m+ n− 1
n− 1

)
vol(M) + o(kn)(1.4)

For a surface (n = 1) with a constant Gauss curvature S, more precise results have
been obtained by Iengo–Li [IL94]: if k +mS > 0, then

Σm,k =
{

1
2 +m+ k−1Sm(m+1)

2

}
,

dim Hm,k = k
2π vol(M) +

(
1
2 +m

)
χ(M).

(1.5)

So in this case, when k is sufficiently large, the mth eigenvalue is degenerate with
multiplicity equal to dim Hm,k.

The first cluster has been further studied. In the Kähler case, that is when the
complex structure j is integrable, L has itself a natural holomorphic structure such
that ∂L = ∇0,1 and by Kodaira identities, we have when k is sufficiently large that

Σ0,k =
{
n
2

}
, H0,k = H0

(
M,Lk

)
.(1.6)

and the dimension of H0,k is given by the Riemann–Roch–Hirzebruch theorem

dim H0,k =
∫
M

exp
(
kω

2π

)
ToddM(1.7)

Here ToddM is the Todd class of (M, j).
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More generally, when j is not necessarily integrable, it was proved by Guillemin–
Uribe [GU88] that

Σ0,k ⊂
(
n
2 + C0k

−1[−1, 1]
)

(1.8)
and by Borthwick–Uribe [BU96] that the dimension of H0,k is given by (1.7) when
k is sufficiently large.

1.2. Main results

In the sequel m ∈ N is a fixed non negative integer and all the results hold in the
large k limit, with estimates, bounds depending on m.

1.2.1. Dimension

Our first result is the computation of the dimension of Hm,k, as the Riemann–Roch
number of Lk ⊗ Dm(TM) where Dm(TM) is the mth symmetric power of (T 0,1M)∗.
Here, T 0,1M = ker(j+i) and j is the almost complex structure introduced previously.
The reason why we prefer to work with (T 0,1M)∗ instead of the isomorphic bundle
T 1,0M should be clear later.

Theorem 1.1. — If k is sufficiently large, then

dim Hm,k =
∫
M

exp
(
kω

2π

)
ch(Dm(TM))) ToddM

with ch the Chern character and ToddM the Todd class of (M, j).
As far as we know, Theorem 1.1 is a new result, except in the cases already

mentioned (n = 1 with constant curvature or m = 0).
Remark 1.2. —

- When n = 1, Dm(TM) is isomorphic with K−m, K being the canonical bundle,
and it is easy to see that we recover the second equation (1.5). However, even
for n = 1, Theorem 1.1 goes further since we don’t assume that the Gauss
curvature is constant. In this generality, it is not likely that Σm,k consists of
a single degenerate eigenvalue, but the dimension of the mth cluster is given
by the same formula.

- For a general dimension n, Dm(TM) has rank
(
m+n−1
n−1

)
and we recover the

asymptotic (1.4).

1.2.2. Symbol spaces

In the sequel, we will use Dm(TM) as a bosonic space, with associated creation
an annihilation operators defined as follows. For any x ∈ M , let us view Dm(TxM)
as the space of homogeneous polynomials maps T 0,1

x M → C with degree m. Set
D(TxM) :=

⊕
m∈N

Dm(TxM)(1.9)
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74 L. CHARLES

and let πm(x) be the corresponding projector of D(TxM) onto Dm(TxM). For any
Y ∈ TxM ⊗ C, let ρ(Y ) be the endomorphism of D(TxM) defined as follows. Write
Y = U + V with U, V ∈ T 1,0

x M . Then

ρ(Y ) = ρ(U) + ρ(V ) with

ρ(U) = multiplication by iω(U, ·)
ρ(V ) = derivation with respect to V

(1.10)

More concretely, let (Ui) be a basis of T 1,0
x M such that 1

i
ω(Ui, U j) = δij. Let (zi) be

the basis of (T 1,0
x M)∗ dual to (Ui), so zi = 1

i
ω(·, U i) and D(TxM) = C[z1, . . . , zn].

Then for any polynomial P of the variable z1, . . ., zn

ρ(Ui)P = −ziP, ρ(U i)P = ∂P

∂zi
.(1.11)

So −ρ(Ui) and ρ(U i) are respectively the creation and annihilation operators.

1.2.3. Berezin–Toeplitz operators

Our second result is about Berezin–Toeplitz operators. By [BU96], the spaces H0,k
can be considered as quantizations of M , replacing the standard Kähler quantization
H0(M,Lk), for symplectic manifold not necessarily having an integrable complex
structure. An important feature is that there is a natural way to pass from classical
to quantum Hamiltonians, provided by the Berezin–Toeplitz quantization. In the
semi-classical limit, defined here as the large k limit, the product and commutator
of quantum observables correspond to the product and Poisson bracket of classical
observables, up to some error terms. More precisely, let Πm,k be the orthogonal
projector of C∞(M,Lk) onto Hm,k and for any f ∈ C∞(M), let Tm,k(f) be the
endomorphism of Hm,k defined by

Tm,k(f)ψ = Πm,k(fψ) ∀ ψ ∈ Hm,k.(1.12)

For the first Landau level, it is known [BMS94, Cha03, MM07] that for any N

T0,k(f)T0,k(g) =
N∑
ℓ=0

k−ℓT0,k(Bℓ(f, g)) + O
(
k−(N+1)

)
(1.13)

for some bidifferential operators Bℓ : C∞(M) × C∞(M) → C∞(M), where
B0(f, g) = fg, B1(f, g) = −1

2g(X, Y ) + 1
2iω(X, Y ),(1.14)

X and Y being the Hamiltonian vector fields of f and g respectively.
For the generalisation to higher Landau levels, we will use in addition to the

Tm,k(f)’s the following operators: let p ∈ N and X1, . . . , X2p be vector fields of M .
Define Tm,k(X1, . . . , X2p) : Hm,k → Hm,k by

Tm,k(X1, . . . , X2p)(Ψ) = k−pΠm,k

(
∇Lk

X1 . . .∇
Lk

X2pΨ
)

(1.15)

Let Tm be the vector space of families (Pk : Hm,k → Hm,k, k ∈ N) spanned by the
(Tm,k(f), k ∈ N)’s and (Tm,k(X1, . . . , X2p), k ∈ N)′s. Here the functions f or vector
fields X1, . . . X2p do not depend on k.
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Landau levels on a compact manifold 75

Define the semiclassical completion T sc
m as the vector space of families (Pk : Hm,k →

Hm,k, k ∈ N) such that for any N ,

Pk =
N∑
ℓ=0

k−ℓPℓ,k + O
(
k−N−1

)
where the coefficients (Pℓ,k)k, ℓ ∈ N all belong to Tm, and the O is for the operator
norm. This expansion is meaningful because as we will see later, for any ℓ, the
operator norm ∥Pℓ,k∥ is bounded independently of k.

Theorem 1.3. — For any m ∈ N, we have:
(1) T sc

m is closed under product.
(2) There exists a unique linear map τ : T sc

m → C∞(M,End(Dm(TM))) given on
the generators (1.12) and (1.15) by

τ(Tm,k(f))x = f(x) idDm(TxM),

τ (Tm,k (X1, . . . , X2p))x = πm(x)ρ(X1(x)) . . . ρ(X2p(x))(1.16)

τ is onto, its kernel consists of k−1T sc
m .

(3) For any P,Q ∈ T sc
m

τ(PQ) = τ(P )τ(Q),(1.17)

∥Pk∥ = sup
{
∥τ(P )x∥, x ∈ M

}
+ o(1),(1.18)

Pk(x, x) =
(
k

2π

)n (
tr(τ(P )x) + O

(
k−1

))
.(1.19)

(4) For any f , g in C∞(M), we have

Tm,k(f)Tm,k(g) = Tm,k(fg) + k−1Tm,k(X, Y ) + O
(
k−2

)
(1.20)

where X, Y are the Hamiltonian vector fields of f and g. In particular,

ik [Tm,k(f), Tm,k(g)] = Tm,k({f, g}) + O
(
k−1

)
(1.21)

with {·, ·} the Poisson Bracket of (M,ω).

We call τ the symbol map. The symbol of the generators (1.16) is defined in
terms of the endomorphisms (1.10). The product of symbols in the right-hand side
of (1.17) is the pointwise composition. In the norm estimate (1.18), the norm of
τ(P )x is defined in terms of the hermitian structure of Dm(TxM). In (1.19), Pk(x, x)
is the value of the Schwartz kernel of Pk at (x, x). Integrating (1.19), we obtain the
following estimate of the trace of Pk,

trPk =
(
k

2π

)n ∫
M

tr(τ(P )x)µM(x) + O
(
kn−1

)
(1.22)

where µM = ωn/n!. Since Pk = Tm,k(1) is the identity of Hm,k, we recover the
estimate (1.4).
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76 L. CHARLES

Remark 1.4. —
(1) In the surface case, n = 1, Dm(TM) is a line bundle, so any endomorphism

of Dm(TxM) is scalar and by Assertion 2 of Theorem 1.3, T sc
m consists of the

families
(Pk = Tm,k

(
f(·, k)) + O(k−∞), k ∈ N

)
(1.23)

where the multiplicator f(·, k) depends on k in such a way that it admits
an expansion f(·, k) = f0 + k−1f1 + . . . . It holds as well that the Tm,k(f)
satisfy (1.13) for some bidifferential operators Bm

ℓ depending on m. Indeed,
by [Cha16, Section 5.4], this property is equivalent to the locality of the
product: for any two functions f , g with disjoint supports, Tm,k(f)Tm,k(g) =
O(k−∞). This latter property follows from the fact that the Schwartz kernel
of Πm,k is in O(k−∞) outside the diagonal.

(1.20) writes in this case
Bm

1 (f, g) = −
(

1
2 +m

)
g(X, Y ) + 1

2iω(X, Y )(1.24)
where X, Y are the Hamiltonian vector fields of f and g.

(2) If n ⩾ 2 and m ⩾ 1, the Toeplitz algebra T sc
m is strictly larger than the

subspace T f
m consisting of the Toeplitz operators (1.23) with scalar multipli-

cators, because the symbol map τ is onto. Nevertheless, we may ask if T f
m

is closed under product. This is not the case. Indeed, if follows from (1.20),
that if f ∈ C∞(M) is not locally constant, then there exists no function h
such that Tm,k(f)2 − Tm,k(f 2) = k−1Tm,k(h) + O(k−2). So interestingly, by
developing the theory of Berezin–Toeplitz operator for higher Landau level,
we are naturally led to use matrix valued symbols.

(3) The Toeplitz operators defined as in (1.15), but with an odd number of vector
fields, can be incorporated in the theory. They are odd Toeplitz operators,
cf. Remark 3.3, and they belong to k− 1

2 T sc
m . We purposely have avoided any

square root of k in Theorem 1.3.
Remark 1.5. —
(1) The main estimates for the Toeplitz operators associated to functions, that is

Tm,k(f)Tm,k(g) = Tm,k(fg)+O(k−1) and ik[Tm,k(f), Tm,k(g)] = Tm,k({f, g})+
O(k−1) have been proved independently by Kordyukov [Kor22a] by using the
techniques of [MM07].

(2) In [Kor22a], the non degenerate magnetic fields jB with constant eigenvalues
B1, . . . , Bn are considered as well. The corresponding magnetic Laplacian
has clusters centered at the points of kΣ where Σ = {∑Bi(1

2 +α(i))/α ∈ Nn}.
In the companion paper [Cha21], we prove that the number of eigenvalues in
the cluster at Λ ∈ Σ is given by a Riemann–Roch number as in Theorem 1.1
where Dm(TM) is replaced by a bundle FΛ

(1) with rank the cardinal of
KΛ =

{
α ∈ Nn,

∑
Bi

(
1
2 + α(i)

)
= Λ

}
.

(1) FΛ is defined as follows: for any p ∈ M , introduce a basis (∂j , ∂j) of TpM ⊗ C such that
jB∂j = iBj∂j and denote by (zj , zj) the dual basis of T ∗

p M ⊗ C. Then the fiber of FΛ at p is
spanned by the z

α(1)
1 . . . z

α(n)
n where α ∈ KΛ.
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When |KΛ| = 1, it is proved in [Kor22a] that the space of Toeplitz operators in
the Λ-cluster associated to functions of M is an algebra. This particular case
is very similar to the first Landau level (m = 0) because the endomorphisms
of KΛ are scalar, the symbol composition law is commutative and it is not
necessary to introduce the operators (1.15). Observe as well that in dimension
n ⩾ 2, the condition that |KΛ| = 1 for Λ ̸= 1

2
∑
Bi implies that the Bi are

not all equal, so that the tangent bundle of M , endowed with the unique up
to isotopy complex structure compatible with the symplectic structure, splits
into a non trivial sum of complex subbundles. This seems rather restrictive
and is not satisfied for instance by the complex projective spaces Pn when n
is even, cf. [GHS82].

(3) We can study as well with our techniques the Toeplitz operators associated
to the Λ-cluster and this will be partly done in Section 3 where we consider
a vector bundle F generalising Dm(TM) or FΛ. Assuming that the numbers
|α| = α(1)+ . . .+α(n) have all the same parity when α runs over KΛ, we have
the same result as Theorem 1.3. When this parity condition is not satisfied,
the square roots of k seem to be unavoidable.

We have chosen to work out the case where all the Bi are equal because first
any symplectic manifold can be endowed with such a magnetic field, which
is merely a compatible almost complex structure, and second the higher
rank vector bundle Dm(TM) makes it rather different from the already much
studied case of first Landau levels.

1.2.4. Ladder operators

The last result we would like to emphasize in this introduction is the construction
of some ladder operators for the spaces Hm,k. In the surface case with constant Gauss
curvature, Hm,k is naturally isomorphic with the space of holomorphic sections of
Lk⊗K−m where K is the canonical bundle [TP06], the isomorphism being the ladder
operator ∂Lk⊗K−m+1 ◦ . . .◦∂Lk , cf. the Appendix A. Here we will show that the family
(Hm,k, k ∈ N) is isomorphic to a quantization of M twisted by the vector bundle
Dm(TM).

Recall that for any Hermitian vector bundle F → M , we can define a family of
finite dimensional subspaces HF,k ⊂ C∞(M,Lk ⊗ F ), k ∈ N, having the following
properties:

(1) dim HF,k =
∫
M ch(Lk ⊗ F ) ToddM , when k is sufficiently large.

(2) the space T sc
F , consisting of families of (Tk ∈ End(HF,k), k ∈ N) having an

expansion of the form

Tk =
N∑
ℓ=0

k−ℓTF,k(fℓ) + O
(
k−N+1

)
, ∀ N ∈ N

for a sequence (fℓ) of C∞(M,EndF ), is closed under product. Here, TF,k(fℓ)(ψ)
= ΠF,k(fℓψ) for any ψ ∈ HF,k where ΠF,k is the orthogonal projector of
C∞(M,Lk ⊗ F ) onto HF,k.
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78 L. CHARLES

(3) At first order, the product is given by the pointwise product, that is

TF,k(f)TF,k(g) = TF,k(fg) + O
(
k−1

)
for any f, g ∈ C∞(M,EndF ).

The algebra T sc
F is called the Toeplitz algebra. In the Kähler case, that is when (M,ω)

is Kähler, L holomorphic with ∇ the Chern connection, and F holomorphic as well,
the space HF,k can be defined as the space H0(Lk ⊗ F ) of holomorphic sections.
In the non-Kähler case, various constructions have been developed [BU96, MM07]:
Spin-c quantization, first Landau level of a Laplacian acting on C∞(M,Lk ⊗ F ), or
more generally any image of a projector of C∞(M,Lk⊗F ) having a specific Schwartz
kernel [Cha16]. Let us call such a family (HF,k, k ∈ N) a quantization of (M,L)
twisted by F . These twisted quantizations have sometimes better properties than
the non twisted one (corresponding to F = C), typically when F is a half-form
bundle [Cha07]. The general case where the rank of F is ⩾ 2 may be viewed as a
free generalization without any application, but interestingly, this is exactly what
we need.

Assume F is equipped with a connection ∇F : C∞(M,F ) → Ω1(M,F ). Let G =
(T 0,1M)∗ and DF,k : C∞(M,Lk ⊗ F ) → C∞(M,Lk ⊗ F ⊗G) be the (0, 1)-part of the
connection ∇F⊗Lk induced by ∇F and ∇Lk . Endow G with a connection and define
the differential operators

Wk : C∞
(
M,Lk

)
→ C∞

(
M,Lk ⊗ Dm(TM)

)
Wk = RmDG⊗(m−1),k ◦DG⊗(m−2),k ◦ . . . ◦DG,k ◦DC,k

(1.25)

where Rm is the projection from G⊗m onto Dm(TM) = SymmG.

Theorem 1.6. — For any quantization (HF,k, k ∈ N) of (M,L) twisted by
F = Dm(TM), the linear maps

Vk = 1
m!k

−m
2 ΠF,kWk : Hm,k → HF,k, k ∈ N

satisfy:
(1) VkV ∗

k = idHF,k
+O(k−1) and V ∗

k Vk = idHm,k
+O(k−1). In particular, Vk is an

isomorphism when k is sufficiently large.
(2) the conjugation by V = (Vk) is an isomorphism between the Toeplitz algebra

T sc
m and T sc

F modulo O(k−∞). In particular, for any (Pk) ∈ T sc
m , (VkPkV ∗

k )k
belongs to T sc

F and if f ∈ C∞(M,EndF ) is the symbol τ(Pk), then VkPkV ∗
k =

TF,k(f) + O(k−1).

The first assertion of Theorem 1.6 tells us that Vk is almost unitary. This can
be improved by setting Uk := AkVk with Ak the endomorphism of HF,k equal to
(VkV ∗

k )−1/2|Hm,k
when k is sufficiently large and to 0 for the first values of k. Then

UkU
∗
k = idHF,k

and U∗
kUk = idHm,k

when k is sufficiently large. Furthermore the
second assertion of 1.6 holds with (Uk) instead of (Vk).

The inspiration for (1.25) comes from the case of surface (n = 1) with con-
stant Gauss curvature. In this case, choosing for DF,k the ∂ operator, it holds that
Wk(Hm,k) ⊂ HF,k, cf. the discussion after Theorem A.1, so the projector ΠF,k in the
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definition of Vk is not necessary. We expect that something similar happens in higher
dimension under the convenient assumptions.

