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Résumé. — Dans ce papier, nous étudions la taille des cellules de Voronoï de k nœuds
choisis uniformément au hasard dans un arbre aléatoire de fragmentation de taille n. Nous
montrons que, pour n grand, la plus grande de ces k cellules de Voronoï contient la plupart des
nœuds de l’arbre, alors que les tailles des autre cellules sont d’ordre n exp(−const

√
log n). Cet

effet du “gagnant qui décroche la timbale” persiste si l’on modifie la définition des cellules de
Voronoï (a) en introduisant des longueurs d’arêtes aléatoires (sous une hypothèse de moment
appropriée), et (b) en attribuant différents paramètres d’“influence” (appelés “vitesses” dans
le papier) aux k différents nœuds choisis. Nos résultats sont à mettre en parallèle de ceux
obtenus dans le cas d’un arbre aléatoire uniforme et dans le cas de l’arbre continu Brownien,
pour lesquels il est connu que le vecteur des tailles relatives des k cellules de Voronoï est
asymptotiquement uniforme sur le simplexe de dimension (k − 1).

Deux étapes intermédiaires de notre preuve pourront être intéressantes en elles-mêmes
pour les informations qu’elles donnent sur la forme typique d’un grand arbre aléatoire de
fragmentation : la convergence en probabilité du profil de ces arbres, et un résultat asymptotique
sur la taille de leurs arbres de frange (arbres enracinés en un ancêtre d’un nœud uniforme).

1. Introduction

Voronoi cells. Consider an n-node graph Gn, from which we choose k vertices
uniformly at random, and denote them by U1, . . . , Uk. The Voronoi cell Vor(Uj) of
Uj consists of those vertices that are closer in graph distance to Uj than to any of
the other chosen vertices {Ui : i = 1, . . . , k; i ≠ j}, with an arbitrary rule to break
ties. We are studying the vector of proportional sizes(

| Vor(U1)|
n

, . . . ,
| Vor(Uk)|

n

)
,

in the limit as n → ∞.
In recent work, Addario-Berry et al. [AACFG18] investigated this question for the

case that G is a uniform tree, and proved that the limiting vector is uniform on the
(k−1)-dimensional simplex. Indeed, they showed much more, namely that this is even
true in a limiting sense on the Brownian continuum random tree (henceforth CRT),
and thus for all graph models that converge to the Brownian CRT in the Gromov–
Hausdorff–Prokhorov topology: rooted plane trees, rooted unembedded binary trees,
stacked triangulations, and others. Guitter [Gui17] proved the same uniform limit for
the case that G is a random planar map of genus 0 and k = 2. Chapuy [Cha19] made
the far-reaching conjecture that the uniform limit is true for all random embedded
graphs of fixed genus.

Our first contribution. In this paper, we look at the distribution of the Voronoi
cells of k uniform nodes in a random split tree. Split trees are a family of rooted
trees introduced by Devroye [Dev98] and later extended by Janson [Jan19] who
allowed trees of unbounded degrees: this family includes classical random trees such
as the binary search tree, the random recursive tree, the preferential attachment
tree (also called port for “plane oriented recursive tree”). In our first main result,
we prove that the largest of the Voronoi cells of k uniform nodes in an n-node split
tree contains a proportion 1 of all nodes. We are also able to prove that the second,
third, . . . , kth largest Voronoi cells each contains an order n exp(−const

√
log n) of
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all vertices. We show that this result also holds when edges of the tree are given
random i.i.d. lengths (of finite variance, or heavy-tailed but with finite mean), and
defining the Voronoi cells with respect to the distance induced by these edge lengths
instead of the graph distance.

This result is in contrast with the findings of [AACFG18] for the uniform random
tree equipped with the graph distance: the distribution of the sizes of Voronoi cells is
balanced in the case of the uniform random tree (and other trees whose scaling limit
is the CRT), while we show a “winner takes it all” behaviour in the case of split trees.
This difference in behaviour should not be surprising: it is well-known that split
trees have a very different shape from the uniform random trees (and other random
trees whose scaling limit is the CRT): for example, the typical height of an n-node
split tree is log n, while the typical height of the uniform random tree is

√
n. In that

sense, split trees belong to another universality class of random trees (as opposed to
trees whose scaling limit is the CRT), and our first main result corresponds to the
findings of [AACFG18] for this second universality class. Similarly to [AACFG18]
conjecturing that their result generalises to maps that scale to the random Brownian
map, one might expect that the behaviour we prove for random split trees might
also be exhibited by other graphs such as preferential attachment graphs and other
scale-free models such as the configuration model. However, our proofs cannot be
straightforwardly generalised.

Extension to a competition/epidemics model. The Voronoi cells can be seen
as the result of a competition model where k agents are claiming territory with
uniform speed until they reach vertices that are already claimed by another agent.
This procedure stops when all vertices are claimed by some agent; the final territories
are the same as the Voronoi cells. As discussed above, our first result is that – unlike
in the case of uniform trees – the final territories are rather unbalanced: while one
agent will claim almost the entire tree, the rest has to live on a rather small territory.
(This behaviour also persists when we introduce random edge lengths.)

One can also see this competition model as a competition between k mutually
exclusive epidemics, which are started at k uniform vertices of a split tree, and which
all spread at constant and equal speed. Our second main result is that, if the speed of
transmission varies among the different epidemics, then the fastest epidemic spreads
over order n of the vertices. We are also able to estimate precisely the number of
nodes that get infected by each of the slower epidemics.

Note that this “winner takes it all” effect has already been observed in a competing
first-passage percolation model on the configuration model with tail exponent τ ∈
(2, 3) (see [DH16]). The main difference with our model is that epidemics spread
deterministically in our model, and randomly at a given rate in the competing first-
passage percolation model. In both models, one epidemic occupies eventually almost
all of the available territory. In the case of different speeds, this is the fastest one,
but in the case of equal speed this is determined by the initial position (see [BHK15,
HK15], where this is proved for the competing first-passage percolation model). The
competing first-passage percolation model on random regular graphs exhibits similar
behaviour [ADMP17]. This suggests that the uniform limiting proportion of Voronoi
cells is not true on complex networks. Instead, our results support the belief that for
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competing epidemics on networks with small distances (“small-world graphs”) there
is one dominating epidemic.

Information on the typical shape of a random split tree. The asymptotic
sizes of the Voronoi cells (or territories) of k nodes chosen uniformly at random in
a tree gives information on the typical shape of a tree. In fact, to prove our main
result, we prove two results that may be of independent interest because they give
information of the typical shape of a random split tree: (1) in Proposition 1.10 we
show the convergence in probability of the “profile” of a random split tree, and (2)
in Proposition 2.7, we prove asymptotic results for the size of a typical “extended”
fringe tree in a random split tree.

(1) The profile of a random tree is the distribution of the height(1) (distance to
the root) of a node taken uniformly at random in the tree. If the tree is random
then its profile is a random measure. In Proposition 1.10, we show that the profile
of a random split tree behaves asymptotically (in probability) as a Gaussian centred
around const·log n and of standard deviation const · log n. Our framework includes
the cases of the random binary and m-ary search trees, the random recursive tree
and the preferential attachment trees, for which convergence of the profile is already
known in the almost sure sense (see [CDJH01, MM17], and [Kat05], respectively).

(2) Fringe trees are subtrees that are rooted at an ancestor of a node taken
uniformly at random in the tree (or at the uniform node itself). Oftentimes, this
ancestor is chosen to be at constant distance of the uniform node (see, e.g. [HJ17]
and the references therein). In Proposition 2.7, we extend this definition to allow
the ancestor to be at distance to the uniform node that tends to infinity with n, the
number of nodes in the whole split tree.

Other pieces of information on the typical shape of random split trees are available
in the literature: see Devroye [Dev98] for results on their height and typical distances
to the root, Broutin and Holmgren [BH12] for results on the total path length,
Holmgren [Hol12] for results on the size of random split trees and typical distances
to the root, Berzunza, Cai and Holmgren [BCH19, BH21] for results on connected
components after performing Bernoulli percolation.

The main technical obstacles in our proofs come from the three levels of randomness:
(a) the trees we consider are random split trees, (b) we then sample i.i.d. random
edge-lengths, and (c) we finally sample k nodes uniformly at random in the tree.
The advantage of our approach is that the framework we consider is very wide:
the random split trees we consider include, among others, the binary and m-ary
search trees, the random recursive tree, and the preferential attachment tree; our
edge-length distribution can be of finite variance, or heavy-tailed with finite mean;
we allow the different epidemics to have identical or different speeds.

In the rest of this section, we define our model (Section 1) and state our main
results (Section 1.1).

(1) Note that, in the computer science literature, the distance of a node to the root is sometimes
called ‘depth’, whereas the ‘height’ of a node is the maximal distance from this node to a leaf.
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Trees and random split trees. In this paper, we use the Ulam–Harris definition
of m-ary trees: let m ∈ N and

Dm = {1, 2, . . . , m}∗ = {∅, 1, 2, . . . , m, 11, 12, . . . 1m, . . .},

be the set of all finite words on the alphabet {1, 2, . . . , m}. We further consider the
case of infinitary trees, where m = ∞ and D∞ = N∗. We henceforth formulate our
results for finite and infinite m in a unified fashion (unless stated explicitly); finite
tuples, such as in (1.1) below, should be interpreted as infinite sequence whenever
m = ∞.

Definition 1.1. — An m-ary tree is a subset t of Dm such that for all w =
w1 · · · wℓ ∈ t, all the prefixes of w are in t, i.e. for all i ∈ {0, . . . , ℓ} one has
w1 · · · wi ∈ t.

See Figure 1.1 for an example of a 3-ary tree. In the following, we collect some
standard vocabulary and notations; they reflect the fact that a tree is often seen as
a genealogical structure:

• words are called “nodes”;
• the prefixes of a word are its “ancestors”: we write v ≺ w if v is an ancestor

of w, and v ≼ w if v is w or an ancestor of w;
• the longest of the (strict) prefixes of a word w is its “parent”, which we denote

by ←
v ;

• a node is a “child” of its parent, and it is a “descendant” of each of its
ancestors;

• the “siblings” of a node v are all those nodes different from v that share
the same parent with v; its “left-siblings” (resp. “right-siblings”) are all its
siblings that are smaller (resp. larger) in the lexicographic order;

• the word ∅ is the “root” of the tree;
• the “height” of a node is the number of letters in the word (the root is at

height 0);
• the “last common ancestor” of two nodes is the longest prefix shared by the

two nodes: we write u ∧ v for the last common ancestor of nodes u and v.
In particular, the definition of a tree can be immediately rephrased using this new

vocabulary reflecting the genealogical point of view: a tree is a set of nodes such that
if a node is in the tree, then all its ancestors must also be in the tree.

We now define a probability distribution on the set of m-ary trees: it is the
distribution of “split trees” first introduced by Devroye [Dev98], but generalised to
possibly infinite arity as in [Jan19]. Let ν be a probability distribution on the set

(1.1) Σm =
{

(v1, . . . , vm) ∈ [0, 1]m :
m∑

i=1
vi = 1

}
,

and (Y (w))w ∈ Dm be a family of i.i.d. ν-distributed random vectors. For each node
w = w1 · · · wℓ ∈ Dm, we let Zw = Ywℓ

(←w), where ←
w is the parent of w, i.e. ←w =

w1 · · · wℓ−1 and with Ywℓ
(←w) denoting the wth

ℓ coordinate of the vector Y (←w) (see
Figure 1.2 for an example: Y (3) = (.1, .4, .5) and thus Z32 = .4).
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∅

1 2 3

11 12 31

311
312

313

32

Figure 1.1. The 3-ary tree {∅, 1, 2, 3, 11, 12, 31, 32, 311, 312, 313}. Node 312 is
the “second child of the first child of the third child of the root”, its parent is
node 31, its siblings are 311 and 313. The last common ancestor of 32 and 313
is 3.

