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V ⟨D⟩ in the general orbifold case – with a special attention to the compact case D = 0 and
to the logarithmic situation where the ramification indices are infinite. Using holomorphic
Morse inequalities on the tautological line bundle of the projectivized orbifold Green–Griffiths
bundle, we finally obtain effective sufficient conditions for the existence of global orbifold jet
differentials.

Résumé. — Nous introduisons le concept d’orbifoldes dirigées, à savoir les triplets (X, V, D)
formés par une variété dirigée algébrique ou analytique (X, V ), et un diviseur de ramification
D, où V est un sous-faisceau cohérent du fibré tangent TX . Dans ce contexte, nous introduisons
une algèbre de différentielles de jets orbifoldes et leurs sections. Ces sections peuvent être vues
comme des opérateurs différentiels algébriques agissant sur les germes de courbes, à coefficients
méromorphes, dont les pôles sont supportés par D et les multiplicités sont bornées par les
indices de ramification des composantes de D. Nous estimons avec précision le tenseur de
courbure de la structure dirigée correspondante V ⟨D⟩ dans le cas orbifolde général – avec une
attention particulière pour le cas compact D = 0 et le cas logarithmique où les indices de
ramifications sont infinis. En utilisant les inégalités de Morse holomorphes sur le fibré en droites
tautologique du fibré projectivisé orbifolde de Green–Griffiths, nous obtenons finalement des
conditions suffisantes pour l’existence de différentielles de jets orbifoldes globales.

1. Introduction and main definitions

The present work is concerned primarily with the existence of logarithmic and
orbifold jet differentials on projective varieties. For the sake of generality, and in view
of potential applications to the case of foliations, we work throughout this paper in
the category of directed varieties, and generalize them by introducing the concept
of directed orbifold.

Definition 1.1. — Let X be a complex manifold or variety. A directed structure
(X, V ) on X is defined to be a subsheaf V ⊂ O(TX) such that O(TX)/V is torsion
free. A morphism of directed varieties Ψ: (X, V ) → (Y,W ) is a holomorphic map
Ψ: X → Y such that d Ψ(V ) ⊆ Ψ∗W . We say that (X, V ) is non-singular if X is
non-singular and V is locally free, i.e., is a holomorphic subbundle of TX .

We refer to the absolute case as being the situation when V = TX , the relative
case when V = TX/S for some fibration X → S, and the foliated case when V is
integrable, i.e. [V, V ] ⊂ V , that is, V is the tangent sheaf to a holomorphic foliation.

We now combine these concepts with orbifold structures in the sense of Cam-
pana [Cam04].

Definition 1.2. — A directed orbifold is a triple (X, V,D) where (X, V ) is a
directed variety and where D = ∑(1 − 1

ρj
)∆j is an effective real divisor, for some

irreducible hypersurfaces ∆j with associated “ramification numbers” ρj ∈ ]1,∞]. We
denote by ⌈D⌉ = ∑∆j the corresponding reduced divisor, and by |D| = ⋃∆j its
support.

(1) We will say that (X, V,D) is non-singular if (X, V ) is non-singular and D is a
simple normal crossing divisor such that D is transverse to V . If r := rank(V ),
we mean by this that there are at most r components ∆j meeting at any
point x ∈ X, and that for any p-tuple (j1, . . . , jp) of indices, 1 ⩽ p ⩽ r, we
have dim Vx ∩ ⋂pj=1 T∆jℓ

,x = r − p at any point x ∈ ⋂p
j=1 ∆jℓ .
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On the existence of logarithmic and orbifold jet differentials 3

(2) If (X, V,D) is non-singular, the canonical divisor of (X, V,D) is defined to be
KV,D = KV +D

(in additive notation), where KV = detV ∗.
(3) The so-called logarithmic case corresponds to all multiplicities ρj = ∞ being

taken infinite, so that D = ∑∆j = ⌈D⌉.

In case V = TX , we recover the concept of orbifold introduced in [Cam04], except
possibly for the fact that we allow here ρj > 1 to be real or ∞, (even though the
case where ρj is in N∪{∞} is of greater interest). In the sequel, we will often denote
the pair (X,D) by X⟨D⟩ and the logarithmic cotangent sheaves by V ∗⟨D⟩. It would
certainly be interesting to investigate the case when (X, V,D) is singular, by allowing
singularities in V and tangencies between V and D, and to study whether the results
discussed in this paper can be extended in some way, e.g. by introducing suitable
multiplier ideal sheaves taking care of singularities, as was done in [Dem15] for the
study of directed varieties (X, V ). For the sake of technical simplicity, we will refrain
to do so here, and will therefore leave for future work the study of singular directed
orbifolds.

Definition 1.3. — Let (X, V,D) be a non-singular directed orbifold. We say
that f : C → X is an orbifold entire curve if f is a non-constant holomorphic map
such that:

(1) f is tangent to V (i.e. f ′(t) ∈ Vf(t) at every point, or equivalently f : (C, TC) →
(X, V ) is a morphism of directed varieties;

(2) f(C) is not identically contained in |D|;
(3) at every point t0 ∈ C such that f(t0) ∈ ∆j, f meets ∆j with ramification

number ⩾ ρj, i.e., if ∆j = {zj = 0} near f(t0), then zj ◦ f(t) vanishes with
multiplicity ⩾ ρj at t0.

(3′) In the case of a logarithmic component ∆j (ρj = ∞), condition (3) is to be
replaced by the assumption: f(C) does not meet ∆j.

One can now consider a category of directed orbifolds as follows.

Definition 1.4. — Consider directed non-singular orbifolds (X, V,D), (Y,W,D′)
with

D =
∑(

1 − 1
ρi

)
∆i, D′ =

∑(
1 − 1

ρ′
j

)
∆′
j.

A morphism Ψ: (X, V,D) → (Y,W,D′) is a morphism Ψ: (X, V ) → (Y,W ) of
directed varieties satisfying the additional following properties (a,b,c).

(1) for every component ∆′
j, Ψ−1(∆′

j) consists of a union of components ∆i,
i ∈ I(j), eventually after adding a number of extra components ∆i with
ρi = 1;

(2) in case ρ′
j < ∞, for every i ∈ I(j) and z ∈ ∆i, if ∆′

j = {yj = 0} near Ψ(z) and
∆i = {zi = 0} near z, then the function zi → Ψj(z) vanishes with multiplicity
⩾ ρ′

j/ρi at 0 where Ψj := yj ◦ Ψ;
(3) if ∆′

j is a logarithmic component (ρ′
j = ∞), then Φ−1(∆′

j) = ⋃
i∈ I(j) ∆i where

the (∆i)i∈ I(j) consist of logarithmic components (ρi = ∞).
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4 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

It is easy to check that, if the image of the composed morphism is not contained
in the support of the divisor on the target space, the composite of directed orb-
ifold morphisms is actually a directed orbifold morphism, and that the composition
of an orbifold entire curve f : C → (X, V,D) with a directed orbifold morphism
Ψ: (X, V,D) → (Y,W,D′) produces an orbifold entire curve Ψ ◦ f : C → (Y,W,D′)
(provided that Ψ◦f(C) ̸⊂ |D′|). One of our main goals is to investigate the following
orbifold generalization of the Green–Griffiths conjecture.

Conjecture 1.5. — Let (X, V,D) be a non-singular directed orbifold of general
type, in the sense that the canonical divisor KV + D is big. Then then exists an
algebraic subvariety Y ⊊ X containing all orbifold entire curves f : C → (X, V,D).

As in the absolute case (V = TX , D = 0), the idea is to show, at least as a first step
towards the conjecture, that orbifold entire curves must satisfy suitable algebraic
differential equations. In Section 2, we introduce graded algebras⊕

m∈N
Ek,mV

∗⟨D⟩

of sheaves of “orbifold jet differentials”. These sheaves correspond to algebraic dif-
ferential operators P (f ; f ′, f ′′, . . . , f (k)) acting on germs of k-jets of curves that are
tangent to V and satisfy the ramification conditions prescribed by D. The strategy
relies on the following orbifold version of the vanishing theorem, whose proof is
sketched in the appendix.

Proposition 1.6 (Orbifold vanishing theorem). — Let (X, V,D) be a projective
non-singular directed orbifold, and let A be an ample divisor on X. Then, for every
orbifold entire curve f : C → (X, V,D) and every global jet differential operator
P ∈ H0(X,Ek,mV ∗⟨D⟩ ⊗ OX(−A)), we have P (f ; f ′, f ′′, . . . , f (k)) = 0.

The next step consists precisely of finding sufficient conditions that ensure the
existence of global sections P ∈ H0(X,Ek,mV ∗⟨D⟩ ⊗ OX(−A)). Recall that it has
been shown in [CDR20, Prop. 5.1] that the general type assumption is not a sufficient
condition for the existence of global jet differentials. This contrasts with the reduced
case, in which we obtain (cf. [Dem11] for the compact case; the logarithmic case is
proven mutatis mutandis):

Theorem 1.7 (Reduced case). — When the boundary divisor D is reduced, the
(non-singular) directed orbifold (X, V,D) admits non-zero global jet differentials
vanishing on an ample divisor if and only if it is of general type.

Towards a condition for the existence of global jet differentials on orbifolds, “higher
order” orbifold structures have been introduced in [CDR20]:

D(s) =
∑
j

(
1 − s

ρj

)
+

∆j.

where x+ := max{x, 0}.
The following conjecture is proposed [CDR20].
Conjecture 1.8. — A smooth orbifold (X,D) of dimension n ⩾ 2 with smooth

boundary divisor admits nonzero global jet differentials vanishing on an ample divisor
if and only if (X,D(n)) is of general type.
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On the existence of logarithmic and orbifold jet differentials 5

The results in this paper can be seen as a first step in the direction of Conjecture 1.8.
Among more general results, we obtain

Theorem 1.9. — Let D = ∑N
j=1(1 − 1

ρj
)∆j a simple normal crossing orbifold

divisor on Pn with deg ∆j = dj. Then there exist non-zero jet differentials of order k
and large degree m on Pn⟨D⟩, with a small negative twist OPn(−mτ), τ > 0, under
any of the following two sufficient conditions:

(1) k ⩾ n, N ⩾ 1, ρj ⩾ ρ > n and∑
j

dj · min
(
min
j

(
ρj

dj

)
, 1

2

) n∏
s=1

(
1 − s

ρ

)
> cn

where

cn := n(n2 + n− 1)n!
(

n∑
s=1

1
s

+ 1
n3

)n−1

∼ (2π)1/2 nn+7/2 e−n(γ + log n)n−1.

(2) k ⩾ 1, N ⩾ n, ρj ⩾ ρ > 1 and for t = max(max(dj/ρj), 2),

∑
J⊂{1, ..., N}, |J |=n

∏
j ∈ J

dj
(
1 − 1

ρj

)
> (2n− 1) t

n t− n− 1 +
∑
j

dj(1 − 1/ρj)
n−1

.

When all components (∆j)1⩽ j ⩽N possess the same degrees dj = d ⩾ 1 and
ramification numbers ρj ⩾ ρ, we get the following simpler sufficient conditions:

(a) k ⩾ n,N ⩾ 1, ρ > n, N min(ρ, d) ∏n
s=1(1 − s

ρ
) > 2cn,

(b) k ⩾ 1, N ⩾ n, ρ > 1, N min(ρ, d) (1 − 1
ρ
)n > 2n (2n− 1)nn.

Let us recall some related results previously obtained in this orbifold setting. In
the case of orbifold surfaces (P2, (1 − 1

ρ
)C) where C is a smooth curve of degree d,

such existence results have been obtained in [CDR20] for k = 2, d ⩾ 12 and ρ ⩾ 5
depending on d. In [DR23], the existence of jet differentials is obtained for orbifolds
(Pn,∑d

i=1(1 − 1
ρ
)Hi) in any dimension for k = 1, ρ ⩾ 3 along an arrangement

of hyperplanes of degree d ⩾ 2n( 2n
ρ−2 + 1). In [BD19], it is established that the

orbifold (Pn, (1 − 1
d
)D), where D is a general smooth hypersurface of degree d, is

hyperbolic i.e. there is no non-constant orbifold entire curve f : C → (Pn, (1 − 1
d
)D),

if d ⩾ (n+ 2)n+3(n+ 1)n+3 and ρ ⩾ d.
The proof of Theorem 1.9 depends on a number of ingredients and on rather

extensive curvature calculations. The first point is that the curvature tensor of the
orbifold directed structure V ⟨D⟩ can be controlled in a precise manner. This is
detailed in § 7.1.

Theorem 1.10. — Assume that X is projective and (X, V,D) is non-singular.
Given an ample line bundle A on X, let γV be the infimum of real numbers γ ⩾ 0
such that γΘA ⊗ IdV − ΘV is positive in the sense of Griffiths, for suitable C∞

smooth hermitian metrics on V . Let D = ∑
j(1 − 1/ρj)∆j and select dj ⩾ 0 such

that djA−∆j is nef. Then for γ > γV,D := max(max(dj/ρj), γV ) ⩾ 0 and for suitable
hermitian metrics on A, V , OX(∆j), the “orbifold metric”

TOME 7 (2024)
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(a) |u|2hV ⟨D⟩,ε

:= |u|2hV
+

∑
1⩽ j ⩽N

εj |σj|−2+2/ρj |∇jσj(u)|2hj
, u ∈ V, σj ∈ H0 (X,OX(∆j))

yields a curvature tensor γΘA ⊗ Id − ΘV ⟨D⟩ such that the associated quadratic form
QV ⟨D⟩,γ,ε on TX ⊗ V satisfies for εN ≪ εN−1 ≪ · · · ≪ ε1 ≪ 1 the curvature estimate

(b) QV ⟨D⟩,γ,ε(z)(ξ ⊗ u) ≃ γΘA(ξ, ξ) |u|2 − ⟨ΘV (ξ, ξ) · u, u⟩

+
∑
j

εj |σj|−2+2/ρj

(
γΘA(ξ, ξ) − ρ−1

j Θ∆j
(ξ, ξ)

)
|∇jσj(u)|2

+
∑
j

εj |σj |−2+2/ρj

1+εj |σj |−2+2/ρj |∇jσj |2

∣∣∣∇2
jσj(ξ, u) − (1 − 1/ρj)σ−1

j ∇jσj(ξ)∇jσj(u)
∣∣∣2 .

Here, the symbol ≃ means that the ratio of the left and right hand sides can be
chosen in [1 − α, 1 + α] for any α > 0 prescribed in advance.

The next argument is the observation that the sheaf OX(Ek,mV ∗⟨D⟩) is the direct
image of a certain tautological rank 1 sheaf OXk(V ⟨D⟩)(m) on the “orbifold k-jet
bundle” Xk(V ⟨D⟩) → X. Choosing hermitian metrics according to Theorem 1.10,
one then gets a hermitian metric on OXk(V ⟨D⟩)(1) associated with an “orbifold Finsler
metric” on the bundle JkV of k-jets of holomorphic curves f : (C, 0) → (X, V ). In
normalized coordinates (z1, . . . , zn) on X and on V , the latter can be expressed as k∑

s=1
ε2b
s

 p∑
j=1

|fj|−2(1−s/ρj)+
∣∣∣f (s)
j

∣∣∣2 +
r∑

j=p+1

∣∣∣f (s)
j

∣∣∣2
2b/s


1/b

, f ∈ JkV, f(0) = x,

at any point x ∈ X where ∆j = {zj = 0}, 1 ⩽ j ⩽ p, r = rank V . An application of
holomorphic Morse inequalities ([Dem85], see also § 3, 4, 5) then provides asymptotic
estimates of the dimensions of the cohomology groups
Hq
(
X,Ek,mV

∗⟨D⟩ ⊗ OX(−A)
)

≃ Hq(Xk(V ⟨D⟩),OXk(V ⟨D⟩)(m) ⊗ π∗
kOX(−A)).

This is done in several steps. Section 5 expresses the Morse integrals that need to be
computed. Section 6 establishes some general estimates of Chern forms related to
the curvature tensor ΘE,h of a given hermitian vector bundle (E, h), under suitable
positivity assumptions. More precisely, Proposition 6.7 gives upper and lower bounds
of integrals of the form∫

u∈S(E)
|ℓ1(u)|2 . . . |ℓk(u)|2 ⟨ΘE,h(u), u⟩p−k

h dµ(u)

in terms of TrE ΘE,h = ΘdetE,deth, where µ is the unitary invariant probability
measure on the unit sphere bundle S(E), and the ℓj are linear forms. As far as we
know, these estimates seem to be new. Sections 7.2 and 8 then proceed with the
detailed calculations of the orbifold and logarithmic Morse integrals involved in the
problem. It is remarkable that a large part of the calculations use Chern forms and
are non cohomological, although the final bounds are purely cohomological. At this
point, we do not have a complete explanation of this “transcendental” phenomenon.
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On the existence of logarithmic and orbifold jet differentials 7

2. Logarithmic and orbifold jet differentials

2.1. Directed varieties and associated jet differentials

Let (X, V ) be a non-singular directed variety. We set n := dimCX, r := rankC V ,
and following the exposition of [Dem97], we denote by πk : JkV → X the bundle of
k-jets of holomorphic curves tangent to V at each point. The canonical bundle of V
is defined to be

KV := det(V ∗) = ΛrV ∗.

If f : (C, 0) → X, t 7→ f(t) is a germ of holomorphic curve tangent to V , we denote
by f[k](0) its k-jet at t = 0. For x0 ∈ X given, we take a coordinate system (z1, . . . , zn)
centered at x0 such that Vx0 = Span( ∂

∂zµ
)1⩽µ⩽ r. Then there exists a neighborhood

U of x0 such that V|U admits a holomorphic frame (eµ)1⩽µ⩽ r of the form
eµ(z) = ∂

∂zµ
+

∑
r+1⩽λ⩽n

aλµ(z) ∂
∂zλ
, 1 ⩽ µ ⩽ r,

with aλµ(0) = 0. Germs of curves f : (C, 0) → X tangent to V|U are obtained by
integrating the system of ordinary differential equations

f ′
λ(t) =

∑
1⩽µ⩽ r

aλµ(f(t)) f ′
µ(t), r + 1 ⩽ λ ⩽ n,

when we write f = (f1, . . . , fn) in coordinates. Therefore any such germ of curve f is
uniquely determined by its initial point z = f(0) and its projection f̃ = (f1, . . . , fr)
on the first r coordinates. By definition, every k-jet f[k] ∈ JkVz = π−1

k (z) is uniquely
determined by its initial point f(0) = z ≃ (z1, . . . , zn) and the Taylor expansion of
order k

(2.1) f̃(t) − f̃(0) = tξ1 + 1
2!t

2ξ2 + · · · + 1
k!t

kξk +O(tk+1),
t ∈ D(0, ε), ξs ∈ Cr, 1 ⩽ s ⩽ k.

Alternatively, we can pick an arbitrary local holomorphic connection ∇ on V|U
and represent the k-jet f[k](0) by (ξ1, . . . , ξk), where ξs = ∇sf(0) ∈ Vz is defined
inductively by ∇1f = f ′ and ∇sf = ∇f ′(∇s−1f). This gives a local biholomorphic
trivialization of JkV|U of the form

(2.2) JkV|U → V ⊕k
|U , f[k](0) 7→ (ξ1, . . . , ξk) =

(
∇f(0), . . . , ∇fk(0)

)
;

the particular choice of the “trivial connection” ∇0 of V|U that turns (eµ)1⩽µ⩽ r

into a parallel frame precisely yields the components ξs ∈ V|U ≃ Cr appearing
in (2.1). We could of course also use a C∞ connection ∇ = ∇0 + Γ where Γ ∈
C∞(U, T ∗

X ⊗ Hom(V, V )), and in this case, the corresponding trivialization (2.2) is
just a C∞ diffeomorphism; the advantage, though, is that we can always produce
such a global C∞ connection ∇ by using a partition of unity on X, and then (2.2)
becomes a global C∞ diffeomorphism. Now, there is a global holomorphic C∗ action
on JkV given at the level of germs by f 7→ α · f where α · f(t) := f(αt), α ∈ C∗.
With respect to our trivializations (2.2), this is the weighted C∗ action defined by

α · (ξ1, ξ2, . . . , ξk) =
(
αξ1, α

2ξ2, . . . , α
kξk
)
, ξs ∈ V.

TOME 7 (2024)



8 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

We see that JkV → X is an algebraic fiber bundle with typical fiber Crk, and that
the projectivized k-jet bundle

Xk(V ) :=
(
JkV \ {0}

)
/C∗, πk : Xk(V ) → X

is a P(1[r], 2[r], . . . , k[r]) weighted projective bundle over X, of total dimension
dimXk(V ) = n+ kr − 1.

Definition 2.1. — We define OX(Ek,mV ∗) to be the sheaf over X of holomorphic
functions P (z ; ξ1, . . . , ξk) on JkV that are weighted polynomials of degree m in
(ξ1, . . . , ξk).

In coordinates and in multi-index notation, we can write
P (z ; ξ1, . . . , ξk) =

∑
α1, ..., αk∈Nr

|α1|+2|α2|+···+k|αk|=m

aα1...αk
(z) ξα1

1 . . . ξαk
k

where the aα1...αk
(z) are holomorphic functions in z = (z1, . . . , zn) and ξαs

s actually
means

ξαs
s = ξ

αs,1
s,1 . . . ξαs,r

s,r forξs = (ξs,1, . . . , ξs,r) ∈ Cr, αs = (αs,1, . . . , αs,r) ∈ Nr,

and |αs| = ∑r
j=1 αs,j. Such sections can be interpreted as algebraic differential op-

erators acting on holomorphic curves f : D(0, R) → X tangent to V , by putting
P (f) := u where

u(t) =
∑

α1, ..., αk∈Nr

|α1|+2|α2|+···+k|αk|=m

aα1...αk
(f(t)) f ′(t)α1 . . . f (k)(t)αk .

Here f (s)(t)αs is actually to be expanded as

f (s)(t)αs = f
(s)
1 (t)αs,1 . . . f (s)

r (t)αs,r

with respect to the components f (s)
j defined in (2.1). We also set

u = P
(
f ; f ′, f ′′, . . . , f (k)

)
when we want to make more explicit the dependence of the expression in terms of
the derivatives of f . We thus get a sheaf of graded algebras⊕

m∈N
OX (Ek,mV ∗) .

Locally in coordinates, the algebra is isomorphic to the weighted polynomial ring

OX

[
f

(s)
j

]
1⩽ j ⩽ r, 1⩽ s⩽ k

, deg f (s)
j = s

over OX . An immediate consequence of these definitions is:

Proposition 2.2. — The projectivized bundle πk : Xk(V ) → X can be identified
with

(a) Proj
⊕
m∈N

OX (Ek,mV ∗)
 → X,
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On the existence of logarithmic and orbifold jet differentials 9

and, if OXk(V )(m) denote the associated tautological sheaves, we have the direct
image formula
(b) (πk)∗OXk(V )(m) = OX (Ek,mV ∗) .

Remark 2.3. — These objects were denoted XGG
k and EGG

k,mV
∗ in our previous

paper [Dem97], as a reference to the work of Green–Griffiths [GG80], but we will
avoid here the superscript GG to simplify the notation.

Thanks to the Faà di Bruno formula, a change of coordinates w = ψ(z) on X leads
to a transformation rule

(ψ ◦ f)(k) = ψ′ ◦ f · f (k) +Qψ

(
f ′, . . . , f (k−1

)
where Qψ is a polynomial of weighted degree k in the lower order derivatives. This
shows that the transformation rule of the top derivative is linear and, as a conse-
quence, the partial degree in f (k) of the polynomial P (f ; f ′, . . . , fk)) is intrinsically
defined. By taking the corresponding filtration and factorizing the monomials (f (k))αk

with polynomials in f ′, f ′′, . . . , f (k−1), we get graded pieces
G• (Ek,mV ∗) =

⊕
ℓk ∈N

Ek−1,m−kℓkV
∗ ⊗ SℓkV ∗.

By considering successively the partial degrees with respect to f (k), f (k−1), . . . , f ′′, f ′

and merging inductively the resulting filtrations, we get a multi-filtration such that
(2.3) G• (Ek,mV ∗) =

⊕
ℓ1, ..., ℓk∈N, ℓ1+2ℓ2+···+kℓk=m

Sℓ1V ∗ ⊗ Sℓ2V ∗ ⊗ · · · ⊗ SℓkV ∗.

2.2. Logarithmic directed varieties

We now turn ourselves to the logarithmic case. Let (X, V,D) be a non-singular
logarithmic variety, where D = ∑∆j is a simple normal crossing divisor. Fix a
point x0 ∈ X. By the assumption that D is transverse to V , we can then select
holomorphic coordinates (z1, . . . , zn) centered at x0 such that Vx0 = Span( ∂

∂zj
)1⩽ j ⩽ r

and ∆j = {zj = 0}, 1 ⩽ j ⩽ p, are the components of D that contain x0 (here p ⩽ r
and we can have p = 0 if x0 /∈ |D|). What we want is to introduce an algebra of
differential operators, defined locally near x0 as the weighted polynomial ring

(2.4) OX

[
(log fj)(s)

1⩽ j ⩽ p ,
(
f

(s)
j

)
p+1⩽ j ⩽ r

]
1⩽ s⩽ k

, deg f (s)
j = deg (log fj)(s) = s,

or equivalently

(2.4′) OX

[(
f−1
j f

(s)
j

)
1⩽ j ⩽ p

,
(
f

(s)
j

)
p+1⩽ j ⩽ r

]
1⩽ s⩽ k

, deg f (s)
j = s, deg f−1

j = 0.