1.3. Generalised Landau level and Schwartz kernel expansion

1.3.1. Generalised Landau level

In the previous results, the mth Landau level Hm,k, k ∈ N can be replaced by
any family (Hm,k ⊂ C∞(M,Lk), k ∈ N) of finite dimensional subspaces, such that
the Schwartz kernel of the orthogonal projector Πm,k of C∞(M,Lk) onto Hm,k has a
specific behavior in the large k limit. We require first that

Πm,k(x, y) =
(
k

2π

)n
Ek(x, y)Q(n−1)

m (kδ(x, y)) + O
(
kn−1

)
(1.26)

where
- E is a section of L⊠L such that |E(x, y)| < 1 when x ̸= y, and its second order

Taylor expansion along the diagonal has a specific form, cf. Equation (5.1).
In particular, in a coordinate chart at x, ln |E(x + ξ, x)| = −1

4 |ξ|2x + O(|ξ|3)
where | · |x is the norm of TxM . (2)

- δ ∈ C∞(M2) is any function vanishing to second order along the diagonal
and satisfying δ(x + ξ, x) = |ξ|2x + O(|ξ|3), ξ ∈ TxM . Q(p)

m is the generalised
Laguerre polynomial Q(p)

m (x) = x−p

m! ( d
dx

− 1)mxm+p.
The Schwartz kernel of the projector onto the mth Landau level of the magnetic
Laplacian of Cn is given by an expression similar to (1.26), with the convenient
section E and the same Laguerre polynomials, cf. (4.2) and (5.8).

In addition to (1.26), we require a full expansion of the form

Πm,k(x, y) =
(
k

2π

)n
Ek(x, y)

∑
ℓ∈Z

k−ℓaℓ(x, y) + O(k−∞)(1.27)

with coefficients aℓ ∈ C∞(M2) such that for ℓ < 0, aℓ vanishes to order m(ℓ) ⩾ −2ℓ
along the diagonal and m(ℓ)+2ℓ → ∞ as ℓ → −∞. The meaning of this expansion is
not obvious because the negative ℓ’s give positive powers of k. Actually, the condition
satisfied by |E| implies that |Ek(x, y)b(x, y)| = O(k−m/2) when b vanishes to order
m along the diagonal. So the ℓth summand in (1.27) is in O(kn− 1

2 (m(ℓ)+2ℓ)), and the
expansion is meaningful because of the conditions satisfied by m(ℓ).

We will prove that for any family (Hm,k) whose associated projector Πm,k satis-
fies (1.26) and (1.27), Theorems 1.1, 1.3 and 1.6 hold. On the other hand, in the
second part of this work [Cha21], cf. also [Kor22b], it is proved that the Schwartz
kernel of the orthogonal projector Πm,k onto the Landau levels Hm,k defined in (1.2)
from the Laplacian ∆k, satisfies (1.26) and (1.27). The assumption that the magnetic
field is constant with respect to the metric can be relaxed. It is actually possible to
define some Landau levels and describe the asymptotic expansion of the associated
projector as soon as a particular gap condition is satisfied, cf [Cha21].
(2) In the whole paper, when working in a coordinate chart (U, χ) of M , we write x+ξ for χ−1(χ(x)+
Txχ(ξ)) where x ∈ U and ξ ∈ TxM sufficiently close to the origin.
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1.3.2. The class L(A,B)

To establish our results, we will introduce a specific class of operators, containing
the projector Πm,k, the Berezin Toeplitz operators Tm,k(f) and Tm,k(X1, . . . , X2p)
and also the projector ΠF,k of any twisted quantization, the corresponding Toeplitz
operators TF,k(g), the isomorphisms Vk of Theorem 1.6 and their unitarizations (Uk).
This operator class has a natural filtration, with associated symbol spaces, which
allows to prove most of the results by successive approximations as often in microlocal
analysis. Interestingly, in the symbolic calculus appear the eigenprojectors of the
Landau Laplacian of Cn, providing another link between the usual Landau levels
and our geometric Landau levels.

Introduce two auxiliary Hermitian vector bundles A, B over M . Then L(A,B)
consists of families (Pk : C∞(M,Lk ⊗ A) → C∞(M,Lk ⊗ B), k ∈ N) of operators
having a smooth Schwartz kernel satisfying

Pk(x, y) =
(
k

2π

)n
Ek(x, y)

∑
ℓ∈Z

k− ℓ
2 bℓ(x, y) + O

(
k−∞

)
(1.28)

where E is defined as in (1.26); the coefficients bℓ are in C∞(M2, B ⊠ A); for ℓ < 0,
bℓ vanishes to order m(ℓ) ⩾ −ℓ along the diagonal; m(ℓ) + ℓ → ∞ as ℓ → −∞, and
the meaning of this expansion is the same as in (1.27). We have a decomposition
into even/odd elements: (Pk) ∈ L+(A,B) (resp. L−(A,B)) if the expansion (1.28)
holds with a sum over the ℓ’s even (resp. odd).

The main property is that this class of operators is closed under composition:
Lϵ′(B,C) · Lϵ(A,B) ⊂ Lϵϵ′(A,C), ϵ, ϵ′ ∈ {±1}.(1.29)

In particular, L+(A) := L+(A,A) is an algebra. We also have a filtration Lq(A,B) :=
L(A,B) ∩ O(k−q/2), q ∈ N and the corresponding graduation is described by symbol
maps σq

0 → Lq+1(A,B) → Lq(A,B) σq−→ C∞
(
M,S(M) ⊗ Hom(A,B)

)
→ 0

Here, S(M) is an infinite rank vector bundle over M , each fiber Sx(M) is a subalgebra
of the algebra of endomorphisms of the space D(TxM) defined in (1.9). This is
compatible with the composition (1.29) in the sense that Lp(B,C) · Lq(A,B) ⊂
Lp+q(A,C) and the corresponding product of symbols is the pointwise product of
S(M) tensored by Hom(B,C) ⊗ Hom(A,B) → Hom(A,C).

The projector (Πm,k)k is an idempotent of L+(C) with symbol σ0(Πm) equal at x to
the projector πm(x) onto the mth summand in (1.9). The Toeplitz algebra introduced
previously is

T sc
m =

{
P ∈ L+(C)/ ΠmPΠm = P

}
.(1.30)

The isomorphism V of Theorem 1.6 belongs to L(C, F ) and has the same parity
as m.

Interestingly, Sx(M) has a representation as operators of L2(Cn), and in this
representation, πm(x) = σ0(Πm)(x) is the projector onto the mth Landau level of a
magnetic Laplacian of Cn.
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1.3.3. Outline of the paper

In Section 2, we introduce the class L(A,B), and state its main properties. In
Section 3, we prove variations of the theorems stated before, where the Hm,k are
subspaces of C∞(M,Lk⊗A) such that the corresponding family (Πm,k) of orthogonal
projectors belongs to L+(A) with a convenient symbol. Sections 4, 5 and 6 are
devoted to the proof of the properties of L(A,B). The proofs of Theorems 1.1, 1.3
and 1.6 is given in the last Subsection 6.4. In the Appendix A, we prove formulas (1.5)
on constant curvature surface.
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2. The class L(A,B)

We start the discussion with the algebra in which the symbol of operators of
L(A,B) takes their values. The class L(A,B) is defined in Subsection 2.2 and its
main properties are stated, the proof are postponed to Section 5.

2.1. Symbol spaces

2.1.1. The algebra S(Cn)

Let n be a positive integer and denote by z1, . . . , zn the linear coordinates of Cn.
Let D(Cn) = C[z1, . . . , zn] be the space of antiholomorphic polynomial maps from
Cn to C. Introduce the scalar product

⟨f, g⟩ = (2π)−n
∫
Cn
e−|z|2f(z) g(z) dµn(z), f, g ∈ D(Cn)(2.1)

where |z|2 = ∑n
i=1 |zi|2 and µn is the measure ∏n

i=1 dzidzi. The family ((α!)− 1
2 zα, α ∈

Nn) is an orthonormal basis of D(Cn). We will also need the decomposition into even
and odd functions

D(Cn) = D+(Cn) ⊕ D−(Cn)(2.2)
where D+(Cn) is spanned by the zα with |α| = ∑

α(i) even and D−(Cn) by the zα
with |α| odd.

Let S(Cn) be the space of endomorphisms(3) s of D(Cn) such that s(zα) = 0 except
for a finite number of α ∈ Nn. We claim that S(Cn) is closed under product and
taking adjoint. To see that, simply observe that S(Cn) is the space of endomorphisms
(3) In the whole paper, the endomorphisms are vector space endomorphisms.
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having a matrix in the basis (zα) whose almost all entries are equal to zero. Notice
as well that the family (ρα,β, α, β ∈ Nn) of S(Cn) defined by

ραβ
(
(β!)− 1

2 zβ
)

= (α!)− 1
2 zα,

ραβ(zγ) = 0, ∀ γ ∈ Nn \ {β}
(2.3)

is a vector space basis of S(Cn). And we have
ραβ ◦ ρα̃β̃ = δβα̃ραβ̃, ρ∗

αβ = ρβα(2.4)

for all α, β, α̃, β̃ in Nn.
Each element s ∈ S(Cn) can be written in a block matrix s = ( s++ s−+

s+− s−− ) in the
decomposition (2.2), which leads to a decomposition into even/odd endomorphisms

S(Cn) = S+(Cn) ⊕ S−(Cn)(2.5)
where s ∈ S+(Cn) iff s−+ = s+− = 0, and s ∈ S−(Cn) iff s++ = s−− = 0. Observe
that ραβ has the same parity as |α| + |β|. Furthermore

Sϵ(Cn) · Sϵ′(Cn) ⊂ Sϵϵ′(Cn)(2.6)
for any ϵ, ϵ′ ∈ {1,−1}.

2.1.2. Extension to vector bundles

In the previous definitions, we can replace Cn by any n-dimensional Hermitian
vector space E. We denote by D(E) the space of antiholomorphic polynomial maps
E → C. Choosing an orthonormal basis (ei) of E, we can identify E with Cn and
then define the scalar product of D(E) by the formula (2.1). Since the weight |z|2
and the measure dµn are invariant by unitary change of coordinates, the resulting
scalar product of D(E) is independent of (ei). Similarly, we define the subspace S(E)
of the space of endomorphisms of D(E) and associated to the basis (ei) of E, we
have a basis (ρα,β, α, β ∈ Nn) of S(E). The decompositions into even/odd elements
are defined and denoted as for Cn by

D(E) = D+(E) ⊕ D−(E), S(E) = S+(E) ⊕ S−(E).(2.7)
We can extend all these constructions to vector bundles. Let E → M be a Hermitian

vector bundle with rank n. Define the infinite-dimensional vector bundles D(E) and
S(E) over M with fibers D(E)x = D(Ex) and S(E)x = S(Ex). Later, we will
choose for E the complex tangent bundle of an almost-complex manifold, and we
will construct operator whose symbols are smooth sections of S(E) ⊗ A, where A
is an auxiliary vector bundle. Since the bundle S(E) has infinite rank, let us make
precise the definition of its smooth sections: a section s ∈ C∞(M,S(E) ⊗ A) is a
family (s(x) ∈ S(Ex) ⊗ Ax, x ∈ M) such that for any orthonormal frame (ei) of
E and (aj) of A over the same open set U of M , if (ρα,β(x)) is the basis of S(Ex)
associated to the basis (ei(x)), then

s(x) =
∑

λα,β,j(x) ρα,β(x) ⊗ aj(x), x ∈ U

where the λα,β,j are smooth functions on U , almost all equal to zero.
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2.2. Operators

2.2.1. Schwartz kernel

Consider a compact symplectic manifold (M,ω) with a compatible almost-complex
structure j and a prequantum bundle L → M . Assume we have two auxiliary
Hermitian vector bundles A and B over M . The dimension of M is 2n with n ∈ N.

We will define a space L(A,B) consisting of families of operators(
Pk : C∞

(
M,Lk ⊗ A

)
→ C∞

(
M,Lk ⊗B

)
, k ∈ N

)
(2.8)
having smooth Schwartz kernels satisfying some conditions. Let us first recall some
standard definitions and notations.

We denote by A the conjugate bundle of A and by A⊠B the external tensor product
of A and B. The Schwartz kernel of Pk is the section Kk of (Lk ⊗ B) ⊠ (Lk ⊗ A)
such that

(Pkf)(x) =
∫
M
Kk(x, y) · f(y) µM(y), ∀ f ∈ C∞

(
M,Lk ⊗ A

)
where the · stands for the scalar product (Lky⊗Ay)×(Lky⊗Ay) → C, and µM = ωn/n!.
We will denote the operator and its Schwartz kernel by the same letter, hoping it is
not too confusing.

Since L, A and B are Hermitian bundles, the bundle (Lk ⊗ B) ⊠ (Lk ⊗ A) has a
natural metric, so the pointwise norm |Pk(x, y)| is well-defined. For any N ∈ N, we
will say that (Pk) is in O(k−N) on an open set U of M2 if |Pk(x, y)| = O(k−N) for
(x, y) ∈ U with a O uniform on any compact subsets of U . We say that (Pk) is in
O(k−∞) on U if (Pk) is in O(k−N) on U for any N .

We will also use the uniform norm ∥Pk∥ = sup ∥Pk(f)∥/∥f∥ with respect to the
usual L2 norms of section: ∥f∥2 =

∫
M |f(x)|2 dµM(x).

2.2.2. Definition of L(A,B)

By definition, a family (Pk) as in (2.8) belongs to L(A,B) if each Pk has smooth
Schwartz kernel satisfying for any N

Pk(x, y) =
(
k

2π

)n
Ek(x, y)

∑
ℓ∈Z,

ℓ+m(ℓ)⩽N

k− ℓ
2 bℓ(x, y) + O

(
kn−N+1

2
)

(2.9)

where
(1) E is a section L⊠L such that |E(x, y)| < 1 for any x ̸= y, and for any y ∈ M ,

the section Ey(x) = E(x, y) of L⊠ Ly satisfies Ey(y) = u⊗ u for any u ∈ Ly
with |u| = 1, (∇Ey)(y) = 0 and

(∇ξ∇ηEy) (y) = −
(
i
2ω(ξ, η) + 1

2ω(ξ, jη)
)
Ey(y), ∀ ξ, η ∈ TyM.

(2) m : Z → N ∪ {∞} is such that {ℓ; ℓ + m(ℓ) ⩽ N} is finite for any N and
ℓ+m(ℓ) ⩾ 0 for any ℓ. Moreover, for any ℓ, bℓ is a section of B⊠A vanishing
to order m(ℓ) along the diagonal.
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As already mentioned in the introduction, the analytic meaning of the expan-
sion (2.9) is not obvious, nevertheless we postpone the explanations to Section 5.2,
cf. Lemma 5.1 and Lemma 5.2. The existence of E will be proved in Section 5.1,
it is not unique, any section E satisfying the stated conditions can be used for the
expansion (2.9), but the coefficients bℓ depend on the choice of E, cf. Lemma 5.3.

By rescaling the coordinates transverse to the diagonal by a factor k 1
2 , we can

write the expansion (2.9) in the following alternative way. To simplify the statement,
we assume first that A and B are the trivial line bundle CM := M × C and let
L(C) := L(CM ,CM).

Proposition 2.1. — Let (Pk) be an operator family (Pk) of the form (2.8) with
smooth Schwartz kernels. Then (Pk) belong to L(C) if and only if the Schwartz
kernel family is in O(k−∞) on M2 \ diagM and for any coordinate chart U ⊂ M
and unitary frame t : U → L, for any N ∈ N, we have over U2 that

Pk(x+ ξ, x) =
(
k

2π

)n
e−kφ(x,ξ)

N∑
p=0

k− p
2ap

(
x, k

1
2 ξ
)

+ O
(
kn−N+1

2
)

(2.10)

where we have identified Lkx+ξ ⊗ L
k

x ≃ C by using t and
- φ(x, ξ) = −i(∑2n

i=1 αi(x)ξi + 1
2
∑2n
i,j=1(∂xiαj)(x)ξiξj) + 1

4 |ξ|2x, with α = ∑
αidxi

∈ Ω1(U,R) the connection one-form defined by ∇t = 1
i
α⊗ t.

- ap(x, ξ) ∈ C depends polynomially on ξ, meaning that for some d(p) ∈ N,
ap(x, ξ) = ∑

|α|⩽d(p) ap,α(x)ξα with smooth coefficients ap,α.

The proof is postponed to Section 5.2. Since the real part of φ(x, ξ) is 1
4 |ξ|2x, we

have for any p
e−kφ(x,ξ)ap

(
x, k

1
2 ξ
)

= O(1).

So the pth summand in (2.10) is in O(kn− p
2 ) and the expansion is meaningful. In

the case where A and B are general vector bundles, we introduce frames of A
and B on U , so that the Schwartz kernel Pk on U2 becomes a Cr-valued functions
with r = (rankA)(rankB), and we have the same characterization with Cr-valued
coefficients ap.

The advantage of the expansion (2.10) is that its analytical meaning is more
transparent, the drawback is that it depends on local choices (coordinates, frames,
rescaling k 1

2 ξ) whereas the expansion (2.9) is global.

2.2.3. Properties of L(A,B)

L(A,B) has a natural filtration defined as follows. For any q ∈ N, Lq(A,B) is the
subspace of L(A,B) consisting of the operators such that the local expansions (2.10)
hold with a sum starting at p = q, that is the coefficients a0, . . . aq−1 are zero.

Proposition 2.2. —
(1) Lq(A,B) = k− q

2 L(A,B) and if q ⩾ q′, then Lq(A,B) ⊂ Lq′(A,B).
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(2) For any (Pk) in L(A,B),

(Pk) ∈ Lq(A,B) ⇔ ∥Pk∥ = O
(
k− q

2
)

⇔ the Schwartz kernel family of (Pk) belongs to O
(
kn− q

2
)

(3) L∞(A,B) := ⋂
q Lq(A,B) consists of the families (2.8) with a smooth Schwartz

kernel in O(k−∞).
(4) for any sequence (Pq)q ∈N of L(A,B) such that Pq ∈ Lq(A,B) for any q, there

exists P ∈ L(A,B) satisfying P = ∑q
p=0 Pp modulo Lq+1(A,B) for any q.

We will now describe the quotients Lq(A,B)/Lq+1(A,B) by using the material
introduced in Section 2.1. Since M has an almost complex structure j compatible
with ω, the tangent bundle TM is a complex vector bundle with a Hermitian metric,
which defines our bundle S(M) := S(TM).

Theorem 2.3. — For any q ∈ N, there exists a linear map
σq : Lq(A,B) → C∞(M,S(M) ⊗ Hom(A,B))

which is onto and has kernel Lq+1(A,B). Furthermore, the following holds for any
P ∈ Lq(A,B):

(1) σq(P ) = σ0(k
q
2P ).