We also let (Xn)n⩾ 0 be a sequence of i.i.d. random variables uniformly distributed
on [0, 1], and independent from the sequence (Y (w))w ∈ Dm .

We need one last definition to define our sequence of random split trees: Given a
tree t, we denote by ∂t the nodes of Dm that are not in t but whose parent is in t,
and we call the elements of this set the “leaves” of t. It is not hard to see that if t
has n nodes, then ∂t has cardinality (m − 1)n + 1 (see Figure 1.2).

We can now define the sequence (τn)n⩾ 1 of random trees recursively as follows.
• the tree τ1 is defined to consist of the root only, i.e. τ1 = {∅}.
• for n ⩾ 1 arbitrary, given τn, we define τn+1 as the tree obtained by adding

one node to τn as follows:
– We subdivide the interval [0, 1] in subintervals indexed by ∂τn of re-

spective lengths ∏∅ ̸= v ≼w Zv, for all w ∈ ∂τn. (Note that, by definition,∑
w ∈ ∂τn

∏
∅ ̸= v ≼w Zv = 1; see Figure 1.2 for an example, and observe that

some points form part of several intervals.)
– We set ξ(n + 1) = w if Xn+1 ∈ [0, 1] belongs to the part indexed by w of

this partition of [0, 1], and finally set τn+1 = τn ∪ {ξ(n + 1)}; note that
this is well-defined almost surely.

The sequence of random trees (τn)n⩾ 1 is called the random split tree of split distri-
bution ν (which we recall is the distribution of the Y (w)’s).

This definition incorporates a variety of different random trees that are classical
in the literature:

• If m = 2 and ν is the distribution of (Y, 1 − Y ), where Y is uniform on [0, 1],
then (τn)n⩾ 1 is the random binary search tree (see [Dev98, Table 1]).

• If ν is the uniform distribution on the simplex Σm for m finite, then (τn)n⩾ 1
is the m-ary increasing tree (see [Dev98, Table 1]).

• If m = ∞ and ν is GEM(0, 1) (see Remark 1.2 below for the definition of
the GEM distribution) on Σ∞, then (τn)n⩾ 1 is the random recursive tree
(see [Jan19, Corollary 1.2]).

• If m = ∞ and ν is GEM(1/2, 1/2), then (τn)n⩾ 1 is the random preferential
attachment tree (see [Jan19, Corollary 1.3]).

Remark 1.2. — For α ∈ [0, 1] and θ > 0, the Griffiths–Engen–McCloskey distri-
bution GEM(α, θ) is defined as the distribution of the sequence (An)n⩾ 1 defined as
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∅

3
.65 .15 .2

.75

.1 .5
.4

[0, .65] [.65, .8]

[.8, .82] [.82, .9] [.9, 1]

Figure 1.2. A realisation of the 3-ary split tree τ2, here we have τ2 = {∅, 3}. The
labels on the edges represent the values of (Y (w))w ∈ τ2 : for example, Y (∅) =
(.65, .15, .2). The value of Zw is thus the label on the edge from w to its parent:
for example, Z31 = .1. The nodes that are marked by a square are the elements of
∂τ2, underneath each leaf is written the corresponding part in the partition used
to build τ3. For example, the part corresponding to 32 is of length Z3Z32 = .2× .4
= .08.

follows: sample (Bi)i⩾ 1 a sequence of independent random variables of respective
distributions Beta(1 − α, θ + iα), and, for all n ⩾ 1, set An = Bn

∏n−1
i=1 (1 − Bi).

Note that our definition does not cover for the full class of split trees as intro-
duced in Devroye [Dev98]: for example, the m-ary search tree does not fall into our
framework although it is a split tree in the sense of Devroye. Using the notation of
Devroye [Dev98], we assume that s0 = s = 1 and s1 = 0; we expect that our results
as well as their proofs essentially carry through to the more general framework of
Devroye; however, we choose not to include this generalisation so that our proofs re-
main easier to read, and because our framework already covers numerous interesting
cases of random trees, as listed above.

1.1. Voronoi cells and final territories

In this paper, our aim is to investigate the sizes of the Voronoi cells corresponding
to k nodes taken uniformly at random in the n-node random split tree τn defined in
Section 1. In this context, we will also accommodate for the setting of having random
edge lengths between the nodes: let ϖ be a probability distribution on (0, ∞) and let
(Lw)w ∈ Dm be a sequence of i.i.d. random variables of distribution ϖ, and we define
the distance between two nodes as the sum of the length of the edges on the unique
shortest path between them; see Figure 1.3 for an example.

Definition 1.3. — For all families ℓ = (ℓw)w ∈ Dm of positive random variables
we define a distance dℓ on Dm as follows: for all pairs of nodes u and v in Dm (for
all m ⩾ 2), let

dℓ(u, v) :=
∑

u ∧ v ≺ w ≼u

ℓw +
∑

u ∧ v ≺ w ≼ v

ℓw,

where we recall that u ∧ v denotes the last common ancestor of nodes u and v. For
all nodes w ∈ Dm, we denote by |w|ℓ := dℓ(∅, w).
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`1 `2

`11 `12 `21 `22

`112

Figure 1.3. A binary tree. The distance between the nodes 112 and 12 (marked
as squares on the picture) with respect to the sequence ℓ is ℓ11 + ℓ112 + ℓ12 (the
sum of the length of the bold edges) because their last common ancestor is 1.

This definition holds for any fixed sequence ℓ of edge lengths: all along the paper,
we use the distance dL, where L = (Lw)w ∈ Dm is the sequence of i.i.d. random edge
lengths.

Also, note that if ℓw = 1 for all w ∈ Dm, then dℓ corresponds to the graph distance
in the graph whose nodes are all elements of Dm, and where there is an edge between
two nodes if and only if one is the parent of the other.

Definition 1.4. — Let u1, . . . , uk be k nodes in an m-ary tree t, and d a distance
on Dm. We define the Voronoi cells of u1, . . . , uk as follows: for all 1 ⩽ i ⩽ k,

Vori
t,d(u1, . . . , uk) =

{
w ∈ t : d(w, ui) ⩽ d(w, uj) for j = 1, . . . , i − 1

and d(w, ui) < d(w, uj) for j = i + 1, . . . , n
}
.

We say that Vori
t,d(u1, . . . , uk) is the Voronoi cell of ui (with respect to u1, . . . , uk).

Remark 1.5. — The idea of Definition 1.4 is that Vori
t,d(u1, . . . , uk) contains all

the nodes that are closer to ui than to any of the other uj’s for distance d on t. The
difference between ‘<’ and ‘⩽’ induces a simple rule to break ties (in case of equal
distances, the vertex with smaller index is preferred). However, since the number of
boundary vertices is of constant order, the choice we make about how to break ties
has no impact on our results.

In Section 1, we discussed a possible interpretation of Voronoi cells is in terms
of epidemics. From this point of view, it is natural to consider the case when the
epidemics spread at different speeds:

Definition 1.6. — Let t be an m-ary tree and denote by d be a distance on Dm.
Furthermore, let u1, . . . , uk be nodes in t and let s1, . . . , sk ∈ (0, +∞), the ‘speeds
of the epidemics’. We define the final territories of (u1, s1), . . . , (uk, sk) as

Teri
t,d((u1, s1), . . . , (uk, sk))

=
{

w ∈ t : d(w, ui) ⩽
si + sj

si

d(w, uj) for j = 1, . . . , i − 1

and (w, ui) <
si + sj

si

d(w, uj) for j = i + 1, . . . , n}
}

.
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1.1.1. Main results

Our main result provides asymptotic statements on the sizes of k epidemics in
the case when the epidemics have different speeds. We first state the result in
the simpler case when all epidemics have the same speed (Theorem 1.7) and then
extend it to the setting where different speeds are admissible (Theorem 1.9). Both
theorems apply to finite (m ∈ {2, 3, . . .}) as well as infinite (m = ∞) arity. They
hold under the following hypothesis on the split-vector distribution ν and the edge
length distribution ϖ:

(A1) If (Y1, . . . , Ym) ∼ ν, U is a uniform random variable on [0, 1], and(2)

(1.2) Ȳ =
m∑

i=1
Yi1


i−1∑
j=1

Yj ⩽ U <
i∑

j=1
Yj


is the size-biased version of the marginals of ν, then µ := E[log 1/Ȳ ] > 0 and
σ2 := Var(log Ȳ ) < +∞.

(A2) If L is a random variable of distribution ϖ, then either Var(L) ∈ [0, +∞),
in which case we set α := 2, or there exists α ∈ (1, 2) and a non-negative
function ℓ slowly varying at infinity, such that P(L > x) = x−αℓ(x). In
particular, EL < ∞ in this case.

The assumption that µ > 0 excludes the trivial case when the n-node split tree is
almost surely equal to a line of n nodes hanging under each other under the root.
The assumption that σ2 < +∞ and (A2) give some control over the moments of
respectively the split vectors and the edge lengths: these assumptions will be used
when applying laws of large numbers and of the iterated logarithm, as well as central
limit theorems to sum of independent copies of these random variables.

Theorem 1.7. — Let ϖ be a probability distribution on (0, +∞), and ν be
a probability distribution on Σm. Let (τn)n⩾ 1 be the random split tree of split
distribution ν, and L = (Lw)w ∈ Dm be a sequence of i.i.d. random variables of
distribution ϖ, independent of (τn)n⩾1.

For each n ⩾ 1, let U1(n), . . . , Uk(n) be k nodes taken uniformly at random among
the n nodes of τn; we let V(1)(n) ⩾ . . . ⩾ V(k)(n) be the sizes of their Voronoi cells in
τn with respect to the distance dL, ordered in decreasing order.

Under Assumptions (A1) and (A2), we have in distribution when n → +∞,

(1.3) 1
(log n)1/α

(
log(V(2)(n)/n), . . . , log(V(k)(n)/n)

)
⇒ v

2EL

(
Ψ(1) − Ψ(2), . . . , Ψ(1) − Ψ(k)

)
;

here, Ψ(1) ⩽ · · · ⩽ Ψ(k) are the order statistics of k i.i.d. random variables whose
distribution is N (0, Var(L)+σ2(EL)2) if Var(L) < +∞, and an α-stable distribution
otherwise, and where

(1.4) v =

µ−1/2 if Var(L) < +∞
µ1−1/α otherwise.

(2) By convention, we set
∑0

i=1 ai = 0 for each sequence (ai)i⩾0 of real numbers.
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Remark 1.8. — In Theorem 1.7, and elsewhere in this paper, we adopt the conven-
tion that N (0, 0) is interpreted as the Dirac measure at zero. With this convention,
all our statements hold if, for example, σ2 = 0 and/or Var(L) = 0.

In words, the above amounts to the fact that the second, third, . . . , kth largest
component each occupies a proportion of roughly exp{−Ψ(log n)1/α} of the vertices,
where Ψ is some explicit positive random variable. This implies that asymptotically
and in distribution, the entire mass is allocated to the largest component (which, by
construction, belongs to the vertex closest to the root); this explains the asymmetry
in (1.3). The allocation for split trees is therefore qualitatively very different from
the allocation in the universality class of the continuum random tree, where the limit
of the proportions of the masses is known to be uniform [AACFG18].

We now extend the results of the previous theorem to the case of different speeds
at which the uniformly chosen vertices claim territory (use the same notation as in
Theorem 1.7).

Theorem 1.9. — For all s1, . . . , sk ∈ (0, +∞), we let W(1)(n) ⩾ . . . ⩾ W(k)(n)
be the sizes (ordered in decreasing order) of the final territories in τn, equipped with
the distance dL, of k epidemics of respective speeds s1, . . . , sk and starting from
U1(n), . . . , Uk(n), respectively. Without loss of generality, we assume that s1 = . . . =
sj > sj+1 ⩾ . . . ⩾ sk for some j ∈ {1, . . . , k}.