For this we notice that

(log f1)′′ =
(
f−1

1 f ′
1

)′
= f−1

1 f ′′
1 −

(
f−1

1 f ′
1

)2
,

(log f1)′′′ = f−1
1 f ′′′

1 − 3
(
f−1

1 f ′
1

) (
f−1

1 f ′′
1

)
+ 2

(
f−1

1 f ′
1

)3
. . . .
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10 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

A similar argument easily shows that the above graded rings do not depend on the
particular choice of coordinates made, as soon as they satisfy ∆j = {zj = 0}.

Now (as is well known in the absolute case V = TX), we have a corresponding log-
arithmic directed structure V ⟨D⟩ and its dual V ∗⟨D⟩. If the coordinates (z1, . . . , zn)
are chosen so that Vx0 = {dzr+1 = . . . = dzn = 0}, then the fiber V ⟨D⟩x0 is spanned
by the derivations

z1
∂
∂z1
, . . . , zp

∂
∂zp
, ∂
∂zp+1

, . . . , ∂
∂zr
.

The dual sheaf OX(V ∗⟨D⟩) is the locally free sheaf generated by
dz1
z1
, . . . , dzp

zp
, dzp+1, . . . , dzr

[where the 1-forms are considered in restriction to OX(V ⟨D⟩) ⊂ OX(V ) ]. It follows
from this that OX(V ⟨D⟩) and OX(V ∗⟨D⟩) are locally free sheaves of rank r. By
taking det(V ∗⟨D⟩) and using the above generators, we find

det (V ∗⟨D⟩) = det(V ∗) ⊗ OX(D) = KV +D

in additive notation. Quite similarly to Props. 2.2 and 2.3, we have:

Proposition 2.4. — Let ⊕
m∈N

OX (Ek,mV ∗⟨D⟩)

be the graded algebra defined in coordinates by (2.4) or (2.4′). We define the loga-
rithmic k-jet bundle to be

(a) Xk(V ⟨D⟩) := Proj
⊕
m∈N

OX(Ek,mV ∗⟨D⟩)
 → X.

If OXk(V ⟨D⟩)(m) denote the associated tautological sheaves, we get the direct image
formula
(b) (πk)∗OXk(V ⟨D⟩)(m) = OX (Ek,mV ∗⟨D⟩) .

Moreover, the multi-filtration by the partial degrees in the derivatives f (s)
j has graded

pieces

(c) G•
(
Ek,mV

∗⟨D⟩
)

=
⊕

ℓ1, ..., ℓk ∈N
ℓ1+2ℓ2+···+kℓk=m

Sℓ1V ∗⟨D⟩ ⊗ Sℓ2V ∗⟨D⟩ ⊗ · · · ⊗ SℓkV ∗⟨D⟩.

2.3. Orbifold directed varieties

We finally consider a non-singular directed orbifold (X, V,D), where D = ∑(1 −
1
ρj

)∆j is a simple normal crossing divisor transverse to V . Let ⌈D⌉ = ∑∆j be the
corresponding reduced divisor. By § 2.2, we have associated logarithmic sheaves
OX(Ek,mV ∗⟨⌈D⌉⟩). We want to introduce a graded subalgebra⊕

m∈N
OX (Ek,mV ∗⟨D⟩) ⊆

⊕
m∈N

OX (Ek,mV ∗⟨⌈D⌉⟩)
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On the existence of logarithmic and orbifold jet differentials 11

in such a way that for every germ P ∈ OX(Ek,mV ∗⟨D⟩) and every germ of orbifold
curve f : (C, 0) → (X, V,D) the germ of meromorphic function P (f)(t) is bounded at
t = 0 (hence holomorphic). Assume that ∆1 = {z1 = 0} and that f has multiplicity
q ⩾ ρ1 > 1 along ∆1 at t = 0. Then f

(s)
1 still vanishes at order ⩾ (q − s)+, thus

(f1)−βf
(s)
1 is bounded as soon as βq ⩽ (q−s)+, i.e. β ⩽ (1− s

q
)+. Thus, it is sufficient

to ask that β ⩽ (1 − s
ρ1

)+. At a point x0 ∈ |∆1| ∩ . . . ∩ |∆p|, a sufficient condition
for a monomial of the form

(2.5) f−β1
1 . . . f−βp

p

k∏
s=1

r∏
j=1

(
f

(s)
j

)αs,j

, αs = (αs,j) ∈ Nr, β1, . . . , βp ∈ N

to be bounded is to require that the multiplicities of poles satisfy

(2.5′) βj ⩽
k∑
s=1

αs,j

(
1 − s

ρj

)
+
, 1 ⩽ j ⩽ p.

Definition 2.5. — The subalgebra ⊕m∈N OX(Ek,mV ∗⟨D⟩) is taken to be the
graded ring generated by monomials (2.5) of degree ∑ s|αs| = m, satisfying the
pole multiplicity conditions (2.5′). These conditions do not depend on the choice of
coordinates, hence we get a globally and intrinsically defined sheaf of algebras on X.

Proof. — We only have to prove the last assertion. Consider a change of variables
w = ψ(z) such that ∆j can still be expressed as ∆j = {wj = 0}. Then, for j =
1, . . . , p, we can write wj = zjuj(z) with an invertible holomorphic factor uj. We
need to check that the monomials (2.5) computed with g = ψ ◦ f are holomorphic
combinations of those associated with f . However, we have gj = fjuj(f), hence
g

(s)
j = ∑

0⩽ ℓ⩽ s

(
s
ℓ

)
f

(ℓ)
j (uj(f))(s−ℓ) by the Leibniz formula, and we see that

g−β1
1 . . . g−βp

p

k∏
s=1

r∏
j=1

(
g

(s)
j

)αs,j

expands as a linear combination of monomials

f−β1
1 . . . f−βp

p

k∏
s=1

r∏
j=1

αs,j∏
m=1

f
(ℓs,j,m)
j , ℓs,j,m ⩽ s,

multiplied by holomorphic factors of the form
p∏
j=1

uj(f)−βj ×
k∏
s=1

r∏
j=1

αs,j∏
m=1

(uj(f))(s−ℓj,s,m) .

However, we have

βj ⩽
k∑
s=1

αs,j
(
1 − s

ρj

)
+
⩽

k∑
s=1

αs,j∑
m=1

(
1 − ℓs,j,m

ρj

)
+
,

so the f -monomials satisfy again the required multiplicity conditions for the poles
f

−βj

j . □
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12 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

The above conditions (2.5′) suggest to introduce as in [CDR20] a sequence of
“differentiated” orbifold divisors

D(s) =
∑
j

(
1 − s

ρj

)
+

∆j.

We say that D(s) is the order s orbifold divisor associated to D; its ramification
numbers are ρ(s)

j = max(ρj/s, 1). By definition, the logarithmic components (ρj = ∞)
of D remain logarithmic in D(s), while all others eventually disappear when s is large.

Now, we introduce (in a purely formal way) a sheaf of rings ÕX = OX [z•
j ] by

adjoining all positive real powers of coordinates zj such that ∆j = {zj = 0} is locally
a component of D. Locally over X, this can be done by taking the universal cover
Y of a punctured polydisk

D∗(0, r) :=
∏

1⩽ j ⩽ p

D∗(0, rj) ×
∏

p+1⩽ j ⩽n

D(0, rj) ⊂ D(0, r) :=
∏

1⩽ j ⩽n

D(0, rj)

in the local coordinates zj on X. If γ : Y → D∗(0, r) ↪→ X is the covering map and
U ⊂ D(0, r) is an open subset, we can then consider the functions of ÕX(U) as
being defined on γ−1(U ∩ D∗(0, r)). In case X is projective, one can even achieve
such a construction “globally”, at least on a Zariski open set, by taking Y to be the
universal cover of a complement X \ (|D| ∪ |A|), where A = ∑

Aj is a very ample
normal crossing divisor transverse to D, such that OX(∆j)|X\|A| is trivial for every
j ; then ÕX is well defined as a genuine sheaf on X \ |A|.

In this setting, the subalgebra ⊕
m OX(Ek,mV ∗⟨D⟩) still has a multi-filtration

induced by the one on ⊕m OX(Ek,mV ∗⟨⌈D⌉⟩), and by extending the structure sheaf
OX into ÕX , we get an inclusion

ÕX (G•Ek,mV
∗⟨D⟩) ⊂

⊕
ℓ1+2ℓ2+···+kℓk=m

ÕX

(
Sℓ1V ∗

〈
D(1)

〉)
⊗· · ·⊗ÕX

(
SℓkV ∗

〈
D(k)

〉)
,

ÕX(V ∗⟨D(s)⟩) is the “sth orbifold (dual) directed structure”, generated by the order
s differentials

z
−(1−s/ρj)+
j d(s)zj, 1 ⩽ j ⩽ p, d(s)zj, p+ 1 ⩽ j ⩽ r.

By construction, we have

(2.6) det
(
ÕX

(
V ∗

〈
D(s)

〉))
= ÕX

(
KV +D(s)

)
.

Remark 2.6. — When ρj = aj/bj ∈ Q+, one can find a finite ramified Galois
cover g : Y → X from a smooth projective variety Y onto X, such that the composi-
tions (zj ◦ g)1/aj become single-valued functions wj on Y . In this way, the pull-back
OY (g∗V ∗⟨D(s)⟩) is actually a locally free OY -module. On can also introduce a sheaf
of algebras which we will denote by ⊕OY (Ek,mṼ ∗⟨D⟩), generated, according to the
notation of § 2.2, by the elements g∗(z(1−s/ρj)+

j d(s)zj), 1 ⩽ j ⩽ p, and g∗(d(s)zj),
p+ 1 ⩽ j ⩽ r. Then, as already shown in [CDR20], there is indeed a multifiltration
on OY (Ek,mṼ ∗⟨D⟩) whose graded pieces are

OY

(
G•Ek,mṼ

∗⟨D⟩
)

=
⊕

ℓ1+2ℓ2+···+kℓk=m
OY

(
Sℓ1Ṽ ∗

〈
D(1)

〉)
⊗· · ·⊗OY

(
Sℓk Ṽ ∗

〈
D(k)

〉)
.
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On the existence of logarithmic and orbifold jet differentials 13

However, we will adopt here an alternative viewpoint that avoids the introduction
of finite or infinite covers, and suits better our approach. The general philosophy
is to consider a “jet orbifold directed structure” Xk(V ⟨D⟩) as the underlying “jet
logarithmic directed structure” Xk(V ⟨⌈D⌉⟩), equipped additionally with a submulti-
plicative sequence of ideal sheaves Jm⟨D⟩ ⊂ OXk(V ⟨⌈D⌉⟩). These are precisely defined
as the base loci ideals of the local sections defined by (2.5) and (2.5′), seen as sections
of the logarithmic tautological sheaves OXk(V ⟨⌈D⌉⟩)(m). The corresponding analytic
viewpoint is to consider ad hoc singular hermitian metrics on OXk(V ⟨⌈D⌉⟩)(1) whose
singularities are asymptotically described by the limit of the formal mth root of
Jm⟨D⟩, see § 4.2. It then becomes possible to deal without trouble with real coef-
ficients ρj ∈ ]1,∞], and since we no longer have to worry about the existence of
Galois covers, the projectivity assumption on X can be dropped as well.

3. Preliminaries on holomorphic Morse inequalities

3.1. Basic results

We first recall the basic results concerning holomorphic Morse inequalities for
smooth hermitian line bundles, first proved in [Dem85].

Theorem 3.1. — Let X be a compact complex manifolds, E → X a holomorphic
vector bundle of rank r, and (L, h) a hermitian line bundle. We denote by ΘL,h =
ı

2π∇2
h = − ı

π
∂∂̄ log h the curvature form of (L, h) and introduce the open subsets of

X

(∗)


X(L, h, q) =

{
x ∈ X ; ΘL,h(x) has signature (n− q, q)

}
,

X(L, h, S) =
⋃
q ∈S

X(L, h, q), ∀ S ⊂ {0, 1, . . . , n}.

Then, for all q = 0, 1, . . . , n, the dimensions hq(X,E ⊗ Lm) of cohomology groups
of the tensor powers E ⊗ Lm satisfy the following “Strong Morse inequalities” as
m → +∞:

SM(q):
∑

0⩽ j ⩽ q

(−1)q−jhj (X,E ⊗ Lm) ⩽ rm
n

n!

∫
X(L,h,⩽ q)

(−1)qΘn
L,h + o(mn),

with equality χ(X,E ⊗ Lm) = rm
n

n!
∫
X Θn

L,h + o(mn) for the Euler characteristic
(q = n).

As a consequence, one gets upper and lower bounds for all cohomology groups,
and especially a very useful criterion for the existence of sections of large multiples
of L.

Corollary 3.2. — Under the above hypotheses, we have
(a) Upper bound for hq (Weak Morse inequalities):

hq(X,E ⊗ Lm) ⩽ rm
n

n!

∫
X(L,h,q)

(−1)qΘn
L,h + o(mn).
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(b) Lower bound for h0:

h0(X,E ⊗ Lm) ⩾ h0 − h1 ⩾ rm
n

n!

∫
X(L,h,⩽1)

Θn
L,h − o(mn).

Especially L is big as soon as
∫
X(L,h,⩽1) Θn

L,h > 0 for some hermitian metric h
on L.

(c) Lower bound for hq:

hq(X,E ⊗ Lm) ⩾ hq − hq−1 − hq+1 ⩾ rm
n

n!

∫
X(L,h,{q,q±1})

(−1)qΘn
L,h + o(mn).

Proof. — (a) is obtained by taking SM(q)+SM(q− 1), (b) is equivalent to − SM(1)
and (c) is equivalent to −(SM(q+ 1) + SM(q− 2)). □

The following simple lemma is the key to derive algebraic Morse inequalities from
their analytic form (cf. [Dem96, Theorem 12.3]).

Lemma 3.3. — Let η = α− β be a difference of semipositive (1, 1)-forms on an
n-dimensional complex manifold X, and let 1lη,⩽ q be the characteristic function of
the open set where η is non-degenerate with a number of negative eigenvalues at
most equal to q. Then

(−1)q1lη,⩽ q ηn ⩽
∑

0⩽ j ⩽ q

(−1)q−j
(
n

j

)
αn−j ∧ βj,

in particular
1lη,⩽ 1 η

n ⩾ αn − nαn−1 ∧ β for q = 1.

Proof. — Without loss of generality, we can assume α > 0 positive definite, so
that α can be taken as the base hermitian metric on X. Let us denote by

λ1 ⩾ λ2 ⩾ . . . ⩾ λn ⩾ 0

the eigenvalues of β with respect to α. The eigenvalues of η = α − β are then given
by

1 − λ1 ⩽ . . . ⩽ 1 − λq ⩽ 1 − λq+1 ⩽ . . . ⩽ 1 − λn,

hence the open set {λq+1 < 1} coincides with the support of 1lη,⩽ q, except that it
may also contain a part of the degeneration set ηn = 0. On the other hand we have(

n

j

)
αn−j ∧ βj = σjn(λ)αn,

where σjn(λ) is the jth elementary symmetric function in the λj’s. Thus, to prove the
lemma, we only have to check that∑

0⩽ j ⩽ q

(−1)q−jσjn(λ) − 1l{λq+1<1}(−1)q
∏

1⩽ j ⩽n

(1 − λj) ⩾ 0.

This is easily done by induction on n (just split apart the parameter λn and write
σjn(λ) = σjn−1(λ) + σj−1

n−1(λ)λn). □
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Corollary 3.4. — Assume that η = ΘL,h can be expressed as a difference
η = α− β of smooth (1, 1)-forms α, β ⩾ 0. Then we have

SM(q):
∑

0⩽ j ⩽ q

(−1)q−jhj(X,E⊗Lm) ⩽ rm
n

n!

∫
X

∑
0⩽ j ⩽ q

(−1)q−j
(
n

j

)
αn−j∧βj+o(mn),

and in particular, for q = 1,

h0(X,E ⊗ Lm) ⩾ h0 − h1 ⩾ rm
n

n!

∫
X
αn − nαn−1 ∧ β + o(mn).

Remark 3.5. — These estimates are consequences of Theorem 3.1 and Lemma 3.3,
by taking the integral over X. The estimate for h0 was stated and studied by
Trapani [Tra95]. In the special case α = ΘA,hA

> 0, β = ΘB,hB
> 0 where A,B are

ample line bundles, a direct proof can be obtained by purely algebraic means, via
the Riemann–Roch formula. However, we will later have to use Corollary 3.4 in case
α and β are not closed, a situation in which no algebraic proof seems to exist.

3.2. Singular holomorphic Morse inequalities

The case of singular hermitian metrics has been considered in Bonavero’s PhD
thesis [Bon93] and will be important for us. We assume that L is equipped with a
singular hermitian metric h = h∞e

−φ with analytic singularities, i.e., h∞ is a smooth
metric, and on an neighborhood V ∋ x0 of an arbitrary point x0 ∈ X, the weight φ
is of the form
(3.1) φ(z) = c log

∑
1⩽ j ⩽N

|gj|2 + u(z)

where gj ∈ OX(V ) and u ∈ C∞(V ). We then have ΘL,h = α + ı
2π ∂∂̄ φ where

α = ΘL,h∞ is a smooth closed (1, 1)-form on X. In this situation, the multiplier ideal
sheaves

I(hm) = I(kφ) =
{
f ∈ OX,x, ∃ V ∋ x,

∫
V

|f(z)|2e−mφ(z)dλ(z) < +∞
}

play an important role. We define the singularity set of h by Sing(h) = Sing(φ) =
φ−1(−∞) which, by definition, is an analytic subset of X. The associated q-index
sets are

X(L, h, q) =
{
x ∈ X \ Sing(h) ; ΘL,h(x) has signature (n− q, q)

}
.

We can then state:

Theorem 3.6 ([Bon93]). — Morse inequalities still hold in the context of singular
hermitian metric with analytic singularities, provided the cohomology groups under
consideration are twisted by the appropriate multiplier ideal sheaves, i.e. replaced
by Hq(X,E ⊗ Lm ⊗ I(hm)).

Remark 3.7. — The assumption (3.1) guarantees that the measure
1lX\Sing(h) (ΘL,h)n
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is locally integrable on X, as is easily seen by using the Hironaka desingularization
theorem and by taking a log resolution µ : X̃ → X such that µ∗(gj) = (γ) ⊂ OX̃

becomes a principal ideal associated with a simple normal crossing divisor E = div(γ).
Then µ∗ΘL,h = c[E] + β where β is a smooth closed (1, 1)-form on X̃, hence

µ∗
(
1lX\Sing(h)Θn

L,h

)
= βn ⇒

∫
X\Sing(h)

Θn
L,h =

∫
X̃
βn.

It should be observed that the multiplier ideal sheaves I(hm) and the integral∫
X\Sing(h) Θn

L,h only depend on the equivalence class of singularities of h: if we have
two metrics with analytic singularities hj = h∞e

−φj , j = 1, 2, such that ψ = φ2 −φ1
is bounded, then, with the above notation, we have µ∗ΘL,hj

= c[E] + βj and β2 =
β1 + ı

2π ∂∂̄ ψ, therefore
∫
X̃
βn2 =

∫
X̃
βn1 by Stokes theorem. By using Monge–Ampère

operators in the sense of Bedford–Taylor [BT76], it is in fact enough to assume
u ∈ L∞

loc(X) in (3.1), and ψ ∈ L∞(X) here. In general, however, the Morse integrals∫
X(L,hj ,q)(−1)qΘn

L,hj
, j = 1, 2, will differ.

4. Construction of jet metrics and orbifold jet metrics

4.1. Jet metrics and curvature tensor of jet bundles

Let (X, V ) be a non-singular directed variety and h a hermitian metric on V . We
assume that h is smooth at this point (but will later relax a little bit this assumption
and allow certain singularities). Near any given point z0 ∈ X, we can choose local
coordinates z = (z1, . . . , zn) centered at z0 and a local holomorphic coordinate frame
(eλ(z))1⩽λ⩽ r of V on an open set U ∋ z0, such that

(4.1) ⟨eλ(z), eµ(z)⟩h(z) = δλµ +
∑

1⩽ i, j ⩽n, 1⩽λ, µ⩽ r

cijλµziz̄j +O(|z|3)

for suitable complex coefficients (cijλµ). It is a standard fact that such a normalized
coordinate system always exists, and that the Chern curvature tensor ı

2π∇2
V,h of

(V, h) at z0 is given by

ΘV,h(z0) = − ı
2π

∑
i,j,λ,µ

cijλµ dzi ∧ dz̄j ⊗ e∗
λ ⊗ eµ.

Therefore, ( ı
2π cijλµ) are the coefficients of −ΘV,h. Up to taking the transposed tensor

with respect to λ, µ, these coefficients are also the components of the curvature tensor
ΘV ∗,h∗ = −tΘV,h of the dual bundle (V ∗, h∗). By (2.2), the connection ∇ = ∇h

yields a C∞ isomorphism JkV → V ⊕k. Let us fix an integer b ∈ N∗ that is a
multiple of lcm(1, 2, . . . , k), and positive numbers 1 = ε1 ≫ ε2 ≫ · · · ≫ εk > 0.
Following [Dem11], we define a global weighted Finsler metric on JkV by putting
for any k-jet f ∈ JkVz

Ψh,b,ε(f) :=
 ∑

1⩽ s⩽ k

ε2b
s ∥∇sf(0)∥2b/s

h(z)

1/b

,
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On the existence of logarithmic and orbifold jet differentials 17

where ∥·∥h(z) is the hermitian metric h of V evaluated on the fiber Vz, z = f(0). The
function Ψh,b,ε satisfies the fundamental homogeneity property

Ψh,b,ε(α · f) = |α|2 Ψh,b,ε(f)
with respect to the C∗ action on JkV , in other words, it induces a hermitian metric
on the dual L∗

k of the tautological Q-line bundle Lk = OXk(V )(1) over Xk(V ). The
curvature of Lk is given by
(4.2) π∗

kΘLk,Ψ∗
h,b,ε

= ı
2π ∂∂̄ log Ψh,b,ε

Our next goal is to compute precisely the curvature and to apply holomorphic
Morse inequalities to L → Xk(V ) with the above metric. This might look a priori
like an untractable problem, since the definition of Ψh,b,ε is a rather complicated one,
involving the hermitian metric in an intricate manner. However, the “miracle” is that
the asymptotic behavior of Ψh,b,ε as εs/εs−1 → 0 is in some sense uniquely defined,
and “splits” according to the natural multifiltration on jet differentials. This leads
to a computable asymptotic formula, which is moreover simple enough to produce
useful results.

Lemma 4.1. — Let us consider the global C∞ bundle isomorphism JkV → V ⊕k

associated with an arbitrary global C∞ connection ∇ on V → X, and let us introduce
the rescaling transformation

ρ∇,ε(ξ1, ξ2, . . . , ξk) =
(
ε1

1ξ1, ε
2
2ξ2, . . . , ε

k
kξk
)

on fibers JkVz, z ∈ X.

Such a rescaling commutes with the C∗-action. Moreover, if p is a multiple of
lcm(1, 2, . . . , k) and the ratios εs/εs−1 tend to 0 for all s = 2, . . . , k, the rescaled
Finsler metric Ψh,b,ε ◦ ρ−1

∇,ε(ξ1, . . . , ξk) converges towards the limit ∑
1⩽ s⩽ k

∥ξs∥2b/s
h

1/b

on every compact subset of V ⊕k \ {0}, uniformly in C∞ topology, and the limit is
independent of the connection ∇. The error is measured by a multiplicative factor
1 ±O(max2⩽ s⩽ k(εs/εs−1)s).

Proof. — Let us pick another C∞ connection ∇̃ = ∇ + Γ where Γ ∈ C∞(U, T ∗
X ⊗

Hom(V, V )). Then ∇̃2f = ∇2f + Γ(f)(f ′) · f ′, and inductively we get

∇̃sf = ∇sf + Ps
(
f ; ∇1f, . . . , ∇s−1f

)
where P (z ; ξ1, . . . , ξs−1) is a polynomial with C∞ coefficients in z ∈ U , which
is of weighted homogeneous degree s in (ξ1, . . . , ξs−1). In other words, the corre-
sponding isomorphisms JkV ≃ V ⊕k correspond to each other by a C∗-homogeneous
transformation (ξ1, . . . , ξk) 7→ (ξ̃1, . . . , ξ̃k) such that

ξ̃s = ξs + Ps (z ; ξ1, . . . , ξs−1) .
Let us introduce the corresponding rescaled components

(ξ1,ε, . . . , ξk,ε) =
(
ε1

1ξ1, . . . , ε
k
kξk
)
, (ξ̃1,ε, . . . , ξ̃k,ε) =

(
ε1

1ξ̃1, . . . , ε
k
kξ̃k
)
.
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18 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

Then

ξ̃s,ε = ξs,ε + εss Ps
(
x ; ε−1

1 ξ1,ε, . . . , ε
−(s−1)
s−1 ξs−1,ε

)
= ξs,ε +O(εs/εs−1)sO

(
∥ξ1,ε∥ + · · · + ∥ξs−1,ε∥1/(s−1)

)s
and it is easily seen, as a simple consequence of the mean value inequality |∥x∥γ −
∥y∥γ| ⩽ γ supz ∈ [x,y]∥z∥γ−1∥x−y∥, that the “error term” in the difference ∥ξ̃s,ε∥2b/s−
∥ξs,ε∥2b/s is bounded by

(εs/εs−1)s
(
∥ξ1,ε∥ + · · · + ∥ξs−1,ε∥1/(s−1) + ∥ξs,ε∥1/s

)2b
.