(2) For any f ∈ C∞(M,Hom(B,C)), (f ◦Pk) belongs to Lq(A,C) and σq(f ◦P ) =
f ◦ σq(P ). For any g ∈ C∞(M,Hom(C,A)), (Pk ◦ g) belongs to Lq(C,B) and
σq(P ◦ g) = σq(P ) ◦ g.

(3) P ∗ belongs to Lq(B,A) and σ(P ∗) = σ(P )∗.
(4) For any P ′ ∈ Lq′(B,C), P ′ ◦ P belongs to Lq′+q(A,C) and

σq′+q(P ′ ◦ P ) = σq′(P ′) ◦ σq(P ).
(5) The Schwartz kernel of Pk on the diagonal satisfies

Pk(x, x) = kn− q
2

(2π)n
[
tr(σq(P )(x)) + O

(
k− 1

2
)]

where tr is the map S(TxM) ⊗ Hom(Ax, Bx) → (Lx ⊗ Lx)k ⊗ Bx ⊗ Ax ≃
Hom(Ax, Bx) sending s⊗ f to (tr s)f .

(6) The operator norm of Pk satisfies

∥Pk∥ = k− q
2

(
sup
x∈M

∥σq(P )(x)∥ + o(1)
)

where ∥σq(P )(x)∥ is the operator norm for the norm of D(TxM) corresponding
to the scalar product (2.1).

Let us explain how is defined the symbol map σ0 for A = B = CM . Consider
P ∈ L(A,B) and the local expansion (2.10). We view (x, ξ) as a tangent vector of
M , that is ξ ∈ TxM , so we consider a0(x, ·) as a polynomial of TxM . Then it is not
obvious but nevertheless true that this polynomial does not depend on the choice
of the coordinate chart U and the unitary frame t. To compare, the coefficients ap
in (2.10) with p ⩾ 1 do depend on the choice of the coordinates and the frame of L.
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To pass from a0(x, ·) to the symbol of P at x, we first choose a unitary frame (ei)
of TxM . So TxM ≃ Cn by sending ξ = ∑

ziei(x) to z(ξ) = (zi). We also have a basis
ρα,β(x) of S(TxM) defined in (2.3). Then

σ0(P )(x) =
∑

fα,β(x)ρα,β(x) ⇔ a0(x, ξ) =
∑

fα,β(x)pα,β(z(ξ))

where we use the polynomials pα,β(z) = ( 1
α!β!)

1/2(∂z −z)αzβ. These polynomials form
a basis of C[z, z], cf. proof of Proposition 4.4.

Example 2.4. — Choose a connection of A and let ∆k be the Laplacian

∆k = 1
2

(
∇Lk⊗A

)∗
∇Lk⊗A : C∞

(
Lk ⊗ A

)
→ C∞

(
Lk ⊗ A

)
.(2.11)

For any m ∈ N, let Πm,k be the spectral projector

Πm,k := 1[m− 1
2 ,m+ 1

2 ]
(
k−1∆k

)
.(2.12)

By [Cha21], the family (Πm,k) belongs to L(A,A), its σ0-symbol at x is πm(x) ⊗ idAx
where πm(x) is the projector of D(TxM) onto the subspace Dm(TxM) of homogeneous
degree m polynomials.

Since πm(x) = ∑
|α|=m ρα,α(x), if the auxiliary bundle A is trivial, the corresponding

function a0 is

a0(x, ξ) =
∑

|α|=m
pα,α(z(ξ)) = Q(n−1)

m

(
|z(ξ)|2

)
(2.13)

where Q(p)
m is the Laguerre polynomial Q(p)

m (x) = x−p

m! ( d
dx

− 1)mxm+p. The second
equality in (2.13) follows from pm,m(z) = Q(0)

m (|z|2) and the identity

Q(n−1)
m (x1 + . . .+ xn) =

∑
|α|=m

Q
(0)
α(1)(x1) . . . Q(0)

α(n)(xn).

Actually we won’t use the expression in terms of Laguerre polynomials, what really
matters is the fact that σ0(Πm)(x) is the orthogonal projector onto Dm(TxM).

The definition of the symbol map σ0 is motivated by Theorem 2.3 and its efficiency
in the proofs of Section 3. But this definition does not explain why it is natural
to associate to P ∈ L(A,B) an endomorphism of D(TxM). A first explanation is
provided by the following construction of peaked sections. A deeper reason will be
provided later in Section 4.

We still assume that A = B = CM to simplify the exposition. Let x ∈ M be a base
point, with a coordinate chart U at x and a unitary frame t : U → L. Let ψ ∈ C∞

0 (U)
be equal to 1 on a neighborhood of x. To any f ∈ D(TxM), we associate a family
Φf
k ∈ C∞(M,Lk) defined by

Φf
k(x+ ξ) =

(
k

2π

)n
2

e−kφ(x,ξ) f
(
k

1
2 ξ
)
ψ(x+ ξ) tk(x+ ξ), k ∈ N

where φ is the same function as in (2.10). Let ∥f∥ =
√

(f, f) be the norm associated
to the scalar product (2.1).
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Proposition 2.5. — For any f ∈ D(TxM),
∥Φf

k∥ = ∥f∥ + O
(
k−1/2

)
,(2.14)

and for any P ∈ L(CM ,CM),
PkΦf

k = Φg
k + O

(
k−1/2

)
(2.15)
where g = σ0(P )(x) · f .

By (2.14) the map sending f into (Φf
k) is injective, so (2.15) characterizes the

symbol σ0(P )(x). For a more general result with auxiliary bundles A, B and the
estimates of the scalar product of peaked sections, cf. Proposition 5.7.

We say that an element P in L(A,B) is even (resp. odd) if the expansion (2.9)
holds with bℓ = 0 for any odd ℓ ∈ Z (resp. even).

Lemma 2.6. — For any P in L(A,B), (Pk) is even (resp. odd) if and only if in the
local expansions (2.10), every polynomial ap(x, ·) has the same (resp. the opposite)
parity as p.

Denote by L+(A,B) and L−(A,B) the subspaces of even and odd elements respec-
tively.

Theorem 2.7. — We have
(1) L(A,B) = L+(A,B) + L−(A,B), L+(A,B) ∩ L−(A,B) = L∞(A,B).
(2) Lϵ(A,B) · Lϵ′(B,C) ⊂ Lϵϵ′(A,C) for any choice of signs ϵ, ϵ′.
(3) σq(Lq(A,B) ∩ Lϵ(A,B)) = C∞(M,Sϵ(−1)q(M) ⊗ Hom(A,B)).

The proofs of Proposition 2.2, Theorem 2.3 and Theorem 2.7 are postponed to
Section 5.4. The proof of Lemma 2.6 is at the end of Section 5.2.

2.3. Comparison with earlier works

The expansions (1.28), (2.10) or similar versions appeared in the literature [MM07,
Cha03, SZ02] to describe Bergman kernels of ample line bundles and their symplectic
generalizations as well as the associated Toeplitz operators. In a more general context,
the Boutet de Monvel–Guillemin theory [BdMG81] is built on two classes of operators:
Hermite operators and Fourier integral operators respectively. The spaces L+(A,B)
may be viewed as an intermediate choice in the semi-classical setting.

In [Cha16], we considered a subalgebra of L+(A,A), denoted by A(A), consisting
of operators having an expansions (2.10) in which each ap(x, ·) has degree ⩽ 3

2p. For
our applications in this paper, it is necessary to consider the larger spaces L(A,B),
because our generalized projectors Πm and unitary equivalences do not belong to
A(A). More precisely, only the projector corresponding to the first Landau level
belongs to A(A).

Theorem 2.3 is a generalization of similar results for A(A) established in [Cha16],
and surprisingly the proofs are somehow easier in this new generality. However, a
crucial difference with [Cha16] relies in the symbols. Roughly, the symbols of the
elements of A(A) were defined directly as the polynomials a0(x, ·). This had the
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advantage that it is easier to pass from the Schwartz kernel of the operator to the
symbol. The drawback of this definition is that the product for these symbols is
given by the mysterious formula

(u ⋆ v)(x, z, z) =
[
exp(□)

(
u
(
x,−ζ, z − ζ

)
v
(
x, z + ζ, ζ

))]
ζ=ζ=0

(2.16)

where □ = ∑
∂2/∂ζ i∂ζ

i. This was actually tractable for what we did in [Cha16]
because our main interest was the projector Π for the first Landau level, with symbol
σ0(Π) = ρ00 and associated function symbol u(x, ξ) = 1. But for our new projectors
whose symbols are typically a sum of the ραα’s, it is essential to work with the symbol
in S(M). For instance, it is even not obvious how to recover the relations (2.4) from
the product (2.16).

3. Projectors of L(A) and Toeplitz operators

In this section, we consider an auxiliary Hermitian vector bundle A with arbitrary
rank. We denote by L(A) := L(A,A) the associated algebra and by L+(A) the
subalgebra consisting of even elements. The symbols of operators of L(A) are sections
of S(M)⊗EndA. We will view S(M)x⊗EndAx as a subspace of End(D(TxM)⊗Ax).

Let F be a subbundle of D⩽m(TM) ⊗ A for some m ∈ N, where D⩽m(TxM) is
the subspace of D(TxM) of polynomial with degree ⩽ m. We assume that F has
a definite parity, that is F ⊂ Dϵ(TM) ⊗ A with ϵ ∈ {±1}. Associated to F is the
section π of S(M)⊗EndA such that π(x) is the orthogonal projector of D(TxM)⊗Ax
onto Fx at each point x ∈ M . The content of the following subsections is:

- Subsection 3.1: we construct a selfadjoint projector Π ∈ L+(A) with symbol
π.

- Subsection 3.2: we study the Toeplitz algebra T = {ΠPΠ, P ∈ L+(A)}
- Subsection 3.3: we prove (Im Πk) is isomorphic with any quantization of (L,M)

twisted by F , and deduce that the dimension of Im Πk is the Riemann–Roch
number of Lk ⊗ F when k is sufficiently large.

A possible choice for F is F = Dm(TM) ⊗ A where m ∈ N and Dm(TxM) is
the subspace of D(TxM) consisting of homogeneous polynomials with degree m. As
explained in Example 2.4, the projector Πm,k onto the mth Landau level Hm,k belongs
to L+(A) and has symbol the projector onto F , so it can be used as the projector Π.
Theorems 1.1, 1.3 and 1.6 will mainly follow from the results in Sections 3.2 and 3.3.

By [Cha21], the spectral projectors of Laplacians with a magnetic field, not neces-
sarily constant but still satisfying some convenient assumptions, give other instances
of projectors in L+(A).

Another choice for F is F = D0(TM) ⊗A where D0(TxM) = C is the subspace of
D(TxM) of constant polynomials. The corresponding quantum space and Toeplitz
algebra is the quantization of (M,L) twisted by A.

A last example is the Spin-c Dirac quantization twisted by an auxiliary bundle
B. In this case, A = S ⊗ B where S is the spinor bundle ⊕∧k(T ∗M)0,1 and F =
D0(TM) ⊗ ∧0(T ∗M)0,1 ⊗ B. This example will be used to compute the dimension
of our quantum spaces from the Atiyah–Singer theorem.
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3.1. Construction of the projector

Let χ : R → R be defined by χ(x) = 1 if x ⩾ 1
2 and χ(x) = 0 otherwise. If P

is a bounded self-adjoint operator of a Hilbert space H, then using the functional
calculus for Borel bounded functions, we define a new bounded operator χ(P ) of H,
cf. as instance [RS72, Theorem VII.2]. Since χ is real valued and χ2 = χ, χ(P ) is a
self-adjoint projector.

Theorem 3.1. — Let P ∈ L(A) be self-adjoint and having symbol σ0(P ) = π.
Then χ(P ) belongs to L(A) and σ0(χ(P )) = π. If furthermore P ∈ L+(A), then χ(P )
is in L+(A).

An operator P satisfying the assumptions exists by the surjectivity of σ0, cf.
Theorem 2.3. Theorem 3.1 holds without the assumption that F has a definite parity.
When F does have a definite parity, π is even, so we can choose P ∈ L+(A) with
symbol π.

Proof. — To prove that the χ(Pk)’s have smooth kernels, we will use the following
basic fact: let Q, Q′ be two operators with smooth kernels acting on C∞(M,A)
and Q′′ be a bounded operator of L2(M,A). Then QQ′′Q′ has a smooth kernel.
This follows from the Schwartz theorem saying that the operators with smooth
kernel are the operators which can be continuously extended C−∞ → C∞. We will
also need the following pointwise norm estimates: consider families of operator
Qk, Q

′
k : C∞(M,Lk⊗A) → C∞(M,Lk⊗A) and Q′′

k : L2(M,Lk⊗A) → L2(M,Lk⊗A).
Then by [Cha16, Section 4.3], if the Schwartz kernel families of (Qk) and (Q′

k) are
respectively in O(k−N) and O(k−N ′), and the operator norms of Q′′

k are in O(1),
then the Schwartz kernel family of QkQ

′′
kQ

′
k is in O(k−(N+N)′).

Back to our problem, we can write χ(Pk) = Pkχ̃(Pk)Pk with χ̃(x) = χ(x)/x2.
Since χ̃(Pk) is bounded, this shows that χ(Pk) has a smooth kernel. This also shows
that the Schwartz kernel family of χ(P ) is in O(k2n). To improve this, observe that
Q = P 2 −P is in L(A) and σ0(Q) = π2 − π = 0, so ∥Qk∥ = O(k−1/2), which implies
easily that 1

2 is not in the spectrum of Pk when k is sufficiently large, cf. [Cha16,
Proposition 4.2].

Now for x ∈ R \ {1
2}, y = x2 − x > −1/4 and we have

χ(x) = x+ (1 − 2x)f
(
x2 − x

)
with f(y) = 1

2

(
1 − (1 + 4y)−1/2

)
For any m ∈ N, write the Taylor expansion of f at 0 at order m as follows: f(y) =∑m
ℓ=0 aℓy

ℓ + ym+1fm(y) with fm ∈ C0(] − 1
4 ,∞[,R). Then

χ(P ) = P +
m∑
ℓ=0

aℓ(1 − 2P )Qℓ + (1 − 2P )Qm+1fm(Q).(3.1)

Now σ0(Q) = 0 implies that Qℓ and PQℓ belong both to Lℓ(A). Furthermore,
∥fm(Qk)∥ = O(1). Since Qm+1fm(Q) = Qmf(Q)Q and similarly PQm+1fm(Q) =
PQmf(Q)Q, it follows from the preliminary observation that the Schwartz kernel
family of (1 − 2P )Qm+1fm(Q) is in O∞(k2n−m). We can now conclude easily the
proof from (3.1) by choosing at each step sufficiently large value of m: first the
Schwartz kernel family of χ(P ) is in O(k−∞) outside the diagonal and second the
local expansions (2.10) hold. □
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3.2. Toeplitz algebra

Choose a self-adjoint projector Π ∈ L+(A) with symbol π, which exists by The-
orem 3.1. For any k ∈ N, let Hk = Im Πk ⊂ C∞(M,Lk ⊗ A). Computing the trace
of Πk by integrating its Schwartz kernel over the diagonal, we deduce from the last
assertion of Theorem 2.3 that Hk is finite dimensional and

dim Hk ∼
(
k

2π

)n
(rankF ) vol(M,ω)(3.2)

As we will see later, when k is sufficiently large, this dimension depends polynomially
on k and is a Riemann–Roch number, cf. Theorem 3.7.

We will now work with families of operators (Tk ∈ End Hk, k ∈ N). Equivalently,
we can consider that each Tk acts on the larger space C∞(M,Lk ⊗ A) and satisfies
ΠkTkΠk = Tk. Define the space

T =
{
T ∈ L+(A)/ΠTΠ = T

}
.(3.3)

For any q ∈ N, set Tq := k−qT = L2q(A) ∩ T and T∞ = ⋂
q Tq. Clearly,

T∞ ⊂ Tq ⊂ Tp ⊂ T
when q ⩾ p.

Theorem 3.2. —
(1) For any T ∈ T , T belongs to Tq iff ∥Tk∥ = O(k−q). Furthermore, T∞ consists

of the families (Tk ∈ End(Hk), k ∈ N∗) such that ∥Tk∥ = O(k−N) for any N .
(2) T is closed under composition and taking adjoint:

(
Tq
)∗

= Tq and Tq·Tp ⊂ Tq+p
for any q and p.

(3) For any q, there exists a linear map τq : Tq → C∞(M,EndF ), which is onto,
has kernel Tq+1 and is determined by σ2q(T ) = τq(T )π. Furthermore, if P ∈ Tq
and Q ∈ Tp, then

τq(P ) = τ0(kqP ), τq(P ∗) = τq(P )∗,

τq(P )τp(Q) = τq+p(PQ)

∥Pk∥ = k−q
(
sup {∥τq(P )x∥, x ∈ M} + o(1)

)
,

(3.4)

and the restriction to the diagonal of the Schwartz kernel of Pk satisfies

Pk(x, x) = kn−q

(2π)n
[
tr (τq(P )(x)) + O

(
k−1

)]
.(3.5)

Let us give more details on the equation σ2q(T ) = τq(T )π defining the symbol map
τq. Recall that π(x) is the orthogonal projector of D(TxM) ⊗ Ax onto Fx.

Then for an endomorphism s of Fx, we define sπ(x) ∈ S(TxM) ⊗ EndAx as the
endomorphism of D(TxM) ⊗ Ax sending ψ into s(π(x)ψ).

Proof. — (1) The first assertion follows from Part (2) of Proposition 2.2. To estab-
lish the second assertion, we deduce from the first part of the proof of Theorem 3.1
that if a family (Pk ∈ End(Hk)) satisfies ∥Pk∥ = O(k−∞), then its Schwartz kernel
is in O(k−∞) because ΠkPkΠk = Pk and the Schwartz kernel of Πk is in O(kn).
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Parts (2) and (3) follow from Theorem 2.3 and the fact that L+(A) is a subalgebra
of L(A) by theorem 2.7. To define τq(P ), simply observe that ΠPΠ = P implies that
πσ2q(P )π = σ2q(P ), so we can write σ2q(P ) = τq(P )π with τq(P ) a section of EndF .
The map τq is onto because for any section s of EndF , there exists P in L2q(A) with
σ2q(P ) = sπ. Since π(sπ)π = sπ, we have σ2q(ΠPΠ) = sπ and clearly ΠPΠ ∈ Tq.