Then, under Assumptions (A1) and (A2), we have in distribution when n → +∞,

(1.5) 1
(log n)1/α

(
log(W(2)(n)/n), . . . , log(W(j)(n)/n)

)
⇒ v

2EL

(
Ψ(1) − Ψ(2), . . . , Ψ(1) − Ψ(j)

)
,

where v is defined in (1.4), Ψ(1) ⩽ · · · ⩽ Ψ(j) are the order statistics of j i.i.d.
random variables whose distribution is N (0, Var(L) + σ2(EL)2) if Var(L) < +∞,
and an α-stable distribution otherwise.

Furthermore, if EL2 < +∞, then, for all i ∈ {j + 1, . . . , k},

log(W(i)(n)/n) + s1−si

s1+si
log n√

s1−si

s1+si
log n

⇒ N
(

0,
Var(log Ȳ )EL

E[log Ȳ ]2
+ Var(L)

)
.

Otherwise, if P(L ⩾ x) = x−αℓ(x) for some function ℓ slowly varying at infinity and
some α ∈ (1, 2), then, for all i ∈ {j + 1, . . . , k},

log(W(i)(n)/n) + s1−si

s1+si
log n

( s1−si

s1+si
log n)1/α

⇒ µ1−1/α

EL
Υ(α),

where Υ(α) is an α-stable random variable. In particular, in both cases, we have

(1.6) log(W(i)(n)/n)
log n

→ si − s1

si + s1

in probability when n → +∞, for each i ∈ {j + 1, . . . , k}.
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Note that, given that the slower epidemics all have very small territories (cf. (1.6)),
the j fastest territories behave as in Theorem 1.7, which – at least heuristically –
entails (1.5).

It is also interesting to note that in their first asymptotic order given by (1.6), the
sizes of the slow epidemics do not depend on the edge length. An intuitive indication
towards this fact is that replacing L by cL for a positive constant c does not change
the sizes of the territories. In a similar vein, the right-hand sides of (1.3) and (1.5)
also remain unchanged upon replacing L by cL, as expected.

As a by-product of our proof of Theorems 1.7 and 1.9, we get the following result
on the convergence of the profile of random split trees, which, as far as we are aware,
is a new result in the context of split trees:

Proposition 1.10. — Let (τn)n⩾ 1 be the random split tree of split distribution
ν, and let, for all integer n, πn = 1

n

∑n
i=1 δ|νi| be the random profile of τn, where we

recall that |νi| is the height of the node inserted at time i in (τn)n⩾1. If ν satisfies
Assumption (A1), then

(1.7) πn

(
·
√

(log n)/µ3 + (log n)/µ
)

→ π∞ = N (0, σ2),
in probability as n → +∞, on the space of probability measures on R equipped with
the topology of weak convergence.

Stronger results are already known for certain cases of split trees: in particular, it is
known that (1.7) holds almost surely in the case of the binary search tree [CDJH01],
the random recursive tree [MM17], and the preferential attachment tree [Kat05].
The profile of the uniform random tree (considered by [AACFG18] in the context
of Voronoi cells) converges in distribution to the local time of a Brownian excursion
(see [DG97]).

Remark 1.11. — Note that Theorem 1.7 holds in an averaged sense (or with respect
to the joint law). One could imagine two quenched versions by (i) conditioning on
the random split tree (τn)n⩾ 1 or (ii) conditioning additionally also on the sequence of
edge lengths L. Since, in our proof, we use the central limit theorem for the sequence
L, our current methods do not provide with a possible version of Theorem 1.7
quenched with respect to L. However, for the split distributions ν for which (1.7)
holds almost surely, Theorem 1.7 would hold almost surely given (τn)n⩾ 1.

The remainder of the paper is organised as follows. In Section 2, we establish a
central limit theorem for the joint law of the height of uniform vertices and derive
Proposition 1.10. Furthermore, we proof Theorem 1.7. In Section 3, we extend these
arguments to the case of different speeds thereby proving Theorem 1.9.

2. Proof of Theorem 1.7

In this section, we use the same notation, and place ourselves under the assumptions
of Theorem 1.7. The idea of the proof is as follows: if ϖ = δ1 (i.e. all edge lengths are
equal to 1 almost surely, i.e. L ≡ 1) then among the nodes U1(n), . . . , Uk(n), the one
closest to the root belongs to the Voronoi cell containing the root, and this Voronoi
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cell typically is the largest of all Voronoi cells. As a consequence, it is important to
understand the heights of k uniform nodes in a random split tree. Recall that for a
graph node v ∈ τ , we write |v| for that graph distance between the root ∅ and v.

Lemma 2.1 (CLT for heights of uniform vertices). — Let k ∈ N and Ȳ be
distributed as the size-biased version of the marginals of ν (see (1.2)), and denote
µ = E[log(1/Ȳ )] as well as σ2 = Var(log Ȳ ).

Then, in distribution as n → +∞, we have |U1(n)| − (log n)/µ√
(log n)/µ3

, . . . ,
|Uk(n)| − (log n)/µ√

(log n)/µ3

 ⇒ (Λ1, . . . , Λk),

where the Λ1, . . . , Λk are independent centred Gaussian random variables of vari-
ance σ2.

This lemma straightforwardly implies Proposition 1.10.
Proof of Proposition 1.10. — We use [MM17, Lemma 3.1], which states that for

a sequence of random measures (πn)n⩾ 0 to converge in probability to a limiting
measure π∞, it is enough to show, for two random variables An and Bn sampled
independently according to the random measure πn, that (An, Bn) → (A, B) in
distribution, where A and B are π∞-distributed and independent. (Note that, on
the left-hand side, An and Bn are independent conditionally on πn, but not without
this conditioning.) As a direct consequence, we conclude the proof using [MM17,
Lemma 3.1] in combination with Lemma 2.1 for the particular case k = 2 in order to
ensure the required convergence conditions of [MM17, Lemma 3.1] to be fulfilled. □

The proof of Lemma 2.1 uses two main results, which we state as separate lemmas:
convergence of the marginals (see Lemma 2.2) and asymptotic independence (see
Lemma 2.3).

Lemma 2.2. — Recall that, for all n ⩾ 1, ξ(n) denotes the nodes added to the
split tree at time n; i.e. the unique node that belongs to τn but not to τn−1. In
distribution when n → +∞,

|ξ(n)| − (log n)/µ√
(log n)/µ3

⇒ N (0, σ2).

Proof. — We follow arguments in [Dev98, Theorem 2] and extend them to the
cases m = ∞ and σ2 = 0. For any node u ∈ Dm, we let Nn(u) be the number of
nodes of τn whose ancestor is u (if u /∈ τn, then Nn(u) = 0).

First sample a sequence of nodes (ui)i⩾ 0 in Dm as follows: u0 = ∅ and, for all
i ⩾ 0, given ui, let ui+1 = uij with probability Yj(ui), for all j ⩾ 1. Finally, let
u∗(n) be the node with maximal height in (ui)i⩾ 0 ∩ τn. By definition, in distribution,
|ξ(n)| = |u∗(n)|.

Indeed, from our definition of the random split tree (τn)n⩾ 0, one can see that an
equivalent way of constructing τn given τn−1 is as follows: Drop a ball at the root
of τn−1. If this root is empty, then insert the ball here, i.e. set ξ(n) = ∅. If the root
is not empty, then, for all 1 ⩽ j ⩽ m, with probability Vj, insert the ball in the jth
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subtree of the root of τn−1, and repeat the insertion procedure in this subtree. From
this equivalent definition, one can see that, indeed, |ξ(n)| = |u∗(n)| in distribution.

Step 1: We first fix u ∈ R and k = ⌊(log n)/µ + u
√

(log n)/µ3⌋. We also set
ℓ = log log n. If |u∗(n)| ⩾ k + ℓ, then the subtree of τn rooted at uk contains at least
ℓ nodes; in other words, {|u∗(n)| ⩾ k + ℓ} ⊆ {Nn(uk) ⩾ ℓ}. Thus,

P(|ξ(n)| ⩾ k + ℓ) ⩽ P(Nn(uk) ⩾ ℓ).
Now note that the random variable Nn(uk) is stochastically dominated by a binomial
of parameters n and ∏k

i=1 Ȳi. Hence, we can use due to [Dev98, Lemma 4] to upper
bound

P(|ξ(n)| ⩾ k + ℓ) ⩽ P
(

Bin
(

n,
k∏

i=1
Ȳi

)
⩾ ℓ

)

⩽ P
(

k∑
i=1

log(Ȳi) > log(ℓ/2n)
)

+
(e

4

)ℓ/2
.

Therefore, as n → +∞,

P(|ξ(n)| ⩾ k + ℓ) ⩽ P
(∑k

i=1 log Ȳi + kµ√
k

>
log(ℓ/2n) + kµ√

k

)
+ o(1).

Now note that, by the central limit theorem, (∑k
i=1 log Ȳi + kµ)/

√
k ⇒ N (0, σ2) and,

by definition of k and ℓ, (log(ℓ/2n) + kµ)/
√

k → u as n → +∞, as we have

log(ℓ/2n) + kµ√
k

∼
log log log n − log 2 − log n + µ(log n)/µ + u

√
(log n)/µ3√

(log n)/µ

∼ uµ1−3/2

µ−1/2
∼ u.

We thus get
P(|ξ(n)| ⩾ k + ℓ) ⩽ P(N (0, σ2) ⩾ u) + o(1).

Replacing k and ℓ by their respective values, we get

P

 |ξ(n)| − (log n)/µ√
(log n)/µ3

− log log n√
(log n)/µ3

⩾ u


= P

(
|ξ(n)| ⩾ 1

µ
log n + u

√
log n

µ3 + log log n

)

⩽ P
(

|ξ(n)| ⩾
⌊

1
µ

log n + u

√
log n

µ3

⌋
+ log log n

)
= P(|ξ(n)| ⩾ k + ℓ).

Therefore,

P

 |ξ(n)| − (log n)/µ√
(log n)/µ3

− log log n√
(log n)/µ3

⩾ u

 ⩽ P(N (0, σ2) ⩾ u) + o(1),
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and because log log n/
√

(log n)/µ3 → 0 as n → +∞, this implies

(2.1) P

 |ξ(n)| − (log n)/µ√
(log n)/µ3

⩾ u

 ⩽ P(N (0, σ2) ⩾ u) + o(1).

Step 2: We now fix u ∈ R, set k = ⌈(log n)/µ + u
√

(log n)/µ3⌉, and look at the
probability that |ξ(n)| ⩽ k; first note that, if |u∗(n)| ⩽ k, then the subtree of τn

rooted at uk is empty, i.e. {|u∗(n)| ⩽ k} ⊆ {Nn(uk) = 0}. Thus,
(2.2) P(|ξ(n)| ⩽ k) ⩽ P(Nn(uk) = 0).
If Nn(uk) ⩾ 1, then there exists an increasing subsequence of length k of (X1, . . . , Xn)
such that Xi1 falls in the interval associated to u1, Xi2 falls into the interval associated
to u2, etc. Since the intervals associated to u0, . . . , u1 are all of length at least ∏k

i=1 Ȳi,
this happens with probability at least P(Bin(n,

∏k
i=1 Ȳi) ⩾ k), and thus

P(Nn(uk) ⩾ 1) ⩾ P
(

Bin
(

n,
k∏

i=1
Ȳi

)
⩾ k

)
,

which is equivalent to

P(Nn(uk) = 0) ⩽ P
(

Bin
(

n,
k∏

i=1
Ȳi

)
< k

)
.

We now use [Dev98, Lemma 4] again to get

P(Nn(uk) = 0) ⩽ P
(

k∏
i=1

Ȳi ⩽
2k

n

)
+
(2

e

)k

= P
(

k∑
i=1

log Ȳi ⩽ log
(

2k

n

))
+ o(1)

= P
(∑k

i=1 log Ȳi + kµ√
k

⩽
log(2k/n) + kµ√

k

)
+ o(1)

= P(N (0, σ2) ⩽ u) + o(1),

by the central limit theorem, and because (log(2k/n) + kµ)/
√

k → u as n → +∞.
Recalling (2.2), this gives

P

 |ξ(n)| − (log n)/µ√
(log n)/µ3

⩽ u

 = P(|ξ(n)| ⩽ k) ⩽ P(N (0, σ2) ⩽ u) + o(1).