When b/s is an integer, similar bounds hold for all derivatives Dβ
z,ξ(∥ξ̃s,ε∥2b/s −

∥ξs,ε∥2b/s) and the Lemma 4.1 follows. □

Now, we fix a point z0 ∈ X, a local holomorphic frame (eλ(z))1⩽λ⩽ r satisfying (4.1)
on a neighborhood U of z0, and the holomorphic connection ∇ on V|U such that
∇eλ = 0. Since the uniform estimates of Lemma 4.1 also apply locally (provided
they are applied on a relatively compact open subset U ′ ⋐ U), we can use the
corresponding holomorphic trivialization JkV|U ≃ V ⊕k

|U ≃ U × (Cr)⊕k to make our
calculations. We do this in terms of the rescaled components ξs = εss∇sf(0). Then,
uniformly on compact subsets of JkV|U \ {0}, we have

Ψh,b,ε ◦ ρ−1
∇,ε(z ; ξ1, . . . , ξk) =

 ∑
1⩽ s⩽ k

∥ξs∥2b/s
h(z)

1/b

+O
(
max(εs/εs−1)1/b

)
,

and the error term remains of the same magnitude when we take any derivative Dβ
z,ξ.

By (4.1) we find

∥ξs∥2
h(z) =

∑
λ

|ξs,λ|2 +
∑
i,j,λ,µ

cijλµ ziz̄j ξs,λξ̄s,µ +O
(
|z|3|ξ|2

)
.

The question is thus reduced to evaluating the curvature of the weighted Finsler
metric on V ⊕k defined by

Ψ(z ; ξ1, . . . , ξk) =
 ∑

1⩽ s⩽ k

∥ξs∥2b/s
h(z)

1/b

=

 ∑
1⩽ s⩽ k

∑
λ

|ξs,λ|2 +
∑
i,j,λ,µ

cijλµ ziz̄j ξs,λξ̄s,µ

b/s


1/b

+O(|z|3).

We set |ξs|2 = ∑
λ|ξs,λ|2. A straightforward calculation yields the Taylor expansion

log Ψ(z ; ξ1, . . . , ξk)

= 1
b

log
∑

1⩽ s⩽ k

|ξs|2b/s +
∑

1⩽ s⩽ k

1
s

|ξs|2b/s∑
t
|ξt|2b/tAAa

∑
i,j,λ,µ

cijλµziz̄j
ξs,λξ̄s,µ

|ξs|2 +O(|z|3).
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On the existence of logarithmic and orbifold jet differentials 19

By (4.2), the curvature form of Lk = OXk(V )(1) is given at the central point z0 by
the formula

ΘLk,Ψ∗
h,b,ε

(z0, [ξ]) ≃ ωr,k,b(ξ) + ı
2π

∑
1⩽ s⩽ k

1
s

|ξs|2b/s∑
t
|ξt|2b/t

∑
i,j,λ,µ

cijλµ
ξs,λξ̄s,µ

|ξs|2 dzi ∧ dz̄j

where
[ξ] = [ξ1, . . . , ξk] ∈ P

(
1[r], 2[r], . . . , k[r]

)
and

ωr,k,b(ξ) = ı
2π ∂∂̄

1
b

log
∑

1⩽ s⩽ k

|ξs|2b/s
 .

The fibers P(1[r], 2[r], . . . , k[r]) of Xk(V ) → X can be represented as a quotient of
the “weighted ellipsoid” ∑k

s=1|ξs|2b/s = 1 by the S1-action induced by the weighted
C∗-action. This suggests to make use of polar coordinates and to set

xs = |ξs|2b/s, x = (x1, . . . , xk) ∈ Rk,(4.3)
us = ξs

|ξs| ∈ S2r−1 ⊂ Cr, u = (u1, . . . , uk) ∈ (S2r−1)k,(4.3′)
so that

(4.3′′)
k∑
s=1

xs = 1 and ξs = xs/2b
s us.

The Morse integrals will then have to be computed for (x, u) ∈ ∆̸k−1 × (S2r−1)k,
where ∆̸k−1 ⊂ Rk is the (k − 1)-dimensional simplex.

Proposition 4.2. — With respect to the rescaled components ξs = εss∇sf(0) at
z = f(0) ∈ X and the above choice of coordinates ((4.3), (4.3)′, (4.3)′′), the curvature
of the tautological sheaf Lk = OXk(V )(1) admits an approximate expression

ΘLk,Ψ∗
h,b,ε

(z, [ξ]) = ωr,k,b(ξ) + gV,k(z, x, u) + (error terms),(a)

where (x, u) ∈ ∆̸k−1 × (S2r−1)k, ξs = xs/2b
s us ∈ Cr,

ωr,k,b(ξ) = ı
2π ∂∂̄

(
1
b

log
∑

1⩽ s⩽ k

|ξs|2b/s
)

(b)

is a Fubini–Study type Kähler metric on P(1[r], 2[r], . . . , k[r]), associated with the
canonical C∗ action on JkV of weight a = (1[r], 2[r], . . . , k[r]), and

gV,k(z, x, u) = ı
2π

∑
1⩽ s⩽ k

xs

s

∑
i,j,λ,µ

cijλµ(z)us,λūs,µ dzi ∧ dz̄j.(c)

Here ( ı
2π cijλµ) are the coefficients of −ΘV,h, and the error terms admit an upper

bound

(error terms) ⩽ O
(

max
2⩽ s⩽ k

(εs/εs−1)s
)

(d)

uniformly on the compact variety Xk(V ).

Proof. — The error terms on ΘLk
come from the differentiation of the error terms

on the Finsler metric, found in Lemma 4.1. They can indeed be differentiated if b is
a multiple of lcm(1, 2, . . . , k), since 2b/s is then an even integer. □
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For the calculation of Morse integrals, it is useful to find the expression of the
volume form ωkr−1

r,k,b on P(1[r], 2[r], . . . , k[r]) = (∆̸k−1 × (S2r−1)k)/S1 in terms of the
coordinates (x, u). We refer to [Dem11, Prop. 1.13] for the proof.

Proposition 4.3. —
(a) The volume form ωkr−1

r,k,b is the quotient of the measure 1
k!r νk,r ⊗ µ on ∆̸k−1 ×

(S2r−1)k, where

dνk,r(x) = (kr − 1)! (x1... xk)r−1

(r−1)! k dx1 ∧ . . . ∧ dxk−1, dµ(u) = dµ1(u1) . . . dµk(uk)

are probability measures on ∆̸k−1 and (S2r−1)k respectively (µ being the rota-
tion invariant one).

(b) We have the equality
∫
P(1[r],2[r], ..., k[r]) ω

kr−1
r,k,b = 1

k!r (independent of b).

4.2. Logarithmic and orbifold jet metrics

Consider now an orbifold directed structure (X, V,D), where V ⊂ TX is a subbun-
dle, r = rank(V ), and D = ∑(1 − 1

ρj
)∆j is a normal crossing divisor that is assumed

to intersect V transversally everywhere. One then performs very similar calculations
to what we did in § 4.1, but with adapted Finsler metrics. Fix a point z0 at which p
components ∆j meet, and use coordinates (z1, . . . , zn) such that Vz0 is spanned by
( ∂
∂z1
, . . . , ∂

∂zr
) and ∆j is defined by zj = 0, 1 ⩽ j ⩽ p ⩽ r. In the logarithmic case

ρj = ∞, the logarithmic dual bundle O(V ∗⟨D⟩) is spanned by
dz1
z1
, . . . , dzp

zp
, dzp+1, . . . , dzn.

The logarithmic jet differentials are just polynomials in
dsz1
z1
, . . . , d

szp

zp
, dszp+1, . . . , d

szn, 1 ⩽ s ⩽ k,

and the corresponding (ε1, . . . , εk)-rescaled Finsler metric is

(4.4)

 k∑
s=1

ε2b
s

 p∑
j=1

|fj|−2
∣∣∣f (s)
j

∣∣∣2 +
r∑

j=p+1

∣∣∣f (s)
j

∣∣∣2
2b/s


1/b

.

Alternatively, we could replace |fj|−2|f (s)
j |2 by |(log fj)(s)|2 which has the same leading

term and differs by a weighted degree s polynomial in the f−1
j f

(ℓ)
j , ℓ < s ; an argument

very similar to the one used in the proof of Lemma 4.1 then shows that the difference
is negligible when ε1 ≫ ε2 ≫ · · · ≫ εk. However (4.4) is just the case of the model
metric, in fact we get r-tuples ξs = (ξs,j)1⩽ j ⩽ r of components produced by the
trivialization of the logarithmic bundle O(V ⟨D⟩), such that

ξs,j = f−1
j f

(s)
j for 1 ⩽ s ⩽ p and ξs,j = f

(s)
j for p+ 1 ⩽ s ⩽ r.

In general, we are led to consider Finsler metrics of the form(
k∑
s=1

ε2b
s ∥ξs∥2b/s

h(z)

)1/b

, ξs = (ξs,j)1⩽ j ⩽ r,
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On the existence of logarithmic and orbifold jet differentials 21

where h(z) is a variable hermitian metric on the logarithmic bundle V ⟨D⟩. In the
orbifold case, the appropriate “model” Finsler metric is

 k∑
s=1

ε2b
s

 p∑
j=1

|fj|−2(1−s/ρj)+
∣∣∣f (s)
j

∣∣∣2 +
r∑

j=p+1

∣∣∣f (s)
j

∣∣∣2
2b/s


1/b

.

As a consequence of Remark 3.7, we would get a metric with equivalent singularities
on the dual L∗

k of the tautological sheaf Lk = OXk(V ⟨D⟩)(1) by replacing ∑r
j=p+1|f

(s)
j |2

with ∑r
j=1|f

(s)
j |2 (or by any smooth hermitian norm h on V ), since the extra terms∑p

j=1|f
(s)
j |2 are anyway controlled by the “orbifold part” of the summation. Of course,

we need to find a suitable Finsler metric that is globally defined on X. This can be
done by taking smooth metrics hV,s on V and hj on OX(∆j) respectively, as well as
smooth connections ∇ and ∇j. One can then consider the globally defined metric

(4.5)

 k∑
s=1

ε2b
s

∣∣∣∇(s)f
∣∣∣2
hV,s

+
∑
j

∥σj(f)∥−2(1−s/ρj)+
hj

∣∣∣∇(s)
j (σj ◦ f)

∣∣∣2
hj

2b/s


1/b

where D = ∑(1− 1
ρj

)∆j and σj ∈ H0(X,OX(∆j)) are the tautological sections; here,
we want the flexibility of not necessarily taking the same hermitian metrics on V to
evaluate the various norms ∥∇(s)f∥hV,s

. We obtain Finsler metrics with equivalent
singularities by just changing the hV,s and hj (and keeping ∇, ∇j unchanged). If
we also change the connections, then an argument very similar to the one used
in the proof of Lemma 4.1 shows that the ratio of the corresponding metrics is
1 ±O(max(εs/εs−1)), and therefore arbitrary close to 1 whenever ε1 ≫ ε2 ≫ · · · ≫
εk; in any case, we get metrics with equivalent singularities. Fix z0 ∈ X and use
coordinates (z1, . . . , zn) as described at the beginning of § 4.2, so that σj(z) = zj,
1 ⩽ j ⩽ p, in a suitable trivialization of OX(∆j). Let f be a k-jet of curve such
that f(0) = z ∈ X \ |D| is in a sufficiently small neighborhood of z0. By employing
the trivial connections associated with the above coordinates, the derivative f (s) is
described by components

ξs,j = f
(s)
j , 1 ⩽ j ⩽ r, ξlog

s,j = f−1
j f

(s)
j , ξorb

s,j = f
−(1−s/ρj)+
j f

(s)
j , 1 ⩽ j ⩽ p,

and ξorb
s,j = ξlog

s,j = ξs,j for p + 1 ⩽ j ⩽ r. Here ξorb
s,j are to be thought of as the

components of f (s) in the “virtual” vector bundle V ⟨D(s)⟩, and the fact that the
argument of these complex numbers is not uniquely defined is irrelevant, because
the only thing we need to compute the norms is |ξorb

s,j |. Accordingly, for v ∈ Vz,
v ≃ (vj)1⩽ j ⩽ r ∈ Cr, we put

vlog
j = z−1

j vj = σj(z)−1∇jσj(v) and vorb
j = z

−(1−s/ρj)+
j vj, 1 ⩽ j ⩽ p,

and define the orbifold hermitian norm on V ⟨D(s)⟩ associated with hV,s and hj by
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∥vorb∥
h̃s

2 = ∥v∥2
hV,s

+
p∑
j=1

∥σj(z)∥−2(1−s/ρj)+)
hj

∥∇jσj(v)∥2
hj

(4.6)

= ∥v∥2
hV,s

+
p∑
j=1

∥σj(z)∥2(1−(1−s/ρj)+)
hj

|vlog
j |2(4.6′)

= ∥v∥2
hV,s

+
p∑
j=1

∥vorb
j ∥2

h
1−(1−s/ρj)+
j

.(4.6′′)

With this notation, the orbifold Finsler metric (4.5) on k-jets is reduced to an
expression

∥∥∥ξorb
∥∥∥ 2

Ψh,b,ε

=
(

k∑
s=1

ε2b
s

∥∥∥ξorb
s

∥∥∥2b/s

h̃s

)1/b

, ξorb
s =

(
ξorb
s,j

)
1⩽ j ⩽ r

,

ξorb =
(
ξorb
s

)
1⩽ s⩽ k

,

(4.7)

formally identical to what we had in the compact or logarithmic cases. If v is a
local holomorphic section of OX(V ), formula (4.6) shows that the norm ∥vorb∥

h̃s
can

take infinite values when z ∈ |D|, while, by (4.6′), the norm is always bounded (but
slightly degenerate along |D|) if v is a section of the logarithmic sheaf OX(V ⟨⌈D⌉⟩);
we think intuitively of the orbifold total space V ⟨D(s)⟩ as the subspace of V in which
the tubular neighborhoods of the zero section are defined by ∥vorb∥

h̃s
< ε for ε > 0.

Remark 4.4. — When ρj ∈ Q, we can take an adapted Galois cover g : Y → X
such that (zj ◦ g)1−(1−s/ρj)+ is univalent on Y for all components ∆j involved, and
we then get a well defined locally free sheaf OY

(
g∗V ⟨D(s)

)
such that

g∗
(
OX(V ⟨⌈D⌉⟩)

)
⊂ OY

(
g∗V

〈
D(s)

〉 )
⊂ g∗

(
OX(V )

)
.

However, as already stressed in Remark 2.6, this viewpoint is not needed in our
analytic approach.

4.3. Orbifold tautological sheaves and their curvature

In this context, we define the orbifold tautological sheaves

OXk(V ⟨D⟩)(m) := OXk(V ⟨⌈D⌉⟩)(m) ⊗ I((Ψ∗
k,b,ε)m)

to be the logarithmic tautological sheaves OXk(V ⟨⌈D⌉⟩)(m) twisted by the multiplier
ideal sheaves associated with the dual metric Ψ∗

k,b,ε (cf. (4.7)), when these are viewed
as singular hermitian metrics over the logarithmic k-jet bundle Xk(V ⟨⌈D⌉⟩). In
accordance with this viewpoint, we simply define the orbifold k-jet bundle to be
Xk(V ⟨D⟩) = Xk(V ⟨⌈D⌉⟩). The calculation of the curvature tensor is formally the
same as in the case D = 0, and we obtain:
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Proposition 4.5. — With respect to the (rescaled) orbifold k-jet components

ξs,λ = εssf
(1−(1−ρλ/s)+)
λ f

(s)
λ (0), 1 ⩽ λ ⩽ p, and ξs,λ = εssf

(s)
λ (0), p+ 1 ⩽ λ ⩽ r,

and of the dual metric Ψ∗
h,b,ε, the curvature form of the tautological sheaf Lk =

OXk(V ⟨D⟩)(1) admits at any point (z, [ξ]) ∈ Xk(V ⟨D⟩) an approximate expression
ΘLk,Ψ∗

h,b,ε
(z, [ξ]) ≃ ωr,k,b(ξ) + gV,D,k(z, x, u),(a)

where xs = |ξs|2b/s, us = ξs

|ξs| ∈ S2r−1 are polar coordinates associated with ξs =
(ξs,λ)1⩽λ⩽ k in Cr, x = (x1, . . . , xk) ∈ ∆̸k−1, [ξ] = [ξ1, . . . , ξk] ∈ P(1[r], 2[r], . . . , k[r])
and

gV,D,k(z, x, u) = ı
2π

∑
1⩽ s⩽ k

xs

s

∑
i,j,λ,µ

c
(s)
ijλµ(z)us,λūs,µ dzi ∧ dz̄j.(b)

Here ( ı
2π c

(s)
ijλµ) are the coefficients of the curvature tensor −Θ

V ⟨D(s)⟩,̃hs
, and the error

terms are O(max2⩽ s⩽ k(εs/εs−1)s), uniformly on the projectivized orbifold variety
Xk(V ⟨D⟩).

Notice, as is clear from the expressions (4.6′′), (4.7) and the fact that vj = zjv
orb
j ,

that our orbifold Finsler metrics always have fiberwise positive curvature, equal
to ωk,r,b(ξ), along the fibers of Xk(V ⟨D⟩) → X (even after taking into account
the so-called error terms, because fiberwise, the functions under consideration are
just sums of even powers |ξ̃orb

s |2b/s in suitable k-jet components, and are therefore
plurisubharmonic.)

5. Existence theorems for jet differentials

5.1. Expression of the Morse integral

Thanks to the uniform approximation provided by Proposition 4.5, we can (and
will) neglect the O(εs/εs−1) error terms in our calculations. Since ωr,k,b is positive
definite on the fibers of Xk(V ⟨D⟩) → X (at least outside of the axes ξs = 0), the
index of the (1, 1) curvature form ΘLk,Ψ∗

h,b,ε
(z, [ξ]) is equal to the index of the (1, 1)-

form gV,D,k(z, x, u). By the binomial formula, the q-index integral of (Lk,Ψ∗
h,b,ε) on

Xk(V ⟨D⟩) is therefore equal to

(5.1)
∫
Xk(V ⟨D⟩)(Lk,q)

Θn+kr−1
Lk,Ψ∗

h,b,ε

= (n+kr−1)!
n!(kr−1)!

∫
z ∈X

∫
ξ ∈P(1[r], ..., k[r])

ωkr−1
r,k,b (ξ) ∧ 1lgV,D,k,q(z, x, u) gV,D,k(z, x, u)n

where 1lgV,D,k,q(z, x, u) is the characteristic function of the open set of points where
gV,D,k(z, x, u) has signature (n− q, q) in terms of the dzj’s.

Notice that since gV,D,k(z, x, u)n is a determinant, the product
1lgV,D,k,q(z, x, u) gV,D,k(z, x, u)n

gives rise to a continuous function on Xk(V ⟨D⟩). By Proposition 4.3(b), we get
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(5.2)
∫
Xk(V ⟨D⟩)(Lk,q)

Θn+kr−1
Lk,Ψ∗

h,b,ε
= (n+kr−1)!

n! k!r(kr−1)! ×∫
z∈X

∫
(x,u) ∈ ∆̸k−1×(S2r−1)k

1lgV,D,k,q(z, x, u) gV,D,k(z, x, u)n dνk,r(x) dµ(u).

5.2. Probabilistic estimate of cohomology groups

We assume here that we are either in the “compact” case (D = 0), or in the
logarithmic case (ρj = ∞). Then the curvature coefficients c(s)

ijλµ = cijλµ do not
depend on s and are those of the dual bundle V ∗ (resp. V ∗⟨D⟩). In this situation,
Proposition 4.5(b) for gV,D,k(z, x, u) can be thought of as a “Monte Carlo” evaluation
of the curvature tensor, obtained by averaging the curvature at random points
us ∈ S2r−1 with certain positive weights xs/s ; we then think of the k-jet f as
some sort of random variable such that the derivatives ∇kf(0) (resp. logarithmic
derivatives) are uniformly distributed in all directions. Let us compute the expected
value of (x, u) 7→ gV,D,k(z, x, u) with respect to the probability measure dνk,r(x) dµ(u).
Since ∫

S2r−1
us,λūs,µdµ(us) = 1

r
δλµ and

∫
∆̸k−1

xs dνk,r(x) = 1
k
,

we find the expected value
E(gV,D,k(z, •, •)) = 1

kr

∑
1⩽ s⩽ k

1
s

· ı
2π

∑
i,j,λ

cijλλ(z) dzi ∧ dz̄j.

In other words, we get the normalized trace of the curvature, i.e.

(5.3) E(gV,D,k(z, •, •)) = 1
kr

(
1 + 1

2 + · · · + 1
k

)
Θdet(V ∗⟨D⟩),deth∗ ,

where Θdet(V ∗⟨D⟩),deth∗ is the (1, 1)-curvature form of det(V ∗⟨D⟩) with the metric
induced by h. It is natural to guess that gV,D,k(z, x, u) behaves asymptotically as
its expected value E(gV,D,k(z, •, •)) when k tends to infinity. If we replace brutally
gV,D,k by its expected value in (5.2), we get the integral

(n+kr−1)!
n! k!r(kr−1)!

1
(kr)n

(
1 + 1

2 + · · · + 1
k

)n ∫
X

1lη,qηn,

where η := Θdet(V ∗⟨D⟩),deth∗ and 1lη,q is the characteristic function of its q-index set
in X. The leading constant is equivalent to (log k)n/n! k!r modulo a multiplicative
factor 1 +O(1/ log k). By working out a more precise analysis of the deviation, the
following result has been proved in [Dem11] in the compact case; the more general
logarithmic case can be treated without any change, so we state the result in this
situation by just transposing the results of [Dem11].

Probabilistic estimate 5.1. — Let (X, V,D) be a non-singular logarithmic
directed variety. Fix smooth hermitian metrics ω on TX , h on V ⟨D⟩, and write
ω = ı

2π
∑
ωijdzi ∧ dz̄j on X. Denote by ΘV ⟨D⟩,h = − ı

2π
∑
cijλµdzi ∧ dz̄j ⊗ e∗

λ ⊗ eµ the
curvature tensor of V ⟨D⟩ with respect to an h-orthonormal frame (eλ), and put

η(z) := Θdet(V ∗⟨D⟩),deth∗ = ı
2π

∑
1⩽ i,j ⩽n

ηijdzi ∧ dz̄j, ηij :=
∑

1⩽λ⩽ r

cijλλ.
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Finally consider the k-jet line bundle Lk = OXk(V ⟨D⟩)(1) → Xk(V ⟨D⟩) equipped
with the induced metric Ψ∗

h,b,ε (as defined above, with 1 = ε1 ≫ ε2 ≫ . . . ≫ εk > 0).
When k tends to infinity, the integral of the top power of the curvature of Lk on its
q-index set Xk(V ⟨D⟩)(Lk, q) is given by∫

Xk(V ⟨D⟩)(Lk,q)
Θn+kr−1
Lk,Ψ∗

h,b,ε
= (log k)n

n! k!r

(∫
X

1lη,qηn +O
(
(log k)−1

))
for all q = 0, 1, . . . , n, and the error term O((log k)−1) can be bounded explicitly in
terms of ΘV ⟨D⟩, η and ω. Moreover, the left hand side is identically zero for q > n.

The final statement follows from the observation that the curvature of Lk is positive
along the fibers of Xk(V ⟨D⟩) → X, by the plurisubharmonicity of the weight (this
is true even when the error terms are taken into account, since they depend only on
the base); therefore the q-index sets are empty for q > n. It will be useful to extend
the above estimates to the case of sections of

LF,k = OXk(V ⟨D⟩)(1) ⊗ π∗
kO
(

− 1
kr

(
1 + 1

2 + · · · + 1
k

)
F
)

where F ∈ PicQ(X) is an arbitrary Q-line bundle on X and πk : Xk(V ⟨D⟩) → X
is the natural projection. We assume here that F is also equipped with a smooth
hermitian metric hF . In formulas (5.2)–(5.1), the curvature ΘLF,k

of LF,k takes the
form ΘLF,k

= ωr,k,b(ξ) + gV,D,F,k(z, x, u) where

gV,D,F,k(z, x, u) = gV,D,k(z, x, u) − 1
kr

(
1 + 1

2 + · · · + 1
k

)
ΘF,hF

(z),

and by the same calculations its normalized expected value is
ηF (z) := 1

1
kr

(1+ 1
2 +···+ 1

k
)
E(gV,D,F,k(z, •, •)) = ΘdetV ∗⟨D⟩,deth∗(z) − ΘF,hF

(z).

Then the variance estimate for gV,D,F,k is the same as the variance estimate for gV,D,k,
and the recentered Lp bounds are still valid, since our forms are just shifted by adding
the constant smooth term ΘF,hF

(z). The probabilistic estimate 4.4 is therefore still
true in exactly the same form for LF,k, provided we use gV,D,F,k and ηF instead of
gV,D,k and η. An application of holomorphic Morse inequalities gives the desired
cohomology estimates for

hq
(
X,Ek,mV

∗⟨D⟩ ⊗ O
(

− m
kr

(
1 + 1

2 + · · · + 1
k

)
F
))

= hq
(
Xk(V ⟨D⟩),OXk(V ⟨D⟩)(m) ⊗ π∗

kO
(

− m
kr

(
1 + 1

2 + · · · + 1
k

)
F
))
,

provided m is sufficiently divisible to give a multiple of F which is a Z-line bundle.