The kernel of τq is Tq+1 because τq(P ) = 0 implies that σ2q(P ) = 0 so P ∈
L+

2q+1(A) so σ2q+1(P ) is odd by Theorem 2.7. But ΠPΠ = P implies that σ2q+1(P ) =
πσ2q+1(P )π. This implies that σ2q+1(P ) is even because F has a definite parity.
Indeed, if for instance F ⊂ D+(TM) ⊗A, and f = πgπ with g ∈ S(TxM) ⊗ EndAx,
then in the decomposition

D (TxM) ⊗ Ax =
(
D+(TxM) ⊗ Ax

)
⊕
(
D−(TxM) ⊗ Ax

)
,

f has the form ( f++ 0
0 0 ), so f is even. Consequently, σ2q+1(P ) = 0 so P ∈ L2q+2(A).

The formulas giving the symbol of products, adjoints, the operator norm and the
Schwartz kernel on the diagonal follow directly from Theorem 2.3. Observe that the
O(k− 1

2 ) in Assertion 5 of Theorem 2.3 becomes a O(k−1) in (3.5) because P being
even, the restriction of the asymptotic expansion of its Schwartz kernel (2.9) to the
diagonal only involves integral powers of k−1. □

Remark 3.3. — We can consider as well odd Toeplitz operators, that is T ∈ L−(A)
such that T = ΠTΠ. The space of these operators is k− 1

2 T . Indeed, if T is such
an operator, then its symbol σ0(T ) = πσ0(T )π is at the same time even and odd
because F has a definite parity, so σ0(T ) = 0 so T ∈ L1(A), so k 1

2T ∈ L(A) and is
even, so k 1

2T ∈ T . □

For any f ∈ C∞(M) and k ∈ N, define the endomorphism Tk(f) of Hk such that

⟨Tk(f)ψ, ψ′⟩ = ⟨fψ, ψ′⟩ , ∀ ψ, ψ′ ∈ Hk.

Viewed as an operator of C∞(M,Lk ⊗ A), Tk(f) is merely ΠkfΠk. It follows from
part (2) of Theorem 2.3 that the family (Tk(f)) belongs to T and has symbol
τ0(Tk(f)) = f idF . By part (3) of Theorem 3.2, we deduce that

Tk(f)Tk(g) = Tk(fg) + O
(
k−1

)
.

A consequence of Theorem 3.5 will be that

[Tk(f), Tk(g)] = ik−1Tk({f, g}) + O
(
k−2

)
with {f, g} the Poisson bracket of f and g with respect to ω. This equality does
not follow from Theorem 3.2. However, the center of EndFx consisting on the scalar
multiple of the identity, the following characterization of the Toeplitz operators
having a scalar symbol follows from Theorem 3.2: for any P ∈ T ,

P = T (f) + O(k−1) for some f ∈ C∞(M) ⇔ ∀ Q ∈ T , [P,Q] ∈ T1.

By Jacobi identity, this proves that [Tk(f), Tk(g)] = k−1Tk(h) + O(k−2) for some
function h ∈ C∞(M).
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3.3. A unitary equivalence

Consider an auxiliary vector bundle B with an arbitrary rank. Set F ′ = D0(TM)⊗
B with D0(TxM) ⊂ D(TxM) the subspace of constant polynomials. Then by Theo-
rem 3.1, there exists a projector Π′ in L+(B) having symbol

σ0(Π′) = ρ00 ⊗ idB ∈ C∞(M,S(M) ⊗ EndB),
where ρ00(x) ∈ S(TxM) is the orthogonal projector of D(TxM) onto D0(TxM), the
notation being the same as in (2.3).

Starting from Π′, we define H′
k := Im Π′

k and the corresponding Toeplitz space
T ′ := {P ∈ L+(B)/ Π′PΠ′ = P}. Since D0(TM) = C, F ′ ≃ B, so the symbols of
the Toeplitz operators of T ′ are sections of EndB:

0 → T ′
q+1 → T ′

q

τ ′
q−→ C∞(M,EndB) → 0.

Our goal now is to establish an equivalence between the (Hk, T ) and (H′
k, T ′) when

the bundle B is F . The critical point is the existence of a convenient symbol. Recall
our assumption that F ⊂ Dϵ(TM) ⊗ A with ϵ ∈ {±1}.

Lemma 3.4. — If B = F , then there is a canonical symbol ρ ∈ C∞(M,Sϵ(M) ⊗
Hom(A,B)) such that ρ∗ρ = π and ρρ∗ = ρ00 ⊗ idB .

Proof. — On the one hand, π(x) is the orthogonal projector of D(TxM) ⊗ Ax
onto Fx. On the other hand, π′(x) := ρ00(x) ⊗ idBx is the orthogonal projector of
D(TxM)⊗Bx onto C⊗Bx. Since B = F , the images of π(x) and π′(x) are isomorphic
by the map ξ(x) : Fx → Im π′(x) sending f into 1⊗f . We define ρ(x) as the extension
of ξ(x)

ρ(x) : Fx ⊕ F⊥
x → (Im π′(x)) ⊕ (Im π′(x))⊥(3.6)

having the block decomposition ( ξ(x) 0
0 0 ). So ρ(x) is canonically defined. The equalities

ρ(x)∗ρ(x) = π(x) and ρ(x)ρ(x)∗ = π′(x) are easily verified by using that ξ(x)
is unitary. Writing ρ in terms of a local frame of F , we see that ρ(x) depends
smoothly on x. Finally, Fx ⊂ Dϵ(TxM) ⊗ Ax and Im π′(x) ⊂ D+(TxM) ⊗ Bx, so
ρ(x) ∈ Sϵ(M)x ⊗ Hom(Ax, Bx). □

Theorem 3.5. — Assume that B = F and ρ is the symbol defined above. Then
there exists U ∈ Lϵ(A,B) with symbol σ0(U) = ρ and such that

U∗
kUk = Πk, UkU

∗
k = Π′

k(3.7)
when k is sufficiently large. Modifying Π′

k for a finite number of k, we can choose
U so that (3.7) holds for any k. In this case, the Toeplitz algebras T and T ′ are
isomorphic by the map sending P into UPU∗. Furthermore, P ∈ Tq if and only if
UPU∗ ∈ T ′

q and when this is satisfied
τ ′
q(UPU∗) = τq(P ).(3.8)

Proof. — Choose W ∈ Lϵ(A,B) with symbol ρ and set V := Π′WΠ. Then V ∈
Lϵ(A,B) with σ0(V ) = π′ρπ = ρ and since ρ∗ρ = π and ρρ∗ = π′, we have

V ∗
k Vk = Πk + O

(
k− 1

2
)
, VkV

∗
k = Π′

k + O
(
k− 1

2
)

(3.9)
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So Vk, viewed as an operator from Hk to H′
k, is invertible when k is sufficiently large.

Observe also that V ∗V is a Toeplitz operator of T with symbol idF . So V ∗V = Π+Q
with Q ∈ T1. Since ∥Qk∥ = O(k−1), the spectrum of Qk is contained in [−1

2 ,
1
2 ] when

k is sufficiently large. Modifying Qk for a finite number of k, we can assume this
holds for any k, and when k is sufficiently large, we still have V ∗

k Vk = Πk + Qk.
Let Pk be the endomorphism of C∞(M,Lk ⊗ A) which is zero on H⊥

k and equal to
(IdHk

+Qk)−1/2 on Hk. We claim that (Pk) belongs to T and has symbol idF .
Assuming this temporarily, it follows that Uk := VkPk belongs to Lϵ(A,B), has

symbol ρ and satisfies when k is sufficiently large U∗
kUk = PkV

∗
k VkPk = Πk. Since Uk,

viewed as an operator from Hk to H′
k is invertible, this also implies that UkU∗

k = Π′
k.

To prove the claim above, we write the Taylor expansion (1+x)−1/2 = 1+∑m
ℓ=0 aℓx

ℓ+
xm+1fm(x) with fm a continuous function [−1

2 ,
1
2 ] → R. Then

Pk = Πk +
m∑
ℓ=0

aℓQ
ℓ
k +Qm+1

k fm(Qk).(3.10)

Then we show that P belongs to L+(A) by arguing as in the proof of Theorem 3.1:
Qℓ ∈ Tℓ and ∥fm(Qk)∥ = O(1), so the Schwartz kernel family of Qm+1

k fm(Qk) =
Qm
k fm(Qk)Qm is in O(k2n−m−1). Choosing m sufficiently large at each step, we then

deduce from (3.10) that the Schwartz kernel family of Pk is O(k−∞) outside the
diagonal and that the local expansions (2.10) hold.

So we have proved the existence of U ∈ Lϵ(A,B) with σ0(U) = ρ and satisfy-
ing (3.7) for any k except a finite set. For the missing k’s, we modify Π′

k by choosing
any subspace H′

k of C∞(M,Lk ⊗ B) having the same dimension as Hk, define Π′
k

as the orthogonal projector onto H′
k and Uk as any isometry Hk → H′

k extended to
zero on H⊥

k . Then Π′
k and Uk have a smooth Schwartz kernel, so the new families Π′

and U are still in L+(B) and Lϵ(A,B) respectively.
It is now easy to prove the last assertion: if P ∈ L+(A), then UPU∗ ∈ L+(B)

because U ∈ Lϵ(A,B) and U∗ ∈ Lϵ(B,A). If ΠPΠ = P , then Π′(UPU∗)Π′ = UPU∗

by (3.7). So P ∈ T implies that UPU∗ ∈ T ′, which defines an isomorphism from T
into T ′ because we can invert it by sending Q into U∗QU . Furthermore, σ0(UPU∗) =
ρ∗σ0(P )ρ which leads to (3.8). □

A first corollary is the computation of the symbols of commutators in terms of
Poisson bracket. Recall the Toeplitz operators Tk(f) : Hk → Hk associated to
f ∈ C∞(M). Define similarly T ′

k(f) : H′
k → H′

k.

Corollary 3.6. — [Tk(f), Tk(g)] = ik−1Tk({f, g}) + O(k−2) for any f, g ∈
C∞(M).

Another proof will be provided in Proposition 6.7.
Proof. — This amounts to show that for any two Toeplitz operators T , S of T

with symbol τ0(T ) = f idF , τ0(S) = g idF , we have τ1([T, S]) = i{f, g} idF . By
Theorem 3.5, this holds for T if and only if this holds for T ′. The results for T ′ has
been proved in [Cha16, Theorem 1.4], when the projector is chosen as in [Cha16,
Theorem 1.1]. □
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The operators T ′
k(f) are defined not only for f ∈ C∞(M) but also for f ∈

C∞(M,EndB). Since τ ′
q(k−qT ′

k(f)) = f , it follows that we can define the Toeplitz
operators of T ′ as the families (Tk) such that for any N ,

Tk =
N∑
ℓ=0

k−ℓTk(fℓ) + O
(
k−(N+1)

)
for a sequence (fℓ) of C∞(M,EndB). This provides a definition of T ′ without any
reference to the algebra L+(B). Observe also that the coefficients fℓ are uniquely
determined by T and the map T ′ → C∞(M,EndB)[[ℏ]] sending T into ∑ ℏℓfℓ is
a full symbol map, meaning that it is onto and its kernel is T ′ ∩ O(k−∞). This
full symbol map can also be used to get uniform control of the product of Toeplitz
operators, cf. [Cha16]. But unfortunately, this does not hold for T , except in the
particular case where F has rank one, so that EndF ≃ C. This happens in particular
for higher Landau level in dimension n = 1.

A second consequence of Theorem 3.5 is the computation of the dimension of our
quantum spaces. Here the parity assumption is not necessary.

Theorem 3.7. — Let Π ∈ L(A) be a projector whose symbol π = σ0(Π) has a
constant rank. Then the dimension of Hk = Im(Πk) is

dim Hk =
∫
M

ch
(
Lk ⊗ F

)
Td(M)

when k is sufficiently large, where F is the subbundle of D(TM) ⊗ A given by
Fx = Im π(x) for any x ∈ M .

Proof. — We introduce a new family (H′′
k := KerDk) where Dk is the spin-c Dirac

operator acting on C∞(M,Lk ⊗B ⊗ S) with S := ∧(T ∗M)0,1 the spinor bundle. By
the Atiyah–Singer theorem and a vanishing theorem [BU96, MM02], the dimension
of H′′

k is given by the Riemann–Roch number of Lk ⊗B when k is sufficiently large.
We claim that the projector Π′′

k of C∞(M,Lk ⊗B⊗S) onto H′′
k belongs to L+(B⊗S)

and has symbol ρ00 ⊗ pB where pB is the section of End(B⊗S) equal at each x ∈ M
to the projector of Bx⊗Sx onto Bx⊗C. This is actually a reformulation of results by
Ma and Marinescu [MM07], as is explained in [Cha16, Appendix A]. Alternatively
this follows from the companion paper [Cha21].

Now the image of the symbol ρ00 ⊗ pB is isomorphic with B, so by Theorem 3.5,
when k is sufficiently large, H′′

k has the same dimension as H′
k = Im Π′

k, where Π′
k is

any self-adjoint projector of L+(B) with symbol ρ00 ⊗ idB.
To conclude, when Π is even, by another application of Theorem 3.5, for B = F ,

H′
k and Hk have the same dimension when k is sufficiently large. The same proof

works for Π not being necessarily even. Actually, the existence of V satisfying (3.9)
already implies that the dimensions of Hk and H′

k are the same when k is large. □

4. Landau Hamiltonian algebra

In this section, we come back to the algebra S(Cn) introduced in Section 2.1. We
extend the action of the elements of S(Cn) on D(Cn) to the complete polynomial

ANNALES HENRI LEBESGUE



Landau levels on a compact manifold 95

space and we compute the corresponding Schwartz kernel. This will be used in the
sequel to give an intrinsic definition of the symbol maps σq, cf. Definition 5.6, and
to understand the composition properties of the class L(A,B).

Let P(Cn) be the space of polynomials map from Cn to C, so any f ∈ P(Cn)
has the form f = ∑

aαβz
αzβ where the sum is finite and the aαβ are complex

numbers. The space D(Cn) introduced in Section 2.1 is the subspace of P(Cn) of
antiholomorphic maps. We endow P(Cn) with the same scalar product

⟨f, g⟩ = (2π)−n
∫
Cn
e−|z|2f(z)g(z) dµn(z)(4.1)

as in (2.1) for D(Cn). The family (((α+ β)!)− 1
2 zαzβ, α, β ∈ Nn) is an orthonormal

basis of P(Cn).
For any i = 1, . . . , n, introduce the endomorphism ai = ∂zi and its adjoint a∗

i =
zi − ∂zi . They satisfy the bosonic commutation relations

[ai, aj] =
[
a∗
i , a

∗
j

]
= 0,

[
ai, a

∗
j

]
= δij.

So the a∗
i ai’s are mutually commuting Hermitian endomorphisms. Their eigenspaces

are the Landau levels of Cn. In the sequel, we use the notation aα := a
α(1)
1 . . . aα(n)

n

and (a∗)α := (a∗
1)α(1) . . . (a∗

n)α(n).
Proposition 4.1. —
(1) For i = 1, . . . , n, a∗

i ai is diagonalisable with spectrum N. So we have a
decomposition into mutually orthogonal joint eigenspaces P(Cn) = ⊕

α∈Nn Lα

with Lα = ⋂n
i=1 ker(a∗

i ai − α(i)).
(2) L0 = C[z1, . . . , zn] and for any α ∈ Nn, Lα = (a∗)αL0.
(3) For any α, β ∈ Nn, let ρ̃αβ := (α!β!)− 1

2 (a∗)αρ̃00a
β with ρ̃00 the orthogonal

projector of P(Cn) onto L0. Then
(a) ρ̃αβ is zero on the Lγ ’s with γ ̸= β and restricts to a unitary isomorphism

from Lβ to Lα

(b) ρ̃αα is the orthogonal projector onto Lα.
(c) ρ̃αβ ◦ ρ̃α̃β̃ = δβα̃ρ̃αβ̃ and ρ̃∗

αβ = ρ̃βα

Proof. — The result is certainly standard in condensed matter theory. For the
convenience of the reader, we explain briefly the proof for n = 1. The extension
in higher dimension is straightforward. We write a := a1, recall the commutation
relation [a, a∗] = 1 and set Lm := (a∗)m(C[z]) for any m ∈ N.

We check by induction that Lm = ker(a∗a−m). First, writing ⟨a∗af, f⟩ = ∥af∥2,
it comes that ker a∗a = ker a = L0. Assume now that Lm = ker(a∗a − m). By
the commutation relation, f ∈ Lm implies that a∗aa∗f = (m + 1)a∗f , so Lm+1 ⊂
ker(a∗a− (m+ 1)). Conversely, by the commutation relation again, a∗af = (m+ 1)f
implies that (a∗a)af = maf so af ∈ Lm and f = (m+ 1)−1a∗(af) ∈ Lm+1.

To conclude that a∗a is diagonalizable with eigenvalues in N, it suffices to prove
that P(C) is spanned by the Lm. Introduce the filtration Fm := ⊕m

ℓ=0z
ℓC[z], m ∈ N.

If f ∈ C[z], then zmf = (a∗)mf mod Fm−1. So Fm = Lm + Fm−1 = . . . = Lm +
Lm−1 + . . .+ L0 by reiterating.

So we have proved that P(C) = ⊕Lm with Lm = ker(a∗a − m), which shows
the first and second assertions of the proposition. By the commutation relation,
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aa∗ = (m + 1) on Lm. So a∗ : Lm → Lm+1 is invertible with inverse (m + 1)−1a :
Lm+1 → Lm. We conclude that

• if p ⩽ m, then ap restricts to an isomorphism from Lm to Lm−p, whose inverse
is the restriction of (m−p)!

m! (a∗)m to Lm−p.
• if p > m, then ap(Lm) = {0}.

With these two facts, we easily check the third assertion. □

By the last assertion of Proposition 4.1, the space S̃(Cn) of endomorphisms of
P(Cn) generated by the ρ̃αβ’s is closed under composition, so it is an algebra. By
the following proposition, S̃(Cn) is isomorphic with the algebra S(Cn) introduced
in Section 2.1, through the map sending ρ̃αβ into ραβ.

Proposition 4.2. — The elements of S̃(Cn) preserve the subspace D(Cn) of
P(Cn). Furthermore, the restriction map res : S̃(Cn) → End(D(Cn)) is injective,
with image S(Cn) and res(ρ̃αβ) = ραβ.

Recall the decomposition (2.5) of S(Cn) into the subspaces of even and odd ele-
ments. Since S̃(Cn) ≃ S(Cn), this gives us a new decomposition

S̃(Cn) = S̃+(Cn) ⊕ S̃−(Cn).

Proof. — Observe first that the operators ai, a∗
i and the projector ρ̃00 preserves

D(Cn). Furthermore, for any f ∈ D(Cn), aif = ∂zif , a∗
i f = zif and ρ̃00f = f(0).