Together with (2.1), this concludes the proof. □

Lemma 2.3. — For all h ∈ N, let us denote by U (h)
1 (n), . . . , U (h)

k (n) the re-
spective ancestors of U1(n), . . . , Uk(n) that have height h (if h > |Ui(n)|, we set
U (h)

i (n) = Ui(n)). Let Hn = max1⩽ i < j ⩽ k |Ui(n) ∧ Uj(n)| be the height of the most
recent common ancestor of U1(n), . . . , Uk(n) and S1(n), . . . , Sk(n) be the sizes of
the subtrees of τn rooted at U (Hn)

1 (n), . . . , U (Hn)
k (n) respectively. In distribution when

n → +∞, (
S1(n)

n
, . . . ,

Sk(n)
n

, Hn

)
⇒ (α1, . . . , αk, H),
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where H is an almost surely finite random variable, and α1, . . . , αk are almost surely
positive random variables.

Proof. — We first prove that Hn ⇒ H, where H is an almost surely finite random
variable. We first look at the last common ancestor of U1(n) and U2(n): for all words
w ∈ Dm, we have

P(U1(n) ∧ U2(n) = w | τn) =
∑

1⩽ i ̸= j ⩽m

swi(n)
n

· swj(n)
n

,

where sv(n) is the size of the subtree of τn rooted at v (in particular, this is equal to
zero if v /∈ τn). By the definition of the model and the strong law of large numbers we
know that, conditionally on the sequence Y = (Y (v))v ∈ Dm , for all v ∈ Dm, almost
surely when n → +∞,

sv(n)
n

→
∏

u≼ v

Zu,

where we recall that Zwℓ = Yℓ(w), for all w ∈ Dm and ℓ ∈ {1, . . . , m}. Therefore,
conditionally on Y and almost surely when n → +∞, we have

P(U1(n) ∧ U2(n) = w | τn, Y ) →
∑

1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 ,

which implies, using dominated convergence,

P(U1(n) ∧ U2(n) = w) → E

 ∑
1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 .

To prove that this implies convergence in distribution of U1(n) ∧ U2(n) to an almost
surely finite random variable K1,2 ∈ Dm, we need to show that

(2.3)
∑

w ∈ Dm

E

 ∑
1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 = 1.

To prove (2.3), we first note that, by independence of the Zu’s (except among
siblings), for all w ∈ Dm,

E

 ∑
1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 = E

 ∏
u≼w

Z2
u

 ∑
1⩽ i ̸= j ⩽m

E [ZwiZwj]

= βE

 ∏
u≼w

Z2
u

 ,

where we have introduced the shorthand β = ∑
1⩽ i ̸= j ⩽m E[YiYj], with Y a random

vector of distribution ν. By Assumption (A1), E[log 1/Ȳ ] > 0, which implies that Y
is not equal to a standard basis vector with positive probability. In particular, with
positive probability, there exists 1 ⩽ i ̸= j ⩽ m such that YiYj ̸= 0, and thus β ̸= 0.
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This entails that
∑

w ∈ Dm

E

 ∑
1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 = β
∑

w ∈ Dm

E

 ∏
u≼w

Z2
u


= β

∑
h⩾ 0

∑
|w|=h

E

 ∏
u≼w

Z2
u

 ,

(2.4)

where we recall that |w| is the height of w. For all h ⩾ 0, using again the independence
of the Zu’s, we infer that

(2.5)
∑

|w|=h+1
E

 ∏
u≼w

Z2
u

 =
∑

|w|=h

m∑
i=1

E

 ∏
u≼wi

Z2
u

 =
∑

|w|=h

E

 ∏
u≼w

Z2
u

 m∑
i=1

E
[
Z2

wi

]
.

Since, by definition, ∑m
i=1 Zwi = ∑n

i=1 Yi(w) = 1, we get that
m∑

i=1
E
[
Z2

wi

]
=
(

m∑
i=1

EZwi

)2

−
∑

1⩽ i ̸= j ⩽m

E [ZwiZwj] = 1 − β,

by definition of β. Plugging the last equality into (2.5), this amounts to

∑
|w|=h+1

E

 ∏
u≼w

Z2
u

 = (1 − β)
∑

|w|=h

E

 ∏
u≼w

Z2
u

 = · · · = (1 − β)h+1

by iteration, and further, using (2.4) and the fact that by Assumption (A1), β ̸= 0,
we get

E

 ∑
1⩽ i ̸= j ⩽m

 ∏
u≼wi

Zu

 ∏
u≼wj

Zu

 = β
∞∑

h=0
(1 − β)h = 1.

This concludes the proof of (2.3), and thus of the fact that U1(n) ∧ U2(n) converges
in distribution to an almost surely finite random variable K1,2, Consequently,

Hn = max
1⩽ i < j ⩽ k

|Ui(n) ∧ Uj(n)| ⇒ max
1⩽ i < j ⩽ k

|Ki,j| =: H,

where each of the Ki,j (which are not independent) has the same distribution as
K1,2. The random variable H is almost surely finite since all the Ki,j’s are.

Finally, for all n ⩾ 1, x1, . . . , xk ∈ [0, ∞) and h ∈ {0, 1, . . .},

P
(

S1(n)
n

⩾ x1, . . . ,
Sk(n)

n
⩾ xk, Hn = h

∣∣∣∣∣ τn, Y

)

=
∑

w1, ..., wk ∈ D(h)
m

k∏
i=1

swi
(n)
n

1 {swi
(n) ⩾ xin} ,

where D(h)
m is the set of all distinct w1, . . . , wk ∈ {1, . . . , m}h such that the cardi-

nality of the set {←w1, . . . ,
←
wk} is at most k − 1 (where we recall that ←w denotes the

parent of a node w). By the strong law of large numbers, we thus get
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P
(

S1(n)
n

⩾ x1, . . . ,
Sk(n)

n
⩾ xk, Hn = h

∣∣∣∣∣ τn, Y

)

→
∑

w1, ..., wk ∈ D(h)
m

k∏
i=1

 ∏
u≼wi

Zu

 1

 ∏
u≼wi

Zu ⩾ xi

 ,

and by dominated convergence,

P
(

S1(n)
n

⩾ x1, . . . ,
Sk(n)

n
⩾ xk, Hn = h

)

→ E

 ∑
w1, ..., wk ∈ D(h)

m

k∏
i=1

 ∏
u≼wi

Zu

 1

 ∏
u≼wi

Zu ⩾ xi


 .

To check that the right-hand side is indeed a probability distribution, take x1 =
· · · = xk = 0 on both sides: The left-hand side is equal to P(Hn = h), which, by
the first half of the proof, converges almost surely to H, an almost surely finite
random variable. The right-hand side is thus equal to P(H = h), which satisfies∑

h⩾0 P(H = h) = 1. This concludes the proof that(
S1(n)

n
, . . . ,

Sk(n)
n

, Hn

)
⇒ (α1, . . . , αk, H),

where the joint distribution of (α1, . . . , αk, H) is given by

P(α1 ⩾ x1, . . . , αk ⩾ xk, H = h)

= E

 ∑
w1, ..., wk ∈ D(h)

m

k∏
i=1

 ∏
u≼wi

Zu

 1

 ∏
u≼wi

Zu ⩾ xi


 ,

for all x1, . . . , xk ⩾ 0 and h ∈ {0, 1, 2, . . .}.
To see that αj > 0 almost surely for all j ∈ {1, . . . , k}, note that

P(αj = 0) =
∑
h⩾0

E

 ∑
w1, ..., wk ∈ D(h)

m

1

 ∏
u≼wj

Zu = 0


k∏

i=1

 ∏
u≼wi

Zu


 = 0,

because, if ∏u≼wj
Zu = 0 then ∏k

i=1(
∏

u≼wi
Zu) = 0 and thus

1

 ∏
u≼wj

Zu = 0


k∏

i=1

 ∏
u≼wi

Zu

 = 0.

Since this is true for all 1 ⩽ j ⩽ k, we indeed have that the αj’s are almost surely
positive. □

Proof of Lemma 2.1. — We first prove the convergence of the marginals: let kn

be an integer chosen uniformly at random in {1, . . . , n}, then ξ(kn) = U1(n) in
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distribution; recall that by definition, for all n ⩾ 1, ξ(n) is the unique node that
belongs to τn but not to τn−1. By Lemma 2.2, in distribution when n → +∞,

|ξ(n)| − (log n)/µ√
(log n)/µ3

⇒ N (0, σ2).

Therefore, since log(kn/n) converges to log U in distribution as n → +∞, where U
is uniform on [0, 1], we get

(2.6) |ξ(kn)| − (log n)/µ√
(log n)/µ3

⇒ N (0, σ2),

which immediately entails the convergence of the marginals to the desired limit. To
show that the limits are independent, we use Lemma 2.3, and the fact that, by defini-
tion of the model, given Hn, S1(n), . . . , Sk(n), the trees rooted at U (Hn)

1 (n), . . . , U (Hn)
k

(n) are independent split trees of split distribution ν and of respective sizes S1(n), . . . ,
Sk(n). Moreover, for all 1 ⩽ i ⩽ k, the node Ui(n) is distributed uniformly at ran-
dom among the nodes of the split tree rooted at U (Hn)

i (n). Therefore, given Hn,
S1(n), . . . , Sk(n), we have, in distribution and jointly for all 1 ⩽ i ⩽ k,

|Ui(n)| = Hn +
∣∣∣Û (i)(Si(n))

∣∣∣ ,
where the Û (i)’s are independent, and for all i, Û (i)(Si(n)) is a node taken uniformly
at random in a split tree of size Si(n). As a consequence, applying (2.6) to each of
the k independent split trees, we get that, in distribution and jointly for all 1 ⩽ i ⩽ k,

|Ui(n)| − (log n)/µ√
(log n)/µ3

= Hn + |Û (i)(Si(n))| − (log n)/µ√
(log n)/µ3

=

∣∣∣Û (i)(Si(n))
∣∣∣− (log Si(n))/µ√

(log Si(n))/µ3
·
√

log Si(n)
log n

+ log Si(n) − log n√
µ log n

+ oP(1)

⇒ Λi,

where (Λ1, . . . , Λk) are k independent centred Gaussians of variance σ2; we have
used the fact that by Lemma 2.3, log Si(n) = log n + OP(1) when n → +∞. □

Applying the law of large numbers to the i.i.d. edge lengths, and using the fact
that, by Lemma 2.3, the height Hn of the last common ancestor of U1(n), . . . , Uk(n)
converges in distribution to an almost surely finite random variable, Lemma 2.1
entails a similar result for the distances of U1(n), . . . , Uk(n) to the root (for the
distance dL). In the following, L denotes a random variable distributed according to
ϖ.

Lemma 2.4 (CLT for distances to the root). — Under the assumptions of Theo-
rem 1.7, if Var(L) < +∞, then, in distribution when n → +∞, we have |U1(n)|L − (log n)EL/µ√

(log n)/µ3
, . . . ,

|Uk(n)|L − (log n)EL/µ√
(log n)/µ3

 ⇒ (Ξ1, . . . , Ξk),
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where the Ξ1, . . . , Ξk are independent centred Gaussian random variables of variance
Var(L) + σ2(EL)2.

Proof. — In this proof, we set Ui[Hn] = U (Hn)
i (n), i.e. the ancestor of Ui(n) at

height Hn, where Hn is defined in Lemma 2.3. For all 1 ⩽ i ⩽ k, we have

(2.7) |Ui(n)|L =
∑

∅ ̸= u≼Ui(n)
Lu =

∑
∅ ̸= u≼Ui[Hn]

(Lu − L(i)
u ) + Ai(n),

where the L(i) = (L(i)
u )u∈Dm are i.i.d. copies of L, and where

Ai(n) :=
∑

∅ ̸= u≼Ui[Hn]
L(i)

u +
∑

Ui[Hn] ≺ u≼Ui(n)
Lu.