Theorem 5.2. — Let (X, V ⟨D⟩) be a non-singular logarithmic directed variety,
F → X a Q-line bundle, (V ⟨D⟩, h) and (F, hF ) smooth hermitian structures on
V ⟨D⟩ and on F respectively. We define

LF,k = OXk(V ⟨D⟩)(1) ⊗ π∗
kO
(

− 1
kr

(
1 + 1

2 + · · · + 1
k

)
F
)
,

ηF = ΘdetV ∗⟨D⟩,deth∗ − ΘF,hF
= ΘdetV ∗⟨D⟩⊗F−1,deth∗ .
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Then for all q ⩾ 0 and all m ≫ k ≫ 1 such that m is sufficiently divisible, we have

hq(Xk(V ⟨D⟩),O(L⊗m
F,k )) ⩽ mn+kr−1

(n+kr−1)!
(log k)n

n! k!r

(∫
X(ηF ,q)

(−1)qηnF +O
(
(log k)−1

))
,(a)

h0(Xk(V ⟨D⟩),O(L⊗m
F,k )) ⩾ mn+kr−1

(n+kr−1)!
(log k)n

n! k!r

(∫
X(ηF ,⩽1)

ηnF −O
(
(log k)−1

))
,(b)

χ(Xk(V ⟨D⟩),O(L⊗m
F,k )) = mn+kr−1

(n+kr−1)!
(log k)n

n! k!r
(
c1(V ∗⟨D⟩ ⊗ F )n +O

(
(log k)−1

) )
.(c)

Green and Griffiths [GG80] already checked the Riemann–Roch calculation (The-
orem 5.2 c) in the special case D = 0, V = T ∗

X and F = OX and prove the existence
of jet differentials for surfaces of general type. Their proof is much simpler since
it relies only on Chern class calculations, but it cannot provide any information
on the individual cohomology groups, except in very special cases where vanishing
theorems can be applied; in fact in dimension 2, the Euler characteristic satisfies
χ = h0 − h1 + h2 ⩽ h0 + h2, hence it is enough to get the vanishing of the top coho-
mology group H2 to infer h0 ⩾ χ ; this works for surfaces by means of a well-known
vanishing theorem of Bogomolov which implies in general

Hn

(
X,Ek,mT

∗
X ⊗ O

(
− m

kr

(
1 + 1

2 + · · · + 1
k

)
F
))

= 0

as soon as KX ⊗ F−1 is big and m ≫ 1.
In fact, thanks to Bonavero’s singular holomorphic Morse inequalities (Theorem 3.6,

cf. [Bon93]), everything works almost unchanged in the case where the metric h on
V is taken to a product h = h∞e

φ of a smooth metric h∞ by the exponential of
a quasi-plurisubharmonic weight φ with analytic singularities (so that det(h∗) =
det(h∗

∞)e−rφ). Then η is a (1, 1)-current with logarithmic poles, and we just have
to twist our cohomology groups by the appropriate multiplier ideal sheaves Ik,m
associated with the weight 1

k
(1 + 1

2 + · · · + 1
k
)mφ, since this is the multiple of detV ∗

that occurs in the calculation, up to the factor 1
r

× rφ. The corresponding Morse
integrals need only be evaluated in the complement of the poles, i.e., on X(η, q) \ S
where S = Sing(φ). Since

(πk)∗
(
O(L⊗m

F,k ) ⊗ Ik,m
)

⊂ Ek,mV
∗ ⊗ O

(
− m

kr

(
1 + 1

2 + · · · + 1
k

)
F
))

we still get a lower bound for the H0 of the latter sheaf (or for the H0 of the un-
twisted line bundle O(L⊗m

k ) on Xk(V )). If we assume that KV ⊗ F−1 is big, these
considerations also allow us to obtain a strong estimate in terms of the volume, by
using an approximate Zariski decomposition on a suitable blow-up of X.

Corollary 5.3. — If F is an arbitrary Q-line bundle over X, one has

h0
(
Xk(V ),OXk(V )(m) ⊗ π∗

kO
(

− m
kr

(
1 + 1

2 + · · · + 1
k

)
F
))

⩾ mn+kr−1

(n+kr−1)!
(log k)n

n! k!r
(
Vol(KV ⊗ F−1) −O

(
(log k)−1

))
− o

(
mn+kr−1

)
,

k-jet differentials of degree m twisted by the appropriate power of F if KV ⊗ F−1 is
big.
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Proof. — The volume is computed here as usual, i.e. after performing a suitable
modification µ : X̃ → X which converts KV into an invertible sheaf. There is of
course nothing to prove if KV ⊗F−1 is not big, so we can assume Vol(KV ⊗F−1) > 0.
Let us fix smooth hermitian metrics h0 on TX and hF on F . They induce a metric
µ∗(deth−1

0 ⊗ h−1
F ) on µ∗(KV ⊗ F−1) which, by our definition of KV , is a smooth

metric. By the result of Fujita [Fuj94] on approximate Zariski decomposition, for
every δ > 0, one can find a modification µδ : X̃δ → X dominating µ such that

µ∗
δ

(
KV ⊗ F−1

)
= O

X̃δ
(A+ E)

where A and E are Q-divisors, A ample and E effective, with
Vol(A) = An ⩾ Vol

(
KV ⊗ F−1

)
− δ.

If we take a smooth metric hA with positive definite curvature form ΘA,hA
, then we

get a singular hermitian metric hAhE on µ∗
δ(KV ⊗ F ) with poles along E, i.e. the

quotient hAhE/µ∗(deth−1
0 ⊗ hF ) is of the form e−φ where φ is quasi-psh with log

poles log|σE|2 (mod C∞(X̃δ)) precisely given by the divisor E. We then only need
to take the singular metric h on TX defined by

h = h0e
1
r

(µδ)∗φ

(the choice of the factor 1
r

is there to correct adequately the metric on detV ). By
construction h induces an admissible metric on V and the resulting curvature current
ηF = ΘKV ,deth∗ − ΘF,hF

is such that
µ∗
δηF = ΘA,hA

+ [E], [E] = current of integration on E.
Then the 0-index Morse integral in the complement of the poles is given by∫

X(η,0)\S
ηnF =

∫
X̃δ

Θn
A,hA

= An ⩾ Vol
(
KV ⊗ F−1

)
− δ

and Corollary 5.3 follows from the fact that δ can be taken arbitrary small. □

Remark 5.4. — Since the probability estimate requires k to be very large, and
since all non-logarithmic components disappear from D(s) when s is large, the above
lower bound does not work in the general orbifold case. In that case, one can only
hope to get an interesting result when k is fixed and not too large. This is what we
will do in § 7.

6. Positivity concepts for vector bundles and Chern
inequalities

6.1. Griffiths, Nakano and strong (semi-)positivity

Let E → X be a holomorphic vector bundle equipped with a hermitian metric.
Then E possesses a uniquely defined Chern connection ∇h compatible with h and
such that ∇0,1

h = ∂̄. The curvature tensor of (E, h) is defined to be

ΘE,h := ı
2π∇2

h ∈ C∞
(
X,Λ1,1T ∗

X ⊗ Hom(E,E)
)
.
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One can then associate bijectively to ΘE,h a hermitian form Θ̃E,h on TX ⊗ E, such
that

Θ̃E,h(ξ ⊗ u, ξ ⊗ u) = ⟨ΘE,h(ξ, ξ) · u, u⟩h.
and can be written

ΘE,h = ı
2π

∑
i,j,λ,µ

cijλµ dzi ∧ dz̄j ⊗ e∗
λ ⊗ eµ

Let (z1, . . . , zn) be a holomorphic coordinate system and let (eλ)1⩽λ⩽ r be a smooth
frame of e. If (eλ) is chosen to be orthonormal, then we can write

ΘE,h = ı
2π

∑
i,j,λ,µ

cijλµ dzi ∧ dz̄j ⊗ e∗
λ ⊗ eµ,

Θ̃E,h(ξ ⊗ u, ξ ⊗ u) = 1
2π

∑
i,j,λ,µ

cijλµ ξiξ̄j uλūµ,

and more generally Θ̃E,h(τ, τ) = 1
2π
∑
i,j,λ,µ cijλµ τiλτ̄jµ for every tensor τ ∈ TX ⊗ E.

We now consider three concepts of (semi-)positivity, the first two being very classical.

Definition 6.1. — Let θ be a hermitian form on a tensor product T ⊗ E of
complex vector spaces. We say that

(1) θ is Griffiths semi-positive if θ(ξ ⊗ u, ξ ⊗ u) ⩾ 0 for every ξ ∈ T and every
v ∈ E;

(2) θ is Nakano semi-positive if θ(τ, τ) ⩾ 0 for every τ ∈ T ⊗ E ;
(3) θ is strongly semi-positive if there exist a finite collection of linear forms

αj ∈ T ∗, ψj ∈ E∗ such that θ = ∑
j|αj ⊗ ψj|2, i.e.

θ(τ, τ) =
∑
j

|(αj ⊗ ψj) · τ |2, ∀ τ ∈ T ⊗ E.

Semi-negativity concepts are introduced in a similar way.
(1) We say that the hermitian bundle (E, h) is Griffiths semi-positive, resp.

Nakano semi-positive, resp. strongly semi-positive, if Θ̃E,h(x) ∈ Herm(TX,x ⊗
Ex) satisfies the corresponding property for every point x ∈ X.

(2) (Strict) Griffiths positivity means that Θ̃E,h(ξ⊗u, ξ⊗u) > 0 for every non-zero
vectors ξ ∈ TX,x, v ∈ Ex.

(3) (Strict) strong positivity means that at every point x ∈ X we can decompose
Θ̃E,h as Θ̃E,h = ∑

j|αj ⊗ ψj|2 where Span(αj ⊗ ψj) = T ∗
X,x ⊗ E∗

x.

We will denote respectively by ⩾G, ⩾N , ⩾S (and >G, >N , >S) the Griffiths,
Nakano, strong (semi-)positivity relations. It is obvious that

θ ⩾S 0 ⇒ θ ⩾N 0 ⇒ θ ⩾G 0,
and one can show that the reverse implications do not hold when dimT > 1 and
dimE > 1. The following result from [Dem80] will be useful.

Proposition 6.2. — Let θ ∈ Herm(T ⊗ E), where (E, h) is a hermitian vector
space. We define TrE(θ) ∈ Herm(T ) to be the hermitian form such that

TrE(θ)(ξ, ξ) =
∑

1⩽λ⩽ r

θ(ξ ⊗ eλ, ξ ⊗ eλ)
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where (eλ)1⩽λ⩽ r is an arbitrary orthonormal basis of E. Then
θ ⩾G 0 =⇒ θ + TrE(θ) ⊗ h ⩾S 0.

As a consequence, if (E, h) is a Griffiths (semi-)positive vector bundle, then the
tensor product (E ⊗ detE, h⊗ det(h)) is strongly (semi-)positive.

Proof. — Since [Dem82] is written in French and perhaps not so easy to find, we
repeat here briefly the arguments. They are based on a Fourier inversion formula for
discrete Fourier transforms.

Lemma 6.3. — Let q be an integer ⩾ 3, and xα, yβ, 1 ⩽ α, β ⩽ r, be complex
numbers. Let χ describe the set U r

q of r-tuples of qth roots of unity and put

x̂(χ) =
∑

1⩽α⩽ r

xαχα, ŷ(χ) =
∑

1⩽β⩽ r

yβχβ, χ ∈ U r
q .

Then for every pair (λ, µ), 1 ⩽ λ, µ ⩽ r, the following identity holds:

q−r ∑
χ∈Ur

q

x̂(χ) ŷ(χ)χλχµ =

xλyµ if λ ̸= µ,∑
1⩽α⩽ r

xαyα if λ = µ.

Proof. — In fact, the coefficient of xαyβ in the summation

q−r ∑
χ∈Ur

q

x̂(χ) ŷ(χ)χλχµ

is given by
q−r ∑

χ∈Ur
q

χαχβχλχµ,

so it is equal to 1 when the pairs {α, µ} and {β, λ} coincide, and is equal to 0
otherwise. The identity stated in Lemma 6.3 follows immediately. □

Now, let (tj)1⩽ j ⩽n be a basis of T , (eλ)11⩽1λ1⩽1 r an orthonormal basis of E and
ξ = ∑

j ξjtj ∈ T , w = ∑
j,λwjλ tj ⊗ eλ ∈ T ⊗ E. The coefficients cjkλµ of θ with

respect to the basis tj ⊗ eλ satisfy the symmetry relation cjkλµ = ckjµλ, and we have
the formulas

θ(w,w) =
∑
j,k,λ,µ

cjkλµwjλwkµ, TrE θ(ξ, ξ) =
∑
j,k,λ

cjkλλξjξk,

(θ + TrE θ ⊗ h)(w,w) =
∑
j,k,λ,µ

cjkλµwjλwkµ + cjkλλwjµwkµ.

For every χ ∈ U r
q , let us put

ŵj(χ) =
∑
α

wjαχα, ŵ(χ) =
∑
j

ŵj(χ) tj ∈ T , êχ =
∑
λ

χλeλ ∈ E.

Lemma 6.3 implies
q−r ∑

χ∈Ur
q

θ(ŵ(χ) ⊗ êχ, ŵ(χ) ⊗ êχ) = q−r ∑
χ∈Ur

q

∑
j,k,λ,µ

cjkλµ ŵj(χ)ŵk(χ)χλχµ

=
∑

j,k,λ ̸=µ
cjkλµwjλwkµ +

∑
j,k,λ,µ

cjkλλwjµwkµ.
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The Griffiths positivity assumption θG ⩾ 0 shows that ξ 7→ q−r θ(ξ ⊗ êχ, ξ ⊗ êχ) is a
semi-positive hermitian form on T , hence there are linear forms ℓχ,j ∈ T ∗ such that
q−r θ(ξ ⊗ êχ, ξ ⊗ êχ) = ∑

j|ℓχ,j(ξ)|2 for all ξ ∈ T . Similarly, there are ℓ′
λ,j ∈ T ∗ such

that ∑
j,k

cjkλλ ξj ξ̄k =
∑
j

∣∣∣ℓ′
λ,j(ξ)

∣∣∣2 , for all λ = 1, . . . , r.

Our final Fourier identity can be rewritten
(θ + TrE θ ⊗ h)(w,w) =

∑
j,k,λ,µ

cjkλµwjλwkµ +
∑
j,k,λ,µ

cjkλλwjµwkµ

= q−r ∑
χ∈Ur

q

θ
(
ŵ(χ) ⊗ êχ, ŵ(χ) ⊗ êχ

)
+
∑
j,k,λ

cjkλλwjλw̄jλ

=
∑
χ∈Ur

q

∑
j

|ℓχ,j(ŵ(χ))|2 +
∑
j,λ

∣∣∣ℓ′
λ,j(w•,λ)

∣∣∣2
=

∑
χ∈Ur

q

∑
j

|ℓχ,j ⊗ χ∗(w)|2 +
∑
j,λ

∣∣∣ℓ′
λ,j ⊗ e∗

λ(w)
∣∣∣2

where χ∗ = ⟨•, χ⟩ ∈ E∗, thus θ + TrE θ ⊗ h ⩾S 0. □

Corollary 6.4. — Let r = dimE and Θ ∈ Herm(T ⊗ E).
(1) If θ ⩾G 0, then − TrE θ ⊗ h ⩽S θ ⩽S r TrE θ ⊗ h.
(2) If θ ⩽G 0, then −r TrE(−θ) ⊗ h ⩽S θ ⩽S TrE(−θ) ⊗ h.
(3) If ±θ ⩽G τ ⊗ h where τ ∈ Herm(T ) is semi-positive, then

−(2r + 1) τ ⊗ h ⩽S θ ⩽S (2r + 1) τ ⊗ h.

Proof. —
(1) It is easy to check that θ′ = TrE θ ⊗ h− θ satisfies θ′ ⩾G 0 and that we have

TrE θ′ = (r − 1) TrE θ. Lemma 6.3 implies
θ′ + TrE θ′ ⊗ h = r TrE θ ⊗ h− θ ⩾S 0.

(2) follows from (a), after replacing θ with −θ.
(3) also follows from Lemma 6.3 by taking θ′ = τ ⊗ h+ θ (resp. θ′ = τ ⊗ h− θ),

since TrE θ ⩽ r τ and we have e.g.
0 ⩽S θ

′ + TrE θ′ ⊗ h = θ + TrE θ ⊗ h+ (r + 1)τ ⊗ h ⩽S θ + (2r + 1)τ ⊗ h. □

6.2. Chern form inequalities

In view of the estimates developed in Section 7, we will have to evaluate integrals
involving powers of curvature tensors, and the following basic inequalities will be
useful.

Lemma 6.5. — Let ℓj ∈ (Cr)∗, 1 ⩽ j ⩽ p, be non-zero complex linear forms on
Cr, where (Cr)∗ ≃ Cr is equipped with its standard hermitian form, and let µ the
rotation invariant probability measure on S2r−1 ⊂ Cr. Then

I(ℓ1, . . . , ℓp) =
∫
S2r−1

|ℓ1(u)|2 . . . |ℓp(u)|2 dµ(u)
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satisfies the following inequalities:

(a) I(ℓ1, . . . , ℓp) ⩽ p! (r−1)!
(p+r−1)!

p∏
j=1

|ℓj|2,

and the equality occurs if and only if the ℓj are proportional;

(b) I(ℓ1, . . . , ℓp) ⩾ (r−1)!
(p+r−1)!

p∏
j=1

|ℓj|2,

and the equality occurs if and only if p ⩽ r and the ℓj are pairwise orthogonal.

Proof. — Denote by dλ the Lebesgue measure on Euclidean space and by dσ the
area measure of the sphere. One can easily check that the projection

S2r−1 → B2r−2, u = (u1, . . . , ur) 7→ v = (u1, . . . , ur−1) ,

yields dσ(u) = dθ ∧ dλ(v) where ur = |ur| eiθ [just check that the wedge products of
both sides with 1

2d|u|2 are equal to dλ(u), and use the fact that dθ = 1
2i(dur/ur −

dūr/ūr)], thus, in terms of polar coordinates v = t u′, u′ ∈ S2r−1, we have dσ(u) =
dθ ∧ t2r−3 dt ∧ dσ′(u′), and going back to the invariant probability measures µ on
S2r−1 and µ′ on S2r−3, we get |ur|2 = 1 − |v|2 = 1 − t2 and an equality

(6.1) dµ(u) = 2r−2
2π dθ ∧ t2r−3 dt ∧ dµ′(u′).

If ℓ1, . . . , ℓp are independent of ur, (6.1) and the Fubini theorem imply by homo-
geneity ∫

S2r−1
|ℓ1(u′)|2 . . . |ℓp(u′)|2 dµ(u) = r−1

p+r−1

∫
S2r−3

|ℓ1(u′)|2 . . . |ℓp(u′)|2 dµ′(u′),(6.2)

(6.2′)
∫
S2r−1

|ℓ1(u′)|2 . . . |ℓp−1(u′)|2 |ur|2 dµ(u) =

r−1
(p+r−2)(p+r−1)

∫
S2r−3

|ℓ1(u′)|2 . . . |ℓp−1(u′)|2 dµ′(u′)

(for instance, in case (6.2′), we have to integrate t2p−2(1 − t2) × t2r−3 dt). For p ⩽ r,
the formulas∫

S2r−1
|u1|2p dµ(u) = p! (r−1)!

(p+r−1)! ,
∫
S2r−1

|u1|2 . . . |up|2 dµ(u) = (r−1)!
(p+r−1)! ,

are then obtained by induction on r and p.
(1) For any ℓ ∈ (Cr)∗, we can find orthonormal coordinates on Cr such that

ℓ(u) = |ℓ|u1 in the new coordinates. Hence∫
S2r−1

|ℓ(u)|2p dµ(u) = mr,p |ℓ|2p where mr,p =
∫
S2r−1

|u1|2p dµ(u) = p! (r−1)!
(p+r−1)! .

It follows from Hölder’s inequality that

I(ℓ1, . . . , ℓp) ⩽
p∏
j=1

(∫
S2r−1

|ℓj|2p dµ(u)
)1/p

= mr,p

p∏
j=1

|ℓj|2,

and that the equality occurs if and only if all ℓj are proportional.
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(2) We prove the inequality

I(ℓ1, . . . , ℓp) ⩾ (r−1)!
(p+r−1)!

p∏
j=1

|ℓj|2

by induction on p, the result being clear for p = 0 or p = 1. If we choose an
orthonormal basis (e1, . . . , er) ∈ Cr such that ℓj(er) ̸= 0 for all j and replace
ℓj by (ℓj(er))−1ℓj, we can assume ℓj(er) = 1. We then write u = u′ + urer
with u′ ∈ e⊥

r ≃ Cr−1 and
ℓj(u) = ℓ′

j(u′) + ur, 1 ⩽ j ⩽ p, ℓ′
j := ℓj|e⊥

r
.

Let sk(ℓ′
•(u′)) be the elementary symmetric functions in ℓ′

j(u′), 1 ⩽ j ⩽ p,
with s0 := 1. We have

I(ℓ1, . . . , ℓp) =
∫
S2r−1

p∏
j=1

∣∣∣ℓ′
j(u′) + ur

∣∣∣2 dµ(u) =
∫
S2r−1

∣∣∣∣∣
p∑

k=0
sk(ℓ′

•(u′))up−k
r

∣∣∣∣∣
2

dµ(u).

We make a change of variable ur 7→ ur e
iθ and take the average over θ ∈ [0, 2π].

Parseval’s formula gives

I(ℓ1, . . . , ℓp) =
∫
S2r−1

p∑
k=0

|sk(ℓ′
•(u′))|2 |ur|2(p−k)dµ(u),

and since

(2r − 2)
∫ 1

0
t2k(1 − t2)p−k t2r−3dt = (r−1) (k+r−2)! (p−k)!

(p+r−1)! ,

formula (6.1) implies

I(ℓ1, . . . , ℓp) =
∫
S2r−3

p∑
k=0

(r−1) (k+r−2)! (p−k)!
(p+r−1)! |sk(ℓ′

•(u′))|2 dµ′(u′).

As |ℓj|2 = 1 + |ℓ′
j|2, our inequality 6.5(b) is equivalent to

(6.3)
∫
S2r−3

p∑
k=0

(k+r−2)! (p−k)!
(r−2)! |sk(ℓ′

•(u′))|2 dµ′(u′) ⩾
p∏
j=1

(
1 + |ℓ′

j|2
)

for all linear forms ℓ′
j ∈ (Cr−1)∗. We actually prove (6.3) by induction on

p (observing that the inequality is a trivial equality for p = 0, 1). Assume
that (6.3) (and hence 6.5(b)) is known for any (p − 1)-tuple of linear forms
(ℓ′

1, . . . , ℓ
′
p−1). As 6.5(b) is invariant under the action of U(r), it is sufficient

to consider the case when ℓp(u) = ur, i.e. ℓ′
p = 0. The induction hypothesis

tells us that∫
S2r−3

p−1∑
k=0

(k+r−2)! (p−1−k)!
(r−2)! |sk(ℓ′

•(u′))|2 dµ′(u′) ⩾
p−1∏
j=1

(1 + |ℓ′
j|2).

However, when we add the factor ℓp, the elementary symmetric functions
sk(ℓ′

•(u′)) are left unchanged for k ⩽ p−1, while sp(ℓ′
•(u′)) = 0 and 1+ |ℓ′

p|2 =
1. Therefore (6.3) holds true for p, since (p − k)! ⩾ (p − 1 − k)! for all
k = 0, 1, . . . , p − 1. We have proved the inequality at order p whenever
ℓp = αp⟨•, er⟩ and ℓj(er) ̸= 0 for j ⩽ p− 1. Since those (ℓ1, . . . , ℓp) are dense
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in the space ((Cr)∗)p of p-tuples of linear forms, the proof of the lower bound
is complete.

(3) (b, equality case) We argue by induction on r. For r = 1, we have in fact
ℓj(u) = αju1, αj ∈ C∗, and I(ℓ1, . . . , ℓr) = ∏|ℓj|2, thus the coefficient

1
(p+r−1)! = 1

p! is reached if and only if p ⩽ 1. Now, assume r ⩾ 2 and
the equality case solved for dimension r − 1. By rescaling and reordering
the ℓj, we can always assume that ℓj(er) ̸= 0 (and hence ℓj(er) = 1) for
q + 1 ⩽ j ⩽ p, while ℓj(er) = 0 for 1 ⩽ j ⩽ q (we can possibly have q = 0
here). Then we write ℓj(u) = ℓ′

j(u′) for 1 ⩽ j ⩽ q and ℓj(u) = ℓ′
j(u′) + ur for

q + 1 ⩽ j ⩽ p. Therefore, if sk(ℓ′(u′)) denotes the kth elementary symmetric
function in (ℓ′

j(u′)q+1⩽j⩽p, we find

I(ℓ1, . . . , ℓp) =
∫
S2r−1

q∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 p∏
j=q+1

∣∣∣ℓ′
j(u′) + ur

∣∣∣2 dµ(u)

=
∫
S2r−1

q∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 ∣∣∣∣∣
p−q∑
k=0

sk(ℓ′(u′))up−q−k
r

∣∣∣∣∣
2

dµ(u)

=
∫
S2r−1

q∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 p−q∑
k=0

|sk(ℓ′(u′))|2 |ur|2(p−q−k) dµ(u)

=
∫
S2r−3

q∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 p−q∑
k=0

(r−1) (k+r−2)! (p−q−k)!
(p−q+r−1)! |sk(ℓ′(u′))|2 dµ′(u′)

⩾ (r−1)!
(p+r−1)!

q∏
j=1

|ℓ′
j|2

p∏
j=q+1

(
1 + |ℓ′

j|2
)

by what we have just proved. In an equivalent way, we get

∫
S2r−3

q∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 p−q∑
k=0

(k+r−2)! (p−q−k)! (p+r−1)!
(r−2)! (p−q+r−1)! |sk(ℓ′(u′))|2 dµ′(u′)

⩾
q∏
j=1

|ℓ′
j|2

p∏
j=q+1

(
1 + |ℓ′

j|2
)

In general, we can rotate coordinates in such a way that ℓp(u) = ur and
ℓ′
p = 0, and we see that the above inequality holds when p is replaced by p−1,

as soon as q ⩽ p − 2. Then the corresponding coefficients k = 0 for p, p − 1
are

(p−q)! (p+r−1)!
(p−q+r−1)! > (p−1−q)! (p−1+r−1)!