Consequently, the operators ρ̃αβ preserve D(Cn) and an easy computation shows
that

ρ̃αβ
(
(β!)− 1

2 zβ
)

= (α!)− 1
2 zα, ρ̃αβ(zγ) = 0, ∀ γ ∈ Nn \ {β}.

This means that the restriction of ρ̃αβ to D(Cn) is exactly the endomorphism ραβ
introduced in Section 2.1, cf. Equation (2.3). So the restriction map res is well-defined,
its image is S(Cn), and the ραβ’s being linearly independent, it is injective. □

Let us compute the Schwartz kernel of each ρ̃αβ.

Lemma 4.3. — For any f ∈ P(Cn), we have

(ρ̃αβf)(u) = (2π)−n
∫
Cn
eu·v−|v|2pαβ(u− v) f(v) dµn(v)

where u · v = ∑
uivi, pα,β(z) =

(
α!β!

)− 1
2
(
∂z − z)αzβ.

In particular, the orthogonal projector ∑|α|=m ρ̃αα onto ⊕|α|=m Lα has the Schwartz
kernel

(2π)−neu·v−|v|2Q(n−1)
m

(
|u− v|2

)
dµn(v)(4.2)

where Q(n−1)
m is the Laguerre polynomial and we have used (2.13).

Proof. — For α = β = 0, this is the well-known formula for the Schwartz ker-
nel K(u, v) = (2π)−neu·v−|v|2 of the projector onto the Bargmann space, which in
our setting is the L2-completion of L0. So the Schwartz kernel of (a∗)αρ̃00a

β is
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Kα,β(u, v) = (u− ∂u)α(−∂v)βK(u, v). To compute this, we use that for a polynomial
g(z, z)

(ui − ∂ui)(K(u, v)g(u− v)) = K(u, v)(a∗
i g)(u− v),

(∂vi)(K(u, v)g(u− v)) = K(u, v)(b∗
i g)(u− v)

where b∗
i := zi − ∂zi . So Kα,β(u, v) = K(u, v)p(u − v) with p(z, z) = (a∗)α(b∗)β1 =(

∂z − z)αzβ, which ends the proof. □

So on one hand, the elements of S̃(Cn) act on P(Cn), on the other hand, the
Schwartz kernel of ρ̃αβ is given by a polynomial pαβ ∈ P(Cn).

Proposition 4.4. — S̃(Cn) consists of the endomorphisms V having the form

(V f)(u) = (2π)−n
∫
Cn
eu·v−|v|2q(u− v)f(v) dµn(v)(4.3)

with q ∈ P(Cn). Furthermore, the map Op : P(Cn) → S̃(Cn), sending q into V , is
an isomorphism which preserves the parity and

tr
(
Op(q)

∣∣∣D(Cn)
)

= q(0)
Op(q) ◦ Op(f) = Op(Op(q)f)

⟨q, f⟩ = (Op(f)∗q) (0)
(4.4)

for any q, f ∈ P(Cn).

Proof. — Lemma 4.3 says that Op(pαβ) = ρ̃αβ. The family (pαβ) is a basis of P(Cn)
because pαβ(z) = (α!β!)− 1

2 (−z)αzβ+ a linear combination of zα′
zβ

′ with α′ < α and
β′ < β. Since (ραβ) is a basis of S(Cn), (ρ̃αβ) is a basis of S̃(Cn) and it follows that
Op is an isomorphism. This isomorphism preserves the parity, because ρ̃αβ and pαβ
have both the same parity as |α| + |β|. For the first equation of (4.4), it suffices to
prove it for q = pα,β, and in this case, it follows from tr ραβ = δαβ = pαβ(0).

To prove the second equation of (4.4), observe that we recover q from the Schwartz
kernel of Op(q) by multiplying by (2π)n and setting v = 0, that is f(u) = (2π)n Op(f)
(u, 0). Let g ∈ P(Cn) be the function such that Op(g) = Op(q) ◦ Op(f). Then using
the previous observation for f and for g, we have

(Op(q)f)(u) = (2π)n
∫
Cn

Op(q)(u, v) Op(f)(v, 0) dµn(v)

= (2π)n Op(g)(u, 0)
= g(u).

The proof of the third equation of (4.4) is similar by using that Op(f)∗(0, u) =
Op(f)(u, 0) = (2π)−nf(u). □

As a last remark, we can replace in the previous definitions Cn with any n-
dimensional Hermitian space E as we did in section 2.1. So we denote by P(E)
the space of polynomial maps E → C and by S̃(E) the space of endomorphisms
of P(E) having the form (4.3), where we interpret u · v as the scalar product of
the vectors u, v of E and |v| as the norm of v. Observe as well that the map
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Op : P(E) → S̃(E) is well-defined. Furthermore the restriction from P(E) to its
subspace D(E) induces an isomorphism S̃(E) ≃ S(E).

5. The Schwartz kernels of operators of L(A,B)

5.1. The section E

An important ingredient in the global Schwartz kernel description of operators of
L(A,B) is a section E of L⊠ L satisfying the following conditions. For any y ∈ M ,
denote by Ey the section of L⊗ Ly given by Ey(x) = E(x, y) for any x ∈ M . Then
we will assume that for any y ∈ M

Ey(y) = u⊗ u, ∀ u ∈ Ly with |u| = 1,
(∇Ey)(y) = 0,

(∇ξ∇ηEy)(y) = −
(
i
2ω(ξ, η) + 1

2ω(ξ, jη)
)
Ey(y), ∀ ξ, η ∈ TyM

(5.1)

Such a section appeared already in the expansion (2.10) as follows. Choose a unitary
frame t of L and a coordinate system on the same open set, then the section

E(y + ξ, y) := e−φ(y,ξ)t(y + ξ) ⊗ t(y),(5.2)

with φ defined as in (2.10), satisfies (5.1). From this local construction, we easily
obtain a global section E by using a partition of unity.

The conditions (5.1) determine the second-order Taylor expansion of E at (y, y)
in the directions tangent to the first factor of M2. Since any tangent vector of M2

at (y, y) is the sum of a vector tangent to the diagonal and a vector tangent to the
first factor, we deduce that E is uniquely determined modulo a section vanishing to
third order along the diagonal.

The function ψy(x) = −2 ln |Ey(x)| vanishes to second order at y and for any
ξ, η ∈ TyM , (ξ.η.ψy)(y) = ω(ξ, jη), so ψy(x) > 0 when x ̸= y is sufficiently close to
y. So modifying E outside the diagonal, we can assume that it satisfies as well

|E(x, y)| < 1, ∀ (x, y) ∈ M2 such that x ̸= y(5.3)
Another important property of E is the symmetry:

E(x, y) = E(y, x) + O
(
|x− y|3

)
(5.4)

For a longer discussion, the reader is referred to [Cha16].
In the sequel we will need the following expression of E in terms of complex

coordinates and a frame of L, both normal at a point p0 ∈ M . We say that a
function or a section on M (resp. M2) is in Op0(m) (resp. Op0,p0(m)) if it vanishes
to order m at p0 (resp. (p0, p0)). Let (∂i)ni=1 be an orthonormal basis of T 1,0

p0 M , i.e.
1
i
ωp0(∂i, ∂j) = δij. Choose complex valued functions zi on a neighborhood of p0 such

that
zi(p0) = 0, dzi(∂j) = δij, dzi(∂j) = 0 at p0.(5.5)
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Then (Re zi, Im zi)ni=1 is a coordinate system on a neighborhood of p0 and ω|p0 =
i
∑
dzi ∧ dzi. The curvature of L being 1

i
ω, there exists a unitary frame t of L at p0

such that
∇t = 1

2
∑(zidzi − zidzi) ⊗ t+ Op0(2).(5.6)

To construct such a t, multiply any unitary local section by exp(i(f1 + f2)) where f1
and f2 are real valued functions respectively linear and quadratic in zi, zi. With f1
conveniently chosen, ∇t = Op0(1) and with the right f2, we get (5.6).

Then
(5.7) E(x, y) = ez(x)·z(y)− 1

2(|z(x)|2+|z(y)|2)t(x) ⊗ t(y) + O(p0,p0)(3).
A similar expression already appeared in the description of the Schwartz kernels of
the operators of S̃(Cn). Indeed, let LCn = Cn × C be the trivial holomorphic line
bundle equipped with the metric such that the frame s(z) = (z, 1) has a pointwise
norm |s(z)|2 = e−|z|2 . Then it is natural to interpret the elements of P(Cn) as
sections of LCn , because the scalar product (4.1) is the integral of the pointwise scalar
product (f(z)s(z), g(z)s(z)) = f(z)g(z)e−|z|2 . Furthermore, in the integral (4.3), we
can interpret e−|v|2f(v) as the pointwise scalar product (f(v)s(v), s(v)). In other
words, the Schwartz kernel of V is
(5.8) (2π)−nECn(u, v)q(u− v) with ECn(u, v) = eu·vs(u) ⊗ s(v).
Now equip LCn with its Chern connection, that the unique connection compatible
with both the holomorphic and Hermitian structures. Then ∇s = −∑

zidzi ⊗ s.
So the curvature is 1

i
ωCn with ωCn = i

∑
dzi ∧ dzi. And if t is the unitary frame

t(z) = e|z|2/2s(z), we have ∇t = 1
2
∑(zidzi − zidzi) ⊗ t and

ECn(u, v) = eu·v− 1
2(|u|2+|v|2)t(u) ⊗ t(v),

the same formula as (5.7).

5.2. Schwartz kernel expansion

We consider operator families (Pk : C∞(M,Lk ⊗ A) → C∞(M,Lk ⊗ B), k ∈ N)
having smooth Schwartz kernels. Recall the notations introduced in the beginning
of Section 2.2. In particular, ∥Pk∥ is the operator norm whereas |Pk| is the function
of M2 sending (x, y) into |Pk(x, y)|.

Let E be a section of L ⊠ L satisfying (5.1) and (5.3) and b ∈ C∞(M2, B ⊠ A).
Then, viewing (Lk ⊗B)⊠ (Lk ⊗A) as (L⊠L)k ⊗ (B⊠A), we introduce the operator
family (Pk) with Schwartz kernels

Pk(x, y) =
(
k

2π

)n
Ek(x, y)b(x, y)(5.9)

The pointwise norms of Pk depend in an essential way on the vanishing order of b
along the diagonal. If m ∈ N, we write b = O(m) to say that all the derivatives of b
of order ⩽ m− 1 are zero at each point of the diagonal. Recall that

ψ(x, y) = −2 ln |E(x, y)|
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is positive outside the diagonal, and vanishes to second order along the diagonal
with a Hessian non-degenerate in the transverse direction.

Lemma 5.1. — If Pk is given by (5.9) with b = O(m), then |Pk| = O(kn−m
2 e−kψ4 )

and ∥Pk∥ = O(k−m
2 )

Proof. — Since b = O(m), |b| = O(ψm
2 ). So

|Pk| ⩽ Ckne−kψ2 ψ
m
2 = Ckn−m

2 e−kψ4 e−kψ4 (kψ)m2 ⩽ C ′kn−m
2 e−kψ4

because t → e− t2
2 tm is bounded on R⩾0. This proves the first estimate and can be

written locally in a coordinate system as
|Pk(x, y)| ⩽ Ckn−m

2 e−k|x−y|2/C .

So
∫
M |Pk(x, y)| dµM(y) and

∫
M |Pk(x, y)| dµM(x) are both ⩽ Ck−m

2 and the operator
norm estimate follows from Schur test. □

Consider now (Pk) ∈ L(A,B). Recall that by definition (2.9) we have for any
N ∈ N,

Pk(x, y) =
(
k

2π

)n
Ek(x, y)

∑
ℓ∈Z,

ℓ+m(ℓ)⩽N

k− ℓ
2 bℓ(x, y) +RN,k(x, y)(5.10)

where
(i) m : Z → N ∪ {∞} is such that for any N , {ℓ/ ℓ + m(ℓ) ⩽ N} is finite, and

ℓ+m(ℓ) ⩾ 0 for any ℓ.
(ii) (bℓ)ℓ∈Z is a family of C∞(M2, B ⊠ A) such that bℓ = O(m(ℓ)) for any ℓ.
(iii) |RN,k(x, y)| = O(kn−N+1

2 ) uniformly on M2.
By Lemma 5.1, |Ek(x, y)k− ℓ

2 bℓ(x, y)| ∈ O(k− 1
2 (ℓ+m(ℓ))). So the expansion (5.10) is

consistent in the sense that passing from N to N + 1, we add new terms k− ℓ
2 bℓ such

that ℓ+m(ℓ) = N + 1, which contribute to Pk(x, y) with a O(kn− 1
2 (N+1)).

Lemma 5.2. — If the expansion (5.10) holds, then for any q > 0

|Pk| = O
(
kne−kψ4

)
+ O

(
k−q

)
, ∥Pk∥ = O(1)

Similarly the remainders RN,k’s satisfy for any q > 0,

|RN,k| = O
(
kn−N+1

2 e−kψ4
)

+ O
(
k−q

)
, ∥RN,k∥ = O

(
k−N+1

2
)
.

Proof. — To prove the first estimate, we use (5.10) with N sufficiently large so
that |RN,k| = O(k−q), and the result follows from Lemma 5.1 because ℓ+m(ℓ) ⩾ 0.
The operator norm estimate is proved similarly by choosing N so that |RN,k| = O(1)
which implies that ∥RN,k∥ = O(1). The proof for the RN,k is essentially the same. □

We next show that in the expansion (5.10), we can choose any section E satisfying
the assumptions given in Section 5.1.

Lemma 5.3. — Assume (5.10) holds and let E ′ be a section satisfying (5.1)
and (5.3). Then there exists a family (b′

ℓ) of C∞(M2, B ⊠ A) such that (5.10) holds
with E ′ and b′

ℓ instead of E and bℓ.
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Proof. — Observe first that (5.10) holds outside the diagonal if and only |Pk(x, y)|
is in O(k−∞) outside the diagonal, and this condition is clearly independent of the
choice of E and the bℓ’s. On a neighborhood of the diagonal, we have E = egE ′.
Since g ∈ O(3), we can assume that |g| ⩽ ψ/8. Let us write

Pk =
(
k

2π

)n
EkbN,k + O

(
kn−N+1

2
)

with bN,k =
∑

ℓ+m(ℓ)⩽N
k− ℓ

2 bℓ.

By Lemma 5.1, |E|kbN,k = O(e−kψ4 ). Using that

exp z =
N∑
p=0

zp

p! + rN(z) with |rN(z)| ⩽ |z|N+1

(N + 1)!e
| Re z|,

we deduce from Ek = ekg(E ′)k that

EkbN,k = (E ′)kbN,k
N∑
p=0

kp
gp

p! +RN,k(5.11)

where
|RN,k| ⩽ CNe

−kψ4 |kg|N+1ek| Re g| ⩽ CNe
−kψ8 |kg|N+1 = O

(
k−N+1

2
)

because | Re g| ⩽ ψ/8. To conclude now, it suffices to define the b′
ℓ so that

(E ′)k
 ∑
ℓ+m(ℓ)⩽N

k− ℓ
2 bℓ

 N∑
p=0

kp
gp

p!

 = (E ′)k
∑

ℓ+m′(ℓ)⩽N
k− ℓ

2 b′
ℓ + O

(
k−N+1

2
)

(5.12)

holds for any N . This suggests that each b′
ℓ should be equal to the infinite sum

bℓ + bℓ+2 g + bℓ+4
g2

2 + bℓ+6
g3

6 + . . .

But by Lemma 5.1, the equality (5.12) depends only on the class of b′
ℓ modulo

O(N − ℓ), so we can interpret these infinite sums as sums of Taylor expansions along
the diagonal. Since bℓ+2p g

p = O(m(ℓ + 2p) + 3p) = O(3p), by Borel lemma, there
exists b′

ℓ such that for any M

b′
ℓ =

M∑
p=0

bℓ+2p
gp

p! + O(3(M + 1))(5.13)

So b′
ℓ = O(m′(ℓ)) with m′(ℓ) := min{m(ℓ+ 2p) + 3p, p ∈ N}. We easily check that

m′ satisfies the same condition as m. We finally deduce (5.12) by removing with
Lemma 5.1 all the coefficients leading to a O(k−N+1

2 ). □

Suppose now we have an open set U of M , and functions ui ∈ C∞(U2), i =
1, . . . , 2n vanishing along the diagonal and such that for any y ∈ U , (ui(·, y)) is a
coordinate system on a neighborhood of y. Then we can write the Taylor expansions
along the diagonal as follows: any f ∈ C∞(U2) has a decomposition

f(x, y) =
M∑
m=0

fm(y, u(x, y)) + O(M + 1)(5.14)
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where each fm(y, ξ) is homogeneous polynomial in ξ with degree m. This can be
done also for sections of B ⊠ A by introducing frames of A and B on U , so that
C∞(U2, B ⊠ A) ≃ C∞(U2,Cr).

Lemma 5.4. — The expansion (5.10) holds on U2 if and only if there exists a
sequence (ap) of C∞(U ×R2n,Cr), each ap(x, ξ) being polynomial in ξ, such that for
any N

(5.15) Pk(x, y) =
(
k

2π

)n
Ek(x, y)

N∑
p=0

k− p
2ap

(
y, k

1
2u(x, y)

)
+ O

(
kn−N+1

2
)
.

The remainders in (5.15) satisfy the same pointwise estimates as the RN,k given
in Lemma 5.2, the proof is identical.

Proof. — If (5.10) holds on U2, writing the Taylor expansion of each bℓ as in (5.14),
we have by Lemma 5.1

Ek(x, y)k− ℓ
2 bℓ(x, y) = Ek(x, y)k− ℓ

2

N−ℓ∑
m=m(ℓ)

bℓ,m(y, u(x, y)) + O
(
k−N+1

2
)

= Ek(x, y)k− ℓ+m
2

N−ℓ∑
m=m(ℓ)

bℓ,m
(
y, k

1
2u(x, y)

)
+ O

(
k−N+1

2
)

So we obtain (5.15) with ap = ∑
ℓ+m(ℓ)⩽p bℓ,p−ℓ, this sum being finite because of the

assumption satisfied by m(ℓ).
Conversely, starting from the ap’s, for each ℓ ∈ Z, we construct by Borel summation

a function bℓ such that bℓ(x, y) = ∑M
m=0 aℓ+m,m(y, u(x, y)) + O(M + 1) for all M ,

where by convention ap = 0 for p < 0, and am+ℓ,m is the degree m homogeneous
component of am+ℓ. We readily deduce the expansion (5.10) from (5.15) by using
Lemma 5.1 again.