Since, by Lemma 2.3, Hn converges in distribution to an almost surely finite random
variable H, we have

(2.8) 1√
log n

∑
∅ ̸= u≼Ui[Hn]

(Lu − L(i)
u ) → 0,

in distribution when n → +∞. Note that, given Hn, the random variables A1(n), . . . ,
Ak(n) are independent, because the Lu’s are independent, and the sums in A1(n), . . . ,
Ak(n) that involve the sequence L (as opposed to its i.i.d. copies L(1), . . . , L(k)) range
over distinct nodes u. Therefore, in distribution, we have, jointly for all 1 ⩽ i ⩽ k,

Ai(n) =
∑

∅ ̸= u≼Ui(n)
L(i)

u =
|Ui(n)|∑

j=1
L̃(i)

j ,

where L(i) = (L̃(i)
j )j⩾1 is a sequence of i.i.d. copies of the L(i)

u ’s, and the k sequences
(L(i))1⩽ i⩽ k are independent of each other. By the central limit theorem, we have,
jointly for all 1 ⩽ i ⩽ k, ∑m

j=1 L̃(i)
j − mEL
√

m
⇒ Θi,

in distribution when n → +∞, where Θ1, . . . , Θk are independent centred Gaussian
random variables of variance Var(L). Since |Ui(n)| → +∞ in probability when
n → +∞, and since (|Ui(n)|)1⩽ i⩽ k is independent from (L(i)

j : j ⩾ 1)1⩽ i⩽ k, this
implies that, jointly for all 1 ⩽ i ⩽ k,

(2.9) Ai(n) − |Ui(n)|EL√
|Ui(n)|

⇒ Θi.

Indeed, for all u1, . . . , uk ∈ R, and ε > 0, there exists m0 > 0 such that, for all
m1, . . . , mk ⩾ m0,∣∣∣∣∣∣P

∑mi
j=1 L̃(i)

j − miEL
√

mi

⩽ ui, ∀ 1 ⩽ i ⩽ k

− P (Θi ⩽ ui, ∀ 1 ⩽ i ⩽ k)

∣∣∣∣∣∣ ⩽ ε/2.

Because Ui(n) → +∞ in probability, there exists n0 such that, for all n ⩾ n0,
P(inf1⩽ i⩽ k |Ui(n)| ⩾ m0) ⩾ 1 − ε/2. Therefore, for all u1, . . . , uk ∈ R, ε > 0, and
n ⩾ n0,
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∣∣∣∣∣∣P
Ai(n) − |Ui(n)|EL√

|Ui(n)|
⩽ ui, ∀ 1 ⩽ i ⩽ k

− P(Θi ⩽ ui, ∀ 1 ⩽ i ⩽ k)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣P
Ai(n) − |Ui(n)|EL√

|Ui(n)|
⩽ ui, ∀ 1 ⩽ i ⩽ k and inf

1⩽ i⩽ k
|Ui(n)| ⩾ m0


− P(Θi ⩽ ui, ∀ 1 ⩽ i ⩽ k)

∣∣∣∣∣∣+ ε

2

⩽
∞∑

ℓ=m0

∣∣∣∣∣P
(

Ai(n) − ℓEL√
ℓ

⩽ ui, ∀ 1 ⩽ i ⩽ k

)
− P(Θi ⩽ ui, ∀ 1 ⩽ i ⩽ k)

∣∣∣∣∣
× P

(
inf

1⩽ i⩽ k
|Ui(n)| = ℓ

)
+ ε

2 ⩽ ε,

where, in the second inequality, we have conditioned on the different possible values
of inf1⩽ i⩽ k |Ui(n)|, and used the triangular inequality. This concludes the proof
of (2.9).

We thus get that, jointly for all 1 ⩽ i ⩽ k,

|Ui(n)|L − (log n)EL/µ√
(log n)/µ3

= |Ui(n)|L − |Ui(n)|EL√
Var(L)|Ui(n)|

·

√√√√Var(L)|Ui(n)|
(log n)/µ3 + |Ui(n)|EL − (log n)EL/µ√

(log n)/µ3

⇒ Θi

√
Var(L) + ΛiEL,

where we have used Lemma 2.1 (where Λ1, . . . , Λk are defined). Note that, by
definition, Θi is independent from Λi for all 1 ⩽ i ⩽ k; indeed, Θi is L(i)-measurable,
while Λi is (τn)n⩾1-measurable. Therefore, Ξi := Θi

√
Var(L) + ΛiEL is a centred

Gaussian of variance Var(L) + σ2E(L)2, and Ξ1, . . . , Ξk are independent, as claimed.
□

We now look at the respective version of Lemma 2.4 when the edge lengths have
heavier tails:

Lemma 2.5. — Under the assumptions of Theorem 1.7, if there exists α ∈ (1, 2)
and a function ℓ : [0, +∞) → [0, +∞) slowly varying at infinity such that P(L ⩾
x) = x−αℓ(x) for all x ⩾ 0, then, in distribution when n → +∞,

(
|U1(n)|L − (log n)EL/µ

((log n)/µ)1/α
, . . . ,

|Uk(n)|L − (log n)EL/µ

((log n)/µ)1/α

)
⇒ (Υ1(α), . . . , Υk(α)),

where the Υ1(α), . . . , Υk(α) are i.i.d. copies of a centred α-stable random variable.
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Proof. — We proceed as in the proof of Lemma 2.4 and employ the same notation:
in particular, using that our assumptions on L entail its expectation being finite,
(2.7) and (2.8) give that, in distribution when n → +∞,

(2.10) |Ui(n)|L = Ai(n) + oP

(√
log n

)
= Ai(n) + oP

(
(log n)1/α

)
.

We apply the functional limit theorem for sums of i.i.d. heavy-tailed random variables
(see, e.g., [GK54, § 35, Theorem 2]): to do this, it is enough to check that

(i) P(L⩽−x)
1−P(L⩽x) → 0 as x → +∞, and

(ii) for all constant c > 0, 1−P(L⩽x)+P(L⩽−x)
1−P(L⩽cx)+P(L⩽−cx) → cα as x → +∞.

Since L is almost surely non-negative, we have P(L ⩽ −x) = 0, which straightfor-
wardly implies (i). For (ii), we use the fact that, by assumption, P(L > x) = x−αℓ(x),
where ℓ is slowly varying at infinity: this implies

1 − P(L ⩽ x) + P(L ⩽ −x)
1 − P(L ⩽ cx) + P(L ⩽ −cx) = P(L > x)

P(L > cx) = cα ℓ(x)
ℓ(cx) → cα as x → +∞,

because ℓ is slowly varying at infinity. Thus, [GK54, § 25, Theorem 2] applies, which
implies that

Ai(n) − |Ui(n)|EL

|Ui(n)|1/α
⇒ Υi(α),

where Υ1(α), . . . , Υk(α) are i.i.d. copies of an α-stable random variable. We thus
get that

|Ui(n)|L − |Ui(n)|EL

|Ui(n)|1/α

= Ai(n) − |Ui(n)|EL

|Ui(n)|1/α
+ |Ui(n)|L − Ai(n)

((log n)/µ)1/α
· ((log n)/µ)1/α

|Ui(n)|1/α
⇒ Υi(α),

in distribution when n → +∞, where we have used (2.10) and the fact that, by
Lemma 2.1, |Ui(n)|

(log n)/µ
→ 1 in probability when n → +∞. We thus get that, jointly for

all 1 ⩽ i ⩽ k,

(2.11) |Ui(n)|L − (log n)EL/µ

((log n)/µ)1/α

= |Ui(n)|L − |Ui(n)|EL

|Ui(n)|1/α
·
(

|Ui(n)|
(log n)/µ

)1/α

+ |Ui(n)|EL − (log n)EL/µ

((log n)/µ)1/α

⇒ Υi(α),
in distribution when n → +∞; here, we have used Lemma 2.1 and the fact that
α < 2, which implies 1/α > 1/2 (and α > 1 again to get the finiteness of EL). □

Remark 2.6. — Note that in the α-stable case, the second summand on the
right-hand side of (2.11) is negligible compared to the first summand, i.e. the fluctu-
ations coming from the height of Ui(n) are asymptotically negligible in front of the
fluctuations coming from the edge-lengths.
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Next we control the sizes of subtrees rooted at certain nodes within the tree.
For this purpose, imagine that U1(n) is the closest to the root (in graph distance)
among U1(n), . . . , Uk(n). Then the Voronoi cell of U2(n) is the subtree rooted at the
ancestor of U2(n) that has height

|U1(n) ∧ U2(n)|L +
∣∣∣|U1(n)| − |U2(n)|

∣∣∣
L
/2.

From Lemma 2.3, we already know that |U1(n) ∧ U2(n)| converges in distribution to
an almost surely finite random variable. The following lemma gives a limiting result
for the size of the subtree rooted at an ancestor of U2(n) at height h(n) for some
function h(n) = o(log n) when n → +∞.

For f : N → R, x ∈ [0, ∞), n ⩾ 1, and 1 ⩽ i ⩽ k, we write D(i)
n (xf) (or D(i)

n (xf(n)))
for the size of the subtree of τn rooted at the ancestor of Ui(n) closest to the root
whose L-distance to the root is at least
(2.12) xFi(n) := min(xf(n), |Ui(n)|L).
By Lemmas 2.4 and 2.5, |Ui(n)|L grows logarithmically in n; therefore, if f(n) =
o(log n), then for large n we typically have Fi(n) = f(n).

Proposition 2.7 (Convergence of (extended) fringe trees). — Let f : N → N
be a function such that limn → +∞ f(n) = +∞, and x > 0. We assume that either
f(n) = o(log n) when n → +∞, or f(n) = log n for all n ⩾ 1 and set

C(f) =

+∞ if f(n) = o(log n),
EL/µ if f(n) = log n.

Then, under the assumptions of Theorem 1.7, for all 1 ⩽ i ⩽ k and for all 0 < a ⩽
b < C(f),

(2.13) sup
x ∈ [a,b]

∣∣∣∣∣∣ log (D(i)
n (xf)/n)

xf(n) −
E
[
log Ȳ

]
EL

∣∣∣∣∣∣ → 0 in probability when n → +∞.

This lemma is at the heart of the proof of Theorem 1.7: it establishes a law of
large numbers for the logarithm of the size of fringe trees. A fringe tree, as defined
in [HJ17] (see also the references therein for a literature review on the subject), is
the subtree rooted at a node taken uniformly at random among the n-nodes of a
random tree (in our case the n-node split tree of split distribution ν). An extended
fringe tree (still following [HJ17]) is the subtree rooted at one of the ancestors of
this randomly chosen node, under the assumption that this ancestor is at a fixed
graph distance of the randomly chosen node. In Proposition 2.7, however, we also
consider subtrees rooted at an ancestor of a node U(n) = Ui(n) chosen uniformly at
random in our tree, but this ancestor can be at a distance that grows with n.

Proof of Proposition 2.7. — We defined the split tree (τn)n⩾ 1 as a sequence of
random trees, with ξ(n + 1) denoting the unique node in τn+1 but not in τn. Now let
Ũ be a uniform random variable on [0, 1], set kn = ⌈Ũn⌉ ∈ {1, . . . , n} for all n ⩾ 1,
and note that
(2.14) n − kn → +∞ almost surely as n → +∞.
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We fix i ∈ {1, . . . , k} throughout the proof. Letting Ui(n) be the node of index kn,
we observe that Ui(n) is indeed uniformly distributed in τn, as required.