(p−1−q+r−1)! ,

and since s0 = 1, we infer that the inequality is strict. The only possibility
for the equality case is q = p− 1, but then

I(ℓ1, . . . , ℓp) =
∫
S2r−1

p−1∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 |ur|2 dµ(u) = r−1
p+r−1

∫
S2r−3

p−1∏
j=1

∣∣∣ℓ′
j(u′)

∣∣∣2 dµ′(u′),

TOME 7 (2024)



34 F. CAMPANA, L. DARONDEAU, J.-P. DEMAILLY & E. ROUSSEAU

and we see that we must have equality in the case (r− 1, p− 1). By induction,
we conclude that p− 1 ⩽ r− 1 and that the ℓj(u) = ℓ′

j(u′) are orthogonal for
j ⩽ p− 1, as desired. □

Remark 6.6. — When r = 2, our inequality (6.3) is equivalent to the “elementary”
inequality

(*)
p∏
j=1

(
1 + |aj|2

)
⩽

p∑
k=0

k! (p− k)! |sk|2,

relating a polynomial Xp − s1X
p−1 + · · · + (−1)psp and its complex roots aj (just

consider ℓ′
j(u′) = aju1 and ℓj(u) = aju1 +u2 on C2 to get this). It should be observed

that (∗) is not optimal asymptotically when p → +∞ ; in fact, Landau’s inequa-
lity [Lan05] gives ∏max(1, |aj|) ⩽ (∑|sk|2)1/2, from which one can easily derive
that ∏(1 + |aj|2) ⩽ 2p∑|sk|2, which improves (∗) as soon as p ⩾ 7 (observe that
27 = 128 and k!(7−k)! ⩾ 3! 4! = 144). Our discussion of the equality case shows that
inequality (b) from Lemma 6.5 is never sharp when p > r. It would be interesting,
but probably challenging, if not impossible, to compute the optimal constant for all
pairs (r, p), p > r, since this is an optimization problem involving the distribution
of a large number of points in projective space.

We finally state one of the main consequences of these estimates concerning the
Chern curvature form of a hermitian holomorphic vector bundle.

Proposition 6.7. — Let T , E be complex vector spaces of respective dimensions
dimT = n, dimE = r. Assume that E is equipped with a hermitian structure h, and
denote by µ the unitary invariant probability measure µ on the unit sphere bundle
S(E) = {u ∈ E ; |u|h = 1} of E.

(a) If ℓ1, . . . , ℓk ∈ E∗ and θ1, . . . , θp−k ⩾S 0 are strongly semi-positive hermitian
tensors in Herm(T ⊗ E) ≃ Λ1,1

R T ∗ ⊗R Herm(E,E), then∫
u∈S(E)

|ℓ1(u)|2 . . . |ℓk(u)|2 ⟨θ1(u), u⟩h ∧ . . . ∧ ⟨θp−k(u), u⟩h dµ(u)
⩾ (r−1)!

(p+r−1)!

(
k∏
j=1

|ℓj|2
)

Trh θ1 ∧ . . . ∧ Trh θp−k,

⩽ p! (r−1)!
(p+r−1)!

(
k∏
j=1

|ℓj|2
)

Trh θ1 ∧ . . . ∧ Trh θp−k,

as pointwise strong inequalities of (p− k, p− k)-forms.
(b) If θ ⩾G 0 in Λ1,1

R T ∗ ⊗R Herm(E,E) and ℓj ∈ E∗, then∫
u∈S(E)

|ℓ1(u)|2 . . . |ℓk(u)|2 ⟨θ(u), u⟩p−k
h dµ(u) ⩽ p! (r−1)!

(p+r−1)!

(
k∏
j=1

|ℓj|2
)

(Trh θ)p−k

as a pointwise weak inequality of (p− k, p− k)-forms.
In particular, the above inequalities apply when (E, h) is a hermitian holomorphic
vector bundle of rank r on a complex n-dimensional manifold X, and one takes
θj = ΘE,h to be the curvature tensor of E, so that Trh θj = c1(E, h) is the first Chern
form of (E, h).
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Proof. — (a) The assumption θq ⩾S 0 means that at every point x ∈ X we can
write θ as

θq =
∑

1⩽ j ⩽Nq

|βqj ⊗ ℓqj|2 ≃
∑

1⩽ j ⩽Nq

ıβqj ∧ β̄qj ⊗ ℓqj ⊗ ℓ∗
qj, βqj ∈ T ∗, ℓqj ∈ E∗

as an element of Λ1,1
R T ∗ ⊗R Herm(E,E), hence

⟨θq(u), u⟩h =
∑

1⩽ j ⩽Nq

ıβqj ∧ β̄qj |ℓqj(u)|2.

Without loss of generality, we can assume |ℓqj|h∗ = 1. Then

|ℓ1(u)|2 . . . |ℓk(u)|2 ⟨θ1(u), u⟩h ∧ . . . ∧ ⟨θp−k(u), u⟩h
=

∑
j1, ..., jp−k

ıβ1j1 ∧ β̄1j1 ∧ . . . ∧ ıβp−k jp−k
∧ β̄p−k jp−k

∏
1⩽ s⩽ k

|ℓs(u)|2
∏

1⩽ s⩽ p−k
|ℓsjs(u)|2,

and since |ℓqj|h∗ = 1, Lemma 6.5(b) implies∫
u∈S(E)

|ℓ1(u)|2 . . . |ℓk(u)|2 ⟨θ1(u), u⟩h ∧ . . . ∧ ⟨θp−k(u), u⟩h dµ(u)

⩾ (r−1)!
(p+r−1)!

∑
j1, ..., jp−k

ıβ1j1 ∧ β̄1j1 ∧ . . . ∧ ıβp−k jp−k
∧ β̄p−k jp−k

∏
1⩽s⩽k

|ℓs|2

= (r−1)!
(p+r−1)!

 ∏
1⩽ j ⩽ k

|ℓj|2
Trh θ1 ∧ . . . ∧ Trh θp,

where ⩾ is in the sense of the strong positivity of (p, p)-forms. The upper bound is
obtained by the same argument, via Lemma 6.5(a).

(b) By the definition of weak positivity of forms, it is enough to show the inequality
in restriction to every (p−k)-dimensional subspace T ′ ⊂ T . Without loss of generality,
we can assume that dimT = p − k (and then take T ′ = T ), that |ℓj| = 1, and also
that θ >G 0 (otherwise take a positive definite form η ∈ Λ1,1

R T ∗, replace θ with
θε = θ + ε η ⊗ h, and let ε tend to 0). For any u ∈ S(E), let

0 ⩽ λ1(u) ⩽ · · · ⩽ λp−k(u)

be the eigenvalues of the hermitian form qu(•) = ⟨θ(u), u⟩ on T with respect to

ω = Trh θ =
r∑
j=1

⟨θ(ej), ej⟩ ∈ Herm(T ), ω > 0,

(ej) being any orthonormal frame of E. We have to show that∫
u∈S(E)

|ℓ1(u)|2 . . . |ℓk(u)|2 λ1(u) · · ·λp−k(u) dµ(u) ⩽ p! (r−1)!
(p+r−1)! .

However, the inequality between geometric and arithmetic means implies

λ1(u) · · ·λp(u) ⩽
(

1
p−k

p−k∑
j=1

λj(u)
)p
,
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thus, putting Q(u) = 1
p−k ⟨Trω θ(u), u⟩, Q ∈ Herm(E), it is enough to prove that

(6.4)
∫
u∈S(E)

|ℓ1(u)|2 . . . |ℓk(u)|2 Q(u)p−k dµ(u) ⩽ p! (r−1)!
(p+r−1)! .

Our assumption θ >G 0 implies Q(u) = ∑
1⩽ j ⩽ r cj|ℓ′

qj(u)|2 for some cj > 0 and some
orthonormal basis (ℓ′

qj)1⩽ j ⩽ r of E∗, and
r∑
j=1

cj = TrhQ = 1
p−k Trh(Trω θ) = 1

p−k Trω(Trh θ) = 1
p−k Trω(ω) = 1.

Inequality (6.4) is a consequence of Lemma 6.5(a), by Newton’s multinomial expan-
sion. □

Remark 6.8. — For p = 1, the inequalities of Proposition 6.7 are identities, and
no semi-positivity assumption is needed in that case. This can be seen directly from
the fact that we have ∫

u∈S(E)
Q(u) dµ(u) = 1

r
TrQ

for every hermitian quadratic form Q on E. However, when p ⩾ 2, inequality 6.7 (a)
does not hold under the assumption that E ⩾G 0 (or even that E is dual Nakano semi-
positive, i.e. E∗ Nakano semi-negative). Let us take for instance E = TPn ⊗ O(−1).
It is well known that E is isomorphic to the tautological quotient vector bundle
Cn+1/O(−1) over Pn, and that its curvature tensor form for the Fubini-Study metric
is given by

ΘE,h(ξ ⊗ u, ξ ⊗ u) = |⟨ξ, u⟩|2 ⩾ 0
(where v is identified which a tangent vector via the choice of a unit element e ∈
O(−1)). Then detE = O(1) and thus c1(E, h) = ωFS > 0, although ⟨ΘE,h(u), u⟩ph = 0
for all p ⩾ 2, as one can easily check.

7. On the curvature of orbifold tangent bundles

7.1. Evaluation of the orbifold curvature tensor

The main qualitative result is summarized in the following statement.

Proposition 7.1. — Let X be a projective variety, A an ample line bundle,
and (X, V,D) an orbifold directed structure where D = ∑

1⩽ j ⩽N(1 − 1
ρj

)∆j is a
normal crossing divisor transverse to V in X. Let dj be the infimum of numbers
λ ∈ R+ such that λA − ∆j is nef, and γV be the infimum of numbers γ ⩾ 0 such
that γΘA,hA

⊗ IdV − ΘV,hV
⩾G 0 for suitable smooth hermitian metrics hV on V .

Then for every γ > γV,D := max(maxj(dj/ρj), γV ), the orbifold vector bundle V ⟨D⟩
possesses a hermitian metric hV ⟨D⟩,γ,ε such that

(1) hV ⟨D⟩,γ,ε is smooth on X \ |D|,
(2) hV ⟨D⟩,γ,ε has the appropriate orbifold singularities along D,
(3) we have γΘA,hA

⊗ Id − ΘV ⟨D⟩,hV ⟨D⟩,γ,ε
⩾G 0 on X \ |D|.
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Proof. — Let hA be a metric on A such that ΘA,hA
> 0, written locally as hA =

e−ψ, and take γ > max(maxj(dj/ρj), γV ). Consider the tautological sections σj ∈
H0(X,OX(∆j)) defining ∆j = σ−1

j (0), and let hV , hj be smooth hermitian metrics
on V and OX(∆j) such that

γΘA,hA
⊗ IdV − ΘV,hV

>G 0,(7.10)
γΘA,hA

− 1
ρj

ΘOX(∆j),hj
> 0, ∀ j = 1, . . . , N,(7.1j)

as is possible by our choice of the constants dj and γ. Finally, denote by ∇j the
associated Chern connection on OX(∆j). If we write hj = e−φj in some local trivial-
ization, then ∇jσj = ∇1,0

j σj = ∂σj − σj∂φj. Take ωA = ΘA,hA
as the Kähler metric

on X. We have
ı ∂∂̄|σj|

2/ρj

hj
= 1

ρ2
j

|σj|
−2+2/ρj

hj
i ⟨∇jσj,∇jσj⟩hj

− 1
ρj

|σj|
2/ρj

hj
ı ∂∂̄ φj,

hence there exists δ > 0 small such that the metric hA,δ = hA exp(−δ∑j|σj|
2/ρj

hj
) of

weight ψδ = ψ + δ
∑
j|σj|

2/ρj

hj
satisfies

ı ∂∂̄ ψδ(ξ, ξ) =

|ξ|2ωA
+ δı ∂∂̄

∑
j

|σj|
2/ρj

hj
(ξ, ξ) ⩾ (1 − Cδ)|ξ|2ωA

+ δ
∑
j

1
ρ2

j
|σj|

−2+2/ρj

hj
|∇jσj(ξ)|2hj

.

We can consider ωA,δ = ΘA,hA,δ
= ı ∂∂̄ ψδ as an orbifold Kähler metric, that is

“smooth” from the point of view of the orbifold structure. Let us explain the more
precise meaning of this “orbifold smoothness” assumption. In fact, there exists a
ramified cover gY : Y → X such that g∗σj = w

mj

j for some local coordinate wj
on Y , with arbitrary high multiplicity mj ∈ N∗ along g−1

Y (∆j) = {wj = 0}. Then
g∗
Y hA,δ = g∗

Y hA exp(−δ∑j |wj|2mj/ρj ) can be taken in any regularity class Cp, p ∈ N∗,
by taking mj ⩾ p ρj. Therefore, by pulling-back our calculations to Y , we would
actually get forms of high regularity on Y . Of course, if we compute an integral over
X, pulling-back forms to Y multiplies the integral by the degree of gY , and it suffices
to divide by that degree to recover the integral over X. For δ > 0 sufficiently small,
our positivity conditions (7.1j) can be turned into the stronger form

γ ı ∂∂̄ ψδ(ξ, ξ) |u|2 − Θ̃V,hV
(ξ ⊗ u) ⩾ c

|ξ|2ωA
+
∑
j

|σj|
−2+2/ρj

hj
|∇jσj(ξ)|2hj

 ,(7.20)

γ ı ∂∂̄ ψδ(ξ, ξ) − 1
ρj
ı ∂∂̄ φj(ξ, ξ) ⩾ c

|ξ|2ωA
+
∑
j

|σj|
−2+2/ρj

hj
|∇jσj(ξ)|2hj

 ,(7.2j)

for some constant c > 0 and all ξ ∈ TX , u ∈ V (observe that the right hand side
can in fact be seen as a positive definite hermitian form with respect to the orbifold
coordinates, we just exploit the fact that A remains ample when viewed as a line
bundle on the orbifold structure). We are going to estimate the curvature of the
orbifold metric hV ⟨D⟩,ε on V ⟨D⟩ defined by

(7.3) ∥u∥2
hV ⟨D⟩,ε

= |u|2hV
+
∑
j

εj |σj|
−2(1−1/ρj)
hj

|∇jσj(u)|2hj
, εj ≪ 1.
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Again, this metric can be seen as orbifold smooth (in the sense that the metric
g∗
Y hV ⟨D⟩,ε on g∗

Y (V ⟨D⟩) may be taken of arbitrary high regularity; in case ρj = ∞,
it is actually a smooth metric on the logarithmic bundle). Since

ı ∂∂̄∥u∥2
hV ⟨D⟩,ε

= ı⟨∇u,∇u⟩hV ⟨D⟩,ε − 2π
〈
ΘV ⟨D⟩,hV ⟨D⟩,ε

(u), u
〉
hV ⟨D⟩,ε

where ∇u = du+ Γ(dz) ·u is the Chern connection of (V ⟨D⟩, hV ⟨D⟩,ε), what we need
to prove is that on the total space of V over X \ |D|, the (1, 1)-form

V ∋ (z, u) 7→ ı ∂∂̄∥u∥2
hV ⟨D⟩,ε

+ γ ı ∂∂̄ ψδ ∥u∥hV ⟨D⟩,ε
,

is non-negative. For this, we calculate the associated hermitian quadratic form on TV

QV ⟨D⟩,γ,ε(z, u)(ξ, η), (ξ, η) ∈ TV,(z,u), ξ =
n∑
ℓ=1

ξℓ
∂
∂zℓ
, η =

r∑
λ=1

ηλ
∂
∂uλ

,

and observe that the curvature tensor is obtained by taking the restriction to the
“parallel” directions ∇u = 0, that is, by substituting du = −Γ(dz)·u, i.e. η = −Γ(ξ)·u.
Let us fix an arbitrary point z0 ∈ X \ |D|. We take local holomorphic coordinates
(z1, . . . , zn) centered at z0, and let (e1, . . . , er) be a local holomorphic frame of V
such that

⟨eλ, eµ⟩hV
= δλµ +

∑
ℓ,m,λ,µ

cℓmλµ zℓz̄m +O(|z|3),

where the ı
2πcℓmλµ are the coefficients of −ΘV,hV

. Let us write u = ∑r
λ=1 uλeλ and

denote by ⟨u, v⟩ = ∑
1⩽λ⩽ r uλv̄λ the standard hermitian form, |u| the associated

norm. We find

(7.30) ∥u∥2
hV ⟨D⟩,ε

= |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ zℓz̄muλūµ +O(|z|3)

+
∑
j

εj
(
|σj|2e−φj

)−1+1/ρj |∂σj(u) − σj∂φj(u)|2 e−φj ,

since ∂̄ σj = 0. In order to simplify the calculation, we set formallyσ̃j = σ
1/ρj

j , ε̃j = ρ2
jεj, φ̃j = ρ−1

j φj, if ρj < ∞,

σ̃j = log σj, ε̃j = εj, φ̃j = φj, if ρj = ∞.

Respectively to the non-logarithmic and logarithmic situations, we then get the more
tractable expression

(7.4) ∥u∥2
hV ⟨D⟩,ε

= |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ zℓz̄muλūµ +O(|z|3) +
∑
j

ε̃j |∂σ̃j(u) −σj∂φ̃j(u)|2 e−φ̃j ,

(7.4∞) ∥u∥2
hV ⟨D⟩,ε

= |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ zℓz̄muλūµ +O(|z|3) +
∑
j

ε̃j |∂σ̃j(u) − ∂φ̃j(u)|2 .

More importantly, the poles have disappeared – a fact reflecting the orbifold smooth-
ness of the metric. In what follows, for the sake of simplicity, we remove the tildes

ANNALES HENRI LEBESGUE



On the existence of logarithmic and orbifold jet differentials 39

in the notation, and conduct the calculation only in the non-logarithmic situation
(ρj < ∞), since the logarithmic case can be recovered by taking ρj very large; this
actually amounts to using a ramified change of variable z̃′

ℓ = z
1/ρℓ

ℓ in suitable coordi-
nates, allowing us in this way to take ρj = 1 in (7.30). Also, our later calculations
will be done by adding the orbifold divisor components one by one. This essentially
reduces the situation to the case where D = (1 − 1

ρ
)∆ only has one component,

and the notation becomes much lighter. Therefore, we drop the indices j and the
summations ∑j, and consider the simple situation where the metric is given by

∥u∥2
hV ⟨D⟩,ε

= |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ zℓz̄muλūµ +O(|z|3) + ε |∂σ(u) − σ ∂φ(u)|2(7.5)

⟨⟨u, v⟩⟩2
hV ⟨D⟩,ε

= ⟨u, v⟩2 +
∑

ℓ,m,λ,µ

cℓmλµ zℓz̄muλv̄µ +O(|z|3)(7.5′)

+ ε
(
∂σ(u) − σ ∂φ(u)

)(
∂σ(v) − σ ∂φ(v)

)
e−φ.

We also take a holomorphic trivialization of the line bundle OX(∆) so that the
associated weight φ satisfies φ(z) = ∑

ℓ,m αℓm zℓz̄m +O(|z|3) near z0 = 0. Then

∂φ =
∑
ℓ,m

αℓm z̄mdzℓ +O(|z|2), ∂̄ φ =
∑
ℓ,m

αℓm zℓ dz̄m +O(|z|2).

At the point z = z0, we have ∂φ(z0) = ∂φ(z0) = 0, ∇σ = ∂σ, and our metric admits
the expression

∥u∥2
hV ⟨D⟩,ε

= |u|2 + ε |∂σ(u)|2, ⟨⟨u, v⟩⟩hV ⟨D⟩,ε
= ⟨u, v⟩ + ε ∂σ(u) ∂σ(v).

Let u, v be arbitrary local holomorphic sections of V , and denote by ∇ξ the Chern
covariant differentiation of (V ⟨D⟩, hV ⟨D⟩,ε) in the direction ξ ∈ TX . By polarizing the
quadratic form ∥u∥2

hV ⟨D⟩,ε
into a hermitian inner product ∂ξ⟨⟨u, v⟩⟩hV ⟨D⟩,ε

and setting
∇ξu = ∇1,0

ξ u = ∂ξu+ Γ(ξ) · u, a differentiation of (7.5′) at z = z0 yields

∂ξ⟨⟨u, v⟩⟩hV ⟨D⟩,ε
= ⟨∇ξu, v⟩ + ε ∂σ(∇ξu) ∂σ(v)
= ⟨∂ξu , v⟩ + ε ∂σ(∂ξu) ∂σ(v)

+ ε ∂2σ(ξ, u) ∂σ(v) − ε ∂σ(u) σ̄ ∂∂̄ φ(ξ, v),

where ∂2σ(ξ, u) := ∑
λ ∂ξ(∂σ(eλ)uλ is viewed as an element of (T ∗

X ⊗ V ∗)z0 and ∂∂̄ φ
as a hermitian form on TX , operating on TX ⊗ V̄ ⊂ TX ⊗ T̄X . In fact, u 7→ ∂σ(u)
and (ξ, u) 7→ ∂2σ(ξ, u) can be intrinsically defined as ∇1,0σ|V and ∇1,0

V ∗⊗O(∆)(∇1,0σ|V )
at z0, and we will denote them by ∇σ and ∇2σ. In this setting, a subtraction of
the last two lines in our equalities shows that the (1, 0)-form Γ of the connection of
(V ⟨D⟩, hV ⟨D⟩) is given at z0 by the formula

(7.6) ⟨Γ(ξ)·u, v⟩+ε∇σ(Γ(ξ)·u) ∇σ(v) = ε∇2σ(ξ, u) ∇σ(v)−ε∇σ(u) σ̄ ∂∂̄ φ(ξ, v).

This equality is valid pointwise for any u, v ∈ Vz0 . As a consequence

(7.7) Γ(ξ) · u+ ε∇σ(Γ(ξ) · u) (∇σ)∗ = ε∇2σ(ξ, u) (∇σ)∗ − ε∇σ(u) σ̄ (∂∂̄ φ(•, ξ))∗
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where α∗ ∈ V is the dual vector to a 1-form α ∈ V ∗, such that ⟨α∗, ·⟩hV
= ᾱ. The

special choice v = Γ(ξ) · u yields a (non-negative) real value in the left hand side
of (7.6), and by taking the real part of the right hand side, we obtain

(7.80) |Γ(ξ) · u|2 + ε |∇σ(Γ(ξ) · u)|2

= εℜ
(
∇2σ(ξ, u) ∇σ(Γ(ξ) · u)

)
− εℜ

(
∇σ(u) σ̄ ∂∂̄ φ(ξ,Γ(ξ) · u)

)
.

Also, by applying ∇σ to (7.7), we obtain

∇σ(Γ(ξ) · u) + ε∇σ(Γ(ξ) · u) ⟨∇σ,∇σ⟩

= ε∇2σ(ξ, u) ⟨∇σ,∇σ⟩ − ε∇σ(u) σ̄
〈
∇σ, ∂∂̄ φ(•, ξ)

〉
,

hence
(7.81) ∇σ(Γ(ξ) · u) = ε

1+ε |∇σ|2
(
∇2σ(ξ, u) |∇σ|2 − ∇σ(u) σ̄

〈
∇σ, ∂∂̄ φ(•, ξ)

〉 )
.

As 2πΘA,hA
= ı ∂∂̄ ψδ, we infer by a brute force calculation from (7.5) that

QV ⟨D⟩,γ,ε(z, u)(ξ, η) = ∂∂̄∥u∥2
hV ⟨D⟩,ε

· (ξ, η) + γ ∂∂̄ ψδ(ξ, ξ) ∥u∥2
hV ⟨D⟩,ε

= γ ∂∂̄ ψδ(ξ, ξ) |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ ξℓξ̄m uλūµ(7.91)

+ ε
(
γ ∂∂̄ ψδ(ξ, ξ) − ∂∂̄ φ(ξ, ξ)

)
|∇σ(u)|2(7.92)

+ |η|2 + ε
∣∣∣∇σ(η) + ∇2σ(ξ, u)

∣∣∣2(7.93)

− 2εℜ
(
∇σ(u) σ̄ ∂∂̄ φ(ξ, η)

)
(7.94)

− 2εℜ
(
∇σ(u) ∂∂̄ φ(ξ, u) ∇σ(ξ)

)
(7.95)

− 2εℜ
(
∇σ(u) σ̄ ∂∂̄ 2φ(ξ, ξ, u)

)
(7.96)

+ ε |σ|2
∣∣∣∂∂̄ φ(u, ξ)

∣∣∣2 ,(7.97)

where we identify a (1, 1)-form such as ∂∂̄ φ with a hermitian form, and take
η = −Γ(ξ) · u. The second term in (7.92) is obtained by differentiating ε |∇σ(u)|2,
while (7.93), (7.94) and (7.95) actually come from the differentiation of the term
. . .ℜ(. . . ) in (7.5). By our assumptions (7.2j), the first two terms (7.91), (7.92) are
positive in the sense of Griffiths, and such that
(7.91) ⩾ c

(
|ξ|2 + |∇σ(ξ)|2

)
|u|2, (7.92) ⩾ c ε

(
|ξ|2 + |∇σ(ξ)|2

)
|∇σ(u)|2, c > 0.

(Here the term |∇σ(ξ)|2 is significant, because we will later replace σ by σ1/ρ in
the orbifold case, and then ∇σ1/ρ(ξ) is unbounded with respect to |ξ|). The third
term (7.93) is semi-positive. We claim that the terms (7.94, 7.95, 7.96, 7.97 are
negligible for ε ≪ 1, in the sense that QV ⟨D⟩,γ,ε(z, u)(ξ, η) is comprised between
(1 ± δ)((7.91)+(7.92)+(7.93)), with δ > 0 as small as we want when ε ⩽ ε0(δ). In
fact, since ∂∂̄ φ is smooth, there exists C > 0 such that

|(7.94)| ⩽ C ε|σ| |∇σ(u)| |ξ| |η|
⩽ ε3/2|ξ|2|∇σ(u)|2 + C2 ε1/2|σ|2|η|2 ≪ (7.92) + (7.93).
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Similarly

|(7.95)| ⩽ C ε |ξ| |u| |∇σ(ξ)| |∇σ(u)|
⩽ C ε3/2 |ξ|2 |∇σ(u)|2 + C ε1/2 |∇σ(ξ)|2 |u|2 ≪ (7.91) + (7.92).