Observe that bℓ = O(m(ℓ)) with m(ℓ) the smallest m such that aℓ+m,m ≠ 0. Since
ap = 0 for p < 0, we have ℓ+m(ℓ) ⩾ 0. Furthermore, ℓ+m(ℓ) ⩽ N happens only if
there exists m ⩽ N − ℓ such that aℓ+m,m ̸= 0, that is if there exists p ⩽ N such that
ap,p−ℓ ̸= 0, so necessarily p−ℓ ⩽ d(p) where d(p) is the degree of ap. So ℓ+m(ℓ) ⩽ N
implies that ℓ ⩾ min{p − d(p)/ p = 0, . . . , N}. So ℓ + m(ℓ) ⩽ N only for a finite
number of ℓ. □

We have essentially proved Proposition 2.1. Here are the details.
Proof of Proposition 2.1. — Identify U with an open convex set of R2n, then the

functions ui(x, y) = xi − yi satisfy the above conditions. And for (x, y) = (x′ + ξ′, x′),
we have ap(y, k

1
2u(x, y)) = ap(x′, k

1
2 ξ′), so the expansions (5.15) and (2.10) are the

same when E = e−φ. Now Proposition 2.1 follows from Lemma 5.4, the local version
of Lemma 5.3 and the fact that E = e−φ in (2.10) satisfies the conditions (5.1). □

It is the good place to prove Lemma 2.6 on the characterization of the parity in
terms of local expansions.

Proof of Lemma 2.6. — This follows from the relation between the coefficients ap
and the coefficients bℓ given in the proof of Lemma 5.4. For instance, if bℓ = 0 for
any odd integer ℓ, then bℓ,p−ℓ ≠ 0 only for even ℓ and in this case it has the same
parity as p, so ap = ∑

ℓ+m(ℓ)⩽ p bℓ,p−ℓ has the same parity as p. Conversely, if ap has
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the same parity as p for any p, then aℓ+m,m = 0 for odd ℓ, so bℓ vanishes to infinite
order on the diagonal for odd ℓ, so we can assume that bℓ = 0. The proof for odd
elements is the same. □

5.3. Filtration and symbol

For an operator (Pk) ∈ L(A,B), we have two different ways of writing the expansion
of its Schwartz kernel: a global one (5.10) with coefficients bℓ and a local one (5.15)
with coefficients ap. We now discuss the uniqueness of these coefficients. Recall that
(Pk) ∈ Lq(A,B) if in all the local expansions (5.15), the coefficients ap are zero for
p < q.

Proposition 5.5. —
(1) In the local expansions (5.15), the coefficients ap are uniquely determined by

the section E, the functions (ui) and the frames of A and B.
(2) In the global expansion (5.10), the Taylor expansions of the coefficients bℓ

along the diagonal are uniquely determined by the section E.
(3) (Pk) ∈ Lq(A,B) iff

(
∀ ℓ ∈ Z, bℓ = O(q − ℓ)

)
iff |Pk| = O(kn− q

2 ).
(4) If (Pk) ∈ Lq(A,B), then the coefficient aq of the local expansion (5.15), viewed

as a section of P(TM) ⊗ B ⊗ A → U does neither depend on E nor on the
functions (ui). Furthermore,

aq =
∑

ℓ+m(ℓ)=q
bℓ,q−ℓ(5.16)

where the bℓ are the coefficients of the global expansion (5.10) and bℓ,q−ℓ is
defined as in (5.14).

Proof. — Assertions 1, 2 and 3 follow from the following facts: Let f0, . . . , fq in
C∞(M2). Let ψ = −2 ln |E|. Then

e−kψ
q∑
ℓ=0

k− ℓ
2fℓ = O

(
k− q

2
)

⇔ f0 ∈ O(q), . . . , fq ∈ O(0).(5.17)

Indeed, recall that ψ ⩾ 0, is in O(2) and its Hessian is non-degenerate in the direction
transverse to the diagonal. The converse of (5.17) follows from the same proof as
Lemma 5.1. The direct sense of (5.17) follows from [Cha16, Proposition 2.4 and
Remark 2.5].

From this, we deduce that |Pk| = O(kn− q
2 ) iff bℓ = O(q − ℓ) for any ℓ. Since

ap = ∑
ℓ+m(ℓ)⩽p bℓ,p−ℓ by the proof of Lemma 5.4, (bℓ = O(q− ℓ) for any ℓ) iff (ap = 0,

for any p < q). This last condition is the definition of Lq(A,B). We have just proved
Assertion 3. This implies that |Pk| = O(k−∞) iff (ap = 0 for any p) iff (bℓ = O(∞)
for any ℓ), which proves Assertions 1 and 2.

For the fourth assertion, since P ∈ Lq(A,B), we have bℓ = O(q − ℓ) for any ℓ, so
we can assume that ℓ+m(ℓ) ⩾ q, so

aq =
∑

ℓ+m(ℓ)⩽q
bℓ,q−ℓ =

∑
ℓ+m(ℓ)=q

bℓ,q−ℓ.
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Since bℓ = O(q − ℓ), the (q − ℓ)th order term in the Taylor expansion of bℓ is
intrinsically defined as a function

ξ ∈ TxM → bℓ,q−ℓ(x, ξ) ∈ Bx ⊗ Ax,

so we can view aq(x, ·) as an element of P(TxM) ⊗Bx ⊗ Ax.
It remains to prove that for ℓ + m(ℓ) = q, bℓ,q−ℓ does not depend on the choice

of E. With the notation of the proof of Lemma 5.3, this amounts to prove that
b′
ℓ = bℓ + O(q− ℓ+ 1). This follows from (5.13), because bℓ+2pg

p = O(m(ℓ+ 2p) + 3p)
and m(ℓ+ 2p) + 3p ⩾ q − (ℓ+ 2p) + 3p = q + p− ℓ ⩾ q + 1 − ℓ when p ⩾ 1. □

We are now ready to define the symbol map

σq : Lq(A,B) → C∞(S(M) ⊗ Hom(A,B)).

First, for any x ∈ M , TxM is a Hermitian space, so it has an associated algebra
S̃(TxM) with a map Op : P(TxM) → S̃(TxM) as in Section 4.

For any (Pk) in Lq(A,B), by the fourth assertion of Proposition 5.5, aq(x, ·) ∈
P(TxM) ⊗Bx ⊗ Ax. Identifying Bx ⊗ Ax with Hom(Ax, Bx), we set

σ̃q(P )(x) := Op(aq(x, ·)) ∈ S̃(TxM) ⊗ Hom(Ax, Bx)(5.18)

Recall that we have an isomorphism S̃(TxM) ≃ S(TxM) defined by restriction from
P(TxM) to D(TxM).

Definition 5.6. — σq(P )(x) ∈ S(TxM) ⊗ Hom(Ax, Bx) is defined as the restric-
tion of σ̃q(P )(x).

5.4. Proofs of the results of Section 2.2

We now give the proof of Proposition 2.2, Theorem 2.3 and Theorem 2.7.
Proof of Proposition 2.2. — The first assertion is an easy consequence of the

definition of Lq(A,B) by the local expansions. In the second assertion, the charac-
terisation in terms of pointwise norm is the third assertion of Proposition 5.5. By
Lemma 5.1 or Lemma 5.2, every (Pk) ∈ Lq(A,B) satisfies ∥Pk∥ = O(k− q

2 ). For the
converse, it suffices to show that if σ0(P ) ̸= 0, then ∥Pk∥ ⩾ c > 0. This is a conse-
quence of Corollary 5.8. The third assertion is straightforward. The fourth assertion
is a variation on Borel Lemma, cf. for instance [Cha16, Proposition 2.1]. □

Proof of Theorem 2.3. — In Definition 5.6, we have defined a map

σq : Lq(A,B) → C∞(M,S(M) ⊗ Hom(A,B)).

having kernel Lq+1(A,B) by the injectivity of Op, cf. Proposition 4.4. To prove
that it is surjective, we show that for any c ∈ C∞(M,P(TM) ⊗ B ⊗ A), there
exists P ∈ Lq(A,B) such that in the local expansions (5.15), aq = c. To do this,
let d ∈ N be an upper bound of the degree of c(x, ·) for any x ∈ M . For any
m = 0, . . . , d, let cm(x, ·) be the homogeneous component with degree m of c(x, ·).
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Choose a section bq−m of B⊠A vanishing to order m along the diagonal and satisfying
bq−m(x+ ξ, x) = cm(x, ξ) + O(m+ 1). Then we set

Pk(x, y) :=
(
k

2π

)n
Ek(x, y)

q∑
ℓ=q−d

k− ℓ
2 bℓ(x, y).

Since bℓ = O(q− ℓ) for any ℓ, (Pk) ∈ Lq(A,B) by Assertion (3) of Proposition 5.5.
By (5.16), we have aq = ∑q

ℓ=q−d bℓ,q−ℓ = ∑d
m=0 cm = c, as was to be proved.

Let us prove the remaining assertions of Theorem 2.3. Let P ∈ Lq(A,B). Asser-
tion (1), that is σq(P ) = σ0(kq/2P ), follows directly from the local expansions (5.15).
Let us prove Assertion (2). If f ∈ C∞(M,Hom(B,C)), then the Schwartz kernel
of P ′

k = f ◦ Pk is P ′
k(x, y) = f(x)(Pk(x, y)), so P ′

k has the same expansion (5.10)
as Pk with b′

ℓ(x, y) = f(x)(bℓ(x, y)) instead of bℓ, which implies that P ′
k belongs to

Lq(A,B) with the same function ℓ 7→ m(ℓ). Furthermore, with the notation (5.14),
b′
ℓ,m(ℓ)(x, ·) = f(x)bℓ,m(ℓ)(x, ·), which implies by (5.16) that σq(P ′)(x) = f(x) ◦
σq(P )(x).

Let us prove Assertion (3). Since P ∗
k (x, y) = Pk(y, x), the Schwartz kernel of P ∗

k

has the expansion (5.10) with E ′(x, y) = E(y, x) instead of E and b′
ℓ(x, y) = bℓ(y, x)

instead of bℓ. By (5.4), we deduce that (P ∗
k ) ∈ Lq(B,A). Furthermore, b′

ℓ,m(ℓ)(x, ξ) =
bℓ,m(ℓ)(x,−ξ) so a′

q(x, ξ) = aq(x,−ξ). By (4.3), Op(q)∗ = Op(r) with r(ξ) = q(−ξ),
so σq(P ∗) = σq(P )∗.

Let us prove Assertion (5). By (5.15),

Pk(x, x) = kn−q/2

(2π)n
(
aq(x, 0) + O

(
k− 1

2
))

and by the first equation of (4.4), aq(x, 0) = tr(σq(P )(x)).
Let us prove half of Assertion (6). More precisely, we will deduce from Assertion (4)

that for any P ∈ L(A,B), we have

lim sup
k→ ∞

∥Pk∥ ⩽ sup
x∈M

∥σ0(P )(x)∥(5.19)

With the lower bound provided by Corollary 5.8, this will show Assertion 6. Let f :=
σ0(P )∗σ0(P ). Let m ∈ N be sufficiently large so that πfπ = f where for any x ∈ M ,
π(x) ∈ S(TxM) ⊗ EndAx is the selfadjoint projector onto D⩽m(TxM) ⊗ Ax. Then
for any C > supx∈M ∥σ0(P )(x)∥, there exists a symbol g ∈ C∞(M,S(M) ⊗ EndA)
such that g∗ = g, πgπ = g, g2 = C2π− f . Indeed, g(x) is zero on Dp(TxM) ⊗Ax for
any p > m, and g(x) is the positive square root of C − f on D⩽m(TxM) ⊗ Ax. Let
Π and Q in L(A) be self-adjoint and having symbol π and g respectively. Then by
Assertion 4,

C2Π2 − P ∗P = Q2 +R

with R ∈ L1(A,B). So

∥PkΨ∥2 = ⟨P ∗
kPkΨ,Ψ⟩ =C2∥ΠkΨ∥2 − ∥QkΨ∥2 − ⟨RkΨ,Ψ⟩

⩽
(
C2∥Πk∥2 + C ′k− 1

2
)

∥Ψ∥2.
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by Assertion (2) of Proposition 2.2. Since π2 = π, by Assertion (4) and Assertion (2)
of Proposition 2.2 again, Π2

k − Πk = O(k− 1
2 ) so ∥Πk∥ ⩽ 1 + O(k− 1

2 ). Consequently,
∥Pk∥ ⩽ C(1 + O(k− 1

2 )) which implies (5.19).
It remains to prove Assertion (4). Let (P ′

k) ∈ Lq′(B,C). We will prove that Qk =
P ′
k ◦ Pk belong to Lq′′(A,C) with q′′ = q + q′ and compute its symbol. Since the

composition of operators with kernels in O(k−p) and O(k−ℓ) respectively, has a kernel
in O(k−(p+ℓ)), we can consider each summand of the expansions (5.10) for Pk and P ′

k

separately. In other words, we can assume that Pk = ( k
2π )nEkf and P ′

k = ( k
2π )nEkf ′

with f = O(q) and f ′ = O(q′). So

Qk(x, z) =
(
k

2π

)2n ∫
M

(E(x, y) · E(y, z))kg(x, y, z)dµM(y)(5.20)

with g(x, y, z) = f(x, y)f ′(y, z). Observe that g vanishes to order q′′ along Σ =
{(x, y, z) ∈ M3, x = y = z}.

By (5.3), |E(x, y) ·E(y, z)| < 1 if (x, y, z) /∈ Σ. This implies first that the Schwartz
kernel of (Qk) is in O(k−∞) outside the diagonal. Furthermore, to compute Qk on
a neighborhood of (p, p) up to a O(k−∞), we can reduce the integral (5.20) to a
neighborhood of p. So we can work locally.

Introduce a local orthonormal frame (∂i, i = 1, . . . , n) of T 1,0M on an open
neighborhood U of p in M . Let σi ∈ C∞(U2), i = 1, . . . n be such that

dσi(∂j, 0) = δij + O(1), dσi
(
∂j, 0

)
= O(1)(5.21)

for any i and j. Observe that if the zi are coordinates as in (5.5), then

σi(x, y) = zi(x) − zi(y) + O(p0,p0)(2).(5.22)

So we can use the functions ui = Reσi and ui+n = Im σi when we write the Taylor
expansion (5.14) and the local expansion (5.15).

Restricting U if necessary, we can assume that for any z, the map y ∈ U →
(σi(y, z)) ∈ Cn is a diffeomorphism onto its image. Let µz be the pull-back of the
volume µn by this map. By (5.22), we have µM(y) = ρ(y, z)µz(y) with ρ ∈ C∞(U2)
satisfying ρ(y, y) = 1.

Now using the expressions (5.7) and (5.22), we readily prove that

E(x, y) · E(y, z) = eφ(x,y,z)+r(x,y,z)E(x, z),

where r(x, y, z) = OΣ(3) and φ(x, y, z) = (σ(x, z) − σ(y, z)) · σ(y, z). Arguing as in
the proof of Lemma 5.3, it comes that

(E(x, y) · E(y, z))k = Ek(x, z)ekφ(x,y,z)
N∑
ℓ=0

kℓ

ℓ! (r(x, y, z))ℓ + O
(
k− 1

2 (N+1)
)

so the integrand of (5.20) is equal to

Ek(x, z)ekφ(x,y,z)
N∑
ℓ=0

kℓgℓ(x, y, z) dµz(y) + O
(
k− 1

2 (q′′+N+1)
)

with gℓ(x, y, z) = ρ(y, z)g(x, y, z)(r(x, y, z))ℓ/(ℓ!) = OΣ(q′′ + 3ℓ).
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For any z ∈ U , we write the Taylor expansion of (x, y) → gℓ(x, y, z) at (z, z) with
the coordinates system

(x, y) → Reσi(x, z), Im σi(x, z),Reσi(y, z), Im σi(y, z).

We obtain

gℓ(x, y, z) =
p∑

m=q′′+3ℓ
hℓ,m(z, σ(x, z), σ(y, z)) + OΣ(p+ 1)

with hℓ,m(z, ξ, η) homogeneous polynomial in ξ, η with degree m. Arguing as in
Lemma 5.4, we obtain that

Qk(x, z) =
(
k

2π

)n
Ek(x, z)

N∑
ℓ=0

q′′+2ℓ+N∑
m=q′′+3ℓ

kℓ−
m
2 Iℓ,m(x, z) + O

(
k− 1

2 (q′′+N+1)
)

(5.23)

with

Iℓ,m(x, z) =
(
k

2π

)n ∫
U
ekφ(x,y,z)hℓ,m

(
z, k

1
2σ(x, z), k 1

2σ(y, z)
)
dµz(y)

Set ui = σi(x, z) and let us use the coordinates vi = σi(y, z) for the integration
so that φ(x, y, z) = u · v − |v|2 and dµz(y) = |dvdv|. It comes that Iℓ,m(x, z) =
Jℓ,m(z, k 1

2σ(x, z)) with

Jℓ,m(z, u) =
(
k

2π

)n ∫
ek

1
2 u·v−k|v|2hℓ,m

(
z, u, k

1
2v
)
dµn(v)(5.24)

where we integrate on a neighborhood of the origin in Cn. We can actually integrate
on Cn because this will modify Ek(x, z)Iℓ,m(x, z) by a O(e−k/C). Indeed, |E(x, z)| =
e− 1

2 |u|2 + O(|u|3) so |E(x, z)| = O(e− 1
3 |u|2) so∣∣∣E(x, z)eu·v−|v|2

∣∣∣ = O
(
e− 1

3 |u|2+|uv|−|v|2
)

= O
(
e− 1

4 |v|2
)

and we conclude by using that
∫

|v|⩾ϵ e
− k

4 |v|2|v|m |dvdv| = O(e−k/C) for any ϵ > 0 and
m ∈ N.

Taking the integral (5.24) over Cn, it comes that

Jℓ,m(z, u) = (2π)−n
∫
Cn
eu·v−|v|2hℓ,m(z, u, v) dµn(v)(5.25)

So Jℓ,m does not depend on k. Furthermore it is polynomial in u. To see this, it
suffices to view hℓ,m(z, u, v) as a polynomial in the variables u− v, v and to compare
with the formula (4.3). So Qk(x, z) has the local expansion (5.15), so (Qk) belongs to
Lq′′(A,C). Its symbol is given by the leading order term in (5.23) which corresponds
to ℓ = 0 and m = q′′, that is

σ̃q′′(Q)(x) = Op(J0,q′′(x, ·)).