We fix 0 < a < b < C(f). For x ∈ [a, b], we define h = h(n) so that xh(n) is the
height of the ancestor of Ui(n) closest to the root whose L-distance to the root is at
least xFi(n) = min(xf(n), |Ui(n)|L) (recall (2.12)). As a consequence of Lemmas 2.5
and 2.4, respectively, Fi(n) → +∞ in probability when n → +∞, therefore

(2.15) Fi(n)
h(n) → EL in probability when n → +∞

by the law of large numbers.
Recall that U (xh(n))

i (n) denotes the ancestor of Ui(n) closest to the root whose height
is at least xh(n); we denote by kn(x) the integer such that U (xh(n))

i (n) = ξ(kn(x)). By
definition, we have kn(x) ⩽ kn. We next derive a law of large numbers for the width
of the split interval associated to the node of index kn(x). Recall that, by definition
of (τn)n⩾1, to each node w ∈ τn (among which ξ(kn)) is associated a sub-interval of
[0, 1], whose length is given by ∏∅ ̸= u≼w Zu. We let

(2.16) Qn(x) :=
∏

∅ ̸= u≼ ξ(kn(x))
Zu

be the length of the interval associated to node ξ(kn(x)). We claim the following law
of large numbers for Qn(x):

(2.17) log Qn(x)
xh(n) → E[log Ȳ ] = −µ in probability when n → +∞.

Indeed, first note that the random variables Zu are sized-biased since we condition
on the event u ≼ ξ(kn); more precisely, we condition the intervals associated to
the nodes u occurring in the product of (2.16) to contain Xkn . In other words,
conditionally on u ≼ ξ(kn), we have Zu = Ȳ in distribution, where Ȳ as in (1.2) and
Y = (Y1, . . . , Ym) a random vector of distribution ν. Therefore, by the law of large
numbers, since h(n) → +∞ in probability (cf. (2.15)), we get

log Qn(x)
xh(n) = 1

xh(n) log
 ∏

∅ ̸= u≼ ξ(kn(x))
Zu

 = 1
xh(n)

∑
∅ ̸= u≼ ξ(kn(x))

log Zu → E
[
log Ȳ

]
,

in probability when n → +∞, which concludes the proof of (2.17).
The main step now is to show

(2.18) sup
x ∈ [a,b]

∣∣∣∣∣ log (D(i)
n (xf)/n)

xh(n) − E
[
log Ȳ

]∣∣∣∣∣ → 0 in probability when n → +∞,

At the end of the proof, we show that this implies (2.13).
To prove (2.18), we rewrite its left-hand side as a sum of several terms to which

we will apply various concentration inequalities. First note that, for all x ∈ [a, b], for
all n ⩾ 1,
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(2.19) 1
xh(n)

∣∣∣∣∣log
(

D(i)
n (xf)

n

)
− xh(n)E

[
log Ȳ

]∣∣∣∣∣
⩽

1
ah(n)

∣∣∣∣∣log D(i)
n (xf)

(n − kn(x))Qn(x)

∣∣∣∣∣+ 1
ah(n)

∣∣∣∣∣log
(

1 − kn(x)
n

)∣∣∣∣∣
+
∣∣∣∣∣ log Qn(x)

xh(n) − E
[
log Ȳ

]∣∣∣∣∣ .
We show that the right hand side is converges to zero in probability as n → +∞
uniformly for x ∈ [a, b] by treating each of the three summands separately.

We start with the second term, which is the easiest. Recall that kn(x) ⩽ kn and
that kn = ⌈Ũn⌉, so

(2.20) sup
x ∈ [a,b]

∣∣∣∣∣log
(

1 − kn(x)
n

)∣∣∣∣∣ ⩽
∣∣∣∣∣log

(
1 − kn

n

)∣∣∣∣∣ → − log(1 − Ũ),

almost surely as n → +∞.
For the third term on the right-hand side of (2.19), we proceed as follows. In

distribution, (Qn(x))x ∈ [a,b] = (∑ℓ⩽xh(n) log Z̃ℓ)x ∈ [a,b], where (Z̃ℓ)ℓ⩾ 1 is a sequence of
i.i.d. copies of Ȳ . We apply the law of the iterated logarithm to the sequence of i.i.d.
random variables (log Z̃ℓ)ℓ⩾ 1, this gives

lim sup
m → +∞

∣∣∣∣ m∑
ℓ=1

log Z̃ℓ − mE
[
log Ȳ

]∣∣∣∣
√

m log log m
= Var

(
log Ȳ

)1/2
= σ almost surely.

This implies in particular that there exists an almost surely finite random number
m0 such that almost surely,

sup
m⩾m0

∣∣∣∣ m∑
ℓ=1

log Z̃ℓ − mE
[
log Ȳ

]∣∣∣∣
√

m log log m
⩽ 2σ.

We fix ε > 0 and choose m1 ⩾ m0 such that 2σ
√

log log(m1)/m1 ⩽ ε. We have,
almost surely

sup
m⩾m1

∣∣∣∣∣∣∣∣
m∑

ℓ=1
log Z̃ℓ

m
− E

[
log Ȳ

]∣∣∣∣∣∣∣∣ ⩽
√

log log m1

m1
sup

m⩾m1

∣∣∣∣ m∑
ℓ=1

log Z̃ℓ − mE
[
log Ȳ

]∣∣∣∣
√

m log log m

⩽

√
log log m1

m1
sup

m⩾m0

∣∣∣∣ m∑
ℓ=1

log Z̃ℓ − mE
[
log Ȳ

]∣∣∣∣
√

m log log m
⩽ ε.

ANNALES HENRI LEBESGUE



Voronoi cells in random split trees 147

Consequently, we have for all n ⩾ 1 that

P
(

sup
x ∈ [a,b]

∣∣∣∣∣ log Qn(x)
xh(n) − E

[
log Ȳ

]∣∣∣∣∣ ⩾ ε

)

= P

 sup
x ∈ [a,b]

∣∣∣∣∣∣∣∣∣∣

xh(n)∑
ℓ=1

log Z̃ℓ

xh(n) − E
[
log Ȳ

]
∣∣∣∣∣∣∣∣∣∣
⩾ ε



⩽ P

 sup
x ∈ [a,b]

∣∣∣∣∣∣∣∣∣∣

xh(n)∑
ℓ=1

log Z̃ℓ

xh(n) − E
[
log Ȳ

]
∣∣∣∣∣∣∣∣∣∣
⩾ ε and ah(n) ⩾ m1


+ P(ah(n) < m1)

⩽ P

 sup
m⩾m1

∣∣∣∣∣∣∣∣
m∑

ℓ=1
log Z̃ℓ

m
− E

[
log Ȳ

]∣∣∣∣∣∣∣∣ ⩾ ε

+ P(ah(n) < m1)

= P(ah(n) < m1) → 0,

as n → +∞, because h(n) → +∞ in probability with n. In other words,

(2.21) sup
x ∈ [a,b]

∣∣∣∣∣ log Qn(x)
xh(n) − E

[
log Ȳ

]∣∣∣∣∣ → 0 in probability as n → +∞.

Finally, we deal with the first term in the right-hand side of (2.19) and aim to
prove

(2.22) sup
x ∈ [a,b]

∣∣∣∣∣log D(i)
n (xf)

(n − kn(x)) Qn(x)

∣∣∣∣∣ → 0 in probability as n → +∞,

Mind that inserting (2.20), (2.21) and (2.22) into (2.19) implies (2.18). In order
to prove (2.22), we first recall that, for all x ∈ [a, b] conditionally on kn(x) and
Z = (Zu)u∈Dm , we have, in distribution,

D(i)
n (xf) =

n∑
ℓ=kn(x)+1

1Xℓ < Qn(x).

Thus, for all x ∈ [a, b], ε ∈ (0, 1), λ ⩾ 0, the exponential Chebychev inequality yields

P

 n∑
ℓ=kn(x)

1Xℓ < Qn(x) ⩾ (1 + ε)Qn(x)
(
n − kn(x)

) ∣∣∣∣∣∣ kn(x), Z


⩽ e−λ(1+ε)Qn(x)(n−kn(x))

n∏
ℓ=kn(x)

(
1 + Qn(x)

(
eλ − 1

) )
= exp

(
− Qn(x)(n − kn(x))

(
(1 + ε)λ − eλ + 1

) )
.
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Taking λ = log(1 + ε), this yields the upper bound

P

 n∑
ℓ=kn(x)

1Xℓ < Qn(x) ⩾ (1 + ε)Qn(x)
(
n − kn(x)

) ∣∣∣∣∣∣ kn(x), Z


⩽ exp

(
− Qn(x)(n − kn(x))ε′

)
,

where we have set ε′ := (1 + ε) log(1 + ε) − ε > 0. Using the fact that, for all
x ∈ [a, b], Qn(x) ⩾ Qn(b), and kn(x) ⩽ kn, taking expectations on both sides, and
then a supremum over x ∈ [a, b], we infer that

sup
x ∈ [a,b]

P

 n∑
ℓ=kn(x)

1Xℓ < Qn(x) ⩾ (1 + ε)Qn(x)
(
n − kn(x)

)
⩽ E

[
exp

(
− Qn(b)(n − kn)ε′

)]
In a similar vein, one deduces

sup
x ∈ [a,b]

P

 n∑
ℓ=kn(x)

1Xℓ < Qn(x) ⩽ (1 − ε)Qn(x)
(
n − kn(x)

)
⩽ E

[
exp

(
− Qn(b)(n − kn)ε′′

)]
,

where ε′′ = (1 − ε) log(1 − ε) + ε. In total, we thus get that, for all ε > 0,

(2.23) sup
x ∈ [a,b]

P
(
|D(i)

n (xf) − (n − kn(x))Qn(x)| > εQn(x)
(
n − kn(x)

))
⩽ 2E

[
exp

(
− c Qn(b)(n − kn)

)]
,

where c := min(ε′, ε′′) > 0.
We now recall that (see (2.15)) h(n) ∼ Fi(n)/EL in probability as n → +∞. In

the case when f(n) = o(log n), since |Ui(n)|L/ log n converges to EL/µ in probability
when n → +∞, and since xFi(n) = min(xf(n), |Ui(n)|L), we get

(2.24) Fi(n)
f(n) → 1 in probability as n → +∞.

In the case when f(n) = log n, since |Ui(n)|L/ log n converges to EL/µ in probability
when n → +∞, and since x ⩽ b < EL/µ, we get Fi(n) ∼ log n in probability when
n → +∞. In both cases,

(2.25) h(n)
f(n) → c := 1

EL
in probability as n → +∞.
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For all δ > 0 and for all η > 0 small enough such that supx∈[1−η,1+η] | log x| ⩽ δ, we
have

(2.26) P
(

sup
x ∈ [a,b]

∣∣∣∣∣log D(i)
n (xf)

(n − kn(x))Qn(x)

∣∣∣∣∣ ⩾ δ

)

⩽ P
(

sup
x ∈ [a,b]

∣∣∣∣∣ D(i)
n (xf)

(n − kn(x))Qn(x) − 1
∣∣∣∣∣ ⩾ η and c − η ⩽

h(n)
f(n) ⩽ c + η

)

+ P
(∣∣∣∣∣c − h(n)

f(n)

∣∣∣∣∣ > η

)
,

where we have set c = 1/EL. Because of (2.25), the second summand converges to 0
as n → +∞. Note that, as x increases between a and b, D(i)

n (xf)/(n − kn(x))Qn(x)
only changes value when xh(n) crosses an integer value.