The last two terms ((7.96), (7.97)) are even easier, since

|(7.96)| ⩽ C ε |σ| |ξ|2 |u| |∇σ(u)| ⩽ ε1/2|ξ|2 |u|2 + C2 ε3/2 |σ|2 |ξ|2 |∇σ(u)|2

≪ (7.91) + (7.92),

|(7.97)| ⩽ C ε |ξ|2|u|2 ≪ (7.91).

Finally, by replacing η with −Γ(ξ) · u and using ((7.80), (7.81)), we find

(7.93) + (7.94) = |Γ(ξ) · u|2

+ ε
∣∣∣∇σ(Γ(ξ) ·u) − ∇2σ(ξ, u)

∣∣∣2 + 2εℜ
(
∇σ(u) σ̄ ∂∂̄ φ(ξ,Γ(ξ) · u)

)
(7.11)

= (7.80) + ε
∣∣∣∇2σ(ξ, u)

∣∣∣2 − 2εℜ
(

∇2σ(ξ, u) ∇σ(Γ(ξ) · u)
)

(7.12)

+ 2εℜ
(
∇σ(u) σ̄ ∂∂̄ φ(ξ,Γ(ξ) · u)

)
(7.13)

= ε
∣∣∣∇2σ(ξ, u)

∣∣∣2 − εℜ
(

∇2σ(ξ, u) ∇σ(Γ(ξ) · u)
)

(7.14)

+ εℜ
(
∇σ(u) σ̄ ∂∂̄ φ(ξ,Γ(ξ) · u)

)
.(7.15)

= ε
1+ε|∇σ|2

∣∣∣∇2σ(ξ, u)
∣∣∣2(7.151)

+ ε
1+ε |∇σ|2 ℜ

(
∇2σ(ξ, u) ε∇σ(u) σ̄

〈
∇σ, ∂∂̄ φ(•, ξ)

〉)
(7.152)

+ εℜ
(
∇σ(u) σ̄ ∂∂̄ φ(ξ,Γ(ξ) · u)

)
.(7.153)

The term (7.153) equals 1
2(7.94), thus it is negligible, and the term (7.152) admits

an obvious bound

(7.152) ⩽ ε
1+ε|∇σ|2

(
ε1/2

∣∣∣∇2σ(ξ, u)
∣∣∣2 + ε3/2 |σ|2 |∇σ|2 |∇σ(u)|2 |ξ|2

)
⩽ ε1/2(7.151) + ε3/2|σ|2 |∇σ(u)|2 |ξ|2 ≪ (7.151) + (7.92).

By collecting all non-negligible terms (7.91), (7.92) and (7.151), we obtain a curvature
form

QV ⟨D⟩,γ,ε(z)(ξ ⊗ u) ≃ γ ∂∂̄ ψδ(ξ, ξ) |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ ξℓξ̄m uλūµ

+ ε
(
γ ∂∂̄ ψδ(ξ, ξ) − ∂∂̄ φ(ξ, ξ)

)
|∇σ(u)|2 + ε

1+ε|∇σ|2

∣∣∣∇2σ(ξ, u)
∣∣∣2.
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At this point, we come back to the orbifold situation, and thus replace σ by σ1/ρ, φ
by ρ−1φ and ε by ρ2 ε. This gives the curvature estimate

(7.16) QV ⟨D⟩,γ,ε(z)(ξ ⊗ u) ≃ γ ∂∂̄ ψδ(ξ, ξ) |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ ξℓξ̄m uλūµ

+ ε |σ|−2+2/ρ
(
γ ∂∂̄ ψδ(ξ, ξ) − ρ−1 ∂∂̄ φ(ξ, ξ)

)
|∇σ(u)|2

+ ε |σ|−2+2/ρ

1+ε |σ|−2+2/ρ |∇σ|2

∣∣∣∇2σ(ξ, u) − (1 − 1/ρ)σ−1 ∇σ(ξ)∇σ(u)
∣∣∣2,

In the general situation D = ∑
1⩽ j ⩽N(1 − 1/ρj)∆j of a multi-component orbifold

divisor, we add the components ∆j one by one, and obtain inductively the following
quantitative estimate, which is a rephrasing of Theorem 1.10. □

Corollary 7.2. — With a choice of γ > γV,D := max(max(dj/ρj), γV ) ⩾ 0
determined by the curvature assumptions of Proposition 7.1, and of hermitian metrics
on A, V , OX(D) as prescribed by conditions (7.2j), the orbifold metric

|u|2hV ⟨D⟩,ε
:= |u|2hV

+
∑

1⩽ j ⩽N

εj |σj|−2+2/ρj |∇jσj(u)|2hj
(a)

yields a curvature tensor θV ⟨D⟩,γ,ε := γΘA,hA,δ
⊗ Id − ΘV ⟨D⟩,hV ⟨D⟩,ε

such that the
associated quadratic form QV ⟨D⟩,γ,ε on TX ⊗ V satisfies for εN ≪ εN−1 ≪ · · · ≪
ε1 ≪ 1 the curvature estimate

(b) QV ⟨D⟩,γ,ε(z)(ξ ⊗ u) ≃ γ ∂∂̄ ψδ(ξ, ξ) |u|2 +
∑

ℓ,m,λ,µ

cℓmλµ ξℓξ̄m uλūµ

+
∑
j

εj |σj|−2+2/ρj

(
γ ∂∂̄ ψδ(ξ, ξ) − ρ−1

j ∂∂̄ φj(ξ, ξ)
)

|∇jσj(u)|2

+
∑
j

εj |σj |−2+2/ρj

1+εj |σj |−2+2/ρj |∇jσj |2

∣∣∣∇2
jσj(ξ, u) − (1 − 1/ρj)σ−1

j ∇jσj(ξ)∇jσj(u)
∣∣∣2 ,

where

∇2
A,hA,δ

= ∂∂̄ ψδ, ∇2
∆j ,hj

= ∂∂̄ φj, (cℓmλµ) = coefficients of −2πΘV,hV
.

Here, the symbol ≃ means that the ratio of the left and right hand sides can be
chosen in [1 − α, 1 + α] for any α > 0 prescribed in advance.

7.2. Evaluation of some Chern form integrals and their limits

Our aim is to apply Lemma 6.5 and Corollary 7.2 to compute Morse integrals of
the curvature tensor of a directed orbifold (X, V,D), where D = ∑

j(1 − 1/ρj)∆j

is transverse to V . Let A ∈ Pic(X) be an ample line bundle, and dj, γV , γ > γV,D
be defined as in Corollary 7.2. We get hermitian metrics hV ⟨D⟩,ε on V ⟨D⟩ and
corresponding curvature tensors θV ⟨D⟩,γ,ε in C∞(X \ |D|,Λ1,1T ∗

X ⊗ Hom(V, V )) that
are “orbifold smooth”, and such that θV ⟨D⟩,γ,ε ⩾G 0. Given a smooth strongly positive
(n− p, n− p)-form β ⩾S 0 on X, we want to evaluate the integrals
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Ip,ε(β) =
∫
Sε(V ⟨D⟩)

〈
θV ⟨D⟩,γ,ε · u, u

〉p
∧ β dµε(u)(7.17)

=
∫
z ∈X

∫
u∈Sε(V ⟨D⟩)z

〈
θV ⟨D⟩,γ,ε · u, u

〉p
∧ β(z) dµε(u),(7.17′)

where Sε(V ⟨D⟩) denotes the unit sphere bundle of V ⟨D⟩ with respect to hε, and µε
the unitary invariant probability measure on the sphere. Proposition 6.7(b) and the
Fubini theorem imply the upper bound

Ip,ε(β) ⩽ p! (r−1)!
(p+r−1)!

∫
X

(
Tr θV ⟨D⟩,γ,ε

)p
∧ β.

When β is closed, the upper bound can be evaluated by a cohomology class calcula-
tion, thanks to the following lemma.

Lemma 7.3. — The (1, 1)-form Tr θV ⟨D⟩,γ,ε ⩾ 0 is closed and belongs to the
cohomology class

rγ c1(A) − c1(V ) +
∑
j

(1 − 1/ρj) c1(∆j).

Proof. — The trace can be seen as the curvature of

det(OX(γA) ⊗ V ⟨D⟩∗) = OX(rγ A) ⊗ det(V ⟨D⟩∗)
= OX(rγ A) ⊗ det(V ∗) ⊗ OX(D)

with the determinant metric. Since all metrics have equivalent behaviour along |D|
(and can be seen as orbifold smooth), Stokes’ theorem shows that the cohomology
class is independent of ε. Formally, the result follows from (2.6). One can also consider
the intersection product

{Tr θV ⟨D⟩,γ,ε} · {β} =
∫
X

Tr θV ⟨D⟩,γ,ε ∧ β = r
∫
u∈Sε(V ⟨D⟩)

⟨θV ⟨D⟩,γ,ε · u, u⟩ ∧ β dµε(u)

for all smooth closed (n − 1, n − 1)-forms β on X, and apply Corollary 7.2 (b) to
evaluate the limit as ε → 0. This will be checked later as the special case p = 1
of (7.17). □

We actually need even more general estimates. The proof follows again from the
Fubini theorem.

Proposition 7.4. — Consider orbifold directed structures (X, V,Ds), 1 ⩽ s ⩽ k,
with Ds = ∑

1⩽ j ⩽N(1 − 1
ρs,j

)∆j. We assume that the divisors Ds are simple normal
crossing divisors transverse to V , sharing the same components ∆j. Let dj be the
infimum of numbers λ ∈ R+ such that λA− ∆j is nef, and let γV be the infimum of
numbers γ ⩾ 0 such that θV,γ := γΘA,hA

⊗ IdV − ΘV,hV
⩾G 0 for suitable hermitian

metrics hV on V . Take p = (p1, . . . , pk) ∈ Nk such that p′ = n− (p1 + · · · + pk) ⩾ 0
and a smooth, closed, strongly positive (p′, p′) form β ⩾S 0 on X. Then for every

γs > γV,Ds
:= max

(
max
j

(dj/ρs,j), γV
)
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there exist hermitian metrics hV ⟨Ds⟩,εs on the orbifold vector bundles V ⟨Ds⟩ such
that

θV ⟨Ds⟩,γs,εs
:= γs ΘA,hA

⊗ IdV − ΘV ⟨Ds⟩,hV ⟨Ds⟩,εs
>G 0,
εs = (εs1, . . . , εsN), 1 ⩽ s ⩽ k

in the sense of Griffiths. Moreover, the integrals

(a) Ik,p,ε(β)

=
∫
z ∈X

∫
(us) ∈ ΠsS(V ⟨Ds⟩)z

∧
1⩽ s⩽ k

〈
θV ⟨Ds⟩,γs,εs(us), us

〉ps ∧ β(z)
∏

1⩽ s⩽ k

dµεs(us)

admit upper bounds

(b) Ik,p,ε(β)

⩽
∫
X

∧
1⩽ s⩽ k

ps! (r−1)!
(ps+r−1)!

rγs ΘA,hA,δ
− Tr ΘV,hV

+
∑
j

(1 − 1/ρs,j)Θ∆j ,hj

ps

∧ β.

When β is closed, we get a purely cohomological upper bound

(c) Ik,p,ε(β)

⩽
∫
X

∏
1⩽ s⩽ k

ps! (r−1)!
(ps+r−1)!

rγs c1(A) − c1(V ) +
∑
j

(1 − 1/ρs,j)c1(∆j)
ps

· {β}.

Complement 7.5. — When p1 = . . . = pk = 1, formulas 7.4 (b) and 7.4 (c) are
equalities.

Proof. — This follows from Remark 6.8. □

In general, getting a lower bound for Ip,ε(β) and Ik,p,ε(β) is substantially harder.
We start with Ip,ε(β) and content ourselves to evaluate the iterated limit

lim
ε→ 0

Ip,ε(β) := lim
ε1 → 0

lim
ε2→0

. . . lim
εN → 0

Ip,ε(β), εN ≪ εN−1 ≪ · · · ≪ ε1 ≪ 1.

For this, we consider the expression of the curvature form in a neigborhood of
an arbitrary point z0 ∈ ∆j1 ∩ . . . ∩ ∆jm (if z0 ∈ X \ |∆|, we have m = 0). We
take trivializations of the line bundles OX(∆j) so that the hermitian metrics have
weights e−φj with φj(z0) = dφj(z0) = 0, and introduce the corresponding “orbifold”
coordinates

tj,ε = ε
1/2
j σj(z)−(1−1/ρj) |∇jσj(z0)|, j = j1, . . . , jm,

We complete these coordinates with n−m variables zℓ that define coordinates along
∆j1 ∩. . .∩∆jm . In this way, we get a n-tuple (tj,ε, zℓ) of complex numbers that provide
local coordinates on the universal cover of Ωz0 \|D|, where Ωz0 is a small neighborhood
of z0. Viewed on X, the coordinates tj,ε are multivalued near z0, but we can make a
“cut” in X along ∆j to exclude the negligible set of points where σj(z) ∈ R−, and
take the argument in ] − π, π[, so that Arg(tj,ε) ∈ ] − (1 − 1/ρj)π, (1 − 1/ρj)π[ . If
we integrate over complex numbers tj,ε without such a restriction on the argument,
the integral will have to be multiplied by the factor (1 − 1/ρj) to get the correct
value. Since |σj| is bounded, the range of the absolute value |tj,ε| is an interval
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]O(ε1/2
j ),+∞[ , thus tj,ε will cover asymptotically an entire angular sector in C as

εj → 0. In the above coordinates, we have

dtj,ε

tj,ε
= −(1 − 1/ρj)dσj

σj
= −(1 − 1/ρj)

(
∇jσj

σj
+ ∂φj

)
= −(1 − 1/ρj)∇jσj

σj
+O(1),

since ∇jσj = dσj − σj∂φj and the weight φj of the metric of OX(∆j) is smooth.
Denote

θV,γ = γΘA,hA,δ
⊗ IdV − ΘV,hV

,(7.181)
θV ⟨D⟩,γ,ε := γΘA,hA,δ

⊗ Id − ΘV ⟨D⟩,hV ⟨D⟩,ε
,(7.182)

e∗
j = ∇jσj

|∇jσj | ∈ S(V ∗).(7.183)

By Corollary 7.2, we have

(7.19) ⟨θV ⟨D⟩,γ,ε · u, u⟩ ≃ γΘA,hA,δ
− ⟨ΘV,hV

· u, u⟩

+
∑
j

εj |σj|−2+2/ρj

(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
|∇jσj(u)|2

+ 1
2π

∑
j

εj |σj |−2+2/ρj

1+εj |σj |−2+2/ρj |∇jσj |2

∣∣∣∇2
jσj(ξ, u) − (1 − 1/ρj)σ−1

j ∇jσj(ξ)∇jσj(u)
∣∣∣2 ,

therefore

⟨θV ⟨D⟩,γ,ε · u, u⟩ ≃ ⟨θV,γ · u, u⟩ +
∑
j

(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
|tj,ε|2 |e∗

j(u)|2(7.201)

+ i
2π

∑
j

|tj,ε|2
1+|tj,ε|2

〈
dtj,ε

tj,ε
e∗
j(u) + bj(u) , dtj,ε

tj,ε
e∗
j(u) + bj(u)

〉
hj

,(7.202)

where

bj = 1
|∇j |∇

2σj ∈ C∞
(
Ωz0 ,Λ1,0T ∗

X ⊗ V ∗ ⊗ OX(∆j)
)

(7.203)

is a smooth (1, 0)-form near z0. The approximate equality ≃ in formula ((7.201),
(7.202)) involves the approximation |∇jσj(z)|/|∇jσj(z0)| ≃ 1, which holds in a
sufficiently small neighborhood of z0 ; if we apply the Fubini theorem and consider the
fiber integral over z0 ∈ X, there is actually no error coming from this approximation.
Now, we want to integrate the volume form ⟨θV ⟨D⟩,γ,ε · u, u⟩p ∧ β dµε(u) along the
fibers of Sε(V ⟨D⟩) → X. The sphere bundle Sε(V ⟨D⟩) is defined by |u|2hV ⟨D⟩,ε

= 1
where

(7.21) |u|2hV ⟨D⟩,ε
= |u|2 +

∑
j

εj|σj|−2+2/ρj |∇jσj(u)|2 ≃ |u|2 +
∑
j

|tj,ε|2
∣∣∣e∗
j(u)

∣∣∣2 = 1.

For the sake of simplicity, we first deal with the case where the divisor D = (1 −
1/ρj)∆j has a single component. Along ∆j, we then get an orthogonal decomposition
V = (V ∩ T∆j

) ⊕ Cej, and by (7.21) we can write

(7.21⊥) u = u′
j + e∗

j(u) ej ∈ S(V ), |u|2 = |u′
j|2 +

∣∣∣e∗
j(u)

∣∣∣2 , u′
j ∈ V ∩ T∆j

.
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We reparametrize the integration in u ∈ Sε(V ⟨D⟩) on the sphere S(V ) by introducing
the change of variables

τ = τj,ε = |tj,ε|2
1+|tj,ε|2 ∈ [0, 1], 1 − τ = 1

1+|tj,ε|2 , dτ = d|tj,ε|2

(1+|tj,ε|2)2 ,

gj,ε : S(V ) → Sε(V ⟨D⟩), u 7→ uj,ε = u′
j +

√
1 − τ e∗

j(u) ej = u′
j + e∗

j (u)
(1+|tj,ε|2)1/2 ej,

so that uj,ε satisfies |uj,ε|2ε = |u|2 and

e∗
j(uj,ε) =

√
1 − τ e∗

j(u) = 1
(1+|tj,ε|2)1/2 e

∗
j(u), |tj,ε|2

∣∣∣e∗
j(uj,ε)

∣∣∣2 = τ
∣∣∣e∗
j(u)

∣∣∣2 .
This gives dµε(uj,ε) = dµ(u), and as a consequence (7.17) can be rewritten as

(7.22) Ip,ε(β) =
∫
S(V )

〈
θV ⟨D⟩,γ,ε · uj,ε, uj,ε

〉p
∧ β(z) dµ(u).

Finally, a use of polar coordinates with α = Arg(tj,ε) shows that
ıdtj,ε∧dt̄j,ε

(1+|tj,ε|2)2 = 2 |tj,ε| d|tj,ε|∧dα
(1+|tj,ε|2)2 = dτ ∧ dα.

A substitution u 7→ uj,ε in ((7.201), (7.202)) yields

(7.23) ⟨θV ⟨D⟩,γ,ε · uj,ε, uj,ε⟩ ≃ ⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

) |tj,ε|2 |e∗
j (u)|2

1+|tj,ε|2

+ ı
2π

1
1+|tj,ε|2

〈
dtj,ε e

∗
j (u)

(1+|tj,ε|2)1/2 + tj,ε bj (uj,ε) ,
dtj,ε e

∗
j (u)

(1+|tj,ε|2)1/2 + tj,ε bj (uj,ε)
〉
hj

.

The last term is a (1, 1)-form that is a square of a (1, 0)-form (when u is fixed), hence
the expansion of the pth power can involve at most one such factor. Therefore we get

(7.23p)
〈
θV ⟨D⟩,γ,ε · uj,ε, uj,ε

〉p
≃(

⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

) |tj,ε|2 |e∗
j (u)|2

1+|tj,ε|2

)p
+ p ı

2π
1

1+|tj,ε|2

〈
dtj,ε e

∗
j (u)

(1+|tj,ε|2)1/2 + tj,ε bj (uj,ε) ,
dtj,ε e

∗
j (u)

(1+|tj,ε|2)1/2 + tj,ε bj (uj,ε)
〉

∧
(

⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

) |tj,ε|2 |e∗
j (u)|2

1+|tj,ε|2

)p−1

.

The integrals involving bj(uj,ε) are of the form∫
S(V )

t̄j,ε dtj,ε∧⟨e∗
j (u),bj(uj,ε)⟩

(1+|tj,ε|2)3/2 ∧ Aj,ε(u),
∫
S(V )

|tj,ε|2⟨bj(uj,ε),bj(uj,ε)⟩
1+|tj,ε|2 ∧ A′

j,ε(u)

where Aj,ε(u), A′
j,ε(u) are forms with uniformly bounded coefficients in orbifold

coordinates. Since |tj,ε|2
1+|tj,ε|2 is bounded by 1 and converges to 0 on X \ ∆j, Lebesgue’s

dominated convergence theorem shows that the second integral converges to 0. The
second integral can be estimated by the Cauchy–Schwarz inequality. We obtain an
upper bound(∫

S(V )

|tj,ε|2⟨bj(uj,ε),bj(uj,ε)⟩
1+|tj,ε|2 ∧ Aj,ε(u)

)1/2 (∫
S(V )

ıdtj,ε∧dt̄j,ε |e∗
j (u)|2

(1+|tj,ε|2)2 ∧ Aj,ε(u)
)1/2
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where the first factor converges to 0 and the second one is bounded by Fubini, since∫
C ıdt ∧ dt̄/(1 + |t|2)2 < +∞. Modulo negligible terms, and changing variables into

our new parameters (τ, α), we finally obtain

(7.24) ⟨θV ⟨D⟩,γ,ε · uj,ε, uj,ε⟩p ≃ ⟨θV,γ · uj,ε, uj,ε⟩p

+ p dτ∧dα
2π |e∗

j(u)|2 ∧
(

⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
τ |e∗

j(u)|2
)p−1

.

Therefore

(7.25)
∫
S(V )

⟨θV ⟨D⟩,γ,ε · uj,ε, uj,ε⟩p ∧ β dµ(u) ≃
∫
S(V )

⟨θV,γ · uj,ε, uj,ε⟩p ∧ β dµ(u)

+
∫
S(V )

p dτ∧dα
2π

∣∣∣e∗
j(u)

∣∣∣2 ∧
(

⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
τ
∣∣∣e∗
j(u)

∣∣∣2)p−1

∧ β dµ(u).

Since uj,ε → u almost everywhere and boundedly, we have

lim
ε→ 0

∫
S(V )

⟨θV,γ · uj,ε, uj,ε⟩p ∧ β dµ(u) =
∫
S(V )

⟨θV,γ · u, u⟩p ∧ β dµ(u).

Here, we have to remember that τ = τj,ε converges uniformly to 0 (even in the C∞

topology), on all compact subsets of X \ ∆j, hence the second integral in (7.25)
asymptotically concentrates on ∆j as ε → 0. Also, the angle α = Arg(tj,ε) runs over
the interval ] − (1 − 1/ρj)π, (1 − 1/ρj)π[. In the easy case p = 1, we get

lim
ε→ 0

∫
S(V )

⟨θV,γ,ε · uj,ε, uj,ε⟩ ∧ β dµ(u)

=
∫
S(V )

⟨θV,γ · u, u⟩ ∧ β dµ(u) + (1 − 1/ρj)
∫
S(V )|∆j |

e∗
j(u)|2β dµ(u)

=
∫
X

1
r

Tr θV,γ ∧ β + (1 − 1/ρj)
∫

∆j

1
r
β.

If we assume β closed, this is equal to the intersection product
1
r

(
ργ c1(A) − c1(V ) + (1 − 1/ρj)c1(∆j)

)
· β

and the final assertion of the proof of Lemma 6.19 is thus confirmed, adding the
components ∆j one by one (see below). Now, in the general case p ⩾ 1, we will
obtain a lower bound of the second integral involving dτ ∧ dα in (7.25) by using a
change of variable hj,ε : S(V ) → S(V ),

u 7→ hj,ε(u) =
(
(1 − τ)|u′|2 +

∣∣∣e∗
j(u)

∣∣∣2 )−1/2 (√
1 − τ u′ + e∗

j(u) ej
)

where τ = τj,ε. Observe that the composition gj,ε ◦ hj,ε : S(V ) → S(V ) → Sε(V ⟨D⟩)
is given by

gj,ε ◦ hj,ε(u) =
√

1−τ(
(1−τ)|u′|2+|e∗

j (u)|2
)1/2 u.
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Since (1 − τ)|u′|2 + |e∗
j(u)|2 ⩽ |u|2 = 1, it is easy to check that dµ(hj,ε(u))

⩾ (1 − τ)r−1 dµ(u) on the unit sphere, that |e∗
j(hj,ε(u))| ⩾ |e∗

j(u)|, and finally, that

⟨θV,γ · gj,ε (hj,ε(u)) , gj,ε (hj,ε(u))⟩
= 1−τ

(1−τ)|u′|2+|e∗
j (u)|2 ⟨θV,γ · u, u⟩ ⩾ (1 − τ) ⟨θV,γ · u, u⟩.

Hence, by a change a variable u 7→ hj,ε(u) we find

(7.26)
∫
S(V )

p dτ∧dα
2π |e∗

j(u)|2

∧
(

⟨θV,γ · uj,ε, uj,ε⟩ +
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
τ
∣∣∣e∗
j(u)

∣∣∣2 )p−1
∧ β dµ(u)

⩾
∫
S(V )

p dτ∧dα
2π

∣∣∣e∗
j(u)

∣∣∣2∧
(

(1−τ) ⟨θV,γ · u, u⟩+
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)
τ |e∗

j(u)|2
)p−1

∧ β (1 − τ)r−1 dµ(u).

Here, we have to remember that τ = τj,ε converges uniformly to 0 (even in the C∞

topology), on all compact subsets of X \∆j. Therefore, the last integral concentrates
over the divisor ∆j. If we apply the binomial formula with an index q′ = q − 1, we
see that the limit as ε → 0 is equal to

(7.27) p (1 − 1/ρj)
∫
S(V )|∆j

p∑
q=1

(
p− 1
q − 1

)
⟨θV,γ · u, u⟩p−q

∧
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)q−1
|e∗
j(u)|2q

(∫ 1

0
(1 − τ)p−q+r−1 τ q−1 dτ

)
∧ β dµ(u).