We can compute it in terms of the symbols of P and P ′ as follows: by (5.16),
σ̃q(P )(x) = Op(aq(x, ·)) where ξ → aq(x, ξ) is the homogeneous polynomial of degree
q such that f(x, y) = aq(y, σ(x, y)) + O(q + 1). Similarly, σ̃q′(P ′)(x) = Op(a′

q′(x, ·))
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with f ′(x, y) = a′
q′(y, σ(x, y))+O(q′ +1). Now by (5.22), σ(x, y) = σ(x, z)−σ(y, z)+

OΣ(2) and it comes that

g(x, y, z) = aq(y, σ(x, z) − σ(y, z))a′
q′(z, σ(y, z)) + OΣ(q′′)

= aq(z, σ(x, z) − σ(y, z))a′
q′(z, σ(y, z)) + OΣ(q′′)

leading to h0,q′′(z, u, v) = aq(z, u− v)a′
q′(z, v) and using first (4.3) and then (4.4), we

have that

σ̃q′′(Q)(x) = Op(J0,q′′(x, ·)) = Op
(
Op(aq(x, ·))a′

q′(x, ·)
)

= Op(aq(x, ·)) ◦ Op(a′
q′(x, ·)) = σ̃q(P )(x) ◦ σ̃q′(P ′)(x)

as was to be proved. □

Proof of Theorem 2.7. — The first assertion follows from the definition of the
parity and Proposition 5.5. For the composition, it suffices to consider the case
treated in the previous proof: we start from (Pk) and (P ′

k) both even. Since hℓ,m(x, ·)
has degree m, Jℓ,m(x, ·) given by (5.25) has the same parity as m, so by (5.23),
(P ′

k ◦ Pk) is even. Last assertion is simply the fact that Op(aq(x, ·)) has the same
parity as aq(x, ·) by Proposition 4.4. □

5.5. Peaked sections

In this section, we state and prove a generalisation of Proposition 2.5. Consider
an auxiliary bundle A. Let us choose a base point x ∈ M , with a coordinate chart
U centered at x, and a trivialisation A|U ≃ U × Ax. To any f ∈ P(TxM) ⊗ Ax, we
associate the section of Lk ⊗ A

Φf
k(x+ ξ) =

(
k

2π

)n
2

Ek(x+ ξ, x) f
(
k

1
2 ξ
)
ψ(x+ ξ)(5.26)

where E is chosen as in Section 5.1, and ψ ∈ C∞
0 (U) is equal to 1 on a neighborhood

of x.
The space P(TxM) ⊗ Ax has a natural scalar product obtained by tensoring the

scalar product (4.1) of P(TxM) with the Hermitian metric of A.

Proposition 5.7. —
(1) For any f , g ∈ P(TxM) ⊗ Ax,

〈
Φf
k ,Φ

g
k

〉
= ⟨f, g⟩ + O(k− 1

2 ).
(2) For any f ∈ P(TxM) ⊗ Ax and Q ∈ L(A,B), QkΦf

k = Φh
k + O(k− 1

2 ) where
h = σ̃0(Q)(x) · f ∈ P(TxM) ⊗Bx.

In the second part, we used the symbol σ̃0(P ) defined in (5.18), and Φh
k is defined

as Φf
k with a trivialisation of B.

Proof. — Consider the operator P f ∈ L(C, A) with Schwartz kernel

P f
k (y + ξ, y) =

(
k

2π

)n
Ek(y + ξ, y) f

(
k

1
2 ξ
)
ψ(y + ξ)ψ(y).
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On one hand, ( k
2π )n2 Φf

k = P f
k (·, x). On the other hand, σ̃0(P f )(x) = Op(f). So we

can compute the scalar product of Φf
k and Φg

k as a composition of Schwartz kernels(
k

2π

)n 〈
Φf
k ,Φ

g
k

〉
=
(
(P g

k )∗ P f
k

)
(x, x)

=
(
k

2π

)n
trD(TxM)(Op(g)∗ Op(f)) + O

(
kn− 1

2
)

by the last part of Theorem 2.3. To conclude, we have by the second equation of (4.4)
with Op(q) = Op(g)∗ that Op(g)∗ Op(f) = Op(Op(g)∗f) and then by the first and
third equations of (4.4)

trD(TxM)(Op (Op(g)∗f)) = (Op(g)∗f) (0) = ⟨f, g⟩.

The proof of the second part is similar, we have(
k

2π

)n
2

QkΦf
k =

(
QkP

f
k

)
(·, x)

By Theorem 2.3, (QkP
f
k ) ∈ L(C, B) with symbol at x equal to

σ̃0(Q)(x) ◦ Op(f) = Op
(
σ̃0(Q)(x)f

)
= Op(h)

by (4.4). So by the local expansion (2.10),

(QkPk) (·, x) =
(
k

2π

)n
2

Φh
k + rk

with rk = Rk(·, x) where (Rk) ∈ L1(C, B). Finally, ∥rk∥2 = (R∗
kRk)(x, x) = O(kn−1)

because (R∗
kRk) ∈ L2(C) by Theorem 2.3. □

We deduce the following lower bound for the operator norm of operators of L(A,B).
If ρ ∈ Sx(M) ⊗ Hom(Ax, Bx), then we denote by ∥ρ∥ the norm

∥ρ∥ = sup
{
∥ρf∥/∥f∥, f ∈ D(TxM) ⊗ Ax, f ̸= 0

}
.

Corollary 5.8. — For any P ∈ L(A,B), we have

lim inf
k→ ∞

∥Pk∥ ⩾ sup
x∈M

∥σ0(P )(x)∥

Proof. — By Proposition 5.7, for any f ∈ D(TxM) ⊗ Ax non zero,∥∥∥PkΦf
k

∥∥∥∥∥∥Φf
k

∥∥∥ = ∥σ0(P )(x)f∥
∥f∥

+ O
(
k− 1

2
)
.

So lim infk→ ∞ ∥Pk∥ ⩾ ∥σ0(P )(x)f∥/∥f∥. □
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6. Derivatives

The class L(A,B) has been defined without any control on the derivatives of
the Schwartz kernels. The reason was merely to simplify the exposition but in the
applications it is natural and necessary to understand the composition of operators
of L(A,B) with covariant derivatives. We start from general considerations, then we
define a subclass L∞(A,B) where the asymptotic expansion of the Schwartz kernels
hold with respect to a convenient C∞ topology. Finally we apply this to complete
the proofs of the theorems stated in the introduction.

6.1. The class O∞(k−N)

Consider as before a Hermitian line bundle L → M and an auxiliary Hermitian
vector bundle A → M . Let F be the space of families

s =
(
sk ∈ C∞

(
M,Lk ⊗ A

)
, k ∈ N

)
.

Recall that s ∈ O(k−N) if for any x ∈ M , |sk(x)| = O(k−N) with a O uniform on
any compact subsets of M . Here we do not assume that M is compact.

The definition of O∞ involves the derivatives. If L and A are trivial bundles
so that (sk) is a sequence of C∞(M,Cr) with r the rank of A, then we say that
(sk) ∈ O∞(k−N) if for any m ∈ N, the derivatives of order m of (sk) are in O(k−N+m).
More precisely, for any vector fields X1, . . . , Xm of M , we require that

X1 . . . Xmsk = O
(
k−N+m

)
.(6.1)

So we loose one power of k for each derivative. Because of this, the class O∞(k−N)
is invariant by multiplication by eikh, where h is any real-valued function of M .

For actual vector bundles L and A, we introduce unitary frames u and (vj)rj=1
of L and A over the same open set U of M and write sk = ∑

fk,ju
k ⊗ vj with

fk ∈ C∞(U,Cr). Then we say that (sk) belongs to O∞(k−N) if for all choices of
unitary frames of L and A, the corresponding local representative sequence (fk) is
in O∞(k−N). Observe that changing the frame u of L amounts to multiply fk by
eikh, so the condition that fk ∈ O∞(k−N) does not depend on the frame choice when
these frames are defined on the same open set.

The typical example of a family in O∞(k−N) is an oscillating sequence
sk(x) = k−Ne−kφ(x)a(x)

with φ ∈ C∞(M) having a non negative real part and a ∈ C∞(M,Cr). More generally,
for actual bundles, we can set

sk(x) = k−NEk(x)a(x)
where E ∈ C∞(M,L) is such that |E| ⩽ 1 and a ∈ C∞(M,A).

Obviously, if N ′ ⩾ N , O∞(k−N ′) ⊂ O∞(k−N). Define O∞(k−∞) := ∩NO∞(k−N).
We will need the following result.

Lemma 6.1. — Let (sℓ) be a sequence of F such that for any ℓ, sℓ ∈ O∞(k−p(ℓ))
where (p(ℓ)) is an increasing real sequence, and p(ℓ) → ∞ as ℓ → ∞. Then
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(1) There exists s ∈ F ∩ O∞(k−p(0)) unique modulo O∞(k−∞) such that

sk =
N−1∑
ℓ=0

sℓ,k + O∞
(
k−p(N)

)
, ∀ N(6.2)

(2) Let s ∈ F such that s ∈ O∞(kp) for some p and sk = ∑N−1
ℓ=0 sℓ,k + O(k−p(N))

for any N . Then s ∈ O∞(k−p(0)) and (6.2) holds.

The first part is a variation of Borel Lemma, the second part follows from interpo-
lation inequalities, cf. as instance [Shu01, Lemma 32.]

In the sequel, we will apply this material to Schwartz kernels. So instead of M , L,
A, we will have M2, L⊠ L and B ⊠ A.

6.2. Application to L(A,B)

Choose a section E as in Section 5.1 and let b ∈ C∞(M2, B⊠A) vanishing to order
m along the diagonal. Then by the same proof as Lemma 5.1, the family (Ekb) is in
O∞(k−m

2 ). Actually, we even have a better result if instead of using any derivatives,
we only consider covariant derivatives for the connection of (L ⊠ L)k ⊗ (B ⊠ A)
induced by the connection of L and any connections of A and B.

Lemma 6.2. — For any ℓ ∈ N, any vector fields X1, . . . , Xℓ of M2, we have
∇X1 . . .∇Xℓ(Ekb) is in O(k− 1

2 (m−ℓ)).

The improvement is that we only loose a half power of k for each derivative.
Proof. — The main observation is that ∇E vanishes on the diagonal. Indeed,

∇XE = 0 on the diagonal when X is tangent to the first factor because of the
second equation in (5.1), but also when X is tangent to the diagonal by the first
equation in (5.1). So on a neighborhood of the diagonal, we have ∇XE = fE with
f ∈ O(1). By Leibniz rule, ∇X(Ekb) = Ek(kfb + ∇Xb). Using this repeatedly, we
obtain

∇X1 . . .∇Xℓ

(
Ekb

)
= Ek

(
kℓbℓ + kℓ−1bℓ−1 + . . .+ b0

)
where bℓ = O(m+ ℓ), bℓ−1 ∈ O(m+ ℓ− 2), . . . , b0 ∈ O(m− ℓ). And we conclude as
in the proof of Lemma 5.1. □

Recall that the Schwartz kernel family of an operator P ∈ L(A,B) has by definition
an expansion of the form

Pk(x, y) =
(
k

2π

)n
Ek(x, y)

∑
ℓ+m(ℓ)⩽N

k− ℓ
2 bℓ(x, y) +RN,k(x, y)(6.3)

with RN,k ∈ O(kn−N+1
2 ). Let L∞(A,B) (resp. L∞

q (A,B)) be the subspace of L(A,B)
(resp. Lq(A,B)) consisting of the operator families having a Schwartz kernel in
O∞(kn). Identifying operators and their kernels,

L∞(A,B) = L(A,B) ∩ O∞(kn), L∞
q (A,B) = Lq(A,B) ∩ O∞(kn)

By the following proposition, these new classes have the same properties than the
L(A,B) and this follows directly from Lemma 6.1.
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Proposition 6.3. —
(1) If P ∈ L∞(A,B) and the expansion (6.3) holds with RN,k ∈ O(kn−N+1

2 ) for
any N , then RN,k ∈ O∞(kn−N+1

2 ) for any N .
(2) For any P ∈ L(A,B) there exist Q ∈ L∞(A,B) unique modulo O∞(k−∞)

such that Q = P + O(k−∞).
(3) For any P ∈ L∞(A,B),

(a) the adjoint of P belongs to L∞(B,A),
(b) (PkQk) ∈ L∞(A,C) for any Q ∈ L∞(B,C),
(c) (f ◦ Pk) belongs to L∞(A,C) for any f ∈ C∞(M,Hom(B,C)); (Pk ◦ g)

belongs to L∞(C,B) for any g ∈ C∞(M,Hom(C,A))
(d) for any vector field X of M and connections on A and B, (k− 1

2Pk◦∇Lk⊗A
X )

and (k− 1
2 ∇Lk⊗B

X ◦ Pk) belong to L∞(A,B).
Furthermore, if (Pk) is even (resp. odd), these two operators are odd
(resp. even).

(4) L∞
q (A,B) = L(A,B) ∩ O∞(kn− q

2 ), the restriction of σq to L∞
q (A,B) is onto

and has kernel L∞
q+1(A,B).

Proof. — Assertion 1 follows from the preliminary observation on Ekb and the
second part of Lemma 6.1. Assertion 2 follows from the first part of Lemma 6.1.
Claim 3b follows from the fact that the composition of two kernels in O∞(kn) is
in O∞(k2n), and O∞(k2n) ∩ L(A,C) = L∞(A,C) by the second part of Lemma 6.1.
Claims 3a and 3c are straightforward. Ones proves claim 3d by arguing as in the
proof of Lemma 6.2. Part 4 follows from the second part of Lemma 6.1. □

Remark 6.4. — We can adapt Theorems 3.1 and 3.5 to the spaces L∞:
(1) in Theorem 3.1, if we start with P ∈ L∞(A), then χ(P ) ∈ L∞(A).
(2) in Theorem 3.5, if Π and Π′ are in L∞(A) and L∞(B) respectively, then we

can choose U ∈ L∞(A,B).
In both cases, the only change in the proof is the fact that for any families of
operators Qk, Q

′
k : C∞(M,Lk ⊗ A) → C∞(M,Lk ⊗ A) and Q′′

k : L2(M,Lk ⊗ A) →
L2(M,Lk ⊗ A), by [Cha16, Section 4.3], if the Schwartz kernel families of (Qk) and
(Q′

k) are respectively in O∞(k−N) and O∞(k−N ′), and the operator norms of Q′′
k are

in O(1), then the Schwartz kernel family of QkQ
′′
kQ

′
k is in O∞(k−(N+N ′)).

By Theorem 2.3, we already know how to compute the symbols of P ∗, PQ, fP or
gP in terms of the symbols of P and Q. To complete this, we compute the symbol
of the compositions of P with the covariant derivatives ∇Lk⊗A

X and ∇Lk⊗B
X . Recall

that for any Y ∈ TxM , we defined in the introduction some endomorphisms ρ(Y ) ∈
End(D(TxM)) in (1.10). If Y = U +V with U, V ∈ T 1,0

x M , then ρ(Y ) = ρ(U) +ρ(V )
where ρ(U) is the multiplication by iω(U, ·) and ρ(V ) is the derivation with respect
to V .

Lemma 6.5. — For any P ∈ L∞(A,B) and vector field X of M , we have

σ0
(
k− 1

2Pk ◦ ∇Lk⊗A
X

)
(x) = σ0(Pk)(x) ◦ ρ(X(x))

σ0
(
k− 1

2 ∇Lk⊗B
X ◦ Pk

)
(x) = ρ(X(x)) ◦ σ0(Pk)(x).
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Proof. — We deduce one formula from the other by taking adjoint. To prove the
first one, it suffices by Proposition 5.7 to show that if (Φf

k) is the peaked section
associated to f ∈ D(TxM) ⊗ Ax, then

k− 1
2 ∇XΦf

k = Φg
k + O

(
k− 1

2
)

where g = ρ(X(x))f . This is easily checked if we use the normal coordinates as
in (5.5) centered at p0 = x. We have to differentiate (5.26). We have first that
k− 1

2 ∇X(Ek) = k
1
2Ek(∇XE)E−1 and by (5.7),
(∇∂iE)E−1 = −zi + O(2), (∇∂i

E)E−1 = O(2).

Second we have k− 1
2∂if(k 1

2 ξ) = 0 since f ∈ C[z1, . . . , zn] and k− 1
2∂if(k 1

2 ξ) =
(∂f/∂zi)(k

1
2 ξ). To conclude recall that ρ(∂i) is the multiplication by −zi whereas

ρ(∂i) is the derivation with respect to zi. □

6.3. Kostant–Souriau operators and subprincipal estimates

In our context, the Kostant–Souriau operators are the operators of the form
f + i

k
∇Lk⊗A
X : C∞

(
M,Lk ⊗ A

)
→ C∞

(
M,Lk ⊗ A

)
where f ∈ C∞(M) and X is its Hamiltonian vector field, that is ω(X, ·) + df = 0.

Lemma 6.6. — For any f ∈ C∞(M,R) with Hamiltonian vector field X, for any
P ∈ L∞

0 (A) we have
• [f, P ] belongs to L∞

1 (A)
• [f, P ] ≡ (ik)−1[∇Lk⊗A

X , P ] modulo L∞
2 (A).

So the commutator [f + i
k
∇Lk⊗A
X , P ] belongs to L∞

2 (A).
Proof. — The Schwartz kernel of [f, P ] is the product of g(x, y) = f(x) − f(y)

by the Schwartz kernel of P . Since g vanishes along the diagonal, this implies that
[f, P ] ∈ L1(A). Furthermore, it follows from the definition (5.18) of the symbol
that if σ̃0(P )(x) = Op(b) with b ∈ P(TxM), then σ̃1([f, P ])(x) = Op(ℓb) where
ℓ = dxf ∈ T ∗

xM . Now a computation from (4.3) shows that
[Op(b), ai] = Op(zib), [Op(b), a∗

i ] = Op(zib)
where as in Section 4 we use the annihilation and creation operators ai = ∂zi ,
a∗
i = zi − ∂zi . So working with normal coordinates at p0 = x as in (5.5),

σ̃1([f, P ])(x) =
∑
i

(∂zif)(x)[Op(b), ai] + (∂zif)(x)[Op(b), a∗
i ]

Moreover iX = (∂if)∂i − (∂if)∂i at x. Since ρ(∂i) and ρ(∂i) are the restrictions of
ai and −a∗

i to C[z1, . . . , zn] respectively, we deduce that
σ1([f, P ]) = i[σ0(P ), ρ(X)].