Thus, the event inside the first probability on the right-hand side implies that there
exists ℓ ∈ N∩[a(c−η)f(n), b(c+η)f(n)] such that |D(i)

n (xf)/(n − kn(x))Qn(x)−1| ⩾
η for x = ℓ/h(n). We thus get via a union bound

(2.27) P
(

sup
x ∈ [a,b]

∣∣∣∣∣ D(i)
n (xf)

(n − kn(x)) Qn(x) − 1
∣∣∣∣∣ ⩾ η and c − η ⩽

h(n)
f(n) ⩽ c + η

)

⩽
⌊b(1+η)f(n)⌋∑

ℓ=⌈a(1−η)f(n)⌉
P
( ∣∣∣∣∣ D(i)

n (xf)
(n − kn(x))Qn(x) − 1

∣∣∣∣∣ ⩾ η for x = ℓ/h(n)

and c − η ⩽
h(n)
f(n) ⩽ c + η

)

⩽
(
[b(c + η) − a(c − η)]f(n) + 1

)
sup

x ∈ [â,b̂]
P
(∣∣∣∣∣ D(i)

n (xf)
(n − kn(x))Qn(x) − 1

∣∣∣∣∣ ⩾ η

)

⩽ Kf(n)E
[

exp
(

− c Qn(b̂)(n − kn)
)]

,

where â = a(c − η)/(c − η) and b̂ = b(c + η)/(c − η), and we used (2.23) in the last
inequality. We have also set K large enough so that, for all n ⩾ 1, ([b(c + η) − a(c −
η)]f(n) + 1) ⩽ Kf(n), which is possible since f(n) → +∞ with n.

Using the law of large numbers in (2.17), we get that, in probability as n → ∞,

−cQn(b)(n − kn) + log f(n) = −ce(−µb̂/EL+o(1))f(n)(n − kn) + log f(n) → −∞,

because either f(n) = o(log n), or f(n) = log n and η > 0 can be chosen small enough
so that b̂ < EL/µ (because, by assumption, b < EL/µ, and b̂ = b(c + η)/(c − η)).
This implies that the right-hand side in (2.27) converges to zero as n → +∞. Using
again that h(n) ∼ f(n) in probability when n → +∞, we get that the right-hand
side of (2.26) also tends to zero with n, and thus (2.22) is true, which concludes the
proof of (2.18).
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It only remains to show that (2.18) implies (2.13); intuitively, this is true because
of (2.25). Indeed, we have

sup
x ∈ [a,b]

∣∣∣∣∣∣ log (D(i)
n (xf)/n)

xf(n) −
E
[
log Ȳ

]
EL

∣∣∣∣∣∣
⩽ sup

x ∈ [a,b]

∣∣∣∣∣∣ log (D(i)
n (xf)/n)

xh(n)EL
−

E
[
log Ȳ

]
EL

∣∣∣∣∣∣+ sup
x ∈ [a,b]

∣∣∣∣∣ log (D(i)
n (xf)/n)

xh(n)EL

(
1 − h(n)EL

f(n)

)∣∣∣∣∣
= oP(1)

EL
+
∣∣∣∣∣1 − h(n)EL

f(n)

∣∣∣∣∣ sup
x ∈ [a,b]

∣∣∣∣∣ log (D(i)
n (xf)/n)

xh(n)EL

∣∣∣∣∣
= oP

(
1 + sup

x ∈ [a,b]

∣∣∣∣∣ log(D(i)
n (xf)/n)

xh(n)

∣∣∣∣∣
)

,

where we have used (2.18), in the first equality, and (2.25) in the second one. By (2.18)
and the triangular inequality, this last supremum goes to zero in probability when
n → +∞, which concludes the proof of Proposition 2.7. □

We are now ready to prove Theorem 1.7.
Proof of Theorem 1.7. — We let U(1)(n), . . . , U(k)(n) be the nodes U1(n), . . . , Uk(n)

ordered in increasing L-distance to the root, that is, |U(1)(n)|L ⩽ · · · ⩽ |U(k)(n)|L,
and let V1(n), . . . , Vk(n) be the sizes of their respective Voronoi cells (in that order,
i.e. the Voronoi cell of U(i) is Vi(n)). We set m = E[log Ȳ ]/EL and start by showing
that, in distribution when n → +∞,

(2.28)
(

log(V2(n)/n)
vn

, . . . ,
log(Vk(n)/n)

vn

)
⇒ m

2
(
Ψ(2) − Ψ(1), . . . , Ψ(k) − Ψ(1)

)
,

where Ψ(1) ⩽ · · · ⩽ Ψ(k) is the increasing order statistics of Ψ1, . . . , Ψk, and with

(2.29) vn =


√

(log n)/µ3 if Var(L) < +∞,

((log n)/µ)1/α otherwise.

Note that, because m = −E[log(1/EȲ )]/EL = −µ/EL, this is equivalent to

(2.30)
(

log(V2(n)/n)
(log n)1/α

, . . . ,
log(Vk(n)/n)

(log n)1/α

)
⇒ v

2EL

(
Ψ(1) − Ψ(2), . . . , Ψ(1) − Ψ(k)

)
,

where we recall that α := 2 when Var(L) < +∞, and where we have set

v =

µ−1/2 if Var(L) < +∞,

µ1−1/α otherwise.

We now show that (2.30) implies (1.3): the only difference between the two is that
the entries in the left-hand side of (2.30) are ordered in increasing distance of the
respective Ui(n)’s to the root, while those in the left-hand side of (1.3) are ordered
in decreasing sizes of the Voronoi cells.

However, the convergence in (2.30) implies in particular that

P
(
V1(n) ⩾ V2(n) ⩾ · · · ⩾ Vk(n)

)
= P

(
Vi(n) = V(i)(n), ∀ i ∈ {1, . . . , k}

)
→ 1,
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where we recall that, by definition, V(i)(n) is the i-th largest of the k Voronoi cells.
We now let Cn denote the event that V1(n) ⩾ V2(n) ⩾ · · · ⩾ Vk(n): we have, for all
x2, . . . , xk < 0,

P
(

∀ i ∈ {2, . . . , k} : log(V(i)(n)/n)
(log n)1/α

⩾ xi

)

= P
(

∀ i ∈ {2, . . . , k} : log(Vi(n)/n)
(log n)1/α

⩾ xi and Cn

)
+ o(1)

when n → +∞, because P(Cn) → 1. Thus, (2.28) entails (1.3), and due to the above
it is sufficient to establish (2.30).

For this purpose, for each n ⩾ 1 set
(2.31) Kn := max

1⩽ i < j ⩽ k
{|Ui(n) ∧ Uj(n)|L}.

On the event

(2.32) En =
⋂

1⩽ i < j ⩽ k

{∣∣∣Ui(n) ∧ Uj(n)
∣∣∣
L

+
⌈∣∣∣|Ui(n)|L − |Uj(n)|L

∣∣∣/2
⌉
⩾ Kn

}
,

for all 1 ⩽ i ̸= j ⩽ k, the L-distance to the root of the point where the Voronoi
cells of Ui(n) and Uj(n) would meet if we ignored all other k − 2 points would be
at least Kn. Thus, for all i ̸= ℓ := arg min1⩽ j ⩽ k |Uj(n)|L, the Voronoi cell of Ui(n)
meets the Voronoi cell of Uℓ(n) at L-distance to the root exceeding Kn, implying
that the Voronoi cell of Ui(n) for all i ̸= ℓ is the subtree rooted at the ancestor of
Ui(n) closest to the root among all ancestors of Ui(n) whose L-distance to the root
exceeds

(2.33)
∣∣∣Ui(n) ∧ Uℓ(n)

∣∣∣
L

+

∣∣∣|Ui(n)|L − |Uℓ(n)|L
∣∣∣

2 .

By Lemmas 2.3, 2.4 and 2.5, we have P(En) → 1; thus, in the rest of the proof, we
work on the event En.

For all 1 ⩽ i ̸= j ⩽ k, we set

X (i,j)
n =

∣∣∣Ui(n) ∧ Uj(n)
∣∣∣
L

+
∣∣∣|Ui(n)|L − |Uj(n)|L

∣∣∣/2
vn

,

where vn is as in (2.29). Note that, by symmetry, the X (i,j)
n all have the same distri-

bution. Moreover, by Lemmas 2.3, 2.4 and 2.5 (see also for notation), in distribution
when n → +∞, jointly for all 1 ⩽ i ̸= j ⩽ k, we have
(2.34) X (i,j)

n ⇒ |Ψi − Ψj| /2,

where we have set, for all 1 ⩽ i ⩽ k,

(2.35) Ψi :=

Ξi if Var(L) < +∞,

Υi(α) otherwise,

where the random variables (Ξ1, . . . , Ξk) and (Υ1(α), . . . , Υd(α)) are defined in
Lemmas 2.4 and 2.5, respectively.
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For all a, b ∈ (0, ∞), we define the event

Bn(a, b) :=
{

∀ 1 ⩽ i < j ⩽ k : X (i,j)
n ∈ [a, b]

}
.

Note that, due to (2.34),

(2.36) lim
n

P(Bn(a, b)c) → 0 as a → 0 and b → +∞.

To prove (2.28), we start by setting, for any permutation σ ∈ Sk,

An(σ) = {|Uσ1(n)|L ⩽ |Uσ2(n)|L ⩽ · · · ⩽ |Uσk
(n)|L}.

For all ε > 0 and σ ∈ Sk, we have, using the notation introduced before as well as
in Proposition 2.7,

P
(

∃ i ∈ {2, . . . , k} : log(Vi(n)/n)(2.37)

⩾ (m + ε)X (σ1,σi)
n vn and Bn(a, b) ∩ An(σ)

)
= P

(
∃ i ∈ {2, . . . , k} : log

(
D(σi)

n (X (σ1,σi)
n vn)
n

)

⩾ (m + ε)X (σ1,σi)
n vn and Bn(a, b) ∩ An(σ)

)

⩽
k∑

i=2
P
(

sup
x ∈ [a,b]

log (D(i)
n (xvn)/n)
xvn

− m ⩾ ε

)

⩽ (k − 1)P
(

sup
x ∈ [a,b]

log (D(i)
n (xvn)/n)
xvn

− m ⩾ ε

)
→ 0,

when n → +∞ by Proposition 2.7. Since limn P(Bn(a, b)c) → 0 when a → 0 and
b → +∞ due to (2.36), we get

P
(

∃ i ∈ {2, . . . , k} : log(Vi(n)/n)
X

(σ1,σi)
n vn

⩾ m + ε and An(σ)
)

→ 0,

when n → +∞. Therefore, for all ε ∈ (0, −m), for all xi < 0, we have, asymptotically
when n → +∞ that

P
(

∀ i ∈ {2, . . . , k} : log(Vi(n)/n)
vn

⩾ xi

)

= (1 + o(1))
∑

σ ∈Sk

P
(

∀ i ∈ {2, . . . , k} : log(Vi(n)/n)
vn

⩾ xi

and log(Vi(n)/n)
X

(σ1,σi)
n vn

⩽ m + ε and An(σ)
)

⩽ (1 + o(1))
∑

σ ∈Sk

P
(

∀ i ∈ {2, . . . , k} : xi ⩽ X (σ1,σi)
n (m + ε) and An(σ)

)
= (1 + o(1))

∑
σ ∈Sk

P
(

∀ i ∈ {2, . . . , k} : X (σ1,σi)
n ⩽

xi

m + ε
and An(σ)

)
,
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where we have used that m + ε < 0. Since this is true for all ε ∈ (0, −m), we get

P
(

∀ i ∈ {2, . . . , k} : log(Vi(n)/n)
vn

⩾ xi

)

⩽ (1 + o(1))
∑

σ ∈Sk

P
(

∀ i ∈ {2, . . . , k} : X (σ1,σi)
n ⩽

xi

m
and An(σ)

)
.

By definition of An(σ) and due to (2.34), we thus get

P
(

∀ i ∈ {2, . . . , k} : log(Vi(n)/n)
vn

⩾ xi

)

⩽ (1 + o(1))
∑

σ ∈Sk

P
(

∀ i ∈ {2, . . . , k} : |Ψσ1 − Ψσi
| ⩽ 2xi

m
and Ψσ1 ⩽ · · · ⩽ Ψσk

)

= (1 + o(1))P
(

∀ i ∈ {2, . . . , k} : Ψ(i) − Ψ(1) ⩽
2xi

m

)
,

which concludes the proof of (2.28) and thus of (2.30). □

3. Proof of Theorem 1.9

Before proving Theorem 1.9, we prove a central limit theorem that extends the
weak law of large numbers proved in Proposition 2.7:

Lemma 3.1. — Using the same notation as in Proposition 2.7, assume that (xn)n⩾1
is a sequence of positive random variables converging in probability as n → +∞
to a positive constant x < C(f). Then, under the assumptions of Theorem 1.9 the
following hold true.