We have

(7.28)
∫ 1

0
(1 − τ)p−q+r−1 τ q−1 dτ = (p−q+r−1)! (q−1)!

(p+r−1)!

and the combination of (7.22) and ((7.25)–(7.28)) implies

(7.29) lim
ε→ 0

Ip,ε(β) ⩾
∫
S(V )

⟨θV,γ · u, u⟩p ∧ β dµ(u) + p(1 − 1/ρj)
p∑
q=1

(p−1)! (p−q+r−1)!
(p−q)! (p+r−1)!

×
∫
S(V )|∆j

⟨θV,γ · u, u⟩p−1−q ∧
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)q ∣∣∣e∗
j(u)

∣∣∣2q+2
∧ β dµ(u).

Inductively, formula (7.29) requires the investigation of more general integrals

Ip,p′,Y,ε =
∫
Sε(V ⟨D⟩)|Y

⟨θV,γ,ε · u, u⟩p−p′
∧

∏
1⩽ j ⩽ p′

|ℓj(u)|2 β dµε(u)

where Y is a subvariety of X (which we assume to be transverse to the ∆j’s, and
ℓj ∈ C∞(Y, V ∗) with |ℓj| = 1, and β ⩾S 0 is a smooth form of suitable bidegree
on Y . Not much is changed in the calculation, except that the change of variable
u 7→ gj,ε ◦ hj,ε(u) applied to ∏1⩽ j ⩽ p′|ℓj(u)|2 introduces an extra factor (1 − τ)p′ in
the lower bound, entirely compensated by the corresponding factor (1 − τ)p−p′−q
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appearing in ⟨θV,γ,ε · u, u⟩p−p′ . The binomial formula yields a coefficient
(
p−p′−1
q−1

)
instead of

(
p−1
q−1

)
. We thus obtain

(7.30) lim
ε→ 0

Ip,p′,Y,ε(β) ⩾
∫
S(V )|Y

⟨θV,γ · u, u⟩p−p′
∧

∏
1⩽ j ⩽ p′

|ℓj(u)|2 β dµ(u)

+ (1 − 1/ρj)
p−p′∑
q=1

(p−p′)! (p−q+r−1)!
(p−p′−q)! (p+r−1)! ×

∫
S(V )|Y ∩∆j

⟨θV,γ · u, u⟩p−p′−q ∧
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)q−1
∧

∣∣∣e∗
j(u)

∣∣∣2q ∏
1⩽ j ⩽ p′

|ℓj(u)|2 β dµ(u).

When D contains several components, we apply induction on N and put

|u|2hV ⟨D⟩,ε
= |u|2hV ⟨D⟩,ε′ + εN |σN |−2+2/ρN |∇NσN(u)|2hN

(7.31)

where

(7.32)
|u|2hV ⟨D⟩,ε′ = |u|2hV

+
∑

1⩽ j ⩽N−1
εj |σj|−2+2/ρj |∇jσj(u)|2hj

.(7.32′)

In this setting, (7.19) can be rewritten in the form of a decomposition〈
θV ⟨D⟩,γ,ε · u, u

〉
≃
〈
θV ⟨D⟩,γ,ε′ · u, u

〉
+ εN |σN |−2+2/ρN

(
γΘA,hA,δ

− ρ−1
N Θ∆N ,hN

)
|∇NσN(u)|2

+ 1
2π

εN |σN |−2+2/ρN

1+εN |σN |−2+2/ρN |∇NσN |2
∣∣∣∇2

NσN(ξ, u) − (1 − 1/ρN)σ−1
N ∇NσN(ξ)∇NσN(u)

∣∣∣2.
inductively with all intersections ∆J = ∆j1 ∩ . . . ∩ ∆jm , J = {j1, . . . , jm} ⊂
{1, . . . , N} ; we neglect the self-intersection terms, since they are anyway non-
negative. We obtain

(7.33) lim
ε→ 0

Ip,ε(β)

⩾
∑

J⊂{1, ..., N}
|J |!

∑
(qj) ∈ (N∗)J

∑
j ∈ J

qj ⩽ p

p!
(
p+r−1−

∑
j ∈ J

qj

)
!

(p+r−1)!
(
p−
∑

j∈J
qj

)
!

∏
j ∈ J

(1 − 1/ρj)
∫
z ∈ ∆J

∫
u∈S(V )z

⟨θV,γ(z) · u, u⟩p−
∑

j ∈ J
qj ∧

∧
j ∈ J

∣∣∣e∗
j(u)

∣∣∣2qj
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

)qj−1
∧ β(z) dµ(u)

where J = ∅ corresponds to the integral taken over X, with a coefficient equal to 1
in that case. By the Fubini theorem, we get the following lower bound of Ik,p,ε(β).

Proposition 7.6. — With the same notation as above, assume that

γs > γV,Ds
:= max

(
max
j

(dj/ρs,j), γV
)
, 1 ⩽ s ⩽ k.
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and consider the limit limε→ 0 Ik,p,ε(β) computed as an iterated limit

lim
ε11→0

. . . lim
εkN → 0

with respect to the lexicographic order (i, j) < (i′, j′) if i < i′ or i = i′ and j < j′.
Then we have the following lower bound, where the summation is taken over all
disjoint subsets J1, . . . , Jk ⊂ {1, 2, . . . , N}:

lim
ε→ 0

Ik,p,ε(β) ⩾
∑

J1⨿...⨿Jk
⊂{1, ..., N}

∑
(qj) ∈ (N∗)J1⨿...⨿Jk∑

j ∈ Js
qj ⩽ ps

∏
1⩽ s⩽ k

|Js|! ps!
(
ps−
∑

j ∈ Js
qj+r−1

)
!

(ps+r−1)!
(
ps−
∑

j ∈ Js
qj

)
!

∏
j ∈ Js

(
1 − 1

ρs,j

)

∫
z ∈ ∆J1⨿...⨿Jk

∫
(us) ∈S(V )k

z

∧
1⩽ s⩽ k

 ⟨θV,γs · us, us⟩ps−
∑

j ∈ Js
qj ∧

∧
j ∈ Js

∣∣∣e∗
j(us)

∣∣∣2qj
(
γs ΘA,hA,δ

− ρ−1
s,j Θ∆j ,hj

)qj−1
dµ(us)

 ∧ β(z).

Our assumptions imply that we can take θV,γs >G (γs − γV − δ)ΘA,hA
⊗ IdV for

every δ > 0. By Lemma 6.5(b), we obtain the simpler and purely cohomological
lower bound

(7.34) lim
ε→ 0

Ik,p,ε(β)

⩾
∑

J1⨿ ...⨿Jk
⊂{1, ..., N}

∑
(qj) ∈ (N∗)J1⨿...⨿Jk∑

j ∈ Js
qj ⩽ ps

∏
1⩽ s⩽ k

|Js|! ps!
(
ps−
∑

j ∈ Js
qj+r−1

)
!

(ps+r−1)!
(
ps−
∑

j ∈ Js
qj

)
!

∏
j ∈ Js

(
1 − 1

ρs,j

)

∫
∆J1⨿...⨿Jk

∧
1⩽ s⩽ k

((
(γs − γV )ΘA,hA

)ps−
∑

j ∈ Js
qj ∧

∧
j ∈ Js

(r−1)!
(qj+r−1)!

(
γs ΘA,hA,δ

− ρ−1
s,j Θ∆j ,hj

)qj−1
)

∧ β(z).

What is a bit surprising in all these estimates is that, in spite of the fact that we
are integrating non-closed and metric dependent forms, the limits of the integrals as
ε → 0 admit rather natural lower and upper bounds that are purely cohomological,
and can be expressed solely in terms of well understood Chern classes. This will
also be true for the related Morse integrals in § 8. It could be desirable to have
an algebro-geometric explanation of this phenomenon. The algebraic versions of
Morse inequalities developed by B. Cadorel in [Cad19] might possibly be used in
this context.

Remark 7.7. — As mentioned in the course of the proof of (7.6)–(7.34), we have
neglected certain non-negative terms coming from self-intersections ∆p

j of the com-
ponents (p ⩾ 2), by restricting the summation to the family of disjoint subsets
J1, J2, . . . , Jk. It would be interesting to refine the lower bound and to take these
terms into account. This might be possible by observing that the iterated limit
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process, when integrating on ∆j, involves inductively a few extra terms in (7.23),
when we take the limit as tj,ε → ∞. Those terms are equal to〈

θV,γ · u′
j, u

′
j

〉
+
(
γΘA,hA,δ

− ρ−1
j Θ∆j ,hj

) ∣∣∣e∗
j(u)

∣∣∣2 + ı
2π

〈
bj(u′

j), bj(u′
j)
〉
hj

.

One would then have to evaluate the contribution of ⟨bj(u′
j), bj(u′

j)⟩hj
in the inte-

gral
∫

∆j
.

8. Non probabilistic estimates of the Morse integrals

The non-probabilistic estimate uses more explicit curvature inequalities and has
the advantage of producing results also in the general orbifold case. Let us fix an
ample line bundle A on X equipped with a smooth hermitian metric hA such that
ωA := ΘA,hA

> 0, and let γV be the infimum of values λ ∈ R+ such that

λωA ⊗ IdV − ΘV,hV
>G 0,

in the sense of Griffiths. For any orbifold structure D = ∑
j(1−1/ρj)∆j, Corollary 7.2

then shows that the sth directed orbifold bundle Vs := V ⟨D(s)⟩ (cf. § 2.2) possesses
hermitian metrics hV ⟨D(s)⟩,εs

such that the associated curvature tensor satisfies the
inequality

θs,γ,ε := γs ωA ⊗ IdV ⟨D(s)⟩ − ΘV ⟨D(s)⟩,h
V ⟨D(s)⟩,εs

>G 0,

provided we assume djA− ∆j nef and take

(8.1) γs > γV,D(s) := max
(

max
j

(
dj/ρ

(s)
j

)
, γV

)
where ρ(s)

j = max(ρj/s, 1).

In particular, any value

(8.1′) γs > max
(
s max

j
(dj/ρj) , γV

)
.

is admissible, and we can apply the estimates 7.6 (b) and (7.34) with these values.
Instead of exploiting a Monte Carlo convergence process for the curvature tensor as
was done in § 5.2, we are going to use a more precise lower bound of the curvature
tensor ΘLτ,k,ε of the orbifold rank 1 sheaf associated with F = τA, τ ≪ 1, namely

Lτ,k := OXk(V ⟨D⟩)(1) ⊗ π∗
kOX(−τA).

Our formulas 4.5 (a,b) become

ΘLτ,k,ε = ωr,k,b(ξ) + gk,0,ε(z, x, u) − τ ωA(z), where

gk,γ,ε(z, x, u) =
k∑
s=1

xs

s
θs,γ,ε(us),

θs,γ,ε(us) = ı
2π

∑
i,j,λ,µ

c
(s,γ,ε)
ijλµ (z)us,λūs,µ dzi ∧ dz̄j.
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Under the assumption (8.1′), we have gk,γ,ε(z, x, u) ⩾ 0, but in general this is not
true for gk,0,ε(z, x, u), so we express gk,0,ε(z, x, u) as a difference of gk,γ,ε(z, x, u) and
of a multiple of ωA. By definition θs,γ,ε = γs ωA ⊗ Id + θs,0,ε, and we get

ΘLτ,k,ε = ωr,k,b + αε − β, where(8.2)

αε = gk,γ,ε ⩾ 0, β =
τ +

∑
1⩽ s⩽ k

γsxs

s

ωA =
∑

1⩽ q⩽ k

(γq+qτ)xq

q
ωA ⩾ 0.(8.2′)

Then (8.2) and the inequalities used for (5.2), especially Lemma 3.3 and Proposi-
tion 4.3(b), lead to

(8.3)
∫
Xk(V ⟨D⟩)(Lτ,k,⩽ 1)

Θn+kr−1
Lτ,k,ε

= (n+kr−1)!
n! k!r(kr−1)!

∫
z ∈X

∫
(x,u) ∈ ∆̸k−1×(S2r−1)k

1lαε−β,⩽ 1(αε − β)ndνk,r(x)dµ(u)

⩾ (n+kr−1)!
n! k!r(kr−1)!

∫
z ∈X

∫
(x,u) ∈ ∆̸k−1×(S2r−1)k

(
αnε − nαn−1

ε ∧ β
)
dνk,r(x)dµ(u).

The main point is thus to find a lower bound of the difference αnε −nαn−1
ε ∧β, hence a

lower bound of αnε and an upper bound of αn−1
ε ∧β. An expansion of αnε by Newton’s

multinomial formula yields

αnε =
∑

p∈Nk, |p|=n

n!
p1!... pk!

k∏
s=1

(
xs

s
θs,γ,ε(us)

)ps

.

If we assume k ⩾ n and retain only the monomials for which ps = 0, 1, we get

αnε ⩾
∑

1⩽ s1< ...<sn ⩽ k

n!
s1...sn

n∏
ℓ=1

xsℓ
θsℓ,γ,ε(usℓ

).

By Proposition 4.3(a) and an elementary calculation (cf. [Dem11, Prop. 1.13]), one
gets for every (p1, . . . , pk) ∈ Nk

(8.4)
∫

∆̸k−1
xp1

1 . . . xpk
k dνk,r(x) = (kr−1)!

(r−1)!k

∏
1 ⩽ s ⩽ k

(ps+r−1)!

(∑1 ⩽ s ⩽ k
ps+kr−1)!

,

and in particular, for k ⩾ n, p1 = . . . = pn = 1, pn+1 = . . . = pk = 0, we have

∫
∆̸k−1

xs1 . . . xsn dνk,r(x) =
∫

∆̸k−1
x1 . . . xn dνk,r(x) = (kr−1)! rn

(n+kr−1)! .
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As a consequence, the equality case in ((7.4)–(7.5)) implies

Mn,k,ε :=
∫
z ∈X

∫
(x,u) ∈ ∆̸k−1 ×(S2r−1)k

αε(z)n dνk,r(x) dµ(u1) . . . dµ(uk)

⩾
∑

1⩽ s1 < ...< sn ⩽ k

∫
∆̸k−1

n!xs1 ...xsn

s1...sn
dνk,r(x)

×
∫
X

∫
ΠS(V ⟨D(sℓ)⟩)

n∧
ℓ=1

⟨θsℓ,γ,ε(usℓ
), usℓ

⟩ dµ(usℓ
)

⩾
∑

1⩽ s1 < ...< sn ⩽ k

(kr−1)!
(n+kr−1)!

n!
s1...sn

×
∫
X

n∏
ℓ=1

rγsℓ
c1(A) − c1(V ) +

∑
j

(
1 − 1/ρ(sℓ)

j

)
c1(∆j)



(8.41) Mn,k,ε ⩾
(kr−1)!

(n+kr−1)!

∫
X

n∏
s=1

(
rγs c1(A) − c1(V ) +

∑
j

(
1 − 1/ρ(s)

j

)
c1(∆j)

)
.

If we assume c1(V ∗) = λV c1(A) and c1(∆j) = dj c1(A), the lower bound takes the
simpler form

(8.42) Mn,k,ε ⩾
(kr−1)!

(n+kr−1)!

n∏
s=1

rγs + λV +
∑
j

dj
(
1 − 1/ρ(s)

j

) An.

In fact, our lower bounds are obtained by taking into account the single term sℓ = ℓ,
1 ⩽ ℓ ⩽ k (which is the unique term in the sum when k = n). A more refined
method is to integrate all monomials xp1

1 . . . xpk
k and to use the lower bound (7.34)

instead of ((7.4)–(7.5)). This has the advantage of eventually producing a non-zero
contribution, even when k < n. We find

Mn,k := lim
ε→ 0

∫
z ∈X

∫
(x,u)∈∆̸k−1×(S2r−1)k

αε(z)n dνk,r(x) dµ(u1) . . . dµ(uk)

⩾ lim
ε→ 0

∑
p∈Nk

|p|=n

∫
∆̸k−1

n!xp1
1 ...x

pk
k∏k

s=1 ps! sps
dνk,r(x)

∫
X

∫
Π S(V ⟨D(s)⟩)

k∧
s=1

⟨θs,γ,ε(us), us⟩ps dµ(us)

⩾
∑
p∈Nk

|p|=n

n!∏k

s=1 ps! sps

(kr−1)!
(r−1)!k

∏
1 ⩽ s ⩽ k

(ps+r−1)!

(∑1 ⩽ s ⩽ k
ps+kr−1)!

∑
J1⨿...⨿Jk
⊂{1, ..., N}

∑
(qj) ∈ (N∗)J1⨿...⨿Jk∑

j ∈ Js
qj ⩽ ps

∏
1⩽ s⩽ k

|Js|! ps!
(
ps−
∑

j ∈ Js
qj+r−1

)
!

(ps+r−1)!
(
ps−
∑

j ∈ Js
qj

)
!

∏
j ∈ Js

(
1 − 1

ρ
(s)
j

)∫
z ∈ ∆J1⨿...⨿Jk

∧
1⩽ s⩽ k

(
(γs − γV )ΘA,hA

)ps−
∑

j∈Js
qj

∧
∧
j ∈ Js

(r−1)!
(qj+r−1)!

(
γs ΘA,hA

−
(
ρ

(s)
j

)−1
Θ∆j ,hj

)qj−1
,
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thus

(8.5) Mn,k ⩾
n! (kr−1)!
(n+kr−1)!

∑
p∈Nk

|p|=n

∏
1⩽ s⩽ k

1
sps

∑
J1⨿...⨿Jk
⊂{1, ..., N}

∑
(qj) ∈ (N∗)J1⨿...⨿Jk∑

j ∈ Js
qj ⩽ ps

∏
1⩽ s⩽ k

|Js|!
(
ps−
∑

j ∈ Js
qj+r−1

)
!(

ps−
∑

j ∈ Js
qj

)
!

∏
j ∈ Js

(
1 − 1

ρ
(s)
j

)∫
z ∈ ∆J1⨿...⨿Jk

∧
1⩽ s⩽ k

(
(γs − γV )ΘA,hA

)ps−
∑

j ∈ Js
qj ∧

∧
j ∈ Js

(r−1)!
(qj+r−1)!

(
γs ΘA,hA

−
(
ρ

(s)
j

)−1
Θ∆j ,hj

)qj−1
.

In particular, if c1(∆j) = dj c1(A), we infer

(8.6) Mn,k ⩾
n! (kr−1)!
(n+kr−1)!

∑
p∈Nk

|p|=n

∏
1⩽ s⩽ k

1
sps

∑
J1⨿...⨿Jk
⊂{1,...,N}

∑
(qj), qj⩾ 1∑
j ∈ Js

qj ⩽ ps

∏
1⩽ s⩽ k

 |Js|!
(
ps−
∑

j ∈ Js
qj+r−1

)
!(

ps−
∑

j ∈ Js
qj

)
!

(γs − γV )ps−
∑

j∈Js
qj

∏
j ∈ Js

dj

(
1 − 1

ρ
(s)
j

)
(r−1)!

(qj+r−1)!

(
γs − dj

ρ
(s)
j

)qj−1
An.

In the special case k = 1 and N ⩾ n, by taking |J | = |J1| = n and qj = 1 for all
j ∈ J , we find

(8.61) Mn,1 ⩾ n! (r−1)!
(n+r−1)!

∑
J⊂{1, ..., N}, |J |=n

n! (r−1)!
rn

∏
j ∈ J

dj
(
1 − 1

ρj

)
An.

Next, we turn ourselves to the evaluation of the integral of αn−1
ε ∧ β. We have

αn−1
ε ∧ β =

∑
p∈Nk, |p|=n−1

(n−1)!
p1!... pk!

k∏
s=1

(
xs

s
θs,γ,ε(us)

)ps ∧ β,

and the upper bound given by ((7.4)–(7.5)) provides
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M ′
n,k := lim

ε→ 0

∫
z ∈X

∫
(x,u) ∈ ∆̸k−1×(S2r−1)k

nαε(z)n−1 ∧ β dνk,r(x) dµ(u1) . . . dµ(uk)

⩽ lim
ε→ 0

∑
p∈Nk, |p|=n−1

∫
∆̸k−1

n
(n−1)!xp1

1 ...x
pk
k∏k

s=1 ps! sps
dνk,r(x)

×
∫
X

∫
ΠS(V ⟨D(s)⟩)

k∧
s=1

⟨θs,γ,ε(us), us⟩ps ∧ β
k∏
s=1

dµ(us)

⩽
∑

p∈Nk, |p|=n−1

∫
∆̸k−1

n
(n−1)!xp1

1 ...x
pk
k∏k

s=1 ps! sps

 k∑
q=1

(γq+qτ)xq

q

 dνk,r(x)

×
∫
X

∧
1⩽ s⩽ k

ps! (r−1)!
(ps+r−1)!

rγs ΘA,hA
− Tr ΘV,hV

+
∑
j

(
1 − 1/ρ(s)

j

)
Θ∆j ,hj

ps

∧ ΘA,hA
.

By (8.4), for |p| = ∑
ps = n− 1, we get

∫
∆̸k−1

xp1
1 . . . xpk

k

 k∑
q=1

γq

q
+ τxq

 dνk,r(x)

= (kr−1)!
(r−1)!k

∏
1 ⩽ s ⩽ k

(ps+r−1)!
(n−1+kr−1)!

 k∑
q=1

γq

q
+ τ

k∑
q=1

pq+r
n+kr−1


= (kr−1)!

(r−1)!k

∏
1 ⩽ s ⩽ k

(ps+r−1)!
(n+kr−2)!

 k∑
q=1

γq

q
+ τ

 .
Therefore, assuming c1(∆j) = dj c1(A) and c1(V ∗) = λV c1(A), we find

M ′
n,k ⩽

n! (kr−1)!
(r−1)!k (n+kr−2)!

 k∑
q=1

γq

q
+ τ

 ∑
p∈Nk, |p|=n−1

∏
1 ⩽ s⩽k

(ps+r−1)!∏k

s=1 ps! sps

×
∏

1⩽s⩽k

ps! (r−1)!
(ps+r−1)!

(
rγs + λV +

∑
j

dj
(
1 − 1/ρ(s)

j

))ps

An,

⩽ n! (kr−1)!
(n+kr−2)!

 k∑
q=1

γq

q
+ τ


×

∑
p∈Nk, |p|=n−1

∏
1⩽ s⩽ k

1
sps

rγs + λV +
∑
j

dj
(
1 − 1/ρ(s)

j

)ps

An.

(8.71)

A simpler (but larger) upper bound is
(8.72)

M ′
n,k ⩽

n! (kr−1)!
(n+kr−2)!

(
k∑
s=1

γs

s
+ τ

) ∑
1⩽ s⩽ k

1
s

rγs + λV +
∑
j

dj
(
1 − 1/ρ(s)

j

)n−1

An.
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Finally, inequality (8.3) translates into

(8.8) 1
(n+kr−1)!

∫
Xk(V ⟨D⟩)(Lτ,k,⩽ 1)

Θn+kr−1
Lτ,k,ε

⩾ 1
n! k!r(kr−1)!

(
Mn,k −M ′

n,k

)
.

If we put everything together, we get the following (complicated!) existence criterion
for orbifold jet differentials.

Existence criterion. — Let (X, V,D) with D = ∑
1⩽ j ⩽N(1 − 1/ρj)∆j be a

directed orbifold, and let A be an ample line bundle on X. Assume that D is a simple
normal crossing divisor transverse to V , that c1(∆j) = dj c1(A), c1(V ∗) = λV c1(A)
and let γV be the infimum of values γ > 0 such that ΘA ⊗ IdV − ΘV ⩾G 0. Take

γs = max
(
max

(
dj/ρ

(s)
j

)
, γV

)
, ρ

(s)
j = max (ρj/s, 1) .

Then, a sufficient condition for the existence of (many) non-zero holomorphic sections
of multiples of

Lτ,k = OXk(V ⟨D⟩)(1) ⊗ π∗
kO(−τA)

on Xk(V ⟨D⟩) is that Mn,k − M ′
n,k > 0, where Mn,k admits the lower bounds (8.42)

or (8.6), and M ′
n,k admits the upper bound (8.72).

8.1. Compact case (no boundary divisor)

We address here the case of a compact (projective) directed manifold (X, V ), with
a boundary divisor D = 0. By (8.42) and (8.72), we find

Mn,k ⩾
(kr−1)!

(n+kr−1)!(rγV + λV )nAn if k ⩾ n,

M ′
n,k ⩽

n! (kr−1)!
(n+kr−1)!

τ + γV
k∑
s=1

1
s

 k∑
s=1

1
s

(
rγV + λV

)n−1

.

Therefore, for τ > 0 sufficiently small, Mn,k −M ′
n,k is positive as soon as k ⩾ n and

(rγV + λV )n > n! γV (∑1⩽ s⩽ k
1
s
)n(rγV + λV )n−1, that is

(8.9) k ⩾ n and λV > n!
 ∑

1⩽ s⩽ k

1
s

n γV − rγV .

Example 8.1. — In the case where X is a smooth hypersurface of Pn+1 of degree
d and V = TX , we have r = n and det(V ∗) = O(d− n− 2). We take A = O(1). If Q
is the tautological quotient bundle on Pn+1, it is well known that TPn+1 ≃ Q⊗ O(1)
and detQ = O(1), hence T ∗

Pn+1 ⊗ O(2) = Q∗ ⊗ O(1) = ΛnQ ⩾G 0, and the surjective
morphism

T ∗
Pn+1|X → T ∗

X = V ∗

implies that we also have V ∗ ⊗ O(2) ⩾G 0. Therefore, we find γV = 2 and λV =
d− n− 2. The above condition (8.9) becomes k ⩾ n and

k ⩾ n and d > 2n!
 ∑

1⩽ s⩽ k

1
s

n − n+ 2.
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This lower bound improves the one stated in [Dem12], but is unfortunately far
from being optimal. Better bounds—still probably non-optimal—have been obtained
in [Dar16, MT22].