On the other hand, by Lemma 6.5, σ0(
[
k− 1

2 ∇Lk⊗A
X , P ]) = [ρ(X), σ0(P )]. So

σ1
([
f + i

k
∇Lk⊗A
X , P

])
= 0

and the result follows. □
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Let us apply this result to the Toeplitz algebra associated to a self-adjoint projector
Π ∈ L∞(A)∩L+(A), whose symbol π is the projector on a subbundle F of D(TM)⊗A
having a definite parity. Introduce the operators associated to f ∈ C∞(M), X, Y ∈
C∞(M,TM),

Tk(f) = ΠkfΠk, Tk(X, Y ) = k−1Πk∇Lk⊗A
X ∇Lk⊗A

Y Πk.

By Proposition 6.3, Tk(X, Y ) belongs to L+(A) so it belongs to the Toeplitz alge-
bra (3.3) associated to Π. By Lemma 6.5, its symbol is πρ(X)ρ(Y )π.

Proposition 6.7. — For any f, g ∈ C∞(M),
Tk(f)Tk(g) = Tk(fg) + k−1Tk(X, Y ) + O

(
k−2

)
(6.4)
where X and Y are the Hamiltonian vector fields of f and g respectively. Conse-
quently i[Tk(f), Tk(g)] = k−1Tk(ω(X, Y )) + O(k−2).

Proof. — By a straightforward computation, we have
ΠfΠgΠ = ΠfgΠ + Π[f,Π] [g,Π]Π

By lemma 6.6, Π[f,Π][g,Π]Π belongs to L2(A) and its symbol is
σ2
(
Π[f,Π] [g,Π]Π

)
= −π[ρ(X), π] [ρ(Y ), π]π

Observe that ρ(X)|x is an odd operator of D(TxM). Since Fx has a definite parity,
every endomorphism of Fx is even. So πρ(X)π|x is at the same time odd and even,
so πρ(X)π = 0. Similarly πρ(Y )π = 0, so

σ2
(
Π[f,Π] [g,Π]Π

)
= πρ(X)ρ(Y )π = σ2

(
k−2Π∇Lk⊗A

X ∇Lk⊗A
Y Π

)
which proves (6.4). Consequently, the rescaled commutator of Tk(f), Tk(g) satisfies

k [Tk(f), Tk(g)] = Tk(X, Y ) − Tk(Y,X) + O
(
k−1

)
,

so its symbol is π([ρ(X), ρ(Y )]π. To conclude the proof, we simply use that
[ρ(X), ρ(Y )] = 1

i
ω(X, Y ),(6.5)

as follows easily by using a basis Ui of T 1,0
x M such that 1

i
ω(Ui, U j) = δij, ρ(Ui) = −a∗

i

and ρ(U i) = ai. □

6.4. Proofs of Theorems 1.1, 1.3 and 1.6

In this last section, we complete the proof of the theorems stated in the introduction,
a generalization actually since we will consider more general projectors.

Let Π ∈ L∞(A) ∩ L+(A) be a self-adjoint projector with symbol π = πm ⊗ idA,
where πm is the projector of D(TM) onto Dm(TM). Such an operator exists by
Theorem 3.1 and Remark 6.4. Alternatively, the projector Π = (Πm,k) onto the mth

Landau level defined in (2.12) has the expected properties [Cha21, Theorems 5.2,
5.3].

By Theorem 3.7, the dimension of Hk = Im(Πk) is

dim Hk =
∫
M

ch
(
Lk ⊗ A⊗ Dm(TM)

)
Td(M)
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when k is sufficiently large, which implies Theorem 1.1.
Define the Toeplitz algebra

T ∞ =
{
P ∈ L∞(A) ∩ L+(A)/ ΠPΠ = P

}
.

Clearly T ∞ is contained in the Toeplitz algebra T defined in (3.3), and by assertion
2 of Proposition 6.3, the difference is rather small: for every P ∈ T , there exists
P ′ ∈ T ∞ unique modulo O∞(k−∞) such that P ′ = P + O(k−∞). Recall the symbol
map τ0 introduced in Theorem 3.2 and denote by τ its restriction to T ∞

τ : T ∞ → C∞(M,End(Dm(TM) ⊗ A)).
We could as well consider the maps τq with q ⩾ 1 but we will limit ourselves to τ0.
By Theorem 3.2 and Assertions 2, 4 of Proposition 6.3, τ is onto and its kernel is
k−1T ∞. It follows as well from Theorem 3.2 that for any P,Q ∈ T ∞

τ(PQ) = τ(P )τ(Q), ∥Pk∥ = sup
x∈M

∥τ(P )x∥ + o(1)

Pk(x, x) =
(
k

2π

)n
tr(τ(P )x) + O

(
k−1

)
Choose any connection on A. By Proposition 6.4, for any f ∈ C∞(M,EndA), p ∈ N
and vector fields X1, . . . , X2p of M , the operator

Tk (f,X1, . . . , X2p) = k−pΠkf∇Lk⊗A
X1 . . .∇Lk⊗A

X2p Πk(6.6)
belong to T ∞ and by Lemma 6.5 its τ -symbol is (πmρ(X1) . . . ρ(X2p)πm) ⊗ f . By
Lemma 6.8, these symbols span C∞(M,End(Dm(TM) ⊗ A)) as a vector space, we
deduce that any P ∈ T ∞ is of the form

Pk =
N∑
ℓ=0

k−ℓPℓ,k + O
(
k−(N+1)

)
, ∀ N ∈ N

where for any ℓ, (Pℓ,k)k is a finite sum of operators such as (6.6). So in the case where
the auxiliary bundle A is trivial, T ∞ is the space T sc

m defined in the introduction.
Last assertion of Theorem 1.3 follows from Proposition 6.7.

Lemma 6.8. —
(1) End Dm(TxM) is spanned as a vector space by the

πm(x)ρ(X1) . . . ρ(X2p)πm(x)
where p ∈ N and X1, . . . , X2p ∈ TxM .

(2) The linear map Ψx : T (1,0)
x M ⊗ T (0,1)

x M → End Dm(TxM) such that Ψ(U ⊗
V ) = πm(x)ρ(U)ρ(V )πm(x), is injective when m ⩾ 1.

Proof. — Introduce a basis (Ui) of T 1,0
x M such that 1

i
ω(Ui, U j) = δij and let

zi = 1
i
ω(·, U i). So D(TxM) = C[z1, . . . , zn], ρ(Ui)P = −ziP = −a∗

iP and ρ(U i)P =
∂P/∂zi = aiP . For any α, β in Nn, fα,β = (α!)−1(a∗)βaα satisfies fα,β(zα) = zβ

and for any γ ∈ Nn such that γ ̸= α and |γ| = |α|, fα,β(zγ) = 0. So the family
πm(x)fα,βπm(x), |α| = |β| = m is a basis of EndFx. This proves the first assertion.
The second one is the fact that the restrictions to Dm(TxM) of the zi∂j, i, j =
1, . . . , n are linearly independent. □
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Equation (1.24) and Part (2) of Remark 1.4 are consequences on the following
Proposition.

Proposition 6.9. — For any f ∈ C∞(M), with Hamiltonian vector field X, we
have

• if n = 1 or m = 0, Tk(f)2 − Tk(f 2) = −k−1(1
2 +m)Tk(|X|2) + O(k−2).

• if n ⩾ 2 and m ⩾ 1, X ̸= 0 implies that there exists no function h ∈ C∞(M)
such that Tk(f)2 − Tk(f 2) = k−1Tk(h) + O(k−2).

Proof. — By Proposition 6.7, Tk(f)2 = Tk(f 2) + k−1Sk where Sk is a Toeplitz
operator with symbol πρ(X)2π. Writing X = U + U with U ∈ T 1,0

x M , we have

πmρ(X)2πm = πm
(
ρ(U)ρ(U) + ρ(U)ρ(U)

)
πm = 2Ψ(U ⊗ U) − 1

2g(X,X)
where Ψ is the bundle map introduced in Lemma 6.8, and we have used first that
πmρ(U)2πm = 0 = πmρ(U)2πm and then that [ρ(U), ρ(U)] = iω(U,U) = −1

2g(X,X)
by (6.5). Now if m = 0, then Ψ = 0. If n = 1, then 2Ψ(U ⊗ U) = −mg(X,X). This
proves the first assertion. For the second one, it suffices to prove that if n ⩾ 2, m ⩾ 1
and X(x) ̸= 0, then Ψ(U ⊗ U)x ∈ End(Dm(TxM)) is not scalar. This follows from
the fact that Ψx is injective, so that Ψx(α) is scalar only when α is a multiple of∑n
i=1 Ui ⊗ U i, which never happens for α = U ⊗ U when n ⩾ 2 and U ̸= 0. □

Let us prove now Theorem 1.6. Introduce a quantization (HF,k) of (M,L) twisted
by F = Dm(TM) ⊗ A. We can adapt the definition (1.25) of Wk with the auxiliary
bundle A by setting

Wk : C∞
(
M,Lk ⊗ A

)
→ C∞

(
M,Lk ⊗ F

)
, k ∈ N

Wk = RmDG⊗(m−1)⊗A,k ◦DG⊗(m−2)⊗A,k ◦ . . . ◦DG⊗A,k ◦DA,k

(6.7)

Lemma 6.10. — The operator (Vk = 1
m!k

−m
2 ΠF,kWkΠk, k ∈ N) belongs to

L∞(A,F ), has the same parity as m and its symbol σ0(V ) viewed as a morphism
from D(TM) ⊗ A to D(TM) ⊗ F is given by

∀ f ∈ Dp(TM), ∀ a ∈ A, σ0(V )(f ⊗ a) =

1 ⊗ f ⊗ a if p = m

0 otherwise

Proof. — We claim that for any even (resp. odd) operator P ∈ L∞(B,A) ,
(k− 1

2DA,k◦P ) belongs to L∞(B,A⊗G), is odd (resp. even) and its symbol is φA◦σ0(P )
where

φA =
∑
i

ai ⊗ zi ⊗ idA ∈ S(TM) ⊗G⊗ EndA.

Here we have introduced an orthonormal frame (∂i) of T 1,0M , (zi) is the dual frame
of (T 1,0M)∗ and ai = ∂zi is the annihilation operator. This follows from Lemma 6.5
by writing DA,ks = ∑

i zi ⊗ ∇∂i
s.

Consequently, k−m
2 RmDA⊗Gm−1 ◦ . . . ◦ DA,k ◦ Πk belong to L(A,F ) with symbol

φmA ◦ πm where φmA is the morphism from D(TM) ⊗ A to D(TM) ⊗ Dm(TM) ⊗ A
given by

φmA =
n∑

i1, ..., im=1
ai1 . . . aim ⊗ (zi1 . . . zim) ⊗ idA
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Computing φmA (zβ) for any multi-index β, we show that for any f ∈ Dp(TM) and
a ∈ A, φmA (f ⊗ a) = m!(1 ⊗ f ⊗ a) when p = m and 0 otherwise. □

The symbol σ0(V ) is exactly the symbol ρ introduced in Lemma 3.4. Now The-
orem 1.6 and the remark on the unitarization of Vk follows by the same proof as
Theorem 3.5.

Appendix A.

In this appendix we discuss the known results for surfaces with constant curvature.
Two important features appear for the negatively curved surfaces: only the lower part
of the spectrum consists of Landau levels, and moreover, there is an isomorphism
between the mth Landau level and the first level of a Laplacian twisted by the mth

power of the complex determinant bundle.
These results appeared in the physics literature, cf. in particular [IL94] for the

case with surface with genus ⩾ 2. A more recent mathematical reference is [TP06].

The plane [Lan30]

Consider a quantum particle confined in a two dimensional plane (x, y) and subject
to a constant magnetic field perpendicular to this plane. Its Hamiltonian is the
operator

H = −1
2

(
∇2
x + ∇2

y

)
with ∇x = ∂

∂x
+ i

2By, ∇y = ∂
∂y

− i
2Bx.(A.1)

B is a positive constant representing the strength of the magnetic field. The spectrum
of H is B(1

2 +N) and the Landau levels Hm = ker(H−B(1
2 +m)) are given in terms

of the ladder operators ∇z = ∇x − i∇y, ∇z = ∇x + i∇y by
H0 = ker(∇z), Hm = (∇z)mH0, m ⩾ 1.(A.2)

Surface with constant curvature [IL94, TP06]

Let M be a compact orientable surface with a Riemannian metric having a constant
Gauss curvature S. Introduce a Hermitian line bundle L → M with a connection
∇ : C∞(M,L) → Ω1(M,L). Assume that the curvature satisfies

i curv(∇) = B volg(A.3)
where B is a non-zero constant and volg is the Riemannian volume. Choosing the
convenient orientation for M , we can assume that B is positive. The quantum
Hamiltonian is the Laplacian ∆ := 1

2∇∗∇ acting on sections of L. Then denoting its
eigenvalue by 0 ⩽ λ0 < λ1 < . . ., it is known that

λm = B
(

1
2 +m

)
+ Sm(m+1)

2 if B +mS > 0(A.4)
For a sphere or a torus, S ⩾ 0, and these formulas describe the whole spectrum.
If the genus of M is larger than 2, then S < 0 and the condition B + mS > 0 is
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satisfied only for a finite number of m. In this case, it is not reasonable to expect
an explicit formula for the other eigenvalues. Indeed, if S = −1 and L = Kr with
K the canonical bundle of M and r a positive integer, then (A.4) gives the first
(r + 1) eigenvalues, and for any n ∈ N, λr+n = λr + 1

2µn, where {µn, n ∈ N} is the
spectrum of the Laplace–Beltrami operator of M . This latter spectrum depends in
an essential way on the metric. Indeed, by Huber’s theorem [Bus10, Theorem 9.2.9],
{µn} determines the length spectrum of M .

The multiplicity of the first eigenvalues is equal to:

mult(λm) = B
volg(M)

2π +
(

1
2 +m

)
χ(M) if B + (m+ 1)S > 0.(A.5)

Here χ(M) is the Euler characteristic of M and observe that B volg(M)/(2π) is the
degree of L, so it is an integer. (A.5) follows from a description of the corresponding
eigenspace Hm = ker(∆ − λm) similar to (A.2), that we explain below.

Proof of formulas (A.4) and (A.5)

To start with, we do not assume that the Gauss curvature S and the function
B defined in (A.3) are constant. We choose any orientation on M . Let j be the
complex structure of M compatible with g, i.e. g(jX, jY ) = g(X, Y ) for any tangent
vectors X, Y ∈ TpM and X ∧ jX > 0 if X ̸= 0. Since we are in real dimension 2, j
is integrable. Furthermore the associated volume form volg is the symplectic form
ω(X, Y ) = g(jX, Y ).
L has a natural holomorphic structure such that its ∂-operator is ∇0,1. We denote

it by ∂L : C∞(L) → C∞(L ⊗ K) with K = (T ∗M)1,0 the canonical bundle. The
curvature of ∇ has the form 1

i
Bω with B ∈ C∞(M,R). The canonical bundle has a

natural metric induced by g. Its Chern connection, that is its connection compatible
with both its metric and holomorphic structure, has curvature iSω where S is the
Gauss curvature.

Theorem A.1. — The following identities holds:
(1) Weitzenböck formula: ∆L = ∂

∗
L∂L + 1

2B.
(2) Bosonic commutation relation: ∂L∂

∗
L = ∂

∗
L⊗K−1∂L⊗K−1 + (B + S).

The Weitzenböck formula is a classical relation, it holds more generally on Kähler
manifolds. We call the second formula the bosonic commutation relation because it
replaces the canonical commutation relation satisfied by the creation/annihilation
operators [a, a∗] = 1. In this formula, we identify K with K−1 through the metric
so that the operators ∂L∂

∗
L and ∂∗

L⊗K−1∂L⊗K−1 act on the same space C∞(L⊗K) =
C∞(L⊗K−1). A similar formula were obtained in [TP06, Proposition 9] for the same
purpose of computing the spectrum of ∆L.

Proof of the bosonic identity. — Introduce a local holomorphic frame s of L and a
complex coordinate z on M . We have first ∂L(fs) = fz s⊗dz. To compute the adjoint,
recall that the scalar products of C∞(L) and C∞(L⊗K) are defined by integrating
the pointwise scalar products against the volume form. Write ω = ihdz ∧ dz and
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|s|2 = e−φ with h and φ real valued functions. Then |dz|2 = h−1 and a direct
computation leads to

∂
∗
L(fs⊗ dz) = h−1(−fz + fφz)s.

With the identification K ≃ K−1, we have dz = h−1(dz)−1. We deduce that

∂L∂
∗
L

(
fs⊗ (dz)−1

)
= h−1

(
− fzz + fz

(
φz − hz

h

)
+ f

(
φzz − ∂z

(
hz
h

)) )
s⊗ (dz)−1

Similar computations by using |s⊗ dz−1|2 = he−φ leads to

∂
∗
L⊗K−1∂L⊗K−1

(
fs⊗ (dz)−1

)
= h−1

(
−fzz + fz

(
φz − hz

h

))
s⊗ (dz)−1.

To conclude, observe that B = h−1φzz and S = −h−1∂z∂z ln h. □

From now on, we will assume that B and S are constant. With the Weitzenböck
formula, we pass directly from the spectrum of ∆L to the one of ∂∗

L∂L. We can use
the Bosonic relation exactly as it is usually done with the Landau Hamiltonian, cf.
proof of Proposition 4.1. We deduce that for any λ ̸= 0, λ is an eigenvalue of ∂∗

L∂L if
and only if λ− (B+S) is an eigenvalue of ∂∗

L⊗K−1∂L⊗K−1 . Moreover the eigenspaces
have the same dimension. Indeed ∂L restricts to an isomorphism

Ker
(
λ− ∂

∗
L∂L

)
→ ker

(
λ− (B + S) − ∂

∗
L⊗K−1∂L⊗K−1

)
with inverse the restriction of λ−1∂

∗
L. Besides this, ker(∂∗

L∂L) is the space H0(L)
of holomorphic sections of L. By Riemann–Roch theorem, H0(L) has dimension
d+ 1

2χ(M) if the degree d = BVol(M)/(2π) of L is larger than −χ(M).
To summarize, whenB is sufficiently large, 0 is an eigenvalue of ∂∗

L∂L with multiplic-
ity equal to BVol(M)/(2π)+ 1

2χ(M), and the remainder of the spectrum is identical
with the spectrum of (B+S)+∂∗

L⊗K−1∂L⊗K−1 , multiplicities included. We can iterate
this argument and deduce by induction the formulas (A.4), (A.5) giving the first
eigenvalues of ∆L with their multiplicity. Since deg(L ⊗ K−1) = deg(L) + χ(M),
we can repeat ad infinitum this argument when χ(M) ⩾ 0 and obtain the whole
spectrum of ∆L; whereas for χ(M) < 0, only a finite number of iterations is possible.
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