(i) If Var(L) < +∞, then, in distribution when n → +∞,

log (D(i)
n (xnf)/n) − xf(n)E

[
log Ȳ

]
/EL√

xf(n)

⇒ N

0,
Var

(
log Ȳ

)
EL

+
E
[
log Ȳ

]2
Var(L)

(EL)2

 .

(ii) If P(L ⩾ x) = ℓ(x)x−α for α ∈ (1, 2) and ℓ slowly varying at infinity, then, in
distribution when n → +∞,

log(D(i)
n (xnf)/n) − xf(n)E

[
log Ȳ

]
/EL

(xf(n))1/α
⇒ E [log(1/Ȳ )]

(EL)1+1/α
Υ(α),

where Υ(α) is an α-stable distribution.

Proof. — In this proof, we use the notation introduced in the proof of Proposi-
tion 2.7.
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(i) Fix ε > 0 such that x + ε < C(f) and x − ε > 0. By assumption, the probability
of the good events Gn := {xn ∈ [x − ε, x + ε]} tends to 1 as n → +∞. On this event,
we have

∣∣∣∣∣log
(

D(i)
n (xnf)

n

)
− log Qn(xn)

∣∣∣∣∣
=
∣∣∣∣∣log

(
D(i)

n (xnf)
(n − kn(xn))Qn(xn)

)
+ log

(
1 − kn(x)

n

)∣∣∣∣∣
⩽

∣∣∣∣∣log
(

D(i)
n (xnf)

(n − kn(xn))Qn(xn)

)∣∣∣∣∣+
∣∣∣∣∣log

(
1 − kn

n

)∣∣∣∣∣ ,
because kn(xn) ⩽ kn, by definition. By (2.22), we have on Gn that∣∣∣∣∣log

(
D(i)

n (xnf)
(n − kn(xn))Qn(xn)

)∣∣∣∣∣ ⩽ sup
xn ∈ [x−ε,x+ε]

∣∣∣∣∣log
(

D(i)
n (xf)

(n − kn(x))Qn(x)

)∣∣∣∣∣ = oP(1).

We thus get that on Gn,∣∣∣∣∣log
(

D(i)
n (xnf)

n

)
− log Qn(xn)

∣∣∣∣∣ = log(1 − Ũ) + oP(1),

which implies that

(3.1)
∣∣∣∣∣log

(
D(i)

n (xnf)
n

)
− log Qn(xn)

∣∣∣∣∣ = OP(1) as n → +∞.

Now recall that
log Qn(xn) =

∑
∅ ̸= u≼ ξ(kn(xn))

log Zu

is a sum of xnh(n) i.i.d. random variables with finite variance, since Var(log Ȳ ) < +∞
by assumption. By definition, for all y > 0, the node ξ(kn(y)) is the ancestor of Ui(n)
closest to the root whose L-distance to the root is at least yh(n). Therefore, almost
surely, for all y ⩽ z, ξ(kn(y)) is an ancestor of ξ(kn(z)) (which includes the case when
both nodes are equal). In other words, as y increases from x − ε to x + ε, ξ(kn(y))
goes through the ancestors of Ui(n) at L-distance to the root between (x − ε)h(n)
and (x + ε)h(n), in that order. Therefore, in distribution, we have, jointly for all
y ∈ [x − ε, x + ε],

log Qn(y) =
|ξ(kn(y))|∑

i=1
log Z̃i =

yh(n)∑
i=1

log Z̃i,

where the sequence (Z̃i)i⩾ 1 is a sequence of i.i.d. random copies of Ȳ , because, by
definition, |ξ(kn(y))| = yh(n) for all y > 0. Thus, by the central limit theorem with
random index (see, e.g., [Gut05, Theorem 3.2, Chapter 7]), we get

(3.2)
log Qn(xn) − xh(n)E

[
log Ȳ

]
√

xh(n)
⇒ N

(
0, Var(log Ȳ )

)
.
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Also recall that, by definition, xFi(n) = ∑xh(n)
i=1 Li in distribution, and thus applying

the central limit theorem, but this time to the sequence L, we get that, if Var(L) <
+∞, then

(3.3) xFi(n) − xh(n)EL√
xh(n)

⇒ N (0, Var(L)).

Note that, by the independence of the sequence L and the rest of the process, the
two limits in (3.2) and (3.3) hold jointly, and the two Gaussians are independent.
Combining (3.1) to (3.3), the above yields

√
xFi(n)

 log (D(i)
n (xnf)/n)

xFi(n) −
E
[
log Ȳ

]
EL

 =
√√√√ h(n)

Fi(n)

 log Qn(xn) + OP(1) − xh(n)E
[
log Ȳ

]
√

xh(n)
+

E
[
log Ȳ

]
EL

· xh(n)EL − xnFi(n)√
xh(n)



⇒ N

0,
Var

(
log Ȳ

)
EL

+
E
[
log Ȳ

]2
Var(L)

(EL)2

 .

In (2.24) we have proved that Fi(n) ∼ f(n) in probability as n → +∞, but in fact,
this statement can be made stronger: we have Fi(n) = f(n) as soon as |Ui(n)|L ⩾
xf(n), an event whose probability tends to 1 with n because either f(n) = o(log n)
or f(n) = log n and x < EL/µ. This implies (i).

(ii) Under the assumption that P(L ⩾ x) = ℓ(x)x−α with α ∈ (1, 2), the limit
in (3.3) does not hold, instead we have that

xFi(n) − xh(n)EL

(xh(n))1/α
⇒ Υ(α),

where Υ(α) is an α-stable distribution. Thus

log (D(i)
n (xnf)/n) − xFi(n)E

[
log Ȳ

]
/EL

(xFi(n))1/α
=
(

h(n)
Fi(n)

)1/α

E
[
log Ȳ

]
EL

· xh(n)EL − xFi(n)
(xh(n))1/α

+
log Qn(x) + OP(1) − xh(n)E

[
log Ȳ

]
(xh(n))1/α


⇒ E [log(1/Ȳ )]

(EL)1+1/α
Υ(α),

where the second summand now vanishes in the limit. This concludes the proof of (ii)
because µ = E[log(1/Ȳ )], and because Fi(n) = f(n) with probability tending to 1
when n tends to infinity. □

Proof of Theorem 1.9. — For this proof, we consider that the infections “creep
along edges” between the times at which they infect vertices: if two infections of
respective speeds s and s′ start at two neighbouring vertices v and v′ (respectively),
then they meet at distance from v proportional to s

s+s′
.
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For any two infections i and ℓ, the L-distance between Ui(n) and Uℓ(n) is equal to
∆i,ℓ := |Ui(n)|L + |Uℓ(n)|L − 2 |Ui(n) ∧ Uℓ(n)|L .

Therefore, the time ti,ℓ at which epidemics i and ℓ would meet if there were no other
infection at play is equal to the time it would take for an infection of speed si + sℓ

to cross a distance ∆i,ℓ, i.e.

(3.4) ti,ℓ = ∆i,ℓ

si + sℓ

= |Ui(n)|L + |Uℓ(n)|L − 2|Ui(n) ∧ Uℓ(n)|L
si + sℓ

.

Therefore, in the absence of the other k − 2 infections, the i-th and ℓ-th infections
would meet at L-distance to the root equal to the maximum of
(3.5) |Ui(n)|L − siti,ℓ and |Uℓ(n)|L − sℓti,ℓ.

Thus, on the event (recall Kn from (2.31)),

An =
⋂

1⩽ i < ℓ⩽ k

{
|Uℓ(n)|L − siti,ℓ ⩾ Kn

}
,

for all 1 ⩽ i < ℓ ⩽ k, if we ignored all other k − 2 epidemics, the epidemics started
respectively at Ui(n) and Uℓ(n) would meet at L-distance to the root at least Kn.
Also note that the probability of An goes to one when n → +∞ by Lemmas 2.3
and 2.4. Thus it is enough to restrict ourselves to the set where An holds.

We let κ = κ(n) = arg min{1 ⩽ ℓ ⩽ j : |Uℓ(n)|L}. On the event An, for all
i ≠ κ, the territory of the ith infection neighbours a unique other territory, and this
neighbouring territory is the territory of the κth epidemic. We let di(n) denote the
L-distance from the root to the point where they meet (this point can be in the
middle of an edge). On An, the territory of the ith infection is the subtree of τn

rooted at the ancestor of Ui(n) closest to the root whose L-distance to the root is
at least di(n). We now show that

(3.6) di(n)
log n

→ s1 − si

s1 + si

· EL

µ
in probability as n → +∞.

Indeed, first note that, by (3.4) and (3.5), under An, the ith and κth infections meet
at L-distance to the root equal to |Ui(n)|L − siti,κ, and thus

di(n) = |Ui(n)|L − siti,κ.

By Lemma 2.3, and using the notation Hn = max1⩽ i < k ⩽n |Ui(n) ∧ Uk(n)|, we get

(3.7) 0 ⩽
|Ui(n) ∧ Uκ(n)|L

log n
⩽

Hn

log n
→ 0 in probability as n → +∞,

implying that, as n → +∞,

(3.8) ti,κ = |Ui(n)|L + |Uκ(n)|L
s1 + si

+ oP(log n),

which yields

di(n) = s1|Ui(n)|L − si|Uκ(n)|L
s1 + si

+ oP(log n), as n → +∞.

ANNALES HENRI LEBESGUE



Voronoi cells in random split trees 157

Since, by Lemmas 2.4 and 2.5, Ui(n) = (EL/µ + oP(1)) log n as n → +∞ (and
similarly for Uκ(n)), we get (3.6).

As argued above, on An, Ter(i)
t,d((U1, s1), . . . , (Uk, sk)) is the subtree of τn rooted

at the ancestor of Ui(n) closest to the root whose L-distance is at least x(i)
n log n,

where, by (3.6),

x(i)
n := di(n)

log n
= s1 − si

s1 + si

· EL

µ
+ oP(1).

We set x(i) = limn→+∞ x(i)
n (with the limit holding in probability). Thus, by Lem-

ma 3.1(i), and because W(i)(n) = D(i)
n (x(i)

n f), we get

√
x(i) log n

 log(W(i)(n)/n)
x(i) log n

−
E
[
log Ȳ

]
EL


⇒ N

0,
Var(log Ȳ )

EL
+

E
[
log Ȳ

]2
Var(L)

(EL)2

 ,

if the random variable L has finite variance. This implies
log(W(i)(n)/n) + s1−si

s1+si
log n√

s1−si

s1+si
log n

⇒ N
(

0,
Var(log Ȳ )EL

E[log Ȳ ]2
+ Var(L)

)
,

as claimed. In the case when the edge lengths are heavy-tailed, we get from Lem-
ma 3.1(ii) that

log(W(i)(n)/n) − x(i)(log n)E[log Ȳ ]/EL

(x(i) log n)1/α
⇒ µ

(EL)1+1/α
Υ(α),

which implies
log

(
W(i)(n)/n

)
+ s1−si

s1+si
log n(

s1−si

s1+si
log n

)1/α
⇒ µ1−1/α

EL
Υ(α).

Because the probability of An converges to 1 as n → +∞, this concludes the proof
of (1.6).

To prove the convergence in (1.5), note that it follows from Theorem 1.7 and (1.6)
that the sizes W(i)(n), j + 1 ⩽ i ⩽ k are o(W(ℓ)(n)) for all ℓ ∈ {1, . . . , j} with high
probability. This implies (1.5). □
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