8.2. Logarithmic case

The logarithmic situation makes essentially no difference in treatment with the
compact case, except for the fact that we have to replace V by the logarithmic
directed structure V ⟨D⟩, and the numbers γV , λV by

γV ⟨D⟩ = inf γ such that γΘA − ΘV ⟨D⟩ ⩾G 0,
λV ⟨D⟩ such that c1(V ∗⟨D⟩) = λV ⟨D⟩ c1(A) (if such λV ⟨D⟩ exists).

We get the sufficient condition

k ⩾ n and λV ⟨D⟩ > n!
 ∑

1⩽ s⩽ k

1
s

n γV ⟨D⟩ − rγV ⟨D⟩.

For X = Pn, V = TPn , and for a divisor D = ∑∆j of total degree d on Pn, we can
still take γV ⟨D⟩ = 2 by Lemma 6.5, and we have det(V ∗⟨D⟩) = O(d− n− 1). We get
the degree condition

k ⩾ n and d > 2n!
 ∑

1⩽ s⩽ k

1
s

n − n+ 1.

Again, [Dar16, MT22] gave better bounds for this particular logarithmic situation.

8.3. Case of orbifold structures on projective space

Let us come to our main target, namely “genuine” orbifolds, for which our results
are completely new. The situation we have in mind is the case of triples (X, V,D)
where X = Pn, V = TX , D = ∑(1 − 1/ρj)∆j is a normal crossing divisor, with
components ∆j of degree dj. Set again A = O(1). Since c1(V ∗) = −(n + 1) c1(A)
and D(s) = ∑

j(1 − s/ρj)+∆j, we have

λV = −n− 1, detV ∗
〈
D(s)

〉
= OPn

−n− 1 +
∑
j

dj (1 − s/ρj)+

 .
Moreover, by Lemma 6.5, we get

ΘV ∗⟨D(s)⟩ + γs ωFS ⊗ Id >G 0

as soon as γs > 2 and γs > maxj(dj/max(ρj/s, 1)) for all components ∆j in D(s).
We can take for instance γs > st where t = max(maxj(dj/ρj), 2). By considering the
infimum and applying (8.42) when r = n and k ⩾ n, we find

Mn,k,ε ⩾
(kn−1)!

(n+kn−1)!

n∏
s=1

ns t− n− 1 +
∑
j

dj (1 − s/ρj)+

 An,
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while (8.72) implies
(8.11)

M ′
n,k ⩽

n! (kn−1)!
(n+kn−2)! (kt+ τ)

 ∑
1⩽ s⩽ k

1
s

ns t− n− 1 +
∑
j

dj (1 − s/ρj)+

n−1

An.

If we take ρj ⩾ ρ > n, then (1 − s/ρj)+ ⩾ 1 − s/ρ for s ⩽ n, and as ns t− n− 1 ⩾ 0
and ∑1⩽ s⩽ k

1
s
(nst− n− 1) ⩽ nkt, we get for τ > 0 small a sufficient condition

n∏
s=1

(1 − s
ρ

)∑
j

dj

 > kt (n+ kn− 1)n!
nk t+

(
1 + 1

2 + · · · + 1
k

)∑
j

dj

n−1

.

For k = n, the latter condition is satisfied if ∑j dj > cnt
∏n
s=1(1 − s

ρ
)−1 with

cn = n
(
n2 + n− 1

)
n!
(
1 + 1

2 + · · · + 1
n

+ 1
n3

)n−1
.

In fact, c1 = 1, c2 = 32.5 and cn ⩾ n5 for all n ∈ N∗, hence the above requirement
implies in any case the inequality n2t ⩽ 1

n3
∑
dj. The Stirling and Euler–Maclaurin

formulas give

cn ∼ (2π)1/2nn+7/2 e−n (γ + log n)n−1

as n → +∞, where γ = 0.577215 . . . is the Euler constant, the ratio being actually
bounded above for n ⩾ 3 by exp((1/2)(1 − 1/n)/(γ + log n) + 13/12n− 1/n2) → 1.
Let us observe that

1
t

= min
(
min
j

(
ρj

dj

)
, 1

2

)
.

In this way, we get the sufficient condition

(8.12) ρj ⩾ ρ > n,
∑
j

dj · min
(
min
j

(
ρj

dj

)
, 1

2

) n∏
s=1

(
1 − s

ρ

)
> cn.

For instance, if we take all components ∆j possessing the same degrees dj = d and
ramification number ρj ⩾ ρ, these numbers and the number N of components have
to satisfy the sufficient condition

(8.12N) ρ > n, N min(ρ, d/2)
n∏
s=1

(
1 − s

ρ

)
> cn.

This possibly allows a single component (taking d, ρ large), or d, ρ small (taking
N large). Since we have neglected many terms in the above calculations, the “tech-
nological constant” cn appearing in these estimates is probably much larger than
needed. Notice that the above estimates require jets of order k ⩾ n and ramification
numbers ρ > n. Parts (a) and (a′) of Theorem 1.9 follow from (8.12) and (8.12N).
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8.13. Case of jet differentials of order k = 1 (symmetric differentials).
When k < n or ρj ∈ ]1,+∞], estimate (8.6) still allows us to obtain an existence
criterion. For instance, when k = 1 and N ⩾ n, (8.61) and (8.11) give

Mn,1 ⩾ n! (n−1)!
(2n−1)!

∑
J ⊂ {1, ..., N}, |J |=n

n! (n−1)!
nn

∏
j ∈ J

dj
(
1 − 1

ρj

)
An,

M ′
n,1 ⩽ n! (n−1)!

(2n−2)! (t+ τ)
n t− n− 1 +

∑
j

dj(1 − 1/ρj)
n−1

An,

and we get the non-void existence criterion
(8.14) ∑
J ⊂ {1, ..., N}, |J |=n

∏
j ∈ J

dj
(
1 − 1

ρj

)
> (2n− 1) t

n t− n− 1 +
∑
j

dj (1 − 1/ρj)
n−1

where t = max(maxj(dj/ρj), 2). For instance, if all divisors have the same degrees
dj = d and ramification numbers ρj ⩾ ρ, condition (8.14) is implied by(

N

n

)
dn
(
1 − 1

ρ

)n
> (2n− 1) max(d/ρ, 2) ((N + n)d)n−1 ,

or equivalently, by

min(ρ, d/2)
(
N

n

)(
1 − 1

ρ

)n
> (2n− 1) (N + n)n−1.

As j 7→ (N − j)/(n− j) is non-decreasing for 0 ⩽ j < n ⩽ N , we have the inequality(
N
n

)
= ∏

0⩽j<n
N−j
n−j ⩾ (N/n)n, hence(

N

n

)
(2n−1)(N+n)n−1 ⩾ Nn

nn(2n−1)(2N)n−1 = N
2n−1 (2n−1)nn .

We finally get the sufficient condition

(8.14N) N ⩾ n, N min(ρ, d/2)
(
1 − 1

ρ

)n
> 2n−1 (2n− 1)nn.

Parts (b) and (b′) of Theorem 1.9 follow from (8.14) and (8.14N). Again, the constant
2n−1 (2n− 1)nn is certainly far from being optimal. Answering the problem raised
in Remark 7.7 might help to improve the bounds.

Appendix A. A proof of the orbifold vanishing theorem

The orbifold vanishing theorem is proved in [CDR20] in the case of boundary
divisors D = ∑(1 − 1/ρj)∆j with rational multiplicities ρj ∈ ]1,∞]. However, the
definition of orbifold curves shows that we can replace ρj by ⌈ρj⌉ ∈ N ∪ {∞}
without modifying the space of curves we have to deal with. On the other hand, this
replacement makes the corresponding sheaves Ek,mV ∗⟨D⟩ larger. Therefore, the case
of arbitrary real multiplicities ρj ∈ ]1,∞] stated in Proposition 1.6 follows from the
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case of integer multiplicities. We sketch here an alternative and possibly more direct
proof of Proposition 1.6, by checking that we can still apply the Ahlfors–Schwarz
lemma argument of [Dem97] in the orbifold context. For this, we associate to D the
“logarithmic divisor”

D′ = ⌈D⌉ =
∑

∆j ⩾ D,

and, assuming (X, V,D′) non-singular, we make use of the tower of logarithmic
Semple bundles

XS
k (V ⟨D′⟩) → XS

k−1(V ⟨D′⟩) → · · · → XS
1 (V ⟨D′⟩) → XS

0 (V ⟨D′⟩) := X

(in reference to the work of the British mathematician John Greenlees Semple,
see [Sem54]), where each stage is a smooth directed manifold (XS

k (V ⟨D′⟩), Vk⟨D′⟩)
defined inductively by

XS
k (V ⟨D′⟩) := P (Vk−1⟨D′⟩) = projective bundle of lines of Vk−1⟨D′⟩,

and Vk⟨D′⟩ is a subbundle of the logarithmic tangent bundle of XS
k (V ⟨D′⟩) associ-

ated with the pull-back of D′. Each of these projective bundles is equipped with a
tautological line bundle OXS

k
(V ⟨D′⟩)(−1) (see [Dem97] for details), and Vk⟨D′⟩ consists

of the elements of the logarithmic tangent bundle that project onto the tautological
line, so that we have an exact sequence

0 → TXS
k

(V ⟨D′⟩)/XS
k−1(V ⟨D′⟩) → Vk⟨D′⟩ → OXS

k
(V ⟨D′⟩)(−1) → 0.

We let πk,ℓ : XS
k (V ⟨D′⟩) → XS

ℓ (V ⟨D′⟩) be the natural projection. Then the top-down
projection πk,0 : XS

k (V ⟨D′⟩) → X yields a direct image sheaf

(πk,0)∗OXS
k

(V ⟨D′⟩)(m) := ES
k,mV

∗⟨D′⟩ ⊂ Ek,mV
∗⟨D′⟩.

Its stalk at point x ∈ X consists of the algebraic differential operators P (f[k]) acting
on germs of k-jets f : (C, 0) → (X, x) tangent to V , satisfying the invariance property

P ((f ◦ φ)[k]) = (φ′)mP (f[k]) ◦ φ,

whenever φ ∈ Gk is in the group of k-jets of biholomorphisms φ : (C, 0) → (C, 0).
By construction, the sheaf of orbifold jet differentials Ek,mV ∗⟨D⟩ is contained in
Ek,mV

∗⟨D′⟩, and we have a corresponding inclusion

ES
k,mV

∗⟨D⟩ ⊆ ES
k,mV

∗⟨D′⟩

of the Semple orbifold jet differentials into the Semple logarithmic differentials. A
consideration of the algebra ⊕ES

k,mV
∗⟨D⟩ makes clear that there exists a submulti-

plicative sequence of ideal sheaves (JD,k,m)m∈N on XS
k (V ⟨D′⟩), such that the image

of π∗
k,0OX(ES

k,mV
∗⟨D⟩) in OXS

k
(V ⟨D′⟩)(m) is a sheaf

OXS
k

(V ⟨D′⟩)(m) ⊗ JD,k,m.

It is clear that the zero variety of V (JD,k,m) projects into the support |D′| = |D| of
D. We consider a smooth log resolution

µk : X̃k → XS
k (V ⟨D′⟩)
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of the ideal JD,k,m in XS
k (V ⟨D′⟩), so that µ∗

k(JD,k,m) = OX̃k
(−GD,k,m) for a suitable

effective simple normal crossing divisor GD,k,m on X̃k that projects into |D| in X.
Denoting OX̃k

(1) = µ∗
kOXS

k
(V ⟨D′⟩)(1), we get

µ∗
k

(
OXS

k
(V ⟨D′⟩)(m) ⊗ JD,k,m

)
= OX̃k

(m) ⊗ OX̃k
(−GD,k,m) .

We denote by π̃k,ℓ the composition

π̃k,ℓ = πk,ℓ ◦ µk : X̃k → XS
k (V ⟨D′⟩) → XS

ℓ (V ⟨D′⟩),

and consider especially the projection π̃k,0 : X̃k → X. For every entire or local orbifold
entire curve f : C ⊃ Ω → (X, V,D), the image f(Ω) is not entirely contained in |D′|,
and we thus get holomorphic k-jet liftings

f[k] : Ω → XS
k (V ⟨D′⟩) and f̃ [k] : Ω → X̃k.

Moreover, the derivative f ′
[k−1] of the (k − 1)-jet lifting f[k−1] can be seen as a

meromorphic section of the logarithmic tautological line bundle (f[k])∗OXS
k

(V ⟨D′⟩)(−1),
since the multiplicities of zeroes of f ′

[k−1] are possibly less than the ones prescribed
by the logarithmic condition. The poles are of course contained in f−1(|D′|). As a
consequence, f ′

[k−1] also lifts as a meromorphic section of (f̃ [k])∗OX̃k
(−1), which we

denote by f̃ ′
[k−1]. If τD′ ∈ H0(X,OX(D′)) is the canonical section of divisor equal to

D′, we get at worst that

(A.1)
τD′(f) f ′

[k−1] ∈ H0
(
Ω, (f[k])∗

(
OXS

k
(V ⟨D′⟩)(−1) ⊗ π∗

k,0OX(D′)
) )

and τD′(f) f̃ ′
[k−1] ∈ H0

(
Ω,
(
f̃ [k]

)∗ (
OX̃k

(−1) ⊗ π̃∗
k,0OX(D′)

) )
are holomorphic. On the other hand, every local section P ∈ H0(U,ES

k,mV
∗⟨D⟩) on

an open subset U ⊂ X gives rise in a one-to-one manner to a section

σP ∈ H0
(
Uk,OXS

k
(V ⟨D′⟩)(m) ⊗ JD,k,m

)
, Uk = π−1

k,0(U) ⊂ XS
k (V ⟨D′⟩),

by the correspondence
P (f[k]) = σP (f[k]) ·

(
f ′

[k−1]

)m
for every local orbifold curve f contained in U . By pulling back to X̃k, we get a
section

σ̃P ∈ H0
(
Ũk,OX̃k

(m) ⊗ OX̃k
(−GD,k,m)

)
, Ũk = µ−1

k (Uk) = π̃−1
k,0(U),

such that
P (f[k]) = σ̃P

(
f̃ [k]

)
·
(
f̃ ′

[k−1]

)m
.

However, P (f[k]) is a holomorphic function, and we must have a cancellation of
the poles of (f̃ ′

[k−1])m for all sections σ̃P , which generate the sheaf OX̃k
(m) ⊗

OX̃k
(−GD,k,m). This means that

(A.2) f̃ ′
[k−1] is a holomorphic section of (f̃ [k])∗OX̃k

(−1) ⊗ OC
(
⌊ 1
m

(f̃ [k])∗GD,k,m⌋
)

For any given ample divisor A over X, we can find s = sk,m ∈ N∗ such that the
tensor product OX(ES

k,mV
∗⟨D⟩) ⊗ OX(sA) is generated by its global sections over
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X. By taking the pull-back to X̃k and looking at the image in OX̃k
(m), we conclude

that
(A.3) OX̃k

(m) ⊗ OX̃k
(−GD,k,m) ⊗ π̃∗

k,0OX(sA) is generated by sections on X̃k.

As in [Dem97], let us consider for every weight a = (a1, . . . , ak) ∈ Zk the line bundles

(A.4) OXS
k

(V ⟨D′⟩)(a) =
⊗

1⩽ ℓ⩽ k

π∗
k,ℓOXS

ℓ
(V ⟨D′⟩)(aℓ), OX̃k

(a) = µ∗
kOXS

k
(V ⟨D′⟩)(a).

Since each factor OXS
ℓ

(V ⟨D′⟩)(1) is relatively ample with respect to πℓ,ℓ−1, it is easy
to see by induction on k that thee exists a weight a ∈ (N∗)k and b ∈ N∗ such that
the line bundle OXS

k
(V ⟨D′⟩(a) ⊗ π∗

k,0OX(bA) is ample. After possibly replacing (a, b)
by a multiple, we can find a µk-exceptional divisor HD,k on X̃k such that
(A.5) OX̃k

(a) ⊗ OX̃k
(−HD,k) ⊗ π̃∗

k,0OX(bA)

is very ample on X̃k. Finally, we select c ∈ N∗ such that
(A.6) OX(cA−D′) is very ample on X.

By taking the tensor product of ((A.3)–(A.6)), (A.6) being raised to a power t ∈ N∗,
we find that

(A.7) Lk,m :=
OX̃k

(m) ⊗ OX̃k
(a) ⊗ OX̃k

(−GD,k,m −HD,k) ⊗ π̃∗
k,0OX((s+ b+ tc)A− tD′)

is very ample on X̃k. We will later need to take t = |a| = ∑
ℓ aℓ, which is of course

an admissible choice.

Lemma A.1. — Let (X, V,D) be a projective non-singular directed orbifold, and
A an ample divisor on X. Then, for every orbifold entire curve f : C → (X, V,D)
and every section

P ∈ H0
(
X,ES

k,mV
∗⟨D⟩ ⊗ OX(−A)

)
,

we have P (f[k]) = P (f, f ′, . . . , f (k)) = 0.

Proof. — As we have already seen for local sections, every global jet differential

P ∈ H0
(
X,ES

k,mV
∗⟨D⟩ ⊗ OX(−A)

)
gives rise to sections

σP ∈ H0
(
XS
k (V ⟨D′⟩),OXS

k
(V ⟨D′⟩)(m) ⊗ JD,k,m ⊗ π∗

k,0OX(−A)
)
,

σ̃P ∈ H0
(
X̃k,OX̃k

(m) ⊗ OX̃k
(−GD,k,m) ⊗ π̃∗

k,0OX(−A)
)

such that
P
(
f[k]
)

= σ̃P
(
f̃ [k]

)
·
(
f̃ ′

[k−1]

)m
∈ H0 (C, f ∗OX(−A)) .

Assume that P (f[k]) ̸= 0 (so that, in particular σ̃P ̸= 0). We consider a basis (gj) of
sections of Lk,m in (A.7), the canonical section ηD,k ∈ H0(X̃k,OX̃k

(HD,k)) and take
the products
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(A.8) hj =

gj (σ̃P )q−1 (τD′)t ηD,k ∈ H0
(
X̃k,OX̃k

(mq) ⊗ OX̃k
(a) ⊗ OX̃k

(−qGD,k,m)
)

where q = s+ b+ tc+ 1. We now observe, thanks to our choice t = |a| = ∑
aℓ, that

(A.9) hj
(
f̃ [k]

)
·
(
f̃ ′
k−1

)mq
·
∏

1⩽ ℓ⩽ k

(
dπ̃k,ℓ

(
f̃ ′
k−1

))aℓ =
(
σ̃P

(
f̃ [k]

)
·
(
f̃ ′
k−1

)m )q−1

×
(
gj
(
f̃ [k]

)
·
(
f̃ ′
k−1

)m
·
∏

1⩽ ℓ⩽ k

dπ̃k,ℓ
(
τD′(f) f̃ ′

k−1

)aℓ
)

× ηD,k
(
f̃ [k]

)
is a product of holomorphic sections on C, by (A.2) and (A.1) combined with (A.7)
and (A.8), and the fact that P (f[k]) = σ̃P (f̃ [k]) · (f̃ ′

k−1)m is holomorphic with values
in f ∗OX(−A). The product also takes value in the trivial bundle over C, and can
thus be seen as a holomorphic function. As j varies, these functions are not all equal
to zero, and we define a hermitian metric γ(t) = γ0(t) |dt|2 on the complex line C by
putting

γ0 =

∑
j

eψ(f̃ [k])
∣∣∣∣∣∣hj

(
f̃ [k]

)
·
(
f̃ ′
k−1

)mq
·
∏

1⩽ ℓ⩽ k

dπ̃k,ℓ
(
f̃ ′
k−1

)aℓ

∣∣∣∣∣∣
2


1
mq+|a|

,

where ψ is a quasi-plurisubharmonic potential on X̃k which will be chosen later.
Notice that γ0(t) is locally bounded from above and almost everywhere non-zero.
Since (A.9) only involves holomorphic factors in the right hand side, we get

(A.10) ı ∂∂̄ log γ0 ⩾ 1
mq+|a|

(
f̃ [k]

)∗ (
ω̃k + ı ∂∂̄ ψ

)
where ω̃k = ı ∂∂̄ log|gj|2 is a Kähler metric on X̃k, equal to the curvature of the
very ample line bundle Lk,m for the projective embedding provided by (gj). (In fact,
(A.10) could be turned into an equality by adding a suitable sum of Dirac masses
in the right hand side). Of course, ψ will be taken to be an ω-plurisubharmonic
potential on X̃k. We wish to get a contradiction by means of the Ahlfors–Schwarz
lemma (see e.g. [Dem97, Lemma 3.2]), by showing that ı ∂∂̄ log γ0 ⩾ Aγ for some
A > 0, an impossibility for a hermitian metric on the entire complex line. Since ψ
is locally bounded from above, by (A.9) and the inequality between geometric and
arithmetic means, we have

(A.11) γ0(t) ⩽ C
(∑∣∣∣hj (f̃ [k](t)

)∣∣∣2) 1
mq+|a| ∣∣∣f ′

[k−1](t)
∣∣∣2
log

where C > 0 and the norms |hj|2 and |f ′
[k−1](t)|2log are computed with respect to

smooth metrics on OX̃k
(mq) ⊗ OX̃k

(a) ⊗ OX̃k
(−qGD,k,m) and on the logarithmic

tautological line bundle OXS
k

(V ⟨D′⟩)(−1), respectively. The term |hj|2 is bounded, but
one has to pay attention to the fact that |f ′

[k−1](t)|2log has poles on f−1(|D′|). If we
use local coordinates (z1, . . . , zn) on X such that ∆j = {zj = 0}, we have
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∣∣∣f ′
[k−1]

∣∣∣2
log

∼
∣∣∣f ′

[k−1]

∣∣∣2
ωk

+
∑
j

|fj|−2
∣∣∣f ′
j

∣∣∣2
in terms of a smooth Kähler metric ωk−1 on XS

k (V ⟨D′⟩). What saves us is that hj
contains a factor τD′(f)t that vanishes along all components ∆j. Therefore (A.11)
implies the existence of a number δ > 0 such that

γ0(t) ⩽ C ′
( ∣∣∣f ′

[k−1](t)
∣∣∣2
ωk−1

+
∑
j

|fj|−2+2δ
∣∣∣f ′
j

∣∣∣2 ).
Since the morphism π̃k,k−1 has a bounded differential and f ′

[k−1](t) = dπ̃k,k−1(f̃ ′
[k](t)),

we infer

(A.11′) γ0(t) ⩽ C ′′

 ∣∣∣f̃ ′
[k](t)

∣∣∣2
ω̃k

+
∑
j

|fj|−2+2δ
∣∣∣f ′
j

∣∣∣2
 .

By (A.10) and (A.11′), in order to get a lower bound ı ∂∂̄ log γ0 ⩾ Aγ, we only need
to choose the potential ψ so that

(A.12)
∑
j

|fj|−2+2δ |f ′
j|2 ⩽ C ′′′

(
f̃ [k]

)∗ (
ω̃k + ı ∂∂̄ ψ

)
.

If τj ∈ H0(X,OX(∆j)) is the canonical section of divisor ∆j, (A.12) is achieved by
taking ψ = ε

∑
j|τj ◦ π̃k,0|2δ, for any choice of a smooth hermitian metric on OX(∆j)

and ε > 0 small enough. In some sense, we have to take a suitable orbifold Kähler
metric ω̃k + ı ∂∂̄ ψ on X̃k to be able to apply the Ahlfors–Schwarz lemma. It might
be interesting to find the optimal choice of δ > 0, but this is not needed in our
proof. □

End of the proof of Proposition 1.6. — We still have to extend the vanishing
result to the case of non-necessarily Gk-invariant orbifold jet differentials

P ∈ H0
(
X,Ek,mV

∗⟨D⟩ ⊗ OX(−A)
)
.

One can then argue by using the Gk-action on jet differentials
(φ, P ) 7→ φ∗P, (φ∗P ) (f[k]) := P ((f ◦ φ)[k]) ◦ φ−1, φ ∈ Gk.

This action yields a decomposition
(φ∗P )

(
f[k]
)

=
∑
α∈Nk

|α|w=m

(
φ(α) ◦ φ−1

)
Pα(f[k]), Pα ∈ H0 (X,Ek,mαV

∗⟨D⟩ ⊗ OX(−A))

where α = (α1, . . . , αk) ∈ Nk, φ(α) = (φ′)α1(φ′′)α2 . . . (φ(k))αk , |α|w = α1 + 2α2 +
· · · + kαk is the weighted degree, and Pα is a homogeneous polynomial of degree

mα := degPα = m− (α2 + 2α3 + · · · + (k − 1)αk) = α1 + α2 + · · · + αk.

In particular degPα < m unless α = (m, 0, . . . , 0), in which case Pα = P . If the
result is known for degrees < m, then all Pα(f[k]) vanish for Pα ̸= P and one can
reduce the proof to the invariant case by induction, as the term Pα of minimal degree
is invariant. The proof makes use of induced directed structures, and is purely formal
and group theoretic. Essentially, the argument is that P becomes an invariant jet
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differential when restricted to the subvariety of the Semple k-jet bundle consisting
of germs g[k] of k-jets such that Pα(g[k]) = 0 for Pα ̸= P . Singularities may appear
in this subvariety, but this does not affect the proof since the induced directed
structure is embedded in the non-singular logarithmic Semple tower. We refer the
reader to [Dem20, § 7.E] and [Dem20, Theorem 8.15] for details. □
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